
Netboost: Statistical modeling strategies for
high-dimensional data.

Dissertation zur Erlangung des Doktorgrades

vorgelegt von

Pascal Schlosser

an der Fakultät für Mathematik und Physik

der Albert-Ludwigs-Universität

Freiburg





Netboost: Statistical modeling strategies for high-dimensional data. i

Dean: Prof. Dr. Gregor Herten

Institute of Physics,

University of Freiburg

Hermann-Herder-Straße 3

79104 Freiburg, Germany

1. Reviewer: Prof. Dr. Martin Schumacher

Institute of Medical Biometry and Statistics,

Faculty of Medicine and Medical Center,

University of Freiburg

Stefan-Meier-Straße 26

79104 Freiburg, Deutschland

2. Referent: Prof. Dr. Berthold Lausen

Department of Mathematical Sciences,

University of Essex,

STEM 5.5, Colchester Campus,

Essex, United Kingdom

Datum der Promotion: 18. November 2019





Netboost: Statistical modeling strategies for high-dimensional data. iii

Acknowledgment

First and foremost, I thank Martin Schumacher for his great support, confidence

and the opportunity to write this dissertation.

I am grateful to Michael Lübbert, who opened a window into clinical science for

me and to Anna Köttgen, whose enthusiasm for research and hunger for a better

understanding of our world motivated my choice to embark a scientific career myself.

I thank Edgar Brunner for constructive discussions that helped to shape the

chapter on robust extensions.

I had the pleasure to work with many wonderful colleagues during my disserta-

tion. I deeply appreciate all the discussions, that are at the hearth of our research

and the support, which helped me to become a better scientist. Specifically, I would

like to name: Franziska Grundner-Culemann, Gabriele Greve, Jochen Knaus and

Nadja Blagitko-Dorfs.

Being blessed with some of my closest friends having an interest in Biostatis-

tics themselves, I am very grateful to Daniela Zöller, Maja von Cube and Maren

Hackenberg for proof reading my dissertation.

Lastly, I wish to thank my parents Doris and Norbert Schlosser and my wife

Anna Schlosser, who are the strength behind all my endeavors in life.





Netboost: Statistical modeling strategies for high-dimensional data. v

Statement of Authorship

Except where reference is made in the text of this dissertation, this dissertation

contains no material published elsewhere or extracted in whole or in part from a

dissertation presented by me for another degree or diploma. No other person’s work

has been used without due acknowledgement in the main text of the dissertation.

This dissertation has not been submitted for the award of any other degree or

diploma in any other tertiary institution.

Some parts of this dissertation have been submitted to peer-reviewed journals:

• Parts of the article by Schlosser et al. [1], are stated in Chapter 1, Chapter 2,

Chapter 3, Chapter 5, Chapter 6 and Chapter 8

• Parts of the article by Schlosser et al. [2], are stated in Chapter 4 and

Chapter 8

While related and cited, none of the results in [3], [4], [5] and [6] are presented

in this dissertation. I am a first author of [4], [5], [1] and [2] and responsible for

concept, analysis and paper of these studies. I am a co-author of [3] and [6] and

responsible for part of the analysis and paper of these studies. A complete list of

accepted peer-reviewed publications in which I participated can be found at https:

//orcid.org/0000-0002-8460-0462. This list at the time of writing (January, 1th

2019) is given in the Appendix in Complete list of peer-reviewed publications.

Apart from peer-reviewed articles, parts of this dissertation have been presented

at conferences:

• DAGStat 2016, Göttingen, Germany, oral presentation, related to Chap-

ter 2: 2



vi Netboost: Statistical modeling strategies for high-dimensional data.

• Statistical Computing 2016, Reisensburg, Germany, oral presentation, re-

lated to Chapter 2: 2.1 and Chapter 3

• Statistical Computing 2017, Reisensburg, Germany, oral presentation, re-

lated to Chapter 2: 2.5

• Genetic Epidemiology 2018, Grainau, Germany, oral presentation, related

to Chapter 4: 1

• DGfN 2018, Berlin, Germany, invited oral presentation, related to Chap-

ter 4: 2

• CHARGE 2018, Baltimore, USA, oral presentation (travel award 2500$),

related to Chapter 4: 2.1

• DAGStat 2019, Munich, Germany, oral presentation, related to Chapter 6

• Genetic Epidemiology 2019, Grainau, Germany, oral presentation, related

to Chapter 2: 2.5

• CHARGE 2019, St. Louis, USA, oral presentation (travel award 2600$),

related to Chapter 4: 2

I am aware of the PhD regulations by the faculty of Mathematics and Physics

of the Albert-Ludwig-University Freiburg, in particular I am aware that the right

of the doctoral candidate to use the title of Doctor and to display the associated

degree begins strictly with the handing over of the certificate.

Freiburg, November 20, 2019

place, date signature



Netboost: Statistical modeling strategies for high-dimensional data. vii

Abstract

Background. State-of-the art methods often fail to identify weak but cumu-

lative effects of variables found in high-dimensional omics datasets. Nevertheless,

these effects play important roles in many diseases, such as the clonal development

of leukemic cells and chronic kidney disease (CKD) metabolism.

Results. We propose Netboost, a three-step dimension reduction technique.

First, boosting-based filters are combined with the topological overlap measure to

identify the essential edges of the network. Second, sparse hierarchical clustering is

applied on the selected edges to identify modules and finally, module information

is aggregated by principal components. The primary analysis is then carried out

on these summary measures instead of the original data, allowing for a localized

dimensionality reduction.

We demonstrate the application of the newly developed Netboost in integration

with CoxBoost for survival prediction, genetic association studies to understand the

human metabolism and random forests for disease classification. We applied our

method in 7 independent cohorts spanning 6 diseases, a variety of high-dimensional

data types (DNA methylation, metabolomics, miRNA, RNA arrays, RNA sequenc-

ing) and human as well as murine in vivo samples. In many of these settings, we

were able to show significant advantages over state-of-the-art competitive analysis

strategies with respect to prediction errors, power and mis-classification rates by

cross-validation, general resampling and independent replication.

By integration of our novel method in analysis of several biomedical research

projects, we were able to attain and confirm biological insights which could not

have been reached by the compared state-of-the-art methods. In particular, the

two biologically most insightful findings in this dissertation were both replicated in
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independent datasets. First, we identified a chromatin modifying enzyme signature

associated with overall survival, which separates patients into two groups with a

threefold difference in median survival time. Second, we established the central

concept in the human urinary metabolism to be the list of absorption, distribution,

metabolism, and excretion (ADME) processes, which was originally defined in the

context of pharmacological research.

Furthermore, we demonstrated in several datasets a lower sampling uncertainty

of Netboost overall networks as well as individual components of the networks across

Netboost, weighted gene co-expression network analysis (WGCNA) and k-means and

found that method uncertainty dominated sampling uncertainty.

Finally, we integrate Netboost with robust methodology designing a Netboost

adaption, which is invariant to monotone transformations of variables and thus ob-

tain an advantageous extension in cases of non-linear relationships between variables.

Conclusion. The newly developed approach Netboost offers a versatile statisti-

cal modeling strategy for high-dimensional data, which is freely available as a Bio-

conductor R package. Via dimensionality reduction it improves accuracy, power and

stability in various analysis settings, including time-to-event analysis, genome-wide

association study (GWAS) and classification.
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CHAPTER 1

Introduction

Microarray, sequencing and other high-throughput functional genomics technolo-

gies are developing rapidly, incorporating more and more measured variables. This

has led to extensive advances in biomedical research. For example, it laid the foun-

dation for the steady improvements of survival rates in many cancerous diseases over

the past decades and more recently in drug development in general. When compared

to traditional clinical trials, substances based on a genetic association with the dis-

ease have a more than two-fold chance of being approved [7, 8]. However, these

achievements fuelled by advances in measurement technology call for appropriate

data analysis methodology which is currently lagging behind for many applications.

A major challenge for biomedical research when analyzing these high-dimensional

datasets lies in the discrepancy between the potentially hundreds of thousands of

variables to be investigated and a limited sample population in the range of tens to

a few hundreds.

Many times, methods which were originally developed for the selection of a low

number of clinical variables are now faced with the challenge of selecting from hun-

dreds of thousands or even from millions of variables. An even greater challenge is

imposed if no singular variable is expected to dominate an effect, but rather a larger

group of variables acts cumulatively. This gives rise to dimensionality reduction

techniques that can be partitioned into supervised and unsupervised algorithms.

The former aim at simultaneously identifying the subspace with minimal dimen-

sions and a good characterization of the outcome variable (e.g. [9, 10, 11]) and

the unsupervised aim at identifying the subspace with minimal dimensions that still

gives a good characterization of the original full dimensional dataset (e.g. [12, 13]).

As adapted from [14], supervised methods can be categorized in filter, wrapper and
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embedded methods. Filter methods first calculate a relevant score for each variable

and then define a cut-off on these. Wrapper methods evaluate the performance of

each subspace by application of the intended analysis. Embedded methods integrate

model construction and variable selection in one step. Filter and wrapper methods

can also be transfered to categorize unsupervised dimensionality reduction methods

when the performance measures are chosen independently of the variable of inter-

est. Furthermore, wrapper and embedded methods can be implemented as simple

variable selection methods or extended by feature abstraction. In the later case,

new variables are constructed via projection or compression to integrate the original

variables more efficiently.

Supervised methods optimize dimensionality reduction with respect to the out-

come of interest and can benefit prediction accuracy for this particular outcome.

Unsupervised algorithms on the other hand are more versatile when multiple out-

comes or the dimensionality reduction itself are of interest. Determining which vari-

ables are essential to the overall variation in the dataset and which are connected

and form a group can often give insight into central aspects of the underlying biol-

ogy. Detecting these structures independently of the outcome enables the researcher

to comprehensively interpret them and gives weight to the subsequently identified

association with the outcome.

Related to the topic of dimensionality reduction is the concept of network anal-

ysis ([15, 16, 17, 18, 19, 20]). Network analysis focuses on the identification

of dependency strutures within the data. A network of variables, the nodes, is

weighted if its edges, which connect the nodes, are coded on a continuous scale and

unweighted if edges are binary. To achieve a form of local dimensionality reduc-

tion, we can integrate network and dimensionality reduction methods. When highly

dependent structures are identified, these can be locally summarized by filter, wrap-

per or embedded algorithms and aggregated measures can be combined across all

identified structures.
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With the Network analysis with boosting-based filtering, which we dubbed

Netboost, we propose an unsupervised procedure to reduce dimensions within

high-dimensional datasets. In the context of the above categorization, Netboost

is a hybrid network method, combining weighted and unweighted networks via the

boosting-based filter, with an unsupervised wrapper methodology including the con-

struction of new aggregate variables via local projections. We put a specific empha-

sis on large subgroups of variables, called modules, that show a shared effect. To

this end, we aggregate subgroup information before applying the primary analysis

strategy.

The integration of network and dimensionality reduction methodology facilitates

a form of local dimensionality reduction. Specifically, aggregation takes place in local

environments, the modules, within the network. E.g., in a simple network consisting

of two modules, a global dimensionality reduction algorithm like principal compo-

nent analysis (PCA) ([12]) would in many instances first aggregate the difference

between the two modules, whereas Netboost would begin aggregation by identifying

the main direction within each of the modules. Both approaches aggregate infor-

mation which is relevant to many research questions, but they assemble distinct

information.

In Netboost as a network-based dimensionality reduction method, we were ini-

tially inspired by the weighted gene co-expression network analysis (WGCNA) ([21,

15, 22]) and modified and extended the framework in various ways. Foremost is

the addition of a multivariate filter and application of sparse hierarchical clustering

to improve detection of relevant network edges. The general intent of the proposed

extensions and modifications is to improve identification of modules by reduction of

noise and pruning modules to their central variables. This becomes particularly im-

portant with an increasing number of dimensions and in integrative analysis across

datatypes. For example, when we analyse the interplay of differing molecular levels,

like gene expression and DNA methylation, these do contain interesting and relevant
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crosslinks. However, also the overall proportion of non-null edges in the network is

strongly reduced.

1. Illustration

To illustrate how Netboost can recover and use the embedded network structure

to our advantage, we simulate correlated variables. Here, we can assume this to be

a simplified example of gene regulation influencing overall survival in a study on the

prognosis of patients with acute myeloid leukemia (AML). First, we generate 400

unrelated standardized genes by drawing 100 samples from 400 independent and

identically distributed (i.i.d.) standard normal variables, which are not related to

the variables of interest. Next, we draw 100 samples from a multivariate normal

distribution of dimension 101 with marginal means of zero and all off-diagonal co-

variance entries equal to 0.8. For the first scenario, we define one of the dimensions

as the variable of interest y1, the other 100 dimensions are added as the first module

to the dataset. This reflects a situation where the one underlying gene is causally

associated with survival is not covered by the measurement platform, but a set of

co-regulated genes is. Next, we draw 100 samples from a multivariate normal distri-

bution of dimension 100 with marginal means of zero and all off-diagonal covariance

entries equal to 0.6. For the second scenario, the variable of interest y2 is defined

as the sum across these 100 dimensions and reflects a cumulative effect of these

co-regulated genes on survival.

In Figure 1 we display the pair-wise sample Pearson correlation coefficients and

in Figure 2 the first and second principal components (PCs) of the 600 simulated

variables. In these simplified simulated scenarios, we evaluate the strength of asso-

ciation directly with y1 and y2 and not some more complex endpoint related to y1

or y2, as this is sufficient if we assume conditional independence of the endpoint to

the other variables given y1 and y2, respectively.

We evaluate univariate ordinary least square regression model fits with y1 and

y2 as outcomes. All variables in module 1 and 2 are associated with y1 and y2,
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0.0 0.5 1.0

Figure 1: Correlation matrix of simulated data. Heatmap of the pair-wise

sample Pearson correlation coefficients of 600 simulated variables.

respectively at a Bonferroni-adjusted significance level of 0.05/600. The lowest p-

values were 1.0e-24 for y1 and 1.1e-31 for y2. While due to the strong correlation

structure all univariate models already show significant associations with the respec-

tive outcome, we are able to improve this by applying Netboost. First, we identify

the grouping structure in an unsupervised manner and then calculate aggregated

variables for each of the identified modules. As displayed in Figure 3, Netboost

correctly identifies the two existing modules in the data and sets all other variables

as ungrouped. The aggregate measure for the first module combines the correlated

information and exhibits a stronger association than any of the individual variables
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Figure 2: First and second principal component of simulated data.

(p-value = 9.6e-31). In case of y2, which actually integrates information across vari-

ables, differences become even more pronounced with the p-value of the aggregated

variable being 9.7e-244.

2. Structure of the presented work

As illustrated in Figure 4, this dissertation is organized as follows. Chapter 2

outlines the newly developed Netboost and describes properties and the imple-

mentation of the algorithm. In Chapter 3, Netboost is integrated with CoxBoost

([23]) for cross-omics time-to-event analysis, applied in 5 different cancer datasets

([24, 25, 26]) and evaluated against state-of-the-art alternatives ([23, 15]). In

Chapter 4, we perform a study in the German Chronic Kidney Disease (GCKD) co-

hort ([27]) and integrate Netboost with genome-wide association studies of metabo-

lite concentrations (mGWAS). This analysis has an inherent discovery-replication

design such that all associations were replicated. We identified ADME as the major

processes driving human urine metabolism and show superior power to state-of-the

art single metabolite analysis.

Chapter 5 illustrates integration with random forests for classification ([28]) and

applies this to a Huntington’s Disease (HD) RNA-sequencing dataset. In Chapter 6,



Netboost: Statistical modeling strategies for high-dimensional data. 7

0.
80

0.
85

0.
90

0.
95

1.
00

H
ei

gh
t

Reference

Netboost

Reference:
Module 1 Module 2

Figure 3: Dendrogram of simulated data. Dendrogram of 600 simulated vari-

ables. The color bands below the graph show the separation into modules with grey

reflecting background variables.

preservation of the network and individual modules are studied for a variety of

earlier datasets to distinguish sampling and method uncertainty and in Chapter 7,

robust extensions of Netboost are introduced which are able to cover non-linear

relationships between variables.

Finally, in Chapter 8, we put Netboost in context with respect to the current

literature and outline advantages, limitations and future research on the proposed

method to conclude this dissertation.
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Figure 4: Structure of the presented work. Blue chapters focus on the method-

ological foundation and the properties of Netboost and green chapters lay out the

integration with primary analysis strategies and its performance. Solid arrows indi-

cate content-wise dependence and dashed arrows indicate shared data examples.
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CHAPTER 2

Netboost: Network analysis with boosting-based filtering

We first introduce weighted gene co-expression network analysis (WGCNA) and

its underlying theory. Based on this, we propose the methodological foundation of

Netboost, show several properties of the derived measures and outline the imple-

mentation as an R package.

1. Weighted gene co-expression network analysis

WGCNA is a widely applied systems biology method to infer network structures,

perform dimensionality reduction and study phenotypic associations of aggregated

measures of variable subgroups. Development is spearheaded by the group of Steve

Horvath at the University of California at Los Angeles ([21, 29, 30, 31, 15, 22, 32]).

While the method was designed in the context of gene expression, it is suitable for

most high-dimensional datasets. Prime examples of application include proteomics

([33, 34, 35]), metabolomics ([3, 34]), DNA methylation (DNAm) ([36]), micro

ribonucleic acid (miRNA) ([37]) and particularly transcriptomics ([38, 39, 40, 41,

42, 43, 44, 33]). Additionally, this correlation-based network methodology allows

for integration of complementary data types as has been done in several of the above

publications ([39, 33, 34]).

In the following section, we describe the methodological background of WGCNA

on which Netboost is based. Let X be a n ⇥ p-dimensional random variable in a

high-dimensional setting, where n⌧ p with n being the number of observations and

p the number of variables. We define notation for dependent random variables for

i 2 {1, . . . , p}. The vector of variable i is denoted by

Xi := Xon,i
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and the subsetted matrix excluding variable i by

X�i := Xon,j 6=i.

Let the image space of Xoi be connected and i 2 {1, . . . , p} be a node of the network

representing variable Xi. A simply network could be constructed based on the

unweighted adjacency matrix defined by

Aunweighted :=

8
><

>:

1 if |corr(Xi, Xj)| > ⌧,

0 else,

with corr being the Pearson correlation coefficient ([45]). As this hard thresholding

results in a potential loss of information, we continue with a weighted design of

WGCNA.

We define the adjacency matrix, AWGCNA, as a measure of similarity ([29]1). Let

(1) AWGCNA = ai,j2{1,...,p} := |corr(Xi, Xj)|b

with b 2 N+. As the absolute Pearson correlation coefficient is a symmetric function

and positive, it follows that AWGCNA is a positive symmetric matrix. The strength

of the edge between two nodes i and j can now be described by their adjacency aij.

This allows for soft thresholding based on the parameter b in contrast to a hard

threshold ⌧ , which would be applied in unweighted networks.

The connectivity of node i is defined as ki :=
P

j 6=i aij ([29]). As the connectivity

is a deterministic combination of random variables, it is a random variable itself.

Based on the probability distribution of nodes with connectivity k 2 R+, a network

is scale-free if and only if P (k) / k�� for some fixed � 2 R+. P (k) is used in short for

the probability of a R-valued random variable, which assigns the connectivity to a

node, taking the value k. The parameter b is then tuned to approximate a scale-free

topology on the observed AWGCNA. Prime examples of networks suggested to have

a scale-free topology are the internet, protein-protein networks and co-authorships

by mathematicians of papers which are studied in the context of Erdős numbers.

1While introduced in [21], we use the definition of [29] with aii = 1.
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Given that for many datatypes we are far from measuring all nodes in the underlying

biological network, this is in contrast to subnets of scale-free networks not necessarily

being scale-free ([46]). However, the larger the mean connectivity and � in the

original network and the sampling fraction, the smaller the deviation of the random

subnet will be to a scale-free network. Subsetting related to measurement technique

is in many instances not random, which might lead to even more or to less severe

deviations. Despite these limitations, many previous studies observe approximately

scale-free topologies for genomic and other high-dimensional datatypes ([47, 48,

49, 50, 51]).

To evaluate the agreement of a network with the scale-free topology criterium the

square correlation, corr(log(P (k)), log(k))2, is used as means of a model fit measure

for the corresponding linear regression ([21]). A positive slope of the regression with

log(k) as the independent variable corresponds to a biologically implausible network,

in the omics context, with more central nodes than peripheral nodes. Therefore,

b 2 N+ is chosen to be the minimum b for which

corr(log(P (k)), log(k))2 > 0.85

and the slope is negative ([15]).

We define the similarity of two nodes by the topological overlap measure (TOM)

([49, 21, 29]2) as

TOMWGCNA
ij :=

P
u 6=i,j aiuauj + aij

min(
P

u 6=i aiu,
P

u 6=j auj) + 1� aij
.

We define a dissimilarity measure

dWGCNA
ij := 1� TOMWGCNA

ij .

Based on dWGCNA
ij , we use average linkage hierarchical clustering to group vari-

ables into modules. To perform this grouping, the Dynamic Tree Cut procedure is

2While introduced in [49] and corrected in [21] ([49] contained a typographical error), these

publications were based on a slightly different adjacency matrix and we follow [29].
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applied as described in [22]. In short, the unweighted pair group method with arith-

metic mean (UPGMA) ([52]) is used to organize variables into a dendrogram. Next,

the dendrogram is split by a static cut height. Resulting clusters are iteratively split

at points where the merging height switched from increasing to a predefined suffi-

ciently low level and the clusters are merged again if clusters are highly correlated

till convergence. In opposition to a static cut height, this allows for identification of

nested modules and the algorithm is suitable for automation.

An important measure of network modularity is the difference of TOM-based

node connectivity based on the whole network and within modules, where TOM-

based node connectivity is defined as

TOMWGCNA
i :=

X

j2{1,...,p}

TOMWGCNA
ij .

The more pronounced the module separation in a network, the larger the fraction

of TOMWGCNA
i is based on within-module similarities.

To summarize information of a module, PCA is used. Let M ✓ P({1, . . . , p})

be a partition of nodes. For a module m 2M we define

Xm := Xon,j2m.

W.l.o.g. we assume each column of Xm to be standardized to mean 0 and variance

1. As the covariance matrix is symmetric and real-valued, it is diagonalizable and

we can calculate orthonormal eigenvectors such that

(Xm)TXm/(n� 1) = WDWT

with W the matrix of eigenvectors and D a diagonal matrix with the eigenvalues

in a decreasing order as diagonal entries. The lth principal component is given by

the lth column of XW . We define the module eigengene (ME) as the first principal

component

MEm := (XW )on,1.
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2. Netboost

With Netboost, we propose a procedure for dimension reduction in a high-

dimensional genomic context. In the general framework of WGCNA, we extend

the methodology to a combination of weighted and unweighted boosting-based net-

works. In this semi-weighted network analysis, we integrate a filter F selecting

relevant edges in the network which are analyzed in a weighted fashion. By this

combination, we improve the noise-canceling capability of the network and increase

specificity of detected modules while still utilizing the information in the underlying

quantitative correlation measures.

Netboost is a three-step procedure. As shown in Figure 5, in the first step we

calculate the boosting-based filter and a sparse distance matrix between variables.

Therefore, we reduce the network to its essential edges. We still retain the intercon-

nectedness and stability of complex network structures including indirect connec-

tions that occur in many omics datasets and reflect biological pathway structures.

Thus, step one identifies the underlying rudimentary network (Chapter 2: 2.1).

The second step, module detection (Chapter 2: 2.2), consists of sparse hier-

archical clustering ([53]) and the Dynamic Tree Cut procedure (Chapter 2: 1) to

determine modules from the dendrogram to transfer the network into a partition of

variables.

Subsequently in step three, we aggregate the information in the modules by

their MEs to achieve a low-dimensional representation of the original data (Chap-

ter 2: 2.3).

2.1. Network.

2.1.1. Boosting-based filter. To first identify a general structure of our network,

we aggregate a filter of important network edges by linear likelihood-based boosting.

Let Y : Rn⇥(p�1) ! Rn be a random variable. Here, we represent the process

of all variables except one in our network determining the state of this one variable

for our n observations. We perform componentwise likelihood-based boosting, a

forward selection-type procedure, to fit a linear approximation of Y ([54, 55, 56]).



14 Chapter 2. Netboost: Network analysis with boosting-based filtering

Netboost:

High-dimensional	
Data

Sparse	Distance	
Matrix

Modules

Eigengenes

Selected	Modules

1.	Boosting	filter	+	Topological	
Overlap	Measure

2.	Sparse	Hierarchical	Clustering	
+	Dynamic	Tree	Cut

3.	Principle	Component	Analysis

Primary	Analysis

Figure 5: Netboost concept flow chart.

Considering the standardized X, which is assumed to be sampled from a continuous

distributions, we use intercept free univariate base learners

hi(Xi) := �iXi

with i 2 {1, . . . , p}\{j}, �i 2 R and j indexing the dependent variable in the model.

We initialize the additive predictor with all base learners set to zero as

f̂ [0] :=
X

ĥi(Xi) = 0.
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In each iteration, we fit the base learners using Fisher scoring with respect to the

overall likelihood function one-by-one while keeping all other base learners fixed

([57]) and thus incorporating the information of the already selected variables.

Based on the largest improvement of the overall likelihood, one base learner ĥ⇤

is selected and the additive predictor is updated as

f̂ [l] := f̂ [l�1] + ⌫ĥ⇤

with ⌫ = 0.1 as a stepsize. The number of iterations taken is the main tuning pa-

rameter of the algorithm and usually set by a resampling approach. The empirically

selected final model can be written as

f̂(X�j) =
X

i2{1,...,p}\{j}

�̂iXi = X�j�̂

with �̂ :=
⇣
(�̂i)i2{1,...,p}\{j}

⌘T
.

We perform componentwise likelihood-based boosting in turn with each of the

variables being the dependent and all other the independent variables with a fixed

number of steps. First we extend the �̂s by a zero at the index of the dependent vari-

able and then merge all individual �̂s column-wise into a p⇥ p-matrix B̂. Thereby,

diag(B̂) = diag(0) and we can write the finally selected individual models as

Xi ⇠ XB̂·i

for all i  p. By the zero extension, Xi as an independent variable is ignored in the

prediction of Xi as XB̂·i = X�iB̂j 6=i,i. We fit an unsigned network and neglect the

boosting coefficient sign. We define the filter by

F := {(i, j), (j, i)|9i, j 2 N : Bij 6= 0}.

By pruning the network to F , we remove uninformative edges and reduce computa-

tional load and noise in subsequent steps.
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2.1.2. Distance calculation. For tuples in F , we define the adjacency of two

variables by the power adjacency function. For all other tuples, the adjacency is set

to 0. Hence, we have

aij :=

8
>>>><

>>>>:

1 if i = j,

|corr(Xi, Xj)|b else if (i, j) 2 F ,

0 else,

where b is chosen data-based by the scale free topology criterion on a random subset

of variables (Chapter 2: 1).

We combine the TOM with F and define

TOMij :=

8
>>>><

>>>>:

1 if i = j,
P

u 6=i,j aiuauj+aij
min(

P
u 6=i aiu,

P
u 6=j auj)+1�aij

else if (i, j) 2 F ,

0 else.

(2)

We invert it to a dissimilarity measure by

dij := 1� TOMij 2 [0, 1].(3)

2.2. Module detection. We apply the UPGMA ([52]) to the dij. Parts of the

network where no path exists in F are clustered independently. A path between Xi

and Xj exists if and only if there is an l 2 N such that there are t1...l 2 F with

i = t11, j = tl2 and 8s : 1  s  l � 1 ts2 = t(s+1)1. The dendrograms resulting

from these hierarchical clusterings are separated into modules by the Dynamic Tree

Cut procedure (Chapter 2: 1). Thus, features which are topologically close on the

filtered edges are grouped into modules. The resulting partion into modules can be

represented by some M ✓ P({1, . . . , p}).

2.3. Aggregation of module information. The first PC explains the most

variation possible in an one-dimensional space. By design of the modules, they

consist of highly correlated variables and this first PC typically explains between

40% and 95% of the variation in Xm for an m 2 M . This proportion of variance
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explained is denoted by

(4) propVar(m) := 1� residual variance of PC1
total variance

.

Therefore, we aggregate the information in each module by its first PC, the so called

eigengenes (ME, Chapter 2: 1). In a final step, modules with highly correlated

first principal components are merged to further reduce dimensionality. Given the

resulting partition M , we define

Xmodules := (MET
1 , . . . ,MET

|M |).

Xmodules has dimensions n⇥ |M | where |M |⌧ p. Due to its definition, a substantial

part of variation in X is conserved in Xmodules, while at the same time the dimen-

sionality is considerably reduced. To enlarge the proportion of variance explained

to a predefined level minVar, we optionally extend Xmodules to the first l PCs per

module. Here, for each module m l is chosen such that l = min({1, . . . , |m|}) with

propVarExtended(m, l) � minVar, where

propVarExtended(m, l) := 1� residual variance of PC1. . . PCl

total variance
.

2.4. Properties. A real-valued function is a similarity measure if and only if

it is symmetric and non-negative.

Lemma 1. TOMij takes values in [0, 1] and is symmetric. Thus, it is a similarity

measure.

Proof. For (i, j) /2 F this is trivial. For (i, j) 2 F w.l.o.g.

min(
X

u 6=i

aiu,
X

u 6=j

auj) =
X

u 6=i

aiu

and therefore

TOMij =

P
u 6=i,j aiuauj + aijP
u 6=i aiu + 1� aij

=

P
u 6=i aiuauj � aijajj + aijP

u 6=i aiu + 1� aij
=

P
u 6=i aiuaujP

u 6=i aiu + 1� aij

P

u 6=i aiuaujP
u 6=i aiu


P

u 6=i aiu1P
u 6=i aiu

= 1
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The second to last inequality holds because if (i, j) 2 F it follows that corr(Xi, Xj) 6=

0, hence aij 6= 0. Furthermore, as 8i, j aij 2 [0, 1] and thereby 1� aij � 0 it follows

that TOMij � 0.

It follows directly from the definition (2) that TOMij is symmetric and thereby

it is a similarity measure which takes values in [0, 1]. ⇤

Analogously, it follows that TOMWGCNA
ij is a similarity measure.

Lemma 2. If (i, j) 2 F , aij = 1 and for all u with aiu 6= 0 or auj 6= 0

auj = aiu = 1,

then TOMij = 1.

Proof.

TOMij =

P
u 6=i,j aiuauj + 1

min(
P

u 6=i aiu,
P

u 6=j auj)
w.l.o.g.
=

P
u 6=i aiuauj � aijajj + 1

P
u 6=i aiu

= 1

⇤

Lemma 3. If i 6= j, aij = 0 and @u with aiu 6= 0 ^ auj 6= 0 then TOMij = 0.

Proof. For (i, j) /2 F , it follows from i 6= j that TOMij = 0. Let (i, j) 2 F ,

then

TOMij
w.l.o.g.
=

P
u 6=i,j aiuauj + aijP
u 6=i aiu + 1� aij

=

P
u 6=i,j aiuaujP
u 6=i aiu + 1

=
0P

u 6=i aiu + 1
= 0

⇤

While Lemma 1 is essential for appropriate definition of dij, Lemmas 2 and 3

illustrate some basic plausibility of the introduced similarity measure. Lemma 2

shows that perfectly similar variables connected by further variables indeed receive

the maximal similarity measure and Lemma 3 demonstrates that disconnected vari-

ables have the minimal similarity measure.

Corollary 4. d : N2 ! R is a pseudosemimetric.

Proof. We show
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(1) dij � 0,

(2) dii = 0 and

(3) dij = dji.

From Lemma 1 and its definition we have that d is symmetric and that the image

space of d is [0, 1].

If i = j then dij = 1� TOMij = 1� 1 = 0.

⇤

Theorem 5. d : N2 ! R does not fulfill the triangular inequality.

Proof. We prove the violation of

dij  diu + duj

by counterexample in an computer assisted manner. First, we note that for any

symmetric positive semidefinite ⌃ 2 Rd⇥d such that the diagonal elements are equal

to 1 there exists a random variable

X = (X1, . . . , Xd)
T ⇠ N (0,⌃).

As ⌃ij := IE[(Xi � IE[Xi])(Xj � IE[Xj])], it follows that the population Pearson

correlation coefficient of Xi and Xj is

⇢(Xi, Xj) =
IE[(Xi � IE[Xi])(Xj � IE[Xj])]p

Var(Xi)
p

Var(Xj)

=
⌃ijp

Cov(Xi, Xi)
p

Cov(Xj, Xj)
=

⌃ijp
⌃ii

p
⌃jj

= ⌃ij.

Let b equal to 1 and F = {(i, j) | i 6= j}. Let ⌃ further be positive in all elements.

It follows that the adjacency matrix A equals ⌃.
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Next, we design a matrix which has a suboptimal direct but good indirect con-

nection of node 1 and 2. For d � 4 let ⌃ be
0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

1 0 1 0 · · · 0

0 1 1 1 · · · 1

1 1 1 · · · · · · 1

0 1
... . . . ...

...
...

... . . . ...

0 1 1 · · · · · · 1

.

It follows that

d12 = 0.5 > 0 + 0 = d13 + d32.

However, these matrices are not positive semidefinite. Next, we explore possible

modifications of these matrices to identify a symmetric positive semidefinite matrix

which still violates the triangular inequality.

For d 2 [4, 50] we leave the diagonal and zeros unchanged while subtracting the

absolute value of ✏ ⇠ N (0, 0.2) from all other entries. For each entry we redraw ✏

and after the subtractions for i < j recursively redefine entries as

⌃ij := mean(⌃ij,⌃ji),

and then

⌃ji := ⌃ij.

Matrices with negative entries are disregarded. We round all other matrices to two

digit precision and check wether the triangular inequality is still violated and if all

eigenvalues are positive.

We identified multiple matrices which fulfilled all conditions. One of them is
0

BBBBB@

1

CCCCCA

1.00 0.00 0.68 0.00

0.00 1.00 0.65 0.59

0.68 0.65 1.00 0.59

0.00 0.59 0.59 1.00

.
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We have

d12 = 0.7369048 > 0.6922642 = 0.32 + 0.3722642 = d13 + d32.

⇤

Corollary 6. dWGCNA : N2 ! R does not fulfill the triangular inequality.

Proof. As we assumed F = {(i, j) | i 6= j} in the counterexample in the proof

of Theorem 5, it follows that

dWGCNA = d.

⇤

We define a binary relation on N by

i ⇠ j := 9f : R! R linear ^ f(Xi) = Xj,

where Xi and Xj represent their respective random variables. It is easily seen that

this is reflexive, symmetric and transitive and thereby an equivalence relation. d is

only a pseudosemimetric as dij = 0 only implies i ⇠ j and not i = j.

Theorem 7. If dij = 0, then i ⇠ j.
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Proof. Assuming we have dij = 0 and (i, j) 62 F it follows that dij = 1. E For

dij = 0 and (i, j) 2 F , w.l.o.g. min(
P

u 6=i aiu,
P

u 6=j auj) =
P

u 6=i aiu. Henceforth,

0 = dij = 1�
P

u 6=i,j aiuauj + aij

min(
P

u 6=i aiu,
P

u 6=j auj) + 1� aij

,
P

u 6=i,j aiuauj + aij

min(
P

u 6=i aiu,
P

u 6=j auj) + 1� aij
= 1

,
X

u 6=i,j

aiuauj + aij = min(
X

u 6=i

aiu,
X

u 6=j

auj) + 1� aij

, aij =

P
u 6=i aiu + 1�

P
u 6=i,j aiuauj

2

, aij =

P
u 6=i aiu + 1 + aijajj �

P
u 6=i aiuauj

2

, aij =
X

u 6=i

aiu + 1�
X

u 6=i

aiuauj

,
X

u 6=i

aiuauj + aij =
X

u 6=i

aiu + 1

,
X

u

aiuauj =
X

u 6=i

aiu + 1

,
X

u

aiuauj =
X

u

aiu

) 8u with aiu 6= 0 : auj = 1

) aij = |corr(Xi, Xj)|b = 1

) i ⇠ j

⇤

In conjunction we showed that d when compared to dWGCNA does not lose es-

sential propertise due to the introduction of the filter and that d as well as dWGCNA

are pseudosemimetrics (Corrolary 4). Here, the semi restriction originates from

the intended zero-distance of perfectly connected variables as showen in Lemma 2.

The pseudo restriction originates from the integration of neighboring edges via the

TOM. We so to say exchange the improved stability of the network as a whole with

consistency on a local level in some rare instances.
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2.5. Implementation. Netboost is built as an R package and was reviewed

and accepted for the Bioconductor repository under Linux and macOS. A Windows

implementation is currently not planned due to compiler dependencies.

As depicted in Algorithm 1, we first calculate F . After scaling and centering

each variable, we efficiently implement the likelihood-based boosting as a backend

C++ routine. While the original code was designed and written by Pascal Schlosser,

the conversion to C++ was done by Jochen Knaus. The subsequent calculation of

adjacencies and TOM are performed exclusively on network edges in F . Then the

resulting sparse distance matrix are exported to Sparse UPGMA, an algorithm pre-

sented in [53] and implemented in C++. Here, all missing edges in the sparse matrix

where the nodes are connected indirectly are assumed to have the maximal distance

in the network and completely unconnected nodes of the network are processed sep-

arately in independent clusterings. This agrees with the described method as all

connected nodes not in F have a distance of 1.

Netboost is part of Bioconductor from release 3.9 onwards. Ongoing development

of new features and adaptations, like the robust extension presented in Chapter 7, are

freely available on Github at https://github.com/PascalSchlosser/Netboost.

After thorough testing, stable releases are pushed to Bioconductor. All function-

alities of Netboost are available from within R, whereas substantial parts of the

algorithm are implemented in C++. Sparse UPGMA is part of the standalone MC-

UPGMA software ([53]), which is distributed with the Netboost R package. For the

cutting of dendrograms we apply the WGCNA ([15]) and dynamicTreeCut ([22])

R packages. As an example for the computational demand, Netboost was run on a

dataset with 180 samples and 413,169 variables (for details see Chapter 3: 2). Ap-

plying two Xeon E5 2690v3 at 2.6GHz (2x12cores) and 40 GB of memory, it took

Netboost 13.94 hours to compute. The package can be installed via Bioconductor

or the devtools package (Listing 2.1). The vignette, a task-oriented description of

package functionality, and the package manual are attached as Supplementary

File S1 and Supplementary File S2.
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Algorithm 1: Netboost
Input: X, steps, minModuleSize, MEDissThres

Result: Xmodules

F = ;;

for j  1 to p do

fit Xj ⇠ X�jB̂i 6=j,j by boosting;

F = F [ {(i, j)|9i 2 N : Bij 6= 0};

end

F = {(i, j)|(i, j) 2 F _ (j, i) 2 F};

randomFeatures = X[ ,sample(n= min(10,000,ncol(X))];

scaleFreeTopologyCriterium(randomFeatures) ! b;

for (i, j) 2 F do

aij = |corr(Xi, Xj)|b;

end

for (i, j) 2 F do

compute dij according to equation (2) and (3);

end

sparseUPGMA(d) ! dendrogram;

cutreeDynamic(dendrogram, minModuleSize, MEDissThres) ! modules;

for m 2 modules do

compute first principal component MEm;

end

while 9m,m0 with corr(MEm,MEm0) > (1�MEDissThres) do

merge(m, m0);

compute first principal component of merged module;

end
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1 # Bioconductor version

2 if (!requireNamespace("BiocManager", quietly = TRUE))

3 install.packages("BiocManager")

4 if (!requireNamespace("netboost", quietly = TRUE))

5 BiocManager :: install("netboost", version = "3.10")

6

7 # Github version

8 if (!requireNamespace("devtools", quietly = TRUE))

9 install.packages("devtools")

10 if (!requireNamespace("netboost", quietly = TRUE))

11 devtools :: install_github("PascalSchlosser/netboost")

Listing 2.1: Install Netboost

What is new in Chapter 2:
- Netboot: Novel statistical modeling strategy for high-dimensional data.

- Theoretical foundation of the proposed algorithm.

- Implementation of the algorithm as a Bioconductor R package.
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CHAPTER 3

Netboost for survival analysis

In acute myeloid leukemia (AML), part of the epigenotype of the disease is a

global increase in DNAm in regulatory regions ([58]). For elderly patients, the only

effective drugs that counteract this effect are hypomethylating agents ([59, 60, 61]).

From this it is known that the state of methylation fulfills an important role in this

disease. Nevertheless, it has been difficult to incorporate DNAm markers in patient

relevant statistics like survival prediction ([59, 62]). Neither predictive methylation

sites in AML patients treated with chemotherapeutics ([63]) nor predictive sites

from chronic myelomonocytic leukemia patients treated with hypomethylating drugs

([64]) could be replicated for AML patients treated with hypomethylating drugs.

Mechanism of DNAm and its regulatory effects are only understood in an incom-

plete manner. Not always promoter but also gene body methylation impacts regu-

lation and is distinctly modified by hypomethylating agents ([5]). A-priori schemes

to structure DNAm before relating it to patient-relevant-outcomes, as survival, are

unclear and variable selection procedures struggle with the high-dimensionality of

DNAm. Therefore, we set out to perform an unsupervised dimension reduction

via Netboost and subsequently related MEs to survival. Time-to-event associations

were then replicated and to brooden the methodological significance of the demon-

strated approach, the analysis design was applied to further diseases and omics data

types. Throughout this Chapter, we compare results with competitive state-of-the-

art approaches and find superior performance of Netboost with respect to several

measures.
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1. Methods

1.1. Boosting estimation of sparse high-dimensional survival models.

Let T model the survival time of individuals of a population. We define T as a

non-negative random variable and define the survival function

S(t) := P (T > t) = 1� P (T  t),

as the probability of an event after time t. The instantaneous risk of failure at

timepoint t given the individual survived up to t is the hazard function

�(t) := lim
�t!0

P (t  T < t+�t | T � t)

�t
.

In the context of predictive survival models, the proportional hazards assumption

is the cornerstone of Cox proportional hazards regression ([65]). The assumption

poses that the ratio of the hazards for any two individuals is constant over time,

such that it is possible to estimate the effect parameters without any consideration

of the hazard function. Given this assumption, we can write the hazard rate of an

observation o with a covariate vector oX := (Xo1, . . . , Xop) as

�(t | oX) = �0(t) exp(oX�),

where �0(t) is the non-negative baseline hazard function independent of the covari-

ates and � a vector of regression coefficients. For estimation, the baseline hazard

�0(t) is left unspecified and the partial log-likelihood for estimation of � can be

written as

l(�) =
nX

o=1

�o

 

oX� � log

 
nX

o0=1

1 (to0  to) exp (o0X�)

!!
,

with 1 being an indicator function taking the value 1 if its argument is true. In high-

dimensional settings, often a penalized version of this likelihood is optimized. Lasso-

like algorithms use the L1-norm, the sum of absolute coefficients, to achieve a sparse

solution ([66, 67, 68]). We apply likelihood-based boosting as a forward selection

method to handle the high-dimensional setting and achieve a sparse solution ([69,

23, 70]).
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In particular, we apply CoxBoost ([23]) to integrate the potentially still high-

dimensional Xmodules with clinical covariates and survival data as the primary out-

come by likelihood-based boosting. The algorithm is analogous to the procedure

described in more detail in Chapter 2: 2.1.1. Analysis is implemented with the Cox-

Boost R package ([70]). The stopping criterion is chosen by cross-validation and a

Cox proportional hazards model is fitted.

1.2. Prediction errors. To describe the performance of a fitted survival model

we introduce prediction errors. For a prediction rule T̂ we quantify the goodness of

fit by the Brier Score ([71]). We use the simplified version for the binary case given

as the mean square error by

BS :=
1

n

nX

o=1

(T � T̂ )2,

which omits the summation over classes required for multi-category predictions.

Evaluation of the Brier Score at each time point yields the prediction error curve

and integration yields an aggregate measure ([72]). To account for censoring, we

introduce time- and covariate-dependent weights within the sum as described in

[73].

For an unbiased estimate of the prediction error curve we can use cross-validation

by splitting our data into a training and a validation set, that is {1, . . . , n} = Qn =

QV [QT . The split-sample error is given by

cErrsplit(t, T̂ , QV , QT ) :=
1

#QV

X

o2QV

⇣
!(t, oX)(T (t, o)� T̂ (t, QT , oX))2

⌘
,

with !(t, oX) being the aforementioned weights, T (t, o) the true state of observation

o at t and T̂ (t, QT , oX) the prediction rule trained on QT for covariates oX at t ([74]).

While this estimate is unbiased, it exhibits a large variance when a binary outcome

is studied. In k-fold cross-validation, data is split into k disjoint subsets and the

prediction error is estimated as the average split-sample error on these subsets with

prediction rules being trained on the respective complements. While this procedure



30 Chapter 3. Netboost for survival analysis

already reduces the variance of the estimator to some extent, we can achieve even

less variance by employing bootstrapping methods as explained in the following.

Let Q⇤
n be a bootstrap sample of size n drawn from Qn with replacement. For

Bmax 2 N+ and independently drawn Q⇤1
n , . . . , Q⇤Bmax

n , we define the leave-one-out

bootstrap prediction error estimator as

(5) cErr(1)(t, T̂ ) :=
1

n

nX

o=1

PBmax
l=1

⇣
1(o 62 Q⇤l

n )cErrsplit(t, T̂ , {o}, Q⇤l
n )
⌘

PBmax
l=1 1(o 62 Q⇤l

n )
.

Compared to the true prediction error curve of Qn, this is biased upwards as the

bootstrap samples are only expected to be based on 0.632n observations and smaller

training data leads to more uncertainty in predictions. The factor 0.632 stems from

the random draws with replacement as 1� (1� 1/n)n ���!
n!1

1� 1/e ⇡ 0.632 where

we assume equal weights for all observations.

The apparent error given by

(6) Err(t, T̂ ) :=
1

n

nX

o=1

cErrsplit(t, T̂ , {o}, Qn),

is biased downwards as observations are used for training and validation simultane-

ously. Efron suggested in [75] to combine the errors defined in (5) and (6) to the

.632 error given by

(7) cErr.632(t) := (1� !(t))Err(t) + !(t)cErr(1)(t)

with !(t) = 0.632 to achieve a less biased estimate with low variance ([74]). Efron

and Tibshirani improved this to the nearly unbiased .632+ error in [76] by introduc-

ing the relative overfitting rate and adjusting the mixture according to this. First,

the no information error is estimated by systematically permuting covariates with

respect to the outcome and fitting the prediction rule on Qn. Based on this reference,

the relative overfitting rate is given by

[ROR(t) :=
cErr(1)(t)� Err(t)

NoInfErr(t)� Err(t)
.
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Finally, we define the .632+ error as the .632 error with

!(t) =
0.632

1� 0.368[ROR(t)
.

To evaluate the performance of CoxBoost models we used the peperr R package

([77]) which implements the .632+ prediction errors based on subsamples without

replacement as recommended in [78]. In high-dimensional data settings, bootstrap

samples with replacement often lead to overly complex models ([78]). Therefore,

subsamples without replacement of 63.2% of the samples are implemented.

1.3. Blockwise WGCNA. Due to the high dimensionality of some of the

datasets in this Chapter, the implementation of WGCNA cannot be applied to the

full dataset (p >
p
231 � 1 ⇡ 46, 340). As suggested by the authors, we first split

variables via k-means clustering and aggregate modules across subsets via correlated

MEs ([15]).

2. High-dimensional survival models in acute myeloid leukemia

In this section we applied Netboost on DNAm and gene expression data from

The Cancer Genome Atlas (TCGA) ([26]), which is a public domain project su-

pervised by the National Cancer Institute (NCI) and the National Human Genome

Research Institute (NHGRI). We use this data example to illustrate the advantages

of Netboost as a dimensionality reduction technique in general and in comparison to

WGCNA specifically. These advantages comprise of a reduction in prediction errors

as well as the extraction of biologically meaningful units.

Data examples such as this are of particular importance for evaluating high-

dimensional methods, as omics data and their complex multivariate distributions are

understood to an incomplete degree, which poses further challenges to simulation

studies in addition to the potentially simplifying assumptions stated explicitly in

their design. To avoid some form of selection bias, all applications we studied with

Netboost at the time of writing (December 25th, 2018) are reported within this

dissertation. These encompass a wide variety of primary analyses (survival analyses,
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classification and GWAS) and a broad range of omics data (DNAm, metabolomics,

miRNA and array- and sequencing-based gene expression) such that Netboost can

be evaluated in a relatively general fashion and an overfitting of the method to a

specific task is avoided.

TCGA encompasses high-dimensional molecular and clinical data from 33 differ-

ent cancer types. In collaboration with Prof. Dr. Michael Lübbert of the Depart-

ment of Hematology-Oncology at the Medical Center Freiburg we first focussed on

acute myeloid leukemia (AML) overall survival.

We selected the 180 AML patients in TCGA for which overall survival data,

methylome and gene expression measurements were available ([24]). TCGA data

was already preprocessed and normalized. DNAm was quantified with Illumina In-

finium HumanMethylation450 BeadChip arrays and gene expression by Affymetrix

HG U133 Plus 2.0 arrays, incorporating 396,065 methylation and 17,104 gene ex-

pression variables. We compared the following six analyses designs, the first three

including and the last three excluding a clinical score. The clinical score is a di-

chotomized version of the linear predictor of a Cox proportional hazards regression

model ([79]) of age at diagnosis and cytogenetic risk group, assessed as low, inter-

mediate or high. Baseline hazards were estimated in separate strata according to

sex. In the models with the clinical score it was set as mandatory, so unpenalized in

CoxBoost ([23]). Thereby, DNAm and gene expression information was only added

in these models if they could improve the prediction on top of the clinical score.

(1) Direct application: Application of CoxBoost on the full dataset X.

(2) Blockwise WGCNA modules: Application of CoxBoost on blockwise WGCNA

module eigengenes XWGCNA.

(3) Netboost modules: Application of CoxBoost on Netboost module eigen-

genes Xmodules.

(4) Direct application + clinical: Application of CoxBoost on the full dataset

X and the mandatory clinical score.
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(5) Blockwise WGCNA modules + clinical: Application of CoxBoost on XWGCNA

and the mandatory clinical score.

(6) Netboost modules + clinical: Application of CoxBoost on Xmodules and the

mandatory clinical score.

In CoxBoost we used 10-fold cross validation to estimate the optimal stopping

criterion on the interval from 0 to 100 and we applied 200 resampling steps to

estimate the .632+ prediction errors.

The direct application on the full dataset, X, selected two variables and the

.632+ prediction error curve, depicted in Figure 6, showed no improvement over the

null model.

WGCNA identified 568 modules with a mean module size of 671 in the range of

10 to 57,548. Ten was set as the minimum module size leaving all smaller modules

as unclustered. Henceforth, 92% of the features were assigned to modules. The

proportion of variance explained by eigengenes ranged from 23.9% to 94.6% (median

= 50.5%, Figure 7). In the WGCNA aggregated XWGCNA modules two modules were

selected by CoxBoost summarizing 26 variables.

For Netboost the multivariate filter was stopped after 20 steps and resulted in

a filter of 4,956,518 network edges. This represents approximately 0.003% of edges.

Based on this, Netboost identified 739 modules with an average module size of

52 in the range of 10 to 4,251. Accordingly, 9% of the features were assigned to

modules. The dendrogram based on the sparse network is depicted in Figure 8.

Netboost eigengenes generally explained a higher proportion of variance (median

= 66.5%, range = [45.7%, 97.3%], Figure 7). CoxBoost selected six modules from

the Netboost aggregated XNetboost modules, summarizing 278 features. None of the

features are shared by the selected Netboost modules and the selected WGCNA

modules.

As depicted in Figure 6, the higher complexity indeed corresponds to a better

prediction performance in the .632+ prediction errors. The blockwise WGCNA

modules approach was able to extract some information but was outperformed by
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Figure 6: .632+ prediction error curves for AML survival models. The

estimated .632+ prediction error curves for days since diagnosis are given in blue

for the null model and dashed blue for the clinical model. Prediction error curves

based solely on DNAm and gene expression are presented in black: The solid line

for the direct application of CoxBoost, the dotted line for the combination with

WGCNA and the dashed line for the combination with Netboost. The corresponding

prediction error curves additionally based on unpenalized clinical data are presented

in red.

Netboost. This also holds true when incorporating the variability of the individual

bootstrap samples and integrating their cErr(1) in Figure 9, which overestimates the

true prediction error.
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Figure 7: Histogram of the proportion of variance explained by MEs in

the TCGA AML dataset

Figure 8: Dendrogram of the TCGA AML data. Dendrogram of the 396,065

DNAm and 17,104 gene expression variables in the TCGA AML data. The color

bands below the graph show the separation into modules by blockwise WGCNA and

Netboost.

As depicted in Figure 6 and Figure 9, once we added the clinical score as a manda-

tory covariate, none of the three approaches was able to extract substantial addi-

tional information from the molecular data. Overall, when comparing integrated pre-

diction errors all analyses but the direct application of CoxBoost showed significant
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Figure 9: Variability of the dErr(1) prediction error curves in AML survival

models. Integrated cErr(1) prediction error curve estimates from 200 bootstrap sam-

ples each for CoxBoost based on the different datasets. The Kaplan-Meier bench-

mark value based on the full dataset is indicated by a horizontal line. Red lines

indicate the integrated .632+ prediction error estimates with the line for the Clini-

cal + Netboost model (lowest error) being extended across all datasets by a dashed

line.

improvements over the null model (one-samples Student’s t-test, p-value < 0.05).

Netboost including the clinical score had the lowest p-value (p-value = 1.3e-27).

When comparing analyses with each other the integration with WGCNA and Net-

boost significantly improved CoxBoost (p-value = 0.0437 and p-value = 0.0002,

respectively) and Netboost improved the accuracy of survival prediction on top

of WGCNA (p-value = 0.0413). Furthermore, all analyses including the clinical
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score significantly improved prediction when compared with any analysis without

the clinical score. Between analyses including the clinical score, no significant dif-

ferences were observed (two-samples Student’s t-test, p-value < 0.05). The order

of approaches is consistent with and without the clinical score indicating smallest

prediction errors for Netboost.

2.1. Biological relevance of Netboost network. The central dogma of molec-

ular biology as published in Nature [80] states:

The central dogma of molecular biology deals with the detailed

residue-by-residue transfer of sequential information. It states that

such information cannot be transferred back from protein to either

protein or nucleic acid.

This is usually interpreted as deoxyribonucleic acid (DNA) coding ribonucleic

acid (RNA), which codes for proteins, and proteins being the active substances of

our body. While DNA regulates itself, there is a regulatory impact of RNA on DNA

and RNA has some self-regulating function there is no backward information flow

once it reached the protein stage. Much of the regulation on the DNA-DNA, DNA-

RNA and RNA-DNA level happens in cis, so in a physically short distance along the

nucleotide code, and DNAm plays a central role in it. Netboost modules reflected

this known biology. Netboost re-identified the association of cytosine–phosphate–

guanines (CpGs) in close proximity and the cis association of gene methylation and

expression in a data-driven manner. Of the 739 Netboost modules 206, consisted

of CpGs within 1,000 base pairs demonstrating the strength of local dependency in

DNAm data.

The six selected Netboost modules were variable in size and composition. Four

consisted only of CpGs, one predominantly of CpGs, supplemented by two RNAs,

and one module only of 14 RNAs. The total number of CpGs varied from 10 to 88.

The largest selected module (88 CpGs) contained numerous genes associated with

hematopoiesis, such as WT1 and CXCL2. The second largest module (80 CpGs,

2 RNAs) represented several genes encoding chromatin-modifying enzymes such as
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the H3K9 histone methyltransferase EHMT1 and the DNA demethylase TET3. To

illustrate the strong association of this chromatin associated module alone, we plot-

ted stratified Kaplan-Meier curves according to its bimodal distribution (Figure 10).

The p-value of the likelihood ratio test of the dichotomized module levels (p-value

= 7.0e-7) surpassed the one of the continuous module levels (p-value = 4.0e-6);

indicating that there might indeed be two states of these genes. Several of these

have already been implicated in AML pathogenesis and appear very promising for

future predictive scores. Specifically, 4 CpGs mapped to the gene encoding EHMT1,

also represented in the 4-gene methylation signature described by [63]. Addition-

ally, WT1 was suggested to regulate TET2 methylation ([81]), which supports the

relevance of the selected modules.

Overall, the general network structure detected by Netboost is in line with known

biology lending validity to the novel connections suggested by Netboost. In addi-

tion many of the DNAm and gene expression variabels incorporated in the survival

associated signature have been implicated in AML and other cancerous diseases,

while the strong molecular differentiating power with respect to survival was yet

undescribed.

2.2. Molecular surrogate information for clinical covariates. To inves-

tigate the possibility of the molecular information extracted by Netboost being a

surrogate for the clinical score, we fitted logistic regression models for the MEs to

the clinical score. We compared random selections of variables out of all DNAm

and gene expression variables and modules, WGCNA and Netboost respectively, of

similar size to the modules selected from WGCNA and Netboost modules and the

modules selected for survival prediction. We fitted 500 models on subsamples of size

100 and evaluated the misclassification-rate on the remaining samples. As shown in

Figure 11, the selected Netboost modules approximated the clinical score best.

2.3. Replication of the ME71 survival association. To validate the Net-

boost module structure, we transfered it to DNAm data generated on pre-treatment

patient samples from the phase II acute myeloid leukemia study group (AMLSG)
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Figure 10: TCGA AML DNA methylation module associated with chro-

matin modifying enzymes. A) shows the bimodal distribution of the eigengene.

The vertical line indicates at which point patients were stratified. B) depicts the

Kaplan Meier curves stratified by the modules eigengene.

12-09 study ([25]). In this study, DNAm based on the same Illumina Infinium

450k array and overall survival was available for 55 AML patients with a maxi-

mum follow up of 1,985 days after diagnosis. For processing and quality control

of the raw DNAm data, a customized version of the incorporating Control Probe

Adjustment and reduction of global CORrelation (CPACOR) pipeline ([82]) was

used for data normalization and calculation of beta values. The complete prepro-

cessing pipeline is available on Github (https://github.com/genepi-freiburg/

Infinium-preprocessing). As no data on gene expression was available, one of

the six modules could not be studied at all, while 2 were partially available (79 of

82 and 64 of 67 features) and 3 modules were available with all features. As repli-

cation data was incomplete with respect to variables, we transfered the grouping

of modules and refitted PCs. While the Cox proportional hazards model of these

five modules was not significant in this smaller dataset (p-value = 0.4) the above

mentioned chromatin associated module alone did replicate (p-value = 0.04). Fur-

thermore, this module exhibited a similar bimodal pattern as in TCGA and again,

dichotomization led to a smaller p-value (p-value = 0.01, Figure 12).
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Figure 11: Mis-classification rate for logistic regression models of the clin-

ical score in AML. We compare randomly selected variables of the raw data with

randomly selected modules and the modules selected for survival prediction perfor-

mance. The complexity of models is fixed to two and six to match the final survival

models for Netboost- and WGCNA-based approaches respectively. The horizon-

tal line indicates the expected mis-classification rate at random. Asterisks indicate

significance of unpaired two-samples Wilcoxon tests (***<0.001, **<0.01, *<0.05,

NS.�0.05). Only neighbouring columns were tested.

It is of interest that validation of the chromatin associated module was successful

in this independent AML patient DNAm dataset although the distribution of genetic

aberrations in patients treated within the AMLSG 12-09 trial differed considerably

from AML patients of the TCGA data set and that no gene expression measurements

were available. Particularly, patients with core-binding factor AML, AML with
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mutated NPM1, and AML with FLT3 internal tandem duplication were excluded

in this trial.
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Figure 12: Replication analysis in the AMLSG study. A) shows the bimodal

distribution of the transferred eigengene. The vertical line indicates at which point

patients were stratified a-priori. B) depicts the Kaplan Meier curves stratified by

the modules eigengene.

3. High-dimensional survival models in other entities

We transfered the analysis presented for AML in Section 2 to further TCGA

entities, namely DNAm data of 774 breast invasive carcinoma (BRCA) and 315

kidney renal clear cell carcinoma (KIRC) patients and miRNA data of 464 ovarian

serous cystadenocarcinoma (OV) patients with available overall survival informa-

tion. The 1,422 TCGA-OV miRNAs without missings and the 20,000 CpG sites

with the largest variance for TCGA-BRCA and TCGA-KIRC respectively were se-

lected for analysis. For each dataset we performed the same three analyses as for

AML without the clinical score and calculated the .632+ prediction error estimates.

Boxplots of the integrated prediction errors on the test set of the individual

subsamplings are depicted in Figure 13. For KIRC we observed similar performance

as in AML. The integration with WGCNA significantly improved CoxBoost (p-

value = 0.0013) and the integration with Netboost improved the accuracy of survival
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prediction on top of WGCNA (p-value = 0.0006). For the other two datasets none

of the three approaches was able to improve overall survival prediction beyond the

Kaplan-Meier reference estimate.
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Figure 13: Variability of the .632+ prediction error estimates in TCGA

KIRC, BRCA and OV survival models. Integrated prediction error curve

estimates from single subsamples for CoxBoost on the full dataset, CoxBoost on

XWGCNA and CoxBoost on XNetboost. The Kaplan-Meier benchmark value is indi-

cated by a horizontal line. Red lines show the integrated .632+ prediction error

estimates. Asterisks indicate significance of unpaired two-samples Wilcoxon tests

(***<0.001, **<0.01, *<0.05, NS.�0.05).
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What is new in Chapter 3:
- Integration of Netboost with Coxboost as a modeling strategy for high-

dimensional survival prediction.

- Significantly better prediction errors than WGCNA and Coxboost alone in

AML and KIRC datasets and non-inferiority for BRCA and OV.

- Replication of ME survival association in an independent dataset (AMLSG

12-09 study).

- Modules provide biological context for interpretation and provide evidence

for the importance of chromatin-modifying enzymes in AML.
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CHAPTER 4

Netboost for multi-trait genome-wide association study

In the following chapter we applied Netboost to improve our understanding of the

human metabolism. We study this by identifying single nucleotide–polymorphisms

(SNPs), and thereby their respective genes, associated with controlling metabolite

levels in urine. We applied linear regression modeling to test gene-metabolite rela-

tions. In a genome-wide association study (GWAS), for each of several million SNPs

the same theoretical model,

outcome ⇠ �SNP · SNP +�covariates · covariates, + �0

with �0 being the intercept, is tested independently with respect to the null hypoth-

esis �SNP = 0. Here, we were able to extend the genome-wide perspective of the

SNPs with a metabolome-wide perspective by measuring 1,172 different metabolites

and analyze them as the outcomes, the dependent variables. Given these genome-

wide association studies of metabolite concentrations (mGWAS) as a reference we

extended it by applying Netboost to the metabolite concentrations and analyzing

MEs subsequently in a GWAS-fashion.

To understand the metabolism, we have to study the absorption, distribution,

metabolism, and excretion (ADME) processes, which describe the handling of a

compound within an organism ([83]). While often used in the context of pharma-

ceutical research and development, the governing principles of ADME are generally

applicable and also influence the concentrations of naturally occurring compounds

and their metabolites, the intermediates and end products of metabolism. Organs

and tissues that strongly influence each of the respective ADME components are

the intestinal tract, the blood, the liver, and the kidneys. As a major excretory or-

gan, the kidneys integrate information over continuously ongoing systemic ADME
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processes by determining the amount and concentrations of metabolites that are

excreted in urine ([84]). While the concentrations of many metabolites in blood are

tightly controlled, metabolite concentrations in urine can have a much wider range

and serve as a read-out of metabolic capacities not detected through the study of

blood ([85]). We therefore hypothesized that the study of metabolite concentrations

in urine can be particularly informative of ADME processes in humans.

In addition to filtering metabolites from blood, the kidneys have an important

role in the generation, breakdown, as well as active reabsorption and secretion of

metabolites, which further determines their presence and concentrations in urine

([86]). In particular, many metabolites are excreted through active detoxification

and transport processes in the epithelial cells of proximal tubules, where specialized

enzymes and transport proteins coordinate their breakdown and clearance ([87]).

The identity of these transporters and enzymes as well as their substrates in vivo are

not yet completely understood. We hypothesized that the presence of CKD may rep-

resent a particularly informative “challenge” state that might trigger an epigenetic

responds ([4]). CKD may not only lead to the up-regulation of ADME transporters

and enzymes to compensate for reduced filtration function, but patient data also car-

ries information about metabolism of uremic toxins and drugs commonly prescribed

to CKD patients.

Furthermore, we hypothesized that transporters and enzymes, being active on

multiple metabolites, lead to higher order genetic associations with one genetic vari-

ant being associated with a group of metabolites. As our current understanding of

reaction partners is incomplete and a large proportion of measured metabolites are

of unknown identity, we applied Netboost to first identify metabolite modules to

then test their genetic associations in an unbiased and genome-wide manner.

mGWAS can provide novel insights into human metabolism in health, inborn

errors of metabolism, and complex traits and diseases ([88, 89, 90, 91]). Most
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previous mGWAS have been carried out based on blood samples from population-

based studies or mostly healthy individuals ([84]). By performing unbiased, genome-

wide searches for genetic variants that are associated with the concentrations of a

metabolite, a metabolite quantitative trait locus (mQTL), mGWAS can implicate

the enzymes and transporters influencing its uptake, generation, transport and dis-

tribution, breakdown or excretion ([88, 91, 92]).

Here, we focused on the study of metabolites quantified from urine of CKD pa-

tients, a unique setting, to generate a better understanding of ADME processes in

humans. We carried out mGWAS of 1,172 endogenous and xenobiotic metabolites

and applied Netboost on the same metabolites and carried out GWAS on the MEs.

This allowed for detection of underlying processes affecting more than one metabo-

lite, effects on metabolites not measured via their correlates and deorphanization

of unnamed but measured compounds. We use complementary approaches to map

genes onto pathways and show that mGWAS in urine of CKD patients are indeed

highly informative of ADME processes, mechanisms of excretion and detoxification,

and small molecule metabolism. The comprehensive list of target genes, their cor-

responding substrates and cell types in humans is relevant to basic science, clinical

medicine, and pharmaceutical research.

A flowchart summarizing the design of the Netboost application is shown in

Figure 14 and for the GWAS of single metabolites in Figure 15. Here, we used

the analyses depicted in Figure 15 as a benchmark to which we can compare the

Netboost screening approach presented in Figure 14.

In the paper related to this work ([2]) we also studied the following aspects which

are not presented here:

• We co-localized health relevant traits of detected associations in 450,000 in-

dividuals illuminating mediated molecular mechanisms. We used an adapted

version of Giambartolomei’s method for co-localization ([93]) and identified

a multitude of known and novel modes of action which can now be validated

experimentally.
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• We provided evidence for the generalizability of mQTLs in CKD patients

to the healthy SHIP-trend cohort with 977 participants.

• Associations of metabolite ratios to directly represent bivariate enzymatic

and transport processes. This helped for example in the identification of

a genetic variant associated with slower degradation of metoprolol, a hy-

pertension medication prescribed to more than 20% of GCKD participants.

Carriers keep metoprolol in its active form in their blood. This leads to a

strong unintended pulse lowering effect.

• Variant prioritization via bayesian statistical fine-mapping to resolve linkage

disequilibrium.

• Gene, tissue and cell type prioritization via gene expression analysis of

57,979 single murine kidney cells ([94]), 4,524 nuclei of adult human kidney

cells ([95]) and tissue specific samples for 38 tissues from 714 donors.

1. Methods

1.1. Study design and participants. The GCKD study is an ongoing prospec-

tive observational cohort study of CKD patients. Between 2010 and 2012, 5,217

adult CKD patients under nephrological care, provided written informed consent,

were enrolled into the study and are followed for clinical endpoints over ten years

([27]). Patients were included into the study if they had an estimated Glomerular

filtration rate (eGFR) between 30–60 mL/min per 1.73 m2 or an eGFR >60 mL/min

per 1.73 m2 and overt albuminuria/proteinuria, where overt albuminuria/protein-

uria was defined by either urinary albumin-to-creatinine ratio (UACR) >300 mg/g,

albuminuria >300 mg/day, a urinary protein-to-creatinine ratio >500 mg/g or pro-

teinuria >500 mg/day([96]). A more detailed description of the study design and

the recruited study population can be found in previous publications [97, 27]. The

GCKD Study was registered in the national registry for clinical studies (Deutsches

Register Klinischer Studien (DRKS) 00003971) . For this project, urine specimens

collected at baseline were selected for metabolite measurements. The analyzed dis-

covery cohort consisted of 1,221 patients with an eGFR <45 mL/min per 1.73 m2
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and the replication cohort of 406 patients with an eGFR between 45-50 mL/min

per 1.73 m2. All patients were selected to have neither micro- nor macroalbumin-

uria (UACR <30 mg/g) in order to minimize the influence of urinary albumin on

metabolite concentrations.

Table 1: Study sample characteristics GCKD. For categorical variables %

(n) is presented and for continuous variables mean (standard deviation) except for

urinary albumin-to-creatinine ratio for which median (interquartile range) is shown.
⇤ Characteristics with few missing values (rate of missing values: max 2%)

Characteristic Discovery (N=1,221) Replication (N=406) Overall (N=1,627)

Male sex 56 (683) 52 (213) 55 (896)

Age (years) 63.2 (10.42) 64.8 (8.31) 63.6 (9.96)

BMI (kg/m2)* 30.2 (6.06) 30.2 (5.46) 30.2 (5.91)

Systolic blood pressure (mm Hg)⇤ 136.8 (19.61) 138.8 (20.3) 137.3 (19.8)

Diabetes 38 (464) 35 (144) 37 (608)

eGFR (ml/min/1.73m2) 40 (13.79) 47.6 (2.62) 41.9 (12.46)

Urinary albumin-to-creatinine ratio (mg/g) 14.2 (6.37-40.44) 8.3 (4.25-15.91) 12.3 (5.71-30.58)

1.2. Genotyping and imputation. Detailed information on genotyping and

data cleaning has been described previously in [6]. In brief, genomic DNA of 5,123

GCKD participants was extracted and genotyped at 2,612,357 variants using Illu-

mina Omni2.5Exome BeadChip arrays (Illumina, GenomeStudio, Genotyping Mod-

ule Version 1.9.4). Genotype imputation was performed using minimac3 at the

Michigan Imputation Server ([98]). The Haplotype Reference Consortium (HRC)

haplotypes version r1.1 were used as the reference panel, and Eagle 2.3 was used for

phasing. After filtering the imputed genotypes to retain only bi-allelic variants of

good or acceptable imputation quality and of minor allele frequency (MAF) �1%,

7,750,367 high-quality autosomal variants were available for genome-wide associa-

tion studies.

1.3. Quality control and data cleaning of quantified metabolites. Sam-

ple preparation was carried out as described previously in [99] at Metabolon, Inc.



50 Chapter 4. Netboost for multi-trait genome-wide association study

Overall process variability was determined by calculating the median relative stan-

dard deviation (RSD)s for all endogenous metabolites (i.e., non-instrument stan-

dards) present in 100% of the pooled human urine samples (median RSD = 7-9%; n

>1,000 metabolites). All RSDs for metabolites present in at least 90% of the pooled

human urine samples are reported in Supplementary Table S1 along other informa-

tion for each metabolite, including biochemical name, super- and sub-pathway.

After receipt of the quantified metabolites from Metabolon, Inc, an in-house

pipeline was set up for data quality control, filtering of metabolites and samples,

and for normalizing concentrations to account for urine dilution. No sample had

to be excluded for a high proportion of missing data (>50%). On the level of the

non-xenobiotic metabolites, 74 (discovery) and 42 (replication) metabolites were ex-

cluded because of a high proportion (>80%) of missing values. To account for urine

dilution, concentrations of each metabolite were normalized using the probabilistic

quotient based on endogenous metabolites with <1% missing values ([100]). Subse-

quently, metabolites were minimum imputed and median scaled ([101]). Xenobiotic

metabolites were analyzed without imputation because missing values are likely to

reflect true absence. None of the remaining metabolites was excluded due to low

variance (<0.01) or many outliers (>5% of samples outlying >5 standard devia-

tion (SD)) based on log2-transformed data. Likewise, no sample represented an

outlier >5 SD along any of the first 10 principal components based on metabolites

with complete information. Outlying values (>5 SD) for each metabolite were set

to missing. Finally, 62 (discovery) and 51 xenobiotic metabolites (replication) with

<50 measurements were excluded. Metabolite annotation was aligned between the

two batches and yielded a dataset of 1172 metabolites quantified in both discov-

ery and replication. After removal of 27 samples with missing genotypes, the final

dataset consisted of 1,221 discovery and 406 replication samples.

1.4. Definition of additional variables. Serum creatinine was measured us-

ing an IDMS traceable enzymatic assay (Creatinine plus, Roche). The glomerular
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filtration rate was estimated using the Chronic Kidney Disease Epidemiology Collab-

oration (CKD EPI) formula ([102]). The UACR was based on creatinine measured

using the same assay as in serum and albumin with the ALBU-XS assay (Roche/Hi-

tachi Diagnostics GmbH, Mannheim, Germany).

1.5. Genome-wide association studies of urinary metabolite concen-

trations. Prior to GWAS, metabolite concentrations were log2-transformed to re-

duce the observed skewness and generate approximately normally distributed data

for analysis while maintaining an easy interpretability of units. Similar to previous

GWAS of metabolite concentrations ([88, 89, 6]), residuals adjusted for age, sex,

log(eGFR), log(UACR) and the first three genetic principal components were gen-

erated. GWAS were then performed on these residuals separately for discovery and

replication as described previously in [6] using imputed genotype dosages and assum-

ing an additive genetic model. While not ideally powered for recessive variants, this

is generally preferred to incorporating the additional tests and increasing the mul-

tiple testing penalty. Summary statistics from discovery and replication were sub-

jected to quality control using GWAtoolbox ([103]) and subsequently meta-analyzed

assuming a fixed effects inverse variance model as implemented in METAL ([104]),

retaining only metabolites with a minimum sample size of 300 in the meta-analysis.

Statistical significance was defined as genome-wide significant (p-value <5e-8) in

the discovery cohort, a one-sided p-value of <0.05 in the replication cohort, and

significant in the meta-analysis after correcting for testing of 1,172 metabolites by

a Bonferroni procedure (p-value <4.3e-11 = 5e-8/1172). The established genome-

wide significance threshold of 5e-8 originates from a Bonferroni adjustment for one

million independent SNPs with a minor allel frequency great than 1%.

Significantly associated SNPs were assigned to loci by selecting, for each metabo-

lite, the SNP with the lowest p-value across the genome as the index SNP, defining

the corresponding locus as a 1-Mb interval centered on the index SNP, and repeat-

ing the procedure until no further genome-wide significant SNP remained. For each
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metabolite, overlapping windows were combined into “loci” and clipped at chromoso-

mal borders. The extended MHC region (chromosome 6, 25.5-34 Mb) was considered

as one region. For each metabolite and each significantly associated locus, a regional

association plot centered on the index SNP was generated using the stand-alone

version of LocusZoom (v1.3) ([105]) (Supplementary Figure S1). Loci were further

merged across metabolites into genetic regions if the index SNPs of the different

metabolites were in linkage disequilibrium (r2>0.8, as defined in [106]). A circular

plot of associations with metabolites was created using Circos version 0.69-6 (Fig-

ure S4). A sensitivity analysis was conducted without adjustment for log(eGFR) and

log(UACR) and yielded very similar results (231/232 detected mQTLs overlapped

with results from the main analysis; data not shown).

1.6. Annotation. Annotation of SNPs was performed by querying the single

nucleotide polymorphisms annotator (SNiPA) database v3.3 (released June 25th,

2018) ([107]) and genomic positions correspond to build 37 (GRCh37). SNiPA

was used to collect the following annotations for each index SNPs and its proxies

(r2 � 0.8): gene hit or close-by, regulated genes, Combined Annotation Dependent

Depletion (CADD) score, SnpEff effect impact (exonic and noncoding), mQTL,

protein quantitative trait locus (pQTL), GWAS Catalog, cis eQTL, disease genes

(based on Clinvar, OMIM, HGMD and Drugbank). Novelty of loci and regions

identified in our screen were assigned, based on the presence of SNiPA entries in

the “mQTL” and “GWAS Catalog” categories for the respective index SNP and its

proxies, as “confirmed for urine”, “novel for urine” (but identified in another body

fluid) and “novel”. The asterisk assignment for genetic regions containing novel

substrates was based on string matching of biochemical names within these “mQTL”

and “GWAS catalog” entries. For index SNPs that were missing in SNiPA, ldlink

([108]) was used to identify the best proxy that was part of the SNiPA database,

and proxy information was used instead.

To select the most likely causal gene for each index SNP, we first compiled the

SNiPA “genes” and “evidence” information. The evidence codes h, r, e, p, m and
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c correspond to gene hit or close-by, regulated genes, cis-eQTL, pQTL, missense

variants, and disease genes based on specific variants known to cause monogenic

diseases, respectively. Evidence codes were summed for each gene. Additionally,

index SNPs were queried for association with differential expression of a nearby gene

in tubulo-interstitial kidney portions (cis-expression quantitative trait locus (eQTL))

using the NephQTL browser, a gene expression resource based on kidney biopsies

from 187 patients with CKD ([109]). When one or more eQTL associations with

p-value <0.05/159 were identified within ±100 kb of each index SNP, co-localization

analyses of the respective metabolite(s) mQTL and each of the eQTL association(s)

were performed, with the region for each co-localization test defined as the eQTL

cis window in the underlying study (±500 kb). We used an adapted version of

Giambartolomei’s method for co-localization ([93]) as implemented in the ‘coloc.fast’

function from the R package gtx (https://github.com/tobyjohnson/gtx) and used

default parameters and prior definitions. Each gene with evidence for co-localization

also received a scoring. The gene with the highest sum of scores within each locus

was assigned as the most likely causal gene. In the case of ties, genes with evidence

for co-localization were prioritized, followed by genes for which an inborn error of

metabolism with the corresponding metabolite is known. In all other cases, ties

were resolved by prioritizing the closest gene.

1.7. Genome-wide association studies of Netboost modules. Metabo-

lites were log2-transformed and imputed using a k-nearest neighbor (knn) algorithm

with k=10 to impute missing values ([101]). Netboost was applied as implemented

in the Bioconductor R package Netboost v1.0.0. MEs were dubbed eigenmetabolites.

Netboost was applied to data from the discovery cohort, and the resulting clus-

tering was transferred to the replication cohort. Replication data in the AML appli-

cation in Chapter 3: 2.3 did not consist of the full set of variables and we refitted MEs

after transferring the grouping. Here, we had identical sets of variables and com-

bined the rotation matrixes from module-wise PCAs and transfered MEs including

their directions.
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Analogous to the single metabolite screen, GWAS were conducted separately

for discovery and replication summary measures and results were meta analyzed

using METAL ([104]) assuming a fixed effects inverse variance model. Statistical

significance was defined as a genome-wide significant (p-value <5e-8) in the discov-

ery cohort, a one-sided p-value of <0.05 in the replication cohort, and a significant

(p-value <2.3e-10) in the meta-analysis after correcting for testing of 212 eigen-

metabolites by a Bonferroni procedure (5e-8/212). Significantly associated 1-Mb

intervals were merged by overlap, and loci were merged into genetic regions across

eigenmetabolites if their index SNPs were correlated (r2>0.8, as defined in [106]).

The extended MHC region (chromosome 6, 25.5-34 Mb) was considered as one re-

gion.

For each eigenmetabolite and each significantly associated locus, a regional asso-

ciation plot centered on the index SNP was generated using the stand-alone version

of LocusZoom (v1.3) ([105]) (see Supplementary Figure S2). Loci were further

merged across metabolites into genetic regions if the index SNPs of the different

metabolites were in linkage disequilibrium (r2>0.8). A circular plot of associations

with eigenmetabolites were created using Circos version 0.69-6 (see Figure 17).

1.8. Curation of genes involved in ADME processes. The curation of

genes involved in ADME processes was done by Franziska Grundner-Culemann

and Anna Köttgen. The list of 298 ADME core genes was obtained from http:

//www.pharmaadme.org/. In addition, an extended list was manually curated by

the identification of additional members of gene families known to be involved in

phase I, II and III biotransformation reactions, starting out with the list of fami-

lies included at https://en.wikipedia.org/wiki/ADME on November 23rd, 2018.

Lastly, all 86 unique genes identified in the GWAS of urinary metabolite concentra-

tions were evaluated for the presence of publications on their involvement in phase

I, II and III biotransformation reactions in a PubMed search in December of 2018.
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1.9. ADME, GO and KEGG enrichment analyses. Using PLINK v1.9063,

we computed the number of independent SNPs per gene based on GCKD geno-

types. With the Bioconductor R database org.Hs.eg.db v3.8.2 we extended this to a

database of Entrez gene identifiers additionally annotated for gene length, ADME

genes, Gene Ontology (GO) terms ([110]) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways ([111]). To test enrichment with respect to ADME,

GO terms and KEGG pathways we performed random draws which were matched

with respect to deciles of gene length and deciles of the number of independent SNPs

(GO and KEGG: 1e7 draws; ADME: 1e8 draws). When none of the random draws

matched or exceeded the selected genes, we indicated the p-value with its upper

limit (e.g. p-value <1.0e-7). P-values were adjusted using the Benjamini–Hochberg

procedure ([112]).

2. Metabolome-wide GWAS in chronic kidney disease patients

We performed GWAS of the concentrations of 1,172 metabolites and 212 eigen-

metabolites in urine from a discovery sample of 1,221 and a replication sample of

406 independent CKD patients, followed by meta-analysis and downstream charac-

terization of replicated findings. These patients were selected from the GCKD study

([27, 97]) as participants with eGFR of <50 ml/min/1.73m2 and with normoalbu-

minuria (UACR <30 mg/g).

2.1. Netboost provides biological context for yet unnamed metabo-

lites and improves power. Metabolites are intermediates of homeostatic reac-

tions and as such inter-connected beyond pair-wise relationships. Groups of corre-

lated metabolites may reflect shared biochemical pathways or be co-regulated. We

used Netboost to construct 212 metabolite modules (Figure 16) and their respec-

tive eigenmetabolites. GWAS of these eigenmetabolites identified and replicated

46 genomic intervals (“loci”, Chapter 4: 1.7) that contained at least one SNP sig-

nificantly associated with at least one of 38 unique urinary eigenmetabolite levels

(p-value<2.3e-10, Figure 17).
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For each of the loci, regression estimates were annotated with module compo-

sition as well as exonic and intronic effects of the SNP and the most likely un-

derlying gene (Supplementary Table S2, Chapter 4: 1.6). The regional association

plots (RAPs) illustrate the local correlation structure of SNPs (Supplementary Fig-

ure S2, Chapter 4: 1.7). Out of the 38 modules which had at least one signifi-

cant association, 32 consisted of metabolites from one super pathway or combined

metabolites from one super pathway with yet unnamed metabolites ("unknowns").

In this manner, Netboost aided in the identification of yet unknown metabolites.

Guided by the inferred network and shared association, we were able to identify for-

merly unknown metabolites together with Metabolon, Inc. E.g., a module of known

vitamin E (tocopherol)-related metabolites also contained the two unknowns X-

13689 and X-24359 (Supplementary Table S2) and was associated with rs55744319,

which is in high linkage disequilibrium (LD) with a missense variant in CYP4F2,

encoding p.Val433Met. This variant has previously been identified in response to

vitamin E supplementation ([113]), vitamin E levels ([114]), and warfarin mainte-

nance dose ([114, 115]). Investigation of the unknown metabolites based on their

mass, retention time, spectral information and genetic evidence nominated the un-

known molecules as structurally related to Vitamin E, with the glucuronide of alpha-

CMBHC as a candidate for X-13689. We experimentally verified this prediction

through the examination and comparison of retention times from ion chromatograms

and the locations and intensities of the MS/MS fragmentation spectra between a

standard of glucuronide of alpha-CMBHC and X-13689 (Supplementary Figure S3).

Thus, knowledge of a yet uncharacterized metabolite’s module membership and its

genetic association can provide information beyond mass and retention time by re-

stricting the search space of their possible identity for experimental verification.
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Figure 14: Overview of the Netboost application for GCKD metabolomics

and genetics. Schematic representation of the GWAS for eigenmetabolites. Top

to bottom: Genetic data of the 5,217 patients in the GCKD study was preprocessed

and combined with the urinary metabolite concentrations of 1,221 (batch 1) and

406 (batch 2) of these patients. Netboost was applied to batch 1 and the network

structure transfered to batch 2. Next, GWAS for eigenmetabolites were performed

in each batch and then meta analyzed. Finally, significant associations were merged

into genetic loci.
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Figure 15: Overview of the reference GWAS for GCKD metabolomics and

genetics. Schematic representation of the GWAS for single metabolites. Top to

bottom: Genetic data of the 5,217 patients in the GCKD study was preprocessed

and combined with the urinary metabolite concentrations of 1,221 (batch 1) and

406 (batch 2) of these patients. Next, GWAS for metabolite concentrations were

performed in each batch and then meta analyzed. Finally, significant associations

were merged into genetic loci.
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Figure 16: Netboost dendrogram of GCKD metabolomics. The band of

color indicates membership of each of the 1172 metabolites in one of 212 Netboost

modules.
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Figure 17: Genetic associations with eigenmetabolites. The light red band

shows the –log10(p-value) for genetic associations with eigenmetabolite concentra-

tions, representing their respective module, by chromosomal position. Associations

of all 212 eigenmetabolites are overlaid in the red band, and are capped at p-

value=1e-60. The blue line indicates genome-wide significance (p-value=2.4e-10).

Black gene labels indicate genetic regions in which all members of a given mod-

ule were also identified in the single metabolite mGWAS, orange labels indicate

genetic regions were additional metabolites were implicated as members of a mod-

ule. The light green band shows the maximum variance in eigenmetabolite levels

explained by the index SNP at each genetic region, with dot sizes corresponding

to ([0,0.1],(0.1,0.25],(0.25,0.5],(0.5,1]) of explained variance. The inner blue band

shows a stacked representation of the number of implicated metabolites in each

genetic region, is colored according to the super-pathways to which they belong,

and the number of modules in the genetic region is given next to it. Color keys of

metabolite super-pathways are presented in the middle.

Across the 1,172 GWAS of metabolite concentrations, we identified and repli-

cated 240 loci (Chapter 4: 1.5) associated with at least one of 211 unique urinary

metabolite concentrations (Supplementary Table S3, Supplementary Figure S1+S4).

Of the 240 loci, there were 26 in which the index SNP or a good proxy (r2>0.8)

had previously been described in association with the same urinary metabolite

([116, 88, 117]), and we additionally identified 54 newly associated metabolites

in these 26 known regions. At the time of annotation, the remaining 160 loci repre-

sented novel loci for urinary metabolite concentrations (Supplementary Table S3),

some of which had been previously detected in blood ([118, 89, 107, 119]). The

variance in metabolite levels explained by the index SNP at each locus ranged from

2.0% to 63.1% (Supplementary Table S3), and was generally very high in compar-

ison to that of commonly studied complex traits and diseases ([120]), highlighting

the close and specific link between the genome and the metabolome. Notably, the
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variance in eigenmetabolite levels explained by the index SNP exceeded even this

and reached up to 72.0% (Supplementary Table S2).

The overwhelming majority of associations was biologically plausible and con-

firmed that mGWAS in urine can capture ongoing intracellular enzymatic reactions

and transport across membranes. As an example of intracellular reactions that bal-

ance metabolite concentrations, urinary N-acetyl-tyrosine, N-acetyl-phenylalanine

and eigenmetabolite ME169 levels were each associated with SNPs mapping into

ACY3 on chromosome 11, encoding an enzyme important in de-acetylating N-

acetylated aromatic amino acids in kidney proximal tubules ([121]), and with SNPs

mapping into NAT8 on chromosome 2, important in the N-acetylation of metabo-

lites in renal proximal tubule and liver cells ([122]). Another example highlights

the hypothesis-generating potential with respect to transport processes: concen-

trations of 3-aminoisobutyrate in urine were associated with SNPs mapping into

AGXT2, encoding the enzyme responsible for its metabolization ([123]), and with

SNPs mapping into SLC6A13, which is known to encode a transporter of gamma-

aminobutyric acid (GABA) that is highly expressed in the kidney ([124]) but has

not been shown to transport 3-aminoisobutyrate. GABA is a structural analog of

3-aminoisobutyrate, nominating 3-aminoisobutyrate as a novel candidate substrate

for renal SLC6A13, which can now be tested experimentally.

The three loci with the strongest associations among metabolite concentrations

were detected for yet unnamed metabolites at PYROXD2 (X-24809, p-value=3.6e-

574), NAT8 (X-12125, p-value=2.4e-570), and AKRD7A2 (X-24462, p-value= 2.3e-

412). While all three genetic regions were also identified with eigenmetabolites,

two showed particularly strong genetic associations. Eigenmetabolite ME193 orig-

inating from a module of five unknown metabolites (X-12093, X-12112, X-23776,

X-24809 and X-24983) and was associated with missense rs2147896 in PYROXD2

(p-value=2.5e-917; Figure 18). ME161, a module composed of N2-acetyllysine, N-

alpha-acetylornithine, X-12124, X-12125, and X-15666, was associated with missense

rs13538 in NAT8 (p-value=4.3e-635; Supplementary Figure S5). Such associations



Chapter 4. Netboost for multi-trait genome-wide association study 63

A B

−0.06

−0.03

0.00

0.03

0.06

AA AG GG
rs2147896

M
E1
93

rs2147896
AA

AG

GG

Figure 18: Eigenmetabolite ME193 composition and genetic association

with PYROXD2 variants. A) shows module ME193, for which metabolites are

labeled, within the dendrogram for GCKD metabolites (Figure 16). B) displays the

distribution of the eigenmetabolite of ME193 (Y-axis) with genotype at rs2147896

in PYROXD2 (X-axis).

are suggestive of a common function of the enzyme on metabolites in the module,

implicating the unknown molecules in the NAT8 -associated module as additional

N-acetylated compounds or their precursors.

When comparing the RAPs of ME193, the strongest association signal in the

study, and X-24809, which is part of the module, the similarity of the association

signal becomes apparent. Simultaneously, the difference in the y-axis illustrates the

stronger link to the Netboost derived eigenmetabolite levels (Figure 19). In total,

there were 13 module associations which had a stronger association signal than any

of their individual module members. Additionally, screening of eigenmetabolites

provided the important advantage of permitting a complete screen of higher order

genetic associations. The assessment of all pair-wise metabolite ratios, another

strategy we partially explored in [2], would already have accumulated to 686,206

GWAS.
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Figure 19: Regional association plots of PYROXD2. P-values (y-axis) sur-

rounding PYROXD2 are showen along the chromosome (x-axis). The index SNP

with the lowest p-value, rs2147896, is indicated. LD (r2) used to color-code correla-

tion with the index SNP was based on the analyzed subsample of the GCKD study.

A) displays the RAP of rs2147896 in PYROXD2 for ME193, the module with the

strongest association signal. B) displays the RAP of rs2147896 in PYROXD2 for

X-24809, the metabolite with the strongest association signal.

Furthermore, 35 of the 46 replicated eigenmetabolite associations implicate addi-

tional metabolites that were not identified individually in mGWAS after correction

for multiple testing (Figure 17, Supplementary Table S2). For example, GWAS of

acisoga concentrations would not have detected an association at the PAOX locus (p-

value=9.7e-7), but acisoga was part of the replicated module ME97 (eigenmetabolite

p-value=9.0e-17). This links acisoga to PAOX function and illustrates that modules

can places metabolites into their biological context, given that acisoga is a catabolic

product of acetylspermidine, that acetylspermidine was another member of module

ME97, and that the PAOX -encoded polyamine oxidase acts on acetylspermidine as a

substrate. In total, Netboost implicated 191 such mQTLs with the 46 eigenmetabo-

lites. Out of these, 75 did not reach the meta-analysis multiple testing threshold on

their own but only as part of the module (Supplementary Table S2).
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2.2. Identified genes illuminate ADME processes, handling of uremic

toxins and amino acid metabolism in humans. The most likely gene under-

lying the association signal in each locus was annotated based on proximity, func-

tional consequence, and regulatory potential of the index SNP and its association

with gene expression (4: 1.6), resulting in 86 unique genes across eigenmetabolites

and metabolites.

Next, we aimed to identify common processes and pathways in which these 86

unique genes may be involved. These genes were strongly enriched among 298 genes

known to participate in ADME processes in humans (p-value<1.0e-8, Chapter 4: 1.9,

Supplementary Table S4), with 23 of the 86 genes annotated to phase I, II, and III

detoxification and excretion reactions known to be important in drug metabolism.

Additional consideration of a manually curated, extended list of 544 human ADME

genes and targeted literature review allowed the placing of 14 additional genes into

the ADME context. This strongly supports the idea that studies of metabolite

concentrations in urine provide an integrative read-out of ongoing ADME processes

in humans.

We systematically tested for enrichment of the 86 genes in pathways, molecu-

lar functions, cellular components and biological processes as contained in the GO

([110]) and KEGG ([111]) databases. Altogether, there were 153 significantly en-

riched GO terms, and 22 KEGG pathways (Chapter 4: 1.9, Supplementary Table S4).

Both GO biological functions and KEGG pathways implicated several processes re-

lated to detoxification and drug metabolism as strongly enriched (e.g., “xenobiotic

metabolic process”, p-value<1.0e-7; “chemical carcinogenesis”, p-value<1.0e-7), con-

sistent with the role of ADME processes. Additionally, enrichment was observed

for processes related to metabolism and catabolism of small molecules, including

organic, carboxylic, amino and fatty acids. This is consistent with the prominent

role of the proximal tubule in the metabolism as well as active reabsorption and se-

cretion of amino, organic and carboxylic acids, and with the importance of fatty acid

metabolism to satisfy its high metabolic need. Highly enriched molecular functions
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further supported the importance of enzymes mediating phase I and II ADME bio-

transformation reactions (e.g., “cofactor binding”, p-value<1.0e-7; “monooxygenase

activity”, p-value<1.0e-7). The most strongly enriched cellular components (“mito-

chondrial matrix”, p-value=2.6e-6; “mitochondrion”, p-value=8.1e-6) were consistent

with the localization where many detoxification reactions, fatty acid metabolism, as

well as amino acid metabolism and transport are known to occur. This study of

CKD patients was also informative of the metabolism of uremic toxins, as reflected

in the enrichment of the biological processes “kynurenine metabolic process” (p-

value=1.2e-6) and “amine metabolic process” (p-value=3.9e-6). The genes AFMID,

GOT2, KMO and KYAT3 encode enzymes operating on kynurenine and its metabo-

lites, which rise in the setting of uremia ([125, 126]). Similarly, the polyamines sper-

midine, spermine and putrescine accumulate with declining kidney function ([125]),

which probably aided in the identification of an enriched proportion of genes in-

volved in amine metabolism (AGMAT, KMO, HDAC10, PAOX, SULT1A2, AFMID

and COMT ). Together, the enriched processes, pathways, molecular functions and

cellular components support the notion that studies of a specific biosample in a

selected study population can highlight processes of special importance in a given

organ and clinical setting.

In summary, this study generates a catalog of genes, causal variants, molecular

mechanisms and metabolome modules that constitutes a comprehensive resource to

guide experimental studies in physiology, basic science, clinical medicine and the

pharmaceutical industry.
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What is new in Chapter 4:
- Novel methodology to explore higher order genetic associations in an unbi-

ased unsupervised manner by integration of Netboost with multi-trait GWAS.

- Identification and replication of 46 genetic metabolite module associations.

Often module associations are stronger than any of the individual metabolites

and additional metabolites can be implicated.

- Nearly 4 times the number of genes associated with metabolism in urine

when compared to previous studies (86 genes vs 22 genes).

- Modules provide biological context for interpretation, which e.g. aids in

deorphanization of unknown metabolites.
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CHAPTER 5

Netboost for classification

Huntington’s Disease (HD) is driven by the number of cytosine, adenine and

guanine (CAG) trinucleotide repeats in the huntingtin gene. Langfelder et al. [33]

used WGCNA to reveal 13 striatal gene expression modules that correlated with

CAG length and age in a HD knock-in mouse model. Further it was shown that

several of these effects translate to other HD models and patients and recently the

analysis was extended to miRNA from the same mice in [37].

To evaluate the performance of Netboost, we used the messenger ribonucleic

acid (mRNA) dataset in an inverse setup and determined the prediction errors in

a classification task for the known disease severities of the mice. As the primary

classifier, random forests were used as these had for the required versatility to be

applied with and without the dimension reduction.

1. Methods

1.1. Gene expression data. We downloaded the 48 mRNA-sequencing sam-

ples from mouse striatum from the Gene Expression Omnibus (GEO) (https:

//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65774 last accessed Jan-

uary 5th, 2019). Data originated from six genetically engineered mouse strains with

different disease severities (20, 80, 92, 111, 140 and 175 CAG trinucleotide repeats)

with four female and fourres[i male mice each. Aged 6 months mice were harvested

and processed. The mRNA-sequences were already preprocessed and after removal

of invariant transcripts, data consisted of 28,010 transcripts.

1.2. Random forests. Random forests are extensions of tree-based classifiers.

These algorithms are non-parametric and combine stratification techniques for clas-

sification and prediction. They learn in a supervised manner and one of the most
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well known tree-based approaches is the classification and regression tree (CART)

procedure ([127]). In [28] Breiman extended this concept to random forests by

growing many trees and then ensembling them into one classifier. Randomness is

introduced into the procedure as each tree is based on a randomly drawn bootstrap

sample of the original data and as at each splitting point of each tree only a random

subset of the variables is used as candidates for splitting. The number of trees is

not prone to overfitting and can be set to a large value ([128]). The main tuning

parameter is the number of considered variables at each splitting point, which can

be determined using cross-validation.

We applied random forests as described in [28] to classify samples based on X

and Xmodules to their disease severity classes. To adequately explore the space of

possible trees, also for the most high-dimensional of the analyses, we grew 10,000

trees in each analysis. The implementation in the randomForest R package with 200

iterations of leave-one-out cross-validation was used ([28]).

2. Classification of disease severity for Huntington’s disease

For the HD-mouse-models we compared three setups based on the

RNA-sequencing data for prediction of the underlying CAG trinucleotide repeats:

(1) Direct application: Random forest on the full dataset X.

(2) Blockwise modules: Random forest on module PCs determined by blockwise

WGCNA

(3) Netboost: Random forest on module PCs determined by Netboost

The direct application on the full dataset, X, resulted in a mean prediction error

of 30.8%.

Blockwise WGCNA was applied as described in Chapter 3: 1.3 and identified

61 modules with a mean module size of 423 in the range of 11 to 6221. Ten was

set as the minimum module size. Henceforth, 92% of the features were assigned to

modules. The proportion of variance explained by MEs was comparably low and
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reached a median of 42.1% (range = [29.3%, 63.4%], Figure 20). On the WGCNA

aggregated XWGCNA modules the mean prediction error was 37.1%.

Figure 20: Histogram of the proportion of variance explained by MEs in

the HD dataset

Netboost was applied as described in Chapter 2: 2 and the multivariate filter was

stopped after 20 steps, resulting in |F| = 247, 497. This represents approximately

0.06% of the edges. Based on this, Netboost identified 106 modules with an average

module size of 46 in the range of 10 to 561. Accordingly, 17% of the features were

assigned to modules and MEs of the Netboost modules explained a higher proportion

of variance (median = 66.2%, range = [52.3%, 84.9%], Figure 20). On the Netboost

aggregated XNetboost modules the mean prediction error was 28.2%. The dendrogram

based on the sparse network is depicted in Figure 21. As shown for 25, 20 and 15

steps the clustering is stable under the choice of boosting steps.

Two-sample tests for equality of proportions with continuity correction showed

significant differences in means of prediction errors with Netboost errors being

smaller than direct application (p-value = 0.019) and WGCNA (p-value < 2.2e-

16) and direct application errors being smaller than WGCNA (p-value < 2.2e-16).
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Figure 21: Dendrogram of Huntington’s disease data. Dendrogram of the

gene expression features in the Huntington’s disease data. A) shows the separation

into modules by blockwise WGCNA and B), C) and D) show Netboost modules

with 25, 20 and 15 boosting steps respectively.

What is new in Chapter 5:
- Integration of Netboost with random forests as a modeling strategy for high-

dimensional classification.

- Significantly improved prediction errors for the HD application.
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CHAPTER 6

Network preservation

In high-dimensional analyses, stability of an algorithm is a crucial factor. Due

to the challenges of n ⌧ p and the diversity of data types, results can be unstable

([129]). In the following Chapter, we study the preservation of networks as predicted

by Netboost. To do this, we first use resampling-based methodology to estimate

the sampling uncertainty ([130]) and compare this to other clustering methods.

Subsequently, we set this sampling uncertainty in relation to the method uncertainty

and then study module-wise preservation in more detail.

1. Methods

1.1. Cluster indices. We define a clustering M = {M1, . . . ,Ml} ✓ P({1, . . . , p})

as a partition of variables, i.e. M1, . . . ,Ml are non-empty, disjoint and M1[. . .[Ml =

{1, . . . , p}. For two clusterings M,M 0, the contingency table is given by

C = (crs)rl,sl0 := (|Mr \M 0
s|))rl,sl0 .

When evaluating the similarity of two clusterings, many measures are based on

counts of unordered pairs of variables, which can be split into four groups

S11 := {{i, j} 2 {1, . . . , p}2 | i 6= j ^ 9r  l : i, j 2Mr ^ 9s  l0 : i, j 2M 0
s},

S00 := {{i, j} 2 {1, . . . , p}2 | i 6= j ^ @r  l : i, j 2Mr ^ @s  l0 : i, j 2M 0
s},

S10 := {{i, j} 2 {1, . . . , p}2 | i 6= j ^ 9r  l : i, j 2Mr ^ @s  l0 : i, j 2M 0
s},

S01 := {{i, j} 2 {1, . . . , p}2 | i 6= j ^ @r  l : i, j 2Mr ^ 9s  l0 : i, j 2M 0
s}.

Their cardinalities are denoted by n11, n00, n10 and n01 ([131]). In Figure 22 four

groups of nodes are displayed with two illustrated clusterings, coded by proximity.

For example the edges between turquoise nodes belong to S11 as in both panels all
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Figure 22: Illustration of clustering edge counts. Two network representations

based on the same set of nodes.

turquoise nodes are grouped together, whereas any turquoise-violet edge belongs to

S00 and the red-olive edges belong to S01.

The General Rand Index is defined by the proportion of pairs being identically

clustered,

Rand(M,M 0) :=
2(n11 + n00)

p(p� 1)

and ranges from 0 to 1. This measure depends on both, the number of clusters and

the number of elements. Furthermore, the expected value of random partitions is

not necessarily equal to zero. Therefore, Hubert and Arabie proposed in [132] an

adjusted version. The adjusted Rand Index assumes a generalized hypergeometric

distribution as the null hypothesis. That is given Mr 2M we assume the probability

distribution of the random variable Y describing the overlap size with an M 0
s 2 M 0

to be

P (Y = a) =

�|Mr|
a

��
p�|Mr|
|M 0

s|�a

�
�

p
|M 0

s|

� .

The adjusted Rand Index then corrects the expected value to zero and is given by

adjRand(M,M 0) :=

Pl
r=1

Pl0

s=1

�
crs
2

�
� t3

1
2(t1 + t2)� t3
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where t1 =
Pl

r=1

�|Mr|
2

�
, t2 =

Pl0

s=1

�|M 0
s|

2

�
and t3 = 2t1t2

p(p�1) ([131]). Due to the ad-

justment, the adjRand can also take negative values and cannot be interpreted as a

proportion.

The Jaccard Index is related to the Rand Index but disregards the pairs of

elements that are separated in both clusterings. It is given by

Jaccard(M,M 0) :=
n11

n11 + n10 + n01
.

Thereby, this similarity measure focuses on apparent pairings rather than separation.

It favors the specificity of pair detection over the sensitivity of clustering methods

when comparing random draws to evaluate performance of methods.

1.2. Modulewise preservation statistics. To measure preservation of corre-

lation-based network structures, we define several statistics as summarized in [32].

To be able to compare preservation in Netboost and WGCNA networks, we

define the mean adjacency, cluster coefficient and maximum adjacency ratio of a

module m based on AWGCNA (equation (1), Chapter 2: 1). The mean adjacency is

a measure of similarity within a module and is given by

(8) meanAdj(m) := aij|i,j2m.

The cluster coefficient of a node i was introduced for general networks in [133]

and extended for weighted networks in [21]. It is given by

clusterCoef(i) :=
P

j 6=i

P
m 6=i,j aijajmami

⇣P
j 6=i aij

⌘2
�
P

j 6=i a
2
ij

.

For modules we again use the mean and define

(9) meanClCoef(m) := clusterCoef(i)i2m.

meanClCoef(m) is a measure of mutual relation of neighbors of a node.

Finally, the maximum adjacency ratio is given by

MAR(i) :=

P
j 6=i a

2
ijP

j 6=i aij
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and for modules

(10) meanMAR(m) := MAR(i)i2m.

The MAR is a measure of distinction. A high MAR indicates that a node has a rel-

atively bimodal distribution of adjacency, so it has some highly correlated neighbors

and all other nodes are by comparison uncorrelated. The clusterCoef and the MAR

of a node are only defined if the respective denominators are non-zero.

All measures introduces above can be calculated for the original data X as well as

different data X 0, e.g. a subsample or replication data. To denote calculation on sep-

arate data, we write meanAdj(m,X 0),meanClCoef(m,X 0) and meanMAR(m,X 0).

2. Network preservation in applications

2.1. Sampling uncertainty in AML methylation and gene expression

data. We applied a resampling-based approach to the AML data from TCGA an-

alyzed in Chapter 3: 2. To further comprehend the differences in the clusterings,

we took 100 random subsets of 100 patients and compared the resulting Netboost

and WGCNA clusterings using pair-wise adjusted Rand Indices and Jaccard In-

dices. Additionally, we calculated k-means clusterings with the number of clusters

fixed to the median number of clusters in Netboost clusterings (646) and WGCNA

clusterings (533) and generated random clusterings with the respective number of

clusters. Both indices are less than or equal to 1 and exactly 1 for identical clus-

terings. As seen in Figure 23, both random clusterings consistently had pair-wise

indices very close to 0 and both k-means clusterings were outperformed by WGCNA

and Netboost with respect to both metrics. With respect to the adjusted Rand In-

dex, the median for the Netboost clustering was below the median for the WGCNA

clustering while the order of minima was vice versa. This implicates that while the

median similarity was lower for Netboost, there were more outlying clusterings for

WGCNA. When comparing the Jaccard Indices, Netboost outperformed WGCNA

and showed a higher similarity for all pair-wise comparisons.
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Figure 23: Clustering indices of the TCGA AML data. Histogram of pair-wise

cluster indices of 100 random subsets of 100 samples applying Netboost, WGCNA,

k-means with k clusters and random selection of k labels, where k was set to the

median number of modules in the Netboost runs (646) and WGCNA runs (533). A)

shows the adjusted Rand Index and B) the Jaccard Index.

2.2. Sampling uncertainty in BRCA, KIRC and OV TCGA data. The

other three TCGA datasets illustrate a variety of networks. For each of the datasets

we sampled 100 times 63.2% of the patients (analogous to Chapter 3: 1.2) and applied

Netboost, WGCNA and k-means with k set to the median number of clusters for

Netboost and WGCNA. In addition, we created random clusterings as a reference.

Random clusters were equally sized and split across the median number of Netboost

and WGCNA clusters respectively. Finally, pair-wise adjusted Rand Indices and

Jaccard Indices were computed.

In the BRCA setting, none of the survival analyses improved the analysis ex-

cluding omics data altogether (Chapter 3: 3). Regarding the reproducibility of

clusterings, when incorporating node separation via the adjusted Rand Index Net-

boost performed unstably, while WGCNA showed a wider range of similarities and

the performance of k-means was in between the two. When focusing on linkage via

the Jaccard Index, WGCNA and k-means performed slightly worse and Netboost
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improved. As in the AML application, Netboost had the largest minimum similarity

while WGCNA performed best with respect to the median (Figure 24 A).

The survival analyses for the KIRC setting proved informative and achieved

improvements by application of Netboost were comparable to the AML application

(Chapter 3: 3). When comparing adjusted Rand indices, WGCNA and k-means

performed similarly while results from Netboost performed nearly comparable but

also included some outliers.

When we focused on linkage and compared the Jaccard indices, Netboost outper-

formed the other algorithms and only minor differences between WGCNA k-means

(Figure 24 B).

For OV, adjusted Rand and Jaccard indices showed a similar behavior. WGCNA

exhibited a visible double peak, indicating two separate networks being identified

dependent on subsampling selection, Netboost was slightly more stable and k-means

resulted in nearly identical clusterings independent of the respective sample (Fig-

ure 24 C). This is due to the k-means algorithm always generating one very large

module consisting of most of the features, which in turn was then nearly identical

every time.
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Figure 24: Clustering indices of TCGA BRCA, KIRC and OV data. His-

tograms of cluster indices of 100 clusterings on random .632 subsets applying Net-

boost, WGCNA, k-means with k clusters and random selection of k labels, where k

was set to the median number of modules in Netboost and WGCNA runs. A) BRCA

data with subset size of 489, a median of 100 Netboost modules and a median of 46
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WGCNA modules. B) KIRC data with subset size of 199, a median of 46 Netboost

modules and a median of 34 WGCNA modules. C) OV data with subset size of 293,

a median of 12 Netboost modules and a median of 13 WGCNA modules.

2.3. Sampling uncertainty in CKD metabolome data. We examined a

superset of the CKD metabolome data analyzed in Chapter 4. This dataset only

became available at a later stage, when the analyses presented in Chapter 4 had

already been completed. For the resampling-based preservation statistics presented

in this Chapter we chose to use the full dataset of 5,088 patients and 1,487 metabo-

lites. We applied the same design as in the TCGA datasets; sampling of 63.2% of

the patients was followed by application of clustering algorithms and calculation of

pair-wise cluster indices. Again, Netboost and WGCNA showed similar indices and

both outperformed k-means.
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Figure 25: Clustering indices of the GCKD metabolomics data. Histogram

of cluster indices of 1000 clusterings on random subsets of 3215 samples applying

Netboost, WGCNA, k-means with k clusters and random selection of k labels, where

k was set to the median number of modules in the Netboost runs (209) and WGCNA

runs (103). A) shows the adjusted Rand Index and B) the Jaccard Index.
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Figure 26: PCA scatterplot of inverted Jaccard Indices. First (X-axis) and

second PC (Y-axis) of pair-wise inverted Jaccard Indices for CKD (A), BRCA (B),

KIRC (C) and OV (D) datasets.

2.4. Method uncertainty. Next, we relate above estimated sampling uncer-

tainties to the respective method uncertainties. In the CKD, BRCA, KIRC and OV

datasets we additionally computed all pair-wise inter-method Jaccard Indices and

performed a PCA on inverted indices (1-x) for each. Figure 26 displays the first

two PCs and shows that method uncertainty clearly exceeds sampling uncertainty

for CKD, BRCA and KIRC. While k-means analyses with differing k were closely

related, the differences between Netboost, WGCNA and k-means dominated the

first two PCs. For OV we can now see from where the WGCNA double peak in

Figure 24 originates. For some samples, WGCNA and Netboost converge to simi-

lar networks, thus displaying their methodological relatedness. Moreover, k-means

stability in this scenario becomes apparent once more; with all points overlapping.

3. Module preservation in applications

While above analyses illustrated the stability of the whole network, it might also

be of interest how stable specific parts of the network, namely modules, are. We

evaluated this by a combination of a discovery-replication-split and a permutation-

based standard score. Specifically, for each dataset we drew 63.2% of observations

without replacement and applied Netboost, WGCNA and k-means with k set to

the median number of clusters for Netboost and WGCNA to identify the studied



82 Chapter 6. Network preservation

modules. In the remaining observations, we computed propVar(m), meanAdj(m),

meanClCoef(m) and meanMAR(m) for each module (equation (4), (8), (9), (10)).

Then we computed the same statistics in the same datasets with permuted module

labels as described in [32]. After repeating this procedure 100 times, we subtracted

the mean of the permuted statistics from the observed and divided it by the standard

deviation of the permuted statistics to determine standard scores.

First, we applied this methodology to the full GCKD metabolome data of 5088

patients. As k-means results were very similar for k = 103 and k = 209, we displayed

only one of them. From here, on we only report on k-means with k set to the medium

number of Netboost clusters as there were only minor inter-k-means-differences for

different k.

All three methods identify highly preserved structures with some standard scores,

assumed to follow a standard normal distribution, being greater than 150.

Additionally, this analysis serves to identify modules that excel for some sta-

tistics while scoring lower on others, i.e., showing desired properties with respect

to certain qualities only. For example, the largest k-means module has standard

scores greater ten for meanClCoef and meanMAR (Figure 28). Assuming a stan-

dard normal distribution, this corresponds to a p-value below 7.7e-24 and highlights

that neighbors of variables are in turn closely connected (meanClCoef) and that

variables in the module can be well differentiated from variables outside the module

(meanMAR). At the same time, as meanAdj is close to zero, these variables do not

exhibit a high correlation when compared to a random grouping of variables of the

same size (Figure 27).

When comparing clustering algorithms, Netboost and WGCNA performed sim-

ilarly and achieved higher median and maximum statistics across modules when

compared with k-means. For meanAdj, k-means realizes the highest standard score.

However, this module constitutes of only two highly correlated variables, as opposed

to the Netboost module of size >50 achieving almost the same score.
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Figure 27: GCKD preservation statistics: explained variance and adja-

cency. The top row shows propVar(m) for GCKD metabolites for Netboost (A),

WGCNA (B) and k-means with k = 209 (C). The lower row displays meanAdj(m)

for GCKD metabolites for Netboost (D), WGCNA (E) and k-means with k = 209

(F). Dashed lines indicate maximum and median statistics across modules.

Similar graphics for TCGA BRCA, TCGA KIRC and TCGA OV are given in

Supplementary Figures S6-S11. To summarize these additional analyses, we give the

maximum and median statistics in Table 2. When equally weighing the maximum

across modules and median across modules and equally weighing the four types

of statistics, Netboost performs best for three out of the four datasets. Netboost

achieved four, five and five times the highest statistic out of eight for GCKD, TCGA

KIRC and TCGA OV, respectively.

For TCGA KIRC, we noted a strong difference between the largest module und

all other modules for all algorithms. These largest modules consistently scored
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Figure 28: GCKD preservation statistics: cluster coefficient and maximum

adjacency ratio. The top row shows meanClCoef(m) for GCKD metabolites for

Netboost (A), WGCNA (B) and k-means with k = 209 (C). The lower row displays

meanMAR(m) for GCKD metabolites for Netboost (D), WGCNA (E) and k-means

with k = 209 (F). Dashed lines indicate maximum and median statistics across

modules.

magnitude higher than the second best modules with respect to any statistic (Sup-

plementary Figures S8-S9) and achieved exceptionally high standard scores of up

to 620.0 (Netboost meanAdj). When considering only this apparently most essen-

tial network structure, Netboost outperforms WGCNA and k-means in its detection

with respect to all four module-wise statistics.

Only for TCGA BRCA Netboost did not extract structures with high scores for

the four statistics (Table 2), while we did see above that it extracted reproducible

structures according to the Jaccard Index (Figure 24). For this dataset, WGCNA

performed particularly well.
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Table 2: Preservation statistics overview. Maximum and median preservation

statistics for Netboost, WGCNA and k-means in the four studied datasets. Best

scoring algorithm per setting and statistic is highlighted. Netboost is abbreviated

by NB.
Disease: CKD BRCA KIRC OV

Study: GCKD TCGA TCGA TCGA

Training size: 3,215 489 199 293

Test size: 1,873 285 116 171

Variables: 1,487 20,000 20,000 1,422

Variable type: metabolites methylation methylation miRNA

Algorithm: NB WGCNA k-means NB WGCNA k-means NB WGCNA k-means NB WGCNA k-means

Max. propVar: 44.8 46.1 30.3 5.0 68.5 61.1 209.3 192.0 140.7 40.4 29.2 14.1

Med. propVar: 16.5 17.5 12.4 0.9 13.2 18.0 10.8 16.4 13.3 12.0 10.7 3.8

Max. meanAdj: 155.9 100.8 167.6 6.8 322.6 608.0 620.0 413.4 601.8 228.3 101.7 124.5

Med. meanAdj: 25.5 32.0 4.0 0.3 121.0 17.1 4.0 2.7 1.9 16.4 19.5 5.1

Max. meanClCoef: 21.3 16.3 20.4 2.6 86.2 69.3 121.6 100.2 95.6 17.9 21.4 62.2

Med. meanClCoef: 5.9 5.5 1.6 -0.2 33.5 7.2 1.1 0.2 3.6 5.6 4.9 3.5

Max. meanMAR: 21.8 17.1 20.3 2.5 85.7 64.7 119.3 83.1 103.0 18.5 22.9 13.4

Med. meanMAR: 6.3 6.0 1.6 -0.2 32.4 8.7 1.2 0.7 2.8 6.2 5.5 3.5

# highest statistics: 4 3 1 0 6 2 5 1 2 5 2 1

What is new in Chapter 6:
- Introduction of a framework for evaluation of sampling uncertainty and

method uncertainty.

- Adaptation of module-wise preservation statistics from [32].

- Verification of low sampling uncertainty and high module preservation for

Netboost in a multitude of omics settings.

- Affirmation of the data dependency of detected network structures and

method stability.
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CHAPTER 7

Robust extensions of the Netboost concept

One inherent feature of Netboost is the assumption of linear dependencies be-

tween variables. At several steps this becomes apparent. When constructing the

filter, the boosting algorithm fits linear regression models, the subsequent similar-

ity measure is based on the Pearson correlation coefficient and the final principal

components extract linear components. However, for many datatypes linear depen-

dencies are not a close approximation of reality. To achieve some generalizability

and explore potentially unknown complex dependencies, more robust methods are

required.

1. Simulation setting with non-linear dependencies

To illustrate this, we reintroduce and extend the simulated network from Chap-

ter 1. We simulate 100 samples from 400 i.i.d. standardnormal variables and two

modules with 100 multivariate normal variables each. We add a third modules such

that the off-diagonal covariance entries for the three modules are 0.8, 0.6 and 0.4,

respectively. To introduce non-linear dependencies, we transform each variable by

f(x) := x7 according to a Bernoulli trial with probability 0.5, i.e., the transforma-

tion is applied with a 0.5 probability. We explored random assignment from larger

sets of monotone positive transformations with polynomials of different exponents

and additionally incorporating log- and root-based functions, but the larger variety

of transformations allowed the algorithm to bridge between them and reduced their

impact (data not shown). The presented design, which includes only one transfor-

mation, led to the strongest observed disturbance of the algorithm.



88 Chapter 7. Robust extensions of the Netboost concept

2. Spearman- and Kendall-based extensions

To address this additional challenge, we replace the underlying Pearson correla-

tion coefficient with Spearman’s rank correlation coefficient and with Kendall’s rank

correlation coefficient. Both rank-based coefficients are invariant under monotone

positive transformations and can detect general monotone relationships between

variables ([134]).

For X and Y random variables, Spearman’s rank correlation coefficient is given

by Pearsons correlation coefficient between the rank variables,

corr(rank(X), rank(Y )) =
cov(rank(X), rank(Y ))

�rank(X)�rank(Y )
.

Kendall’s rank correlation coefficient is given by the concordant minus the discordant

pairs divided by the total number of pairs of samples,

(number of concordant pairs)� (number of discordant pairs)�
n
2

� .

As shown in Figure 29, we applied Netboost in all three constellations to the orig-

inal and the transformed data. Independent of the added transformations, the failed

detection of the third module emphasizes a general requirement of the methodology.

For a fixed sample size, a minimum degree of correlation is required to separate

modules. To further explore this, we drew different sample sizes from the 400 i.i.d.

standard normal variables and plotted the pair-wise sample Pearson correlation co-

efficients in Figure 30. As the variables were i.i.d., the population correlation coeffi-

cients are zero and all observed sample correlation coefficients not equal to zero can

be classified as noise. Only if this noise is sufficiently lower than the intra-module

correlation, we can reliably detect the network structure.

The dependence on linear relationships outlined above becomes apparent when

Netboost based on the Pearsons correlation coefficient is applied to the partially

transformed data. The algorithm incorrectly declares independent variables to form

modules and fails to completely assemble existing modules, i.e. produces many false

positive modules as well as false negative ones.
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Figure 29: Dendrogram of extended simulated data. Dendrogram based on

Pearson correlation coefficients of the 700 untransformed variables. The color bands

below the graph depict the separation into modules with grey reflecting background

variables. Row names indicate the underlying correlation coefficient and if the pro-

cedure was applied on the transformed data.

While we only addressed one of the three dependencies on linearity, once we use

Spearman’s correlation coefficient or Kendall’s correlation coefficient the algorithm

is far more robust under the transformations. However, especially in the case of

Kendall’s correlation coefficient this comes with the cost of less power to detect the

three modules already on the untransformed data.

To address the second dependency on linearity, we introduce alternative filters

Fs and Fk. These include all edges which are nominally significant (p-value < 0.05)

for distribution-free tests of independence based on Spearman’s rank correlation

coefficient (Fs) and Kendall’s rank correlation coefficient (Fk) ([135]). To illustrate
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Figure 30: Sample Pearson correlation coefficients. Histogram of the sample

Pearson correlation coefficients of 400 i.i.d. standardnormal variables based on 50,

100 or 1000 samples respectively.

their impact, we apply them in combination with their corresponding correlation

coefficients and display the resulting color codes in Figure 31.

These variations of Netboost are fully rank-based and thereby invariant under

positive monotone transformations up to the point where base modules are detected

(Chapter 2: 2.2) and principal components are computed. As we use the absolute cor-

relation coefficient in the computation of the similarity measure (Chapter 2: 2.1.2),

these adaptations are more generally invariant under monotone transformations.

Consequently, the detected modules on the original and on the transformed data

are identical. Only in the final step of merging modules, with correlated PCs, the

transformation impacts calculations and leads to differing networks.

To address the final dependency on linearity, we integrate robust principal com-

ponent analysis (rPCA), which identifies the components of greatest variation based

on a transformation of the Spearman instead of the Pearson correlation matrix
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Figure 31: Network structure under robust filters. Color bands of the 700

variables indicating the separation into modules by robust extensions of Netboost

with grey reflecting background variables. Row names indicate the underlying cor-

relation coefficient and if the procedure used an alternate filter and if it was applied

on the transformed data.

([136]), with Netboost. In combination, the Spearman-based similarities, the Spear-

man-based filtering and the Spearman-based PCA result in an algorithm which is

completely invariant under monotone transformations and performs very similar to

the original Pearson-based design in our simulation (Figure 32). The only appar-

ent cost in this specific application is a slightly higher computational demand as

|F| = 3189(⇠ 1.3%) and |Fs| = 26080(⇠ 10.7%).

In conclusion, both the numerical experiments on the synthetic data and the

theoretical foundation of the robust approaches look encouraging and we will in-

vestigate their theoretical properties and their pratical performance on real data in

future studies.
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Figure 32: Network structure in a fully robust design. Color bands of the 700

variables indicating the separation into modules by robust extensions of Netboost

with grey reflecting background variables. Row names indicate the underlying cor-

relation coefficient, filter and PCA method and if it was applied on the transformed

data.

What is new in Chapter 7:
- Introduction of extensions of Netboost replacing all three dependencies on

linearity with robust alternatives.

- Exploration of their performance in a simulated setting.
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CHAPTER 8

Discussion

With Netboost, we introduce an efficient dimension reduction technique based

on a combination of unweighted and weighted networks. To accomplish this, we

integrated boosting- and rank-based filters with the TOM, sparse hierarchical clus-

tering and the dynamic tree cut procedure. In consequence, Netboost identifies

highly correlated variables and aggregates them. Beside the inherent information

in this identified network we can subsequently use the aggregated data, which is

of lower dimensionality, for the analysis of primary interest, such as time-to-event

or genetic association analyses. Additionally, we developed a corresponding Bio-

conductor R package to make the approach easily accesible to a wider community

of researchers. With the resulting modeling method we were able to show several

theoretical advantages and practical advantages on the computational side as well

as demonstrate successful applications.

In this approach, we utilize the modular organization of many organisms. We

reflect the often interacting systems with functional units found for example in epi-

genetic regulation of gene expression and the metabolism of endogenous metabolites

and xenobiotics, by designing a hierarchical correlation-based network, which allows

for organization on multiple levels. Efficiently recovering these structures in a data-

driven manner and aggregating representations of lower dimensionality along them

enabled us to find strong associations of these modules and patient relevant out-

comes. Furthermore, the modular structure often supplemented existing biological

knowledge and permitted comprehensive interpretation of the results.
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1. Summary of the presented results

Our proposed two-stage design, Netboost (Chapter 2), is extremely versatile as

the different applications presented in this dissertation (Chapter 3, Chapter 4 and

Chapter 5) illustrate. While integration of the primary analysis, variable selection

and dimension reduction has the potential for further improvements in prediction

errors and power, this inherently depends on said primary analysis strategy. Fur-

thermore, an integration needs to be carried out carefully in order not to void our

potential for biological interpretation of the network structures themselves. This

interpretability, that is achieved by the unsupervised two-stage design, proved vital

for the scientific advance when identifying the chromatin-modifying module related

to AML survival (Chapter 3: 2), deorphanizing the metabolite X-13689 as the glu-

curonide of alpha-CMBHC and associating acisoga and PAOX (Chapter 4: 2.1).

Beyond the illustrated applications to DNAm, RNA array, RNA-seq, miRNA

and metabolome data from in vivo human and murine samples, there are many more

data types which are believed to follow scale-free topologies or reflect correlation-

based networks in general and are thereby well-suited for Netboost. An intuitive

reasoning behind that is that the evolutionary pressure which is driving many of

these networks is some form of random non-targeted attack ([21]). Consequently,

organisms must be particularly stable under random attacks. In relation to this, a

broad range of scale-free networks, unlike many other networks, have been shown

in [137] to have a percolation threshold of zero, meaning that removing randomly

any fraction of nodes will not destroy the network. For example, in [35] proteome

data was analyzed by a combination of WGCNA with subsequent GWAS of MEs.

Analogously to Chapter 4, the authors identify several associations of MEs with

SNPs but in contrast to Chapter 4, they lack the comparison to the single variable

associations as a reference to evaluate benefits of the added dimension reduction.

We chose a boosting-based edge detection to allow for efficient selection of es-

sential edges. By introduction of this sparsity to the network, we modified the

TOM-based distance and replaced UPGMA with sparse UPGMA ([53]). In the
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AML application (Chapter 3: 2), this resulted in a 559-fold and in the HD appli-

cation (Chapter 5: 2) in a 264-fold reduction of variables for the primary analyses.

This not only reduced the burden on subsequent variable selection procedures but

simultaneously decreased the risk of overfitting present in high-dimensional anal-

yses ([73]). At the same time, the proportion of variance explained is high such

that most information is kept in the low-dimensional representation (Figure 7, Fig-

ure 20). In the mGWAS application (Chapter 4), this same dimensionality reduction

enabled the detection of biological determinants of metabolite modules and aided

the deorphanization of unknowns. GWAS of MEs represent an efficient way to per-

form hypothesis-generating genome-wide screens on combinatorial information from

metabolites. The p-gain values in Supplementary Table S2 display that the p-values

obtained from GWAS of MEs are up to 1.5e343 times lower than the lowest p-value

for any of the metabolites in the module. Moreover, we only need to account for

212 modules instead of all 1,172 single metabolites when adjusting the threshold

for multiple testing. When comparing this to testing all 686,206 pair-wise metabo-

lite ratios, which we explored as an alternate approach to capture combinatorial

information in [2], this discrepancy increases even more.

Apart from the reduction in the multiple testing burden, the maximal computa-

tional load is also reduced. As long as the maximum number of steps in the boosting

filter is set below p, the filter is necessarily strictly smaller than the whole network.

Even if the parameter was set to such an unreasonably large value, networks leading

to selection of a substantial proportion of edges would indicate measurement of very

few independent variables. Thus, it would contradict the initial assumption on which

the Netboost methodology is build. Namely, that we are in a high-dimensional set-

ting and though there is a certain structure to the data, there are also independent

processes being measured within this data. In practice, the filter is smaller than the

whole network by orders of magnitudes. Accordingly, we reduce the memory load

and computational burden massively.
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Often methodological advances lack a replication analysis when they are initially

proposed. This is especially critical in the high-dimensional setting where overfitting

is imminent ([73]). In Chapter 4, we were able to plan a discovery/replication

design from the beginning and all 46 reported ME-associations were replicated.

In the public domain TCGA AML application, we lacked a sufficient number of

observations to split the dataset into two. However, we were able to establish a

collaboration with the AMLSG study group and in Chapter 3: 2.3, the association

with the chromatin-modifying enzymes could be replicated in an independent DNAm

data set from the phase II AMLSG 12-09 clinical trial ([25]) despite no available

gene expression measurements. The AMLSG 12-09 study tested the hypothesis that

5-azacytidine might reduce failure rates of intensive induction therapy particularly

in AML patients with unfavorable genetic variables. Interestingly, validation was

successful in this independent dataset, not only despite the missing gene expression

measures but also despite distinct distributions of genetic aberrations in patients

within the AMLSG 12-09 trial and the TCGA dataset, pointing to a more general

mechanism applicable to a wide variety of AML patients.

In the shown applications, we prefer specificity over sensitivity with respect to

the clusterings. While it might be acceptable to miss an additional variable being

part of a module, we want to be sure about the selected variables. Consistent with

this, we regard the Jaccard Index as more important to our applications (Chapter 6),

as most variables are assumed to be independent of each other. A similar strategy for

assessment of sampling and method uncertainty was recently presented in [130]. In

the context of variable selection, the authors suggested to randomly split the given

data set in two independent data set halves and then apply the proposed analysis

strategies on each of these. For the subsequent comparison between methods and

data set halves, they as well used the Jaccard Index.

Even though we do not perform variable selection but network detection in our

analysis, we can directly transfer methodology when we abstract the network detec-

tion to a variable selection problem with selected variables being network edges. In
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general, with the adjusted Rand Index and Jaccard Index, we chose basic measures

of stability, which are especially reliable as they are used in a comparative fashion

in an identical resampling setting with different methodologies.

In Chapter 6, we used this resampling-based clustering indices to asses the sam-

pling uncertainty of Netboost, WGCNA and k-means. As expected, it depended on

the dataset which methodology offered the lowest sampling uncertainty and gener-

ally method uncertainty was more pronounced than sampling uncertainty ([138]).

In contrast to the procedure presented in [130], we did not evaluate the full anal-

ysis design but only the general part which is shared by all presented applications.

Thus, we estimated uncertainty up to the partitioning into modules and excluded

the time-to-event-, GWAS- and random forest-specific parts. To incorporate these

aspects, new measures of relatedness between the results would be required, as Rand

Index and Jaccard Index do not translate to the more complex ME-survival and ME-

SNP associations, which is again related to the MEs not being identical in between

resamplings.

Moreover, the module-wise preservation statistics helped to reveal how different

detected networks can be. For example, the KIRC dataset was dominated by one

large and extraordinary preserved module with a standard score of 620.0 (Chap-

ter 6, Supplementary Figures S8-S9). On the other hand, most networks exhibited

more complex structures with many highly preserved modules (Chapter 6, Supple-

mentary Figures S6-S11). Particularly the OV example was interesting as despite

the methodological differences Netboost and WGCNA resulted in similar networks

(Figure 26) for a subset of samplings.

In Chapter 7, we extended the Netboost concept with robust methodology. Both

the Spearman and the Kendall correlation coefficient underlying these extensions are

rank based, broaden the concept to a wider range of applications and make the ap-

proach robust against outlying measurements. While the original design assumed

linear relationships between variables at several steps, the adaptations fully gener-

alize it to monotone relationships. Even though Spearman and Kendall statistics
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share many properties, there are some theoretical and practical differences. The

Kendall correlation coefficient is theoretically superior as it leads to an unbiased es-

timator of the difference between the probability of concordance and the probability

of discordance in the full population ([139]), whereas the Spearman coefficient is not

an unbiased estimator of the population correlation ([140]). In practice, Spearman’s

statistic is widely applied; for instance as it corresponds to the Pearson correlation

coefficient of the rank matrix and thereby offers an intuitive interpretation. Further-

more, in our simulation it proved more powerful as modules were detected based on

smaller sample sizes. Based on these initial observations, we favor the Spearman-

based adaptation of Netboost. In [141], datasets including non-linear relationships

and their impact on network analysis are discussed. While Spearman correlation

coefficients are briefly mentioned, only Pearson correlation coefficients are used in

the comparison. The authors suggest model fit parameters for polynomials of degree

three and model fit parameters for splines as similarity measures which are robust

to their simulated quadratic relationships. A similar but more comprehensive future

study covering a larger set of non-linear relationships, both in simulated and real

data, and a wider range of robust similarity measures would be required to firmly

establish a rank-based extension of Netboost.

In addition to the theoretical and practical advantages of Netboost, we offer a

convenient and comprehensive implementation of the methodology as a Bioconduc-

tor R package (Chapter 2: 2.5). As configuration and installation of sparse UPGMA

([53]) was demanding, we automated this and integrated installation and execution

within our R package. All individual steps of the Netboost algorithm are accessi-

ble and documented as their own functions and additional functions for plotting

and transfer of a network to another dataset are provided. The centerpiece of the

package is the one-stop-function which integrates all steps, from filtering over hier-

archical clustering to module detection and integration to reporting central features

of the network (netboost(. . . ), Supplementary File S1 and Supplementary File S2)

into one function.
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2. Netboost in the context of literature

WGCNA is an established analysis method for high-dimensional data, especially

in the context of biomedical research, with the main paper ([15]) being cited more

than 3,063 times up to now (Web of knowledge accessed September 1th, 2019. URL:

http://tiny.cc/pq01bz ). Development continues and adaptations ([142]) and

new fields of application ([35]) evolve to date. WGCNA revealed higher order orga-

nization of data, allowed for interpretable high-dimensional analysis and uncovered

associations with patient-relevant endpoints, e.g. overall survival, in many setting

where more traditional analysis strategies failed due to the high dimensionality and

the general cross-omics complexity. By extending the WGCNA approach to the

Netboost modeling strategy, we were able to demonstrate improved prediction er-

rors for AML and KIRC time-to-event analyses in Chapter 3 and improved random

forest mis-classification rates for HD in Chapter 5.

One drawback of the implementation of WGCNA is that due to limitations of

indexing capabilities in R , applications with p >
p
231 � 1 ⇡ 46, 340 first need to be

split into parts of smaller size to be processed independently. This is implemented via

k-means clustering and later aggregation via correlated MEs ([15]). This limitation

does not transfer to the implementation of Netboost (Chapter 2: 2.5) and we already

applied the full methodology, without need for modification, in a setting with more

than 400,000 variables (Chapter 3: 2).

Focusing on the core components of the network allows us to be more selective

and thereby more specific in edge detection. As demonstrated in Chapter 6, this re-

sults in more finely grained networks with smaller and more modules than WGCNA.

Additionally, these are more stable under subsampling.

In all applications we refrained from extensive parameter tuning and usually

applied algorithms in their standard settings to allow for impartial comparisons

between approaches. In Chapter 5, the application of WGCNA superimposed the

disease classifying signals and the direct random forest application on the high-

dimensional dataset achieved better misclassification rates. As we did not adjust
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the WGCNA parameter settings, we cannot eliminate the possibility that parameters

simply did not fit the application context. Netboost kept a more compartmentalized

and detailed network without the need for parameter tuning due to the applied

filtering step and was able to improve classification in comparison to both - WGCNA

and the direct classification based on the full dataset.

An even more widely applied dimension reduction technique is PCA ([12]).

When PCA is applied to the full dataset rather than to the highly correlated module

members, the extracted aggregate measures represent something decidedly different.

Specifically, single Netboost MEs do not need to dominate the full dataset to be ex-

tracted and can be relevant to only a smaller part of the network, i.e., to a smaller

part of the underlying biology, which in turn might be related to the studied research

question. In that manner, Netboost is a local dimensionality reduction technique, as

opposed to ordinary PCA being a global dimensionality reduction method (Chap-

ter 1). Furthermore, while global PCs are relevant to many studies, they lack the

biologically informative network that comes along with Netboost. Thus, the two

approaches present themself as complementary strategies.

In [9], another approach for data with correlated variables is proposed. The

first step is to cluster the variables, and then choose a cluster representative based

on prediction performance. The second step is to apply either lasso or marginal

significance testing on these representatives. As with other supervised clustering

techniques, this might lead to improved predictive performance but hinder the in-

terpretation of the selected clusters. Here, the primary aim is to maximize predictive

power and thereby optimize the algorithm for biomarker detection. This is done at

the cost of potentially introducing some form of bias. Dependent on size and con-

nectivity of the module, the supervised selection might pick up peripheral variables

- voiding their function as representatives, which interfers with the assignment of

biological meaning of identified biomarkers in the context of the network. Keep-

ing outcome and network detection separate, as done with Netboost, allows for an
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unbiased interpretation of any potential connections between subsequently selected

modules and the outcome.

In [10], the supervised algorithm Net-Cox is introduced, which applies network

theory to improve survival prediction in a high-dimensional context. In contrast

to our combination of Netboost and Coxboost, they employ the estimated gene co-

expression structure directly to the penalty term of the Cox model. In addition to

the advantages and limitations of supervised algorithms discussed above, Net-Cox is

thereby inherently designed for survival analysis, whereas Netboost is more flexible

in its application.

In [17], two extension to sparse canonical correlation analysis (CCA) ([16]) are

introduced. First, the authors propose a supervised form of sparse CCA and sec-

ondly, they generalize the framework from two to multiple datasets. With this

approach, they offer a framework for identification of sparse linear combinations of

the multiple sets of variables that are highly correlated with each other and asso-

ciated with the outcome. While Netboost can also identify cross-omics correlations

associated with the outcome, the algorithms presented in [17] omit within-datatype

connections and are optimized solely for cross-dataset combinations.

In the light of correlation-based networks in general, Netboost defines variable-

wise distances based on pair-wise Pearson, Spearman or Kendall correlation coef-

ficients, whereas, e.g., the approach of [19] constructs networks based on partial

correlations. In the form of gaussian graphical models (GGMs) partial correlations

are frequently applied for network construction ([143, 144]). In [20], a GGM is

combined with a filtering step to exclude insignificant edges from the network much

like Netboost. Partial correlations adjust for other variables in the network and

identify the independent connections between variables. This is often done to iden-

tify the "true underlying / causal" connections in the network ([143, 145]). In

contrast, in Netboost we integrate indirect connections even further by the TOM

(Chapter 2: 2.1.2) in order to identify interacting subgroups irrespective of whether

these interaction are direct or indirect. Hence, the focus lies on modules rather
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than on the individual edges, and the incorporation of indirect connections fur-

ther stabilizes module detection. GGMs have also been extended with supervised

module construction ([11]), leading to improved predictive performance but similar

limitations as the supervised choice of cluster representatives in [9].

3. Limitations and future work

We introduced the number of boosting steps as a parameter. This number can

be chosen high, as overfitting in the filter estimation would only result in a less

stringent filter rather than bias. Nevertheless, a possible extension is a probing-based

stopping criterion in the boosting step, e.g. by inserting shadow variables ([56]).

Here, permutated variants of the original variables would be introduced, which are

independent of the other variables. The algorithm would then be stopped once it

starts to select these shadow variables ([146]). This would automate the choice of

boosting steps, while circumventing the often extensive additional computational

load of cross-validation. However, it is a non-trivial task to determine a suitable

proportion of shadow variables and the specific computational load introduced would

need to be explored.

Especially in the context of network analyses, integration of a-priori informa-

tion is a frequently studied choice. In [18], the KeyPathwayMinerWeb is intro-

duced, which allows for detection of differentially regulated pathways in a known

network and in the yet unpublished Grand Forest methodology by the same group

(https://grandforest.compbio.sdu.dk/), random forest methodology is altered

by subsetting the space of possible trees to a known network. Such an integration

of a-priori knowledge could also be considered to aid network construction in the

Netboost approach. While there is a an ever-improving body of research on the as-

semble of generalizable networks for certain data types, e.g. the interactome ([147]),

GO ([110]) and KEGG ([111]), much of this is based on studies of cell lines or model

organism like yeast. It remains unclear what can truly be transfered to a human in

vivo setting or more generally to the studied setting in an organism. For example in

our manuscript related to Chapter 4 ([2]), one of the aims was to determine whether
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associations identified in CKD patients can be generalized to a healthy population.

This includes the metabolome structure identified by Netboost and transferability

could not have been confirmed if we already assumed it to begin with. Addition-

ally, a generic drawback of incorporating a-priori knowledge is its specificity to data

type as opposed to Netboost currently being a broad analysis strategy for general

high-dimensional data. However, dependent on the research question, such a-priori

knowledge might be informative in order to aid network construction and should be

explored in future studies.

Another option to extend Netboost is the inclusion of unclustered variables which

are currently being ignored in primary analysis. This implies that isolated singular

variables can not achieve a significant impact on the outcome, which is of course not

true for all settings. For example, in the primary analysis Xmodules could be com-

bined with a filtering method on the unclustered variables based on the proportional

overlapping score (POS) ([148]).

Likewise, the methodology could be extended to signed networks. The sign of

correlation coefficients could be integrated as suggested in [149] to more explicitly

model the often biologically meaningful inversion of directions.

Similarly, we could also modify the module aggregation method. Netboost in-

tegrates modules via their leading PCs (Chapter 2: 2.3). However, for purposes

such as biomarker identification, a single representative for each module might be

an advantage. Another approach to consider for this are hub genes replacing the

MEs we applied, as discussed in [19] and [150]. A hub gene is the most central node

with the highest connectivity of the module as opposed to a summary measure, thus

allowing for cost-efficient replication and application as a biomarker ([31]). MEs, on

the other hand, might be superior in mechanistic studies, exploratory studies and

the identification of previously unknown biological features.

Another possibility for the aggregation of individual modules to cover non-linear

relationships could be autoencoders ([151, 13]) to allow for even more flexibility in

the extraction of summary measures.
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Generally speaking, regarding the dimension reduction of modules, MEs opti-

mize the explained variance with respect to a predefined number of dimensions.

In our applications we fixed this dimensionality to one to achieve comparability to

WGCNA. The observed proportions of explained variance were particularly high

for Netboost modules (Chapter 3: 2, Chapter 5: 2, Chapter 6: 3). However, in case

of more complex module substructures where additional PCs might be needed to

explain an adequate proportion of variance, we implemented the optional export of

the first i PCs for a fixed i (Chapter 2: 2.3). Furthermore, for each module the first j

PCs which cumulatively explain at least a certain predefined proportion of variance

can also be exported automatically.

Independent of the number of PCs, these aggregate information best if variables

have linear relationships. As demonstrated in Chapter 7, the algorithm was dis-

turbed when non-linear relations were introduced. We offer a robust adaptation of

Netboost, ultimately transferring the full methodology to a rank-based one. Ac-

cordingly, this results in an algorithm invariant under monotone transformations of

the variables, allowing for an even wider set of data types for which Netboost is

now suited. Recently, a similar but much more reduced approach was suggested

on bioRxiv ([152]), where hard thresholding was applied on Spearman correlation

coefficients in a DNAm setting without further extensions. While the authors also

highlight the benefits of a rank-based measure, the filter and subsequent calculation

of TOM adds further robustness to our approach and integrates indirect connections

between variables.

4. Conclusion

Netboost offers a versatile statistical modeling strategy for high-dimensional

data. We introduced boosting-based and rank-based filters, combined these with

sparse hierarchical clustering, module aggregation and incorporate these to a full

dimension reduction methodology. We then integrated Netboost with various ex-

emplary analysis strategies and provided evidence for its statistical advantages in

terms of prediction errors and power and analytical advantages in terms of biological
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interpretability. Finally, we investigated its theoretical properties and examined the

preservation of detected network structures.

Remarkably, in every analysis setting we encountered an application where Net-

boost led to a significant improvement in prediction errors or power. This obser-

vation holds true across a wide variety of research questions, from time-to-event

analyses over classification to genetic associations, and across a wide variety of data

types, from DNAm over transcriptomics to metabolomics. Furthermore, we can ex-

clude selection bias as a source of this as all analysis settings and datasets, where

we applied Netboost, are reported.

With this perspective we are looking forward to extending and building on the

methodology presented in this dissertation in our future work.
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APPENDIX A

Supplemental Material

File S1. Netboost package vignette. The vignette is attached as the separate file

SupplementaryFile1.html.

File S2. Netboost package manual. The manual is attached as the separate file

SupplementaryFile2.pdf.

Tables

Table S1: Metabolite annotation. Metabolite annotation is attached as the sep-

arate file SupplementaryTable1.xlsx.

Table S2: Statistics for the 46 eigenmetabolite-associated index SNPs. This

table is attached as the separate file SupplementaryTable2.xlsx.

Table S3: Statistics for the 240 metabolite-associated index SNPs. This

table is attached as the separate file SupplementaryTable3.xlsx.

Table S4: Results from ADME, KEGG pathway and GO term enrichment

analysis for the 86 unique, implicated genes. This table is attached as the

separate file SupplementaryTable4.xlsx.
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Figures

Figure S1: Regional association plots for loci identified in GWAS of uri-

nary metabolite concentrations. Regional association plots are attached as the

separate file SupplementaryFigure2.pdf. For each of the 240 loci, the region for plot-

ting was selected as the outer borders of merged overlapping 1-Mb windows. The

extended MHC region was treated as one region. The index SNP with the lowest

p-value is indicated. The metabolite giving rise to the association is included in

the title. LD used to color-code correlation with the index SNP was based on the

analyzed subsample of the GCKD study.

Figure S2: Regional association plots for loci identified in GWAS of

eigenmetabolites. Regional association plots are attached as the separate file

SupplementaryFigure1.pdf. For each of the 46 loci, the region for plotting was se-

lected as the outer borders of merged overlapping 1-Mb windows. The extended

MHC region was treated as one region. The index SNP with the lowest p-value is

indicated. The eigenmetabolite giving rise to the association is included in the title.

LD used to color-code correlation with the index SNP was based on the analyzed

subsample of the GCKD study.
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Figure S3: Identification of the unknown metabolite X-13689 as the glu-

curonide of alpha-CMBHC. The extracted ion chromatograms (upper right)

show the same retention time for both the unknown metabolite in a reference urine

matrix (“neat urine”) and the candidate molecule in a neat solution (“neat syn-

thetic”). The MS/MS fragmentation spectra of the candidate molecule (lower left)

and of the unknown metabolite (lower right) show the same fragments with equal

relative intensities; consequently, the candidate molecule is verified. The m/z (ob-

served) for X-13689 is 495.22438, and the m/z (predicted) for alpha-CMBHC glu-

curonide is 495.22357, representing a 1.6 ppm error. The 319.1921 fragment peak

represents the loss of glucuronic acid (a loss of 176), from which a loss of CO2

(-43.9898) yields the 275.201 fragment peak.
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Figure S4: Genetic associations with metabolite concentrations in urine.

The light blue band shows the –log10(p-value) for genetic association with metabo-

lite concentrations by chromosomal position. Associations of all 1,172 metabolites

are overlaid in the light blue band, and are capped at 1e-60. The red line indicates

genome-wide significance (p-value=4.3e-11). Black gene labels indicate genetic re-

gions identified in previous mGWAS of urine, blue labels indicate genetic regions not

identified in previous mGWAS of urine, and orange labels indicate genetic regions

not yet identify in any mGWAS. The light green band shows the maximum variance

in metabolite levels explained by the index SNP at each genetic region, with dot

sizes corresponding to ([0,0.1),[0.1,0.25),[0.25,0.5),[0.5,1]) of explained variance, and

dot colors reflecting the super-pathway of the metabolite with maximum variance

explained. The inner gray band shows a stacked representation of the number of as-

sociated metabolites in each genetic region colored according to the super-pathways

to which they belong. Color keys of metabolite super-pathways are presented in the

middle.
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Figure S5: Eigenmetabolite ME161 composition and genetic association

with NAT8. A) shows module ME161, for which metabolites are labeled, within

the dendrogram for GCKD metabolites (Figure 16). B) displays the distribution of

the eigenmetabolite of ME161 (Y-axis) with genotype at rs13538 in NAT8 (X-axis).



Chapter A. Supplemental Material 133

A

●

●●

●

●●●
●●

●

●

4 6 8 10

−2
0

2
4

6

log2 Module size

Z.
pr

op
Va

rE
xp

la
in

ed
.p

re
s

Median =−0.9

Max =5

B

●

●
●

●●●

●

●●●●

●

●●●

●

●

●

●

●

●

●

4 6 8 10

−2
0

0
20

40
60

80
log2 Module size

Z.
pr

op
Va

rE
xp

la
in

ed
.p

re
s

Median =13.2

Max =68.5

C

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
● ●

●
●
● ●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

7.0 7.5 8.0 8.5

−2
0

0
20

40
60

log2 Module size

Z.
pr

op
Va

rE
xp

la
in

ed
.p

re
s

Median =18

Max =61.1

D

●

●●

●

●

●●

●

●●
●

4 6 8 10

−4
−2

0
2

4
6

8

log2 Module size

Z.
m

ea
nA

dj
.p

re
s

Median =−0.3

Max =6.8

E

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

4 6 8 10

−1
00

0
10

0
20

0
30

0

log2 Module size

Z.
m

ea
nA

dj
.p

re
s

Median =121

Max =322.6

F

●● ●●●
●

●
●

●● ●●●●●

●

●
●
●

●
● ●● ●
●
●●

●

● ●
● ●

●
● ●

●

●

●●● ● ●

●

●
●●● ●● ●●

●

●

●

●

●
●● ● ●●

●

●

●

●

●
●●● ●● ●

●
●

●●
●

●

●● ●●
●

●

●

●

7.0 7.5 8.0 8.5
−2

00
0

20
0

40
0

60
0

log2 Module size
Z.

m
ea

nA
dj

.p
re

s

Median =17.1

Max =608

Figure S6: TCGA BRCA preservation statistics: explained variance and

adjacency. The top row shows propVar(m) for TCGA BRCA DNAm for Net-

boost (A), WGCNA (B) and k-means with k = 86 (C). The lower row displays

meanAdj(m) for TCGA BRCA DNAm for Netboost (D), WGCNA (E) and k-means

with k = 86 (F). Dashed lines indicate maximum and median statistics across mod-

ules.
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Figure S7: TCGA BRCA preservation statistics: cluster coefficient and

maximum adjacency ratio. The top row shows meanClCoef(m) for TCGA

BRCA DNAm for Netboost (A), WGCNA (B) and k-means with k = 86 (C).

The lower row displays meanMAR(m) for TCGA BRCA DNAm for Netboost (D),

WGCNA (E) and k-means with k = 86 (F). Dashed lines indicate maximum and

median statistics across modules.
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Figure S8: TCGA KIRC preservation statistics: explained variance and

adjacency. The top row shows propVar(m) for TCGA KIRC DNAm for Net-

boost (A), WGCNA (B) and k-means with k = 46 (C). The lower row displays

meanAdj(m) for TCGA KIRC DNAm for Netboost (D), WGCNA (E) and k-means

with k = 46 (F). Dashed lines indicate maximum and median statistics across mod-

ules.
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Figure S9: TCGA KIRC preservation statistics: cluster coefficient and

maximum adjacency ratio. The top row shows meanClCoef(m) for TCGA KIRC

DNAm for Netboost (A), WGCNA (B) and k-means with k = 46 (C). The lower

row displays meanMAR(m) for TCGA KIRC DNAm for Netboost (D), WGCNA

(E) and k-means with k = 46 (F). Dashed lines indicate maximum and median

statistics across modules.
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Figure S10: TCGA OV preservation statistics: explained variance and

adjacency. The top row shows propVar(m) for TCGA OV DNAm for Netboost (A),

WGCNA (B) and k-means with k = 12 (C). The lower row displays meanAdj(m)

for TCGA OV DNAm for Netboost (D), WGCNA (E) and k-means with k = 12

(F). Dashed lines indicate maximum and median statistics across modules.
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Figure S11: TCGA OV preservation statistics: cluster coefficient and max-

imum adjacency ratio. The top row shows meanClCoef(m) for TCGA OV DNAm

for Netboost (A), WGCNA (B) and k-means with k = 12 (C). The lower row dis-

plays meanMAR(m) for TCGA OV DNAm for Netboost (D), WGCNA (E) and

k-means with k = 12 (F). Dashed lines indicate maximum and median statistics

across modules.
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Software

The central applied software used in analyses is explicitly mentioned and refer-

enced in the respective chapters. It follows a compilation of all software used:

• Circos [153]

• METAL [104]

• LDlink [108]

• LocusZoom [105]

• PLINK [154]

• R [155]

• R packages from CRAN and Bioconductor:

affy [156], AnnotationDbi [157], corrplot [158], cowplot [159],

devtools [160], dplyr [161], DynamicTreeCut [22], factoextra [162],

FactoMineR [163], fBasics [164], GAMBoost [55], GenABEL [165],

geneplotter [166], ggplot2 [167], GO.db [168], gtx [93], GWAtoolbox

[103], hgu133plus2.db [169], limma [170], MASS [171], metafor [172],

mutoss [173], nlme [174], openxlsx [175], parallel [155], peperr [77],

qqman [176], qvalue [177], Rcpp [178], simpleaffy [179], superheat

[180], survival [181], TCGAbiolinks [182], tidyr [183], VennDiagram

[184], WGCNA [15], and xlsx [185]

• Slurm [186]

• Sparse UPGMA [53]
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Notation

1 Indicator function (Chapter 3: 1.1)

A = ai,j2{1,...,p} Adjacency Matrix (Chapter 2: 1, Chapter 2: 2.1.2)

adjRand(M,M 0) Adjusted Rand index (Chapter 6: 1.1)

b 2 N+ soft thresholding parameter (Chapter 2: 1)

� Vector of regression coefficients (Chapter 3: 1.1)

B Matrix of regression coefficients (Chapter 2: 2.1.1)

BS Brier Score (Chapter 3: 1.2)

C Contingency table (Chapter 6: 1.1)

clusterCoef(i, X) Cluster Coefficient of a node (Chapter 6: 1.2)

corr Pearson correlation coefficient

dij Distance between node i and j (Chapter 2: 1, Chapter 2: 2.1.2)

exp Exponential function
cErr(1) Leave-one-out bootstrap error (Chapter 3: 1.2)
cErrsplit Split-sample error (Chapter 3: 1.2)

Err Apparent error (Chapter 3: 1.2)
cErr.632 .632 error (Chapter 3: 1.2)
cErr.632+ .632+ error (Chapter 3: 1.2)

� 2 R+ Exponent of a scale-free topology (Chapter 2: 1)

f : R! R Function (Chapter 2: 2.4)

F Set of selected edges (Chapter 2: 2.1.1)

hi(·) Base learner (Chapter 2: 2.1.1)

i, j, u 2 {1, . . . , p} Indices of variables / node

Jaccard(M,M 0) Jaccard index (Chapter 6: 1.1)
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k 2 R+ Connectivity of a node (Chapter 2: 1).

There are three different usages of k in this dissertation.

k 2 N+ Number of nodes considered in a k-nearest neighbor

algorithm (Chapter 4: 1.7).

There are three different usages of k in this dissertation.

k 2 N+ Number of clusters considered in a k-means

algorithm (Chapter 6: 2).

There are three different usages of k in this dissertation.

l, r, s 2 N Indices

l(�) Partial log-likelihood (Chapter 3: 1.1)

L(·) Loss function (Chapter 3: 1.1)

log Natural logarithm

�0(t) Baseline hazard (Chapter 3: 1.1)

�(t | Zi) Conditional hazard, given covariate vector Zi (Chapter 3: 1.1)

m 2M Module (Chapter 2: 1)

M ✓ P({1, . . . , p}) Partition of nodes (Chapter 6: 1.1)

MEm Module eigengene of module m

(first principal component, Chapter 2: 1)

meanAdj(m,X) Mean adjacency of a module (Chapter 6: 1.2)

meanClCoef(m,X) Mean cluster coefficient of a module (Chapter 6: 1.2)

meanMAR(m,X) Mean maximum adjacency ratio of a module (Chapter 6: 1.2)

MAR(i, X) Maximum adjacency ratio of a node (Chapter 6: 1.2)

n Number of observations

nab := |Sab| Number of pairs of variables that are clustered identically

or not (a, b 2 {0, 1}) (Chapter 6: 1.1)

NoInfErr No information error (Chapter 3: 1.2)

o 2 {1, . . . , n} Index of an observation

p Number of variables



Chapter A. Notation 143

P (T > t) Probability of T being greater than the value t

P() Power set

Q Set of observation indices (Chapter 3: 1.2)

R2 Explained variation in a linear regression model

r2 Measure of linkage disequilibrium (Chapter 4: 1.5)

⇢ Population correlation coefficient (Chapter 2: 2.4)

Rand(M,M 0) Rand index (Chapter 6: 1.1)
[ROR Relative overfitting rate (Chapter 3: 1.2)

Sab Unordered pairs of variables that are clustered identically

or not (a, b 2 {0, 1}) (Chapter 6: 1.1)

S(t) Survival function (Chapter 3: 1.1)

⌃ Covariance matrix (Chapter 2: 2.4)

t Timepoint (Chapter 3: 1.1)

T R+
0 -valued random variable modeling survival time

(Chapter 3: 1.1)

To Realization of T for observation o (Chapter 3: 1.1)

TOMij Topological overlap measure of node i and j

(Chapter 2: 1, Chapter 2: 2.1.2)

X 2 Rn⇥p Data-matrix

Xi Xon,i

X�i Xon,j 6=i

Xm Xon,j2m

oX Xo,ip

Y : Rn⇥(p�1) ! Rn Random variable
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Acronyms

ADME absorption, distribution, metabolism, and excretion

AML acute myeloid leukemia

AMLSG acute myeloid leukemia study group

BRCA breast invasive carcinoma

CADD Combined Annotation Dependent Depletion

CAG cytosine, adenine and guanine

CART classification and regression tree

CCA canonical correlation analysis

CKD chronic kidney disease

CKD EPI Chronic Kidney Disease Epidemiology Collaboration

CPACOR incorporating Control Probe Adjustment and reduction of global

CORrelation

CpG cytosine–phosphate–guanine

DNA deoxyribonucleic acid

DNAm DNA methylation

DRKS Deutsches Register Klinischer Studien

eGFR estimated Glomerular filtration rate

eQTL expression quantitative trait locus

GABA gamma-aminobutyric acid

GCKD German Chronic Kidney Disease

GEO Gene Expression Omnibus

GGM gaussian graphical model

GO Gene Ontology

GWAS genome-wide association study
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HD Huntington’s Disease

HGMD Human Gene Mutation Database

HRC Haplotype Reference Consortium

i.i.d. independent and identically distributed

KIRC kidney renal clear cell carcinoma

KEGG Kyoto Encyclopedia of Genes and Genomes

knn k-nearest neighbor

LD linkage disequilibrium

MAF minor allele frequency

mGWAS genome-wide association studies of metabolite concentrations

MHC major histocompatibility complex

NCI National Cancer Institute

NHGRI National Human Genome Research Institute

ME module eigengene

mRNA messenger ribonucleic acid

miRNA micro ribonucleic acid

mQTL metabolite quantitative trait locus

OMIM Online Mendelian Inheritance in Man

OV ovarian serous cystadenocarcinoma

PC principal component

PCA principal component analysis

POS proportional overlapping score

pQTL protein quantitative trait locus

RAP regional association plot

RNA ribonucleic acid

rPCA robust principal component analysis

RSD relative standard deviation

SD standard deviation

SNiPA single nucleotide polymorphisms annotator
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SNP single nucleotide–polymorphism

TCGA The Cancer Genome Atlas

TOM topological overlap measure

UACR urinary albumin-to-creatinine ratio

UPGMA unweighted pair group method with arithmetic mean

WGCNA weighted gene co-expression network analysis

w.l.o.g. without loss of generality
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