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A B S T R A C T

The recognition of human activities from (body-worn) sensor data
promises novel applications and seamlessly blending the interaction
with computers into everyday live. Up to the point where no explicit
interaction with computing system is required, and relevant information
is directly drawn from such sensor data.

Detecting activities from sensor data faces several challenges, both
in technical and scientific areas, which are addressed in this thesis.
From a technical perspective, storage and subsequent processing of
large amounts of data can easily get cumbersome. An approach based
on a multi-media container format, that compresses and stores multiple
sensor data stream, including video, audio, motion, other sensor and
ground truth data, in a single streamable file is proposed. Furthermore
an Activity Recognition framework based on Unix processes, that is
flexible, language-agnostic and parallelizable is investigated as well.

The major scientific challenge is to sample naturalistic datasets
encompassing particular human activities. Core to this thesis is the idea
of fully automating this data collection process by first trivialising the
detection of the activity. Following the assumption that tools are used
for particular tasks that are indicative for an activity, these artifacts can
be instrumented to detect activities. This requires significant design
effort for such tools, which can later be replaced with more general
sensors. This idea is illuminated with two applications: detecting
smoking from wrist motion and detecting process steps in wetlabs as
navigational cues for video recordings and displaying task lists.

For smoking detection a dataset encompassing 351 smoking in-
stances was collected with an ensemble system of Smartwatch, Smart-
phone and an instrumented lighter. A machine-learning recognizer,
a trivial detector, and questionnaire elicitation of smoking behaviour
are compared. In the wetlab, a systematic study including 22 partici-
pants for an entry-level experiment, a deployment of Google’s Glass for
task guidance in a university-level course, and a recording system at a
research lab is presented.
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Z U S A M M E N FA S S U N G

Die Erkennung menschlicher Aktivitäten anhand von (am Körper getra-
gener) Sensorik ermöglicht neue Applikationen und eine nahtlose Ein-
bettung von Computer-Interaktionen in unser tägliches Leben. Durch
die Ableitung momentan relevanter Informationen aus Sensordaten, ist
keine explizite Interaktion mehr notwendig.

Die Detektion von Aktivitäten aus Sensordaten besteht aus mehrere
Herausforderungen, einerseits technischer und andererseits wissen-
schaftlicher Natur. Diese werden in der vorliegender Arbeit präsentiert.
Von technischer Seite kann die Speicherung und Verarbeitung großer
Sensordaten schnell unhandlich werden. Hier wird ein Ansatz vor-
gestellt, der auf der Speicherung mithilfe eines Multi-Media Formats
basiert. In diesem Format lassen sich Video, Audio, Bewegungsda-
ten, weitere Sensordaten und Ground Truth Daten, in einer einzigen,
streaming-fähigen Datei ablegen. Weiterhin wird ein auf Unix-Prozessen
basierendes Aktivitäts-Erkennungs Framework, das flexibel, program-
miersprachenunabhängig und parallelisierbar ist, vorgestellt.

Die wissenschaftliche Herausforderung besteht in der Aufzeichnung
lebensnaher Daten, die menschliche Aktivitäten beinhalten. Eines der
Ziele dieser Arbeit ist diesen Datenaufzeichungprozess vollständig zu au-
tomatisieren. Dies betrifft insbesondere die Aufzeichnung von Ground
Truth Daten. Folgt man der Annahme, das Werkzeuge nur für einen
bestimmten Zweck eingesetzt werden, lassen sich diese instrumentieren
und dienen damit der Erkennung von Aktivitäten. Dies erfordert ein ho-
hen Entwicklungsaufwand, der sich allerdings nach der Aufzeichnung
möglicherweise durch die Erkennung mit einem allgemeineren Sensor
ersetzen lässt. Diese Idee wird anhand zweier Beispiele beleuchtet: dem
Erkennen von Rauchergesten mithilfe von Bewegungssensorik und der
Erkennung von Prozessschritten in Biologie-Laboren, die zur Navi-
gation von Videoaufzeichnung und Abarbeitung von Aufgabenlisten
dient.

Zur Detektion von Rauchergesten wurde ein Datensatz mit 351
Instanzen mithilfe eines Ensembles aus Smartphone, Smartwatch und
instrumentiertem Feuerzeug aufgezeichnet. Eine Erkennung basierend
auf einem maschinellem Lernverfahren, eine triviale Erkennung, und
die Erfassung des Rauchverhaltens mithilfe eines Fragebogens wurden
verglichen. Im Biologie-Labor wurde eine systematische Studie mit
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viii zusammenfassung

22 Teilnehmern, ein Einsatz von Google Glass als Anleitung in einem
Praktikum auf Hochschulniveau, und als Aufnahmesystem in einem
Forschungslabor, durchgeführt.
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Figure 1.1: The design space of wearable and instrumented artifacts for
smoking behaviour detection and context awareness in the microbiology
lab. Simple sensors, which only allow to track very specific activities,
can be made very power- and computation-efficient. More general
sensors, employing wrist motion or motion capture can detect more
activities albeit requiring more resources.

The development of tools was the first step in the evolution of
mankind, enabling and augmenting tasks the human body on its own is
not capable of. Integrating computation- and communication-enabled
artifacts into our lives is the extension of this process for the human
mind. Computers in their various current forms are realizations thereof,
as computing excels in storing and finding information, and as such
augment human memory capabilities - very much like Bush’s original
vision of the MEmory EXtender (MEMEX) [1] device. Today, about
80 years later, it is technically feasible to build such systems. Systems,
which extract cues from body-worn and tool-embedded sensors to quan-
tify behaviour and manual tasks, index their recordings and provide
their user with novel remembrance capabilities.

Both conceptual and technical challenges in building such systems
remain though, and a selection of these are addressed in this thesis.
Conceptually, the context of a user needs to be recorded in a way
that allows for useful cues. To be useful, such cues need to evoke
past memories or contain recordings which allow to extract minute
details. This can include video/audio recordings of executed actions, or
simply counting events in a reliable manner. In the course of this thesis
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two particular applications are investigated: semi-fixed procedures for
manual tasks executed in wetlab environments, and the quantification
of smoking behaviour in day-to-day life.

On first glance these two applications seem quite different. However,
they share a surprising number of technical challenges. Memories can
be evoked, and details extracted by browsing video/audio/motion data
recordings by summarizing the observed human actions, e.g. which
experiment was executing last? Was I executing the pipetting step in
my last experiment correctly? How many cigarettes did I have past
week? When am I smoking most often? The context of the user in such
cases is recorded with multiple sensors, body-worn or tool-embedded,
and presents the first technical challenge: (i) recording an ensemble
of distributed sensors in an energy-efficient, reliable and synchronized
way. The second challenge concerns the (ii) automatic interpretation
of the recorded data, to extract high-level descriptions of observed
human activities, often referred to as Activity Recognition. Due to the
complexity of observed activities, machine learning algorithms which
map data to these manually created high-level descriptions are often
required. The challenge is to (iii) efficiently parameterize or train, build,
and deploy such machine learning systems. Specifically, this requires
large amounts of training data recored in naturalistic settings, which
presents the final challenge. Traditional approaches require at least
one human to close the so called (iv) semantic gap, to connect a data
recording with a high-level description. This is cumbersome, costly
and unreliable. Building system which directly integrate ground-truth
collection can greatly mitigate this challenge.

These challenges are addressed by first presenting the Unix Filter
approach to Activity Recognition that enables different Activity Recog-
nition approaches to be quickly tested, as well as a data format that
provides enough flexibility for both application sets. This appraoch is
validated by its application to the detection of smoking from wearable
sensors and from a Smartlighter. Addtionally it is tested in a wetlab
environment for a distributed recording setup and subsequent detection
of activities.

1.1 unix filters for activity recognition

The Activity Recognition approach was created by following the Unix
philosophy of designing programs to do one thing, and to do it well.
With this in mind, Unix processes that handle each step in an Activity
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Recognition chain were built. These programs encapsulate one partic-
ular task, which can be individually parameterized or even replaced.
Only the exchange data format between each step needs to be specified,
which in the proposed approach is either a text or binary format. The
former can be easily interpreted and modified, even by humans, while
the latter provides lower overhead and the cost of less transparency and
increased implementation effort.

Core to this approach, is the definition of a Unix command that han-
dles the overall learning and classification task from the command line.
Hyper-parameters, like the learning algorithm, feature set, or segmen-
tation approach are supplied through command line argument. This in
turn allows for process-level parallelization, especially on computing
clusters, of grid-search and cross-validation - two of the core tasks when
evaluating a machine learning model for Activity Recognition.

Additionally, a multi-media container format that encompasses
video, audio, motion, sensor, ground-truth, and classification data
in a single file is investigated. This provides the foundation of the
remembrance support for wetlab workers, as well as a curation format
for the long-term storage of smoking motion datasets.

1.2 quantification of smoking for cessation

Smoking is called the number one reason of premature, preventable
death worldwide. However, scalable and effective smoking cessation
support is still elusive. One reason for this could be that efficacy mea-
surements of cessation are currently limited to questionnaires, telephone
interviews, small scale observational studies and ecological momentary
assessment with Smartphones. Body-worn sensors and instrumented
artifacts could provide novel, and objective insights into the behaviour
of nicotine-addicted people.

Two approaches are compared in this thesis: (i) detecting smoking
from wrist motion recorded with sensors in Smartwatches and Fitness
tracker bands, and (ii) detecting lighter usage events with a Bluetooth-
enabled lighter. Design decisions for the Smartlighter are presented,
and the lighter was used for different field studies. It’s main purpose
was to collect ground-truth data for the motion detection approach, and
was tested with a total of 17 smokers over the course of several days.
Based on this collected dataset, a symbolic detection approach that
provides a baseline recognition approach for trivial smoking gestures
was evaluated. With this approach it is possible to show that non-trivial
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smoking gestures were recorded. A machine-learning approach to
smoking was subsequently developed, which detects these non-trivial
gestures. The instrumented artifact approach requires less energy than
a continuous motion recognition, albeit being a less general solution.
The energy requirements of both solutions are presented in chapter 4

as well.
To show the benefit of an objective smoking measurement, the

results of a questionnaire study are compared to the results of a mea-
surements taken with the instrumented lighter. Evidence that smokers
tend to overestimate their actual consumption, and evidence for a strong
difference between asking smokers for their most common time of day
spent smoking and what is actually measured with body-worn sensors
or instrumented artifacts, was found. Eleven participants, recruited at
the Universtiy of Darmstadt, participated in this study using one of the
early prototypes of the Smartlighter. The mean participation time was
eleven days.

1.3 memory augmentation for life scientists

Experimental work executed in laboratories has been the target of
multiple research projects already. The common goal is to augment
manual work done by researchers in chemistry and biology laboratory,
where the possibilities of manual interaction with computing machinery
is naturally limited. Due to wearing protective garment, and to having
to stop the task at hand for interacting with computers, other means
of interaction would be helpful. The repeatability of experiment is
the main goal when conducting these experiments, as only then valid
conclusion can be drawn. Hence, technology which improves the
documentation capabilities of an experimenter, and which improves
access to information, is sought.

Similar to life-logging applications, we follow the idea of using
body-worn sensors, particularly video, audio, and motion, to record
everything while conducting a wet lab experiment. Such recordings in
themselves are hardly useful, as the only cue to navigate them is the
time-of-day. However, due to recording motion, executed activities can
be detected and used as additional navigation cues. If, furthermore used
objects were recorded, for example by radio frequency identification
(RFID), more specific queries to a database of such recordings can be
supported. For example, asking for all recordings where a particular
compound was pipetted, to check whether this pipetting step was the
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reason for an experiment being unrepeatable. This can be called offline
querying and requires an Activity Recognition module to map motions
into a queryable space. Once this module was established, it can also
be used for online querying, i.e. retrieving information about the task
at hand without the need for an explicit query. For example, details
about the current workflow process can be retrieved by activating a
head-worn display, which already retrieved information about the step
at hand without any further input.

For this application, the applicability of multi-media containers for
storing video/audio/motion and subtitle data is shown. The latter con-
tains the results of an Activity Recognition, and provides a query space
that can be efficiently searched. Sensor data is recored by augmenting
the scientists instead of the environment, to gather deployment flexibil-
ity. For this, a study to detect steps of an entry-level wetlab experiment
is presented, a deployment during a teaching lab course for eliciting the
requirements for task guidance, and a study on a novel segmentation
approach for such recordings is presented.

1.4 contributions and thesis outline

The thesis provides the following contributions to the current state-of-
the-art:

Concept for Multi-Modal Activity Recognition orchestrating the
recording and recognition of simultaneous sensor streams can easily
become cumbersome. To overcome this issue, multiple simplifications
are presented as well as a container format for such recordings, which
is both efficient and general. It includes support for video, audio, and
other continuous sensor data, as well as annotations, recognition
results, and sparse sensor data in a common format. Furthermore, the
performance and applicability of Unix filters for Activity Recognition
are investigated.

Two Case Studies of the proposed Activity Recognition concept A
smoking detection system based on a Smartlighter and wrist-worn
inertial sensors is presented. Furthermore, a more general system
which allows to quickly navigate point-of-view (POV) videos based
on instrumented wet lab tools and wrist motion. To record this data,
a common data format is presented and a recording infra-structure
encompassing Android, Linux and other networked devices is shown.
Furthermore, the challenges in recording, and conducting these
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Introduction Related Work

Case Study I
Smoking Quantification

IV

Wetlab Support
Case Study II

V Conclusion

VI
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I II III

Figure 1.2: Outline of this thesis. After an introduction to the Activity
Recognition (AR) framework, two case studies are presented. Both
highlight the features of the framework.

studies are highlighted, as well as indications on the applicability for
the chosen recognition approaches are extracted.

This thesis is split into four parts (see Fig. 1.2). First, work related to
Activity Recognition, wearable smoking detection and support systems
for wetlab work are described. The second part highlights the Unix
filter approach to building recognition pipelines. This allows for com-
bining several machine learning frameworks, switching to production
and parallelizing various steps with minimal effort. In this chapter
binary and textual data formats, as often used in related work, are
compared and a novel format is suggested. This allows for multi-modal
recognition approaches, including various sensors and switching be-
tween different datasets easily. In part three, the first case study on
recognizing smoking from motion and from an instrumented artifact is
described. A Smartlighter is combined with a wrist-worn motion sensor
to quantize smoking sessions. Such data can be used for evaluating
interventions as well as enabling just-in-time interventions. Part four
describes the application of a multi-modal recognition approach as a
memory augmentation tool in wetlab environments. The researcher,
instead of the environment, is outfitted with various sensors. Cues
are automatically extracted from the sensor recordings, to provide a
browsable recording of manual wetlab work. Combined with an ego-
centric (or other) video and audio recording this enables a memory
augmentation system. The final chapter concludes the thesis, and gives
an outlook on further possible research scenarios.
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Body-Worn Sensors Pre-Defined ActivitiesActivity Recognition
Classification

zZzZS C→

Figure 2.1: Overview of Activity Recognition systems. Body-Worn
sensors record application-specific sensor data. A classifier maps (con-
tinuous) sensor data (S) to categorical labels of activities (C). Designing,
building, deploying, and evaluating such wearable systems are the
major challenges when creating novel systems.

Activity Recognition, the problem of detecting activities from (body-
worn) sensor data, has been researched quite extensively over the past
years (see Figure 2.1). The software components and their interaction,
is well known by now and boils down to a processing pipeline where
frames of sensor data are fed in and labels for each data frame are
returned. How to best gather reliable sensor data in a scalable fashion,
which sensors to apply for a given application, how to built learning
pipelines, how to evaluate them and how to tune the parameters for
each step are still open issues. Deep Learning, which combines learning,
parameter tuning, and evaluation into a single pipeline is also applied
in the field of Activity Recognition and shows promising results. An
overview of commonly used approaches over the past 20 years is given
here, highlighting the different steps involved in predicting categorical
labels from unseen sensor data and different application areas. To this
end the following questions will be investigated in this section:

• Which application/activities were investigated?
• What are the major challenges for wearable Activity Recognition?
• Which sensors were used, how were they attached?
• How was the system evaluated?
• Is there a difference between in-lab and in-the-wild studies?
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• Which system exists to quantify smoking from body-worn sensors?
• Which manual task support system are described in the literature,

specifically for wetlab environments?

Being directly related to the contributions of this thesis, the latter
two question are systematically reviewed. The remaining questions are
addressed based on survey works and with the goal of covering a large
area of works. Generally all reviewed works follow an architecture
as depicted in Fig. 2.1. A physical phenomenon (correlated to an
activity) is captured with a sensor and mapped to a pre-defined set of
labels designating activities. The works are set apart by experimental
design, methodology, application, sensors, and evaluation strategy. [2,
3] provide a recent overview of application for HAR, while [4] provides
an introduction to the technical challenges.

For a fundamental understanding of work involving any machine
learning approach is Peter Norvig’s formula of artificial intelligence [5]:

act∗ = argmax
a∈actions

E(Utility(Result(a, s))) (2.1)

which states how a computing system / artificial intelligence will
chose the next action (act∗) from a set of possibles actions. s corresponds
to the state of the environment and user, in the following also called
the context of the user, E to some kind of (probabilistic) reasoning and
argmax to a search algorithm. Result() predicts how a particular action
will change the world state s, and Utility() encodes the goals of the
system. Each part of this equation has its own set of challenges, however
Activity Recognition is limited to detecting the state s from sensor data
recorded with wearable or instrumented artifacts.

2.1 applications of activity recognition

Wearable systems, and particularly detecting activities from sensor data,
promise to digitize otherwise hardly detectable action of humans - to
augment capabilities and senses. A continuously worn computer sys-
tem can improve one’s intellect, memory, creativity and communication,
and also one’s auditory, visual, olfactory, gustatory and tactile senses
[84, 85]. Such systems balance power requirements, heat dissipation,
computational power, network connectivity, wearability, obtrusiveness,
task-specific interfaces, and particularly robust recognition of its wearer
intentions and actions. This recognition minimizes the amount of ex-
plicit interactions with the system to seamlessly blend into the wearer’s
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Figure 2.2: Applications of Activity Recognition, in which body-worn
or instrumented artifacts render indications on the task at hand.

normal life and the task at hand [86, 87, 88]. Or, as Starner [89] defines
Wearable Computing where

. . . the interface becomes a natural extension of its user.

Besides this abstract idea of Wearable Computing, and in particu-
lar Activity Recognition, there are a number of concrete applications
that clearly benefit from detecting the user’s context from body-worn
sensors. The largest of those areas is Health & Safety [4, 90].

Declining mortality and fertility rates create an ever-increasing elder
population [91]. Wearable technology is sought to reduce the burden
of care-givers and to enable elders to live independently for longer
periods of time. Activities of daily living (ADL) and potentially life-
threating situations like falling are prime targets for detections and
have received a lot of attention [18, 19, 20, 21, 22, 2, 23, 26, 27]. Early
detection and interventions that could result in chronic diseases like
sedentary lifestyles [24, 45, 46, 47, 48, 3], smoking [28, 29, 30, 31, 32, 33,
34, 35], obesity and unhealthy diets [36, 37, 38, 39, 40, 22, 41, 30] are
often targeted as well. By quantifying and continuously monitoring [55,
56], suggestions for healthy lifestyle changes and other interventions
are the goal [62, 63, 64, 65]. Playing a rhythmic audio signal was shown
to assist during freeze-of-gait for Parkinson’s disease (PD) patients [61].
Diagnostics, for example from gait monitoring for the onset of PD [49],
or mental health issues [56, 55] are further examples.
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Sport & Leisure applications are probably the most well-known
deployments of Activity Recognition Systems. These relieve their users
of manually noting down details about a workout, for example the track
length and duration of a bike ride. Promoting healthy lifestyles [10,
11, 25] through feedback on physical activity is motivated by the lack
of physical activity being a major risk factor for Non-Communicable
chronic Diseases (NCD). These NCD are believed to cause 60% of world-
wide deaths [92], including cardiovascular diseases and certain cancer
types. In combination with mobile phones, activity recognition can
personalize training plans and assess the skill of its wearer, for fitness
[6], weightlifting [7], martial arts [9], swimming [15], or climbing [8]
to name a few. Wearable sensors also estimate the energy expenditure
of physical activity in different measures [93]. An early study on the
UbiFit Garden system [12] has shown the efficacy of such physical
activity feedback. Example Leisure applications include Stochasticks
[13] which augments the Billiard experience, augmented reality games
[16] and instrumented shoes to increase dancing skills [14].

In between the last two areas is the longitudinal assessment of treat-
ment outcomes, mental disorders, and tracking rehabilitation progress
[53], for example for stroke, Parkinson’s, and multiple sclerosis patients
[51]. These patients suffer from impaired motor skills, which can be
picked up with wearable sensors. This is also coined mobile health
(mHealth) in this scope, which allows for remote monitoring, home-
based therapies, efficient daily care, but also for improved clinical trials
when used as an assessment tool. Particularly measuring long-term
effects with body-worn sensors allows for novel diagnostic insights [50]
in the patient’s real-life environment. Demonstrated for example by the
AMON device [94], which monitors multiple cardiovascular parameters.
Wearable assistants, which intervene just-in-time have been demon-
strated for freeze-of-gait condition for PD patients [95], intervening for
COPD [96], or acute epilepsy seizures [54].

In the last example sensors pick up the context of their users, whether
this is a (longitudinal) medical condition or their current intent. Context
Aware computing focuses on the idea of building systems which utilize
context, detected with body-worn or environmental sensors, to augment
its user’s capabilities [88]. Having a clearly defined idea of the intention
or information needs of a user is a challenge, hence the application of
Activity Recognition to support activities of professions, i.e. professional
activities or “everyday” life needs. People with memory impairments,
e.g. dementia patients, but also knowledge workers can benefit from
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life logging applications [97, 98]. Wearing a camera (and other sensor
modalities) that continuously records the user’s experience indexed by
their activities augments normal human memory. However, to move
“beyond total capture” [99] requires further insights into how memory
is retrieved and organized. This is often task-specific: a remembrance
system [79] can index and answer queries to such an “external” database
[100]. Different usage scenarios like conference assistants [77], meeting
assistants [78], but also providing in-situ conversation assistance [101] or
public speech helpers [80] were investigated. Commonly a head-worn
display provides information to the users, while context is detected with
body-worn sensors. Soldiers [67, 102] are supported in their training,
providing real-time feedback on their physiology, team positions, and
tactical overviews. First responders, like firemen, benefit from similar
systems [68, 66].

Due to the possibility of structuring professional activities in a way
that facilitates recognition with sensors, these activities are targets for
recognition as well. Particularly the commercial availability of head-
mounted displays (HMDs), like Google Glass, has increased the interest
into the detection of process steps for manual activities. The idea is
to provide guidance for the task at hand [103] (also sometimes called
proactive Documentation), to increase task safety [104, 66], for remote
support [105] and automated quality checks [106]. Wearable computers
are particular useful in the following areas [107]:

Maintenance & Manufacturing Aircraft maintenance was one of
the earliest targets for assistant systems, where also instrumented arti-
facts [108] contributed to the detection task. Task guidance systems for
aircraft inspection [109], armored vehicles [110], workshop machines
[111], or car manufacturing [81, 112] are examples. This also includes
hands-free access to operation manuals and remote assistance [113].

Civic & Military Bio-Hazard handling professionals [66] are one
group of professional, where protective clothing and the task restricts
the possible amount of manual interaction with a computer system -
hence novel ways of explicit interaction need to be found. For example,
thick gloves impair its users ability to type or use touch interfaces.
One solution is the yo-yo interface [114], a single hand tethered device
controlled for gesture input. Tracking the movement of an intervention
group, would allow to get a tactical overview [115] and plan emergency
response during disaster recovery [68, 116]. Similarly for soldiers [67],
whose physiology may also be tracked, as well as astronauts [117, 118]
during EVA/IVA missions.
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Knowledge Work Particularly the monitoring of manual workflows,
but also supporting data collection for mobile workers, can be enhanced
with the help of an activity recognizing wearable systems. Detecting
the stage of a workflow decreases the amount of explicit interaction.
Switching recipe steps automatically [119] instead of having to verbally
instruct a computer system to switch to the next step is one example.
But also checking safety-related steps (was the bio-hazard container
closed again?), or providing steps as navigation cues for video material
(a YouTube-tutorial which jumps directly to the segment of relevant
information) are possibilities. Wood workshop and bike maintenance ac-
tivities were detected with body-worn accelerometers and microphones
[120]. Assembling IKEA furniture [121], and cooking [21] are further
examples of detecting steps in procedural knowledge to provide in-situ
information. Supporting field work by providing recording support, for
example in biology, was also demonstrated [122, 123]. Another string
of work is engaged with managing attention and interruptibility [124],
trying to build contextually-aware systems, which delay notifications to
a “fitting” time.

Medical professionals, like doctors and nurses, are also thought to
benefit from wearable technology and activity recognition. For example,
accessing patient records, triage support, note taking in forensics and
other fields, self-reflection and improving education of surgeons are
possible applications [68, 69, 70, 71, 72, 73, 74, 75, 76, 125, 126].

2.2 challenges and ecological validity

The challenges of designing wearable computing system are well docu-
mented [84, 85] and still exist for current system. The foremost challenge
is to provide power to miniaturized computing systems, particularly
since the energy density of batteries improves at a much lower rate than
computing power. Energy scavenging from the human body might
be a solution for wearable computing though [127]. Heat dissipation,
networking, privacy, interface design, and the creation of intellectual tools are
further examples. Beside the technical challenges, the robust detection
of the user’s current context from sensor data remains to be an open
question, which is one of the goals of this thesis.

Particularly the ecological validity of correlating sensor signals to a
recognized human activities is of importance for its practical use. This
validity refers to how well the setup of a study (free-living condition)
reflects the real-world of the subjects under study [128]. This definition
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of ecological validity is however criticized in [129], which offers the
alternative term representative (study) design to ask study authors for
justifications of generalizing results beyond their study design. These
definitions are originally from the field of psychology, but also applica-
ble for Human-Computer Interaction and Activity Recognition, which
typically involve user studies, the value of naturalistic studies was argued
for [130, 131, 132, 133] in these contexts.

To what extent a user study can reflect the actual phenomena under
study is mostly dictated by ethical considerations. For example, the
famous Stanford prison experiment, which has lead to the introduction
of institutional ethical review boards, is an unethical study where
participants were lastingly harmed during the experiment. A famous
example for Activity Recognition are setups for fall detection from
sensor data. Such studies can only be of limited ecological validity,
since participants cannot be hurt when falling in an ethical way. But
also privacy when recording body-worn sensor data is an issue, and
participant’s data should be limited to the specific detection task as well
as deletion of personal data must be possible.

Not only the study setup but also the evaluation methodologies
involved in testing the performance of a machine learned classifier is a
further challenge when creating valid, generalizable results. As pointed
out in [134] the type of cross-validation can introduce a bias which
leads to an overestimated generalization error. However, by limiting
the amount of possible correlations when segmenting a time-series
this can be avoided. Still, the cross-validation methodology, whether
leave-one-participant-out, k-Fold or random subsampling, needs to
be chosen to support the actual detection hypothesis. [135] describes
several evaluation methods for wearable computers, as well as some
of the pitfalls endangering the validity of studies, and [136] surveys
methodologies in use in HCI. One outstanding challenge is the robust
collection of ground truth data, as exhibited in [137]. In this study, in-lab
and free-living data for eating recognition is combined. One finding is
that in-lab data, i.e. controlled for confounding variables, allows gener-
alization to free-living conditions. However, learning from data in the
free-living condition leads to worse performs - this is probably due to
low-quality ground truth data. Class imbalance, or encoding unwanted
priors due to the structure of the dataset is another shortcoming to
watch our for during evaluation. Common solutions include the up- or
down-sampling of classes [138].

Performance Metrics which allow for detailed interpretation of
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continuous activity recognition systems are proposed in [139, 140].
Instead of the prevalent scoring methodology in machine learning [141],
which assumes that each classification result is statistically independent,
these metrics take the implicit correlation of time-ordered results into
account. Instead of scoring single frames, event identification are scored.
Not only mismatches between classification and ground truth of a
single frames but also the surrounding frames are taken into account
for scoring, providing more insight into a classifier’s performance.

Human Activity recognition is furthermore complicated due to its
problem definitions [18, 4, 19]. Concurrent activities or the ability of hu-
mans to do multiple activities at once, is challenging to recognize since
usually only singular activities are sampled. Superpositions of multiple
activities can not be easily calculated from these samples. Confound-
ing activities or also the ambiguity of interpreting a particular activity
label is problematic. For example, smoking could refer to consuming
a cigarette or consuming a cigar, for which different assumption can
be made. But also eating or drinking might look similar to smoking
when looking at arm motions. These two challenges exist for almost
any Activity Recognition system.

2.3 activity recognition approaches

Activity Recognition approaches are rather widespread. Here, we fol-
low the definition from [4, 142] of the Activity Recognition Chain (ARC),
which splits these systems into the following steps: pre-processing, seg-
mentation, feature extraction, training and classification, and post-processing.
Each step will be discussed separately, and while not exhaustively dis-
cussing all approaches, an overview will be given. The overall goal of
an ARC is to encode the similarity of sensor data time-series, which
belong to executing the same activity

Pre-processing typically involves sensor-specific processing of analog-
digital-conversion (ADC) results. For example, gyroscope data might
require baseline removal, and low-pass filtering to remove sensor noise.
Calibration is another common operation. For some applications, spe-
cific frequency bands can be filtered out. Normalization, unit conversion
and re-sampling are further operations. Re-sampling is often done for
storing sparse or non-periodically sampled sensor data. For example,
GPS data might only be sampled when movement is detected, which
is subsequently re-sampled to a fixed interval to simplify processing.
Pre-processing is therefore involved in increasing the data quality by
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removing artifacts that can be safely assumed to be not correlated with
the pattern to detect. Quantization, i.e. reducing the resolution of data
samples, can furthermore reduce sensor noise and decrease computa-
tional complexity at later stages. In Activity Recognition, the results of
such a quantization step are called motifs [140] and often expressed as
strings. The overall output of the pre-processing step are several vectors
si = (d0, d1, . . . dki

) , where i enumerates the specific sensor and k the
sample at a specific time step. The ki-th sample can differ for each sen-
sor, as each sensor might be sampling at a different rate, i.e. each sensor
runs with its own clock. When recording multiple sensors in parallel,
clock synchronization becomes an important technical challenge [119,
143, 144].

For time-series classification, an interval over which to classify needs
to be chosen. Such intervals are called segments and accordingly this
processing step is called segmentation. The choice of segmentation strat-
egy is an important parameter of an ARC. Two simple approaches
are segment via ground-truth, i.e. to to assume a “perfect” segmen-
tation exists, or to apply a sliding-window of pre-defined duration
with or without overlapping the segments. Segmentation can also be
formulated as detecting change points in time-series data, also termed
piece-wise approximation (PA) [145] or spline interpolation. By assum-
ing an error limit to such a functional representation, the segments
correspond to the support points of these interpolations. Wavelet repre-
sentations [146] lend themselves well for periodic signals, while spline
approaches are better suited for non-periodic signals. Thresholding
a running signal property, like the signal’s energy or variance, is a
simplified form, which is commonly used. Also, unsupervised cluster-
ing algorithms can be applied to identify segments with similar signal
properties. For segmenting multi-sensor series, usually only a single
series is segmented, and the extracted segments used for the remain-
ing series as well. This however requires that multi-rate recordings
can be split accordingly, for example requiring a minimum segment
duration that equals the lowest sampling rate, or by re-sampling to
a common rate beforehand. The output of this step is then multiple
vectors si,j = (d0, d1, . . . dki

), where j designates the j-th segment, and ki
a sensor sample on the sensor’s local clock.

Prior to learning patterns, which are indicative for a particular
class c ∈ C from segmented sensor data si,j ∈ S (cf. Figure 2.1), the
sensor data is extracted into a feature vector. This serves two purposes:
first to minimize the Curse of Dimensionality by limiting the amount of
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possible data combinations that represent the problem. This means,
the larger the feature vector, the more collected data is required to
capture the space of classes. Second to remove the continuous nature of
the recorded sensor data, i.e. to create a sensor- and rate-independent
representation of each sensor vector called the feature vector f j = si,j.
This can be achieved in a multitude of ways and is roughly classified
into three categories: signal-, model-, and domain-based.

Signal-based methods are the simplest form of features that can be
calculated. These involve the calculation of statistical moments (mean,
variance, skew. . . ) , median, range of values, root-mean square, number
of peaks, energy and zero-crossing rate to name the most common. Be-
side these time-domain features, features in the frequency-domain are also
commonly found. After applying a Fourier or other type of transform,
the first n components (frequency and magnitude), spectral energy,
n-largest coefficients can be extracted. The large number of possible
features exhibits a full treatment here, however a comprehensive survey
[147] describes them in a larger number, and proposes a method to
automatically select the most representative for a given dataset. Com-
pared to Computer Vision, where standard descriptors like SIFT are
common, there is no such standard feature set for Activity Recognition,
which is probably due to the heterogeneity of the used sensors.

The second class of features are model-based and are related to the
previously mentioned segmentation step. A mathematical model with
a fixed set of parameters is matched onto the current segment, and the
parameters make up the extracted features. This can involve (piece-wise)
linear, polynomial or trigonometric models, or fitting the parameters
of statistical distributions. Due to modelling the time-behaviour of a
continuous signal this class of features is particularly suited when parts
of the sensor signal can be predicted from a certain point in time.

Domain-based features in contrast, take knowledge and assump-
tions into account that are known from the process at hand or from
the recording setup. [148] measured multiple points on the human
body, and estimated the position of each point by a kinematic chain.
Sequences of these positions, called primitives, were then used for
classification. Expressing activities in terms of threshold on a human
skeleton model for weight lifting exercises is demonstrated in [7]. For
eye-tracking, features as the number of saccades, fixations and blinks
can be extracted that are particular for this application. For raw data of
inertial motion sensors, such domain-derived features depend on the
targeted application.
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When selecting a feature set for a particular recognition task,
domain- knowledge derived features are preferred. This, however,
is only possible if enough facts about the recognition tasks are known.
The alternative strategy of calculating and selecting a minimum set
of signal- or model-based features can inform such domain-features.
Model-based features lend themselves well for detecting repetitive or
predictable time-series segments. The output of this feature extraction
step are feature vectors f j for each segment j.

Once feature vectors are extracted and a machine learned model is
in place, the segments be classified. This means mapping from the
feature space F to the class space C. The output of this step is then
used in the specific application, e.g. the persons is walking, jogging, or
running right now. For this, the model M carries a parameter set φ that
contains the choice of pre-processing, segmentation, feature extraction,
and the choice of hyper-parameters for each step. The output of this
classification often allows for a probabilistic interpretation:

p(c|sj, φ) = M(φ, sj) ∀c ∈ C (2.2)

, i.e. p designates the probability that a particular segment j belongs
to class c. A point estimate, for example the class c with highest proba-
bility, is then chosen as the “prediction” of the classification model M.
Other post-processing steps also take the timely-correlated previous or
following predictions into account. This is called smoothing and often
applied to remove spurious mis-classifications. Not all classification
models estimate the probability of a sample belonging to a class. A
common technique to estimate this probability from such models is
known as “Platt Scaling” [149].

By estimating the probability of each class, a NULL-rejection scheme
can be implemented, also known as the activity spotting challenge [150].
This refers to the complication that not all irrelevant activities can be
ecologically sampled. Imagine a longitudinal sensor recording, where
the activity of interest occurs only sporadically. When applying a
model to spot this activity, it might be spuriously detected on irrelevant
segments. Those spurious detection can be sometimes rejected by
a threshold on the probability of this classification. Furthermore, the
model should only be trained on the activities of interest, and not on the
irrelevant segments (which we label with NULL). The combination of
learning only the relevant activities, and suppressing irrelevant segment
by a threshold on the class probability, is a more general solution than
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explicitly learning the NULL class from a limited sample set [151].

For example, imagine an accelerometer dataset where the NULL
class consists only of samples of a single value. The activity of interest
consists of actual movement. Training a machine learning model on the
NULL class explicitly would be a trivial solution, as only a comparison
to the single value is required. When this value is not seen during
classification, the prediction would be the activity of interest. This
model would give perfect classification scores, however when exposed
to new data during deployment would result in erratic predictions.
Such a scenario is not that uncommon, since this happens when no
“background” data and only the activity of interest is recorded. In
such cases, only a NULL-rejection scheme would result in a realistic
performance estimation.

The question which model to train, and how to train these models
is an ongoing challenge. For activity recognition, two distinction of
classification algorithms can be made: whether an algorithm is unsu-
pervised or supervised, and if its input vector needs to be of static
or dynamic size. For example, the simplest feature extraction scheme
is to use the raw time-series of sensor data and apply only a specific
vector norm (see Fig. 2.3 for examples). Unsupervised algorithms require
the number of classes (but not their distinctive labels) and a vector
norm ‖.‖ as parameters. Clusters of feature vectors are then calculated
by equalizing the distance calculated by the chosen norm ‖.‖. The
similarity of feature vectors is encoded in this norm. Depending on the
choice of the norm ‖.‖ also dynamically sized feature vectors, i.e. vec-
tors of varying dimension can be used. Dynamic time warping (DTW)
[152] and cross-correlation are examples for dynamic norms, while the
euclidean distance requires the compared vectors to be of equal size.
A common algorithm choice is the k-means algorithm, but also the
DBSCAN algorithm was used successfully for activity recognition [153].

The ability of unsupervised approaches to recognize activities rests
on the choice of distance metric ‖.‖ on F, and whether the classes in C
need to labeled. When such labeling is required and a distance metric
can well separate the classes, a k nearest neighbours (kNN) algorithm
will already provide good performance. However, in the most common
case, that such a metric is not apparent, more sophisticated learning
algorithm like Support Vector Machines (SVM), Random Forests (RF),
or Neural Networks (NN) can be applied. These create more involved
decision boundaries on the dimensions of F, but also require tuning of
more hyper-parameters, for example the choice of SVM kernel. These
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approaches work only on static feature vectors though, and domain-
knowledge can only be encoded in the feature extraction step.

If, however, the extracted features are of dynamic size, time-
dependent signal correlations are apparent, or if the duration of a
signal pattern is dynamic, probabilistic methods can be applied. This
includes Hidden Markov Model (HMM) or Conditional Random Fields
(CRF) [121], which are both special cases of bayesian networks (BN)
[154] or even Markov networks (MN) [155]. Besides the ability to handle
dynamically sized inputs, these also allow to encode domain knowl-
edge as dependencies between random variables. As such, these are
powerful tools to model the dependency between body-worn sensor
data and human activities.

No matter which machine learning model is chosen to represent the
mapping from sensor data to activities, a particular set of parameters
needs to be chosen, this step is called training the model. These parame-
ters are derived from a training dataset. The performance of this trained
model is estimated on a validation dataset, of which the mapping from
sensor data to output labels is known. For this, ground truth labels
are compared with the prediction of the just trained model. Typical
machine learning metrics like Accuracy, F1, Prediction and Recall and
specialized event [139] for activity recognition allow an interpretation
of this performance.

Depending on the type of application, different cross-validation
schemes need to be applied to the dataset. Cross-validation refers to
the strategy on how the dataset is continuously split between training
and validation data. A common choice is random sub-sampling of the
dataset, which was shown to be overly optimistic [156]. This is usually
applied to test the performance in a user-dependent way, i.e. how
would a system perform for unseen data from the same user. A better
alternative to is k-Fold cross-validation. Less commonly used, but
allowing to get an idea on how well a recognition system would perform
for unseen users, is to test all leave-k-participants-out (LKPO) splits,
where k is typically set to one. Generally, the choice of cross-validation
scheme depends on the application and the particular research question.
Hence, when designing an ARC, the choice of cross-validation should
be decided on first and carefully selected [139, 140].

Furthermore, the particular choice of ARC parameters, including
the pre-processing, segmentation, feature extraction, machine learning
model and respective hyper-parameters are application dependent.
Hence, exhaustive empirical exploration of large parameter sets is
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required for each application as there is no clear best approach [157].
Deep Learning, which optimizes this whole ARC chain on a particular
performance metric is such an approach. In this thesis, a comparable
approach is presented. Here, however, classic ARCs are parameterized
and optimized, instead of limiting the model to Neural Networks.

2.4 wearable sensors and augmented objects

Finding the right sensors to measure application related signals from
the human body or from application specific artifacts is an open chal-
lenge, however the body of research with novel sensing methods is
constantly increasing in size. Here is an overview of the most com-
monly used sensor modalities and one paper to illustrate its use. Most
well known are body-mounted inertial motion sensors which can be
correlated with human activities [45]. Not every moving body part can
be measured this way though, most notably eye-movement is tracked
by electrooculography [4] or camera-based approaches [158]. A further
sensing principle is the change of capacitance between two electrodes
[159], which allows to measure deformations and also body-internal
changes [160]. Muscle-based deformations can also be measured with
force-resistive sensors (FSR) [161]. Body-coupled (e.g. via a stethoscope)
and ambient audio signals are yet another modality, which however
offers greater fidelity [162]. Also reading signals directly from the brain
is under active investigation [163]. A recent overview of the over 15

physiological data points can be found in [164].
The mentioned sensor modalities usually have a single measurement

point. Most of them can also be combined to form a sensor array that
allows for higher spatial resolution. [165] presented a ultrasound
tomograph for hand gesture detection, which offers greater resolution
than previous electromyography (EMG) attempts [166], albeit at higher
energy costs. EMG was also shown to benefit from an increased number
of electrodes [167, 168]. Electrical impedance tomography is another
form of signal array processing to detect fine-grained limb movements.

However, we argue that instrumenting activity-specific tools does
not only trivialise the detection methodology, but is also more energy-
efficient. The Mediacup [169], a coffee cup with wireless connectivity
and temperature sensors, was one of the first instrumented artifacts.
It recorded one’s coffee consumption, as well as spontaneous meeting
by detecting the density of collocated cups, allowing to derive new
context information of its users. [170] shows that fill level estimation by
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an RFID-tag attached to a normal glass cup is possible. This idea was
continued in the Smart-ITs project [171], that investigated an active tag
(an embedded computer) that could be used to instrument everyday
objects. Pin&Play [172], similar in nature, provided an elegant solution
to the problem of energy supply and communication by a dual-pole,
conductive surface to connect multiple tags. A usage scenario for
instrumenting boxes that contain tools or pills is investigated in [173].
This allows to track workflows, in a way similar to the proposal of [174],
which instruments tools with RFID tags, which are detected by a wrist-
worn reader. Situating displays at the positions where information is
needed, e.g. displaying weather information at the wardrobe is another
form of instrumenting an artifact (or providing augmented reality in
this particular application). More recently [27] argued for augmenting
a home with simple sensors for detecting purposes.

While the latter examples revolve around additional tags that are
attached to artifacts, recent advances allow to integrate networking,
detection and power supply directly into the artifacts themselves. [175]
presented an e-cigarette augmented with a Bluetooth interface, which
tracks its user’s consumption and provides additional information like
location, time and overall nicotine consumption. For normal cigarettes,
the instrumented cigarette box [176] is one way of tracking the actual
consumption of its user. In this thesis the design and implementation
of a cigarette lighter to achieve the same goal is presented.

2.5 smoking detection with wearables

Detecting smoking from wearable sensors is mostly motivated by the
possible impact an objective and longitudinal assessment of smoking
can have on novel interventions, and insights into coping strategies
for substance dependence [177]. Furthermore, developed detection
techniques could be generalized to other activities that are repetitive,
exhibit a typical duration and happen only sporadically throughout the
course of a day. Based on this observation, different wearable sensor
were investigated.

Inertial motion sensors, worn on the wrist, are most commonly
used. Smartwatches, equipped with low-power MEMS motion sensors,
would be a practical modality. The intuition is to detect repetitive Hand-
To-Mouth gestures which signify a possible smoking session. The full
set of magnetometer, gyroscope and acceleration measurement (9DOF)
[29], gyroscope and acceleration (6DOF) [178, 31], and acceleration only
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(3DOF) [32] were utilized. Rate-of-Turn (gyroscope) measurements are
usually used for segmentation of the sensor data [29], while acceleration
data estimates if the hand is at the mouth. Currently, no baseline dataset
is publicly available, challenging direct comparison of these approaches.
Recognition rates (F1) of larger than 80% were reported, pointing to
the feasibility of detecting at least prototypical smoking instances -
instances in which the smoker was standing, held the cigarette in the
monitored hand and always moved his arm from waist to mouth.

Combinations with other sensors were also investigated. The loca-
tion of a smoker is an indication for him smoking [33] as well. This
can be picked up with GPS and WiFi scans. Another common modality
are mobile inductance respiratory phlethysmographs (RIPs). These
belt-like devices monitoring breathing rate and depth and are worn
around the chest. Deep inhalations, common for a particular kind of
smoking, can be measured and their repetitions is indicative for smok-
ing [179]. Combining these with wrist motion was shown to increase
classification scores [180]. Alternatively, and also one of the earliest
wearable devices for monitoring smoking, the radio signal strength (RF)
between a necklace antenna and a wrist-worn antenna [181] was inves-
tigated. Nowadays, the Bluetooth link strength between Smartwatch
and Smartphone could provide a similar signal.

Recently, acoustic approaches were presented. A necklace with a
body-coupled (stethoscope), far-field microphone and loudspeaker is
used to detect hand-to-mouth gestures via the Doppler effect. Deep
inhalations via stethoscope [182]. These detectors are however only
started when the flick of a lighter was detected via the far-field micro-
phone in oder to conserve energy. Another study presents the results of
only using a neck-worn microphone to detect breathing patterns [183].

More exotic sensor deployments make up the fourth group of modal-
ities. Dust sensors and electrodermal activity on the wrist [184], and
smart cigarette cases [176] are examples thereof. These rely on the way
the devices are used to detect cigarette smoking. Device-free recogni-
tion is enabled via Wifi signals, when a smoker influences the signal
propagation between multiple access points [34]. The latter does not
require any worn device, but a deployed infrastructure.

Current clinical devices for assessing smoking status can not be used
for cigarette-level tracking. These just provide a limited estimate of
the number of cigarettes smoked, and information about the smoking
status [185]. Included in these methods are self-reports [186], serum-
based methods with test strips [187], and breath analyzers [188, 189,
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Study Sensors Annotation n / k / t Env

mPuff [179] RIP self 4 / 8.2 / 11h Field
puffMarker [180] RIP/ECG self 33 / 1 / ? Field
RiSQ [29] 9DOF self 4 / 7.5 / 4h Field
HLSDA [31] 6DOF ? 11 / 21 / 17h Field
Tang [32] 3DOF shadow 6 / 5.6 / 2h Field
Smokey [34] WiFi video ? / 277 / ? Field
Cui [182] audio self 2 / 18 / 24h Field
PACT [181] RF/RIP ? 20 / 2 / 1h Lab
Raiff [178] 6DOF video 6 / 6 / 3.5h Lab
Dementyev [184] dust/EDA self 12 / 1 / 4h Lab
Qin [33] GPS/6DOF self 3 / ? / ? Lab

Table 2.1: Studies on wearable smoking detection. Only those studies
where data was collected are included.(RIP = respiratory inductance
phletysmography, RF = radio frequency signal strength, EDA = elec-
trodermal activity, ECG = electrocardiography). A limited amount of
studies attempted longitudinal recordings for longer than two days [31,
180, 34]. The n/k/t column, refers to the amount of participants n, the
average amount of instances k per participant and the total duration of
data recording per participant t. Only [34] did not report on n hence
the total number of instances is reported.

190]. Usually, these methods are just used as an additional efficacy
measure for interventions. The Breathalyzer however was tested as
an unbiased feedback during an intervention program [188] and has
shown a promising effect. In contrast to non-serum methods, post-
hoc validation of the smoking status is possible. A different concept,
which reminds its user when its time to have another cigarette, is
implemented in the QuitKey [191]. This is thought to teach its user
about their addiction.

Only few systems were characterized beyond the actual recognition
performance. One commonality is that almost all require the applica-
tion of machine-learning for signal analysis. Study design and data
collection is of upmost importance, as this is the foundation for the
generalizability of the gathered results. Table 2.1 provides an overview
of concluded studies. Despite the largely different number of partici-
pants, lab and in-field study setups, a drawback of most modalities is
the detection delay. For any continuous sensor, like acceleration, a time
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window at least half of a typical cigarette consumption is necessary to
distinguish from con-founding activities like eating or drinking. Two
studies [182, 29] explicitly considered the energy requirements of a
longitudinal deployment of the sensor system.

Challenges particular to wearable smoking detection were posed in
[182, 32, 178]. Objective smoking data collection in-field was mentioned
as one of the major challenge by almost all authors. System complexity,
as well as the unreliability of self-reports are the main issues. For detection
from sensor signals, con-founding activities, like coughing, scratching
one’s nose, eating or drinking [36], and gesticulating can lead to false
detections. But also capturing combinations of different smoking styles
and concurrent activities, for example walking, riding a car or bike,
sitting and lying are not easily managed. The ambiguity introduced
by different sensor wearing styles is addressed in [35] - sensor data is
transformed according to how it is worn. [192] introduces a hierarchical
probabilistic model to encode knowledge about smoking and other
hand-to-mouth related activities.

This thesis focuses on two questions that have not been answered
conclusively yet: (a) Is energy-efficient long-term recognition of smoking
instances via IMU-measured wrist motion possible? And (b) what
recognition performance for such detections is to be expected under
unconstrained real-life conditions? The first question is addressed by
benchmarking different classification modalities on their energy effi-
ciency. The second question by using a novel ground-truth collection
method: Instead of solely relying on human observers or self-reports
by the smoking participants, an instrumented lighter tracks smoking
incidents. This allows the gathering of a data set, in which the partic-
ipants becomes less aware of being tracked as well as allowing for a
study setup where participants can move freely, following their usual
daily routine without interruptions by the recording system.

2.6 wearable support in the wetlab

The notebook, in which experimenters record their thoughts, results,
and plans serves as one of the core parts during a life scientist’s research.
As such it has been the target of many research efforts, as well as
targeted by commercial endeavours. Electronic laboratory notebooks
(ELNs) are often sought to replace or enhance their pen and paper
counterparts. However, even offering clear advantages, like searchability
of records, multimedia integration, enhanced collaboration [193, 194, 195],
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edit-ability [196] and capturing of instrument measurements [197, 198], their
spread is still limited. This is partially due to the legal requirement of
the stored record, which form the basis to trace and claim inventions, to
check the conformance to established protocols, and to handle liability
and legal issues. For electronic records, only a limited legal framework
is in place [199, Taylor2006; 200], complicating possible usage scenarios.
More profound though is that the ‘manipulation of digital artifacts’
might not be flexible enough for scientific record keeping [201]. Or as
Kanza et. al. [202] put it:

Paper notebooks are considered easier to use, input data
to, read, transport, inexpensive, readily available, ‘turn on’
instantly, have infinite battery life, are socially acceptable
during meetings, and require no training and minimal IT
support.

Pen and paper solutions are also preferred because of the flexibility
and freedom over visual structure they provide [203]. This has lead
to several efforts which try to combine physical and electronic notes.
The a-book [204] combines a tablet and PDA to capture paper notebook
writing. Based on a fiducial marker, entries can be augmented with
additional media and easily shared. A system to support biologists in
the field was presented in the ButterflyNet [123] project. Handwritten
notes are captured (with an Anoto pen) and combined with visual and
audio information for later access. This allowed the biologist to capture
information in the field, and augment it with other sensory clues - a task
that previously had to be done manually. The Prism [193] project reports
on a study of biologists’ work practices and presents a hybrid system
using hand-written notes as well as digital content to capture, visualise
and interact with so called activity streams in the laboratory. Forcing
too much structure has been found to be too inflexible. An open design
based on linking and searching information bits was then adopted,
similar to the MyLifeBits design [205] but specific to the experimenters
workflow.

Other type of systems are focussed on providing a more formal
specification of single experimental workflows, on which user interfaces
are built. These systems also augment the lab itself to provide these
user interfaces. The LabScape [206] project was an early investigation
in a ubiquitous computing platform to help scientists and students
to access and capture information in the laboratory. It uses interac-
tive flowchart diagrams to visualize and annotate ongoing procedures
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that are accessed via touch-tablets, barcode scanners, RFID tags [207],
numeric keypads and wireless keyboards.

During the Combechem project the idea of a digitized flowchart
was enhanced to the Semantic Smart Laboratory [208], a system for
supporting chemistry experiments focusing on providing a flexible
ontology for describing experiments and storing them for later retrieval.
A formal definition of chemical experiments is presented as part of the
Labtrove project [209] as well. The eLabBench [210] and Biotisch [211] take
the integration in the laboratory further by replacing the traditional
workbench with a tabletop system that presents information on the
bench’s surface, also allowing interaction, sensing of augmented objects
(e.g. racks of test tubes) and taking pictures of the whole setup with
an overhead camera. The gathered digital information is stored in a
wiki-like notebook for later retrieval.

In contrast, the approach proposed in this thesis, focuses on the
largely unexplored area of supporting and augmenting laboratory tasks
by means of a lightweight, exclusively wearable system. The setup
requires little to no interference with the laboratory environment and
its inventory, and offers hands-free operation. We argue that this
approach of augmenting the researchers instead of the laboratory, has
many advantages, not in the least the fact that every user in existing
laboratories can still opt to keep on documenting their experiments by
traditional methods.

As has been shown by some of the above research, a formal workflow
tends to be valued by experimenters and can be exploited as a structure
for information capture as well [206]. We investigate in particular
whether a wrist-worn accelerometer unit can be used to capture such
pre-defined structure, for instance to index associated video and audio
recordings. In the case of the life science laboratory, these workflows
tend to be frequently predefined, and actions extracted from available
textual descriptions, facilitating a semi-supervised approach. Such
monitored workflows enables easy documentation access by jumping
to the currently required information, and can also assist in recording.
Other work domains were investigated in the Wear@It Work project
[68], for maintenance [212], manufacturing [81], inspection tasks [213]
as well as the use of HMDs in wetlabs [214].

Workflow monitoring can be achieved with body-worn motion sen-
sors, but also through the continuous detection of object use. In the
microbiology lab this mostly involves samples of living organism and
other compounds. The facility in which such samples are stored are
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called Biobanks or Bio-repositories - these are charged with the preser-
vation of patient (and other) samples, their documentation, retrieval
and safe storage. Best practises for Bio-repositories workflows [215]
include the barcoding of samples with a unique identifier, together with
human-readable information. Electronic records can be connected via
this identifier, and location tracking implemented via barcode scanning.
A centralized database even allows for keeping track of shipment logs
and cross-institutional information sharing. In contrast to such fiducial
markers, RFID technology provides non-line-of-sight reading, read-write
support, fast parallel reading capability, and the potential for location,
temperature and motion sensing [216]. The latter three are impor-
tant since they allow to mitigate common errors [217], like tracking of
transportation failures, avoidance of unnecessary heating during identi-
fication, and to a certain extent the mis-labelling of samples. Location
tracking is of special interest since a discrepancy to the electronic record
can be automatically detected if samples are stored next to a reading
unit. Smart tubes [218], RFID labels in repositories [219], and freezable
tags [220] were reported. However, all reports deployed a fixed station
to interact with the inventory system.

A wrist-worn RFID reading unit could remedy the disadvantages
of a fixed station. Based on the ability of RFID for remote, non-contact
identification of objects, specific tasks, e.g. using a hammer, and their
accompanying activities can be derived in a reliable fashion [221]. How-
ever, antenna design is a major challenge: a trade-off between size,
flexibility, robustness and its wearability has to be found. The place-
ment on the human hand mainly dictates the possible choices. In first
iterations the reader was placed on the back of the hand [222, 174,
221] which allowed for reading distances of 1− 2cm. Antennas looped
around the wrist [223, 222, 224, 221] have replaced this design. How-
ever loop antennas need to be rigidified to keep their performance
controllable, a 10 − 15cm reading range with a common 5cm-patch
RFID-tag has been reported. A flexible antenna placed between thumb
and index finger [81] is challenged by sweat and by changing (antenna)
parameters due to movement. While placing the antenna on the thumb
achieves the best reading performance, especially for miniature tags, its
attachment point also hinders the movement of the wearer’s hand. In
this work, a flexible antenna worn in the palm is compared to a rigid
loop antenna worn around the wrist.

Simplifying and integrating the identification and labelling of sam-
ples has been argued for in other research as well. Boriello et. al. [225,
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207, 206] do not only argue for tracking samples, but also the tools
used in a micro-biology wet laboratory. This information can be used
post-experiment for reconstruction purposes, or during conduction for
error checking. Fiducial markers were registered with a camera below
a tabletop by Tabard et. al. [210] as an alternative. This allowed for
rack-based identification of samples. For tube-level identification RFID
tags were added to all containers, a reader integrated into the rack and
communicated to the system via an active fiducial marker. Both setups
allowed for labelling and identification of multiple tubes in parallel.

Activity recognition from objects instrumented with RFID markers,
and from wearables instrumented with motion sensors would then
allow to index video, audio and other recordings to augment the life
scientist’s memory. This in line with research from a life-logging per-
spective with the goal of improving human memory [226, 100, 227]. To
move “beyond total capture” [99], the retrieval and creation of useful
cues is of importance, which is also in line with Vannervar Bush’s 1945

vision of the MEMory EXtender (MEMEX) device [1]. In this work, we
assume activities and used objects are useful cues.

2.7 conclusion

This chapter presented the current approaches to detecting activities
from body-worn sensors. Recording of sensor data, and particularly
gathering ground truth data presents the first challenge in naturalistic
settings when exploring novel applications. For explored applications
publicly available datasets often exists. However, in both cases a data
format that encompasses multi-modal, and multi-rate sensor, ground
truth, and secondary evidence data remains challenging.

The second challenge is the parametrization of the Activity Recog-
nition Chain (ARC), which requires careful cross-validation. Often
large parameter spaces need to be searched, which requires software
frameworks that can be run on a large number of cores in parallel, and a
framework that is flexible enough to quickly test new processing ideas.
Despite current deep learning approaches, which lock a developer into
a particular framework, an alternative approach is proposed in the next
chapter. This approach provides more flexibility, while retaining most
benefits of a deep learning approach.

The presented framework is tested on two applications, of which
related work was reviewed: detecting smoking from wrist motion, and
detecting microbiology process steps from body-worn sensors. For
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smoking recognition a multitude of approaches based on different
sensors exists nowadays that could be combined into an ensemble of
detection methods. For detecting process steps it is clear that only
an ensemble of sensors will provide practical recognition, which is
further challenged by the necessity to formally capture the information
required during such experiments.
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Activity recognition from (body-worn) sensor data involves the
application of machine learning. Hence, a framework or library is used
for any type of detection. Choosing a model for a particular task always
requires experimentation of different possibilities, and hyper-parameter
tuning according to the problem at hand. The processing of sensor data
is conceptualized as a sequence of steps that modify this data, where
the input is raw sensor data, and classifications are the final output.

In this chapter an approach based on the classic Unix filter archi-
tecture [228] is proposed. In this architecture processing steps are
encapsulated in Unix processes, and limited to a single specific task,
following the Unix philosophy to “do one thing, and do it well”. Each
task accepts at least one standard input, and provides at least one
standard output, through which communication with other tasks is
enabled. These processes are then combined with pipes which connects
these in- and outputs to form more complex processing chains. The
specific processes required to build Activity Recognition Chains (ARCs)
are accordingly mapped to single Unix processes.

An architecture based on Unix processes exhibits features, which
are hard to achieve with typical library-based architectures. Unix
processes can be built with any programming language an author
might prefer, or a project demands, only the input and output data
format needs to be adhered to. This simplifies testing new ideas and
processing steps. Due to making the exchange of data explicit through
the piping mechanism, process-level concurrency is facilitated since
these processes can be run in parallel, and are activated only when
new data from a previous step is available. Furthermore, the transport
of data is transparent to the developer of each process. Data can
originate from a network connection, as well as a local file, rendering
integration into new computational environments easier. Processes are
also encapsulated, a bug in one of the processes does not (directly)
affect the rest of the processing chain. This renders the debugging of
potential problems easier.

Specifically for Activity Recognition, which typically involves the
recording of multi-modal datasets, a number of data recording and
learning frameworks were proposed. One of the major challenges is
the distributed recording, and curation, of multiple sensors involving
video, audio, motion and other data sources. The Context Recognition
Network (CRN) toolbox [229, 119] proposes the use of the Apache
CouchDB for storage, and provides pattern recognition and labeling
tools written in Java. This framework was also extended for recording
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sensor from the Android OS [230]. The Gesture and Activity Recog-
nition Toolkit (GART) [231] is a further example of a toolkit written
specifically for Activity Recognition. It provides high-level abstraction
for (live) data collection from sensors, and machine learning models
in the Java programming language. All tools have in common that
they are limited to their particular programming environments, and
while this allows for modification, integration with other environments
becomes harder. In the approach presented here, the only constraint is
adhering to a specific data exchange format.

With such an architecture in place, more attention needs to be placed
on the exchange format between processes. Traditionally this is a text-
based format. However this incurs a large processing overhead, and is
quantified in this chapter. Since data between each process is copied to
improve encapsulation, this overhead is multiplied for each step in the
processing chain. A binary format is more complicated to implement,
and requires a description of the data, while a text-format is often
self-descriptive. Both approaches are compared in this chapter.

Process-based parallelization is easily achieved with this architecture.
This allows to make transparent use of multi-core machines, and cluster
of Linux machines. Since data is explicitly copied between processes,
exchanging this data via local memory or through a network connection
is transparent when executing the chain. This way parallelization can
be easily achieved on process-level.

Modifying and adapting chains to novel problems is mostly achieved
due to a standardized input format, which also encodes meta-data about
the data itself. This involves the actual sensor modality for a given
sensor data stream, but also recording parameters that might change
for different datasets. Due to this standardization and the transport
transparency which enables parallelization, deploying trained machine
learning systems is facilitated as well. The input of a machine learning
system can be switched from a dataset loaded from disk, to a network
stream which contains live-data recordings for example.

In this chapter the architecture of the proposal will be described,
specifically how common processing steps are splits into several in-
dependent Unix utilities. Before that an Android-based recording
tool, which (optionally) compresses and synchronizes multiple sensor
streams is described. This tool also directly stores data in a multi-media
container, which provides a binary self-describing exchange format.
Particularly the issue of identifying sensor modalities, in the case this
meta-data is lost, from sensor data alone is investigated. Afterwards pro-
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cess steps are described, and the binary exchange format is compared
to a character separated values (CSV) format according to the incurred
performance overhead. Finally, scalability is shown by investigating the
use of this framework on a multi-core, Linux cluster.

3.1 distributed recording and curation

The first component which follows the Unix filter design is the actual
recording of sensor data from body-worn systems. Mobile devices
running the Android Operating System (OS) are pervasive nowadays,
and are able to run Linux software. This is the target of the presented
distributed sensor data recording component presented in this chapter.
Android already provides facilities to recording device-local sensors.
Remote sensors, which do not run Android, can be integrated via a
network connection through Bluetooth or WiFi. Cabled USB connection
present another option for integrating additional self-build sensors.
Despite Android devices, the recording component can be used on
most embedded devices that run the Linux kernel.

Besides exchanging meta-data like sample formats, and sensor set-
tings, synchronizing such a network of sensors becomes the major
challenge. Each sensor runs with a different clock that might be offset
in comparison to other clocks, or run at a slightly different speed, which
causes so called clock drift. While clock synchronization is required to
start recordings on multiple machines at the same time, clock drift is
harder to fix. One way though is to assume constant sampling rates
from each sensors and synchronize all sensor streams on a global clock
by either marking missing samples or removing redundant samples.
Another alternative is to store a timestamp on a device-local, and global
clock with each sample, and meet these challenges during analysis of
the sensor data. This however, unnecessarily complicates the analysis.

Figure 3.1 shows a conceptual overview of recording component.
Components depicted there represent Linux processes, that are con-
nected through pipes. Sensor processes read sensor data with specified
parameters, most notably the sampling rate, and print each sample
on its standard output. Multiple of such outputs need to be merged
on a common timeline and stored in time-related blocks. This is also
called multiplexing. Blocks of sensor data, which might be recorded
at different rates are interleaved to optimize for time-based access in
memory (cf. Figure 3.1). Here, we rely on the FFmpeg software suite
to multiplex multiple sensor data streams into a single output file for
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Figure 3.1: Architecture of the distributed recording infrastructure,
depicting sensor recording and multiplexing processes. Also depicted
is a possible device setup consisting of a single Smartphone, two Smart-
watches, a Ricoh Theta S camera and Google Glass, all connected via
Bluetooth and WiFi.

storage. This output file is in the Matroska [232] file format, which
can contain multiple video, audio and subtitle streams. Sensor data is
stored (and compressed) as an audio stream, and these files can also
be streamed to other machines via network connections. Recording
parameters are stored in the file as multi-media tags.

With this recording infrastructure, new sensor sources can be easily
integrated and tested independently of the actual recording. Only a
new Linux process that generates sensor data at a constant rate, either
locally or from a remote source, is required. This process then outputs
data on its standard output, which itself can be transported via a net-
work connection if required. FFMpeg than finally multiplexes multiple
sensor sources into a single file. This also provides a compressed, stan-
dardized format for video, audio, motion and subtitles which can be
opened with already existing software. Hence, alleviating the need to
write software specifically for reading and writing a newly recorded
datasets. The Matroska multi-media container can also serve for cu-
rating datasets for longterm storage. Due to the optional compression
storage space is saved, and the format also allows for live-streaming.
Such live-streaming can be with facilities already integrated in the FFm-
peg software suite, which is in use for a large portion of internet live
streaming solutions.

The recording infrastructure is called CMotion and allows to select
recording parameters, and starts the recording on multiple devices
after clock synchronization. Data is stored locally on each device in a
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Figure 3.2: Screenshots of the Android application which controls a
network of recording devices. The sensors that is to be recorded on each
device is chosen, afterwards clocks are synchronized and the recording
started on each device. The recording status is shown on each device

multi-media file. Android devices store data and recording parameters
in a Matroska-file, which contains FFmpeg-multiplexed sensor data
streams. The user interface of the Android application which controls
the recording is shown in Figure 3.2. Devices like the WiFi-enabled
Ricoh Theta S 360° camera store video files in a different video container,
which can be converted and merged post-recording. All recorded data
is aggregated offline on a PC post-recording. Streaming data live via the
provided network connections is possible with this setup (for example
via the UDP, or RTMP protocol that is provided through FFmpeg) but
was not attempted due to higher energy requirements and possible data
loss when not additionally storing data locally.

3.2 inertial motion data compression

At the heart of each Activity Recognition task is a dataset. This dataset
might be formed from multiple media streams, like video, audio, mo-
tion and other sensor data. Recorded at different rates, sparsely or
uniformly sampled, changing units and with different numerical ranges,
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these streams are challenging to process and store. These parameters
are usually documented in an additional file that resides next to the
data [61, 233, 234, 235, 236]. The actual data is commonly stored in
a CSV file, in a binary format for Matlab or NumPy, or in Machine
Learning frameworks specific ones like ARFF [237] or libSVM [238]. For
small, independent time-series this is a worthwhile approach, mostly
due to its simplicity and universality. However, parsing CSV files in-
curs a large performance and storage overhead, compared to a binary
format.

When observing with multiple independent sensors, synchroniza-
tion quickly becomes a challenge [61, 143, 239]. Different rate recordings
have to be resampled, time-coded files have to be merged. This issue is
often hidden until the dataset is going to be used. Possible approaches
range from offline recording with post-hoc synchronization on a global
clock, to live streaming with a minimum delay assumption - for which
all but the last one require some form of clock synchronization and
careful preparation. Storing events with timestamps on a global clock
is then one possible way to allow for post-recording synchronization,
i.e. each event is stored as a tuple of <timestamp, event data>.

The subsequent step of merging such time-coded streams often
requires to adapt their respective rates. Imagine, for example, a con-
current recording of GPS at 3Hz and acceleration at 100Hz. To merge
both streams: will GPS be upsampled or acceleration downsampled,
or both resampled to a common rate? Which strategy is used for this
interpolation, is data simply repeated or can we assume some kind of
dependency between samples? How is jitter and missing data handled?
These questions need to be answered whenever time-coded sensor data
is used. A file format which makes the choice of possible solutions
explicit is the Matroska multi-media container.

The following Activity Recognition Datasets were published over
the last few years and selected as examples of data encodings:

HASC Challenge [233] 540 subjects, time-coded CSV files. Mostly
activities of daily living without secondary evidence like video record-
ings.

Opportunity [61] 12 subjects were recorded with 72 on- and off-body
sensors in an Activities of Daily Living (ADL) setting. Multiple video
cameras were used for post-hoc annotations. Data is published in
synchronized, time-coded CSV files.

Freiburg Longitudinal [240] one sensor, one subject, four weeks of
continuous recording. Data is stored in numpy’s native format.
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Sensor data is not different from low-rate audio. Common parame-
ters are shared, and one-dimensional sensor data can be encoded with a
lossless audio codec for compression. Rate, sample format and number
of channels need to be specified for an audio track. The number of
channels is equivalent to the number of axis an inertial sensor provides,
as well as its sample rate. The sample format, i.e. how many bits are
used to encode one measurement, is also required for such a sensor.
Other typical parameters, like the range settings or conversion factor to
SI units (if not encoded as such), can be stored as additional meta-data,
as those are usually not required for an audio track.

Lossless compression, like FLAC [241] or WavPack [242], can be
applied to such encoded data streams. This allows to trade additional
processing for efficient storage. Several lossless schemes are evaluated.
These include the general LZMA2 and ZIP compressors, and the FLAC
[241] and WavPack [242] audio compressors. All but the first two can be
easily included in multi-media container formats. To use audio streams,
data needs to be sampled at a constant rate, i.e. the time between two
consecutive samples is constant and only jitter smaller than this span is
allowed. Put differently, the time between two consecutive data samples
ti and ti+1 at frame i must always be roughly equivalent to the sampling
rate:

∀i ∈ N : ti+1 − ti =
1
r
− ε (3.1)

Compared to time-coded storage, the recording system has be de-
signed to satisfy this constraint. Problems with a falsely assumed
constant rate recording setup will therefore surface faster. Especially in
distributed recording settings, where above mentioned constraints is
checked only against a local clock which drifts from a global clock.

Sparsely sampled events can be encoded as subtitles. Here, each
sample is recorded independently of its preceding event, i.e. the above
mentioned constraint does not hold. Each event needs to be stored
with a time-code and the actual event data. Depending on the chosen
format, this can also include a position in the frame of an adjacent
video stream or other information. For example to annotate objects in a
video stream. A popular format is the Substation Alpha Subtitle (SSA
[243]) encoding, which includes the just mentioned features. Since data
is encoded as strings, it is suitable for encoding ground truth labels. To
a limited extent, since no compression is available, it can be used for
sensor events as well. For example, low rate binary sensors, like RFID
readers can be encoded as a subtitle.
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Encoded sensor and subtitle data can then be combined with audio
and video streams in a multi-media container format. One such stan-
dard is the Matroska [232] format, that is also available in a downgraded
version called WebM [244] for webbrowsers. Once the data streams
are combined into one such file, this data can be “played” back in a
synchronous manner. This means that streams recorded at different
rates, and in different formats, need to be converted to a common
rate and possibly common format. Meta-data that contains additional
information like recording settings, descriptions and identifiers can be
stored in addition to the parameters already contained in the stream
encoding. For this task off-the-shelf software, like FFMpeg [245] can be
used, which also provides functionality like compression, resampling,
format conversion and filtering. Annotation tasks can be executing
with standard subtitle editing software, discouraging the creation of yet
another annotation tool. Furthermore, video streaming servers can be
used for transporting live sensor data recordings to remote places.

The use of such a standard format for curating datasets allows for
re-using existing software, however not without limitations. Asyn-
chronous, also called sparsely sampled, data recorded at high rates is
not supported. This mainly stems from the simplifying assumption that
streams are recorded with a constant rate. Satisfying this constraint
while recording might be easier than handling asynchronicity later
on. For example, breaks, shifts or jitter due to firmware bugs can be
detected earlier. Another shortcoming is that structured data can not be
stored transparently, each event is assumed to consist of one data type
only, e.g. multiple channels of 8-bit integers in contrast to a mix of data
types. In general this is hard limitation, however different data types
can also be encoded in multiple streams. Also, the en- and decoding
overhead might be a limitation, which we will look at next.

Compressing sensor data as an audio stream incurs an en- and
decoding overhead, while providing optimized storage. By a repeti-
tive measurement of the relative wall clock time for decompression,
its overhead is measured. The compression factor is determined by
comparing the number of bytes required to store the compressed file
to the original, deflated CSV file. Binary and text-based storage is
compared. The Zip and LZMA2 algorithms are used for general byte-
wise compression, and the lossless FLAC and WavPack compressor
for audio-based compression. LZMA2, since it performs better than
ZIP, is tested on text and binary files. The approach of compressing
binary files with a general compressor is used by Numpy for example.
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Compression Ratio Runtime Overhead

Figure 3.3: Fraction of storage required for three datasets compared
to uncompressed CSV files. Zip and LZMA2 text compression, 32-bit
binary, WavPack [242] with 32/8-bits and 24-bit FLAC [241] audio
encodings are shown. On the right hand side the relative runtime
overhead for decoding each format is visible. Shown is the fraction of
wall time required to decode the respective scheme relative to the time
required to parse a CSV file into memory. The result for each scheme is
the (binary) data stored in memory.

The fraction of required storage after compression is given relative to
the deflated, original CSV file. For the runtime overhead, the fraction
of reading time relative to reading and converting the CSV file into a
memory image is reported. The test were run on the Opportunity [61],
HASC Challenge [233] and on twenty days of the Freiburg Longitudinal
Wrist [240] datasets. A machine with an i7-4600U CPU running at
2.1GHz with 8GB of memory was used for all tests. Fig. 3.3 shows
the results of these tests, CSV/zip refers to a zip-compressed CSV file,
CSV/lzma2 to an LZMA2 compressed file1, bin* refers to signed inte-
gers with the respective bit length optionally compressed with LZMA2,
wv* to WavPack compression of varying bit size per value and FLAC

compressor which only supports 24bits values.
The least processing overhead is incurred by a binary format, at best

a memory image which can be memory mapped into main memory. This
is the format that will be decoded to in the following. The baseline is
therefore the time required to convert a CSV from disk into a binary
format in memory. The fraction of time required to do the same for
each compression scheme is reported in Figure 3.3. Each test is repeated

1the XZ utils package was used



3.2 inertial motion data compression 45

six times, and the first run is discarded, i.e. data is always read from
the hot disk cache.

Just parsing a CSV file incurs an up to hundred-fold overhead (bin8

in Figure 3.3) compared to reading a binary file. Compressing CSV
data can increase the runtime by 1.4 − 3.0 times. So, looking only
at runtime performance a CSV file should hardly be used for large
datasets. When comparing compression schemes, it can be seen that
WavPack provides the most consistent performance measures over all
datasets. It is not slower than the more general LZMA2 compressor,
and the FLAC compressor is only faster on two datasets. However, for
the decoding task at hand here, an overhead of at least two times is
incurred compared to raw binary storage.

The datasets show different characteristics found in other datasets
as well. For example the Longitudinal [240] dataset can be massively
compressed with text-based algorithm, almost down to 2% of its original
size. This is mainly owed to the fact that the contained acceleration
data was recorded with a resolution of only 8-bits, and that a run-
length compression was already applied during recording. This run-
length compression is deflated for CSV storage first, adding a lot of
redundancy. For the same reason, storing data non-compressed in 32-
bit binary format is actually larger than the zip-compressed text-format.
However, encoding with the original 8-bit resolution in the WavPack
compression leads to a slightly better storage efficiency.

The same effect is visible for the Opportunity [61] datasets, where
feature vectors are stored instead of raw data. Storing in 32-bit binary
increases the size again, which means that the average string-length for
representing a number in this dataset requires little more than 5byte.
Only when limiting the number format to 8bits a stronger compression
can be achieved with an audio codec. The maximum dynamic range
that can stored with a text-based format is however limited to the
(decimal) encoding, (less than 10000 for five digits), while a comparable
binary encoding can range up to 25∗8.

The HASCA dataset [233] does not show this effect. Mainly because
the CSV data contains floats with at least ten digits. These could be
stored with 32 or 64bit, which would be more efficient than their text
counterpart. Especially since values are stored with more than eight
digits per value.

When optimizing data storage for space efficiency, the encoding of
each value is the most critical factor. Limiting the number of bits per
value, in essence assuming a limited dynamic range of the encoded
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signal, has the strongest influence on the storage efficiency. However,
when encoding values in text format and a dynamic range that is limited
to four characters is enough, a text compression algorithm is not worse
than encoding data in binary format. For the general case and when
binary storage can be used, the WavPack compression provides the
same storage efficiency as the more general LZMA2 compressor.

Compared to the de-facto standard of using CSV files, encoding
sensor data as audio, annotations as subtitle and combining both with
video- and audio-based provides several improvements. Important
parameters like sampling rate, format and number of axes is included
in the file. Adding additional information as meta-data leads to a
self-descriptive format. Synchronous playback of multiple streams, which
requires re-sampling, is supported by off-the-shelf software. Related
problems, like un-synchronized streams can be caught earlier, since
this step is explicit. The container format is flexible enough to support
different number formats, i.e. values can be encoded as floats or integers
of varying bit-size. Optional compression leads to compact storage,
which allows for efficient storage and transmission. Additionally, when
thinking about large datasets, such a container format requires divisible
storage. This functionality (seeking without reading the whole dataset
into memory which would be required for time-coded storage) is provided.

3.3 inertial sensor modality identification

To correctly interpret sensor data, reliable information about the data
itself is required: sample (and frame) format, recording rate, number
of axis, position at the observed body and sensor modality need to be
known. This meta-information is often stored along-side the data itself,
either in a (semi-)structured external file, as a header of the data or as a
well-known convention. Misinterpretation, resulting from missing or
incorrect meta-data, has a strong influence on a subsequent application’s
performance. If such meta-data is not in a machine-interpretable format,
slow and cumbersome recovery by a human expert becomes necessary.
Here, the extent to which the sensor modality can be recovered from
invariant statistical properties of the sensor data itself is investigated.
Assuming that sample format, number of axis, and sample rate are
known beforehand, but scale, and other calibration factors are not,
we show that a sensor’s modality can be (automatically) verified, or
identified.

Providing structured meta-data enables datasets to be picked up
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by search engines [246]. In the absence or partial availability of this
data, an automatic identification of sensor modality provides a basic
starting point that otherwise would require manual inspection by an
expert. Webcrawlers could verify that meta-data was correctly specified.
Opportunistic sensing [247], i.e. situations where the sensor type is
not known beforehand, would be another application area. While
proper data curation practises could alleviate these situations, and are
arguably more straightforward, an error in such manually defined data
is often found much later. Manually reconstructing meta-data is then
hard to scale to large data collections, as inspection by a human expert
is required. A second system, which identifies modality from data
directly, could at least provide additional safety checks. Such kind of
quality control allows to (automatically) check if datasets were correctly
documented or if there might be errors in the data collection itself, for
example when uploading into a public dataset repository.

Activity Recognition applications are build with assumptions about
the data retrieved from wearable inertial sensors. Properties, like place-
ment variations or body locations are assumed, even though they di-
rectly influence the recognition performance. Kunze et.al. [248] have
shown such influence, and provide several techniques to mitigate those
effects. Namely, using location independent features, adding location to
the classification task or estimating location from long-running record-
ings [248]. Similarly to the last option, we look at the properties of
different sensor modalities over longer time periods to extract the sensor
modality. Whether sensor data arose from an accelerometer, gyroscope
or a magnetometer is usually stored as non-standardized meta-data,
but also strongly influences the recognition performance if incorrect.
Hammerla et.al. [249] introduced the empirical cumulative distribution
function (ECDF) as a mean to capture the statistical properties of accel-
eration data, while also serving as a feature reduction method. Inspired
by this, invariant statistical features that capture the properties of the
inertial sensor modality are investigated. A system to correlate known
datastreams to unknown ones and subsequently propagate their meta-
data is described in [250]. In contrast this proposal does not require
prior knowledge in the form of known sensor data, i.e. a ruleset that
can be readily applied is proposed. However, this proposal is limited to
inertial sensor data.

Community provided datasets which included all three inertial
sensor modalities, optionally mounted at different body positions were
selected. These were converted into the common Matroska data format
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Figure 3.4: Example histogram of three inertial data distributions of the
CMU Kitchen dataset. The concentration of the gyroscope data around
zero, as well as the concentration of the acceleration data around its
mean, and the larger number of modes for magnetometer data is clearly
visible. Identified modes on the distribution are highlighted.

to simplify their usage:

CMU Kitchen [251] contains inertial data of multiple body locations,
including arms, legs and the back. Even though two inertial capture
systems were recorded, only the wireless one, recording at 125Hz, was
used. To balance with the other datasets, only a subset of 3h and 26
participants was extracted.

ICS Forth ADL [252] contains motion data from the thigh, ankle, torso
and wrists. The measurement was taken at 50Hz. 15 participants were
recorded for a total of 4.5h executing activities of daily living.

Pamap2 [253] contains motion data of 8 participants executing activities
of daily living at the hand, chest and ankles. In total 8h were recorded.
Inertial data was recorded at 100Hz. Two acceleration (at different
scales) streams, one magnetometer stream and a gyroscope stream
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Figure 3.5: Scatter plots of two possible feature sets for sensor modality
detection. One feature is the mode of the histogram (512 equal-sized
bins), i.e. the most common value. The second feature is either the
kurtosis of the data, or the difference between the mean number of
modes at the same limb and number of modes of one sensor stream.
The left hand side shows that not all cases can be identified with
mode and kurtosis only. The mode count difference provides a better
indication, with the necessity to assume that both a magnetometer
and accelerometer stream is present. Decision thresholds are shown as
highlighted layers.

were used.
Opportunity [254] contains a whole-body inertial motion recording of
daily living activities. A subset of 4 participants (with video record-
ings) contributed 15 data points each. In total 8h of data recorded at
30Hz were investigated.

mHealthDroid [255] recorded 12 activities of daily living. Shimmer
nodes sampled at 100Hz provided the inertial data used in this paper.
In total 6.5h were analyzed.

Each sensor modality differs in various aspects, which requires a few
transformations prior to identification. In order to simplify the overall
analysis, only the magnitude of sensor readings is used instead of its
vector form. This is achieved by applying the L2-norm to each sensor
reading, which also renders all subsequent calculations orientation-
independent. Since sensor streams might be scaled differently, e.g. the
two acceleration streams in the Pamap2 dataset were recorded with 6g
and 16g range, standardization is required. Dividing by the mean, i.e.
standardizing the scale allows recordings to be compared. Additionally
data was lowpass-filtered with a cutoff frequency of 2Hz. With the final
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assumption that the sensor is most commonly at rest on the body, we can
now look at the properties of the transformed sensor streams, which
we denote as d.

3.3.1 Single Sensors

When the human body is at rest, no rotation is measurable. The rate-of-
turn of a limb, measured by the gyroscope, is therefore most commonly
near zero. This fact can be used to identify this sensor by the following
rule:

mode(d) ≈ 0⇔ gyr (3.2)

Expressed differently, if the most common magnitude (mode) of
sensor data is near zero, the sensor is a gyroscope and vice versa.
This, however, only holds if the gyroscope data was baseline corrected,
i.e. since the zero level of gyroscope is not at zero per default, this
DC-offset is usually removed by calibration.

Due to being at rest, the accelerometer’s (statistical) mode of magni-
tude corresponds to the strength of earth’s gravitational field. Des-
ignating the field strength with g = 9.81m s−1, we can formulate
mode(dacc) ≈ a ∗ g, where mode(dacc) is the most commonly mea-
sured value, and a an unknown scale factor applied to the data. If
a would be known, accelerometer data could be readily identified by
comparisons to earth’s gravitation. However, since data was lowpass
filtered, the mean magnitude of acceleration corresponds to g as well,
i.e. d̃acc ≈ a ∗ g. Due to standardization, we can formulate a rule for
acceleration:

acc⇒ mode(d) ≈ 1 (3.3)

Applying this rule to the scatter depicted in Figure 3.5 reveals why
this is only a necessary condition; magnetometer data also fulfills this
condition. A sufficient condition can be formulated for a subset of the
overall accelerometer data, when including the kurtosis:

acc⇔ mode(a) ≈ 1 and Kurt(d) > α (3.4)

Standardization is crucial for this condition, and relies on the as-
sumption that the sensor is constantly accelerated by earth’s gravitation.
Other accelerations, due to limb movement for example, are only tran-
sient. Datasets which mostly contain strong movements, e.g. running or
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stirring as exemplary activities from the analysed data, will likely break
this assumption. This is however tested with the mHealth, parts of the
Opportunity and the Pamap2 dataset, which all contain sequences of
strong, continuous motion.

Figure 3.5 shows that some magnetometer readings exhibit a mode
and kurtosis that is indistinguishable from accelerometer data. However,
fluctuations in the measured magnetic field are more distinct than
fluctuations of the gravity field. The respective distribution therefore is
not uni- but multi-modal. This means there are multiple peaks, while
the accelerometer distribution is rather “smooth” (cf. Figure 3.4). A
mode larger than the mean (or 1 in the standardized dataset), and a
smaller kurtosis can indicate this:

mag⇐ Kurt(d) < β and mode(d) ≥ γ (3.5)

Whether such strong fluctuations are contained in the dataset de-
pends on the experiment’s condition. By proper choice of β a subset of
magnetometer data can be sufficiently identified. The smaller kurtosis
can be explained due to the fact that magnetometer is often further
spread out, and does not exhibit a strong concentration point. In con-
trast, acceleration data has a strong concentration and its kurtosis is
higher.

3.3.2 Accelerometer vs. Magnetometer

The question remains whether sensor streams, which fulfil none of the
necessary conditions (3.4) nor (3.5) can still be identified. More directly,
when it is not possible to decide between acceleration or magnetic
flux based on kurtosis and mode alone. One observation that can be
made about these cases, as well as the already identifiable cases, is
that the number of modes for magnetometer is larger than the ones for
acceleration data. Estimation of number of modes can be achieved by
adequately parameterized peak detection on the histogram. For a given
stream, we designate the number of modes with p, as a shorthand for
the number of peaks. However, streams have to be compared pair-wise,
i.e. magnetometer and accelerometer must have observed the same
motion. Let p̃ designate the mean number of modes of correlated
sensor streams, then we can formulate the following condition:
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d⇔


acc, if p̃− p > .5
mag, if p̃− p < −.5
unknown, otherwise

(3.6)

Combined with condition (3.2) this allows to identify all sensor
modalities, iff a correlated magnetometer and acceleration stream is to
be distinguished.

3.3.3 Identification Ruleset

When only employing the sufficient conditions (3.4) and (3.5), we call
this the partial ruleset. This allows to partially identify sensor modalities
without assuming that both an acceleration and magnetometer measure-
ment is included. If this pair-wise condition (3.6) can be assumed, we
can formulate a full ruleset:

d⇔


gyr, if m < .5
acc, else if p̃− p > .5
mag, else if p̃− p < −.5
unknown, otherwise

(3.7)

where m = mode(d) designates the mode of the data, p the total
number of modes and p̃ the mean number of peaks of correlated data
streams contained in one dataset.

Prior to applying above conditions the data needs to be lowpass
filtered, to exclude all frequencies above 2Hz. To reduce scaling effects,
a standardization, by dividing by the mean of each stream is to be
applied as well. The mode is determined from a histogram of 512
equal-sized bins, ranging from 0-2. Peak detection parameters were set
to a minimum peak height of .01 ∗m, minimum distance of 5 bins and
a minimum neighbor difference of .008 ∗m. These constants, as well as
the decision thresholds in (3.7) were empirically determined.

3.3.4 Results and Limitations

In total 1003 streams with durations ranging from 7min to 1h were
analyzed. All three inertial sensor modalities are included, mostly
positioned at the lower arm (61%), the upper body (20%) and the legs
(19%). Data is scaled differently for each included dataset, showing that
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the proposed ruleset is independent of particular scale. Similarly, the
sampling rates for each dataset differ. The full ruleset allows to identify
98% of all cases, while 2% remain for manual inspection. If streams can
not be compared pair-wise, the partial ruleset can still identify 51% of all
cases, of those less than 1% are wrongly classified, while the remaining
require manual inspection.

One could argue that, since threshold and features were designed
from, and tested on the same set of data points, the proposed ruleset
will not generalize to unseen streams and datasets, i.e. do we observe an
over-fitted solution to this classification task? This could be answered by
maximizing the classification score by a search of parameters (lowpass
cutoff frequency, peak detection parameters, thresholds of (3.7) . . . ) on
leave-one-dataset-out splits. In the worst case, there is no choice of
parameters that performs equally well across all splits, i.e. there is no
generalizing set of parameters - best case, a single set of parameters
which performs well across all splits is found. However, Figure 3.5
shows that even when leaving out one datasets from training, points
from another set lie next to the decision boundary. However, not all
parameters are chosen based on these data points alone (in contrast to
what a machine learning approach would do): (1) the mode threshold
is based on the insight that gyroscope data is concentrated near zero,
(2) the pair-wise peak threshold follows the observation that the mag-
netometer distribution exhibits more modes. This is the case for 98%
of the observed data points. The latter observation has examples in
multiple datasets, as is visible in Figure 3.5, ruling out an over-fit. A
cross-validated automatic choice of parameters would reveal if the op-
posite was true, in a formal way. Here we merely report a single set of
parameters that worked. A better choice of parameters that maximizes
the decision boundaries may well be possible for the non-pair-wise case.
For the pair-wise full ruleset, a better choice can hardly be achieved on
the tested datasets.

A limitation of this approach is the “critical mass”, i.e. how many
minutes of inertial data are required to make a decision about the sensor
modality. The full dataset was used each time for feature computation.
Varying this parameter would yield insights into the size of this mass,
however was not attempted to avoid over-estimating the quality of the
decision. Furthermore, standardization by dividing by the mean can be
problematic if the sensor was asymmetrically driven into saturation. For
example when the magnetometer was exposed to unipolar magnetic
interference. In such cases, the mode could be nearer to zero yielding
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- acc gyr mag

- 16 6

acc 339

gyr 324

mag 318

acc gyr mag -

276 205 -
78 6 acc

324 gyr
1 113 mag

Table 3.1: Confusion matrices for sensor modality identification with
full (left-hand) and partial (right-hand) ruleset. The full ruleset fails to
identify 2% of the analysed streams, but correctly identifies them for
further manual inspection.

an incorrect classification. A possible solution could be to filter outliers
beforehand.

3.4 processes in activity recognition

Activity Recognition can be split into several processing steps, which,
when executed, form an Activity Recognition Chain (ARC) [4]. This can
be implemented with a set of Unix tools, which can be independently
developed and tested, and which only require to adhere to a specific
in- and output format. This chapter presents these steps, specifies
the in- and output in a simple text format that captures most Activity
Recognition problems, and highlights the design of the grtool.

At the core of grtool’s design is an orchestration binary, which
provides shorthands for all process steps involved. This executable
resolves shorthands, executes the according executable, and connects
standard in- and output channels. The ARC, which we will also call
processing pipeline, is depicted in Figure 3.6.

Mathematically, the input to an ARC is originating from a set of
raw data D from multiple sensors and ground truth labels L. Since
all streams might be recorded at different rates, the first step is to
resample them to a common sampling frequency. This step is known
as resampling, and involves finding a common divisor of all sampling
rates and then down- and upsampling each sensor. Ground truth labels,
which are stored with timestamps, need to be discretized. This means,
that each duration is split into samples according to the chosen common
sampling rate, and each sample is assigned exactly one label. After, this
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resampling and discretization step, the raw data D is pre-processed into
D′, segmented into frames/segments W, features from F then extracted,
and finally classified into labels from C. Sensor and ground truth data
is at the beginning of each pipeline, and we make two assumptions to
simplify the overall problem:

uniform sensor sampling sensor data streams are sampled at a fixed
rate. This facilitates demultiplexing, cross-stream synchronization and
handling of missing data. Furthermore, timing dependencies of each
sample can be disregarded. Some kind of interpolation needs to be
applied during recording already, instead of pushing this step into the
analysis phase, as is often done.

non-hierarchical and non-overlapping ground truth instead of sup-
porting the more complex issue of arbitrary combinations of multiple
set of labels, only a single set is supported. This does not limit the
generality as hierarchical ground truth sets can still be supported by
explicitly naming all possible combinations or overlaps.

The concept presented here, uses a text-based input format. Exam-
ples before and after each processing steps are given here, and since we
assume a uniform sampling rate on the raw data, the primary input
format before the pre-processing step looks like this:

label 1.2 2.3 4.4

NULL 0.0 0.0 1.0

...

label 3.4 4.5 6.3

A simple character separated value (CSV) format serves as the
primary I/O format for all steps. The first row is the recognition target
or label - a simple string. After that a varying number (but throughout
the file) equal number of rows contains floating point number which
constitute the raw measurements of multiple sensors. This number
of rows is equal to n, and is the dimensionality of raw measurement
vectors from D. The overall process and particularly the dimensionality
changes in each step are depicted in Figure 3.6.

3.4.1 Pre-Processing

The pre-processing step is involved in any transformation of the raw
measurements, which does not change the dimensionality of the mea-
surement vectors. Elements of D′ have the same dimensionality as
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Figure 3.6: Cardinality of each processing step. Sensor data of different
dimensionality (number of axes, measured values) sampled at different
rates is first pre-processed. If required, rates need to be adapted to
a common rate. Afterwards sensor samples are segmented into win-
dows/segment and features fm extracted from each window. The last
step also removes any dimensionality dependencies of the sensor input
and provides an input of fixed length for each window to the classifier,
which then classifies these segment.

elements from D. Removal of sensor noise is a common operation. A
band-pass filters frequencies that can be safely assumed to not add any
information to the recognition task. Simpler filters, like a moving aver-
age or median filter are also often applied to remove sensor sampling
artifacts. Sensor calibrations, for example removing offsets or applying
scaling factors, are also applied in this step. Besides the values of the
input, no other change is made, labels are just passed through to the
next step. We designate the elements of D′ as dt = (lt, vt,0, vt,1 . . . , vt,n),
where vt,n is the value of sensor n at time t, and lt the ground truth
label at time t.

After pre-processing the previously mentioned rate-adaption step
changes the per-sensor dimensionality of the individual data vectors.
This optional step is only required if multiple sensors were recorded
at different rates. Changing the rates to a common rate allows for
segmenting the input into defined segments.

3.4.2 Segmentation

Segmentation is the process of spotting relevant parts of the sensor
data streams [256], i.e. those segments that contain information about
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the activities which are to be detected. This phase yields elements
W = (w0, w1 . . . wmi ) which is a concatenation of several measurements
aggregated into one segment/window. Empty lines designates the start
and end of a segment of data in the output of the grtool. A Unix process
for segmentation therefore copies data from its standard input to its
output, and sporadically inserting empty lines to mark new segments:

segment1 1.2 2.3 4.4

segment1 0.0 0.0 1.0

segment2 0.0 0.0 1.0

segment2 0.0 0.0 1.0

segment2 0.0 0.0 1.0

...

lastsegment 3.4 4.5 6.3

Segments can contain a varying number of sensor samples. This
support signal-based segmentation approaches which define a threshold
on the signal’s energy [257] or thresholds on the error of interpolation
[36]. These interpolations can be linear or more complex [258], or
change-point models [259], which are related to spline interpolations.
These can be used, when such models can be safely assumed for the
detection problem, for example when detecting eating one can assume
turn points in the arm’s motion that can be used for segmentation.
Another example are quiet parts of an audio-recording, which surround
segments of “interesting” sensor recordings. Generally, a heuristic on
some part of the input signal might be a possibility for sensor signal
segmentations. However, optimal segmentation is still an open research
challenge.

In the absence of any heuristic, the standard approach is a p-
overlapping k-duration sliding window. A window length k, which can
range from sub-second to multiple seconds is chosen beforehand. This
parameter is chosen to match the mean duration of a part of the target
activity, e.g. single strides for locomotion. To overcome the issue of
splitting a possible target activity into two parts, which only form a
distinctive pattern together, an overlap of p percent can be chosen. The
sliding window is only moved forward by this percentage each time.
This results in segments of equal size, of which features can be extracted.
One pitfall, particularly when segments overlap, is the pair-wise cor-
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relation that is introduced due this segmentation, for which great care
has to be taken in later steps to avoid overly optimistic results [156].

3.4.3 Feature Extraction and Selection

The feature extraction step serves two purposes: (i) to reduce the
amount of data contained in each segment to minimize the computa-
tional complexity of the subsequent training and classification step, and
(ii) to amplify patterns which are distinctive for a particular activity. To
achieve this, features are extracted from the segmented sensor data and
can be formally captured as a mapping from the sensor data space D
to the feature space F:

fi = F (wi) (3.8)

Features are usually chosen due to application requirements, and
often after a visual inspection of the sensor data and the target activi-
ties. Deep learning approaches leave the choice of features open and
optimizes their selection with other parameters as well. A large number
of different features were proposed, and they can be divided into three
domains: time-, frequency- and model-domain features. An overview
of possible features can be found in survey publications [4, 2].

Time-domain features, as the name implies, are calculated directly
on the segmented data, including statistical moments like mean and
variance, but also derivate, inter-quartile ranges, root mean square,
segment duration, a histogram with a fixed number of bins, parameters
of a fitted curve, cross-axis correlations et cetera. Frequency domain
features, on the other hand, are extracted after the segment was mapped
into the frequency domain, e.g. by applying a Fast Fourier Transform
(FFT), Wavelet Transform (WT) or other type of “frequency” related
transformations. Model domain features are those that require addi-
tional knowledge to be calculated, for example a model of the human
body and the attachment points of each motion sensor [148] or the
P-wave, QRS complex and PR interval from Electrocardiography. This
allows to filter certain measurements, to create more distinctive features
and create interpretable features.

A “good” feature set is one where features that correspond to a
recognition target form clusters. The Curse of Dimensionality, however,
dictates to minimize the amount of extracted features. Particularly if
only a limited amount of collected samples are available. One strategy,
that is also proposed here, is to include the feature selection into the
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Figure 3.7: Decision boundaries of various machine learning algorithms.
To the left hand side, a linear model with a soft error margin often used
in Support Vector Machine (SVMs) is shown. The middle shows a more
complicated decision boundary that can be estimated with a Random
Forest, a non-linear SVM or Neural Network (NN). The right hand side
shows a probabilistic model, multiple gaussians per class capture the
feature space and estimate the probability for a particular class given a
feature.

parameter tuning step and systemically test a (possibly) large number
of feature combinations. Alternatively, techniques like the principal
component analysis (PCA) can be applied, this however also requires
careful validation [260]. Therefore, automatically selecting the most
relevant features needs to be applied carefully, but can inform the
design of features [147].

Implementation-wise, the feature extraction and selection step
should transform each empty-line separated segment of the last step
into a single line that contains the label and features for each step:

segment1 1.2 2.3 4.4 0.0 0.0 1.0

segment2 0.0 0.0 1.0 0.0 0.0 1.0

...

lastsegment 3.4 4.5 6.3 0.0 0.0 0.0

The meaning of each line changes in this step from a single sensor
sample to a feature vector extracted over each segment. If the duration
of the segments is not encoded by the feature extraction process and
a non-equal segmentation was chosen, then this information is lost at
this step.
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3.4.4 Classification

The classification2 step’s goal is to determine the parameters of a math-
ematical model to learn the mapping F 7→ C, i.e. to determine a projec-
tion from features to the recognition targets. These models range from
computational complexity and simplicity of description. Visually, they
can be captured by drawing the decision boundaries in a scatter plot as
found in Fig. 3.7. These boundaries can take a multitude of forms on
the feature space, depending on the chosen model. The related work
section provides an overview of possible models.

The actual classification step is split into two phases: training and
execution. For training the input data is split into multiple training and
validation sets. The first one is used to estimate (train) the parameters
of the chosen model for the decision boundaries. After training, the
generalization and performance of the learned model can be estimated
by classifying the validation set and comparing against the included
ground truth. Different measures of the performance can then be
evaluated in the light of the particular application to (i) choose the best
performing model and parameter set, and (ii) to get an estimate of how
well a problem might be modeled.

There is usually no “best” model that can be chosen beforehand,
hence parameter selection and model selection should be part of the
grid search for a performing ARC. Applying Occam’s Razor here as
well, models with fewer parameter have a higher probability of gener-
alization. Formally, training is the process of determining the model
parameter set θ from a set of observations from the training data set
T = {( fi, ci)}N

i=1, with N pairs of feature vector fi ∈ F and labels ci ∈ C.
On the other hand executing a classifier is determining a prediction set
P = {( fi, ci)}M

i=1 of M pairs where a feature vector fi ∈ F is mapped to
a label ci ∈ C.

One particularity of Activity Recognition is the handling of a so
called NULL class, that is related to the earlier mentioned Activity Spot-
ting challenge [256]. There might be segments that are irrelevant to the
actual recognition task, but which cannot be explicitly marked accord-
ingly. For example, the NULL class might not be sampled completely
- the setting might even prohibit this. This could be the case when
detecting eating, where eating gestures can be sampled, but all other
possible movement that might be confused with eating might not. One

2Alternatively a regression is applied if the label space C is metric, i.e. there is a
definition of a distance between elements of C.
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solution to this challenge is to make use of the classifiers confidence,
and only if this is above a certain threshold the classification results will
not be NULL. For machine learning algorithms which do not output
such a score, Platt’s scaling method can be applied [149].

During training, the classification step consumes the input until
parameters were successfully estimated, i.e. the model learned. Once a
trained model is available the classification steps changes the feature
vector line-by-line to a prediction. The output then looks like:

segment1 prediction1 0.5

segment2 prediction2 0.7

NULL NULL 0.2

...

NULL prediction2 0.5

The first field is the ground-truth label, the second field the actual
prediction of the machine learned model, and the third field is an
optional confidence score of the prediction. The latter one can be used
for subsequent NULL class rejection.

3.4.5 Validation and Scoring

To estimate how well an ARC and its according θ parameter set per-
forms for a particular application a validation step is crucial. The ARC
design involves a choice of performance metric, and a cross-validation
strategy to split the original dataset into a training and validation set.
Both choices are application-dependent and should be chosen after
formulating a hypotheses that is to be supported by data.

Cross-validation refers to splitting a dataset to emulate possible
application scenarios. Two scenarios are common for Activity Recogni-
tion: (i) How well does the system generalize to unseen data, i.e. if a
classifier is exposed to previously “unseen” data what is the probability
of predicting the corresponding label correctly? (ii) When exposing
the classifier to data of an unknown user, i.e. a user the system has no
data on, what is the probability of correctly predicting labels? The first
question allows to gauge the generalization ability, while the latter addi-
tionally gives insight into the user dependence of an ARC. Both strategies
split the dataset, one randomly selects segments from the whole dataset,
while the other selects segments that belong to a particular user.

Exhausting all possible dataset splits is often prohibitive, even for
a limited case with 100 samples, of which 20% are to be used for
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Figure 3.8: Cross-validation strategies on a segmented Activity Recog-
nition dataset. The left hand side shows the dataset segmented by time
and split by users. Segments highlighted in green are used for testing,
yellow ones for training. The top one depicts random split, where
segments are selected at random. The bottom an exhaustive search,
where each user is left out of training and tested on.

training the amount of combinations is already (100
20 ). A non-exhaustive

strategy is therefore to select segments at random. Fig. 3.8 visualizes
this. A smaller percentage of the dataset is used for testing and left
out of training. It is important to leave testing samples out of training,
otherwise the original goal of emulating unseen data is not fulfilled.
Furthermore great care needs to be taken when selecting segments at
random, since these are chosen from a continuous recording and might
therefore be correlated. This correlation might lead to overly optimistic
results, when picked up by during training [156]. K-Fold splits, where
K segments are retained for testing and the rest used for training can
be used when K is small. For user-dependence testing this split strategy
needs to be used. K users are then left out, while the classifier is trained
on data of the remaining users. All such combinations are to be tested
to emulate the case of an unseen user base.

Stratification, i.e. balancing the amount of test samples through-
out the splits needs be applied if the label distribution is imbalanced
[261]. Otherwise, correlation performance results might just reflect
the distribution of training samples. For example, imagine a dataset
which contains 100 samples of sleeping, but only 10 of being awake.
A classification that only “guesses” sleeping on each sample, all the
time, will already provide good performance scores, since only 10 of
110 overall tests can turn out to be wrong. Either weighting results on
each label by the overall occurrence, or by generating new samples for
under-represented labels can be applied to counter this issue.

The actual performance analysis relies on the definition of true
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positive (TP), false positive (FP), true negative (TN), and false negative
(FN) cases. Implementation-wise this can be achieved by comparing
line-by-line the fields of the last step. The first field is the ground-truth
label li, and the second contains the prediction pi from a classification:

scorei =


TP if li = pi

FP if li = NULL and pi 6= NULL
TN if li = NULL and pi = NULL
FN if li 6= NULL and pi 6= NULL

Counting these error classification line-by-line, allows to define a
score of a trained model. Common measures include the recall ( TP

TP+FP ),
the precision ( TP

TP+FN ) and accuracy ( TP
ALL ). These allow to get insights

into a classifiers performance, where the recall roughly relates to the
probability of detecting classes, and precision the probability that the
prediction is correct. The generic goal of any classification approach
is to maximize these two measures uniformly. The harmonic mean of
both is called the F1-score ( 2∗precision∗recall

precision+recall ). These measures can also be
calculated from a confusion matrix, which counts the above cases and
displays them in an n by n matrix, where n is the number of labels.
The counts should be normalized to allow interpretation of imbalanced
datasets.

Specifically for Activity Recognition, the given error definition is
limited to the assumption that classified segments are not correlated.
However, they often represent continuous times, i.e. one segment hap-
pened right after the other. For practical purposes, lower F1-scores
might be preferable, if the classifier captures time-based correlation
better. For example, a classifier that switches between labels slowly and
introduces a detection lag, might have less spurious detection albeit
providing a worse F1-score. Insights into such event detection can be
gathered with an event analysis diagram (EAD) [139]. The EAD captures
cases of fragmented and merged events, additionally to deleted and in-
serted events, which are the only ones captured by traditional measures.
The output of this stage is therefore the confusion matrix for the detected
classes, recall, precision and F1-score and the event analysis diagram, which
captures the performance of a classification task.
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Figure 3.9: Two types of visualizations for a high-dimensional feature
space. The left hand side shows a scatter plot after feature reduction
with the t-SNE approach. The right hand side shows a matrix scatter
plot over all feature dimensions, with optional gaussian density estima-
tion. The dataset is a small fraction of the smoking dataset presented in
the following chapter

3.4.6 Debugging and Visualization

To understand and guide the design of an ARC, performance metrics
only provide an indirect insight into the workings of the chosen design
parameters. A search for an optimum over a large search space of
ARC parameters, will only yield a solution in this particular space.
To introduce novel parameters, to simplify the problem or to find an
explainable solution to the classification task, the model needs to be
interpreted and therefore visualized. This involves the visualization of
the high-dimensional feature space F that is mapped into the categorical
class space C.

T-distributed stochastic neighbor embedding [262] is a popular
technique to reduce the dimensionality of a feature space to two or three
dimension. This allows to get insights whether decision boundaries
can get placed easily, additionally plotting these boundaries allows
for visual inspection of the learned model. However, due to the data
reduction the dimensions of the resulting plot are hard to interpret. If
the feature space has a rather small dimensionality (< 10), a scatter plot
matrix can provide insights by plotting all pairs of dimensions. Parallel
coordinates are similar to scatter plots, however axes run in parallel
instead of orthogonal. This way multiple dimensions can be put next to
each other, and allow for stacking. A combination of matrix scatter plots
and parallel coordinates was investigated in [263]. This visualization
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allows to explore all possible orders of feature combinations. Fig. 3.9
shows example of each visualization on a toy dataset.

In the proposed framework, data is loaded in the aforementioned
text-format. Each line contains a segment that is to be classified. The
first field contains a label, the remaining field designate the feature
vector. Classes are visualized as different color on each plot, while
the feature vector with a choice of different graphs. Due to the design
of loading data from the standard input, a reactive plot that updates
on new data is easily implemented. This allows to visualize an ARC
operation while in progress, or when recording data from live sensors.

3.4.7 Scalability and Parallelization

When applying machine learning multiple factors contribute to the
computational complexity of finding a performant classifier: (1) a large
number of sample instances, (2) a complex feature set, (3) model selec-
tion and parameter grid search, and (4) the combinatorial complexity
of cross-validation. This is not an exhaustive list of factors, see [264]
for a more thorough treatment. Compared to other challenges, a large
number of sample instances requires a modification of the specific train-
ing algorithm used for the chosen machine learning, and is therefore
out of scope for the presented proposal. However, the remaining chal-
lenges present an embarrassingly parallel workload. When the ARC is
modeled as a Unix process, the actual parallelization task requires zero
implementation effort.

For this, think of an ARC either as a chain of Unix process connected
via pipes, or as a single Unix process. The input to this chain is raw
sensor data and the hyper-parameters of this learning and prediction
workload are provided as arguments to this process. For a typical
task, the hyper-parameters include the choice of segmentation strategy,
choice of features like the mean, median, variance, range of values etc.,
and a choice of learning algorithm and its parameters. Additionally,
almost always a cross-validation is done, which also requires the dataset
to be split. This can be done by retaining the training set during the
training phase. When implemented as a Unix process this can be
expressed similar to this command line:

$ cat dataset | segment -W 10 | extract time |

train -s .8 -n 20 RF | predict | score

which would train a RandomForest, with 20 tress, on 80% of the



66 chapter 3. unix filters for activity recognition

3

m
od
al
it
y

se
gm
en
ta
ti
on

w
in
do
w

si
ze

fe
at
ur
e

ex
tr
ac
ti
on

m
od
el

Figure 3.10: Example of a parameter grid search, which scores all com-
binations of a four element sensor modality set, five different window
sizes for a sliding window segmentation, all combinations of a three
different feature extractions and two different machine learning models.
Even this rather small grid, already requires a full ARC cross-validation.

input, extract time-domain features, and segment the dataset into mul-
tiples of 10 frames. The actual data transported between the Unix pipes
are in the formats as specified previously.

This command returns the score for exactly one element from the
hyper-parameter set, which is expressed as the arguments to these
commands. We can denote this set as θ, which contains tuples h =
(split, segmentation, feature extraction, . . . ) that contains a discrete set
of parameter choices for each step in the ARC. The combinations of all
those parameters is the hyper-parameter set, of which all elements need
to be tested separately. As this represents the product of each step’s
hyper-parameters the search space quickly explodes, and therefore
needs to be selected carefully.

Fig. 3.10 depicts the combinations of parameters that need to be
tested, even on a small parameter grid. For each tested parameter
combination a full cross-validation needs to be executed to provide
score for this particular set. However, each parameter combination
can be cross-validated indecently, and each cross-validation split can
be seen as another parameter of this set. Hence, this task is easily
parallelized.

When implementing ARCs as a Unix process, that takes the hyper-
parameter set θ as arguments to each command, the GNU parallel [265]
package can transparently distribute each element of θ to multiple cores
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and multiple machines. Hence, distributing the grid search for the
best performing model to a cluster of Unix machines. For example the
parameter sets of Fig. 3.10 can be distributed to multi-core cluster with
the following command line:

$ parallel --slf cluster "cat dataset |\

arc -m {0} -w {1} -f {2} -l {3} -s .8 | score"

::: acc mag acc,mag

::: 1 10 20 30 50 100

::: time freq time,freq

::: RandomForests SVM

GNU parallel builds the product of all parameter sets specified
after the triple colon, which represents θ. It will then start each job
(or particular choice of elements for the parameter set) on one of the
machines specified in the cluster file, which must be reachable via ssh.
The arc command in this case, is an implemented recognition chain that
takes the modality, window size, f eature set, learning algorithm and
the split fraction parameter. The parametrized chain will be build by
replacing the concrete parameter for each run. The resulting score for
each parameter combination will be printed on standard output and
can be further processed, for example by selecting the best combination
by the highest recognition score.

Compared to other frameworks for parallelizing machine learning,
this approach is more flexible, since each step can be quickly replaced
with a different implementation. In other frameworks, replacing a step
usually requires a modification in the same programming language
and an adaption to the provided data abstractions. Parallelization is
also harder to achieve, as this usually requires delicate programming
if data flow is not cleanly separated between the different steps of an
ARC. In contrast, separating these steps as Unix processes allows for
system-level parallel processing with little implementation effort.

3.5 summary

This chapter presented an Activity Recognition framework designed
according to traditional Unix philosophies: to write programs to do one
thing and do it well, and to make them work together by only specifying
their in- and outputs. The steps of an Activity Recognition Chain are
encapsulated in single Unix processes. This leads to greater flexibility,
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as single steps can be easily replaced with different implementations in
the choice of machine learning framework or programming language
a developer is prominent with. These steps are then connected via
the Unix piping mechanism. The core idea is to combine these steps
finally into a further command that executes training and prediction,
given hyper-parameters including a particular dataset split as command
line arguments. This facilitates the common task of cross-validating a
large dataset, as well as hyper-parameter optimization for finding well-
performing ARC parameters. Process-level parallelization, including
execution on a cluster, of these tasks can then be easily created with
minimal implementation effort.

For implementing these task with the Unix piping mechanism, the
inter-process communication format needs to be defined. Traditionally
a text format is used, since modification and parsing can be quickly
achieved. However, this also incurs a large processing overhead. An
alternative, that can also be used for long-term curation of datasets
as well, are multi-media container formats. These allow to encode
multiple sensor data streams with additional compression. Each step
in an ARC either adds or replaces multiple of those streams, while
secondary evidence like video recordings stay untouched.

One challenge, when working with publicly available datasets, is the
identification of sensor modalities. When using multi-media contain-
ers, such meta-data can be stored side-by-side with the original data.
However, the current state-of-the-art is to store dataset in CSV files,
which requires manual identification of fields and their meaning usually
with the help of a readme file. A rule-based identification scheme that
extracts this information for inertial motion modalities directly from
the data, allows Webcrawlers to find new datasets automatically and
provides an additional safety check when recording datasets. In the
presented evaluation, the ruleset correctly classifies 98% of 1003 streams
in five different human motion datasets.

A further challenge is the visualization of the usually high-
dimensional feature space requires elaborate techniques. For low-
dimensional feature spaces, a matrix of scatter plots provides good
overviews. For higher dimensions, a dimension reduction like t-SNE
can be applied but are harder to interpret. For debugging purposes, the
decision boundaries of the learned model can be drawn as well, which
allows to spot implementation problems and can guide further changes
to the ARC.

Designing Activity Recognition chains with the help of Unix pro-
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cesses, allows for more flexibility when creating each step. Process-level
parallelization and cluster distribution is further facilitated by this de-
sign. Thus, a system is created which allows for fast replacement of
ARC steps and quick distribution of hyper-parameter optimization and
cross-validation tasks on a cluster of Unix machines.
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Twenty-two percent of the global population older than fifteen are
consuming at least one cigarette per day [268]. And even though the
percentage of daily smokers has decreased by roughly 30% in the last
decades, the global number of smokers [269] increased to a total of 967
millions due to steady population growth. In Europe, for instance, 27%
of all citizens are still regular smokers, especially in age groups below
55. Around 59% tried to quit at least once [270], often motivated by fear
of personal health consequences. This is understandable as continued
smoking has been most prominently linked to cancer forms of highest
mortality rate, as well as other diseases causing premature death [271].
The resulting economic loss, both due to absenteeism in the workforce,
as well as the cost for treating tobacco-related diseases was estimated
to about €313 billion [272] in the EU and $191 billion in the US [273].

This chapter answers the question, if smoking behaviour can be
assessed objectively with the help of wearable sensors. To be called
objective, an assessment should be inconspicuous, accurate and efficient.
Inconspicuous, so participants are not aware of them being tracked, as
to not alter their behaviour. At the same time this assessment should
reflect the real events as close as possible. Otherwise, important details
could be missed, or wrong conclusions drawn. Resources, such as
a participant’s involvement, available battery and processing power
should be minimized to allow for a longitudinal assessment. This is
particularly challenging for smoking, because current approaches either
ask for noting down times on paper, tracing bio-chemical markers
[188], interacting with a mobile device, wearing unfamilar devices, or
at unfamilar locations.

Instead of relying on the discipline of a participant to provide an
ecological momentary assessment (EMA), wearables can automatically
detect smoking events. The overall goal is to detect these smoking
events as reliable and efficient as possible. With this objective assessment,
new insights into smoking cessation can be gathered. For example, the
efficacy or impact of an intervention program is currently measured
with the abstinence rate after 3-, 6- and 12-months. These numbers
are commonly gathered via telephone interviews, adding delay and
uncertainties. With an ambulatory assessment, with any sensor-based
technique, these number can get a lot finer. This in turn could provide
new insights into the efficacy of cessation tools, like nicotine patches or
personal counseling. Novel cessation approaches are another possibility.
Intervention material can be (automatically) personalized, interventions
can be provided just-in-time, novel insight generated for the smokers
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or cessation material directly tested on its usefulness.
The first inspiration for designing the Smartlighter was to gather

reliable ground-truth for smoking detection from wearable sensors, and
presents yet another application. Gathering such ground-truth is one of
the core challenges of any system attempting to detect smoking from
sensor data. Integrating this with a background data collection of wrist
motion data, is the basis for our data collection approach. With this
system in place, it is possible to collect datasets with a higher ecological
validity than those collected by other EMA approaches. To quantify
this effect, three EMA approaches are compared to the Smartlighter: (I)
estimating overall consumption by recall, (II) estimating consumption
via wrist motion in a lab setting, and (III) estimating via wrist motion in
the wild. Prior to these evaluations the design of the Smartlighter and
its characteristics will be described, followed by a detection approach
from wrist motion.

4.1 instrumented lighter smoking detection

During the design of the Smartlighter, we followed the guidelines laid
out by Li et.al., to design systems which allow “collecting data anytime,
anywhere and often”, to “support different kinds of collection tools”
and to “reduce the upfront cost of data collection” [274]. The result
of this were the prototype iterations of the Smartlighter, which logs its
usage into the internal memory of a microcontroller, gets more usable,
adds communication capabilities, and is easier to manufacture after
each iteration.

Our prototype is motivated by the fact that monitoring the use of a
cigarette lighter is a straightforward, robust and inconspicuous way to
track a smoker’s consumption behavior. Tracking itself becomes trivial,
and thus provides a more reliable solution. Implementing such a device
is however aggravated by the availability of lighters that generate a
measurable electronic signal when lit up. Currently, there are four
lighter types widely used: gas, petrol, electric arc and electric coil
lighters. Coil lighters, similar to the ones found in cars, work by closing
an electronic circuit which heats up a coil with a large current3. Arc
lighters work by generating a plasma between two electrodes. Both
electronic lighter are usually powered by a USB re-chargeable battery.
Gas and petrol, on the other hand, store energy in form of a flammable,

3Other approaches, for example mixing the sample set randomly, would invalidate
the post-processing step, since it assumes a time-ordered test set.
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Figure 4.1: From left to right: customized USB-chargeable electronic
lighter, gas lighter with mechanical switch, and a piezo-ignited jet
lighter. The latest iteration is completly wireless.

evaporating fuel. A spark generated by mechanical force ignites this
fuel: generated by scratching a flint stone or by a high voltage discharge
of a compressible piezo element. These constitute the basic working
principles from which a measurement mechanism must be deduced.

Each prototype logs the date and time of each ignition, which results
in a list of events that are likely related to cigarette smoking, especially
if the user was properly instructed on the lighter’s use. Multiple
ignitions in quick succession are filtered, assuming that only a single
cigarette will be consumed in a five minute interval. All prototypes
measure those events, and differ mostly in usability and communication
capabilities. The lighters are described in the following sections.

4.1.1 Smartlighter v1: Heating Coil

Initially, the printed circuit board (PCB) of an electronic lighter (cf.
Fig. 4.2) was replaced to include an ATMega32U2 micro-controller and
an external real-time clock (RTC). A 200mA h battery provides power
for heating up the coil, and the micro-controller. Events are logged into
internal memory and can be retrieved via USB - they are detected by
monitoring the state of the ignition contacts. Closing these contacts
wakes up the micro-controller and ignites the lighter. The components
were packed into the original lighter casing to provide a prototype that
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Figure 4.2: The Smartlighter v.1’s internal buildup. On the left, a
mechanical switch closes the circuit between battery and a coil, allowing
it to heat up so that a cigarette can be lit up. The time and duration for
which the switch was used is logged by an on-board micro-controller
that is connected to a real-time clock. The right-hand side shows the
lighter in use.

is robust enough for day-to-day usage.

The firmware is designed to consume as little power as possible;
During periods of no activity the micro-controller is in deep sleep mode
and only wakes up on USB activity or when the switch contacts change
their state. Only the RTC is constantly drawing power, which leads
to an overall standby power consumption of 0.112µA. Whenever the
switch is moved, the micro-controller wakes up from sleep, reads the
current time from the RTC and appends the time-stamp to a list in flash
memory. Each timestamp takes up 4B, which allows to store up to 255
events in the 1kB sized internal memory of the micro-controller.

Although this first prototype was found to work well in preliminary
trials (see [28]), several shortcomings were found that hinder more
extensive deployments. A first issue that some users experienced was
the mechanism: this requires sliding down the switch for a considerable
amount of time to sufficiently heat the coil, which for several users
was found to be both unfamiliar and not as pleasant as a traditional
gas lighter. Due to this, cigarettes were harder to light up, as the coil
needed at least five seconds to heat up. When the battery provides
its nominal voltage, after it was discharged to about 70% of its initial
capacity, this took even longer. The lighter was also harder to use, since
it requires careful aiming of the cigarette onto the heating coil, and if the
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Figure 4.3: The Smartlighter v.2’s internal buildup. The ignition contacts
additionally close a circuit, which is read by the micro-controller. On the
left-hand side the battery compartment and LEDs are visible. The center
shows the RTC, USB connector and microcontroller. The right-hand
side shows that the lighter operates like a traditional lighter.

coil was not yet hot enough the cigarette would break. A more critical
shortcoming though, was that due to the high power consumption of
the heating coil, the system runtime is limited to about two to three
days for frequent smokers (∼ 15 cigs

day ). Several users were bothered by
this, which led to a few cases of missing data logs.

4.1.2 Smartlighter v2: Gas

Despite having a very different form factor, the PCB for the second
version of the Smartlighter essentially contains the same electrical com-
ponents. The ATMega32U2 micro-controller is directly connected to the
gas lighter’s ignition contacts, which are the contact pads which get
shortened when pushing the ignition button (see Figure 4.3). Together
with a external real-time clock (RTC), a USB port and two status LEDs,
the logging of smoking instances is performed. The main improvements
to the first version are (1) the more familiar form factor of a gas lighter,
as well as (2) the fact that the three small LR41 coin cells included in the
gas lighter provide 28mA h of power. The cells can continuously power
the lighter for about 7.2d at frequent usage (∼ 15 cigs

day ). This increase of
runtime, while decreasing the available power ten-fold, is mostly due to
the use of combustible fuel for providing a flame to light the cigarette.

The process of capturing and recording the smoking instances is
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for the second version similar to that of the first: if there has been no
write operation during the last 5min, the timestamp is written into the
internal non-volatile memory of the micro-controller. The 5min interval
serves a double purpose: First, it is a simple mechanism to debounce
the ignition switch and second, it filters incidents of multiple ignitions
sometimes needed to light up a cigarette. The 5min interval has been
chosen as the mean time to consume a cigarette [275] 4. The smoking
incident timestamps can be downloaded from the lighter via a virtual
serial port emulated by the Atmega32U2 in CSV-format through the
USB-port.

4.1.3 Smartlighter v3: Piezo Ignited

While the (novel) form factor meant that smokers did not need to
adapt their behaviour, there were several practical issues. First of all,
the USB port was inside the enclosure, which needs to be opened to
attach and download data to a PC. Although this makes the prototype
highly robust, this version can provide long-term feedback only during
maintenance phases - no real-time feedback was possible. Due to the
mechanical connection to the lighter this process often required to repair
the lighter afterwards.

To remedy this situation, optical transmission from the included
lighter to unmodified cameras in commodity hardware was investigated
[276]. Due to the limitations and unreliable frame rate of webcams only
very low speeds of 17.3bps could be achieved. Implemented using
standard-compliant interfaces of a webbrowser’s Javascript engine, it
is a platform-independent solution. It is also rather cheap, after all
only LEDs are required. However downloading a day worth of data
(15cigs, 2B per compressed timestamp, totalling 34B) takes at least 16s.
And, being camera-based, lighting condition have a strong influence,
rendering this solution impractical.

Further design choices considered for this iteration of the Smart-
lighter included the modification of Zippo lighters. Temperature or
contact sensors and batteries could be added. However it turned out
to be a challenging task to keep electronics and fuel safely separated.
Generally, the inclusion of batteries and electronics in light-weight, com-

4The systematic review investigated smoking topography studies with a total volume
of n = 193 participants, which reported 17.23 ± 6.88 cigs

day , with an inter-puff delay of
15.46± 7.18s, and puff duration of 2.32± 3.3s (Method 1). The total consumption time
can be sampled to 306.75± 129.01s.
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Figure 4.4: v.3’s interal build. Contactless ignition detection is achieved
by monitoring for a high-voltage spark generated by the piezo igni-
tion. A Bluetooth Low Energy (BLE) communicates events directly to
connected Smartphones.

mercial lighters is tough, as there is only a limited amount of designs
available. The only alternative is to either attach the electronics in the
compartment holding the flammable fluid or on the case’s outside.

Due to the mechanical instability of prototype v.2 another detec-
tion mechanism was devised, which improves the lighter’s manufac-
turability. Instead of relying on a mechanical switch connected to a
micro-controller pin, the ignition is now picked without any contact.
Common lighter use a standard piezo ignition. Compressing the piezo
element inside this ignition results in a high-voltage spark, which is
used to light up flammable fuel. A large copper area in the vicinity (cf.
Fig. 4.4) of this ignition connected to a pulled-down micro-controller
pin will pick-up a voltage above the micro-controller’s logic level. This
can be used to wake the micro-controller whenever the lighter is ignited.
By carefully controlling the size of this area, no external electrostatic
discharges (ESD) are picked up. This way, the manufacturing process is
simplified to placing the module near the piezo ignition.

Another novelty of this prototype is the addition of BLE to commu-
nicate with nearby Smartphones. Introduced in 2015 it was the first
wireless communication standard which was power-efficient enough to
be run from a coin cell and was pervasively included in Smartphones.
Chosen for its size and price, Zentri’s AMS002 [277] Bluetooth Low
Energy module was used to implement this prototype. The times-
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tamps of ignition are now not just stored in local memory, but also
communicated to nearby phones. Just-in-time interventions are now
possible, and sensor recordings on other devices and external computa-
tions can be triggered directly. Once timestamps have been retrieved
from the lighter, they are deleted from local memory. Communication
is limited to two minutes after an ignition to conserve power. If no
communication partner was in range during this period, the event will
be communicated again with the next ignition event. Thus creating a
robust, reliable and real-time monitoring system.

The lighter module is powered with a single coin cell with a capacity
of 48mA h. As shown later, the lighter can be powered from this cell for
1.5 months for frequent smokers. Power could possibly be harvested
from the piezo element itself [278], as well as other sources. Rudmann
[279] investigated the specific possibilities for the presented lighter;
While it is possible to send BLE datagrams with an inductive harvester,
the power required to boot the included BLE module could not be
generated. However, other modules with smaller power requirements
maybe able to send a small number of datagrams with a single flick of
the inductive generator. The battery could then be removed, however
the prototype would be harder to construct and a different BLE module
would be required. Other harvesting options (e.g. solar, fuel cells, piezo,
pyro-electric . . . ) are impractical, mostly due to limited construction
space, see [279] for further details.

The system is packaged in a re-purposed gas jet lighter, which
originally included a decorative block of acryl where the PCB now
resides. We opted for not using the included battery compartment to
simplify the manufacturing process. No manual soldering is required,
since the PCB can be assembled automatically. Due to this, user can
replace the coin cell themselves and also use the lighter like any other.
Thus creating an inconspicuous monitoring option. This lighter was
used to collect the ground-truth data, which provides the database for
wrist-motion based detection of smoking for an in-the-wild study. Prior
to the description of this study, we look at the energy consumption of
the different prototypes.

4.1.4 Firmware and Energy Consumption

To discuss the power consumption of the three Smartlighter prototypes,
the firmware of the lighter can be split into five states. The state diagram
in Fig. 4.5 shows the flow of states: after wake-up the ignition state of
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Figure 4.5: Firmware states for all version of the UbiLigher. The micro-
controller is most commonly in a sleep state, only waking up for
communication (com) when the lighter is ignited (ign). The right-hand
side shows the relative power required for each prototype.

the lighter is checked (ign?), as the lighter can be woken up by a battery
insertion as well. If an ignition was detected, the local timestamp is
stored (store) in non-volatile memory. The communication-enabled
lighters (v2/3) will start a discovery phase (con?) which advertises
the event for 2min. Only the Bluetooth lighter will be waiting for a
connection from an external device, the LED-lighter transmits events
unconditionally. If a Bluetooth device connects during this period, the
events will be transported (tx/rx) in an acknowledged manner. Events
are deleted from lighter-local memory after successful transmission.
After this communication period, the lighter will enter a low-power
sleep mode (sleep) until the next ignition is detected. If no events could
be transmitted the event is kept in a list in the internal non-volatile
micro-controller memory. Each state has particular energy consumption,
which allows to calculate the overall consumption in terms of usage
time of the lighter.

The current consumption is typically in the mA to sub-µA range,
which requires a measurement utility with a low burden voltage. For
this measurement, a PicoScope [280] in combination with a µCurrent
[281] voltage amplifier was used to measure the current consumption
I. The system voltage V was additionally measured. Each state is then
sampled and the energy consumption readily calculated as E =

∫
VIdt.

The prototypes do not only differ in power requirements per state, but
also in time a particular state is active. For example, prototype v1 stays
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v1 (t[ms]/E[mJ]) v2 (t[ms]/E[mJ]) v3 (t[ms]/E[mJ])

ign? 9000/44550 520/24.32 740/14.12
store 559/33.62 20/1.54
con? 500/6.95
tx/rx 2320/33.06
sleep 1000/.112 1000/.528 1000/.036

Table 4.1: Energy consumption of each prototype. Values are given
in Joule (J). Each system typically operates at 3.3V, which allows to
convert to mA. These figures were measured with a PicoScope 3206

and a µCurrent Gold.

in the ignition state until the coil is heated and the cigarette lit. The
other two prototype just need a quick check on a signal line for this
state. Table 4.7 lists the energy consumption of each state, and the mean
amount of time this particular state is active.

The first prototype (v1) is powered by a rechargable li-ion battery
(200mA h), v2 is powered by three coin cell (28mA h), and v3 by a
single coin cell (48mA h). Given the values of Table 4.7 the runtime of
each prototype can be devised from typical usage scenarios. For the
EU27, the most typical cigarette consumption amounts to 11-20 cigs

day . If
we always assume the heaviest smoker, the runtime can be calculated
as given in Table 4.2. The first prototype exhibits the heaviest energy
requirements during the ignition state, when the coil is heated. For
the other lighters the sleep consumption becomes more important, as
the ign? state is only active for a short period of time. As can be seen,
the day-to-day consumption of v3 is only a fraction of v2, even though
BLE connectivity was added. The higher energy consumption of BLE
connectivity is however balanced by a lower sleep consumption.

From a technical perspective, the main routine of the instrumented
lighter is to log the date and time of its ignition. A stable time source is
required. In the first two version this was achieved with an external,
constantly powered real-time clock (RTC). This clock was synchro-
nized prior to handing it out to study participants, and re-set during
maintenance phases. Due to the missing connectivity of the first two
prototypes, a constantly powered RTC is the only option to capture
exact timings. The third prototype used the micro-controller internal
RTC to provide timings with an accuracy down to a single second. It
is constantly synchronized to a client’s clock by providing the current
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per cigarette per day battery capacity runtime

v1 44.88J 897.98J/34% 200mA h/2664J 2.96d
v2 25.86mJ 46.14J/14% 28mA h/333J 7.22d
v3 255.68mJ 12.39J/2% 48mA h/570J 46d

Table 4.2: Runtime estimation based on nominal battery capacity. The
total consumption per cigarette is the sum of all but the sleep state,
while the total per day is the sum of sleep consumption throughout the
day assuming a consumption of 20 cigs

day . Values are given in per-cent of
total battery capacity and absolute runtime.

time on the lighter-local clock with each transmission. This way, assum-
ing a transmission creates negligible delay, the difference of the sent
timestamp and the reception timestamp equals the ignition timestamp.

On the lighter, a list of ignition events on the lighter-local clock is
stored. This list is transmitted whenever a client connects, and events
are deleted from memory after successful transmission. There is no
difference concerning this strategy, whether the events are transmit-
ted via the USB- or BLE-connection. For the BLE-lighter, however,
the sent timestamp on the local clock is transmitted additionally for
synchronization purposes.

4.1.5 Lessons Learned

Looking at the design decisions for the several prototypes in retrospect,
the following design principles would have possibly provided more
mature results quicker:

Optimize for original purpose first. While the initial prototype
provided first insights into the hardware choices required for including
electronics into a readily available lighter, the lighter itself was not (well)
designed for its primary usage. From the perspective of collecting
smoking data (our intended usage), starting from an existing lighter
was a very good choice as it included a battery and a USB connection
already, so only minimal changes were necessary. Its primary use for
lighting cigarettes with a heated coil, however, was often challenging
for smokers. During its study use, smokers often reported to use the
instrumented lighter for logging, next to a traditional lighter for actually
lighting up the cigarette.
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Design for robustness of everyday objects. The second prototype
had to be opened up to retrieve the logged smoking events. In principle,
this created a one-time usage device, as the reassembly after data
retrieval was almost the same as assembling a lighter from scratch. This
was partially due the measurement principle, which required fragile,
internal wiring that would often break after deployments. Contact-less
data transmission, as with the third prototype, would have solved this
issue.

Render tangible and immediate interactions. All prototypes had
LEDs on them, to display the lighter’s internal status. This interaction,
however, was fairly limited and feedback from early adopters often
revolved around the point that they would like to get immediate insights
of their measured smoking behaviour. For the first two prototypes, such
feedback was only given, when they visited us again so that we could
retrieve data from the lighter - while this allowed for inconspicuous
monitoring, it also made the idea for the smoker less transparent.

4.2 smoking detection from wrist-motion

This chapter presents the investigations on how well smoking can be
detected by sampling wrist motion with inertial sensors. A feasibility
study [28] showed that prototypical hand-to-mouth gestures can be
successfully detected - even without the application of machine learning.
The feasibility study also showed, that there might be motion patterns
that indicate smoking but have a larger variety, which requires the
application of machine learning and the existence of a high-quality
data with reliable ground-truth. Collecting this ground-truth was the
original motivation for developing the instrumented lighter [282]. Used
in conjunction with recently available Smartwatches to capture the
full set of inertial sensors while smoking, provided the dataset for a
follow-up study. These studies are primarily motivated by the following
questions:

• What is the probability of detecting smoking from wrist-worn ac-
celerometer data of smokers in free-living conditions?

• Does detection benefit from gyroscope and magnetometer data?
• Is the fused wrist attitude expressed as quaternion useful?
• What are the major challenges for motion-based smoking detection?
• What is the minimum amount of energy required for continuous

detection?
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Figure 4.6: Axis alignment on Android Smartwatches (left hand side),
and frame-of-reference of the rotation sensor (right hand side). The X
axis of the Smartwatch is pointing along the arm, when worn on the
left hand it points along the fingers, when worn on the right hand it
points to towards the body. The frame-of-reference is given according
to the geomagnetic north, and east, the Z axis is pointing towards the
sky.

4.2.1 Sensors, Attitude and Frame-of-Reference

Before delving into detecting smoking from inertial wrist motion, the
basics of inertial motion measurement need to be cleared up. Nowadays,
inertial motion sensors always measure three perpendicular axes. A full
set of these sensor consists of an accelerometer, a magnetometer and
a gyroscope, which measure the acceleration, magnetic flux and rate-
of-turn respectively. Integrating the rate-of-turn over time, provides
the attitude, i.e. the orientation of the sensor in three-dimensional
space. However, due to sensor drift, this orientation quickly becomes
inaccurate, but can be stabilized with the help of the accelerometer and
magnetometer. The accelerometer provides a static reference for the
orientation on the vertical plane, while the magnetometer can be used
as a compass to provide a reference on the horizontal plane. Combined,
these sensors can be fused to estimate the absolute orientation of the
sensor.

Such an orientation is typically expressed as a quaternion (though
any other representation of a rotation in 3-dimensional space is possible).
An absolute orientation refers to the fact that the orientation is expressed
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according to a static, global frame-of-reference. Fig. 4.6 shows the
axis alignment of an Android SmartWatch, and the global frame-of-
reference, when wearing the watch on the right wrist with the display
pointing upwards. The frame-of-reference of the attitude is fixed, and
does not change when moving the wrist.

In contrast when using only acceleration to estimate wrist’s orien-
tations, only the rotation on the vertical plane can be easily estimated.
The frame-of-reference of this rotation then moves together with the
arm when moving on the horizontal plane. Expressed differently, when
using only acceleration to estimate the wrist attitude from gravitational
pull, only the rotation on the vertical plane (along the body) can be
estimated. With the addition of the magnetometer also the rotation on
the horizontal plane is detectable. And finally with the addition of a
gyroscope, the orientation can also be estimated while the sensor is in
motion or under the influence of a magnetic field other than the earth’s.

When using a wrist-worn sensor to guess an arm’s orientation, an
additional rotation induced by different wearing styles needs to be
accounted for as well. For a wrist measurement, a fixed rotation R can
be applied, to move from device-orientation to arm-orientation. The
attachment, i.e. worn below or above the wrist and with the display to
or away from the user, are four fixed rotations R that can be applied to
each attitude estimation of the wrist. This rotation can also be estimated
from a long-running recording, or orientation-independent classifiers
can be tested [283, 35].

However, to simplify the classification in the following pages, we
will not use the attitude expressed as a quaternion directly, but rather
define the arm/wrist orientation as an accordingly rotated reference
vector. We deliberately chose the default orientation as the right wrist
with the display readable, while the wearer is facing north and the right
arm dangling along the side. With this it is possible to define the unit
vector v as the representation of the current arm’s orientation. See
Table 4.3 for the combination of reference vector and wearing styles.
Applying the rotation to these vectors, removes the influence of the
wearing style and result in an expression of the arm’s attitude in a
global frame of reference. Still, the device-local reference of Table 4.3
must be known beforehand
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left wrist right wrist

(-1,0,0) (1,0,0) top or bottom
(1,0,0) (-1,0,0) rotated top or bottom

Table 4.3: The orientation vectors rotated by the wrist attitude. Using
these vectors allows the arm’s orientation to be expressed as a vector
independently of whether the sensor was worn on the left or the right,
or rotated around the wrist.
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Figure 4.7: Recording setup for the accelerometer feasibility study.
Participants were asked to wear the HedgeHog sensor device on their
wrist, which continuously recorded acceleration data during the wake-
period.

4.2.2 Accelerometer Only Identification

For this feasibility study, we asked four regular smokers (aged 26 to
40, 2 male, 2 female) to wear a wrist-acceleration logger (see Fig. 4.7)
through the course several days. The monitoring time, number of total
recorded data samples, covered timespan and some basic statistics on
manual labeling can be found in Table 4.4. Participants were asked
to double-tap the wrist-worn logging device prior to any smoking
session. Smoking sessions were later marked by visual data inspection,
which was simplified by this tapping indication. Participants wore the
sensors on the respective dominant hand’s wrist (all participant were
right-handed) because we assume that this is the hand most often used
to hold cigarettes. Furthermore, participants take off the sensor only
occasionally, which gives a lot of background data to which we can
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compare our detection algorithm.
Acceleration data was collected with the wrist-worn “Hedgehog”

sensing platform prototypes (cf. Fig. 4.7). The design is based around a
PIC18F microcontroller, which contains an ADXL345 acceleration sensor
and a µSD-card. Acceleration (range 4g) is continuously sampled
at 100Hz and written to a FAT32 filesystem on the µSD-card in a
compressed (run-length) format. Data can be retrieved by accessing
the µSD-card via a standard USB mass-storage interface. The 180mA h
battery included in the package can power the system for a total run-
time of at least 7d without the need for recharging.

After recording, raw accelerometer data was labeled by visual in-
spection with the help of double-tap indicators. These double tap
patterns were quite distinctive, however also often forgotten by the
participants. Therefore, we also search for patterns similar to the ones
depicted in Fig. 4.7: a clear hand-to-mouth gesture, repeated several
times and stopped after a few minutes must have been visible to count
as smoking. This manual classification was sorted into confidence
classes on how strong the patterns followed this description, i.e. perfect,
fair and hard patterns. Note that these classes represent the authors’
confidence whether the participant was smoking and the subjective
similarity to other posture patterns. While perfect means full confi-
dence in a pattern having emerged from consuming a cigarette, fair
means partial confidence due to noisy data and very limited number
of repetitions and hard means that there might have been smoking but
data is too noisy, the number of repetitions is limited or the pattern
is highly different. Fig. 4.8 shows a pattern in each class for every
participant.

As previously mentioned, a systematic review of smoking topogra-
phy research [275] provides a simplistic model for smoking: for a total
volume of n = 193 participants, which reported 17.23± 6.88 cigs

day , with an
inter-puff delay of 15.46± 7.18s, and puff duration of 2.32± 3.3s (Method
1), the total consumption time can be sampled to 306.75± 129.01s. These
numbers were retrieved with CReSS devices, a device which measures
the airflow while smoking. The extracted model, however, was shown
to be inconsistent (see [275] for details) but can still be used as a starting
point. Detecting single puffs from acceleration would then allow to
apply this model to distinguish smoking from other activities.

Finding single puffs from wrist motion follows the observation that
a hand-to-mouth gesture, in its prototypical form, is split into two
states: an upper state when the hand is kept near the mouth and a lower
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Figure 4.8: Raw X-Y-Z accelerometer data (red,green,blue). The pattern
for smoking while standing is clearly visible in the top row.

state when the hand is not at the mouth. An algorithm to identify these
states from acceleration data needs to address the following challenges:

Different Wearing Styles and Unfixed Sensor Position. Wrist-
worn sensors can be attached in multiple positions, resulting in different
axis rotations. For each style, the sensor values measured in the upper
state will look different. However, the number of possible axis rotations
is limited. For example a band with an integrated sensor, can only be
rotated around the axis along the arm, without moving the wrist. A
further source of complications is whether the sensor is worn on the
left or right wrist, as this typically inverts the measurement. This is
particular challenging as the wearing style can change while sensor
data is being recorded.

Different Smoking Styles. A prototypical puff starts with the hand
next to the hip, which is then moved to the mouth, kept there for a
few seconds, before moving the hand back to the hip. The hand can
be kept “inverted”, i.e. with the palm pointing away from the mouth,
instead of the other, more typical, way around. Also the wrist posture
attained when not at the mouth is a source of great variety, which can
be categorized as follows: Smokers might choose to keep the hand
still at the hip (the Prototype), gesticulate while talking (the Socializer),
rest the hand at the forehead (the Thinker), or on some flat area (the
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participant timespan #patterns duration #samples

0 (male) 8 d 35 (2,7,26) 4.6 min 3.08M
2 (male) 5 d 28 (1,6,21) 6.8 min 3.57M

1 (female) 5 d 34 (11,8,15) 8.1 min 4.58M
3 (female) 5 d 19 (10,3,6) 8.7 min 1.53M

Table 4.4: Summary description of collected data. The number of total
smoking gesture patterns (number of ”hard”, ”fair” and ”perfect” sam-
ples in brackets), the mean duration of those gestures and the number
of total accelerometer sample points. Note that the last figure can be
misleading as sample points are only recorded when subsequent mea-
sured values changed (using run-length compression), not representing
the equidistant sampling points.

Casual), might just flip their wrist while keeping the arm upright (the
Sophisticated), be lying (the Relaxed), switching between dominant
and non-dominant hand (the Switcher), or resting the whole arm and
moving only horizontally (the Leaner). All of these smoking styles have
a strong influence on the measurement that can be taken on the wrist,
especially for the lower state.

Superposition of Other Activities. Concurrent activities, executed
while smoking, are another challenge that a detection algorithm needs
to tackle. Standing, Sitting, Walking, cycling, or driving (a car) are a
few examples which have a direct influence on the measured inertial
wrist motion, i.e.˜when the whole body is in motion, this influence also
shows on the wrist motion. For example, walking super-imposes a
regular step pattern that hinders the detection of upper and lower states.

Confounding Activities. Motion that contains hand-to-mouth or
similar looking gestures are another challenge. Eating, Drinking are
prime examples thereof, but also manual work like pipetting do look
similar when seen through the lens of a wrist-worn accelerometer.

Availability of Reliable Ground-Truth Data. For limited study
settings, for example under laboratory condition, ground truth labels
are a lot easier to get than under free-living conditions. Either the
participant needs to be shadowed, which is very expensive, or the
participants needs to be asked for self-reports. In both cases, smoking
events could be recorded but mis-labeled, or the behaviour of the
participants might be changed, as he becomes aware of him being
observed. Labelling, and with that gathering reliable data, can present
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participant lower upper

0 (male) −8.42± .09 9.43± .19
1 (female) −8.42± .08 4.29± .25
2 (male) −8.05± .1 9.69± .21

3 (female) −9.21± .11 5.46± .28
−8.51± .09 7.22± .23

Table 4.5: Empirically determined mean and standard deviation of the
”lower” and ”upper” states of the participants, for ”perfect” smoking
patterns. Units are in m s−2. What is clearly visible is the limited
amount of data, as only the Prototype style is included, and that
participant’s wrists are not always pointing straight up while smoking.

a great burden. Active Learning approaches, were participants are
continuously asked whether they just had a cigarette might be another
way to gather ground-truth. For example, a high-recall low-precision
recognizer could potentially limit the amount of required user feedback.

While thinking of prototypical smoking gestures the actual detection
might seem trivial. Upon closer inspection, it becomes clear that smok-
ing exhibits a lot more variability, and that prototypical gestures are
not the major group of gestures. Hence, for properly detecting smoking
gesture, a dataset which captures a large quantity of different styles is
needed. Sample signals of the aforementioned challenges can be seen
in Fig. 4.8. All “perfect” (first row, Fig. 4.8) samples were recorded
from a standing Prototype style. A noticeable difference is visible when
a participant is sitting (middle row, Fig. 4.8), where the smoking style
shows a higher variety. In particular, the Switcher style (the tendency
to switch hands while smoking), a rotated attachment and the Casual
are visible. An example of the effect of different attachment styles can
be seen in Fig. 4.7, which shows sensor data recorded when the sensor
was worn on the top and the bottom of the wrist.

A basic classifier can be deduced, however only addressing a partial
number of these challenges and smoking styles, namely the Prototype.
The cigarette-to-mouth gesture or puff can be split into two postures,
which we call the upper and lower posture. Limiting only to one axis, the
one along the arm, allows to extract rotation of the wrist along the body.
We selected the mean and variance on this axis, i.e. the Gaussian, of
these two postures as the feature to classify by, and manually extracted
those from one “perfect” pattern of each participant. The numerical
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result of this can be found in Table 4.5. We then combined these four
Gaussians into two single cross-participant Gaussians representing the
“upper” and “lower” posture.

We now want to find occurrences of the Gaussians in the complete
dataset. An adaptive segmentation, based on the variance of incoming
acceleration data is used. Accelerometer data is added element-wise to
this buffer, until the calculated standard deviation is greater than half
of one of the pre-determined Gaussians standard deviation. In which
case we record the deviation between the calculated mean and pre-
determined Gaussian mean, empty the buffer and continue with the rest
of the accelerometer data. Applying this algorithm for both the “upper”
and “lower” Gaussians, results in two lists of deviations between the
accelerometer data and pre-determined Gaussians. Summing up those
lists over a fixed time window of roughly 5.4s, i.e. the mean length of
two subsequent cigarette-to-mouth gestures [7], results in the similarity
score we used to identify the gesture. After applying an empirically
determined threshold to this summed list, we were able to identify time
windows where participants had a cigarette. Because participants also
tended to change the hand which holds the cigarette, we furthermore
merged identified windows which were separated but do not span
more than 4-8min, the mean time to consume a cigarette. To account for
simple concurrent activities, like walking or cycling, a low-pass filter is
first applied to the data. Any motion that is executed faster than 5Hz is
filtered out to remove very quick motions which are likely not related
to smoking. A carefully chosen band-pass filter based on the human
stride frequency could provide improved results.

Table 4.6 shows the results of this automatic classification compared
to our manual labeling. What is visible there is the precision ratio of the
classification, i.e. how many automatic classifications match our manual
labeling and how many do not, as well as the hit-ratio, which describes
the number of matches of automatic classifications in each class of
manually labelled data. In total 116 episodes of cigarette-smoking were
monitored, of which for all but one participant more than 55% could
be identified with automatic classification. This is a promising result,
since this is achieved by straight-forward thresholding and by Gaussian
modeling of the “upper” and “lower” posture states before and after
the cigarette-to- mouth gestures. Further analysis of actual gesture data,
as well as higher-level models of sequences of posture changes might
in combination with this method attain better classification results.
The proposed algorithm is however both fast and has a small enough
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positives (precision) hit-ratio (recall)
true false hard fair perfect

0 56.4% 43.6% 0.0% 14.3% 48.6%
1 61.8% 38.2% 63.6% 50.0% 73.3%
2 69.2% 30.8% 100.% 16.7% 76.2%
3 17.4% 82.6% 30.% 0% 16.7%

51.2% 48.8% 48.8% 20.2% 53.7%

Table 4.6: Detection score of the basic classifier. Positives are calculated
as the ratio between total number of automatically identified occur-
rences and the ones which matched the manual labelled ground-truth
(true positives) and ones which did not match (false positives). The hit-
ratio is the number of matches between manually labelled occurrences
and automatically identified occurrences.

footprint, so that it could be implemented on the sensor and act in an
on-line fashion, i.e., on the streaming sensor data. The algorithm can
be summarized into these steps:

1. low-pass filter accelerometer data with a cut-off frequency of 5Hz.
2. split data into regions of varying length where the standard deviation

is smaller than the thresholds of Table 4.5.
3. calculate the deviation of the mean of the regions and the ones of

Table 4.5.
4. sum up the deviations with a fixed-time window of roughly 5.4s.
5. record the timestamps when the sum of deviations rises and falls

below pre-determined threshold.
6. determine smoking by the number of rise and fall times during a

4-8min window.

Several things should be noted when interpreting the results of this
algorithm, which is presented in Table 4.6. First of all, only approximate
ground truth is used, which was gathered by letting the participants
double-tap the sensor prior to, during, or at the end of having a cigarette.
We then manually labelled the timespan in which we could identify a
pattern which we deemed to result from a cigarette-to-mouth gesture.
While the probability that this gives us a wrong label is low (since
we have been looking for repeating patterns in the whole dataset) the
probability that we missed a similar pattern is inevitably higher. Often,
the participants simply forgot to double-tap the sensor, or the pattern is
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just not similar enough to the ones we identified beforehand. The true
number of false positives is thus likely more optimistic than reported
here, as the classifier indeed identified the cigarette-to-mouth gesture
correctly but our manual labeling was too conservative.

Furthermore, for this feasibility study, we concentrated on a single
frequently occurring cigarette-to-mouth gesture. While the accelerom-
eter pattern that results from this is prominent in the data for all
participants, it does show an interesting variation over different days.
At most times the axis along the arm is influenced the most, while the
others are quasi-static. This is only observable as long as the sensor is
worn tight on the wrist. This also shows in the data after the participant
gets up and re-attaches the sensor in the morning, when the whole
dataset shows then a different “smoking”-pattern. This also explains
the low number of recall and precision in the dataset of participant 3,
which tended to wear the sensor in a loose way that made it harder to
recognize our identified pattern with this basic classifier.

The proposed classifier is based on a number of assumptions regard-
ing the cigarette-to-mouth gesture, which could hold only in specific
cases. We assumed that the participants were smoking while standing
still and moving their dominant hand between their mouth and a lower
position. This is of course only one specific gesture smokers tend to
exhibit, others for example might prefer to smoke while moving or
walking, which would also result in a different accelerometer pattern.
Another assumption that this classifier builds on is that a cigarette is
usually smoked in a time-frame of 4-8min.

Certain cigarettes or cigars might however cause different smoking
times. It is finally important to stress that the dataset for this study
is a realistic one. It was recorded in an unobtrusive manner with
the participants reporting being unaware of wearing the sensor for
most of the time. Furthermore, participants wore the sensor during
their entire wake-phase which gives a large amount of background
data to assess the possible confusion with other activities, for example
eating or drinking. Those might exhibit similar hand-to-mouth gestures
and postures, which could explain the rather high false-positive rate.
Because of the way we obtained the ground-truth data, we are unable to
assert this. However, compared to a study under laboratory condition
our data can be expected to be highly naturalistic, since we used an
unobtrusive sensor that has been worn over the course of several days.
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4.
Figure 4.9: The detection system handed out to participants. A Smart-
phone application consolidates smoking instances from the Smartlighter,
as well as wrist motion data from a Smartwatch. The user is presented
with basic statistics about his or her behaviour.

4.2.3 Generalized Symbolic Detection

While the last chapter provided insight into the principal feasibility, it
only used accelerometer data. A generalized classifier, based on similar
assumptions, which is independent of the sensor used for estimating
the arm’s orientation is presented here. Basing such a classifier on
quaternions as input allows for this generalization, as these can be
estimated from any number of inertial sensor input. Intuitively, such a
classifier can be designed on three observations about smoking gestures:
(1) a smoking session consists of consecutive puffs characterized by
smoking topography, (2) the device’s orientation on the wrist is known,
and (3) puffs can be identified by detecting hand-to-mouth gestures.

These observations are tested on a dataset consisting of 6 partici-
pants, which encompasses 351 smoking instances in total. Data was
recorded in-the-wild with an ensemble of a Smartphone, Smartwatch
and Smartlighter as depicted in Fig. 4.9. Other study setups require ei-
ther shadowing of the smoker or rely on self-reports. Such ground-truth
gathering can lead to non-natural behaviour [131, 284], or reporting
biases [285, 286, 287]. Comparing solely to events detected by the
Smartlighter increases the validity of the collected dataset by avoiding
these detrimental effects.

The first step of detecting smoking sessions from consecutive puffs
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Figure 4.10: Prototypical wrist motion as measured through different
inertial wrist-worn sensors.

identified in continuous data recordings is visible in virtually all related
work on wearable smoking detection. Rather complex models, like
Conditional Random Fields [29] were employed, as well as simplistic
threshold models [182, 276]. Here, we opt for a simple model that is
derived from smoking topography [275] (instead of the dataset itself): a
volume of n = 193 participants reported 17.23± 6.88 cigs

day , with an inter-
puff delay of 15.46± 7.18s, and a puff duration of 2.32± 3.3s, which
yields an overall consumption time of 306.75± 129.01s. In the following,
we treat this topography as constants and threshold the detected values
with those.

Prior to applying this topography, in any form, puffs need to be
detected from wrist motion (cf. Fig. 4.10). Any estimation of the arm’s
motion in three-dimensional space can be expressed as a sequence
of quaternions qt ∈ H. The motion can either be estimated from
acceleration-only signals, or from the full set of inertial motion sensors.
As explained earlier, the influence of different wearing styles of the
watch can be removed by applying the estimated rotation to a fixed
reference vector:

vt(qt) =


qT

t (−1, 0, 0)qt, if le f t and rot
qT

t (−1, 0, 0)qt, if right and ¬rot
qT

t (1, 0, 0)qt, if le f t and ¬rot
qT

t (1, 0, 0)qt, if right and rot

(4.1)
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m m{,23}

a
a{21,289}

m
m{,23}

p

p p{1,}

[^p]{89,2667}
p

m{1,23}a{22,289}m{1,23}

{7
,2
3}

(p{1,}[^p]{89,2667}){7,23}
puffing smoking

Figure 4.11: Regular expressions and respective state machine for sym-
bolic smoking detection. Symbols are generated from wrist motion
according to Equation 4.2. Symbol repetitions are chosen according
to the smoking topography skew-normal distributions in multiples of
25Hz.

which then results in an estimated vector vt ∈ R3 that captures the
current wrist’s attitude at time t. The reference vector changes if either
worn on the left and rotated, or on the right and not rotated, in all other
cases if does not need to be changed. This transformation generalizes
from the actual sensor set that was used for estimation. Furthermore,
it provides the wrist’s attitude in a global frame of reference, that is
independent of the attachment style on the arm.

With the wrist’s attitude expressed as a vector vt, we can encode
a further assumption about puffs: a puff is imminent when the wrist is
pointing towards the sky. This condition is not only fulfilled while taking
a puff from a cigarette, but for other activities like eating, drinking,
crossing the arms, scratching one’s head, etc. as well. However, due
to the number of required puff repetitions and the particular timing,
smoking might still be discernible from other con-founding activities.
Since we can express the arm’s attitude in vector form, a threshold
on the axis that points towards the sky is sufficient to express this
condition. In our case, this is the z-axis (cf. Fig. 4.6), which spans both
the sagittal and frontal (coronal) plane.

Another observation about the puff gestures is that a quick movement
is executed to bring the hand to and from the mouth. This can be captured
by calculating the angle between consecutive arm attitudes, i.e. we
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let rt = cos( vt−1·vt
|vt−1||vt | )

−1. Note that this is related to the rate-of-turn
measured by a gyroscope, however rt is drift-stabilized. Furthermore,
estimating the rate-of-turn from attitude vectors also allows the rate-of-
turn to be estimated from non-gyroscope sensor readings. Given rt, it
is possible to detect quick movement by yet another threshold tr.

These quick movements enclose an interval where a puff was proba-
bly executed. If a puff was executed, the interval defined by two such
spots corresponds to the puff duration. Additionally, if the wrist was at
the mouth, this might actually be a puff. Given this, we can also define
the inter-puff interval as the time between two such consecutive puff
candidates.

The above description lends itself to model smoking as a finite-
state automata. Durations, elicited from smoking topography, can be
encoded as repetitions into the states of such an automata. This is
similar to detecting gestures by transforming sensor data into strings
[288]. Such a model is comparatively simple and does not require any
dataset for parameter estimation. First, we define the input alphabet
A = {a, p, m, s, }, where a designates the wrist being (presumably) near
the mouth, m an ongoing wrist motion near the mouth, p identified puff
candidates, s when smoking, and for all other conditions. As the first
step, the input vectors vt and rt are converted into symbols according
to:

at ∈ {m, a, } =


m = moving if rt > tr and vt,z > tz else
a = atmouth if vt,z > tz

= don’t care otherwise
(4.2)

where tr and tz are empirically derived thresholds. The input alphabet
encodes if a movement near the mouth is currently observed (rotation
rt > tr), or if the wrist is at rest near the mouth (Z-component of attitude
vector vt,z > tz), or not matching any of these conditions. The time-
dependent smoking topography parameters are then expressed in terms
of repetition of these symbols. A finite-state machine, i.e. a regular
expression on this alphabet as depicted in Fig. 4.11 can then detect
smoking instances. The smoking topography durations are reported as
normal distributions, i.e. mean and standard deviation are given. By
deliberately selecting the .99-significance interval on the probabilistic
distributions for each duration, hard repetition boundaries are extracted.
However, the standard deviation is larger than the mean, so we assume
a skew-normal distribution with an estimated skew value. Fig. 4.11

presents the chosen values.
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The detection automata are encoded in a two-layered approach. First,
the wrist attitude sampled at a fixed rate is transformed into symbols
according to Equation 4.2. Next, puffs are detected according to their
duration: all matches of the regular expression m{2,45}a{40,578}m{1,45}
are replaced by the p symbol. This is the first layer, afterwards all
matches of (p{1,} [̂p]{310,5337}){7,23} detect smoking. The first expression
encodes the puff duration, the second encodes the inter-puff duration.
Explained in plain English, the first expression requires the wrist being
at the mouth for at least and up to puff duration (in number of sensor
frames) and surrounded by short sequences of strong motions. Likewise
the second expression matches sequences of puffs that were repeated at
least 7 times, and where no puffs were detected for at least and up to
inter-puff duration.
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Figure 4.12: Symbolic representation of smoking instances and single puffs. The bottom row presents puffs
transformed into a symbol stream by means of Equation 4.2, the top row presents the result of applying the
finite automata applied to the generated symbol stream and the resulting smoking detection.
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TP TN FP FN t

ground
truth

pre-
diction

FN FP

events overlap

wrong segmentation

FPTP

Figure 4.13: Definition of event detection error. Any overlap is counted
as a detected event (TP). Segmentation errors (in grey), i.e. incomplete
overlaps are ignored as they neither influence the actual recognition
task nor inform the design of the recognizer.

Fig. 4.12 depicts this approach graphically. In the bottom row
a single puff transformed into a stream of symbols is shown. This
encodes our original assumption that a puff is executed after a quick
wrist movement, and then staying at the mouth for several seconds.
The symbol stream on the bottom right is the target sequence that is
detected by the finite state machine described in Fig. 4.11. The results
of this recognition are shown for two smoking instances on the top plot.
Only sequences of several hand-to-mouth gestures (puffs) are detected
with this approach, and no time-based segmentation is required.

For smoking detection, the number of events that are correctly
classified as smoking, and correctly rejected as non-smoking are most
interesting. Hence we define the following errors for this classification
approach, also depicted in Fig. 4.13:

True Positive (TP) user was smoking and was detected.
False Positive (FP) user was NOT smoking and was detected.
False Negative (FN) user was smoking and was NOT detected
True Negative (TN) user was NOT smoking and was NOT detected

detected refers to the condition when a smoking event is emitted
which overlaps with a smoking instance that is present in the ground-
truth. This can also lead to conditions where smoking was detected
too late or too early (c.f. Fig. 4.13). However, these cases are ignored as
the exact beginning or end of smoking sessions are not important. It is
enough to correctly detect the presence of a smoking session, hence we
ignore segmentation errors.
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smoking NULL
smoking 47 5 90%

NULL 12 59

79% 8%

smoking NULL
77% 95 28 smoking

165 278 NULL

37% 9%

Table 4.7: Confusion matrix for a dataset of large variety containing 6
participants (right hand), and a selection of less variety with 4 partici-
pants (left hand). On the bottom line the recall and False Positive Rate
is shown, the rows in the middle show the precision.

One measure for this smoking classification is its recall (also known
as Sensitivity or True Positive Rate) . This is equivalent to the probability
P(detected|smoking), i.e. smoking is detected given that the user was
smoking. This measure should be as high as possible to not miss
any smoking events, while allowing for occasional false alarms. The
amount of false alarms can be quantified in two ways: (1) as the precision
(Positive Predictive Value) and (2) the False Positive Rate (FPR). The
first one (precision) is equivalent to P(smoking|detected), the probability
of smoking when it was detected. This allows to answer the question
at which ratio users where smoking when it was detected. The FPR in
contrast indicates how often a detection would happen given that the
user had not smoked P(detected|¬smoking). This is the rate at which
the system wrongly labels other activities as smoking (see Table 4.6).

For the presented data recordings (351 instances, 6 smokers) a preci-
sion of 77% at a recall of 37% could be reached (9% FPR). Background
data (not smoking) and smoking data was balanced to 50% each. The
results show that the assumption that smoking can be modeled as a
fixed sequence is too simple and does not capture the full diversity of
different smoking styles. However, the presented approach can be used
to prove that enough diversity was captured during data collection
to avoid overly optimistic results. For example, when removing just
two participants from the above mentioned dataset, we can test the
remaining 123 smoking instances. This than leads to a precision of 90%,
a recall score of 79% and an FPR of 8%. Scores that are comparable to
the currently best recorded recognition systems.

These results should be interpreted in the light of possible applica-
tions: (a) providing an exact cigarette counter, (b) providing cessation
information on a mobile while smoking, and (c) tailoring of interac-
tive information. For (a) the score clearly shows that the offset of real
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and estimated number of smokes after a short time period will be too
far apart for a user to build trust into the system. The FPR rate of
8− 9% indicates that when splitting the day into 10-minute interval
about 24 ∗ 60

10 ∗ .08 = 11.52 misreports per day are probable. Such over-
reported numbers are in contrast to the psychological bias [289], which a
smoker would then catch quickly. In the case of providing “just-in-time”
(b) intervention material, this would be less problematic, as the smoker
might simply receive an occasional intervention when not smoking.
Even when only detecting 37% (recall) of actual smoking events, a
system that uses smoking as a cue to provide timely information might
be useful. For tailoring information, the influence of information on the
smoking behaviour is to be quantified. This means that a highly precise
classifier would be required, the higher the probability of detecting real
smoking events the more reliable decision based on these numbers can
be - with a precision of 77%, such an application would be possible.

Additionally to the just mentioned applications, the presented sym-
bolic detection approach can check that a smoking dataset does contain
smoking data of enough variety. If high scores (> 80%) can be achieved
the dataset contains mostly smoking events of prototypical style with
little confounding activities. If low scores (< 30%) are returned, the
dataset might contain smoking with more variety, like the Thinker,
Socializer or while driving a car. The approach therefore provides a
baseline to assess the quality of a dataset and subsequently the reliabil-
ity of detection scores of a smoking classification system.

4.2.4 Machine Learning Detection

Established that the recorded datasets contains smoking events of high
variety one might wonder how well a machine-learned model, the
classical approach of Activity Recognition, would perform in detecting
smoking gestures. The major differences to the previous approach
are: (1) domain knowledge in form of smoking topography can not be
directly modeled, but have to expressed in the dataset or the calculated
features, (2) characteristics not captured by the previous approach might
be automatically picked up. To show this, several learning approaches
(SVM, RF), different feature sets and segmentation parameters are
tested and reported here. The full combination of tested parameters is
depicted in Fig. 4.14.

The annotations present in the recorded data sets needed to be
adjusted for two reasons: First, participants annotated by marking only
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Figure 4.14: Tested parameters for the machine-learning approach. Dif-
ferent sensor inputs (acc, mag, gyr and rotation), are combined with
different lengths of sliding windows, of which time, frequency and
relative time features were extracted. These features are tested with an
SVM or RF classifier, and finally different lengths of label smoothing
are applied. Each path in this graph represents one tested parame-
ter combination, nodes marked with a * provide several additional
parameters.

the beginning of each smoking session, which gives only an estimate of
where a smoking incident resides in the data. For training and evalua-
tion, the annotation end was set after visual inspection of each incident.
A second adjustment that was required involved moving the beginning
of an annotation as well, depending on the way the participants an-
notated. While the recording of smoking always immediately started
after the lighter was used, the annotations made on the smartphone or
smartwatch often preceded the actual incident significantly. In the latter
case, the beginning of each annotation was moved, again, via visual
inspection of raw data, no annotations were removed.

The recording of wrist motion data was started only after an annota-
tion had been registered: This conserves energy at the price of possibly
missing the first seconds of a smoking incident, especially when anno-
tating with the Smartlighter. While the lighter advertises itself directly
when it is lit up, we have sporadically noticed that the Bluetooth LE
connections between Smartphone, Smartlighter and Smartwatch intro-
duce a delay of up to a minute. Such delays present a major trade-off,
though these exist for alternative monitoring systems as well.

Intuitively, a smoking incident can be split into single puffs of a
cigarette. As can be seen in Figure 2, such segments can be further
characterized into three stages: raising, keeping, and lowering the wrist.
This observation has been used for adaptive segmentation [29] and for
motivating the choice of time-window for static segmentation [32, 178,
290, 291]. A window with an overlap of 50% and a duration of 10 -
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15 secs, have been derived from smoking topography research. We
followed the approach of using static time-windows. Whether or not
a participant was smoking is predicted for each segment, however, we
did not fix the duration upfront, but tested a set (512, 1024, 2048, 4096

samples, which is equivalent to 10.24, 20.48, 40.96, 81.92 seconds) of
intervals.

Such extracted segments carry data from each sensor modality. Each
of which has different power requirements: Accelerometers require the
least amount of power, followed by magnetometers and gyroscopes,
while fusing all these into an attitude measurement requires the most
power. For efficiency reasons, we are interested in the sensor modality
that provides the maximum classification score by itself. Therefore, we
evaluated all modalities independently to investigate their respective
influence. A hierarchical approach, where the accelerometer provides
a high-recall and low-precision classification could be used to switch
on less efficient but higher- precision sensors. This however is of little
use in our case, since this is only useful if a subsequent classification
on power-hungry modalities would provide higher precision.

The raw data of each segment is compressed with accumulating
functions to decrease the computational complexity of the classification.
Three feature sets are compared in this work: (1) a time domain set,
which includes the mean, standard deviation, euclidean norm and root
mean square of the segment, (2) a frequency domain set, which includes
the center frequency, the three frequencies with maximum amplitude
and spanned spectrum, and (3) an offset time domain, which includes
the same features as the time domain set but relative to the first sample.
The offset feature set was chosen to test whether the starting position of
the wrist has a strong influence on the classification results. However,
the offset feature set cannot account for different styles of wearing the
Smartwatch (e.g., display below the wrist, or between the left or right
wrist) and the resulting dissimilar measurements. While this challenge
could be addressed by rotation-invariant features (e.g., as in [292]), we
instead rely on sampling enough such examples and train the classifier
for this setting. Permutations of feature sets and sensor modalities were
not tested.

For classification, we compare two classifiers that are commonly
used in related work: Support Vector Machines (SVMs) and Random
Forests (RFs). SVMs were run with a standard radial basis function
(RBF) kernel. The number of trees in the RF was limited to ten. For both
classifiers, a NULL rejection threshold was additionally estimated to
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pick out background data. This threshold is applied to the confidence
score of each classification result to avoid training the NULL class
explicitly, which would decrease the classifier’s generality.

The mean consumption time of a cigarette is generally much larger
than the chosen segmentation windows. To identify individual smoking
instances, a label smoothing is applied after the classification procedure.
Assuming that misclassification can happen sporadically, we applied
a majority voting on the classified segments. The window over which
this majority voting is applied presents a further parameter, which
was tested on a set of one, five and ten segments. Depending on the
segmentation’s window size, between 10.24 - 819.2 seconds of data
is classified at once. The gesture recognition system was evaluated
once without a post-processing pass, and once with the different post-
processing parameters applied, to explore the best detection approach
and to give a realistic estimate of smoking incident detection.

In the previous subsections, all parameters and the tested values
were detailed. These are summarized in Fig. 4.14, where each path
through that graph represents one tested pipeline. Nodes marked
with a star have additional sub-parameters (e.g., window duration
for segmentation) that further increases the number of combinations.
A grid search was performed over all these parameters to select the
parameter combination (also called pipeline here) with the highest
average F1-score. Each parameter combination was repeated 50 times
on a random stratified split of the whole (cross-user) motion data.
40% of the data was used for training, with the remaining 60% for
testing. In total 19200 combinations were tested. The sample order
was retained5 during the random split, only removing training samples
from the original sequence. Motion data encompassed all participants,
the evaluation results are therefore valid for a person-independent
classification. For computational tractability, a GNU parallel [265]
based cluster with 42 cores was employed. The implementation of all
evaluated recognition approaches is based on a modified version of the
Gesture Recognition Toolkit.

Fig. 4.15 shows the average precision and recall of a single parameter
combination, evaluated with all sensor modalities combined with one
of the classification algorithms for all sliding window durations, with
and without post-processing. After applying label smoothing, the
predictions correspond to actual smoking incidents. Before this step,

5Other approaches, for example mixing the sample set randomly, would invalidate
the post-processing step, since it assumes a time-ordered test set.



106 chapter 4. smoking detection with wearable sensors

predicted labels can correspond to the same event multiple times. As
can be seen from these results, the RF classifier has a 3 - 5% higher
F1-score than the SVM classifier for all parameter combinations. For a
large smoothing window of ten frames and a segmentation window of
512 samples, the highest F1-score of 84% is achieved. This corresponds
to a classification window duration of 102 seconds, or roughly one and
a half minutes. These results show that detection of smoking instances
from wrist-motion is feasible.

It is furthermore visible that measuring wrist acceleration alone is
not only sufficient, it is in fact the best overall perfoming modality on
several occasions. Interestingly, the best-performing feature set choice
for acceleration depends on the used classifier. For RF, the time feature
set performs best, while for the SVM classifier, the frequency feature
set is a better choice. The choice of segmentation window size is also
influenced by the choice of classifier. For SVM, a larger size of 4096

samples clearly outperforms the choice of 512 samples for RF, and vice
versa. A large segmentation window on frequency features seems better
suited for classification with an SVM than for RF.

Magnetometer measurements show the highest precision, after the
measurements are corrected to include only relative movement instead
of the absolute direction of magnetic north (i.e., the offset feature set).
It thus appears that the global reference of magnetometer measurement
needs to be corrected to provide useful measurements. Correcting only
relative to the first sample, as we did, however proves to be inefficient:
While independent of the cardinal direction when starting to smoke,
changing this direction while smoking still has a large influence. A
baseline correction, i.e., assuming that the cardinal direction of the body
changes relatively slow compared to the direction of the wrist, would
allow to apply a high-pass filter. This way, the cardinal direction of the
body could be removed from the compass signal.

The challenge of global orientation in IMU signals has also been
addressed in the RisQ system [29]. There, the classification was based on
the attitude of the wrist expressed as quaternions with a global reference.
The approach was to use the difference between two quaternions to
remove the global reference, effectively transforming the quaternions
into a stabilized turn-rate measurement. Even without any quaternion-
specific feature set, there are instances where this modality performs
comparatively well, reaching an F1-score of up to 83%. However, only
when using a RF classifier, and in cases where label smoothing has been
applied (cf. Figure 4.15 RF, smoothing=5).
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Turn-rate measurements show the highest recall throughout all
parameters. This is most likely due to the differential nature of this
signal - during rest points of the smoking gestures the signal measures
zero (cf. Figure 4.10). These restpoints, when the wrist is near the
mouth or kept next to the body, are easily confused with other activities,
however, leading to a higher recall but a lower precision. Compared
to that, the absolute nature of the other modalities do not exhibits
this. For example, the magnetometer measures the (globally) absolute
deviation of the wrist to magnetic north - if not all possible deviations
are included in the training dataset recall will accordingly be lower.

In previous works [178, 29], segmentation windows of 10 - 15 sec-
onds for identifying single puffing instances. Our results provide
further evidence that this is indeed a reasonable decision for some
classifiers: The RF classifier performs best with this window length
(512samples at 50Hz amount to 10.24seconds) with the time domain
feature set. However, the frequency-based SVM classifier operates best
with a much larger window of 81.92seconds. The choice of segmenta-
tion window is mostly independent of the smoothing window for RF.
In case of the SVM, a larger smoothing window also performs better
with a larger segmentation window. One can also note that different
choices of segmentation window size have a stronger influence on SVM
classifiers. Smoothing is finally a viable option to further increase the
F1-score: In our case, the score of both classifiers is increased by 6 - 7%,
to a maximum of 84%.

The authors of two related studies [29, 30] remarked that acceler-
ation data might not be sufficient for detecting smoking from wrist
motion. Our results indicate the opposite, and show that wrist accel-
eration is indeed sufficient. While wrist motion alone does not yield
a fully-defined body model, the key to detecting smoking gestures
seems not only its prototypical movement pattern but also its repetition.
Additionally, smoking is mostly executed on the vertical body planes
6, on which movement can be measured with an accelerometer alone.
Additionally, an accelerometer is the most power-efficient inertial sensor
currently available. The idea of using a hierarchical filter, in which an
efficient high-recall classifier is used to switch on sensors that provide
a high-precision classification in a second step, might not be necessary.

Compared to the previously presented symbolic detection approach
the machine-learning approach can provide increased performance.
For the best-performing combination (F1/recall/Prec=84%, RF, smooth-

6The coronal and sagittal planes.
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ing=10, time features, 4096 segment size), the recall was increased by
47% and precision by 7%. This shows that applying even a non-specific
(in terms of engineered features) machine learning approach can re-
sults in a smoking detection system. However, these results should be
interpreted in the light of a still limited dataset that might not be fully
representative of a real smoker population. For this, a larger dataset
would need to be recorded. With the current system missing about 16%
of smoking incidents is probable, while 84% of the detected smoking
instances were really smoking.

4.2.5 Alternative Sensors

While wrist-worn motion, and the instrumented lighter already pro-
vide practical insights into personal smoking behaviour, other sensor
modalities that correlate to smoking could be used too. In related work
the following additional sensors were presented: mobile phlethysmog-
raphy [181], audio-based lighter usage detection [182], neck-worn body
audio breathing [182], RF-proximity of necklace and wrist device [30],
wrist-worn gas-sensors [184] and wifi-infrastructure [34].

A barometer which detects height changes of the wrist in the range
of meters might provide an additional insights. However, only for the
Prototype smoking style, i.e. where there are strong changes around
the vertical body planes and only when the smoker is not moving, as
his movement might change surrounding air pressure.

Jaw muscle contractions might also be indicative for deep inhalations
during smoking. These be picked up by head-worn Electromyography
(EMG) sensors 7, or by a infrared distance sensor mounted in the ear
[37]. Alternatively, the wrist-worn motion detection could be extended
with a reference measurement at the head to further distinguish the
global magnetic orientation of the wrist with respect to the mouth.
Furthermore the RF-distance could be recorded with such a device. A
smoker’s pulse also increases while smoking. Furthermore gas sensors
mounted near the mouth could provide another modality. A more
intrusive measurement device would periodically measure the blood
cotinine levels, similar to devices for continuous blood sugar estimation
[293], which would allow to measure other biomarkers as well.

7for example the JINS MEME!: https://jins-meme.com/en/
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Figure 4.15: Mean precision and recall scores for the RF and SVM
classifier. Four parameter were varied: (1) the sliding-window size
(time is given in number of 50Hz samples) (2) the extracted features
including time domain features, time domain features relative to the
first sample in the window (offset) and frequency domain features (3)
the sensor modality and (4) a smoothing of 1, 5, and 10 samples was
applied. Each parameter combination was tested in a 50-times random
stratified split over the whole dataset.
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4.3 wrist-motion vs. instrumented lighter

When comparing a wrist-motion smoking detection with an instru-
mented artifact there are two main dimensions to compare on: de-
tection accuracy and energy consumption. For the first, the former
chapters gave an indication where we can assume that the lighter pro-
vides a voluntarily gold-standard for smoking detection. Wrist-Motion
detection is challenged by confounding activities, and by a sampling
problem for the large variety of different smoking styles. For now, we
can assume that about 84% (recall rate of ML classifier) of smoking
instances can be detected, probably less in unconstrained conditions.
However, a wrist-motion detector might be applied post-recording -
for smoking detection it would be enough to simply collect motion data
continuously and apply a detector later. An instrumented artifact needs
to be deployed before smoking can be sampled. Another difference is
the detection delay, the lighter detects smoking at its onset. A motion
detection algorithm requires at least a few minutes of data before pre-
dicting a possible smoking incident, hence providing an event earliest
at the middle of smoking.

Another comparison dimension is the required energy for actually
doing the smoking detection. For the instrumented lighter Table 4.2
lists the required electrical energy per-day: 12.39J. This is the energy
required to detect the lighting event, store the event in memory and
communicate this to a connected Smartphone via Bluetooth LE. A
possible detection algorithm running on a core connected to inertial
motion sensor would be required to run sampling and detection within
this energy budget (disregarding any additional costs of communicating
the detection to other systems). Table 4.8 lists the energy requirements
for sampling the sensors of two current IMUs. One can see, that just the
sampling process of the full set of sensor requires a magnitude more
energy. However, a 24h sample of acceleration (TDK acc) is on par
with the consumed energy of the instrumented lighter. Comparatively,
1.7J could be used for communication or computation. Bluetooth LE
8 requires 29.6µJ bit−1: disregarding energy required for a controller,
7179B could be transmitted. The same micro-controller, containing an
ARM M0-core, running at 24MHz, draws 6.6mW, i.e. can be powered
for 257s per day with this energy budget. For implementing a detection
algorithm, this is quite challenging.

8Assuming non-acknowledged transmission at 8mA TX consumption, and .27bit s−1,
see [296].
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sensor µA @100 Hz µW @100 Hz J@ 24h

Bosch acc 180@2.4V 432 37.3
Bosch gyr 850@2.4V 2040 176.26
Bosch mag 660@2.4V 1584 136.86

TDK acc 68.9@1.8V 124 10.71
TDK gyr 1230@1.8V 2214 191.29
TDK mag 90@1.8V 162 13.99

Table 4.8: Energy consumption of a Bosch BMX160 [294] and a TDK
ICM-20948 [295] 9-axis IMU sensors. Values are given at typical opera-
tion condition as supplied in datasheets. To keep the discussion concise,
the sensors are assumed to be sampled continuously.

4.4 sensor-assessed vs. ema smoking

This section details how the prototypes were deployed and used in
an experiment by 11 participants, providing data covering a combined
timespan of about 2800 hours. The first two Smartlighter prototypes
were additionally evaluated during those user studies. The 11 vol-
untarily participating smokers were recruited from the University of
Darmstadt, and were mostly members of the university, Table 4.9 sum-
marizes ethnographic data of these participants. Three participants
(number 8-10) were asked to use version 1 (coil-based lighter), while
eight others (number 0-7) were asked to use version 2 (gas lighter) of the
Smartlighter. Each participant was asked to use the lighter exclusively
for 4 days and could afterwards decide to continue its usage. All were
aware that their cigarette consumption is being monitored by informing
them at the beginning of the study that the lighter is logging when
it is being used and by providing feedback of the prototype working
through the indication LEDs during operation.

Pre- (Table 4.11) and post-study surveys (Table 4.11) were conducted
to elicit an estimate of the smoker’s cigarette consumption awareness
and a subjective opinion of the overall system. The questionnaires
contain a number of statements that smokers were asked to grade
along a 5-level Likert scale on agreement (agree strongly, agree, agree
somewhat, disagree or strongly disagree). Results in Table 4.11 are
the normalized mean and standard deviation of those assessments.
Participants did not access their recordings during the course of the
study, but were exposed to a statistical summary (see Figure 4.16) before
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Subject
19 days monitored
132 cigarettes consumed
-0.06 cigs/day²

mean consumption:
6.95 cigarettes per day

3h 18min between cigarettes

these are

6.34 cigs/days less
than all other participants

34.32€ spent
(0.26€ per cigarette)

13h 12mins spent
(6mins per cigarette)

Figure 4.16: Example report generated for the study participants. The
plot on the right side shows the amount of daily smoked cigarettes on
four different times of the day. To the left are personalized smoking
statistics as captured by the Smartlighter.

Number of study participants 11
Average age of participants (in years) 34.53± 12.14
Number of (reported) cigarettes per day 15.11± 5.95
Average years of cigarette consumption 13.03± 6.54
Average days of participation 11.36± 8.15

Table 4.9: Summary of the study participants’ smoking habits.

answering the post-questionnaire. The gathered data provides the basis
of the following findings below.

Hypothesis I: Smokers overestimate their daily consumption. One of the
basic metrics of cigarette consumption is the total number of smoked
cigarettes over the course of a day. A comparison of this self-reported
and measured number of smoking incidents is given in Table 4.10.
The self-reported number of incidents was extrapolated by multiplying
the self-reported daily consumption by the timespan of participation.
It is a dominant trend that the participants overestimated their daily
consumption compared to the number of measured incidents. This
can be attributed to a number of different factors: First of all, the
gathering process might not always have worked reliably and some
incidents might have been missed. This effect is also visible in the post-
study questionnaire results (question 10, Table 4.10), hinting towards
an unreliability of some prototypes. While the lighters needed regular
maintenance during the study, this effect should be especially strong
for those with short participation time. However, there are participants
(number 0 and 7) which are quite near to their estimation and the
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number of incidents Morning Afternoon Evening normalized

estimated measured estimated measured estimated measured estimated measured mean/std.dev. daily recurrence

0 (4 days) 36 28 2.10 0.50 3.90 4.00 2.95 2.50

1 (27 days) 324 227 1.78 2.89 1.78 3.81 8.45 1.70

2 (13 days) 260 88 9.05 1.54 9.05 3.69 6.79 1.54

3 (26 days) 312 173 4.36 2.58 4.36 3.19 3.27 0.88

4 (14 days) 77 50 1.15 0.57 2.09 1.71 2.26 1.21

5 (12 days) 228 85 4.39 2.17 7.54 4.25 7.07 0.67

6 (6 days) 120 54 7.58 1.00 2.07 1.50 10.35 6.50

7 (4 days) 48 46 6.30 3.50 4.64 5.25 4.64 2.75

8 (4 days) 80 11 7.10 0.25 7.10 2.50 5.68 0.00

9 (3 days) 60 31 7.61 2.33 5.07 6.00 7.32 2.00

10 (12 days) 180 72 4.57 0.08 6.52 3.67 3.91 2.25

0 0.1 0.2 0.3 0.4

Table 4.10: Estimated and measured (via the Smartlighter) cigarette
consumption figures for all participants. Time of day (Morning, After-
noon, Evening) has been extracted from the pre-study questionnaire
(Table 4.11). The standard deviation of the absolute difference between
normalized (over total per-participant cigarette consumption) estimated
and measured consumption shows that only some users were able to
estimate their main consumption time of the day. The plots to the right
show the daily smoking patterns per user.

estimation difference also varies from large to small differences for
other participants. It is therefore more likely that smokers find it hard
to estimate their average daily consumption.

Since we compared the daily average of consumed cigarettes as
measured by the lighter to the extrapolation of single estimate, there is
also another plausible explanation: the strong difference of consumed
cigarettes might stem from an unawareness of daily variances in be-
haviour, these variances are captured by the lighters but not by the
extrapolation of the single self-report average consumption. To gain a
deeper insight into this effect, we distributed the self-report measure
over three times of the day (morning, midday and evening) by weight-
ing the total number of cigarettes with the help of the questionnaire
results (Table 4.11). Morning is attributed to question 4, 6 and 9, midday
to question 2, and evening to question 1, 3, 16 and 20. Smoking inci-
dents measured by the lighter are attributed to same time-of-days and
averaged out over the participation time. This results in an estimated
and measured average consumption number on time-per-day basis and
can be seen in Table 4.10. The maxima of the measured per time-of-day
consumption are highlighted in bold, while the maxima of the esti-
mated consumption are in italic. Furthermore, the mean and standard
deviation of the normalized absolute difference are depicted as well.
This difference represents a comparison of the data gathered through
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the questionnaire and by the Smartlighter. Standard deviation accounts
for the fit of measured time-of-day consumption to the estimated one.
The smaller the standard deviation, the more cigarettes have been
smoked at the time-of-day extracted from the questionnaire. The mean
value of this difference depicts the fluctuation of daily consumption,
i.e. a larger mean value signifies more deviations from the estimated
daily consumption on day-to-day basis, which presents another reason
why smokers might find it hard to estimate their daily consumption.
Taking another look at the table one can see that participants 7 and 4
do have a good idea about their time-of-day consumption. Overall, it
emerged that participants found it hard to gauge their average daily
consumption and the usual times when they are smoking.

Detecting daily recurrences, in order to forecast smoking incidents,
could be improved by taking further contextual data into account.
Separating the week into work- and non-work days and calculating the
likeliness on these time-spans could improve the accuracy as a lot of
participants smoke during work (Table 4.11 question 2). Additionally
using location or activity recognition sensors could give an even more
detailed view on the factors that could cause smoking incidents. This
finer-grained context information would further improve the users’
experiences.
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0-1 10.5-0.5

1. at home

2. at work

3. during leisure time

4. on the way to work

6. in the morning

7. before meals

8. after meals

9. directly after getting up

13. when feeling stressed

16. when having alcohol

17. when somebody offers me a cigarette

18. when somebody smokes in my vicinity

21. how do you estimate your health
risk compared to other smokers

22. how do you estimate your health
risk compared to non-smokers

0-1 10.5-0.5

1. have you noticed a significant change of
your consumption behaviour during the study?

2. have you paid more atten-
tion to where/when/how much
you smoked during the sudy?

6. The system helped me to get a better un-
derstanding of my consumption behaviour.

7. I solely used the ubi-
lighter throughout the study.

8. The automatic acquisition of my consump-
tion could help me to quit/reduce smoking

9. Displaying the number of con-
sumed cigarettes directly on the lighter

would affect me in a stronger way

10. The gathered data is match-
ing my real consumption

11. The automatic acquisition of
my consumption is useful to me

15. The comparison of the number of smoked
cigarettes to other participants is interesting

Table 4.11: Pre- and Post-study questionnaire results on smoking self-awareness. Participants graded statements
via a five-level likert-scale from ”definitely not applicable” (-1) to ”strongy applicable” (1).
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Another important aspect visible in the recorded data are daily
recurrent patterns, i.e., the likeliness of a smoking incident given a
specific hour of the day. The daily recurrences for each participants can
be found in Table 4.10. The figure depicts the normalized histogram
over 24 hours throughout the course of the study, where each bar
represents one hour, for single smoking incidents. It is apparent that,
besides the night-time, there is no fixed cross-participant distribution
and that the precision of this measure likely depends on the time
of participation. For smokers that have participated longer, this is
likely more precise. However, the time-of-day where a participant is
most likely to have a cigarette can thus be estimated. For example,
participant 3 has consumed a cigarette at 13.00h on 77% of his 13-day
long participation. Other similarly strong patterns are visible for other
participants as well. This kind of analysis could allow forecasting the
times when a participant is most likely to smoke and could serve as the
basis for a more exact ahead-of-time intervention.

The strong differences of self-reported and measured total cigarette
consumption are quite pronounced. This can partly be attributed to an
unawareness or difficulty to estimate one’s daily consumption. During
the post-study questionnaire we also asked the participants whether the
gathered data is matching their real consumption (Table 4.11 question
10), i.e. if the participants are “trusting” the system, which all partic-
ipants rated as “applicable” or “somewhat applicable”. Apart from
the indication LEDs, there was no direct feedback of the recorded data.
Participants thus could check whether data was recorded but only from
smoke to smoke, not overall. The participants were however also asked
to check the report of their daily consumption (see Figure 4.16) before
answering the post-study questionnaire. This absence of direct feedback
likely presents a limit of this study: Integrating a display into the lighter
itself to display the gathered data during smoking incidents could affect
smokers in a stronger way (Table 4.11 question 9) and would also allow
to build more trust into the system.

The fact that the Smartlighter v1 (coil based) needed to be recharged
often and others lead to significant adoption problems. The time needed
for the coil-based lighter to heat up has been pointed out as problematic
by some participants. Also the mechanical setup of the lighter, with
only a small hole to match a cigarette in, was found problematic. This
can be seen in the results of question 7 (Table 4.11), where participants
have been asked if they solely used the provided prototypes.

From our experiments with different sensor modalities, we learned
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that multiple complementary sensors to detect smoking incidents may
increase accuracy. People may forget to pack their device, batteries may
run out, etc. Such a cross-calibration of multiple sensor modalities can
of course also be used for other types of sensors, which allows users to
adapt the sensors they are wearing to their specific needs.

Furthermore, participants felt that the system helped them to raise
their awareness of their smoking behaviour (question 6), could help
them to quit (question 8), and deem the automatic acquisition to be
useful (question 11).

4.5 summary

Wearable systems, as presented here, can detect smoking incidents
continuously, with minimal user interaction and provide detailed insights
into day-to-day smoking behaviour. This allows to gain new insights
into one’s personal addiction, for example patterns like a post-lunch or
post-wake cigarette can be spotted. Based on such an insight, coping
strategies like actively trying to suppress the urge to smoke, could be
suggested on a mobile computing device. At the same time, it can be
detected if such a suggestion was helpful. Just-in-time intervention
based on a model, which predicts when a cigarette is most likely to be
consumed, would be another novel possibility to persuade smokers to
quit.

This chapter has highlighted the design of the Smartlighter, a device
to detect smoking in an inconspicuous and energy-efficient way, which
was tested in several user studies. Of those user studies, design guide-
lines for such gadgets were extracted and this instrumented artifact
approach was compared to an EMA approach of eliciting smoking be-
haviour. Furthermore, a purely symbolic approach of classifying wrist
motion, which can asses the variety of smoking datasets, was presented.
Additionally a machine-learning approach was shown to achieve an
F1-score of 84% on a smoking dataset with high variety (351 smoking
instances), based on acceleration data only.



118 chapter 4. smoking detection with wearable sensors

This chapter contains contributions from the following peer-
reviewed publications:

Philipp Marcel Scholl and Kristof Van Laerhoven. “A Feasibility Study
of Wrist-Worn Accelerometer Based Detection of Smoking Habits.”
In: International Workshop on Extending Seamlessly to the Internet of
Things. 2012.
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Figure 5.1: Typical wetlab environment, top row shows workbenches
and other environemntal circumstances, middle and bottom row typical
steps in a low-safety laboratory.

Biologists work in highly dynamic, shared laboratory environments.
Lab benches are packed with all kinds of different equipment such
as tubes, racks, compounds, specialized machinery, computers and
shrink-wrapped documentation. The experiments performed in such
labs often take a significant amount of time and occasionally need to
be suspended, for instance to wait for an organism to grow or until
sufficient amount of DNA has been incubated. To provide valid results,
these experiments need to be repeatable, which is why biologist heavily
rely on handwritten notebooks to keep track of the specific steps taken
during their procedures. Protocols are either established from scratch,
incrementally refined or executed as close as possible.

Lab protocols are routinely written “offline”, after the experiment
has been performed, and are mostly reconstructed from memory, if
written down at all. One reason for this is the large effort in putting
down all experimentation equipment (e.g., pipettes, flasks, gloves, or
containers) and moving to a different bench to take notes or retrieve
information from a PC. Another, more profound reason is the risk of
contamination - laboratories are classified into four bio-safety levels
with increasing precautions to contain harmful agents, as they may pose
a threat to the experiment, the health of the experimenter and to the
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environment. This means that (possibly) contaminated materials (such
as notebooks, protocols, laptops and cameras) are not allowed to be
taken out of the laboratory without decontamination. At the same time,
it is not allowed to take materials into the laboratory to avoid falsifying
experimental result by contaminating the agents under investigation.
This hinders the “in-situ” documentation retrieval/creation abilities of
biologist while performing experiments.

In this chapter, an ensemble of wearable sensors and computing
devices is presented, which is to support the short- and long-term mem-
ory of a biologist. Without the possibility to capture abstract thoughts
directly, digital signals related to protocol steps can be captured. As
most machines and environments are built to be experienced by hu-
mans, video and audio recordings, our main senses, are assumed to
provide the largest portion of insight for remembering details. Contin-
uous recordings of these modalities on their own are however hardly
useful as they cannot be browsed quickly. Therefore the use of con-
tinuous, ego-centric audio, video, motion and artifact recordings for
indexing pre-defined manual work is investigated. In contrast to other
approaches, which instrument the environment to enable detection of
process step, we look into instrumenting the biologist in order to gain
flexibility, and to avoid the effort involved in instrumenting a wetlab.

To test whether it is possible to detect process steps via motion
recordings, a dataset encompassing 22 participants in a entry-level
DNA extraction experiment was conducted. Wrist acceleration and
over-head video, serving as ground truth, were recorded. Additionally
a wetlab course at the University of Darmstadt was recorded with
seven participants, which allowed to gain insights into the practicality
of system. With the gathered insights a third dataset, with a body-
worn video, audio, inertial wrist motion and inertial head motion
was recorded. Different recognition approaches were tested on both
datasets. The remainder of this chapter is structured as follows: First,
the recording setups for three scenarios are described, as well as a
study into a wrist-worn object identification system. We then look
into the detection of atomic action from wrist-motion. Afterwards a
Hidden Markov Model (HMM) extracted from a textual description
of the workflow, to detect workflow steps from actions is described.
We then investigate a system that generates navigation cues without
any prior knowledge about the process at hand, and finally present a
unifying concept for integrating the detection of workflow steps and
continuous sensor recordings for biologists, and other professions that
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Figure 5.2: A selection of recording setups used for experiment through-
out this investigation. To the left is the setup for the DNA extraction
experiment consisting of Google Glass and the Hedgehog acceleration
recorder, in the middle the one used for the wetlab exploration. To the
right is the latest setup in which wrist motion is recorded with Android
Smartwatches and video with a shoulder-worn 360° Theta camera.

require documented manual work.

5.1 motion-augmented video recordings

Searchable databases of multi-media recordings provide a way to aug-
ment one’s memory. This database might contain video, audio and
motion data, which is indexed to allow for quick searches. Ultimately,
queries for similarity on each recorded modality would be supported.
For example video sequencing showing similar objects or similar mo-
tion sequences can be retrieved quickly. An important aspect of this
challenge is how to encode such multi-modal data, and how to make it
searchable. One approach, based on a multi-media container format,
is proposed here together with an architecture to allow for similarity
queries on multiple sensor modalities. Examples of manual work, where
this is useful are wetlabs, while cooking, while assembling products, or
while maintaining machinery.

Each sensor generates a stream of data, in a certain format, at a
certain rate and with parameters that have to be stored in order to
compare them to other recording sessions. All of these recording
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document
databaserecord wearable

sensor data including
video+audio+motion

query by label
or recent motion

Figure 5.3: Conceptual overview of a query system for augmented
video recordings, in which body-worn sensors as well as audio and
video are recorded and analysed for quick retrieval of similar sequences

parameters should be stored in conjunction with the actual sensor data.
Additionally, recording multiple sensors also involves synchronization.
Even when running on the same device, independent sensors operate
on their own clock, which renders time synchronization an important
issue. For example, an accelerometer will deliver its samples faster,
than a light sensor, if its package is placed in the vicinity of a heat
source. Therefore, even system-local sensors, need to be synchronized
on a common clock, in the same way multiple recording devices on a
network need to synchronized.

Additionally to these issues, organizing recordings of such an en-
semble of wearable sensors quickly becomes a burden. One possible
approach is to use a multi-media container to store synchronized sensor
streams on a common time-axis, together with their recording param-
eters. The matroska standard defines such a file format [232]. In this
format, multiple video streams can be stored, as well as multiple au-
dio, subtitle and data streams. These streams can be compressed with
state-of-the-art codecs. Motion data can be stored as an audio stream
as well, storing some of its recording parameters like sampling rate
and sample format, and optionally be compressed. This provides a
standard way to encode recording parameters, as well as the data itself
in a synchronized way. Recording sessions or, if you will, memories,
of a user can then be stored as such a multi-media file. Labels, which
encompass a beginning and end time on this common time axis, and
free-form text can be encoded as subtitles serving as navigation cues.
This allows for storing ground truth data, as well as results from a
recognition system. All side-by-side on the same time-axis in the same
file.
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Figure 5.4: The actual similarity of raw motion data, which is used
for indexing the multi-media files is fully defined by a mapping into a
query space Q. This can either be done manually, or with the help of
machine learning algorithms. The mapped sequence of data can then
again be encoded into the multi-media file, and indexed by a search
tree for fast k-Nearest Neighbour queries.

The question however is how to render these multi-media files
searchable. How can we provide a way to query these for similar
gestures, both by name and by the raw data recorded during different
sessions? For example, how can we enable a biologist to execute a
“pipetting” gesture and find recordings where she was executing a
similar gesture. Both by querying the systems manually, in its literal
sense by moving her arm, and by querying explicitly by a keyword like
“pipetting” (see Figure 5.5). A way to encode this motion similarity is
required.

The problem of querying for similar motion and by descriptive
keywords can be viewed as finding a mapping from the space of raw
sensor data S to a query space C, in which a clear definition of similarity
is encoded (see Figure 5.4). Approaches range from manually defining
this mapping to fully automated machine learning systems, where only
a limited set of parameters are pre-selected. The input for such a system
is always (labelled) raw data, and for unknown raw data the output is
an element of C (or a label a if you like). The input labels, as well as the
output labels are bound to regions on the time axis of such continuous
sensor streams. These can be encoded into the matroska document as
subtitles, which encodes a beginning and end timestamp, as well as a
corresponding label, exactly the output of aforementioned mapping.

Put into the context of the biologist’s example, the query space
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Figure 5.5: Illustration of motion patterns that might be queried in a
wetlab environment and how to decide on a search algorithm.

C consists of labels such as “pipetting”, “mixing” and other manual
actions. Once a mapping from the raw data S to elements of C is
established, it can be used to generate subtitles for the recording. This
means a gesture recognition system, which maps movement data from
S to labels such as “pipetting” of C, can be encoded as a subtitle. These
subtitles are then stored side-by-side with the multi-media recording,
and used as a possible search cue. The encoding of such subtitles is
general enough to span sequences of fixed and varying sizes, and can
also be used for hierarchical label sets. In the presented matroska docu-
ment based architecture, classifiers (a different name for the mentioned
mapping), will run on a just recorded document. A subtitle stream will
be added to the document from the result of this classification step, and
added to the document.

Under which conditions is a database of such classified recordings
quickly searchable? This depends on the nature of the query space
C, and the similarity measure g defined on it (see Figure 5.5). If g is
metric, a metric tree data structure can be used to accelerate the search
on. This means that the addition operation is defined for elements of
C, and that the triangle inequality is fulfilled. If only an order relation
can be defined other tree search algorithms need to be used. If neither
condition is fulfilled by g, only a linear search is possible. Complexity-
wise, a tree-accelerated search query can be executed in O(log n), while
a linear search has a complexity of O(n), where n is the database size.
Therefore, the goal is to transform raw sensor data into a metric or
ordered query space C.

One important design decision for a wearable remembrance agent is
the format in which sensor data is stored. Here, an approach based on
a multi-media container, which encompasses all relevant parameters of
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a recording session, is proposed. Furthermore, assuming that a number
of classifiers for motion (and other) data is available, the classification
results are to be stored side-by-side with the sensor data. If no such
classifier is available, a similarity mapping would have to be defined
manually (e.g. euclidean distance), or enough labelled data would have
to be collected to build such a classifier. The container format renders
the exchange of data easier and by having a standard format, allows for
easier development of novel classification systems. The results of these
classifications can then also be quickly searched, and by proper choice
of similarity measure also accelerated. With such a system in place, the
user might not only easily document his manual tasks, but also quickly
query for similar recording by his recent motions. Hence, the activity
recognition systems can also be interpreted as a search problem, with
the major challenge of defining a similarity measure on sensor data.

5.2 object recognition with wearables

Additionally to wrist motion, Object Identification could provide a sens-
ing modality which allows process step recognition. Detecting RFID
marked objects with a wrist-worn unit for activity recognition was
shown before already [222]. Rather large RFID tags were attached to
household items to detect activities of daily living. With a similar setup
(wrist-worn RFID reader), we investigated how well test tubes in com-
mon use in the microbiology lab can be identified. For this, miniature
RFID with a diameter of less than 15mm were attached to test tubes.
Figure 5.6 depicts the whole system setup.

The first design challenge for such a system is the antenna design.
The placement on the human hand mainly dictates the possible choices.
The first trials of such a reader placed the antenna on the back of the
hand [222, 174, 221] which allowed for reading distances of 1− 2cm.
Antennas looped around the wrist [223, 222, 224, 221] have replaced
this design. However loop antennae need to be rigidified to keep their
performance controllable, a 10− 15cm reading range with a common
5cm-patch RFID-tag has been reported. Flexible antennae placed be-
tween thumb and index finger [81] are challenged by sweat and by
changing (antenna) parameters due to movement. While placing the
antenna on the thumb achieves the best reading performance, especially
for miniature tags, its attachment point also hinders the movement of
the wearer’s hand. We therefore decided to compare a flexible antenna
worn in the palm, and a rigid loop antenna worn around the wrist. Re-
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Figure 5.6: Tracking miniature components in the Wetlab (top left). The
wrist-worn RFID reader (upper right) is built from a (1) Skyetec M1

Mini reader (2) battery pack (3) RFID antenna (4) Arduino Fio module
(5) Wifi module (6) Wifi antenna.

cent developments propose Glove-integrated fiducial, and RFID readers
[298, 299].

The presented system is thought to ease the identification and la-
belling of sample tubes in wet laboratories by using a wrist-worn
RFID-unit and to tag them. Two tasks are of importance for the experi-
menter using this system: (1) identifying a sample tube (reading a tag)
and (2) labelling a sample tube (writing a tag). Both tasks should be
supported in a hands-free manner, during normal laboratory routines,
to relieve an experimenter from manual labelling tasks. Hand-written
or colored stickers with a separate lookup table, or hand-operated
label printers are the current state of this art. In turn, this requires
the experimenter to put down all tools and concentrate solely on the
labelling or identification task. The design of a hands-free system for
identifying sample tubes with RFID is based on these practises and by
the idea to limit the amount of interaction to a safe minimum. Not only
single tubes, but also multiple correlated ones are typically labelled.
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This correlation is often a variation of one parameter, for example the
amount of concentration of one compound. Labelling a series of tubes
is therefore also included in our design.

RFID tags. We chose RFID tags that can be glued on the lid of
sample tubes, since sample tubes count as consumables in a wetlab, and
are usually thrown away after usage if not kept for long-term storage.
Integrating RFID tags directly into the tube is thinkable, however it is
more likely that tags are integrated into some kind of removable attach-
ment. For example, they could be integrated into re-usable protective
caps which are routinely used during storage and transportation. Since
the caps of the smallest sample tubes have a diameter of only 10mm, we
decided to test tags of according size. Miniature tags9 (cf. Figure 5.6)
with a diameter of 15 to 5.5mm are glued to the top of sample tubes for
our prototype. The associated information for each tag is stored in a
central database to avoid local RFID storage limitations.

Reader. To test different antennae and attachment points, an off-
the-shelf RFID reader module (Skyetec M1 Mini) was hooked up to
a micro-controller. The reader could be operated in continuous and
on-demand mode. In continuous mode, the reader actively scans at
20Hz, which draws 86mA of power. On-demand mode draws the same
power, albeit only when the user explicitly interacts with the system.
Implicit interaction requires the reader to operate in continuous mode,
since a detected tag is an interaction cue. Slower continuous reading
rates are possible but need to be carefully balanced with the reaction
time of the system.

Connection. The wrist-worn reader does not include any user
interface. Google’s Glass, specifically its activated interface, allows for
interaction. The connection between Glass and the reader is established
via a WiFi interface. WiFi was chosen since it would principally allows
the system to be used in other scenarios as well (e.g. statically placed
reader), and is easier to integrate into existing applications. The wrist
unit provides a TCP server, that only operates the RFID reader while
a client is connected. In continuous mode a tag’s identifier is directly
transported to the client, while in on-demand mode, a read needs to be
requested first. With this design, energy-saving modes can be readily
implemented.

Interaction. Two interaction mechanism are provided. Both support
reading and writing tags, however the first implicit one requires a lot
less spoken interaction but requiring more energy. Constant operation

9manufactured by MicroSensys GmbH http://www.microsensys.de/

http://www.microsensys.de/
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Table 5.1: Reading times and maximum distance (0mm for those that
need direct contact to the antenna) for each RFID tag.

large antenna small antenna
distance time distance time

d14-special 5mm .7s 12mm .7s
d14-tag 20mm .8s 15mm .6s
d7-tag 0mm .6s 0mm .6s
d6.7-tag 0mm .6s 0mm .6s
sticker 30mm .8s 100mm .7s

of the reader unit is required for this scheme. We hypothesize that the
advantages of an implicit interaction outweigh a shorter system run-
time. The implicit interaction refers to an interaction that is activated
by placing a tag next to the RFID reader, subsequently the current label
is read and displayed on Google Glass. An optional voice command
allows to re-label the current sample (cf. Figure 5.7 top). For explicit
interaction, the identification and labelling task has to be started manu-
ally via a voice command. A voice menu on Google’s Glass supports
this by providing key phrases, after Glass has been activated by head
movements. Afterwards, the user is guided through the whole pro-
cess of tag detection, i.e. placing the tag on the reader, and displaying
the results (cf. Figure 5.7 bottom). After a tag has been detected, the
interaction is the same as for the implicit case.

Both techniques differ in the time spent for tag detection. In the
implicit case this time is “hidden” from the user, by activating interac-
tion possibilities only after successful detection. The explicit interaction
provides more feedback to the user, giving hints on what to do next
if tag detection fails. A user study to shed light on which antenna
is acceptable, and which interaction mechanism is more usable was
conducted.

Experiment. Seven students, aged 25 to 35 years, one female and
eight male, were recruited at TU Darmstadt. For all of them a technical
affinity could be assumed, and they were partially experienced with
Google’s Glass. Two small sample tubes (diameter 8mm) and two large
tubes (diameter 13mm) were provided. Small tubes were tagged with
a d6 and d6.7 tags, while the larger ones were tagged with d14 tags.
Table 5.1 highlights that small tags do not allow for non-contact reading.
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Figure 5.7: Implicit and explicit interaction to identify and label an
RFID-tagged test tube in the wetlab with a wrist-worn reader and a
head-mounted display. Top shows the implicit interaction, bottom the
explicit one which needs to be started via voice command.

A water bottle tagged with a 25x25mm standard tag was also provided
to emulate a large container in a wetlab. For transferring liquids a
pipette was provided. Google’s Glass and our wrist-worn RFID-reader
prototype was worn by each participant.

Each participant was outfitted with Glass and our wrist-worn RFID-
reader. A small introduction to the first interaction scheme was given.
Afterwards the participant was asked to identify and re-label the D14-
tagged tube. The next task was to label a series of all containers
(including the water bottle), in order to test the series labelling process.
The final task was to transfer water into a D14-tube and label it accord-
ingly. These task sets were repeated for each interaction scheme and
each antenna, four times in total. Starting with either explicit or implicit
interaction was counter-balanced over all participants, selected at ran-
dom by the examiner. The rigid antenna was always tested first. After
each test, the participants were asked to complete a System Usability
Scale (SUS) and were asked for general remarks.

Results. Implicit interaction (81.1) scored only slightly higher than
explicit interaction (79.1). When looking at Figure 5.8 implicit interac-
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Figure 5.8: Mean and standard deviation of SUS scores. Total score,
and score when explicit or implicit interaction was done first are shown.
Implicit interaction generally scores higher, especially when introduced
last.

tion is scored higher when introduced after explicit interaction. We
assume that this is due to a familiarization with the system. While
implicit interaction is not self-explanatory, it becomes much more obvi-
ous when introduced after the more verbose explicit interaction. This
confirms our earlier assumption that user training can replace more
explicit feedback. Participants identified a major speed-up for identi-
fication tasks as one of the strengths of implicit interaction. However,
the missing feedback when tags were not detected, even though they
were next to the reader was mentioned as a short-coming, mainly by
those participant that have started with implicit interaction. A reliable
reading process, when using RFID readers for initiating interaction is
therefore of major concern.

Only one participant scored the large, rigid antenna higher than
the small flexible one, even though the small one provides a better
reading performance. Besides concerns of comfort for the large antenna,
it was unclear for most participants how to hold the tags to achieve
good reading performance. The small antenna made this clear, since it
was attached to a flat surface, rather than spun around the wrist. This
is only an issue for small tags though, since larger tags also provide
better reading performance where orientation does not have a strong
influence. A combination of both antennae, for example one integrated
in the wrist-band and one on the wrist, would remedy those issues.
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Dicussion Generally, it can be said that implicit interaction is pre-
ferred over explicit interaction. However, object identification and
tagging remains an open issue. Better reading performance, particu-
larly for tiny tags is required for practical usage of this system. Further
integration would allow for detection sensor readings from such tags
as well, for example monitored temperature or light intensity for con-
tainers of biological compounds. This way storage problems can be
identified quickly prior to falsifying the results of an experiment, or of a
diagnostic test. Currently, fiducial markers are ubiquitous, without the
additional benefit of reading sensor data from RFID tags. A wrist-worn
fiducial reader without explicit interaction (i.e. pointing onto a marker)
is probably more practical.

Object identification is the major addition to the previously pre-
sented recording infrastructure, and also the major difference to the
data collection for the smoking case study. These object identifications
can be encoded into the matroska file as well. The results of this non-
continuous sampling are encoded in subtitle format, i.e. marking the
beginning and end of intervals while a tag was in the vicinity of the
reader. Object identification, due to its practical limitations was not
further studied in the following experiments, however should be con-
sidered for practical deployment, as it offers a robust way of detecting
activities when marking objects is not prohibitive and tags of practical
size can be used.

5.3 deployments with google’s glass

For the work presented here, a basic voice-interacted task guidance and
logging system running on Google’s Glass was developed. The system
is able to display workflow steps, and navigate or mark steps as done
through voice interaction (see Fig. 5.9). It also includes the ability to
capture audio and video from Google’s Glass, and log all interactions.
Additionally, gestures made by the dominant hand are recorded with
the low-power inertial sensing unit HedgeHog (see Figure 5.12). The
data of both systems is merged offline, as this implementation was only
used for this particular experiment.

Google’s Glass was used to capture experiments via its side-
mounted video camera and microphone. Additionally, an application
was designed to guide experimenters through pre-determined experi-
mental protocols. For the latter, an example user interface presented to
participants can be seen in Figure 5.9 and shows some of the steps of
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Figure 5.9: The Task guidance system used in the DNA extraction
experiment. A wrist-worn accelerometer logs wrist motion, while
participants are guided through the experiment with tasks displayed
on Google’s Glass which are selected via voice commands.

the DNA extraction protocol that was used during this study. Single
steps in the protocol are shown in a timeline, that could be navigated
to the left (for past steps) and to the right (for future steps). The wearer
has the choice to navigate the protocol using either the swipe gestures
on the touchpad10 on the Glass, or by voice commands. The subset of
voice commands chosen for this were “previous”, “next slide”, “check
this step” and “mark as done”. These commands were chosen by exper-
imenting with their recognition rates, trying to increase their phonetic
dissimilarity for multiple speakers. By saying “check this step”, “mark
as done” or by tapping the touchpad, the user can let the system know
that the step was performed, which is visualized by striking the current
item through. The “ok, glass” guard phrase, which is usually required
for Glass apps, was removed to minimize interaction time. If this item
was the last step on the slide, the system automatically displays the next
step. The application was implemented using the Android Framework,
and works on Google’s Glass as well as on Tablets and Smartphones.

The guiding part of our system is designed to be easily adaptable to
different protocols. For this, we decided to use a document-driven ap-

10The touchpad was enabled in this study to avoid problems with voice recognition
for non-native english speakers.
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Figure 5.10: The deployment of the system combining Glass and the
wrist-worn accelerometer, while recording biologists. The environment
is often simultaneously used by large groups of researchers or students
and is equipped with a multitude of shared instruments and special
safety zones, making it challenging to augment the environment (top
half). Hands-free recording is a strong advantage: Often, experiments
require gloves for minimizing contamination risks; Wet labs furthermore
contain a large variety of compounds, instruments and lab equipment
that require both hands to be used (bottom half).

proach, in which a human-readable and machine-parseable document
contains the steps of a procedural protocol. These steps are written
down in Markdown [300] documents. This allows experimenters to
modify and present these workflow steps on different personal com-
puting accessories (like PCs, laptops, Smartphones, and Wearables)
without much implementation effort. It furthermore allows for linking
documents, and referencing additional media files. However, the ma-
jor reason for using a document-driven design is that modification of
the protocol can be captured easily in a distributed fashion. Only the
transformations of the document need to be transported to a central
repository. The protocols can then be shared cross-device and can be
scoped on per-user basis. This provides the means to share, collabo-
rate on and synchronize the experimental protocol. The system was
deployed with biologists in two different wet laboratory environments:
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an academic teaching and an academic research facility.

5.3.1 Recording in a Teaching Scenario

Four recording sessions of up to a full day were held. In each record-
ing, up to five microbiology researchers or students were wearing the
system simultaneously, working within groups of up to four persons.
Figure 5.10 shows some examples of the video footage taken with Glass.
All users were at all times aware of the recordings (Glass showing the
current recording) and were encouraged to discuss their experimenta-
tion steps and methods, and to provide feedback of the system and its
possible advantages and disadvantages. The sound recording’s quality
of Glass was good enough in all environments to understand both the
user and the people in the immediate proximity. After the system was
handed out and activated, we did not remain present in the laboratories,
and examined the contents of the videos afterwards. Due to battery
and efficiency limitations, about one hour of continuous recordings was
possible.

In general, the acceptance of wearing the system was high, and even
in the teaching laboratory, where approximately 20 fellow students
were working in the same immediate environment of the user, nobody
expressed concerns about the possibility of them being recorded. The
latter observation might be due to the fact that experimenters do fre-
quently take their personal cameras with them to photograph or record
important experimental results (if safety considerations allow for this).
Apart from a few remarks made towards the end of the teaching ses-
sions (which lasted over three hours each), we did not note any big
signs of discomfort in wearing the system: Glass was at two occasions
taken off to concentrate on using a microscope, and once to demonstrate
it to a fellow user. One of the wrist-worn accelerometer sensors did not
record consistent data as it was not strapped on tight enough and had
rotated along the wrist during the course of the experiments. The video
quality of Glass (at 720p) tends to be good enough to be able to read
most compound labels and handwritten notes.

Results. Several findings that emerged from the video footage are
especially noteworthy: (1) Even in laboratories with a lower safety
clearance which implies minimal contamination risks and therefore
does not require gloves, the option of taking pictures or videos hands-
free is a strong advantage. On many occasions, users required both
hands simultaneously to handle instruments and the fact that Glass was
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task actions

1 solvent combine 50ml lukewarm water, 1/2 tea-
spoon salt and 3ml dishsoap in 200ml beaker and
stir

pouring,
transfer,
pipetting,
stirring

2 cutting peel and cut onion/tomato peeling,
cutting

3 mixing mix into 200ml beaker, add 1ml detergent,
and stir

pouring,
pipetting,
stirring

4 waterbath put 200ml beaker into hot waterbath
for 10mins

5 waterbath put 200ml beaker into cold waterbath
for 5mins

6 pestling pestle mixture pestling
7 filtrate put filter into funnel, funnel into 100ml

beaker, push mixture through filter
8 pouring pour 1.5ml of mixture into test tube, mix

in 5ml freezing ethanol
pouring,
pouring

9 detection carefully invert test tube multiple times inverting

Table 5.2: The (shortened) DNA extraction protocol as shown to par-
ticipants on Google’s Glass. The protocol was interleaved for both an
onion and tomato, creating 18 steps in total. Gestures used to detect
each step in the protocol are shown in the right column.

able to record from a first-person perspective was mentioned as a great
feature. (2) The use of pen and paper notes is still largely preferred as
the primary capturing system. Partly, this is due to its flexibility, but the
videos also made clear that ad-hoc written notes, labels, instructions
and lab books are truly ubiquitous in the wet lab. A digital system
for providing assistance in these surroundings, apart perhaps from
some tightly-regulated laboratories, has more chance of adoption when
introduced as a complementary technology. (3) The ability of following
what is recorded by Glass in the peripheral display was at multiple
times used to guide the capturing of the video. When looking through a
microscope, for instance, several users used their Glass’ display to make
a recording through the eyepiece. Instead of taking immediate notes on
compound quantities, e.g. to record how many millilitres of a solution
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Figure 5.11: The mean duration of protocol steps per participants. The
figure in the background shows the per-step mean duration across
all participants (box-and-whisker) and the individual flow for each
participant (lines). The figure in the bottom right shows the mean
duration of each step per participant, color-coded to individual steps in
the DNA Extraction protocol. Note that each step is repeated twice and
interleaved during the experiment, once for the onion and once for the
tomato. Markers on this figure show when an actual user interaction
happened (when marking a step as done for example). The x-axis on
both figures is the time taken in minutes.

were obtained, users would hover it closely to Glass’ camera. Both
during and after the deployments, many of the users were interested in
using the system for subsequent times and expressed that they could
envision continuing using it for capturing their experiments.

The idea for this deployment was to get first insight into the working
environment of experimental biologists, and also get a first idea of the
usability of using Glass for recording only. To this end, we elicited
challenges from several point-of-view video recordings from several
laboratories. One specific challenge, that was mentioned by participants,
is the navigation of such continuous recordings. We will now look at
the possibility of using wrist motion to detect the actions conducted
during an experiment. Possible actions, extracted from a procotol’s
description, inform the extraction of time-codes which index such
continuous recordings - serving as navigation cues for these recordings
and providing guidance just-in-time.
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5.3.2 Guiding in a Research Scenario

DNA extraction, a common entry-level laboratory experiment, was
chosen for testing the feasibility of guiding novice users through an
experiment and recognizing single activities in an experimental pro-
cedure using the wrist-worn sensor. The experiment is guided by a
protocol, visualized as a textual step-by-step guide on the Google’s
Glass display. It contains a sequence of two extractions of DNA, first
that of an onion and second of a tomato. The procedure is identical for
both vegetables. This way all actions are repeated at least once with
different material. The two experimental procedures were interleaved
to save time, and each participant had to complete 18 steps in total,
containing 9 different protocol steps to identify (shown in Table 5.2).
Each protocol step was described and displayed when activating the
screen of Google’s Glass (by tilting the head up or tapping Glass’ swipe
area). Participants were instructed to primarily interact with Glass
by speech and to move through the experiment protocol by marking
each single step as done. In case the speech recognition would prove
to be impractical, touch interaction (tapping) and swiping back and
forth for moving between steps was kept as a backup option. The time
for which a step was active on Glass’ display was recorded in a log
file, and is assumed to be the time it took to go through the displayed
instructions. Figure 5.12 shows the experimental setting before and
during the experiment, as recorded from a camera that was mounted at
the ceiling.

The experiment was run at the Federal Institute for Occupational
Health and Safety in Dortmund. In total, 22 people took part in the
experiment. Participants were recruited via advertisements in a local
newspaper, representing persons with no prior experience in biology
experiments and no affiliation to our research. Before the task started,
the participants were introduced to the functionality of Google’s Glass
and how they should use it during DNA extraction, what the different
ingredients e.g. ethanol or detergent are, and where to find them. The
participants were then fitted with Glass and the wrist-worn sensor, and
asked to follow each displayed step and mark them as done as soon as
they are completed. Conducting the experiment took the participants
between 18 and 45 minutes. A successful experiment would result in the
DNA becoming visible as a set of small stripes in a test tube, although
for our evaluation it did not matter whether the DNA extraction was
successful in the end.
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Figure 5.12: Four selected steps during the DNA Extraction study. The
participants are wearing a wrist accelerometer and Google’s Glass. The
latter guides the participant through the experiment.

The choice of novice users instead of professional experimenters
might be surprising. However, this study was designed to show that
hand motion sequences can be used to detect protocol steps and actions.
Especially to create a dataset that can serve as a benchmark for different
detection algorithms. It is therefore important to have a high variability
in executing different actions, as this is the case also for professional
experimenters, i.e. everybody has their own styles. More execution
variability also means a harder challenge for the detection system, so
if it works for untrained personnel it will most likely work for trained
personnel as well. Also, since participants were non-trained, they also
adhere stricter to the protocol, a professional in turn might take short-
cuts in the experiment since he is aware of the overall goal and working
of the experiment. This would create datasets with different execution
that are harder to compare. The recorded dataset can therefore be used
as a baseline benchmark for recognizing actions that are related to those
in a wet laboratories - in a systematic manner.
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Figure 5.13: A (typical) page in laboratory notebook and the extracted
recognition and guidance system. An action database contains record-
ings of wrist motion samples. Actions roughly correspond to verbs
in the description. This database will be used for action detection,
which in turn serve as the observations of a Hidden Markov Model,
which contains each step in the protocol as a hidden state. Time is
implicitly encoded via the number of observations. Each protocol step
is displayed on Glass for guidance.

The goals of this study were threefold: (1) Examine the specific in-
teractions with the guidance applications to see different usage patterns
of participants. (2) Show how well actions (defined as repeated motion
sequences) can be detected by wrist acceleration - or put differently,
how discriminative the measured data is when applied to typical work-
bench activities. (3) Evaluate whether the detectable motion sequences
(or action sets) correlate with specific protocol steps. Our interest is
first and foremost in knowing how well a system could detect the com-
bination of recording interactions, while guiding people through a wet
laboratory experiment, and wrist movements. This could be used to
automatically detect steps in wet laboratory workflows.

During the whole experiment, every interaction (both voice com-
mands and swipes) with the Google Glass application was logged for
later investigation. As this was done in the background, participants
were unaware of this during the experiment, though they were informed
about the interaction logging beforehand. A first observation is that
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most of the participants did not follow the protocol in a strict linear
fashion. Sometimes this was due to unclear instructions, which became
clear when looking at future steps. Though sometimes this was also
because of slight delays in the voice recognition with Glass, leading to
commands which were given twice. To still extract the currently active
step, the interaction log was filtered to include only steps that were
visible for more than a few seconds.

Results. From the recorded data, it is possible to extract which
step of the DNA extraction experiment was viewed at which time,
and the duration for which this instruction was visible on the display.
Figure 5.11 visualizes the resulting workflow for each participant, as
well as the mean interaction time per step. It can be seen that the overall
interaction time ranges from 18 to 45 min for all participants, and the
experiment was completed in 35 min on average. Furthermore, a larger
break can be observed in the middle of the experimental workflow
(two consecutive water bath steps), which matches the instruction from
the experiment’s protocol: during these steps, participants had to wait
until both the onion and tomato mixture had been cooled or heated
up respectively, since no other task could be performed during that
period. While interpreting these figures it should be kept in mind
that the increasing variety in later steps is an artifact of the cumulative
display of this particular step’s duration. The figure to the bottom
right contains the color-coded steps which are the same for both the
tomato and onion extraction, i.e. the steps which are repeated for each
participant. For example, preparing a solvent agent needs to be done
twice, and is encoded in yellow in this figure. A large variety for solvent
preparation time, in the duration of keeping the mixtures in the water
baths, for filtrating and pestling can be observed.

Based on these interaction logs in combination with video footage
made during the systematic study, the following three observations
stand out particularly:

• There is first of all a large cross-user variety concerning the dura-
tion of each step, most critically for the steps where participants
were instructed to keep a fixed time, e.g. keeping the mixture in
the water bath for a certain amount of time. For several partici-
pants, browsing through the steps using Glass’ voice commands
was too time-consuming and they switched to swiping gestures,
mid-experiment. This large variety in performance times has as a
consequence that timing within an experiment and duration of single
steps are important parameters, though they are also less valuable for
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automatic detection or reconstruction of the experiment’s protocol.

• Participants were asked, for steps that consisted out of multiple
items, to acknowledge each task item separately as soon as it was
completed. Several participants found this too cumbersome and did
not adhere to this instruction - most often, these participants worked
through the whole instruction set for one such particular information
card, and then marked all items in one go.

• Finally, it is important to note that all participants were able to finish
their experiment with sole guidance of the wearable system, without
abandoning the experiment, and extracting the DNA successfully.
Figure 5.11 shows the time (in minutes) that all experiment steps
took per participant.

5.4 wrist-motion wetlab action recognition

For evaluating the detection of experiment steps by means of the wrist-
worn accelerometer data, the ground truth was gathered by annotating
the recordings of an external camera 11, pointing at the manipulation
space of the participant. By manually annotating the video we extracted
9 different actions, which had a high visual similarity and were repeated
often during the experiment: The onion and the tomato were both cut,
and the onion was also peeled. A pipette was used for combining
different ingredients, e.g. pipetting the mixture into the test tube. The
transfer activity describes using a spoon for putting, e.g. salt, in a beaker,
but not using it for stirring for which a stirring rod was available.
Pouring describes putting the mixture from one beaker to another or
when pouring it into the filter. Pestling refers to mincing the mixture
and inverting to putting the test tube upside down and back again. We
refer to these video annotations as the ground truth in the following (cf.
Table 5.3).

Methdology. Wrist 3D-acceleration data was recorded throughout
the experiment on the participant’s dominant hand with a sampling
rate of 50Hz, and range of ±4g. In total, 1258 mins of accelerometer and
video data were recorded. Additionally, the interaction with Google’s
Glass was logged during the experiments, i.e. the timestamps when
users switched to the next steps. All data was stored on the respective

11The camera on Glass was not used to make sure that the whole manipulation space
was visible throughout the experiment.
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devices and aggregated post-experiment on a PC. For time synchroniza-
tion we relied on the internal clocks of both Glass and the wrist-worn
sensor. We manually fine-tuned the alignment by matching the video
and sensor data stream according to easily identified activities, such as
stirring.

To recognize the activities listed in Table 5.3 from acceleration data,
we chose a k-nearest Neighbour (k=8) classifier12 with a 6D feature
set, containing the mean and standard deviation of the 3D accelera-
tion data during 20%-overlapping windows of 800ms duration. The
video-annotated data was validated cross- and per-participant. Cross-
participant validation was achieved with a leave-one-participant-out
strategy, while per-participant validation was done by a 250-times strati-
fied shuffle split. Precision, recall, and F1-Scores for each evaluation are
listed in Table 5.3. It is visible that cross-participant activity recognition
is worse than per-participant: On average, the cross-participant F1-Score
is 36% worse than per-participant, which is most probably caused by
participants performing activities in a slightly different fashion or due
to sensors not being firmly attached. Inverting, pestling and pipetting are
the three actions that show a particular high F1-score per-participant
and comparable F1-scores across participants. In contrast to stirring,
which is detectable per-participant but not cross-participant. Cutting,
peeling, pouring and transferring (which in our case meant moving ma-
terial with a spoon) are already hard to detect per-participant. The
confusion matrices (cf. Figure 5.14) show that pipetting and pestling
are most often confused with other actions, which therefore makes it
advisable to exclude those from recognition. From this we conclude
that several characteristic actions can be detected with reasonable per-
formance, when trained per-participant. In a practical system this could
be achieved by continuously learning gestures from the interaction
with Glass. However, it also shows that an improved feature set might
be a possible option for cross-participant identifications, as the one
presented here is one of the simplest choices.

Results. From the confusion matrices shown in Figure 5.14 it is visi-
ble that pipetting and pestling are most often confused with other actions,
per-participant. However pipetting is also the most often performed
activity. This effect gets worse cross-participant (cf. Figure 5.14). Trans-
ferring and pestling worsen this effect even more. Therefore a general
cross-participant activity recognition remains challenging. Detection
rates could be increased by removing the almost non-detectable actions:

12the scikit-learn implementation was used.
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Figure 5.14: Confusion matrices for kNN detection based on 800ms-
windowed mean and standard deviation features extracted from 3D-
acceleration data. Cells contain the average absolute number of iden-
tified samples. The color designates the normalized total occurrence.
Left hand side is the per-participant stratified random split repeated
250 times. Right hand side is the leave-one-participant-out score.

peeling, pouring and transferring. However since per-participant scores
are quite good, an approach which allows to retrain at certain steps or
reuse already learned samples could be fruitful.

To achieve this, a more reliable but not always available activity
recognition approach could be used. Since our ultimate goal is to map
back from actions to steps in a protocol (for indexing purposes), we
could for example use the data from the interaction log, i.e. data that is
gathered by biologist explicitly telling the system where in the protocol
they are. It should be clear that this will only work in a few select
cases, for example when the experimenter has never done the protocol
before and needs this information or when asked specifically to do this
for a study. In principle trying to map wrist movement back to steps
displayed on Google’s Glass.

With the current system, an average F1-Score of 64.5% per-
participant, and 29% cross-participant is feasible. These score cor-
responds to the probability of detecting an action correctly for each
800ms window in the wrist motion stream. For the envisioned appli-
cation of cueing video material, this action detection is probably not
useful. However, one should keep in mind that this systems detects
single actions on very short time-frames. However, this action detection
might be sufficient to identify protocol steps, which are ordered timely
and where actions are known beforehand.



5.5 informed workflow recognition 145

cross-participant per-participant
action precision recall F1-score precision recall F1-score

cutting 0.23± 0.12 0.29± 0.17 0.25± 0.12 0.62± 0.20 0.75± 0.11 0.66± 0.16
inverting 0.60± 0.21 0.64± 0.34 0.58± 0.25 0.80± 0.21 0.93± 0.16 0.84± 0.18
peeling 0.04± 0.04 0.12± 0.15 0.06± 0.06 0.26± 0.17 0.51± 0.21 0.32± 0.17
pestling 0.62± 0.21 0.42± 0.13 0.47± 0.12 0.87± 0.08 0.80± 0.07 0.83± 0.07
pipetting 0.58± 0.13 0.52± 0.11 0.54± 0.11 0.79± 0.09 0.77± 0.06 0.78± 0.06
pouring 0.03± 0.04 0.13± 0.27 0.04± 0.05 0.45± 0.22 0.80± 0.24 0.55± 0.21
stirring 0.32± 0.25 0.37± 0.21 0.29± 0.15 0.83± 0.11 0.80± 0.08 0.81± 0.08
transfer 0.08± 0.10 0.25± 0.34 0.08± 0.09 0.33± 0.28 0.49± 0.34 0.36± 0.28

0.31± 0.29 0.34± 0.29 0.29± 0.25 0.62± 0.29 0.73± 0.23 0.64± 0.26

Table 5.3: Precision/recall/F1-Scores for leave-one-participant-out eval-
uations (left-hand). And per-participants 250 times stratified random
split. It is visible that cross-participant scores are suboptimal and not
practical, while a per-participant model might be usable for practical
purposes.

5.5 informed workflow recognition

For investigating if protocol steps can be detected from action recog-
nition, protocols can be modeled as Hidden Markov Models (HMMs),
where hidden states correspond to steps in the experiment’s protocol,
and observations map to the actions executed in that steps as defined
in Table 5.2. The upper right of Figure 5.13 depicts this graphically.
Protocol steps were marked according to the overhead video recording,
which serves as the ground-truth and represents our detection target.

Methdology. The HMM’s transition probabilities were set to mimic
a linear chain, with a high probability for staying in the same state
(workflow step) and a non-zero probability to switch to the next step.
This models the linear nature of a protocol execution. The emission
probabilities for each state can be generated by uniformly distributing
the occurrence of each action in the state’s action set. For example,
the solvent step (cf. Table 5.2) has high emission probabilities for the
pouring, transfer, pipetting and stirring actions. The detection step
in contrast only has a high probability for inverting. To account for
possible mis-classifications of the kNN-detector, each action has a low
occurrence probability in each workflow step. This represent a layered
approach, in which the first layer detects actions from wrist movement
via a kNN-detector and the second layer detects the workflow steps of
the protocol via a HMM.
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# task precision recall F1-score

1 solvent 0.64± 0.17 0.93± 0.18 0.73± 0.15
2 cutting 0.88± 0.23 0.83± 0.28 0.84± 0.25
3 mixing 0.69± 0.31 0.49± 0.21 0.52± 0.18
4,5 waterbath 0.27± 0.37 0.09± 0.19 0.10± 0.20
6 pestling 0.64± 0.30 0.88± 0.25 0.72± 0.27
7 filtrate 0.62± 0.40 0.09± 0.21 0.12± 0.20
8 pouring 0.86± 0.23 0.79± 0.24 0.81± 0.22
9 detection 0.62± 0.36 0.75± 0.40 0.65± 0.35

0.65± 0.35 0.61± 0.41 0.56± 0.36

Table 5.4: Per-Participant scores for workflow step detection based on a
Hidden-Markov Model, combined with k-Nearest Neighbor detection of
actions. It is visible that classification scores vary between participants.
Some steps are not detectable (waterbath, filtrating) since they have no
definable and therefore detectable actions/observations (cf. Table 5.2).

Results. For the evaluation, we detected the workflow of each par-
ticipant with the above-described kNN-HMM approach. We compared
this workflow with the data gathered by the interaction log, i.e. which
step was executed when. Assuming that participants had the currently
executed step also active on their display, we could also say that we
check whether the currently executed step was detectable. The result of
this evaluation can be seen in Table 5.4. The confusion matrix shows
that the mixing and solvent step are most often confused, which is due
to the fact that they have almost the same action set. Only an addi-
tional (hardly detectable) transferring action distinguishes them. With
the presented layered approach, a mean F1-Score of 56% for detecting
workflow steps from wrist movements is achievable. This however
includes workflow steps which have an empty action set, and are there-
fore difficult to detect. These steps include the waterbath and filtrate
step, which for instance did not have definable activities linked to them:
excluding these steps from the calculation improves the mean F1-score
to 71%. It is important to note, however, that such steps do occur in real
wet lab experiments and therefore demand complementary detection
approaches (e.g. object detection through RFID-markers).

Discussion. The presented layered approach can not only be used
to filter wrist movement data on a time-based scale, but also to inte-
grate different sources of information. Therefore, it lends itself well to
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integrating further sensors. For example, the current observation vector
includes only the detected actions from wrist motion. Additionally
detected objects, or head movement based action detection could be
easily integrated by augmenting the observation vector. Instrumented
object use, e.g. a pipette that detects its usage and details about its set-
ting would be further additional information sources. One shortcoming
of the presented HMM approach is that the actions set is assumed to
be not ordered, i.e. it does not matter in which order the actions are
executed. This might be important information, that is not directly
modeled. In this case, conditional random fields (CRF) might prove to
be a more suitable alternative. To be practical, a system like the one
presented here would need to be either continuously re-learning motion
sequences, or limit itself to actions that have proven to be detectable
across users such as inverting, pestling and pipetting.

The system could integrate many other features such as maintenance
and resource allocation (“Is the centrifuge available for the next five
hours?”, “Is compound X in store?”) across multiple lab members,
and tools such as reminders for lengthier procedures or concentration
calculators. Provisions to avoid cross-contamination through shared
lab equipment (e.g. flasks, pipettes) could be extended by recording
their usage, which would also allow tracing back contaminations after
they have been detected. Retrieval and editing of the workflows after
a completed experiment, would provide an extra possibility for the
biologist to reflect on the results in detail. A recording infrastructure,
such as the one presented in this paper, can be extended to provide
a memory extension, detected actions, protocol steps, or used tools
can serve as searchable cues for other recordings like video or audio.
Furthermore, these cues might be employed to compare repetitions
of the same protocol, allowing to quickly spot differences in their
execution.

5.6 transition detection from motion

Annotating recorded motion and video sequences is a cumbersome
task, and usually estimated to take at least twice the duration of the
actual video that is to be annotated. Even when only a limited set
of pre-defined actions is to be chosen for each scene. For activity
recognition, segments of a time-series need to be marked with a be-
ginning timestamp, end timestamp and a text describing the current
action. This means that annotators have to scan through the whole
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Figure 5.15: Example of a segmented motion-augmented video. Data
is taken from the DNA extraction experiment. Ground truth segments
are colored blocks in the background, while extracted segments are
highlighted as vertical lines.

video frame-by-frame. To accelerate this process, a pre-segmentation
based on the recorded sensor data is investigated here. This way, only a
summary of each segment needs to be classified by a human annotator
(cf. Figure 5.15). Additionally, the identified segments could also be
classified by a machine-learned model, potentially providing a novel
segmentation approach.

Here, we investigate whether unsupervised clustering algorithms
allow to segment motion-augmented videos. Since there is a multitude
of different clustering algorithms to choose from, as well as a multitude
of parameters for each algorithm it is inevitably challenging to choose
these upfront. To find the best combination, a grid-search over all
parameter combinations is applied. For this, the grtool framework
of chapter 3 is executed on a 48-core cluster, in order to keep the
required computational time manageable. The tested datasets are all
stored in the Matroska video format, to provide a common data-format.
Segmentation results are stored in subtitle format.

Methdology. Clustering implementations of scikit-learn were tested.
This includes the KMeans clustering algorithm, which iteratively ap-
proximates k points which equalizes the distance between all data points.
Agglomerative clustering provides a bottom-up approach, where cluster
are continuously refined based on a distance measure (euclidean here)
until k cluster are found. Gaussian Mixture Models (GMM) is a gen-
eralization of the KMeans algorithms, in which not only the k central
points are determined, but also the (co-)variance of clusters. The DNA
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Figure 5.16: Video stills and motion data of the Thermoforming experi-
ments. Video was recorded with Google’s Glass, motion data with a
wrist-worn Smartwatch.

extraction dataset and a dataset of a Thermoforming process recorded
at the Hahn-Schickard-Institute Freiburg was used. The thermoform-
ing process for lab-on-a-chip disks is observed with the head-worn
Google’s Glass camera, head-worn and wrist-worn (dominant hand)
inertial motion data at 50Hz. The process consists of seven different
steps (see Figure 5.16) and was executed by two participants.

Unlabelled segments (e.g. NULL labels) are removed. While, under
more naturalistic circumstances, such segments do exists we limit our-
selves here to sequences that are fully classified. A standard sliding win-
dow (no overlap) segmentation of variable length w is applied. Mean,
variance, min-max range and median are extracted as the feature set for
each segment. Each combination of features is tested. For KMeans and
agglomerative clustering no cross-validation test is applied, as there
is no learning phase. For GMM exhaustive leave-one-participant-out
cross-validation is applied. The evaluations were run for the following
varied parameters: Window length between 200 ms to 2000 ms in 200ms
steps. Feature sets of mean, variance, min-max range and median, and
an error margin of 1 to 5 samples.

Results. The result of this evaluation can be found Table 5.5, in
which the recall score is reported for each dataset. We concentrate solely
on recall here, since it is only important to correctly find segment, not
their particular “content”. To score this performance, the time-series
ground truth data is compared to the clustered time-series segments.
An error margin, which is the acceptable offset between ground truth
and prediction, allows for slight shifts of the prediction. We therefore
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win / feat / marg recall 1 / 2

KMeans 80 / mean / 4 .92 / .95

Agglo. 90 / time / 5 .93 / .95

GMM 90 / mean / 3 .88 / .95

Table 5.5: Top scoring parameter combinations for all data sets (1 / 2 )
per method. It is visible that a parameter combination that works well
for all datasets can be chosen.

define a True Positive (TP) if a transition is found by clustering within
a maximum of 5 windows, a False Positive (FP) if there was no ground
truth transition but a prediction, a False Negative (FN) if there was
a ground truth transition but no prediction transitions and a True
Negative (TN) for other samples.

Just by clustering the mean wrist acceleration, single steps can
already be distringuished. A time window of 2s and an error margin
of 4 windows works surprisingly well for all datasets, i.e. for more
than 86% of segments, the edges are correctly identified. This is a
rather surprising result, since usually much more elaborate methods
need to be employed to provide good recognition results. However,
our goal was not to identify particular steps in a protocol but simply
detect significant changes which indicate a possible transition to a
different step. This is a much simpler problem, hence the surprisingly
good results from this basic approach. Still, this can provide transition
marks for a potential automatic labeling system that provides indices
for archival video footage or documentation, supporting skipping over
uneventful video segments which contain little changes in wrist motion.

5.7 summary

This chapter presented a wearable system to support experimenters
in wet-lab environments by multiple techniques: (1) through memory
augmentation by activity-indexed videos, and (2) through task guidance
by detection of workflow steps. Storing body-worn sensor recordings,
including video, audio, motion and object detection side-by-side in a
standardized multi-media container provides a common way to achieve
a robust, and distributed database of manual processes. Results from
ground truth annotation of videos, as well as results of machine learned
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models of motion data are stored in subtitles. Hence, creating the basis
for indexing these videos.

A prototype, based on Google’s Glass and a wrist-worn inertial data
logger, was used to capture experiments and process steps, navigate
back and forth those steps, and mark them as done. An analysis of
the challenges, as well as the acceptance and wearability of the sys-
tem, based on “in-situ” observations in several different microbiology
laboratories was conducted. The original motivation of using Glass
as a recording and guidance tool for an experimenter was tested for
feasibility in the presented user study: 22 novice participants were
asked to complete an interleaved entry-level DNA-extraction experi-
ment. Participants solely relied on Glass for guidance on the procedure
and were all able to finish their experiment successfully.

For object detection, a wireless, wrist-worn RFID reader connected
to Google’s Glass was tested, particularly whether implicit or explicit
interaction is preferred. A user study of seven participants, indicated
that implicit interaction is the preferable way for identifying RFID-
tagged test tubes.

Participants’ wrist motions were recorded throughout all exper-
iments for studying whether actions made during experiments can
be recognized, as well as used, for example in navigating continu-
ous video recordings of procedures. Actions were detected with a
k-Nearest-Neighbor classifier, of which only a limited set could be
detected reliably (per-participant, F1-score > 80%). A Hidden Markov
Model, built by extracting action sets for each protocol step from the
digitized protocol, was used for detecting the currently executed step.
This layered approach allowed to reconstruct the majority of experiment
steps afterwards.

A pre-segmentation step, which splits videos into segments of little
to no change of current actions was investigated. Unsupervised cluster-
ing algorithms, even on a simple mean of wrist acceleration, already
provides segments that are similar to human annotation. In more than
86% of cases, a crop mark resulting from such unsupervised approach
is at maximum 4 windows away from a crop mark placed by a human
annotator. The approach was tested on two datasets: the original DNA
extraction experiment and a thermoforming process for lab-on-a-chip
systems. This provides evidence that applying a clustering to the origi-
nal motion time-series, can already provide a practical segmentation of
motion-augmented videos, and serve as simple navigation cues, and
increase the efficiency of subsequent human annotation.
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The ability to capture and review an experiment up to several weeks
later is in wet labs more important than the actual guidance - when
the experimenter finds out that something went wrong with the experi-
ment, a detailed review of executed steps could shed light on the cause.
Moreover, a wearable and touch-free system does not only decrease
the chance of contamination, it also provides the means to interact
with a computing system right on the spot, in turn minimizing the
required interaction efforts. This is also applicable to other applications,
involving manual processes that can be detected with wearable and
instrumented artifacts, for example cooking in a kitchen, maintaining
machinery or assembling products. The proposed concept of motion-
and action-augmented multi-media files is general enough to encom-
pass these applications as well, and the experiments have shown that
(1) a simple clustering can provide useful crop marks, and (2) that
procedural knowledge, like the sequence of actions and used tools can
be encoded and detected with a hidden Markov Model.
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6C O N C L U S I O N

Human Activity Recognition from (body-worn) sensors can provide
the cues for human memory augmentation, and the foundation for an
objective quantification of human behaviour. Technically, a projection
from continuous sensor recordings to a sequence of activity descriptions
has to be found. This requires to sample the space of possible execu-
tions of each activity as close to reality as possible: participants should
behave as natural as possible, no external observer should influence
that recording, and the scenarios should not include any arbitrary limi-
tations. Often, this results in annotating datasets from video recordings,
or by momentary assessments which both remind participants of them
being observed, or break the natural process of an activity. The core
idea of this thesis is to trivialise the annotation process by instrumenting
artifacts that are solely used for a particular activity. This way reliable
ground-truth annotation, with minimal interruption of study partici-
pants, can be extracted. Detecting smoking with a Smartlighter and
wrist motion, detecting manual processes in a wetlab, and a software
framework for combining the recorded data, validates this idea.
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6.1 summary of contributions

The findings of this thesis touches multiple facets of Activity Recogni-
tion systems. These are summarized in the following paragraphs:

Unix Framework for Activity Recognition. The idea of encapsulating
each step of an Activity Recognition Chain (ARC) as a separate Unix
process, and combine them to a detection chain, is proposed. Com-
mand line argument represent the hyper-parameters of the overall
recognition, and this approach allows for effortless parallelization.
As such providing a flexible approach to quickly test novel machine-
learning based activity recognition systems.

Format for data exchange. A proposal for curating, exchanging and
querying based on a multi-media container is described. This for-
mat allows to store multiple sensor streams in an interleaved and
time-synchronized manner, and supports optimized storage through
compression as well as streaming. The use of audio compressors for
inertial motion data shows that a limited processing overhead can
be traded for efficient storage and transmission. This is compared
to the commonly used CSV format. The container format also stores
meta-data, which includes sample format and sample rate amongst
other details.

Detection of Inertial Motion Modality. For inertial motion data, the
sensor modality was shown to be detectable from the data itself with a
rule-based system in 98% of cases for a database of five human activity
recognition datasets. This provides additional safety when recording
datasets, as well as reconstructing meta-data post-experiment in cases
this information got lost.

Design of a Smartlighter. Detecting smoking continuously, over long-
term, with minimal user interference was often attempted by detection
with body-worn sensors. Instrumenting the lighter used for lighting
cigarettes provides a energy-efficient, and reliable alternative. The
thesis describes several alternative implementations, with a final com-
pletely wireless solution.

Detection of smoking gestures. The detection of smoking from iner-
tial wrist motion data, validated against the detection by a Smartlighter,
is an example of the thesis’ core idea. The lighter is connected to a
Smartphone and Smartwatch ensemble for collecting 351 instances of
smoking from six participants. By using the Smartlighter to collect
ground-truth the actual detection process is trivialized. A symbolic
detection approach that is devised from smoking topography can only
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detect trivial smoking gestures. This was shown by selecting a subset
of the data, and showing that the symbolic detection achieves a high
F1-score of 82%, but drops sharply when applied to the full dataset.
A hyper-parameter optimized machine-learning approach achieves
an average F1-score of 84% on the full dataset, showing that a ma-
chine learned model can indeed pick up non-trivial smoking gestures.
Challenges in detecting smoking are discussed in chapter 4 as well.

Comparison to questionnaire elicited smoking behaviour. A study
observing eleven smokers, for a mean time of eleven days has shown
that smokers over-estimate their consumption, and have a hard time
telling the most probable time-of-day when consuming a cigarette.
For this study, smokers were assessed with a questionnaire pre- and
post-observation, and continuously observed with a Smartlighter. This
illustrates that a continuous, sensor-based assessment of smoking can
provide novel insight for cessation research, and probably fuel novel
mobile cessation techniques.

Evaluation of Google Glass as a wetlab recording tool. Google Glass
was used in a university-level wetlab training session to elicit require-
ments for a wearable support system used in such environments. In
total eight groups of students used Google Glass to document their
experiment by recording their findings.

Object detection with wrist-worn RFID sensors. A wrist-worn RFID
reader is presented, that is able to detect objects and tools used during
an ongoing wetlab experiment with little to no user interaction. The
solution was found to be insufficient for practical use, however a
study encompassing nine participants showed that an RFID-activated
detection is preferred over a voice-activated one, when including
Google Glass as the interface.

Evaluation of Google Glass as Guidance tool. In a study encompass-
ing twenty-two novice participants an entry-level microbiology ex-
periment was executed. Google Glass was used solely for guiding
participants through the experiment, which was found sufficient for
almost everyone. This also provided the recordings for the subsequent
detection of activities from body-motion.

Detection of wetlab activities with body-worn sensors. A hierarchi-
cal detection system for the actions in wetlab experiments based on
inertial wrist motion is proposed. Atomic actions, like pestling and
pipetting, are detected first and the actual executed process is mod-
elled as a Hidden Markov Model that was extracted from the textual
description of the experiment. This model allowed to detect the pro-
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cess step with an F1-score of > 80% when trained on a per-participant
model.

Evaluation of unsupervised motion-augmented video segmentation.
An unsupervised video segmentation approach which can summarize
recorded material without any prior knowledge is proposed. In 86%
of all cases, a crop mark resulting from such unsupervised approach
is at maximum four windows away from a crop mark placed by a
human annotator.

In total a system for recording manual tasks with body-worn sen-
sors, in a standardized container format, for analysis with a Unix
framework of machine learning tools, applied on smoking and wetlab
action recognition was investigated.

6.2 outlook on future work

Collecting ground truth data by instrumenting artifacts is one of the core
ideas, which were explored in this thesis. By limiting the detection of
activities to tool usage, or their combined usage, the actual detection is
trivialized and therefore allows to automate the process of data collection.
In turn, this allows to replace these highly specialized sensors with
more general ones, like motion recorders or video cameras and solves
the issue of having to (manually) collect large datasets.

The space of instrumented artifacts was, however, only explored
in the setting of smoking and in wetlab environments. Further health
scenarios, were specific tools are used, e.g. fitness instruments like
dumbbells, can be instrumented to collect larger datasets. Specifically
for smoking, a dataset that encompasses a multitude of different smok-
ing styles with a large number participants in a naturalistic setting
is still missing. For the wetlab environment, further exploration of
instrumentable tools could benefit possible activity recognition, and
memory augmentation scenarios. One example would be a pipette, that
records pipetting events, dispensed amount of liquid, and the dispens-
ing location. An even more concrete example would be the detection of
cooking, where kitchen tools, like knives, mixers, spoons, stoves, and
ovens would provide observations of the task at hand.

One important practical consideration is an estimation of the quality
of a dataset. A ratio that puts the theoretically possible combinations
of sensor data in relation to the amount of possible executions could
provide such an insight. For example, single smoking puffs detected
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over a window of 3s, recorded with a three axis accelerometer at 10bit
resolution and at 10Hz, already encompasses 30720 unique sensor data
patterns for a single execution of this gesture. The question is, how
many of these unique patterns are sampled in a particular dataset, to
asses its quality. A comparison method based on such a ratio could
provide confidence in particular datasets.

Storing body-worn data recordings in multi-media containers, and
building a remembrance agents with head-worn displays would be
a further exploration area. A recording software, similar to video
recorders on a mobile phone, that additionally samples sensor data
from the local device and from wirelessly connected body-worn devices,
like a Smartwatch or Smartglass, which stores this data in a multi-media
file could be further explored. These files can either be streamed live
to other devices, or transferred later and subsequently analyzed for
activities and other patterns. Such analysis is achieved by classification
systems that work on one of the streams provided in the multi-media
file, and create a time-coded meta-data stream that is added to the file.
These time-coded meta-data information is then a categorical space
that can be efficiently searched. This setup provides the foundation for
in-situ task guidance, and facilitates review of recorded workflows.





L I S T O F F I G U R E S

Fig. 1.1 The design space of wearable and instrumented arti-
facts for smoking behaviour detection and context
awareness in the microbiology lab. Simple sensors,
which only allow to track very specific activities,
can be made very power- and computation-efficient.
More general sensors, employing wrist motion or
motion capture can detect more activities albeit re-
quiring more resources. . . . . . . . . . . . . . . . . . 2

Fig. 1.2 Outline of this thesis. After an introduction to the
Activity Recognition (AR) framework, two case stud-
ies are presented. Both highlight the features of the
framework. . . . . . . . . . . . . . . . . . . . . . . . . 7

Fig. 2.1 Overview of Activity Recognition systems. Body-
Worn sensors record application-specific sensor data.
A classifier maps (continuous) sensor data (S) to cate-
gorical labels of activities (C). Designing, building,
deploying, and evaluating such wearable systems
are the major challenges when creating novel systems. 10

Fig. 2.2 Applications of Activity Recognition, in which body-
worn or instrumented artifacts render indications on
the task at hand. . . . . . . . . . . . . . . . . . . . . . 12

Fig. 2.3 Different norms to define the similarity of time-series. 22

Fig. 3.1 Architecture of the distributed recording infras-
tructure, depicting sensor recording and multiplex-
ing processes. Also depicted is a possible device
setup consisting of a single Smartphone, two Smart-
watches, a Ricoh Theta S camera and Google Glass,
all connected via Bluetooth and WiFi. . . . . . . . . 39

Fig. 3.2 Screenshots of the Android application which con-
trols a network of recording devices. The sensors
that is to be recorded on each device is chosen, af-
terwards clocks are synchronized and the record-
ing started on each device. The recording status is
shown on each device . . . . . . . . . . . . . . . . . . 40

161



162 list of figures

Fig. 3.3 Fraction of storage required for three datasets com-
pared to uncompressed CSV files. Zip and LZMA2

text compression, 32-bit binary, WavPack [242] with
32/8-bits and 24-bit FLAC [241] audio encodings are
shown. On the right hand side the relative runtime
overhead for decoding each format is visible. Shown
is the fraction of wall time required to decode the
respective scheme relative to the time required to
parse a CSV file into memory. The result for each
scheme is the (binary) data stored in memory. . . . 44

Fig. 3.4 Example histogram of three inertial data distribu-
tions of the CMU Kitchen dataset. The concentration
of the gyroscope data around zero, as well as the
concentration of the acceleration data around its
mean, and the larger number of modes for magne-
tometer data is clearly visible. Identified modes on
the distribution are highlighted. . . . . . . . . . . . . 48

Fig. 3.5 Scatter plots of two possible feature sets for sensor
modality detection. One feature is the mode of the
histogram (512 equal-sized bins), i.e. the most com-
mon value. The second feature is either the kurtosis
of the data, or the difference between the mean num-
ber of modes at the same limb and number of modes
of one sensor stream. The left hand side shows that
not all cases can be identified with mode and kurto-
sis only. The mode count difference provides a better
indication, with the necessity to assume that both a
magnetometer and accelerometer stream is present.
Decision thresholds are shown as highlighted layers. 49

Fig. 3.6 Cardinality of each processing step. Sensor data
of different dimensionality (number of axes, mea-
sured values) sampled at different rates is first pre-
processed. If required, rates need to be adapted
to a common rate. Afterwards sensor samples are
segmented into windows/segment and features fm
extracted from each window. The last step also re-
moves any dimensionality dependencies of the sen-
sor input and provides an input of fixed length for
each window to the classifier, which then classifies
these segment. . . . . . . . . . . . . . . . . . . . . . . 56



list of figures 163

Fig. 3.7 Decision boundaries of various machine learning
algorithms. To the left hand side, a linear model
with a soft error margin often used in Support Vec-
tor Machine (SVMs) is shown. The middle shows
a more complicated decision boundary that can be
estimated with a Random Forest, a non-linear SVM
or Neural Network (NN). The right hand side shows
a probabilistic model, multiple gaussians per class
capture the feature space and estimate the probabil-
ity for a particular class given a feature. . . . . . . . 59

Fig. 3.8 Cross-validation strategies on a segmented Activ-
ity Recognition dataset. The left hand side shows
the dataset segmented by time and split by users.
Segments highlighted in green are used for testing,
yellow ones for training. The top one depicts ran-
dom split, where segments are selected at random.
The bottom an exhaustive search, where each user
is left out of training and tested on. . . . . . . . . . . 62

Fig. 3.9 Two types of visualizations for a high-dimensional
feature space. The left hand side shows a scatter plot
after feature reduction with the t-SNE approach. The
right hand side shows a matrix scatter plot over all
feature dimensions, with optional gaussian density
estimation. The dataset is a small fraction of the
smoking dataset presented in the following chapter 64

Fig. 3.10 Example of a parameter grid search, which scores
all combinations of a four element sensor modality
set, five different window sizes for a sliding window
segmentation, all combinations of a three different
feature extractions and two different machine learn-
ing models. Even this rather small grid, already
requires a full ARC cross-validation. . . . . . . . . . 66

Fig. 4.1 From left to right: customized USB-chargeable elec-
tronic lighter, gas lighter with mechanical switch,
and a piezo-ignited jet lighter. The latest iteration is
completly wireless. . . . . . . . . . . . . . . . . . . . 74



164 list of figures

Fig. 4.2 The Smartlighter v.1’s internal buildup. On the left, a
mechanical switch closes the circuit between battery
and a coil, allowing it to heat up so that a cigarette
can be lit up. The time and duration for which the
switch was used is logged by an on-board micro-
controller that is connected to a real-time clock. The
right-hand side shows the lighter in use. . . . . . . . 75

Fig. 4.3 The Smartlighter v.2’s internal buildup. The ignition
contacts additionally close a circuit, which is read by
the micro-controller. On the left-hand side the bat-
tery compartment and LEDs are visible. The center
shows the RTC, USB connector and microcontroller.
The right-hand side shows that the lighter operates
like a traditional lighter. . . . . . . . . . . . . . . . . 76

Fig. 4.4 v.3’s interal build. Contactless ignition detection
is achieved by monitoring for a high-voltage spark
generated by the piezo ignition. A Bluetooth Low
Energy (BLE) communicates events directly to con-
nected Smartphones. . . . . . . . . . . . . . . . . . . 78

Fig. 4.5 Firmware states for all version of the UbiLigher. The
micro-controller is most commonly in a sleep state,
only waking up for communication (com) when the
lighter is ignited (ign). The right-hand side shows
the relative power required for each prototype. . . . 80

Fig. 4.6 Axis alignment on Android Smartwatches (left hand
side), and frame-of-reference of the rotation sensor
(right hand side). The X axis of the Smartwatch
is pointing along the arm, when worn on the left
hand it points along the fingers, when worn on the
right hand it points to towards the body. The frame-
of-reference is given according to the geomagnetic
north, and east, the Z axis is pointing towards the sky. 84

Fig. 4.7 Recording setup for the accelerometer feasibility
study. Participants were asked to wear the Hedge-
Hog sensor device on their wrist, which continu-
ously recorded acceleration data during the wake-
period. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Fig. 4.8 Raw X-Y-Z accelerometer data (red,green,blue). The
pattern for smoking while standing is clearly visible
in the top row. . . . . . . . . . . . . . . . . . . . . . . 88



list of figures 165

Fig. 4.9 The detection system handed out to participants.
A Smartphone application consolidates smoking in-
stances from the Smartlighter, as well as wrist mo-
tion data from a Smartwatch. The user is presented
with basic statistics about his or her behaviour. . . . 94

Fig. 4.10 Prototypical wrist motion as measured through dif-
ferent inertial wrist-worn sensors. . . . . . . . . . . . 95

Fig. 4.11 Regular expressions and respective state machine for
symbolic smoking detection. Symbols are generated
from wrist motion according to Equation 4.2. Sym-
bol repetitions are chosen according to the smoking
topography skew-normal distributions in multiples
of 25Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Fig. 4.12 Symbolic representation of smoking instances and
single puffs. The bottom row presents puffs trans-
formed into a symbol stream by means of Equa-
tion 4.2, the top row presents the result of applying
the finite automata applied to the generated symbol
stream and the resulting smoking detection. . . . . 99

Fig. 4.13 Definition of event detection error. Any overlap
is counted as a detected event (TP). Segmentation
errors (in grey), i.e. incomplete overlaps are ignored
as they neither influence the actual recognition task
nor inform the design of the recognizer. . . . . . . . 100

Fig. 4.14 Tested parameters for the machine-learning ap-
proach. Different sensor inputs (acc, mag, gyr and
rotation), are combined with different lengths of
sliding windows, of which time, frequency and rela-
tive time features were extracted. These features are
tested with an SVM or RF classifier, and finally dif-
ferent lengths of label smoothing are applied. Each
path in this graph represents one tested parameter
combination, nodes marked with a * provide several
additional parameters. . . . . . . . . . . . . . . . . . 103



166 list of figures

Fig. 4.15 Mean precision and recall scores for the RF and
SVM classifier. Four parameter were varied: (1) the
sliding-window size (time is given in number of
50Hz samples) (2) the extracted features including
time domain features, time domain features rela-
tive to the first sample in the window (offset) and
frequency domain features (3) the sensor modality
and (4) a smoothing of 1, 5, and 10 samples was
applied. Each parameter combination was tested
in a 50-times random stratified split over the whole
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Fig. 4.16 Example report generated for the study participants.
The plot on the right side shows the amount of daily
smoked cigarettes on four different times of the day.
To the left are personalized smoking statistics as
captured by the Smartlighter. . . . . . . . . . . . . . 112

Fig. 5.1 Typical wetlab environment, top row shows work-
benches and other environemntal circumstances,
middle and bottom row typical steps in a low-safety
laboratory. . . . . . . . . . . . . . . . . . . . . . . . . 120

Fig. 5.2 A selection of recording setups used for experiment
throughout this investigation. To the left is the
setup for the DNA extraction experiment consist-
ing of Google Glass and the Hedgehog acceleration
recorder, in the middle the one used for the wet-
lab exploration. To the right is the latest setup in
which wrist motion is recorded with Android Smart-
watches and video with a shoulder-worn 360° Theta
camera. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Fig. 5.3 Conceptual overview of a query system for aug-
mented video recordings, in which body-worn sen-
sors as well as audio and video are recorded and
analysed for quick retrieval of similar sequences . . 123



list of figures 167

Fig. 5.4 The actual similarity of raw motion data, which
is used for indexing the multi-media files is fully
defined by a mapping into a query space Q. This
can either be done manually, or with the help of
machine learning algorithms. The mapped sequence
of data can then again be encoded into the multi-
media file, and indexed by a search tree for fast
k-Nearest Neighbour queries. . . . . . . . . . . . . . 124

Fig. 5.5 Illustration of motion patterns that might be queried
in a wetlab environment and how to decide on a
search algorithm. . . . . . . . . . . . . . . . . . . . . 125

Fig. 5.6 Tracking miniature components in the Wetlab (top
left). The wrist-worn RFID reader (upper right) is
built from a (1) Skyetec M1 Mini reader (2) battery
pack (3) RFID antenna (4) Arduino Fio module (5)
Wifi module (6) Wifi antenna. . . . . . . . . . . . . . 127

Fig. 5.7 Implicit and explicit interaction to identify and la-
bel an RFID-tagged test tube in the wetlab with a
wrist-worn reader and a head-mounted display. Top
shows the implicit interaction, bottom the explicit
one which needs to be started via voice command. . 130

Fig. 5.8 Mean and standard deviation of SUS scores. Total
score, and score when explicit or implicit interac-
tion was done first are shown. Implicit interaction
generally scores higher, especially when introduced
last. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Fig. 5.9 The Task guidance system used in the DNA extrac-
tion experiment. A wrist-worn accelerometer logs
wrist motion, while participants are guided through
the experiment with tasks displayed on Google’s
Glass which are selected via voice commands. . . . 133



168 list of figures

Fig. 5.10 The deployment of the system combining Glass and
the wrist-worn accelerometer, while recording biolo-
gists. The environment is often simultaneously used
by large groups of researchers or students and is
equipped with a multitude of shared instruments
and special safety zones, making it challenging to
augment the environment (top half). Hands-free
recording is a strong advantage: Often, experiments
require gloves for minimizing contamination risks;
Wet labs furthermore contain a large variety of com-
pounds, instruments and lab equipment that require
both hands to be used (bottom half). . . . . . . . . . 134

Fig. 5.11 The mean duration of protocol steps per partici-
pants. The figure in the background shows the per-
step mean duration across all participants (box-and-
whisker) and the individual flow for each partici-
pant (lines). The figure in the bottom right shows the
mean duration of each step per participant, color-
coded to individual steps in the DNA Extraction
protocol. Note that each step is repeated twice
and interleaved during the experiment, once for the
onion and once for the tomato. Markers on this fig-
ure show when an actual user interaction happened
(when marking a step as done for example). The
x-axis on both figures is the time taken in minutes. . 137

Fig. 5.12 Four selected steps during the DNA Extraction study.
The participants are wearing a wrist accelerometer
and Google’s Glass. The latter guides the participant
through the experiment. . . . . . . . . . . . . . . . . 139

Fig. 5.13 A (typical) page in laboratory notebook and the ex-
tracted recognition and guidance system. An action
database contains recordings of wrist motion sam-
ples. Actions roughly correspond to verbs in the
description. This database will be used for action
detection, which in turn serve as the observations
of a Hidden Markov Model, which contains each
step in the protocol as a hidden state. Time is implic-
itly encoded via the number of observations. Each
protocol step is displayed on Glass for guidance. . . 140



list of figures 169

Fig. 5.14 Confusion matrices for kNN detection based on
800ms-windowed mean and standard deviation fea-
tures extracted from 3D-acceleration data. Cells
contain the average absolute number of identified
samples. The color designates the normalized total
occurrence. Left hand side is the per-participant
stratified random split repeated 250 times. Right
hand side is the leave-one-participant-out score. . . 144

Fig. 5.15 Example of a segmented motion-augmented video.
Data is taken from the DNA extraction experiment.
Ground truth segments are colored blocks in the
background, while extracted segments are high-
lighted as vertical lines. . . . . . . . . . . . . . . . . . 148

Fig. 5.16 Video stills and motion data of the Thermoforming
experiments. Video was recorded with Google’s
Glass, motion data with a wrist-worn Smartwatch. . 149





L I S T O F TA B L E S

Tab. 2.1 Studies on wearable smoking detection. Only those
studies where data was collected are included.(RIP
= respiratory inductance phletysmography, RF =
radio frequency signal strength, EDA = electroder-
mal activity, ECG = electrocardiography). A limited
amount of studies attempted longitudinal record-
ings for longer than two days [31, 180, 34]. The
n/k/t column, refers to the amount of participants
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