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A B S T R A C T

Progressively, machine learning (ML) methods proved useful in various
biomedical applications, such as brain-computer interfaces (BCIs). Such sys-
tems utilize ongoing brain signals by either translating them into messages
or commands for an application, or by adapting a system depending on the
user’s brain state. As BCIs allow to directly interact with the human brain
in real-time, they are increasingly deployed for clinical applications, e.g. in
post-stroke rehabilitation. Here, ML-based brain state decoding approaches
are indispensable building blocks to extract user-specific information from
high-dimensional brain activity recordings with an inherently low signal-
to-noise ratio on single-trial level. However, in patient scenarios current
decoding methods are stretched to their limitations. The main drawbacks
are their limited robustness with scarce training data, the strong hyper-
parameter sensitivity of trained models as well as the limitation of the
feature’s clinical interpretability.

To tackle the aforementioned challenges, this interdisciplinary thesis
holds ML-based contributions and strikes a novel closed-loop application
path.

First, novel algorithmic contributions for robust and functionally relevant
brain state decoding are developed. Focusing on a supervised multivariate
spatial filtering algorithm to decode a continuous variable from brain
signals, different regularization strategies are introduced and evaluated on
simulation and real-world datasets. Overall, the novel regularized methods
reveal increased decoding performance up to 27 % under scarce training
data and label noise conditions. To additionally capture the functional role
of features, a novel algorithmic strategy is provided which exploits the
within-trial structure of tasks. Therefore, the observed model variability (e.g.
by varying the hyperparameters) is harnessed by condensing the functional
signatures of a large set of models into homogeneous clusters of individual
oscillatory brain dynamics.

Second, the developed ML tools are directly transferred into a closed-
loop system. Focusing on post-stroke rehabilitation, data of a repetitive
motor task is collected and studied in which large trial-to-trial performance
variations occur. With the ML tools at hand, this variability can partly
be explained and even temporally predicted by assessing individual os-
cillatory brain activity—shown on data of normally aged controls and
stroke patients. As a novelty, individualized predictors were exploited in a
proof-of-concept study on a brain state-dependent temporal gating strategy
with four chronic stroke patients. In contrast to the direct decoding of user
intention, the ongoing brain state revealed favorable starting time points
to influence upcoming single-trial motor performance, such as reaction
time (RT). In this way, RT was significantly shortened under suitable brain
states by up to 40 % of individual RT fluctuations. Gaining performance
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influence by exploiting the ongoing brain state holds a promising value for
motor learning after stroke and could potentially be applied to optimize
performance in cognitive trainings or sports science.

Overall, the provided ML tools foster the data-driven characterization
of neural processes in complex tasks and help to deepen the global under-
standing of motor control mechanisms and their restoration after stroke.
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Z U S A M M E N FA S S U N G

Methoden aus dem Bereich des maschinellen Lernens (ML) haben sich
zunehmend in verschiedenen biomedizinischen Anwendungen als äußerst
nützlich erwiesen. Ein Beispiel dafür sind Gehirn-Computer Schnittstel-
len (engl.: Brain-Computer Interfaces, BCIs). Solche BCI Systeme überset-
zen Gehirnsignale entweder in Nachrichten oder Steuerungssignale einer
Anwendung oder adaptieren ein System in Abhängigkeit des aktuellen
Gehirnzustandes. Da BCI-Systeme die direkte Interaktion mit dem mensch-
lichen Gehirn in Echtzeit ermöglichen, werden diese Systeme vermehrt
für klinische Anwendungen, wie zum Beispiel Schlaganfall-Rehabilitation,
eingesetzt. Hierfür sind ML-basierte Methoden zur Dekodierung von Ge-
hirnzuständen unverzichtbare Bestandteile, um individuelle Informationen
aus hochdimensionalen Gehirnaktivitätsmessungen mit intrinsisch gerin-
gem Signal-Rausch-Verhältnis auf Einzeltrial Basis zu gewinnen. Aktuelle
Dekodierungsansätze, die speziell für klinische Patientenszenarien geeignet
sind, stoßen jedoch rasch an ihre Grenzen. Hierzu zählen die begrenzte
Robustheit der Methoden im Falle kaum verfügbarer Trainingsdaten, die
starke Hyperparameter-Sensitivität der trainierten ML-Modelle sowie die
begrenzte klinische Interpretierbarkeit der zugehörigen Merkmale.

Um diesen Herausforderungen zu begegnen, beinhaltet diese interdiszi-
plinäre Dissertation neue ML-basierte Methoden und schlägt einen neuen
Weg für eine closed-loop Anwendung ein.

Zunächst werden neue algorithmische Beiträge zur robusten Dekodie-
rung von funktionell relevanten Gehirnzuständen entwickelt. Hierzu wer-
den für ein überwachtes Lernverfahren zur Dekodierung einer kontinuierli-
chen Variablen aus Gehirnsignalen verschiedene Regularisierungsstrategien
eingeführt. Die regularisierten, multivariaten Methoden werden auf simu-
lierten und echten Daten evaluiert. Stehen nur wenige Trainingsdaten mit
verrauschten Labels zur Verfügung, zeigen die neuen regularisierten Vari-
anten insgesamt eine verbesserte Dekodierungsgüte von bis zu 27 %. Um
zusätzlich die funktionale Rolle von Merkmalen zu erfassen, wird ein neu-
er algorithmischer Ansatz vorgestellt, der die innere Trial-Struktur von
Paradigmen ausschöpft. Dazu wird die beobachtete Modell-Variabilität (z.
B. unter verschiedenen Hyperparametern) genutzt, indem die funktionale
Signatur einer umfassenden Menge an Modellen in homogene Cluster
individueller oszillatorischer Gehirnaktivität kondensiert wird.

Die entwickelten ML-basierten Werkzeuge werden direkt in ein neues
closed-loop System transferiert. Im Kontext Schlaganfall-Rehabilitation
wurden Daten von gesunden Kontrollen und chronischen Schlaganfall-
Patienten einer wiederholten Bewegungsaufgabe aufgenommen und analy-
siert. Hier fällt eine deutliche Leistungsvariabilität auf. Basiernd auf indivi-
duellen oszillatorischen Signalen konnten die entwickelten ML-Methoden
diese Variabilität teilweise erklären und sogar zeitlich vorhersagen. In einer
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Machbarkeitsstudie mit vier chronischen Schlaganfall-Patienten wurden
die individuell bestimmten Prädiktoren für ein Gehirnzustand-basiertes
Training eingesetzt. Im Gegensatz zur herkömmlichen Dekodierung der
Nutzerintention, wurden hier erstmals Gehirnzustände dekodiert, um
geeignete Startzeitpunkte einer bevorstehenden Bewegungsaufgabe auf
Einzeltrial Ebene vorherzusagen und zeitlich auszulösen. Dabei wurden
Reaktionszeiten (RT) unter günstigen Gehirnzuständen signifikant um bis
zu 40 % bezüglich der auftretenden, individuellen RT-Fluktuationen ver-
kürzt. Einfluss auf die (Bewegungs-)Qualität durch die Ausnutzung des
vorherrschenden Gehirnzustands zu gewinnen hat vielversprechenden
Wert für motorisches Lernen nach Schlaganfall aber auch für andere Felder,
in denen Leistung optimiert wird. Dies könnte zum Beispiel für kognitive
Trainingsanwendungen oder in den Sportwissenschaften der Fall sein.

Insgesamt fördern die bereitgestellten ML-basierten Methoden die da-
tengetriebene Charakterisierung von neuronalen Prozessen in komple-
xen Bewegungsaufgaben. Sie helfen damit das globale Verständnis von
Motoransteuerungs-Mechanismen und deren Wiederherstellung nach Schlag-
anfall zu vertiefen.
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Part I

I N T R O D U C T I O N & F U N D A M E N TA L S

The first part of this thesis is dedicated to an overall introduc-
tion, the formulation of the tackled research questions and an
overview of the fundamental methods and findings on which
this dissertation is directly based on.





1
I N T R O D U C T I O N

"There is a real danger that computers will develop intelligence 
and take over. We urgently need to develop direct connections 
to the brain so that computers can add to human intelligence 
rather than be in opposition."

Stephen Hawking (2001)

Progressively, machine learning (ML) methods have proved useful in var-
ious biomedical applications, driven by the increased amount of available
digitized data [1]. Targeted scenarios cover a broad scope ranging from
large-scale annotation of genome sequences [2], via the support of clinical
decision making, e.g., on cancer diagnosis [3, 4] through to real-time car-
diac monitoring to recognize abnormalities [5]. In all these applications,
the studied complex biological systems typically provide high-dimensional
and noisy data. Thus, inferring variables or states of interest from such data
requires coping with these characteristics by providing robust and reliable
ML models. This also includes an adequate validation and understanding
of the trained models [6].

A prominent neurotechnological system that involves machine learning
algorithms is a brain-computer interface (BCI) [7]. Such systems allow
their users to interact with a computer or physical device through their
brain activity [8]. The extensive use of machine learning algorithms in BCI
applications enable for single-trial decoding from high-dimensional brain
activity recordings which are subject to an inherently low signal-to-noise
ratio [9]. BCIs allow for closed-loop applications and are originally applied
for communication and control systems.

During the last decade, BCI methods were increasingly utilized in post-
stroke motor rehabilitation, with a strong emphasis on upper limb sys-
tems [10–13]. Here, BCIs enable to directly decode movement related infor-
mation on single-trial level to trigger targeted and specific feedback [14],
such as the movement of an orthosis [15] or the onset of an electrical
stimulation [16]. Ideally, such direct feedback fosters neuroplasiticity to
bypass interrupted neural pathways. Up to now, first promising results
from randomized controlled studies on BCI-supported rehabilitation train-
ings were reported. Due to the limited amount of studies so far, an overall
conclusion about their efficiency cannot be drawn up to now [17]. In such
clinical applications, an indispensable building block is the availability of
ML-based decoding methods that provide robust and functionally rele-
vant features across multiple sessions. To reach this goal, Makeig et al.

3



4 introduction

[18] recommended to put strong emphasis on model interpretability for
future decoding approaches and to directly incorporate neurophysiological
information into data-driven models.

Broadening the view on cognitive or mental state assessment [19], Jensen
et al. [20] proposed the general concept of brain state-dependent (BSD)
experimenting to specifically exploit the ongoing brain state of a user
in closed-loop applications. In contrast to the direct decoding of motor
tasks, the BSD concept enlarges the focus by monitoring and exploiting
additional cognitive processes. Examples herefore are related to perception
and attention in the visual, auditory and somatosensory domain. However,
up to now only a limited amount of online studies are following this
concept [21].

In this thesis the recently proposed BSD concept will be established
for a repetitive hand motor task, that is used in post-stroke rehabilitation
trainings. When performing repetitive tasks with motor impaired patients,
large performance variations can be observed not only over the course of a
single session, but also on a single-trial level [22, 23]. Training over several
sessions can reduce but not dissolve these task-related trial-to-trial varia-
tions [24]. The underlying mechanisms for the behavioral variability are
not fully resolved yet. They might be explained by the stochastic character
of the nervous system, which arises from noise in brain networks [25] or a
specific regulation of variability to support motor learning [26]. While most
BCI-based post-stroke motor rehabiliation trainings focus on the direct
decoding of movement intentions [11], the ongoing brain state which might
be informative about upcoming trial-to-trial performance fluctuations has
not been taken into account so far.

1.1 research contributions

Contributions
With this interdisciplinary thesis, brain signals prior to and during a
repetitive motor task—which is utilized in post-stroke motor rehabilia-
tion trainings—will be studied extensively. As trial-to-trial performance
variations are expected in this context, it will be investigated if multivariate
machine learning methods allow identifying robust individual neural fea-
tures (markers) to explain and even temporally predict trial-by-trial motor
performance variations. Specifically, neural oscillations will be targeted as
a rich source of information [27]. Datasets on normally aged controls and
stroke patients were collected, to validate whether individual performance
predictors can be identified in both groups.

In patient scenarios current brain state decoding methods are stretched
to their limits. Here, predominant data regimes are characterized by a
high dimensionality, scarce training data and label noise conditions. Thus,
it will be verified if a state-of-the-art machine learning approach can be
robustified by deploying different regularization strategies to reduce the
algorithms’ susceptibility to overfitting the training data. Pushing forward
the frontiers of model introspection, a novel data-driven framework by
mining the oscillatory brain activity dynamics will be provided to identify
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reliable and functionally relevant neural features. Here, the exploitation of
within-trial event structure is foreseen as a key ingredient.

In a final step, it will be investigated if the robustified decoding methods
can be directly transferred into a novel brain state-dependent interaction
protocol exemplified for the previously studied hand motor task in post-
stroke rehabilitation. For the first time, it will be verified whether single-
trial motor performance can be influenced according to the individual
pre-trial brain state estimates. Overall, this thesis contributes novel machine
learning tools which help to increase the individual efficiency of closed-loop
interaction protocols, for instance in rehabilitation scenarios.

Brain activity Behavior

Brain state decoding

chapter 3
ML model w

Q2a: Can we train robust 
models on scarce data?

chapter 4

?
Q2b: Can we identify func-
tionally relevant features?

chapter 5

?
Q1: Can we learn to predict 
single-trial performance?

?

?

 Closed-loop interaction

chapter 6
model w

Q3: Can we influence motor
performance on single-trial?

go!

wait...

Figure 1.1: Schematic thesis structure. The integration of all posed research ques-
tions into a general context is schematically shown. Each research
question is related to a specific chapter.

As summarized in Fig. 1.1, the research contributions of this thesis can be
translated into three overall research questions which will be successively
followed throughout this thesis: Overall tackled research

questions
• Q1: Can data-driven brain state decoding methods reliably predict

single-trial motor performance from pre-trial non-invasive oscillatory
brain activity?

• Q2a: How can such decoding approaches be robustified under scarce
training data and label noise conditions?

• Q2b: Can we build data-driven decoding methods that focus on
identifying reliable and functionally relevant features?

• Q3: Can upcoming single-trial motor performance be influenced in
closed-loop interaction based on the ongoing brain state estimates?
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1.2 outline

Hereafter, a short outline on the structure of this thesis is provided. The ma-
jor contributions were previously published in peer-reviewed journals and
conference proceedings. For each chapter, the corresponding publications
are explicitly stated in the following.

Chapter 2 gives a brief summary on background knowledge about assess-
ing human brain activity followed by a wrap-up of basic oscillatory brain
signal analysis. Specifically, state-of-the-art spatial filtering approaches are
shortly reviewed. In addition, the commonly applied BCI data processing
pipeline is described. Furthermore, a short review on the most prominent
BCI application fields is provided.

Chapter 3 presents an offline analysis framework to identify robust
individual oscillatory features that allow to partially explain and temporally
predict motor performance variability. For this purpose, a state-of-the-art
supervised machine learning approach is utilized to regress a known
continuous trial-wise variable from multivariate brain activity recordings.
The proposed framework is established for a hand force task which was
designed for post-stroke motor rehabilitation training [28–31].

State-of-the-art algorithms for continuous brain state decoding reach their
limits, especially in patient scenarios. As features need to be optimized
individually, substantial training data is required. To improve the perfor-
mance with scarce training data, three types of regularization techniques
are proposed and characterized for the investigated brain state decoding
approach in chapter 4. For the evaluation, a novel simulation framework as
well as two real-world datasets were considered [32, 33].

Current brain state decoding models mostly neglect contextual informa-
tion of underlying experimental paradigms. Moreover, trained models are
extremely sensitive to changes in training data or involved hyperparame-
ters. This leads to highly variable solutions and impedes the selection of a
proper model for closed-loop interaction. Fostering component introspec-
tion, chapter 5 proposes an unsupervised ML approach to identify reliable
and functionally relevant oscillatory features by mining task-specific brain
signatures [34].

Based on the identified objective neural markers for the decoding of task-
specific suitable brain states, their final validation is targeted in chapter 6.
The developed algorithmic advances of chapters 4 and 5 will be utilized in
a novel brain state-dependent closed-loop training evaluated with chronic
stroke patients. The studied hand motor training is complemented with
a novel single-trial strategy exploiting the ongoing brain state in order to
influence single-trial motor performance.

The thesis will be concluded in chapter 7 by a final summary of the
overall findings, their relevance for other application scenarios and possible
future directions.
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1.3 publications

The major content of this thesis has already been published in peer-
reviewed scientific journals and conference articles. In the following, an
overview of all scientific publications is given in reverse chronological order
for the period of my PhD work. It is split in two main categories, namely
first author contributions and further involvement to scientific projects of
collaborators and colleagues.

1.3.1 Main contributions

journal articles

• A. Meinel, H. Kolkhorst, M. Tangermann, Mining Within-Trial Oscilla-
tory Brain Dynamics to Address the Variability of Optimized Spatial Filters,
IEEE Transactions on Neural Systems & Rehabilitation Engineering,
Vol. 27, No. 3, pp. 378–388, (2019) doi: 10.1109/TNSRE.2019.2894914

• A. Meinel, J.S. Castaño-Candamil, B. Blankertz, F. Lotte, M. Tanger-
mann, Characterizing Regularization Techniques for Spatial Filter Opti-
mization in Oscillatory EEG Regression Problems, Springer Neuroinfor-
matics, Vol. 17, No. 2, pp. 235–251,(2019) doi: 10.1007/s12021-018-
9396-7

• A. Meinel, J.S. Castaño-Candamil, J. Reis, M. Tangermann, Pre-Trial
EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroer-
gonomics for a Hand Force Task, Frontiers in Human Neuroscience, Vol.
10, (2016) doi: 10.3389/fnhum.2016.00170

peer-reviewed conference articles

• A. Meinel, F. Lotte, M. Tangermann, Tikhonov Regularization Enhances
EEG-Based Spatial Filtering For Single-Trial Regression, Proceedings of
the 7th Graz Brain-Computer Interface Conference 2017, pp. 308-313

(2017)

• A. Meinel, J.S. Castaño-Candamil, S. Dähne, J. Reis, M. Tangermann,
EEG Band Power Predicts Single-Trial Reaction Time in a Hand Motor Task,
Proc. IEEE Conference on Neural Engineering (NER), pp. 182-185

(2015)

abstracts

• A. Meinel, T. Koller, M. Tangermann, Time-Frequency Sensitivity Char-
acterization of Single-Trial Oscillatory EEG Components, The First Bian-
nual Neuroadaptive Technology Conference, pp. 36-37 (2017)

• A. Meinel, K. Eggensperger, M. Tangermann, F. Hutter, Hyperparame-
ter Optimization for Machine Learning Problems in BCI, Proc. Sixth Int.
BCI Meeting, p. 184 (2016)

https://doi.org/10.1109/TNSRE.2019.2894914
https://doi.org/10.1007/s12021-018-9396-7
https://doi.org/10.1007/s12021-018-9396-7
https://doi.org/10.3389/fnhum.2016.00170
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• A. Meinel, E. M. Schlichtmann, T. Koller, J. Reis, M. Tangermann,
Predicting Single-Trial Motor Performance from Oscillatory EEG in Chronic
Stroke Patients, Proc. Sixth Int. BCI Meeting, p. 140 (2016)

1.3.2 Additional contributions

• J.S. Castaño-Candamil, A. Meinel, M. Tangermann, Post-Hoc Label-
ing of Arbitrary EEG Recordings for Data-Efficient Evaluation of Neural
Decoding Methods, Proc. Seventh Int. BCI Meeting, pp. 58-59 (2018)

• J.S. Castaño-Candamil, A. Meinel, M. Tangermann, Post-Hoc Label-
ing of Arbitrary EEG Recordings for Data-Efficient Evaluation of Neural
Decoding Methods, arXiv e-prints (2017)

• M. Tangermann, A. Meinel, Informative Oscillatory EEG Components
and their Persistence in Time and Frequency, Neurotechnix Vol. 1, CogNeu-
roEng pp. 17-21 (2017)

• J. Meyer, A. Meinel, T. Schreiner, B. Rasch, M. Tangermann, Ver-
suchspersonenunabhängige Single-Trial-Erkennung von langsamen Wellen
im Schlaf-EEG, 24. Jahrestagung der DGSM, Somnologie 20, pp. 75-76

(2016)

• M. Tangermann, J. Reis, A. Meinel, Commonalities of Motor Performance
Metrics are Revealed by Predictive Oscillatory EEG Components, Proc.
3rd Int. Congress on Neurotechnology, Electronics and Informatics
(Neurotechnix), pp. 32-38 (2015)

• J.S. Castaño-Candamil, A. Meinel, Sven Dähne, M. Tangermann, Prob-
ing Meaningfulness of Oscillatory EEG Components with Bootstrapping,
Label Noise and Reduced Training Sets, Proc. 37th Int. Conf. of the IEEE
Eng. in Medicine and Biology Soc. (EMBC) pp. 5159- 5162 (2015)

• J.S. Castaño-Candamil, A. Meinel, J. Reis, M. Tangermann, Correlates
to Influence User Performance in a Hand Motor Rehabilitation Task, Clinical
Neurophysiology, 126 pp. 166- 167 (2015)
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F U N D A M E N TA L S

Hereafter, I provide a short introduction on basic methods and findings
that are commonly shared by all chapters and essential to get access to
the interdisciplinary topic. In each chapter, I will specifically provide the
methodological background to integrate the corresponding chapter into
the current state-of-the-art.

2.1 measurement of human neuronal activity

To gain an understanding about the basic mechanisms of the human brain,
it is indispensable to record activity of the nervous system. In the last cen-
tury, a variety of functional brain imaging methods have been developed
which cover a broad range of scales both in terms of spatial and temporal
resolution [35]. On the microscopic level, there are techniques to capture
spiking activity of single neurons or even single synapses. On the macro-
scopic level, activity of large neuronal populations can be recorded by the
electroencephalography (EEG). This non-invasive method —first described
by [36]—allows measuring changes in electrical scalp potentials by placing
electrodes on the human scalp. As this thesis builds upon novel ML tools
for single-trial EEG analysis, we will shortly review the electrophysiological
basis of this method which can be found, among others, in Baillet, Mosher,
and Leahy [37], Kandel et al. [38], Nunez and Srinivasan [39], and Hallez
et al. [40].

2.1.1 Electrophysiology of the EEG

The human brain consists of about 1010 nerve cells or neurons which are
strongly interconnected among each other. The junctions of two neurons
are called synapses. Neurons share a common anatomical structure as they
consist of a cell body (soma), the branching dendrites to receive input from
other nerve cells and the axon for transmitting information to other cells.

Single neurons are electrically excitable as their cell membrane is com-
posed of ionic pump proteins which actively regulate the ion transport
across the membrane. This results in a concentration gradient of different
ions and thereby a total charge difference between the intra- and extracel-
lular membrane translates into the resting potential. This concentration
gradient—and thus its corresponding resting potential—is actively main-
tained by the energy-consuming ionic pumps.

Neurons are capable to receive, process and transmit information by a
change of the membrane resting potential. The process behind it is the
following: when taking a closer look at a synapse, an active pre-synaptic
neuron can release neurotransmitters which enter the dendritic tree of
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a post-synaptic neuron. This synaptic input causes an ionic current flow
across the membrane which results in a post-synaptic potential (PSP). A
single post-synaptic neuron receives synaptic input from many other pre-
synaptic nerve cells. These various PSPs are transmitted along the dendrites
and become integrated at the soma. If the overall depolarization of the
intracellular space is large enough, then voltage-sensitive ion channels
suddenly open up. This causes an ionic flow—called primary current—and
thus delivers an action potential which travels along the axon to other
neurons.

According to the principle of charge conservation, there is also a sec-
ondary current through the extracellular space. As each current generates
an electric field according to Ohm’s law, these secondary currents are re-
ported as the main generators of measurable scalp potentials that can be
recorded with EEG. Two major factors influence the resulting measurable
potentials: First, the spatial orientation of the cortical neurons are crucial.
EEG signals are dominated by the electric fields of large, parallel oriented
pyramidal cell assemblies orthogonal to the cortical surface. Second, syn-
chronous activation of these cortical networks is crucial as both factors
facilitate a superposition of the resulting electric fields. EEG recordings
reveal typical amplitudes in the order of a few microvolts. Such amplitudes
require synchrony along cortical networks over at least 10 cm2 [41] and
thereby providing a spatial resolution estimate of the EEG.

EEG signals are of interest in frequency ranges considerably below
1 kHz. Fortunately, in this range the physics of EEG allows neglecting
any electromagnetic propagation effect. In other words, the mixture of
various neural source activations translate without temporal delay into a
measurable scalp potential. This effect is called volume conduction as the
anisotropic conductive properties of the head’s different layers, especially
the cerebrospinal fluid and the skull, lead to a blurred scalp potential
distribution.

EEG activity is typically measured by multiple electrodes that are placed
at approximately equidistant locations across the whole scalp. For repro-
ducibility, the placement follows a fixed scheme, such as the common 10-20

system. In order to assess a potential for each EEG electrode, the signal of a
single EEG channel is obtained by referencing the corresponding electrode
signal against a reference, such as a single physical electrode.

When recording EEG signals in practice, neuronal signal sources are
superimposed by artifactual contributions. These are caused by non-neural
physiological sources, e.g., ocular, muscular or cardiac activity and by non-
physiological origins such as hardware related artifacts. This needs to be
taken into account when analyzing such data [42].

2.1.2 Oscillatory brain activity

The spectral power density of the EEG— as well as signals obtained by inva-
sive techniques such as local field potentials (LFPs) or electrocorticography
(ECoG)—is inversely proportional to the frequency f . The characteristic



2.1 measurement of human neuronal activity 11

1/ f decrease in the power spectrum is generally superimposed by one
or multiple narrow frequency-specific peaks as shown for an exemplary
dataset in Fig. 2.1 (A). These peaks reflect oscillatory processes with in-
creased rhythmic activity in subject-specific frequency bands such as the
alpha band which can roughly be found in the range from 8− 13 Hz and the
beta band in the range of 14− 30 Hz. Moreover, other neurophysiologically
relevant frequency bands include the delta (1− 3 Hz), the theta (4− 7 Hz)
and the gamma frequency band (30 to more than 100 Hz). These different
frequency domains are linked to functional brain networks which are rel-
evant for cognitive and physiological functions [43, 44]. A more detailed
review on the origin and properties of oscillatory processes can be found
in [27]. When measuring macroscopic oscillatory brain activity specifically
at electrode locations in the immediate proximity of the sensorimotor cor-
tex, such activity is commonly referred to as sensorimotor rythm (SMR) or
µ rhythm.

The modulation of oscillatory activity was found to play a major role in
various cognitive processes such as, among others, memory, attention or
visual perception [45–48]. A prominent example is given by the modulation
of alpha power by the visual system as it increases the power over parieto-
occipital channels when a subject closes the eyes.

0
time (s)

1 2 3 4

Left

Right

0
time (s)

1 2 3 4

al
ph

a 
po

we
r (

C
3 

La
p)

B

C
10 20 30 40

0

15

Cz
C4

C3

AA

ba
nd

po
w

er

frequency (Hz)

al
ph

a 
po

we
r (

C
4 

La
p)

Figure 2.1: Basic analysis of oscillatory brain activity. Based on data of a single
session, two key phenomena are shown: (1) The frequency spectra for
three single EEG channels are shown in (A). (2) Event-related power
modulation (here: ERD) for two contrasting conditions of left- and
right-hand motor imagery. In (B) and (C), the power time course of
Laplace filtered channels C3 and C4 are given. The time t = 0 refers to
the onset of movement imagination.

A state-of-the-art approach to analyze oscillatory activity from EEG
recordings is to verify the presence of time-locked, frequency-specific enve-
lope modulations. They can be triggered by an internal or external event
such as a simple visual cue. The induced power modulation effect is known
as event-related (de-)synchronization (ERD/ERS) [49–51]. Such an effect
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can be observed when analyzing the class-wise envelope dynamics for a
motor imagery (MI) dataset. Instructed by, e.g., a visual cue, a subject is
asked to imagine either left or right hand movements. Fig. 2.1 (B) and (C)
report the alpha power time course for two Laplace filtered channels C3
and C4. Laplace filters are one of the simplest methods to enhance the typi-
cally low signal-to-noise (SNR) of EEG recordings by taking neighboring
channels into account [52]. Typically, the channels C3 and C4 are directly
located over the left and right primary motor cortex. As usually found for
MI data [53], there is a SMR decrease less than 1 s after the movement onset,
hence an ERD effect on the contralateral hemisphere. For the presented
data, there is also a less strong ERD on the ipsilateral side observable.

Several approaches to extract and quantify ERD/ERS effects along the
spatial, temporal and spectral domain have been proposed [54–57] and thus
enable to identify involved cortical regions evoking such power changes [58,
59]. Studies on ERD/ERS effects are mostly implemented with simple tasks.
These typically result in a simple, cue-locked modulation of the band
power [50] such as the reported ERD upon movement onset in Fig. 2.1.
More complex tasks with a richer temporal structure and a possibly richer
resulting ERD/ERS structure have been studied far less frequently.

However, the extraction of distinct oscillatory signatures from Laplace
filtered channels (as in Fig. 2.1) or even based on only single EEG channels
is not always straightforward. In general, the high-dimensional EEG or
similarly magnetoencephalography (MEG) recordings reveal an intrinsic
low SNR ratio [60]. In addition, strong inter-individual differences in the
time-frequency and spatial characteristics of SMR activity challenge the
automation of such oscillatory analyses. To tackle these challenges, sophis-
ticated signal processing and machine learning approaches come into play
which will be introduced in Sec. 2.3.2.

Interestingly, most subjects can learn the ability to voluntarily modulate
their SMR activity, e.g., by imagined movements. This capability supplies
a direct neural pathway for controlling SMR-based BCI systems. Their
general structure and functionality is explained hereafter.

2.2 brain-computer interfaces

2.2.1 Closed-loop interaction

The commonly established closed-loop processing pipeline of an online BCI
system is depicted in Fig. 2.2 [61]. In general, such systems collect, analyze
and finally translate brain signal recordings into output commands in a
real time. More precisely, five major steps are realized by an online BCI
system: (1) Brain signals are continuously recorded by either an invasive
or non-invasive imaging technique. In this thesis, we will restrict the view
on non-invasive EEG-based BCIs. (2) Data preprocessing consists of steps
such as removing artifactual signal contributions or temporal filtering of
the data to a specific frequency band of interest. A proper preprocessing
typically ensures that outliers are removed from the data. (3) Feature
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Figure 2.2: Main processing steps for online BCI systems. The scheme is exem-
plified for a motor task classification pipeline based on modulated
oscillatory brain rhythms which are typically used as features.

extraction is performed by estimating brain signal components of interest,
e.g., by applying a pre-trained model to extract task-related information.
(4) A pre-trained classification or regression model is evaluated on the
extracted features to decode the user’s intention or brain state and finally
feed the BCIs control signal into a feedback application. (5) In a final
step, the loop is closed by providing feedback to the user via a common
modality, such as the visual, auditory or tactile pathway or by utilizing
the decoded information to trigger an additional device, for instance a
robot, an orthosis or an electrical stimulation. The steps (3) and (4) require
trained ML models for the decoding of relevant information from ongoing
brain activity recordings. In many scenarios, supervised ML models are
utilized such that labeled training data is required. The necessary training
of the ML models—also known as calibration—is typically performed on
sufficient data of a previous session or the initial phase of an ongoing
session. Reducing the time for collecting a sufficient amount of calibration
data is one major challenge in the field of BCI research and is a key factor
to facilitate the use of BCI systems outside the laboratories [62].

2.2.2 Clinical application fields

So far, BCIs for clinical applications are predominantly studied along two
lines of research which will be shortly introduced hereafter.

BCIs for communication and control

Initially, the majority of BCI research focused on the development of as-
sisstive technology to restore communication and control capacities for
severely impaired patients with chronic neuromuscular disorders, such
as spinal cord injury, amyotrophic lateral scelorisis, among others. Such
disorders damage the neural pathways for muscle control or directly impair
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the muscles themselves. In the absence of almost any voluntary muscular
control (including eye-movements), a BCI might be capable to restore func-
tion by decoding information from still intact brain areas and utilize it as a
channel for communication and control. Thereby, the efferent pathways of
the brain are bypassed [7, 63, 64]. Such applications are typically based on
either stimulus-induced paradigms such as a P300 speller [65] or self-paced
paradigms. The later one is typically realized by MI paradigms in which
the class-specific SMR modulation (see Fig. 2.1) can be exploited to decode
the user’s intention [66].

BCI-based post-stroke (motor) rehabilitation

In the past decade, a growing number of BCI applications to support
rehabilitation scenarios after stroke can be found. In general, such systems
strive to close afferent and efferent neural pathways that are interrupted
by the stroke [10, 12, 67]. This concept was not exclusively applied to
motor rehabilitation scenarios but also for attention- or language-related
deficits [68–70].

Restricting the view on BCIs for post-stroke motor rehabilitation, these
systems conceptually aim to trigger functional and structural re-organization
(neuroplasiticity) by reinforcing brain states that are beneficial for motor
recovery. Most studies focus on the direct decoding of movement intention
or motor imagery and thereby close the loop between efferent and afferent
pathways. The specific way how individual sensory feedback is provided
comprises a broad spectrum of applications. This can be done by functional
electrical stimulation [71], the triggering of an external device such as a
robotic arm [72] or an orthosis [15, 73] or by providing embodied feedback
in virtual reality setups [74].

So far, research on BCI-supported motor rehabilitation is in a very early
state, such that the efficiency of such training protocols including a control
group has currently been reported in very few studies only [17].

2.3 single-trial brain state decoding methods

As illustrated in Fig. 2.2, BCI systems typically require trained models
which allow the decoding user intention or the extraction of individual
informative brain states from ongoing multichannel brain signal record-
ings [61]. Often, these signals come with a high dimensionality and are
typically superimposed of both task-related and unrelated neural contri-
butions, given that a sufficient preprocessing was performed by removing
outliers and artifactual signals components, among others. The still result-
ing low intrinsic SNR ratio of such signals impedes the extraction of hidden,
informative neural sources. Moreover, brain signals are non-stationary, as
they typically reveal a strong trial-to-trial variability within and across
subjects.

To remedy the situation, algorithmic approaches that fuse informa-
tion from all available channels —commonly referred to as multivariate
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methods— from the fields of machine learning and signal processing have
proven beneficial as they can provide access to different neural processes
under improved SNR ratios [19]. In the following, multivariate brain sig-
nal analysis is shortly revisited by introducing the general mathematical
concept of forward and backward modeling of macroscopic brain activity
measurements [75, 76].

Hereafter, multivariate EEG recordings acquired from a total number
of sensors or channels Nc at a time point t will be denoted by a vector
x(t) = [x1(t), ..., xNc(t)]

> ∈ RNc . Collected data, e.g. over the course of an
experimental session, with overall Nsam samples are concisely notated by
the multivariate data matrix X= [x(1), ..., x(Nsam)] ∈ RNc×Nsam .

2.3.1 Linear forward model

In the following, we assume that observed multivariate data x(t) can be
described as a mixture of unknown variables—named components or factors—
which reveal a distinct spatio-temporal signature. Each component can thus
be regarded as a hidden functional process, e.g., a stimuli-evoked brain
response that is segregated from other neural sources that contribute to the
finally observable data x(t). Moreover, the temporal activity at time t of
the kth component is captured by the scalar variable sk(t). The projection of
a component’s activity sk(t) to the individual scalp channels is described
by the spatial activation pattern ak ∈ RNc which holds the strength and
polarity of the projection. As such, an activation pattern a provides access
to a neurophysiological interpretation, as it spatially describes to which
scalp channels the source component is contributing.

The linear forward/generative model describes the linear superposition
of K ≥ 1 latent variables which are summarized by the vector s(t) =

[s1(t), ..., sK(t)]> ∈ RK with k ∈ {1, ..., K} to explain the observed multivari-
ate data x(t) at time t. Now, each component is mapped to the sensor space
by their corresponding spatial activation pattern [75]:

x(t) =
K

∑
k=1

ak · sk(t) + ε(t) = As(t) + ε(t) (2.1)

with ε ∈ RNc referring to a noise term which captures the remaining signal
part that is not yet explained by the K source components. The matrix
A ∈ RNc×K contains all spatial patterns of corresponding latent sources.

2.3.2 Backward model

Now given the recorded data x(t) only, conversely the question emerges of
how to find the corresponding source components. In the most general case,
the two unknowns A and s(t) can be estimated jointly which is referred to
as blind source separation (BSS). However, there is not a unique solution
to this factorization. It even requires additional assumptions about the
underlying temporal and spatial dynamics of the related brain sources of
interest.
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When aiming for a joint estimation of the spatial patterns A and the
source activation time course s(t), this will involve a highly complex opti-
mization problem. It can be substantially simplified by considering a linear
backward/inverse model. Such approaches typically decompose the signal
into 1 ≤ K ≤ Nc estimated source components ŝ(t) by a linear projection
matrix W ∈ RNc×K such that [75, 76]:

ŝ(t) = W>x(t) (2.2)

Each column of the matrix W = [w1, ..., wK] refers to a single spatial filter
wk. Such a model is composed of a set of coefficients that determine the
linear combination of the single recorded channels in order to estimate the
time course of a corresponding source component ŝk(t). In the following,
the subscript index will be discarded when referring to a single filter model.

2.3.3 Neurophysiological model interpretation

An important aspect about the estimation of any backward model is to gain
an understanding of the underlying subspace component in the original
sensor space. Interestingly, such linear methods allow for an interpretation
of the subspace components as pointed out by Haufe et al. [76]. However,
as the coefficients of a single spatial filter w are depending on both, the
signal and noise structure in the data, a direct neurophysiological model
interpretation is not possible for w. For every backward model as declared
in Eq. (2.2), there is an existing forward model according to Eq. (2.1). It
can be shown that the corresponding spatial activation patterns A can be
obtained from the spatial filter matrix W based on the averaged covariance
matrix Σavg:

A = ΣavgW(W>ΣavgW)−1 ∝ ΣavgW (2.3)

The last step holds if the estimated sources ŝ are uncorrelated—which can
be stated for many backward model techniques— or for the case K = 1.
Thus, the activation pattern can simply be estimated from the averaged
covariance matrix of the data and the spatial filter estimate.

Given we can estimate a backward model w on a dataset, Eq. (2.3) allows
us to estimate the corresponding forward model. Thus, we can limit further
considerations on ways to formulate cost functions only depending on the
filter w.

2.3.4 Data-driven spatial filtering algorithms

The recovery of source components from observed data—as formulated in
Eq. (2.2)—can also be tackled as a machine learning problem. In general,
the task is then to learn a subspace decomposition of the data parametrized
by the matrix W. In current literature, there are various backward model
approaches to estimate spatial filter coefficients in a data-driven manner
and relate them to behavioral data [77]. However, their choice strongly de-
pends on the final application scenario. A large number of state-of-the-art
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algorithms for spatial filter estimation share a common mathematical for-
mulation of the optimization function fobj(w) with an additional constraint
fcst(w):

max/min
w

fobj(w) = w>M1 w s.t. fcst(w) = w>M2 w !
= q (2.4)

with the matrices M1, M1 ∈ RNc×Nc and a constant q ∈ R. The exact
definition of M1 and M2 is then specific to each algorithmic solution.

As Eq. (2.4) holds an equality constraint, the method of Lagrange multipli-
ers can be utilized to transfer the formulation into a symmetric generalized
eigenvalue problem (GEP) M1 w = λM2 w with eigenvalue λ and corre-
sponding eigenvector w. While the cost of a full eigenvector decomposition
is of order O(N3

c ), efficient algorithms for solving GEPs are implemented
in standard linear algebra toolboxes [78]. Solving a GEP typically returns a
the full matrix W of Nc spatial filters. Hereafter, we assume a sorting of the
K filters with k ∈ {1, .., K} indexing the rank which can be determined in
descending order of the eigenvalues.

In a general sense, spatial filtering algorithms can be subdivided into two
main categories. Unsupervised methods solely consider statistical properties
of the data in absence of any label information, while supervised techniques
additionally exploit label information to explicitly direct the parameter
optimization. The most relevant methods for this thesis will shortly be
reviewed hereafter [79, 80].

2.3.4.1 Principal component analysis

The principal component analysis (PCA) is an unsupervised approach that
optimizes for subspace components that explain the largest variations in
the data [81]. The variance of a single source component can be expressed
as Var(w> X) = w>Σ w with the covariance matrix Σ= (Nsam − 1)−1X>X.

Thus, maximizing the variance under the constraint ||w||2 = w>w !
= 1 of

orthogonality leads to the following optimization problem:

max
w

fobj(w) = w>Σ w s.t. fcst(w) = w>I w !
= 1 (2.5)

with the identity matrix I ∈ RNc×Nc . The direct comparison with the
general constraint optimization formulation in Eq. (2.4) yields that the
matrix M1 = Σ and M2 = I. Due to the identity matrix, the formulation
can be translated into a eigenvalue decomposition Σw = λw. As PCA
components are orthogonal, they are also not correlated among each other.
It can also be derived that the explained variance of a component is directly
given by the corresponding eigenvalue λ = Var(w> x(t)). Given a full
PCA decomposition W with K PCA components, the mentioned eigenvalue
property is of specific use to select a subset of J ≤ K components that
correspond to the overall fraction of explained variance by ∑J

j=1 λj/ ∑K
k=1 λk.

PCA is the most prominent spatial filtering approach and is utilized
in various domains beyond the field of BCI for data visualization or fea-
ture extraction. In principle, unsupervised spatial filtering algorithms such
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as PCA are commonly applied to reduce the dimensionality of usually
high-dimensional multivariate brain signal recordings [82], while in other
neuroimaging scenarios PCA is utilized to identify and project out artifac-
tual contributions of observed data [83].

2.3.4.2 Independent component analysis

Another example of an unsupervised factorization approach to determine
a set of spatial filters W is given by the independent component analysis
(ICA). Instead of computing orthogonal components as accomplished in
PCA, the ICA approach follows a different optimization strategy by identi-
fying latent source components that are statistically independent among
each other.

Formally, statistical independence of K random variables Ŝi with i ∈
{1, ..., K} can be assessed by the information-theoretic measure of mutual in-
formation I . Under the assumptions of a linear mixing, we treat the source
estimate Ŝ as a set of K random variables which reveal the time series data
of single source components according to the inverse model W introduced
in Eq. (2.2). Given K source components, their mutual information I(Ŝ)
can be expressed as:

I(Ŝ) =
K

∑
i=1
H(Ŝi)−H(Ŝ) ≥ 0 (2.6)

with H(Ŝi) expressing the entropy of the variable Ŝi. It can be shown, that
I(Ŝ) becomes zero if and only if all K variables are statistically independent.
Thus, striving for statistical independence, ICA is based upon minimizing
the mutual information I(Ŝ). One can show that minimizing I(Ŝ) is
equivalent to minimize the entropy H(Ŝi) for all single components. Given
a fixed mean and variance of all random variables, the Gaussian distribution
holds the maximal entropy. Thus, ICA finally favors K spatial filter estimates
w that elicit the most non-gaussian source components Ŝi [84, 85]. In
consequence of the optimization based on mutual information, ICA is not
transferable into the introduced GEP framework of Sec. 2.3.4.

When describing source components solely as random variables, the
temporal information contained in brain signal recordings is completely
discarded. However, there are ICA variants which takes the temporal source
information into account [86].

ICA is applied in various scenarios for analyzing neuroimaging data [87,
88]. In the context of multivariate brain signal analysis, it is commonly
used to identify artifactual components [89] or to extract informative neural
components that reflect, e.g., task-related ERD/ERS effects [57, 59, 90].

2.3.4.3 Prerequisites for supervised methods

Based upon the course of events in an experimental paradigm, a mul-
tivariate recording x(t) can be translated into Ne single epochs with a
corresponding data matrix X(e) ∈ RNc×Ns with Ns sample points per epoch.
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By definition, a supervised machine learning model takes label information
into account. As such, hereafter we assume to have access to an epoch-wise
defined external target variable z(e). This scalar variable z provides addi-
tional information about the underlying experimental paradigm and could
represent, among others, stimulus characteristics, behavioral responses,
external physiological information or cognitive measures.

Let x(t) and X(e) be bandpass-filtered to a frequency band of interest.
Given a single spatial filter w, the epoch-wise bandpower Φ(e) of the
corresponding source ŝ can be approximated by its variance:

Φŝ(e) = Var[ŝ(t)](e) = Var[w>x(t)](e) = w> Σ(e)w (2.7)

where Σ(e) = (Ns − 1)−1X(e)>X(e) denotes the epoch-wise spatial covari-
ance matrix. Correspondingly, the average spectral power across all Ne

epochs can be denoted as:

Φavg = 〈w>Σ(e)w〉 = w>〈Σ(e)〉w = w> Σavgw (2.8)

with 〈·〉 referring to an average across epochs and Σavg = 〈Σ(e)〉 defining
the averaged covariance matrix across all epochs.

2.3.4.4 Common spatial patterns

A widely utilized multivariate method for solving a single-trial EEG clas-
sification task is tackled by the common spatial pattern (CSP) algorithm.
It exploits underlying ERD/ERS effects induced by two contrasting ex-
perimental conditions, as encountered in a motor imagery paradigm [91–
93].

In CSP, the epoch-wise label information is defined as a binary variable
z(e) ∈ {0, 1} and thus targeting a two-class problem. Such a label can for
instance refer to a left or right hand movement imagination. In a nutshell,
CSP optimizes for spatial filter estimates which maximize the contrast
in terms of epoch-wise variance between the two classes. As the epoch-
wise variance of a bandpass-filtered signal approximates the bandpower, it
thereby extracts a subspace which maximally contrasts ERD/ERS effects
among the two classes. Given the class-wise averaged covariance matrices
Σc = 〈Σ(e)〉z(e)∈c with classes c ∈ {0, 1}, the following objective function
can be stated:

max
w

fobj(w) = w>(Σ1 − Σ0)w s.t. fcst(w) = w>Σavg w !
= 1 (2.9)

with Σavg referring to the overall averaged covariance matrix regardless
of the class label. Comparing Eq. (2.9) with the general formulation in
Eq. (2.4), we can identify M1 = (Σ1− Σ0) and M2 = Σavg. Thereby, the CSP
optimization can be translated into a GEP and thus delivers a closed-form
solution. When estimating the full spatial filter matrix W by solving the
GEP, typically the filters are sorted in decreasing order of the eigenval-
ues. According to the objective function in Eq. (2.9), the spatial filters w
corresponding to the largest and smallest eigenvalue are the subspace
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projections with maximize the variance ratio among the two classes. Thus,
in a final BCI classification scenario one typically chooses a set of filters
from both ends of the eigenvalue spectrum.

In summary, the CSP algorithm is commonly applied in oscillatory signal
analysis when contrasting two experimental conditions. Finally, pre-trained
CSP subspace components are utilized as features when running realtime
BCI control applications [66] or when decoding motor system activations
to support post-stroke motor rehabilitation [72].

2.3.4.5 Source power comodulation (SPoC)

The source power comodulation (SPoC) approach was recently proposed
by Dähne et al. [94] for single-trial bandpower regression of multivariate
oscillatory brain signals. The epoch-wise target variable z(e) is now consid-
ered as a continuous variable. z is assumed to be standardized to zero mean
— such that 〈z(e)〉 = 0—and unit variance.
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Figure 2.3: Scheme of the SPoC optimization principle. The method solves a
single-trial regression problem based on multivariate observable sensor
data x(t) and a continuous variable z. It optimizes for a spatial filter w
such that the corresponding estimated neural source ŝ maximally co-
modulates with a given epoch-wise defined univariate target variable z.

As sketched in Fig. 2.3, the central idea of the SPoC algorithm is to search
for an optimal spatial filter w∗ such that the epoch-wise power Φŝ(e) of
the resulting estimated source component ŝ maximally co-modulates with
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the given target variable z(e). Formally, this translates into the following
objective:

fobj(w) = Cov[Φŝ(e), z(e)]
De f .
= 〈(Φŝ(e)−Φavg)(z(e)− 〈z(e)〉︸ ︷︷ ︸

=0

)〉

Eq. (2.7, 2.8)
= w>〈z(e)Σ(e)〉w− 〈z(e)〉︸ ︷︷ ︸

=0

w>Σavg w

= w>Σz w

(2.10)

where Σz := 〈z(e)Σ(e)〉 defines the label-weighted covariance matrix aver-
aged across epochs.

The original SPoC formulation by [94] comprised two different opti-
mization strategies, namely covariance or correlation. This thesis operates
on SPoCλ which optimizes covariance and allows deriving closed-form
solutions for the spatial filters. Thus, the term SPoC will refer to the SPoCλ

algorithm hereafter.
As the covariance is directly affected by the scaling of its arguments,

it requires a constraint upon possible solutions. This is tackled by the
previously utilized filter norm constraint of the CSP algorithm Φavg =

w>Σavgw !
= 1. This leads to final objective function with a norm constraint:

max
w

fobj(w) = w>Σz w s.t. fcst(w) = w>Σavg w !
= 1 (2.11)

A comparison with Eq. (2.4) finally yields that M1 = Σz and M2 = Σavg.
Thus, the SPoC formulation can be translated into the known GEP frame-
work and thereby delivers a closed-form solution. Overall, the approach
returns a full set {w∗k}k=1,..,Nc of Nc spatial filters with k indexing the rank,
which is determined in descending order of the eigenvalues and thereby
according to the covariance.

Interestingly, the CSP formulation given in Eq. (2.9) can be directly
derived from the SPoC formulation in Eq. (2.11) by defining a binary target
variable z ∈ {0, 1} instead of a continuous one.

2.3.5 Applicability of spatial filters for closed-loop applications

Finally, a short statement about the applicability of spatial filtering methods
in closed-loop applications is given, as this will be a major research direction
of this thesis.

Three major advantages are provided by the introduced linear spatial fil-
tering methods [53, 79]: First, the approaches enhance the intrinsically low
SNR ratio of high-dimensional brain activity recordings such as M/EEG
and provide a data-driven way to identify discriminative information. Sec-
ond, these linear models directly provide neurophysiological interpretabil-
ity, which supports the understanding about underlying brain mechanisms
and favors their use for clinical applications. Third, the methods need to
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be directly applicable at low computational effort in online BCI systems to
allow for single-trial brain state interaction, which is one of the ultimate
goals of this thesis. When using a spatial filter model in an online BCI
system, a preceding bandpass filtering is usually required. However, this
filtering step is time consuming as each M/EEG channel needs to be filtered
individually. In case of utilizing infinite impulse response (IIR) filters, such
as Butterworth filters, this operation is strictly linear. Thus, fortunately the
two operations become interchangeable such that the spatial filter/s can be
applied prior to bandpass filtering which reduces the computational effort
in online BCI systems and thus promotes the online applicability of spatial
filter methods in combination with IIR bandpass filtering [95].

Several methods can be used to estimate source components (as intro-
duced in Sec. 2.3.2), among them source reconstruction techniques. Such
methods may provide a high level of interpretability for the results directly
in the source space, and may describe non-stationarities in the data and
other complex dynamics [96]. However, there are three potential drawbacks
of source reconstruction approaches [97]: First, the estimation of ŝ(t) with
state-of-the-art algorithms usually creates a rather high computational bur-
den [98]. Second, the methods require either a forward model A for each
individual subject, which may not be available in most situations since it
corresponds to the exact acquisition of a subject’s brain anatomy. Alterna-
tively, a standardized head model [99] can be considered at the expense of
outcome precision. Third, source reconstruction problems are intrinsically
ill-posed, because the solution is a priori not unique (more unknowns
compared to number of recording sites) and might also be non-stable due
to the sensitivity to small changes in the training data. Thus, the quality
of an estimated source depends on additional assumptions, such as the
density of sources or their location within the brain.

The estimation of informative source components can also be achieved
with non-linear models, such as neural network approaches [100], which
may come up with higher decoding accuracies. However, their degree of
model interpretability is still rather limited and currently under further
investigation [101].



Part II

R E S E A R C H C O N T R I B U T I O N S

Hereafter, the different research contributions of this PhD thesis
are presented in four chapters. An overview on the tackled
research question can be found in Sec. 1.1.





3
S I N G L E - T R I A L M O T O R P E R F O R M A N C E P R E D I C T I O N

This chapter closely follows the journal publication “Pre-Trial EEG-Based
Single-Trial Motor Performance Prediction to Enhance Neuroergonomics
for a Hand Force Task” by Meinel et al. [28]. For this collaborative work,
I have taken the lead in designing the experiment, in collecting the two
datasets, in performing the comprehensive data analysis, in visualizing
the results and in writing the manuscript. For this thesis, the analysis was
enriched by an additionally collected dataset on chronic stroke patients.

A framework for building electrophysiological predictors of
single-trial motor performance variations is presented, exempli-
fied for a repetitive hand force task. Based on collected datasets of
normally aged controls and chronic stroke patients, strong trial-
by-trial performance variations for five clinically relevant metrics
were found. In an online simulation, the supervised multivariate
regression approach SPoC was applied on EEG data of a short
time interval prior to the start of each trial. For 16 out of 25 sub-
jects, SPoC revealed robust oscillatory EEG subspace components,
whose bandpower activity are predictive for the performance of
the upcoming trial. Since SPoC may overfit to non-informative
subspaces, we propose to apply three selection criteria accounting
for the meaningfulness of the features. Across all subjects, the
obtained components were spread along the frequency spectrum
and showed a variety of spatial activity patterns. In summary,
we identified subject-specific predictors that explain up to 36 %
of the performance fluctuations and may serve for closed-loop
experimenting.

summary

3.1 introduction

3.1.1 Motivation

Motor training is utilized in rehabilitation scenarios to accelerate the re-gain
of lost motor function after brain injury [102]. State-of-the-art rehabilitation
concepts are based on repetitive training tasks with the aim to reach a func-
tional gain [103–105]. Most prominent training paradigms comprise mirror
training [106], constraint-induced movement therapy [107], simultaneous
bilateral training [108], BCI-supported training [10] and robot-assisted tech-
niques [109]. Recent rehabilitation approaches include the training of novel,

25
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unfamiliar motor skills instead of training well-known habitual motor tasks,
attempting to optimize functional cortical reorganization.

Repetitive paradigms allow for the assessment of motor performance
on a very fine-granular time scale. The performance of each single trial
can be monitored by metrics such as the length, speed or smoothness
of the produced movement trajectory. The distributions and temporal
characteristics of trial-wise motor performance variations have been studied
by different groups [26, 110–112]. While practicing a motor task over several
sessions enables a user for skill acquisition [113], trial-by-trial variability
of motor performance is a prominent feature which does not fully vanish
with training [23, 24, 114]. The underlying neural mechanisms of motor
performance fluctuations on short time scales is subject of controversial
discussion in literature and is not fully resolved yet [24, 25, 111].

In the present work, we aim towards closing this gap. Therefore, trial-wise
performance fluctuations of a sequential visuo-motor task (SVIPT, [115–
117]) are investigated while registering a user’s brain activity by EEG. In
SVIPT trials, the quality of a movement changes within seconds and from
repetition to repetition.Research question Q1

As stated in Sec. 1.1, our hypothesis is that subject-specific pre-trial brain
signals can partially explain and temporally predict the trial-by-trial fluctu-
ations of the upcoming motor performance. Given that such informative
neural markers exist, then the SVIPT paradigm could be altered in order to
meet the cognitive ergonomic requirements of each single user. Practically,
the starting time point of the upcoming trial can be determined based on
the information contained in this pre-trial neural marker. Ideally, such a
neuroergonomic closed-loop gating strategy could provide control over the
level of difficulty. This might allow to causally influence user performance
and ultimately support SVIPT motor learning in the long run.

In this chapter, a simulated online analysis for the extraction of robust
and meaningful EEG components is developed. Precisely we evaluate,
if the information contained in selected components is able to partially
explain the trial-by-trial variation of SVIPT performance in a predictive
fashion, i.e. the pre-trial component is required to predict the outcome of
the upcoming trial. Moreover, the characteristics of the best performance
predictors are investigated in a group-level analysis.

3.1.2 Related work

Paradigms which include brain state-dependent experimenting require that an
informative neural marker can be extracted robustly from brain signals [20,
21]. Given the high dimensionality and noisy characteristic of most types
of brain signals, the extraction and decoding of such individual neural
markers is a challenging task [118].

Screening literature on relevant neural markers of visual and motor
performance, it is important to make a distinction between the use of
single-trial decoding in contrast to the extraction of statistical differences,
which may even be reported as group averages. Neural features which
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correlate with the task performance on the grand average (GA) of a set
of subjects have limited usefulness for closed-loop experimenting with a
given individual. As inter-subject differences get lost during the averaging,
GA features may have low predictive power when tested with data of
a novel subject. Research in the field of brain-computer interfaces (BCI)
has pushed forward methods for single-trial decoding of individual brain
activity (mostly EEG signals) [8, 18]. Results from this field affirm that brain
signals and informative features vary strongly between individuals [19].
To obtain optimal decoding results, BCI data processing pipelines strive to
identify subject-specific informative features. Technically, these are gained
either from a calibration recording prior to the online use of the BCI [119], or
by transfer learning methods [120] which exploit features from pre-trained
machine learning models of earlier sessions or previous users. Furthermore,
attention needs to be paid to temporal dependencies: brain features may
correlate with previous, simultaneous or may even be predictive for future
behavior. Only the latter brain features can serve as a tool for brain state-
dependent experimenting.

Correlates of perception performance

Statistical correlates of visual perception performance are reported by sev-
eral groups. For stimuli near the perception threshold, the pre-stimulus
occipital alpha bandpower of the EEG correlates with the detection per-
formance [46], even on a single-trial basis using predictive features [121].
In addition to bandpower, the pre-stimulus alpha phase was reported to
correlate with the detection performance [47]. Single-trial decoding meth-
ods were not applied in those auditory studies, but the reported correlates
precede the perception, which may open the possibility for closed-loop
experimenting. Based on the findings of Hanslmayr et al. [121] and Dijk
et al. [46], there are two examples that set up an online experiment based on
occipital alpha bandpower features. Tonin et al. [122] using EEG data and
Horschig et al. [123], who employed MEG signals, both decoded covert vi-
sual attention in a closed-loop experiment by utilizing single-trial feedback
on the detected attention shift. However, both groups did not fully close
the loop, e.g., by manipulating the perception performance, which may
have been possible by selecting suitable brain states for stimulation. Gon-
zalez Andino et al. [124] studied a cued reaction time task and identified
that gamma band oscillatory activity observed in fronto-parietal regions
prior to the stimulus onset correlates with reaction time. Similarly, Hoogen-
boom et al. [125] stated that the strength of visually induced gamma band
activity is predictive for the detection of stimulus motion. Somatosensory
stimuli of low-intensity, but above threshold were delivered and combined
with a distracting masker stimulus by Schubert et al. [126]. Investigating
perceived vs. missed stimuli in an offline analysis, pre-stimulus beta band-
power over the left frontal cortex was found predictive for the perception
performance on the grand average, as well as mu and beta bandpower over
the pericentral sensorimotor areas.
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Hand kinematics decoding (not prediction)

In the motor domain, several groups have successfully decoded hand
kinematics, using the center-out task [127] as the dominating experimental
approach. In their own work, Jerbi et al. [128] provide a review over the
decoding of hand movement parameters such as direction, position and
velocity based on brain signals. ECoG signals were used by Pistohl et
al. [129] to decode two-dimensional hand movement trajectories using an
autoregressive filtering approach. More recently, the decoding of continuous
grasp kinematics from invasive brain signals has been shown by Flint et al.
[130].

Considering non-invasive techniques, Waldert et al. [131] have decoded
(but not temporally predicted) the hand movement direction based on MEG
and EEG. Neural correlates which encode the velocity of a movement have
been investigated by [132]. The decoding of produced grip force based
on a phase feature extracted from the beta range has been reported on
data of three subjects by [133]. Zaepffel et al. [134] reported an increased
centro-parietal beta power during the planning period of grasping move-
ments, but it was not investigated, if decoding may work on the basis of
single trials. Focusing on single-trial methods, Lew et al. [135] used slow
cortical potentials of the EEG from fronto-parietal areas to predict self-
paced movement directions a few hundred milliseconds prior to movement
onset. Similarly, Hammon et al. [136] inspected predictive EEG features for
planning target directions using a cue-based paradigm.

Motor performance prediction

In the field of BCI research, Maeder et al. [137] studied a motor imagery
paradigm. The single trial decoding performance of left vs. right hand
movement imagery tasks could be correlated to the level of pre-trial alpha
bandpower over the sensorimotor cortices. Despite used offline, this neural
marker would allow for a predictive intervention in a closed loop. In
their statistical analysis, Yang et al. [138] identified frontal alpha and beta
bandpower features which correlate with performance metrics of a reaching
task. Proceeding to single-trial methods, Meyer et al. [139] reported on
data of six subjects, who performed a hand positioning task. Their offline
analysis revealed that the normalized time-to-target could be predicted
based on pre-cue alpha-band activity of the EEG.

The state-of-the-art can be summed up as follows: In the perception do-
main, several studies have established single-trial performance prediction,
partially even in closed-loop applications. The situation is different for
the motor domain since only very few studies have investigated subject-
specific motor performance prediction in single-trial upon a sufficiently
large subject group. Closest to all of these requirements is the study by [139].
Our research hypothesis builds exactly upon this point. In the context of
a hand force task, we propose a generalized workflow which identifies
subject-specific predictive oscillatory EEG features evaluated on a single trial
basis.
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3.2 methods

3.2.1 EEG-tracked hand force task

In the context of hand motor skill learning, Reis et al. [115] introduced
the Sequential Visual Isometric Pinch Task (SVIPT), which demands an
isometric force control of thumb and index finger. Interestingly, training-
induced improvement of the SVIPT generalizes well to other hand motor
control tasks, even though pinch grasp activities are rarely displayed during
natural behavioral patterns. Compared to the original SVIPT setup, brain
activity was additionally recorded using EEG during a training session for
posthoc offline analysis. As introduced in our earlier conference article [29],
the EEG-tracked SVIPT setup is sketched in Fig. 3.1.

isometric
force meter

cursor position control 

no
force

30% of 
max force

visual feedback

evaluate features 

T0 T1 T2

predict 
 performance 

offline

Figure 3.1: Schematic setup of the offline EEG-tracked SVIPT. The subject ap-
plies force to a sensor using a pinch grasp. The current force level
is translated into a horizontal cursor position, while brain activity is
recorded by EEG throughout the complete session.

Each SVIPT trial consists of three phases: a light blue (inactive) cursor
appears on the leftmost edge of the T0 field (corresponding to zero force),
while the user is touching the sensor only slightly with his hand. The
appearance of a light blue cursor indicated the start of the get-ready phase,
which corresponds to a waiting period with enhanced attention level. Its
duration is varied uniformly between 2 and 3 s. The transduction of force
into cursor movements is deactivated during the get-ready phase. Fixating
the cursor, the user will observe a distinct color change of the cursor from
light to dark blue. This go-cue indicates the beginning of the running phase,
in which the cursor position can be controlled by applying force to the
sensor. As force is transduced into horizontal cursor position, increasing
force will move the dark blue cursor to the rightmost position at Flimit,
which is pre-calibrated at session start to represent 30 % of the user’s
maximum force. The user has been instructed to navigate the cursor as
quickly and accurately as possible by passing through a sequence of target
fields (T0, T1 and T2). The target fields T1 and T2 were placed at 0.2 and
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Table 3.1: Overview on datasets of offline EEG-tracked SVIPT sessions. Each
dataset contains one offline session of each subject.

dataset (D1a) dataset (D1b)

Subject group information

Subject group norm. aged subjects chronic stroke patients

No. of subjects (after preprocessing) 20 (18) 7 (7)

Age (years) 53±6 69±13

Gender (female/male) 8/12 3/4

Affected limb (left/right) -/- 5/2

Experimental setup

Recorded EEG channels Nch 63 63

Trials per session Ne 400 240

0.8 of Flimit, respectively. Overshoots of the cursor had to be avoided. The
current target field is visually indicated to the subject by a green shading
(see Fig. 3.1), while the remaining ones are shaded in gray. Reaching a
target field, a dwell time of 200 ms must be fulfilled in order to achieve
a successful hit of this target field. Hit events are indicated visually by a
switch of the target field (another field is shaded in green), or by the end
of the trial. Trials were chosen randomly from two conditions, each with
a specific required target field sequence (T1-T0-T2-T0 or T2-T0-T1-T0). A
trial was finished by fulfilling the complete sequence – skipping a target
was not allowed. The total trial duration including 1 s penalties for each
overshoot were presented visually as an immediate performance feedback
during the pause phase between trials.

3.2.2 Recorded datasets

A single session of the offline EEG-tracked SVIPT was performed with two
different subject groups as summarized in Tab. 3.1.

Dataset (D1a) comprises 20 right-handed normally aged subjects. The
group resembles the target group of first-stroke patients with respect to
age and gender [140]. The term normally aged was chosen to indicate our
selection criteria: the participants did not have any known neurological
or psychological history and were probably healthy — even though we
can not exclude the possibility that some participants had a history of
unrecognized micro stroke events. In one session of about 3 to 4 hours,
every participant controlled the cursor with their non-dominant left hand
for 20 blocks of 20 trials each.

Dataset (D1b) comprises a set of chronic stroke patients with a first
ischemic stroke more than 3 months before participation. All patients had
a mild to moderate hemiparesis resulting in residual hand function which
allowed to perform the foreseen hand force task. Here, the time per session
was restricted to a maximum of 3 hours, such that every patient performed
SVIPT for 12 blocks of 20 trials each.
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The two offline studies were approved by the ethics committee of the
University Medical Center Freiburg. Following the principles of the Decla-
ration of Helsinki, written informed consent was given by subjects prior to
participation.

3.2.3 Single-trial motor performance metrics

tgo

force F(t)

thit 1

tT0,exit

tim
e 

t

T0

thit 3

over-
shoot

T2T1

user 
screen

0

Figure 3.2: Exemplary force profile F(t) of a single SVIPT trial. After the go-cue,
the cursor is activated and can leave the target field T0 by applying
force to the sensor. Different events are marked along the time axis.
An overshoot event is highlighted, as the cursor has exceeded the
target field T2. In this exemplary trial, the target field sequence was
T1-T0-T2-T0.

SVIPT enables to capture single-trial motor performance. Given a high
order motor control, the force profile F(t) of a single trial is characterized
by a quick force ramp up after the go-cue and the avoidance of overshoots.
Such an overshoot event is shown in Fig. 3.2. The requested speed-accuracy
trade-off can be translated into various performance metrics of the SVIPT
task, as described in our conference article [30]. For this presented offline
analysis, we selected five metrics to describe single-trial motor performance
in SVIPT:

• Reaction Time / RT: A quick response upon the go-cue is a good start
for a successful trial. The time interval between the go-cue at time
tgo and the time point tT0,exit, which indicates the cursor leaving the
starting field T0, is defined as reaction time.
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• Duration / DUR: Comparable to RT, a short time duration from the
go-cue at time tgo until the hit of the first target field at time point thit 1
characterizes a successful trial.

• Cursor Path Length / CPL: The total path length the cursor is moved
from the go-cue to the hit of the first target field—named hit 1—is
described by the integral over the first temporal derivative of the force
profile F(t):

CPL ≡
∫ thit 1

tgo

|Ḟ(t)| dt′

• Integrated Squared Jerk / ISJ: The level of fine-granular motor con-
trol is reflected in variations of the trajectory smoothness. Therefore,
jerk - defined as the third derivative of the force profile - is expressed
by the ISJ metric, which is defined as:

ISJ ≡
∫ thit 1

tgo

|d
3F(t)
dt3 |

2 dt′

• Normalized Jerk / NJ: A unit-free variant of ISJ captures smoothness
variations. It is given by the normalized jerk:

NJ ≡
√

ISJ · DUR5

2 · CPL2

Since there are two conditions of target field sequences, a standardization
of the performance scores (except for RT) is the prerequisite for pooling
trials of both conditions. Therefore, the extracted metrics of each condition
were standardized (zero mean and standard deviation one) prior to pooling.
Except RT, the metrics are defined with respect to some end point (e.g., thit 1).
Choosing this boundary represents a trade-off between (a) harvesting a
metric which is temporally close and thus related to the get-ready interval
(the interval before the go-cue), and (b) including thorough information
about the force trajectory of the current trial. To balance the two conflicting
goals, we chose the first hit event hit 1.

3.2.4 Data acquisition and preprocessing

During a single session, subjects were placed in a chair at 80 cm distance
from a 24-inch flat screen. EEG signals from 63 passive Ag/AgCl electrodes
(EasyCap) were recorded, which were placed according to the extended
10-20 system. Impedances were kept below 20 kΩ. All channels were refer-
enced against the nose. The signals were registered by multichannel EEG
amplifiers (BrainAmp DC, Brain Products) at a sampling rate of 1 kHz.
An analog lowpass filter of 250 Hz was applied before digitization. The
signal of the force sensor was recorded by an additional amplifier system
(BrainAmp ExG, Brain Products).
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For outlier identification, the offline preprocessing consisted of low-pass
filtering the raw EEG signals at 100 Hz, sub-sampling to 500 Hz sample
frequency and high-pass filtering at 0.2 Hz. Therefore, linear Butterworth
filters of 5th order were applied. For each trial and all 63 channels, an epoch
of 2000 ms duration prior to the go-cue was extracted. In order to identify
outlier epochs, three rejection methods were applied. First, EEG epochs
violating a min-max threshold of 60 µV on frontal channels were excluded
from further analysis. Second, a variance threshold on single epochs and
channels was applied to remove high-frequent muscular artifacts. Therefore,
all cases outside the [10, 90] percentiles and simultaneously exceeding twice
the corresponding inter-percentile range were registered as outliers. Third,
epochs belonging to extreme trials, represented by outliers of the motor
performance metric, were removed. Based on pooled statistics of a single
metric, all trials outside the [20, 80] percentiles and also exceeding twice
the corresponding inter-percentile range were registered as outliers and
removed for further data analysis.The total number of trials Ne entering
the following offline analysis procedures varied across subjects and perfor-
mance metrics. For dataset (D1a), only 2 out of 20 subjects remained with
less than 150 out of the original 400 epochs after the preprocessing. We dis-
carded data of these subjects from the following analysis. For dataset (D1b)
all 7 subjects remained with at least 150 epochs. The frequency filtering for
our main analysis will subsequently be described in Sec. 3.2.6.

3.2.5 EEG-based single-trial performance prediction

In this chapter, we aim to predict single-trial SVIPT performance based
on pre-trial oscillatory EEG activity within the get-ready phase of a single
trial. Therefore, the main goal is to gain a neural source estimation ŝ(e),
whose power achieves the highest correlation with the five SVIPT metrics
as continuous variables z(e).

This multivariate regression problem can be tackled with the previ-
ously introduced supervised spatial filtering algorithm named SPoC (see
Sec. 2.3.4.5). Given Ne bandpassed and epoched multivariate data epochs
X(e) as well as corresponding labels z(e), SPoC learns an optimal spatial
filter w∗ ∈ RNc with Nc recorded channels which maximizes the epoch-
wise co-modulation between the bandpower of a source ŝ(e) and the given
target variable z(e).

Applying a SPoC filter wtr learned from training data Xtr(e), the method
allows estimating the target variable zest on novel, unseen test data Xte(e) on
a single-trial basis by directly calculating the variance—which approximates
the bandpower of the signal—of the narrowband subspace signal:

zest(e) = Φŝ(e) = Var[w>tr Xte](e)
Eq. (2.7)
= w>tr Σte(e)wtr (3.1)

The last step shows that this subspace variance can simply be obtained by
estimating the covariance matrix Σte on the unseen data epoch Xte.

Note, that any subspace components resulting from the SPoC analysis
depend mainly on four hyperparameters. In the temporal domain, two of
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them define the epoching interval [t0, t0 + ∆t] where t0 is the starting time
relative to the go-cue and a duration ∆t. In the frequency domain, the lower
frequency flow and the bandwidth ∆ f are the hyperparameters describing
the band [ flow, flow + ∆ f ] to which the data X is bandpass-filtered.

Even though simple regression of bandpower features on the channel
level does not fulfill the requirements of the assumed forward model, we
added this simple method for comparison with SPoC. Therefore, channel-
wise bandpower features of the training and test set were calculated.

3.2.6 Evaluation scheme

Performing a grid search across subjects and SPoC parameters, we restricted
the evaluation to a fixed predictive time interval given by t0 = −800 ms
prior to the go-cue and a window size of ∆t = 750 ms.
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Figure 3.3: Frequency parameter configurations. They are characterized by the
frequency flow and the corresponding bandwidth ∆ f . In total, 55 con-
figurations were used for computing SPoC filters. The omitted points
(gray area) correspond to the power line frequency range.

As sketched in Fig. 3.3, exponentially increasing and overlapping fre-
quency bands ranging from ≈ 1–100 Hz (55 configurations in total) were
evaluated from the original non-filtered signals. For bandpass filtering,
zero-phase linear Butterworth filters of 5th order were applied. As a trial-
wise target variable z, the five different performance metrics introduced
in Sec. 3.2.3 were considered. Evaluating SPoC across the complete study
group of 18 subjects, using five different motor performance metrics, sweep-
ing through 55 discrete frequency bands and selecting the highest-ranked
components (see details below) per configuration, results in more than
12 000 oscillatory components. However, not every single component of
a subspace decomposition is expected to be robust, informative and even
neurophysiologically plausible [57]. Thus, hereafter we will describe an
offline selection strategy in order to identify a subset of the most robust and
informative oscillatory components which qualify to predict single-trial
motor performance.

For each parameter configuration, a K = 5-fold chronological cross-
validation (CV) procedure was employed upon the calculation of SPoC [61].
Trials were only considered if they survived the data preprocessing (see
Sec. 3.2.4). The Ne EEG pre-trial data epochs X and their corresponding
target variable values z were extracted in chronological order and split
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into 5 equally-sized folds. Thus, 4 folds served as training data while the
remaining one was used for validating the SPoC filter as described in
Eq. (3.1). Since each fold served as test fold once, the estimated target
variable zest,j of fold j can be concatenated for all Ne epochs, resulting in
zest = [zest,j]j∈[1,5]. According to Eq. (2.3), on each fold j the corresponding
test pattern is given as aj = Σte,jwtr utilizing the averaged covariance matrix
Σte,j of the test data Xte in fold j.

The same CV scheme was applied to the linear regression model. The
whole parameter space of 3600 configurations was screened. Note, that this
number is smaller than the number of components delivered by SPoC anal-
ysis, since the latter may deliver more than one component per parameter
configuration. The regression, which delivers only a single component per
configuration, was trained on the training data and finally applied on test
data such that an estimate zest was gained on all Ne trials which survived
the data preprocessing step.

For a given parameter configuration, SPoCλ returns a set of Nc filters. As
described in [30], it is sufficient to take only the highest-ranked components
into consideration1. For this purpose, we applied a rank-based criterion:
we first removed the linear trend from the ordered set of Nc eigenvalues
and obtained a set of Nc residuals r. Only components, which exceeded a
threshold of 1.5 · σ(r) relative to the residual’s standard deviation σ, were
taken into account for further analysis. We restricted the investigation to
positive eigenvalues.

3.2.7 Evaluation scores to assess the predictive power and model stability

Given a single component w, we aim to characterize its predictive strength
as well as the robustness, e.g., under increased label noise conditions.
Therefore, the following set of scores will be considered:

1. Correlation characteristics: As a measure to verify the quality of the
predictive strength of a SPoC configuration, the overall correlation
of the Ne measured performance labels ztrue with the corresponding
predictions zest can be considered:

Rall = Corr[ztrue, zest] (3.2)

Similarly, the predictive strength in terms of single-trial performance
can also be verified by checking the mean of the fold-wise correlations
Rj = Corr[ztrue,j, zest,j], which rewards temporally stable components:

R f olds =
1
K

K

∑
j=1

Corr[ztrue,j, zest,j] (3.3)

The correlation based metrics Rall and R f olds come closest to the
original optimization objective of the SPoC algorithm. If the trained

1 The spatial filter solutions are sorted according to their eigenvalues. In case of SPoCλ, they
equal to the covariance between the bandpower features and the target variable.
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spatial filters model trial-to-trial fluctuations well, Rall and R f olds will
report a large value, but only R f olds allows discriminating between
single-trial predictors and session-trend models. Furthermore, a stable
component requires that the correlation of each fold j shares the same
sign as the overall value Rall . Thus, it is reasonable to require a high
homogeneity H f olds:

H f olds =
K

∑
j=1

Θ(sign(Rall) · sign(Rj)) (3.4)

with Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0 representing the
unit-step function.

2. Separability of estimated performance: Another possibility to char-
acterize the decoding accuracy is to transfer the continuous labels ztrue

into a two-class decoding scenario according to the median of ztrue.
This enables the utilization of the receiver operating characteristic
(ROC) curve which is calculated upon the estimated target variable
zest given the true two-class labels [141]. As ROC performance can
be reduced to a scalar value by calculating the area under the ROC
curve (AUC), this novel metric captures the separability of the esti-
mated target variable zest (z-AUC). A perfect decoding corresponds
to z-AUC = 1 while chance level correspondents to a value of 0.5.

3. Stressing the stability: SPoC is a supervised method, which uses
label information to guide the spatial filter calculation. Thus, the
robustness of a resulting component can be stressed in a quantitative
manner by introducing additional label noise. The concept of a step-
wise reduction of the SNR of the labels has been introduced in [31].
Here, SNR levels were varied from -20 dB to 10 dB by adding white
noise. Applying SPoC, we estimated the target variable zest for all
Ne epochs using 5-fold CV. At each SNR level, three sets of noisy
labels z were calculated. For each SNR level, the separability of the
resulting zest distribution is verified by the z-AUC value. Regarding
the z-AUC values as a function of the SNR, the area under this curve
— referred to as AAUCSNR — describes the stability of the component
(as visualized in the results section by Fig.3.7).

3.2.8 Selection criteria for robust and predictive components

To finally identify robust and predictive components, we propose to apply
thresholds on three out of the previously introduced five evaluation scores
in parallel. As a prerequisite, the dataset was required to consist of at least
Ne = 150 epochs in order to ensure the convergence of the SPoC algorithm
(see [31, 94]):

1. The separability of the predicted performance zest can be verified by
the resulting z-AUC value. A corresponding threshold z-AUCmin =
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0.59 was determined according to the 85th percentile across all config-
urations.

2. The stability of the component is assessed by the AAUCSNR. Here,
a threshold AAUCSNR,min = 0.18 was determined from the 85th per-
centile.

3. As an additional stability criterion, we require all fold-wise correla-
tions Rj to share equal sign as Rall such that H f olds,min = 5.

3.3 results

The results in [28] were gained on the dataset (D1a). Unless noted differently,
the results will be shown for dataset (D1a). In the corresponding text, we
will comment on components obtained for dataset (D1b).

3.3.1 SVIPT motor performance scores

Single-trial based SVIPT performance can be assessed by different metrics
(see Sec. 3.2.3). In Fig. 3.4 examples of the trial-to-trial fluctuations of
different metrics are visualized for two subjects. The examples cover full
sessions, but omit trials removed during the preprocessing. The plots (A)
and (D) show the metric reaction time (RT) for the two subjects. It is not
affected by a session trend. Its distribution is slightly asymmetric, which is
caused by a physiological limit for the minimal RT. The normalized jerk
(NJ) in plots (C) and (F) behaves in a similar manner. It is affected only
slightly by a global trend, but shows a more skewed distribution compared
to RT. In contrast, integrated squared jerk (ISJ) depicted in (B), and cursor
path length (CPL) in (E) both show a strong session trend, which can be
explained by the user learning (data not shown here). A comparably strong
session trend is present also in the duration metric DUR (data not shown).

The cross-correlations between all five metrics and the shape of their
distributions were reported in [30]. Metrics ISJ, CPL and DUR showed
strong correlations to each other, while RT as well as NJ are both rather
independent from the remaining metrics.

3.3.2 Contrasting SPoC with linear regression on sensor level

As a baseline comparison for the predictive power of SPoC components,
a linear regression model employing channel-wise bandpower features
was evaluated as described in Sec. 3.2.8. The resulting distributions of
the overall correlation Rall and the performance separability z-AUC are
reported in Fig. 3.5. Across all configurations, SPoC delivers a median
correlation Rall,med = 0.07 and a separability of z-AUCmed = 0.54, while on
average the regression performs on chance level. While both methods come
up with components revealing z-AUC values above chance level, those with
the strongest predictive information are generated by the SPoC method.
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Figure 3.4: Trial-wise variations of different motor performance metrics. The
examples are extracted over the course of a full session, their histograms
are shown in addition. Plots (A)–(C) are taken from data of subject S9,
while plots (D)–(F) are from S13.
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Figure 3.5: Contrasting the predictive outcome of linear regression on sensor
level with SPoC. Therefore, all 3600 tested parameter configurations
for linear regression (LinReg) and over 12000 configurations for SPoC
were utilized. In (A), the overall correlation Rall between predicted and
estimated target variable values is depicted. (B) shows the performance
separability z-AUC. Gray lines indicate the median, boxes enclose the
25th to 75th percentile. The whisker length is set to two inter-quartile
ranges.

3.3.3 Single-trial motor performance predictors

In Fig.3.6, five exemplary predictive and robust SPoC components, gained
from five different subjects of dataset (D1a) are characterized. Further
examples of dataset (D1b) can be found in A.1. Although SPoC components
are computed from band-pass filtered data, the resulting filter w (gained on
all available Ne trials) of a component can be re-applied to non-frequency-
filtered epoched data. This spectral content of a SPoC component is shown
in (A). The frequency band in which the component was extracted from is
indicated by the dashed gray area. Using all available epochs, plot (B) shows
the spatial activity pattern gained with Eq. (2.3). In (C), the SPoC filter
weights on the 2D-scalp projection are shown. The scatter plot in (D) reports
on the measured performance metric ztrue as a function of the predicted
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Figure 3.6: Characterization of exemplary predictive SPoC features. In each row,
components are labeled by the used performance metric and the rank
according to the full-session filters. (A) Power spectrum of the compo-
nent applied on non-bandpass filtered full data. The frequency band
where the component has been trained is marked by the dashed lines.
Note that for the component of S8 a broader frequency range is vi-
sualized compared to the other examples. (B) Spatial activity pattern.
(C) Filter weights visualized. (D) Scatter plot between true labels ztrue
and the predicted ones zest, color coded by the fold of the chronological
CV. (E) To illustrate the separability of the prediction, the distribution
of ztrue values has been split using the corresponding trials of the upper
and lower quartiles of zest, which resulted in Qlow,est and Qhigh,est. As a
reference, the extreme quartiles Qlow and Qhigh of ztrue are also given
(dashed curves). In addition, the z-AUC value based on the median
split is reported.

performance zest according to the CV scheme described in Eq. (3.1). The
data points are colored by the fold index (1–5), which corresponds to
the temporal order of the session. Fold 1 represents the beginning of the
session, fold 5 its end. In addition, the overall correlation Rall reports on
the predictive strength of the component. The distributions shown in (E)
illustrate the separability of the single-trial performance values zest. For
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this purpose, the estimated labels zest have been reduced to the lower and
upper quartile. The corresponding true labels ztrue were used to compute
the quartiles Qlow,est and Qhigh,est and were fitted by a kernel distribution
(solid lines). In an ideal case, those quartiles would converge towards the
extreme quartiles (Qlow and Qhigh) of ztrue, which are indicated by dashed
lines. As a score of their separability, the z-AUC is given as introduced
in Sec.3.2.7.

The exemplary components in Fig. 3.6 are selected across the investigated
frequency range depicted in Fig. 3.3. The predictor of S7 can be assigned
to the theta band, those of S9 and S13 correspond to the alpha range, the
component for S5 originates from the beta range and the one of S8 was
found in the gamma range. Regarding the scatter plots, there are two
different types of patterns recognizable: single-trial predictors showing a
confined point cloud without a clear trend over time (all examples except
for S13), whereas the scatter plot of subject S13 shows a clear trend over
the course of the session. The separability plots indicate that the predictive
power of a single component nicely matches with the z-AUC value.

As an additional analysis, the temporal bandpower dynamics of exem-
plary predictors on single-trial level can be found in the appendix A.1.

3.3.4 Testing the stability of SPoC components

The stability of an oscillatory component can be challenged by systemati-
cally reducing the SNR ratio of the target variable z. In Fig. 3.7, the z-AUC
score is investigated as a function of the SNR for two parameter configura-
tions. Plot (A) shows a stable component, such that z-AUC is expected to
show a step-wise decrease, while for a non-informative component in (B)
the z-AUC can be expected to fluctuate around the noise floor. Thus, the
resulting area under the z-AUC curve can be assessed as a tool for mapping
the stability of the subspace component under challenging noise conditions.
In plot (C), the distribution of this so-called AAUCSNR is reported for
all evaluated SPoC components across all 18 subjects. The distribution of
AAUCSNR values has its median at 0.07 and is slightly skewed.

3.3.5 Identification of robust and predictive components

As described in Sec. 3.2.6, the highest ranked SPoC components of each
parameter configuration have been evaluated, resulting in about 12 000

different subspace components for dataset (D1a). In Fig. 3.8, the configura-
tions are characterized by their stability under noise (AAUCSNR), which is
plotted in (A) as a function of the separability measure z-AUC, in (B) as a
function of the homogeneity of the fold-wise sign of the correlation H f olds
and in (C) as a function of the overall correlation Rall . A few observations
can be made: First, the metrics are not centered at zero. Second, based on
all initial configurations (blue data points), AAUCSNR correlates with the
z-AUC as well as with Rall . The largest AAUCSNR values are evoked by the
most homogeneous fold-wise correlation signs with H f olds ≥ 3. The thresh-
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Figure 3.7: Stressing the stability of two exemplary SPoC components. For two
different parameter configurations (A) and (B), the z-AUC-values (solid
lines) describing the separability of the prediction are plotted together
with standard deviations (dashed lines) for a stepwise decrease of the
SNR ratio (indicated by the red arrow). The area under the z-AUC
curve — further on called AAUCSNR — describes the stability of
the component under the challenge of added noise. Plot (C) shows
the histogram of all AAUCSNR scores evaluated for the considered
parameter configurations.

old criteria applied to select the best of the 12 000 subspace components
are indicated by red dashed lines, and red dots indicate the finally selected
components. Here, only components with a consistent sign of R f olds on the
test data were selected.

As shown in Fig. 3.9 (A) and (B), the overall correlation Rall is strongly
correlated with the z-AUC metric, such that an additional threshold cri-
terion on Rall was not necessary. For dataset (D1a), the most predictive
components achieve a correlation value of up to 0.6, corresponding to
Rall

2 = 0.36. Assuming a linear relationship between ztrue and zest as well
as normally distributed data, this means that zest can explain up to 36 % of
the performance variance contained in ztrue. For dataset (D1b) with gener-
ally less training data, best predictors achieve correlations up to Rall = 0.4.
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Figure 3.8: Characterizing the space of SPoC components in terms of their sta-
bility and predictive information. The SNR-challenged AAUCSNR is
given as a function of the performance separability z-AUC (A), in
relation to the homogeneity of the correlation sign H f olds (B), and de-
pendent on the overall correlation Rall (C). Red data points describe
the selected SPoC components after applying thresholds (dashed red
lines).

In Fig. 3.10, all 361 selected components for dataset (D1a) and 140 for
(D1b) are characterized by histograms in terms of their input parameters.
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Figure 3.9: Relation between separability score and the overall correlation for
both datasets. (A) shows results of dataset (D1a), while (B) reports it
for (D1b). In both plots, all computed components (blue dots) and the
selected ones (red dots) are shown. The dashed red line indicates the
threshold z-AUCmin applied to select the most informative components.
The red bars indicate the distribution of Rall values for the selected
components only.

(A) and (E) display the subject-wise grouping. In total, 16 out of 25 subjects
contribute at least one component, for three subjects more than 50 configu-
rations survive the selection procedure. (B) and (F) characterize the selected
components assigned to their underlying frequency band [ flow, flow + ∆ f ]
(see Fig. 3.3). For both datasets, most components are gained from the alpha-
and beta-band range. Interestingly, robust features detected in the gamma
band were dominantly selected for their ability to predict CPL. The slow
frequency (<4 Hz) components are dominated by artifactual subspaces.
(C) and (G) report on the occurrences of the different performance metrics
among the selected components. Most components could be extracted for
RT (61 %), followed by CPL (14 %). (D) and (H) provide an overview over
the SPoC ranks of the selected components. The rank ordering corresponds
to the eigenvalue ordering of the complete dataset. As the number of se-
lected components drop with increased rank, the ranking is associated with
the information content of the subspace component.

SPoC provides linear spatial filters that allow for a limited but still
important neurophysiological interpretation of spatial activity patterns. A
representative subset of typical scalp topographies from the selected stable
and informative subspaces are plotted in Fig. 3.11. The components were
assigned to three groups. About 70 % of components fall into group G1,
which comprises patterns ranging from activations in occipital, to central
or frontal areas. The maximum activity of those components often is found
over one of the hemispheres. About 10 % of the components fall in group
G2. They show patterns of probable non-neural sources and may represent,
e.g., eye artifacts, muscular activity or single noisy channels. Group G3

comprises noisy topographies. As indicated by patterns in the intersection
area of the three groups, mixed components were observed as well.
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Figure 3.10: Histograms of involved hyperparameters solely for the selected
SPoC components. The first row reports the distributions for dataset
(D1a), the second row for (D1b). (A) and (E) reveal the assignment
to the single subjects. (B) and (F) visualize the distribution across
frequency bands. (C) and (G) depict the spread of components over
the five utilized motor performance metrics. (E) and (H) show the
split according to their SPoC rank positions.

Figure 3.11: Overview of typical activity patterns. The selected components were
grouped in three categories: G1 consists of components with neural
origin, G2 comprises artifact-related subspaces and G3 captures non-
informative components.

3.4 discussion

We hypothesized that subject-specific pre-trial brain signals contain infor-
mation which allows us to partially explain and temporally predict the
trial-by-trial variability of upcoming motor performance in SVIPT. To test
the hypothesis, we developed a workflow which is capable to extract in-
formative oscillatory EEG subspace components and to identify the most
robust ones. In an online simulation, our analysis revealed strong evidence
that the bandpower of the selected components is predictive for the up-
coming single-trial SVIPT performance. Major findings were that these
components indeed exist, but need to be optimized for individual users.
With 16 out of 25, not all, but a majority of the subjects revealed the desired
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robust and informative features. As reported in [142], our findings on data
of seven chronic stroke patients suggest that the workflow also allows
extracting robust motor performance predictors under more severe condi-
tions, such as less training trials and intensified artifactual contributions.
In the following, we will first discuss the decision to utilize SPoC instead of
other alternative analysis methods. In this context, the proposed selection
procedure and the stability of SPoC components over time is discussed,
with a special focus onto the role of SNR, frequency and the BCI illiter-
acy phenomenon. In addition, the detected components will be related to
existing literature and characterized on a group-level with respect to the
covered frequency bands, sub-processes reflected by the components and
the time courses revealed. Before concluding, we will describe a neuroer-
gonomically enhanced rehabilitation paradigm as a possible use case of
our contribution.

3.4.1 SPoC and its alternatives

Designing the data analysis workflow, we built upon our background in
BCI. Accordingly, we carefully selected algorithmic building blocks only,
if they can be applied in single-trial analysis (e.g., the application of the
spatial SPoC filter according to Eq. (3.1)). This decision should simplify
the translation of the presented workflow to closed-loop experiments, as
carried out in the final Chap. 6. The choice of the supervised SPoC al-
gorithm for extracting informative components is supported by its good
performance compared to a supervised linear regression of bandpower fea-
tures on the sensor level (see Sec. 3.3.2). This is in accordance with findings
of Dähne et al. [94]. On data from an auditory steady-state evoked potential
paradigm, the authors reported better results for SPoC compared to both,
linear regression and an ICA decomposition. SPoC does not reconstruct
sources of the brain, but instead performs a supervised subspace decom-
position and delivers discriminative information. Thus, a SPoC subspace
component cannot be expected to correspond to a single physical source
or even a dipole source (even though such SPoC components are possible).
Theoretically even several spread-out brain areas may contribute to a single
SPoC component, if they share oscillatory activity which co-varies over
time with the labels. The choice between SPoC and source reconstruction
approaches [124] represents a trade-off — while the latter may facilitate the
interpretation of results, SPoC components avoid several of the drawbacks
mentioned in Sec. 2.3.2. As our workflow was aligned in terms of applica-
bility for single-trial online paradigms, our decision was biased towards
SPoC.

In principle, a preceding dimensionality reduction step, e.g., by using
a PCA decomposition, before the training of the SPoC model could have
been performed. However, as recently reported by [143], such a prepro-
cessing step might negatively affect the stability and quality of resulting
oscillatory subspace components. Thus, we have spared this ingredient for
the introduced workflow.
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3.4.2 Selection criteria for robust and predictive components

Over-fitting is a general issue for supervised methods and for SPoC in
particular, as no form of regularization was applied. This requires some
form of post-hoc selection of SPoC components. The situation is aggravated,
as SPoC returns full rank filter matrices, which result in a very large
numbers of subspaces. However, only a fraction of these can be expected to
be informative about the labels. As robustness over time as well as with
respect to label noise are important criteria for the potential closed-loop
applicability of a component, a single selection criterion (e.g., a threshold
on the correlation value) is not sufficient. By that, we selected three criteria
(see Sec. 3.2.8), which suited best these requirements. Out of the initial five
selection criteria, the two scores Rall and R f olds turned out to be beneficial
for characterizing the extracted components. Thus, they were omitted for
the selection process, since a strong correlation between z-AUC and Rall
was observed (see Fig. 3.9). The same holds for the correlation between
z-AUC and R f olds (not shown). An alternative to this selection procedure
would be to relax the thresholds and combine it with additional methods
to judge the plausibility of the remaining components post-hoc. For ICA
components, workflows have been proposed, such as MARA, an automatic
classification of artifactual components by [89]. MARA uses features based
on topology, time-frequency analysis and source reconstruction. Similar
approaches have been proposed by [144] and [145].

3.4.3 Influence of SNR on SPoC components

By applying rather strict selection criteria, weaker but still informative
components may have been removed. As a result, the data of some subjects
did not reveal informative pre-go oscillatory components. This characteristic
might be due to a lower SNR of their data, which hides potential informative
content from the SPoC analysis, especially in combination with the limited
number of trials used. The work of [31] on robustness testing of SPoC
components backs this interpretation. In this case, future improvements
may be expected by regularization techniques introduced to SPoC (see
Chap. 4) or from transfer learning approaches [146]. However, we cannot
exclude that informative oscillatory components may not be visible to the
EEG or may be absent in some subjects. This problem has been described as
BCI "illiteracy". It has predominantly been studied in the context of motor
imagery paradigms for the control of BCI applications [147], in which the
decoding of the imagery class usually is not possible for a subset of subjects.
The BCI illiteracy problem was tackled by novel experimental setups like
hybrid BCI paradigms [148, 149], but could also be alleviated by more
advanced decoding methods [150].
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Figure 3.12: Relation between SPoC rank stability and pattern homogeneity.
The analysis was performed over five cross-validation folds (chrono-
logical order). (A) Stationary case: component is first-ranked across
all five folds (data of subject S9, f = [9.4, 11] Hz, RT). (B) Rank switch-
ing: Two almost stable components switch rank positions between
folds (S5, f = [27.5, 30.3] Hz, RT). Lines connect the corresponding
topologies. (C) Intensity variation: intensity of first-ranked component
decreases over time folds (S13, f = [13.6, 15.3] Hz, CPL)

3.4.4 Rank stability of SPoC components over time

In Sec. 3.4.3, the relation between SPoC solutions and the SNR of the data
has been touched. As SPoC ranks the detected components according to
their covariance values with the true metric, solutions may seem unsta-
ble when only the first-ranked component is considered. In real-world
datasets, variations of the SNR over time can induce rank switches or
mixed components. Tracking a component over multiple runs of the sub-
space decomposition method is a challenging task, especially as mixtures
theoretically can not be distinguished from a single source. However, as
similar problems arise for online learning of blind source separation meth-
ods like ICA, practical solutions are available [151]. Fig. 3.12 gives examples
of stable, stationary components (A) and of unstable SPoC components
(B) and (C), both observed over the five chronological CV folds. Instable
components may be evoked if the stationarity assumption of SPoC is vio-
lated, e.g., by slow temporal intensity variations due to user learning. For
(B), arrows indicate a possible path through rank positions across folds by
connecting corresponding components. Please observe, that SPoC generates
cases with even more severe variation between folds as those depicted in (B)
and (C). However, such components typically have been removed during
the selection process. While mixed, yet stable components may be hard to
interpret, they can still be useful for predicting the task performance.

We have observed a high sensitivity of SPoC for small differences in
the frequency parameters. Seemingly unstable components which display
rank switching behavior (see Fig. 3.13 at 8.7 Hz) can sometimes be stabi-
lized by slightly changing the frequency, e.g., to 9.4 Hz in this example.
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Figure 3.13: Influence of the frequency band upon the rank stability. Based on
data of subject S9, we find a stable component at flow = 9.4 Hz, while
it develops rank instabilities with a slight variation of the frequency
band.

Further increase of the frequency to 10.2 Hz again induces instability in
this example.

Focusing on further introspection of oscillatory components, we have
also proposed a post-hoc sensitivity analysis of a single SPoC filters [152,
153]. After estimating a SPoC filter under a specific choice of time-frequency
parameters, the filter was applied on data of broadly defined time-frequency
hyperparameter space. Such a post-hoc hyperparameter sensitivity analysis
can provide additional introspection about the component’s persistence,
such as identifying the timescale and frequency range in which this specific
oscillatory subspaces can explain or even predict label information.

3.4.5 Characterization of robust SPoC components and sub-processes

The proposed SPoC workflow delivers a diverse set of oscillatory compo-
nents, which vary in their topological patterns as well as in their underlying
frequency band. This is not surprising, since SVIPT requires the interac-
tion of several cognitive sub-processes in order to reach a good overall
performance. For each sub-process, one or more specific neural features
may exist, with all of them being informative about the overall outcome of
the complex task.

The best components differ between subjects and predominantly occur in
the alpha band and beta band. Our findings are supported by informative
features in the alpha and beta-range observed during pre-movement inter-
vals of a hand grasping task [134, 138, 139]. Furthermore, the informative
frequency ranges for SVIPT are comparable to those reported for attention
related tasks [124, 125, 154]. We obtained best results when using RT as a
performance metric, which supports our earlier findings on disjunct data
from younger subjects [29, 155]. RT of course does not automatically lead
to a successful trial, but it can be seen as an indicator for a quick ramp-up
phase and alertness. For fewer users, presumably those with highest SNR
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characteristics, informative oscillatory features could be identified for other
performance metrics of the force task, too.

Comparing the topological plots of group G1 in Fig. 3.11 with those
reported in literature, it can be observed that many of them resemble pat-
terns emerging for motor imagery tasks in BCI [156]. These often display a
clear maximum of activity in channels located over one of the sensorimotor
areas (compare pattern 5 of Fig. 3.11 and the pattern of S5 in Fig. 3.6) or
are located centrally over both hemispheres. While similarity of patterns
are by no way a proof for an origin of these oscillatory components in
the sensorimotor cortices, the hand force action required to succeed in the
SVIPT task would allow for such components.

Other components show a maximum intensity over parietal and occipital
areas and may reflect the involvement of the visual system in the SVIPT
task. Pattern 2 of Fig. 3.11 and all patterns in Fig. 3.12 (A) display a lateral-
ization similar to patterns reported for directed and covert visual attention
processes [121, 157]. Components with a centrally located maximum (com-
pare pattern 1 of Fig. 3.11 or the pattern of S9 in Fig. 3.6), or with double
wing shapes (e.g., pattern 3 in Fig. 3.11) resemble components reported for
generalized visual attention processes [46, 139]. Again, most of these rather
clear patterns originate from the alpha frequency band.

While the relevance of several of the selected components cannot be
fully interpreted, we do consider these features as added value for neurol-
ogists, e.g., by tracking the power time course over sessions for a subject-
specific component. Further insight into underlying sub-processes and
participating brain areas may be obtained from a post-hoc source recon-
struction applied upon single SPoC subspaces.

3.4.6 Behavioral variability on different time scales

Independent of the choice of the exact motor task, subjects generally dis-
play two types of performance variations [158]. First, a large trial-to-trial
performance variability is observed from behavioral data. Second, slow
performance drifts can occur over the course of a session. Accordingly,
SPoC can deliver components, which reflect either one of the two types of
performance variations. To tell them apart, a comparison between Rall (or
the strongly correlated metric AAUCSNR) and R f olds is helpful. High values
for Rall , but low ones for R f olds indicate a session trend. If both are high,
then the component is informative for trial-by-trial variation (see single-trial
predictors and session trend predictors in Fig. 3.14 as well as the examples
given in Fig. 3.6).

For the purpose of brain state-informed closed-loop experimenting,
single-trial predictors may be more suitable. Session trend predictors, how-
ever, may still be useful for pre-cleaning the performance labels. While
session trend predictors may reflect an increasing fatigue or a learning
effect, it is much harder to determine underlying mechanisms, which
cause the rapidly changing trial-to-trial performance of the single-trial
predictors [24, 26, 111]. However, our identified components reveal strong
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Figure 3.14: Identification of session trends vs. single-trial performance varia-
tions. This information becomes accessible by inspecting a predic-
tor’s characteristic with respect to two selection criteria. The scatter
plot visualizes AAUCSNR as a function of the mean correlation value
across folds R f olds for all configurations (light blue) and the selected
ones only (red). Two classes of predictors can be identified: single-trial
predictors showing a high R f olds value while session-trend predictors
show a very low R f olds value.

evidence that the pre-trial brain activity is partially informative about trial-
by-trial variability of motor performance. This finding is in accordance with
[159] who reported on monkey experiments that at least 30 % of behavioral
variability could be explained by the fluctuations of preparatory neural
activity in the dorsal premotor cortex. However, [158] stated only a weak
relationship between motor cortex activity (PMd/M1) in monkeys and
trial-wise fluctuations of behavior.

3.4.7 Outlook: closed-loop experimenting

The predictive EEG features were extracted from a pre-go interval of
each trial. Our pipeline carefully simulated an online scenario, but this
approximation of course can not replace the evaluation within an online
study. The exploitation of the identified individual informative features in
a closed-loop experiment will finally be provided in chapter 6. Beforehand,
the two following chapters will first tackle the robustification of the utilized
decoding method in order to enhance the feasibility of the final application
with stroke patients.

3.5 lessons learned

In summary, we introduced a workflow to identify subject-specific single-
trial based neural markers which are predictive for the performance of an
upcoming motor task. In an online simulation, we were capable to identify
such predictors and tested their robustness both on data of normally aged
controls as well as on chronic stroke patients. Such robust predictors can
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be valuable building blocks for closed-loop applications since they provide
introspection about, e.g., sub-processes involved in hand motor control, and
can directly be applied in single-trial experimenting at low computational
effort. This is of specific interest for brain state-informed paradigms, e.g., in
post-stroke rehabilitation. Furthermore, the group-level analysis motivated
to utilize our workflow to gain a better global understanding of trial-to-
trial variations of cognitive sub-processes, which could finally support a
successful rehabilitation outcome.



4
R E G U L A R I Z AT I O N T E C H N I Q U E S F O R S PAT I A L F I LT E R
O P T I M I Z AT I O N

This chapter mainly refers to the journal paper “Characterizing Regu-
larization Techniques for Spatial Filter Optimization in Oscillatory EEG
Regression Problems” by Meinel et al. [32]. Regarding this collaborative
project, I have taken the lead in developing and implementing a number
of potentially beneficial regularization strategies, in developing evaluation
strategies to judge their efficacy, in visualizing the results and in writing the
manuscript. In addition to the content of this paper, two more real-world
datasets have been included to the analysis.

Novel supervised algorithms for single-trial brain state decoding
are reported. Their reliability and robustness are essential to ef-
ficiently perform neurotechnological applications in closed-loop.
When brain activity is assessed by multichannel recordings, spa-
tial filters computed by the source power comodulation (SPoC)
algorithm allow identifying oscillatory subspaces. They regress to
a known continuous trial-wise variable reflecting, e.g., stimulus
characteristics, cognitive processing or behavior. In small dataset
scenarios, this supervised method tends to overfit to its training
data as the involved recordings via EEG, MEG or local field poten-
tials generally provide a low signal-to-noise ratio. To improve upon
this, we propose and characterize three types of regularization
techniques for SPoC: approaches using Tikhonov regularization
(which requires model selection via cross-validation), combina-
tions of Tikhonov regularization and covariance matrix normaliza-
tion as well as strategies exploiting analytical covariance matrix
shrinkage. All proposed techniques were evaluated both in a novel
simulation framework and on two real-world datasets. Based on
the simulation findings, we saw our expectations fulfilled, that
SPoC regularization generally reveals the largest benefit for small
training sets and under severe label noise conditions. Relevant
for practitioners, we derived operating ranges of regularization
hyperparameters for cross-validation based approaches.

summary

51



52 regularization techniques for spatial filter optimization

4.1 introduction

4.1.1 Motivation

Neurotechnological systems such as BCIs typically utilize EEG recordings
that enable users to interact with a computer or physical devices [8]. Such
practical closed-loop applications require the extraction of relevant and
robust features [160] from high-dimensional EEG data which unfortunately
suffer from an inherently low signal-to-noise ratio [18, 161]. In addition, for
most BCI applications only small calibration datasets are available to train
the decoding algorithms—typically a few dozens or maximally a couple of
hundreds of training samples — which further aggravates the situation [62].
Thus, it is necessary to design robust decoding methods and training
procedures, such that over-fitting to the training data is avoided [18]. In
particular, these arguments also apply for the SPoC algorithm which tackles
the single-trial decoding of a continuous variable (see the previous Chap. 3).

While robust variants of CSP have been proposed based on regularization
approaches [93], there are no such robust variants for SPoC. Comparing the
formulations of the objective functions of SPoC and CSP (see Sec. 2.3.4.4
and 2.3.4.5), both can be translated into a similar optimization problem.
Thus, we present generally applicable regularization variants for SPoCResearch question Q2a

and evaluate if the algorithm’s robustness can be increased. Therefore,
we first evaluate regularized SPoC variants using a recent simulation ap-
proach based on post-hoc labeling of arbitrary EEG recordings. This allows
probing the stability of the regularized variants under reduced training
datasets, varying label noise conditions and different strengths of oscilla-
tory sources. In a second step, we evaluate the methods on two different
real-world datasets and finally compare the findings of both scenarios. As
regularization introduces additional hyperparameters, we will compare
model selection via cross-validation with an analytical solution. Finally, we
provide the practitioner with information on how to determine suitable
parameters for SPoC regularization.

4.1.2 Related work

In the BCI field, the most prominent algorithm for a supervised classifi-
cation scenario is tackled by the CSP algorithm (see Sec. 2.3.4.4). Unfor-
tunately, CSP is specifically sensitive towards noisy training data [162],
non-stationarities [163] and small datasets [164, 165]. To mitigate a sub-
set of these limitations, regularization variants have been proposed for
CSP [93, 163]. In general, regularization guides an optimization problem by
adding prior information, thus limiting the space of possible solutions. Even
though regularization is of specific importance for ill-posed problems such
as source reconstruction [166], less underdetermined problems can also
profit. For CSP, a broad bandwidth of regularization approaches has been
published, such as L1- and L2-norm penalties [93, 167–169], regularized
transfer learning strategies that accumulate information across multiple
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sessions and subjects [170–174] and variants which favor invariant solutions
across sessions/runs under EEG non-stationarities [163, 175–177].

Taking a closer look into the BCI decoding literature, a variety of methods
for oscillatory EEG classification problems can be found, but for the regres-
sion case the choice still is extremely limited [178] even though regression
methods allow tackling highly interesting research questions. Examples
are the estimation of continuous mental workload levels [179, 180], decod-
ing the depth of cognitive processing [181], predicting single-trial motor
performance [28] or continuous decoding of movement trajectories [182].
Thus, we will focus on regularization variants for the SPoC algorithm in
the following chapter.

4.2 regularization for regression based spatial filtering

The constraint optimization problem of the SPoC algorithm was introduced
in Sec. 2.3.4.5. It can be translated into the following Rayleigh quotient:

Jλ(w) =
w>Σzw

w>Σavgw
(4.1)

In most BCI scenarios small training datasets—typically less than 100

samples—of a high dimensionality are encountered [18]. In this setting,
SPoC shows an impairing sensitivity and thus might be prone to overfit the
training data [31]. A common machine learning strategy in such situations
is to add prior information and thus regularize the objective function of an
algorithm.

Similar to the regularization strategies proposed by Lotte and Guan [93]
for CSP, there are two possible branches of regularization strategies for the
SPoC algorithm: The first is to directly add prior information on the level of
the objective function in Eq. (4.1). This leads to a restriction of the solution
space of possible filters. The second one directly addresses the involved
empirical covariance matrices which suffer from small training sets and
noisy data. Poorly estimated covariance matrices will not characterize the
intended neural activity well. Therefore, regularization on the level of
covariance matrices intends to improve their estimation and thus enhance
the spatial filtering optimization. In the following, we will propose two
regularization approaches, one from each branch of strategies.

4.2.1 Additional penalty on the objective function

Introducing a regularization to the objective function of SPoC can be
achieved by adding a penalty term P(w) to the denominator of the Rayleigh
quotient stated in Eq. (4.1):

J̃λ(w) =
w>Σzw

(1− α)w>Σavgw + αP(w)
(4.2)

where α ≥ 0 is the regularization parameter that modulates the strength of
the penalty. In general, the term P(w) penalizes solutions of w that do not
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fulfill a specified prior. Thereby it increases the algorithm’s robustness to
outliers and small training sets.

Here, we select a simple quadratic penalty of the form:

P(w) = w>I w = ‖w‖2 (4.3)

using the identity matrix I ∈ RNc×Nc . This penalty is known as Tikhonov
regularization [183] and has similarly been introduced for CSP [93]. As the
penalty P(w) scales with the spatial filter norm, solutions w with small
weights are preferred. Regarding utmost regularization strength in Eq. (4.2)
expressed by α = 1, the Rayleigh quotient simplifies to the one of PCA
(see Sec. 2.3.4.1) meaning that a PCA on the z-weighted covariance matrix
is computed. For the introduced Tikhonov regularization of SPoC, model
selection wrt. α can be done via cross-validation (CV).

Equivalence to covariance shrinkage

Inserting the given Tikhonov penalty P(w) of Eq. (4.3) into the objective
function in Eq. (4.2), enables to factorize the denominator to a shrinkage of
the averaged covariance matrix Σavg towards the identity matrix I ∈ RNc×Nc :

Σ̃avg = (1− α)Σavg + αI (4.4)

By that we have shown that substituting Σavg by the shrinked version Σ̃avg

in the objective function of SPoC (see Eq. (4.1)) is equivalent to the Tikhonov
formulation stated in Eq. (4.2) and (4.3).

Trace normalization

SPoCλ optimizes covariance, which is not scale-invariant. This drawback
might be mitigated by the norm constraint, but to directly compensate for
the relative scaling of the covariance matrices in Eq. (4.2), a normalization
of all covariance elements by the trace tr[·] might also be a suitable strategy
as already proposed for CSP [92, 184]:

Σ̂(e) =
Σ(e)

tr[Σ(e)]
; Σ̂avg =

Σavg

tr[Σavg]
(4.5)

Here, we investigate the effect of applying trace norm to Σ(e) and Σavg en-
tering Eq. (4.2), but not upon Σz as its label-weighting shall be maintained.

4.2.2 Regularization of covariance matrices

In parallel to the proposed Tikhonov regularization, which builds upon a
CV procedure for the selection of α, there are faster ways of determining a
suitable regularization strength. Hereafter, we will focus on two strategies
for covariance shrinkage which allow to deploy an analytic solution to
determine the regularization parameter.
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Automatic shrinkage of sample covariance matrices

In general, when estimating a sample covariance matrix S ∈ RNc×Nc based
on Ntrain training data samples, there was a systematic bias reported if Ntrain
is in the order of the given dimensionality Nc or yet below: large eigenvalues
get overestimated while small eigenvalues tend to be underestimated [185].
The situation can be improved by shrinking the covariance matrix S towards
the identity matrix I [186, 187]:

S̃ = (1− α∗)S + α∗νI (4.6)

Under the assumption of independent and identically distributed (i.i.d.)
data and thus in the absence of outliers, Ledoit & Wolf derived a closed-
form solution for the optimal shrinkage parameter α∗ and the optimal
scaling parameter ν by minimizing the expected mean squared error. For
the exact closed-form solution of α∗ and ν, we refer the reader to Ledoit and
Wolf [186], Schäfer and Strimmer [187], and Bartz and Müller [188]. This
closed-form solution holds the advantage of directly computing an estimate
of α∗ without cross-validation. Note that the additional scaling factor ν

takes a similar role as the trace normalization introduced for Tikhonov
regularization with the difference that it only takes diagonal terms into
account.

Automatic shrinkage of averaged covariance matrix

As shown in Sec. 4.2.1, the Tikhonov penalty introduced for the SPoC
objective function can be rewritten as a shrinkage of the covariance matrix
Σavg, which was gained by averaging across the epoch-wise covariances
Σ(e). Thus, one can directly apply the closed-form solution for α∗ and ν,
but it first requires to estimate the averaged covariance matrix as Σavg =

(Ns · Ne − 1)−1 X>cat Xcat using a concatenated data matrix of all Ne epochs,
namely Xcat = [X(1), ..., X(Ne)] ∈ RNc×(Ns·Ne). To compensate for signal
non-stationarities, each data epoch X(e) should be corrected to channel-
wise zero mean prior to concatenation.

Automatic shrinkage of epoch-wise covariance matrix

SPoC includes the label-weighted covariance matrix Σz which holds all
the available label information. A direct covariance shrinkage for Σz was
tested in pilot experiments (data not shown), but this turned out not to
be beneficial — probably because adding a regularization term would
diminish the contained label information. As both Σz and Σavg require a
computation of the epoch-wise covariance Σ(e), we propose to choose this
matrix as regularization target using the previously mentioned closed-form
solution for α∗ and ν in order to derive a shrinked estimate Σ̃(e).
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4.2.3 Overview of evaluated SPoC regularization variants

Tab. 4.1 gives an overview of all proposed regularization strategies which
were introduced in Sec. 4.2.1 and 4.2.2. The first three rows summarize
Tikhonov regularization variants which all require an estimation of α by
means of cross-validation. Among them, Tik-SPoC comprises Tikhonov
regularization only according to Eq. (4.2), while NTik-SPoC considers an
additional trace norm both for Σ(e) and Σavg. The largest extent of regu-
larization is realized by ASNTik-SPoC which uses the same strategy as
NTik-SPoC with additional automatic shrinkage on Σ(e) for the compu-
tation of Σz. As this term applies to the numerator (N) of the objective
function, this is marked accordingly in Tab. 4.1. The last two rows sum-
marize automatic shrinkage approaches using the closed-form solution
by Ledoit & Wolf (LW). Applying automatic shrinkage to the averaged
covariance matrix will be referred to as automatic Tikhonov regularization
aTik-SPoC. In contrast, using automatic shrinkage directly upon Σ(e) in
the numerator (E) and denominator (D) of the objective function will be
referred to as AS-SPoC.

Table 4.1: Overview of introduced SPoC regularization variants. Two model se-
lection schemes are applied: cross-validation (CV) and based on the
Ledoit & Wolf shrinkage estimator (LW). For Σ̃(e) it is explicitly marked
if regularization is applied to the numerator (N) and/or to the denomi-
nator (D) of the objective function. The checkmarks refer to covariance
normalization.

Method
Regularization Target Normalization

Σ̃(e) Σ̃avg Σ̂(e), Σ̂avg

Tik-SPoC - CV -

NTik-SPoC - CV X

ASNTik-SPoC LW: N CV X

AS-SPoC LW: N,D - -

aTik-SPoC - LW -

4.3 experiments and validation procedure

4.3.1 Simulation data scenario

In this work, we aim to characterize and benchmark the introduced reg-
ularization techniques to the SPoCλ algorithm. However, in the majority
of real-world EEG experiments there is no ground truth source available,
which severely challenges the validation procedure. To compensate for
this, a novel data-driven simulation approach for labeling datasets was
utilized [189]. It generates ground-truth label information based on known
sources from arbitrary pre-recorded EEG measurements. This post-hoc data
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labeling allowed obtaining noiseless labels from a relatively large amount
of EEG data (here up to 1000 epochs) while conserving the real statistics of
the neural activity including non-stationarities of the signal. Furthermore,
the approach provided full control over label noise and allows studying
its influence upon the decoding performance. In the following, a detailed
description for the dataset generation is given.

Table 4.2: Overview of two additional datasets used for validating the regular-
ization methods. Each dataset contains one offline session of each sub-
ject.

dataset (D2) dataset (D3)

No. of subjects (after preprocessing) 40 (12) 11 (7)

Experimental setup

Paradigm motor imagery steady-state stimulation

Recorded EEG channels Nch (utilized) 118 (63) 63 (63)

Reference publication [190] [94]

4.3.1.1 Dataset and preprocessing

As listed in Tab. 4.2, the dataset (D2) consists of 40 single-session motor
imagery recordings which formed the basis for the simulation. The experi-
mental design of the motor imagery paradigm is described in detail in [190].
From the recorded EEG, we utilized the signals of 63 passive EEG channels
placed according to the extended 10-20 system. The preprocessing of each
raw EEG dataset consisted of a low-pass filtering at 48 Hz, a sub-sampling
to 120 Hz and a final high-pass filtering at 0.2 Hz. For each dataset, the
continuous EEG recordings of active task periods (from the task cue to the
end of the imagery interval) were segmented into non-overlapping epochs
of 1 s duration. Artifact epochs were identified by a min-max threshold
and by a variance criterion. The latter was additionally applied to detect
and remove outlier channels. Details about the artifact preprocessing are
described in Sec. 3.2.4.

As the robustness of regularized SPoC variants depending on the number
of training epochs Ne shall be studied here, we discarded datasets with
Ne < 1000. Similarly, datasets in which more than 10% of the original EEG
channels had to be rejected, have been removed from further analysis. Ap-
plying these rather strict criteria, the data of 12 out of 40 subjects remained.
While a relaxation of the preprocessing criteria would have allowed to in-
clude more subjects, we have decided for evaluating the methods on large,
well-preprocessed EEG datasets that provide a comparable dimensionality
across subjects.
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Figure 4.1: Data-driven post-hoc labeling of arbitrary pre-recorded EEG sig-
nals. (A) Processing pipeline to extract independent components (ICs).
(B) For each IC and epoch e, the log-bandpower average of the epoch
serves as a ground truth label ztrue(e). (C) Distribution of ztrue over
all epochs of an exemplary IC. Its bandpower fluctuation width is
described by σz.

4.3.1.2 Post-hoc labeling of pre-recorded EEG data

As illustrated in Fig. 4.1 (A), the following steps were applied to generate
continuous labels ztrue from pre-recorded EEG datasets in a data-driven
way:

1. Bandpass filtering of the data to a frequency band of interest. For our
analysis, we choose the alpha-band frequency range of [8, 12]Hz.

2. Based on the bandpass filtered data, an ICA decomposition (fas-
tICA, [85]) into Nin = 20 independent components (ICs) was com-
puted.

3. To identify and remove artifactual components in an automatic way,
the data-driven classification approach MARA [89] for the identifica-
tion of artifactual components was applied. A posterior probability
threshold (part = 10−8) describing the probability of an artifact feature
was applied for discarding components of non-neural origin resulting
in Nsel ≤ Nin selected ICs.

4. The log-bandpower for each selected component j with j = 1, .., Nsel
was computed by the Hilbert transform and averaged in each 1 s time
interval which defined the epoch-wise known target variable zj(e) as
sketched in Fig. 4.1 (B).

Overall, the preprocessed data of 12 subjects resulted in 145 oscillatory
components (≈ 12 per subject) which survived MARA. For each selected
IC, the log-bandpower activation was sampled across Ne = 1000 epochs
and thus delivered continuous epoch-wise labels ztrue(e) for the respective
epoched EEG signals X(e).

We expect the SPoC decoding accuracy to be sensitive to the strength
of envelope changes of an oscillatory component. The simulation design
enables to empirically study this influence by extracting the absolute width
in bandpower fluctuations of a single selected IC across a full session.
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Therefore, we define the fluctuation width of the jth IC as σz := Var[zj(e)]
calculated across the Ne = 1000 epochs as illustrated in Fig. 4.1 (C).

4.3.1.3 Probing the algorithms under reduced datasets and label noise

In an offline analysis using the generated 145 labeled datasets, all five
introduced SPoC regularization variants and the standard SPoC approach
were evaluated in a 10-fold chronological CV. For each epoch e, an estimate
of the target variable zest(e) was derived according to Eq. (3.1) by applying
the highest ranked spatial filters obtained from the training data.

To analyze the benefit of regularization under different dataset sizes, we
evaluated the algorithms’ stability by systematically reducing each dataset
with originally 1000 epochs to smaller data chunks. Therefore, epochs from
the session end were removed. For each of the 145 labeled datasets, 22

discrete, logarithmically scaled dataset sizes Ne ∈ [20, 1000] (respectively
training set sizes Ntrain) were tested. Similarly, we probed the stability of our
approaches under varying label noise conditions. Therefore, each sample
of the target variable distribution ztrue was modified by adding normally
distributed label noise, resulting in a noisy label set znoisy which was used
for the CV procedure. According to the label noise model proposed by
Castaño-Candamil et al. [189], the correlation between the undistorted and
the noisy labels ρn = Corr(ztrue, znoisy) can be controlled via the label noise
parameter ξn := 1− ρn. A value ξn = 1 refers to maximal label noise, while
ξn = 0 indicates that the labels are completely noise free. Five fixed levels
for ξn were evaluated.

For the CV-based regularized SPoC variants (see Tab. 4.1), the regu-
larization strength α was varied in a range α ∈ {0; [10−8, 100]}. Over-
all, 20 discrete, logarithmically scaled α levels were analyzed. To sum-
marize, we tested all algorithms on different hyperparameter configura-
tions ω ∈ {(Ntrain, ξn, α)}.

4.3.2 Real-world data scenario

4.3.2.1 Datasets for evaluation

For the examination of the regularization methods in real-world decoding
scenarios, we utilized two different datasets, which will shortly be described
hereafter including the applied preprocessing steps.

Dataset (D3): Decoding auditory stimulus intensity

Tab. 4.2 contains dataset (D3) with experimental data on steady-state au-
ditory evoked potentials (SSAEP) conducted in a single session with 11

subjects. These data were used to validate the original non-regularized
SPoC algorithm [94]. The experiment builds upon a known gain of EEG
bandpower with increased stimulus intensity [191]. Therefore, the stim-
uli were generated with a carrier frequency of 500 Hz and an additional
modulation by a sinusoidal 40 Hz signal which resulted in a so-called
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steady-state stimulation. The intensity of the stimuli were systematically
varied in the range of 10 to 35 dB. A single session consisted of 3 blocks
of 5 min ongoing stimulation. In total, 7 out of 11 subjects provided the
required SSAEP features and were used for further evaluation.

Throughout the experiment, EEG data was sampled with 1 kHz from
63 passive Ag/AgCl electrodes positioned according to the 10-20 system.
All channels were referenced to the nose. For the offline analysis, signals
were low-pass filtered with a cut-off at 90 Hz, a notch filter applied around
50 Hz and the data downsampled to 250 Hz. Finally, the EEG data were
bandpass filtered to a frequency range of [39, 41]Hz (centered around the
40 Hz modulation frequency) and epoched into segmented data X of 1 s
length. Overall, data of each subject provided at least Ne = 897 epochs.
The epoch-wise target variable z(e) was computed as the squared stimulus
intensity in dB. For the evaluation of the regularization variants, which are
expected to be beneficial in small-dataset scenarios, the data X and z of each
subject were split in three disjunct datasets of size Ne = {125, 250, 500}
leading to 21 datasets for evaluation.

Datasets (D1a) and (D1b): Decoding single-trial motor performance

Referring to the datasets (D1a) and (D1b) described in Sec. 3.2.2, we utilized
single-session data of 25 subjects who participated in the SVIPT paradigm
with 400 or 240 trials per session. The task enabled to extract a single-
trial motor performance metric such as reaction time (RT). As a major
finding of the previous Chap. 3, we reported that oscillatory bandpower
features recorded during the pre-go interval can partially explain upcoming
single-trial motor performance.

Building upon these findings, here the EEG signals were segmented
into epochs along the time interval [−500,+500]ms relative to the go-cue
in each trial to decode RT of the upcoming motor task. By this choice of
the time interval, we do not predict upcoming performance any more but
therefore have potentially larger absolute decoding performance levels.
After data preprocessing and outlier rejection as described in Sec. 3.2.4,
we now restricted any further analysis to oscillatory features within the
alpha-band frequency range of [8, 12]Hz. The bandpass filter was realized
applying a zero-phase Butterworth filter of 6th order. Overall, data of 24

subjects were used for further analysis which provided between 186 and
360 epochs after preprocessing (at least 150 epochs were required).

4.3.2.2 Evaluation scheme

All algorithms were evaluated within a (nested) 10-fold chronological CV.
The three CV-based regularization variants demanded an additional inner
CV to estimate the individually optimal regularization parameter α∗. It
was chosen among 15 discrete, logarithmically scaled values in the range
α ∈ [10−8, 1]. The α-value maximizing the z-AUC evaluation score (details
see Sec. 4.3.3) was selected and applied to the outer CV in order to train
the respective spatial filtering algorithm and linear regression model. The
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methods aTik-SPoC and AS-SPoC allow for an analytical estimate of α∗ and
hence did not require an inner CV.

For each α in the inner or outer CV, the following scheme was applied:
a spatial filter set {w(i)}i=1,..,Nc was computed on training data Xtr. The
first N f eat = 4 highest ranked components were selected as input to train
a linear regression model with coefficients {β j}j=0,..,N f eat . The model was

trained upon the log-bandpower features Φj,tr = log(Var[w(j)
tr Xtr]). On each

feature Φj,tr, the mean µj,tr and the variance σj,tr was estimated in order to
standardize the data to zero mean and unit variance before entering the
regression model. Given unseen test data Xte, the log-bandpower features
Φj,te(e) = log(Var[w(j)

tr Xte])(e) for each selected spatial filter w(j)
tr were first

standardized by µj,tr and σj,tr. Subsequently, the corresponding coefficients
β j of the trained linear regression model enabled to estimate the target
variable zest(e) via:

zest(e) = β0 +
N f eat

∑
j=1

β jΦj,te(e) (4.7)

In contrast to the simulation scenario, the total number of ground truth
neural source(s) which might (partially) explain the target variable ztrue is
not known a priori. Thus by applying a regression model, we assume that
several sources might contribute to explain the labels ztrue of the real-world
decoding scenarios.

4.3.3 Evaluation scores

To compare the estimated labels zest with the known or measured labels
ztrue in the simulation and real-world scenarios across the proposed regu-
larization variants, different evaluation scores can be considered [28]. In
general, the Pearson correlation coefficient could be utilized but has the
drawback, that it is very sensitive to the number of samples [192]. Therefore,
we instead decided to utilize the following three scores in this chapter:

• Angle θ between spatial filters: The design of the simulation scenario
gives access to each ground truth spatial filter wtrue. As all proposed
SPoC variants directly optimize for a spatial filter estimate w with
arbitrary sign and amplitude (this characteristic is inherited from
the formulation as an eigenvalue problem), the angle θ between the
spatial filters can directly serve as an evaluation metric:

θr = arccos
(

w>wtrue

‖w‖ ‖wtrue‖

)

θ =

θr, θr ≤ π/2

π − θr, θr > π/2

with 0 < θ < π. A perfect decoding will be expressed by an angle
θ = 0. Please note that the angle θ can only be estimated within the
simulation scenario.
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• Separability z-AUC of labels: As introduced in Sec. 3.2.7, the contin-
uous labels ztrue can be transferred into a two-class scenario according
to the median of ztrue. Then the area under the ROC curve describes
the separability of the labels, named z-AUC.

• Relative z-AUC performance: The score z-AUCre f corresponds to the
baseline performance of SPoC without any regularization. Here, we
will compare it to performances obtained by the proposed regularized
variants (see Tab. 4.1). Given a hyperparameter configuration ω, the
target variable obtained under these hyperparameters zest(w(ω)) can
be estimated using Eq. (3.1) and the corresponding z-AUC can be
computed. For fixed ω, the performance of a regularized SPoC variant
z-AUCreg(ω) can be assessed as the relative change of z-AUC to the
baseline SPoC performance:

rel. z-AUC(ω) :=
z-AUCreg(ω)− z-AUCre f (ω)

z-AUCre f (ω)
(4.8)

If rel. z-AUC > 0, this directly corresponds to a relative performance
increase compared to standard SPoC and vice versa.

4.4 results

First, we studied the characteristics of the regularization algorithms on 145

analysis problems within the simulation framework. It allows assessing
the influence of (hyper)parameters such as regularization strength, dataset
size or label noise under controlled conditions. Second, the approaches
were tested on two real-world datasets to verify the transferability of the
findings and to provide rules of thumb for the practitioner.

4.4.1 Simulation data

4.4.1.1 Component labeling according to bandpower fluctuation width

The SPoC algorithm optimizes for oscillatory components that co-modulate
in their bandpower with a given target variable. In Fig. 4.2, the relation
between the fluctuation width σz and the baseline SPoC performance
z-AUCref on the full dataset Ne = 1000 is shown for each of the 145

ICs (correlation R = 0.31 with p = 2.20 · 10−4). The results indicate that
the decoding quality of SPoC depends on the fluctuation width σz of
the underlying neural component, with stronger fluctuation width being
related to higher decoding quality. For further analysis of the simulation
data, all 145 ICs were labeled according to their bandpower fluctuation
width σz into three classes determined by the lower and upper quartile
according to the distribution of σz across all components (see color coding
in Fig. 4.2). In the following, we will show the decoding performances
z-AUCGA and θGA as grand average for each corresponding fluctuation
width class.
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Figure 4.2: Simulation data: component labeling according to fluctuation width.
Scatter plot relating the fluctuation width σz of each selected ICA
component to their baseline SPoC performance z-AUCre f for non-
reduced datasets with 1000 epochs. Based on its σz-distribution, the
dataset of each IC was labeled into one of three classes, defined by the
quartile thresholds Q25 and Q75.

4.4.1.2 Sensitivity to regularization parameter

0.6

0.7

0.8

0.9

1

z−
AU

C G
A

Ntrain = 38 | σz − high

A

10−8 10−6 10−4 10−2 1000.4

0.6

0.8

1

1.2

an
gl

e
θ G

A

regularization parameter α

C

Ntrain = 900 | σz − high

Tik−SPoC
NTik−SPoC
ASNTik−SPoC

10−8 10−6 10−4 10−2 100

regularization parameter α

D

B

Figure 4.3: Simulation results: influence of regularization strength α onto the
decoding accuracy of three SPoC variants regularized via CV. The
grand average performance z-AUCGA is reported in the top row (sub-
plots (A) and (B)), while subplots (C) and (D) in the lower row report
the angle θGA between the estimated highest ranked and the ground
truth filter as evaluation score. Subplots in the left and right columns
differ in the number of training data points (epochs) used for SPoC
decoding. Results are reported for the class ’σz - high’.

Regarding the CV-based regularized SPoC versions, their sensitivity
to the regularization parameter α is reported in Fig. 4.3 exemplarily for
the ’high σz’ class. It reflects the grand average (GA) of all components
contained in this class and provides different evaluation scores. The first
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row reports the z-AUCGA while the second row summarizes the angle
θGA between filters. A regularization benefit is expressed via an increasing
z-AUCGA or a decreasing θGA relative to the performance level at α =

10−8. A few observations can be summarized from Fig. 4.3: First, the two
evaluation scores z-AUC and θ are highly (anti-)correlated across the shown
dataset scenarios and SPoC regularization variants. As in real-world data
the ground truth will not be known a priori, further analysis will need to
be restricted to the metric z-AUC. Second, an increase of the training set
size Ntrain (left to right column) leads to a lower sensitivity wrt. α. Third, a
comparison of α sensitivity ranges across the three regularization variants
yields that NTik-SPoC and ASNTik-SPoC are sensitive in the interval
10−6 ≤ α ≤ 1 while Tik-SPoC is only sensitive within 10−3 ≤ α ≤ 1. Fourth,
NTik-SPoC and ASNTik-SPoC behave highly similar, while Tik-SPoC shows
a qualitatively different behavior. Based on these observations, further
analysis will focus on differences between NTik-SPoC and Tik-SPoC. Fifth,
extreme regularization with α = 1 leads to a drop of decoding performance
regardless of the approach, while in the absence of regularization (α = 0) a
slight improvement due to trace normalization can be reported for NTik-
SPoC.

4.4.1.3 Influence of reduced datasets and fluctuation width
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Figure 4.4: Simulation results: sensitivity of regularized SPoC variants to α and
to reduced training set sizes Ntrain. The grand average performance
z-AUCGA is reported for Tik-SPoC (top row) and NTik-SPoC (bottom
row) and separately for the fluctuation width classes ‘low’ (left column)
and ‘high’ (right column).

The simulation scenario grants access to test the stability of different reg-
ularized SPoC variants under reduced datasets. For the CV-based methods,
a sensitivity analysis for the regularization strength α under 22 training
set sizes Ntrain is shown in Fig. 4.4 for Tik-SPoC (first row) and NTik-SPoC
(second row). The two columns in Fig. 4.4 reveal the influence of the com-
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ponents’ fluctuation width σz (left: low, right: high). We observed, that
regularization has the strongest effects for components with large σz and
for small training sets. With increasing training set size Ntrain, the sensitiv-
ity range for α shifts towards smaller α values. Comparing the depicted
methods, NTik-SPoC shows a higher sensitivity to regularization strength
α compared to Tik-SPoC. Interestingly, for all subplots (A)-(D) the curves
along different Ntrain values converge at α = 1, as for this value the SPoC
methods collapse to a PCA on the z-weighted covariance. Even for this ex-
treme choice of α, data characterized by higher σz reaches a better decoding
performance than data with lower σz.

To quantify the decoding performances across methods, the maximum
GA performance z-AUCmax := z-AUCGA(α

∗) is reported in Fig.4.5 (A) and
(B) in the absence of label noise. Therefore, the optimal regularization
strength α∗ = arg maxα z-AUCGA(α) is selected for fixed Ntrain and σz class.
For variants using the LW estimate, this selection is not necessary as there
is an analytic solution for α∗ such that z-AUCmax = z-AUCGA. Accordingly,
the relative performance change rel. z-AUC(α∗) is reported on the GA level
in Fig. 4.5 (C) and (D), while (E) and (F) report the statistical significance
of the findings. Therefore, a one-sided Wilcoxon signed-rank test was
applied to test if the median of performance differences (z-AUCmax,re f (ω)−
z-AUCmax,reg(ω)) is smaller or equal to zero for fixed Ntrain and σz. If
a p-value p < 0.05 was found (not corrected for multiple testing), the
configuration ω reveals a significant difference among the two methods,
indicated by a colored data point in Fig. 4.5 (E) and (F). The following
observations can be reported: First, the absolute decoding performance
strongly depends on Ntrain regardless of the regularization method and
σz class. Second, there is a relative performance increase of all introduced
regularization methods up to training sets of size Ntrain ≈ 60 on the
grand average level. For larger datasets the regularization does not reveal
an additional benefit on the grand average. Third, our results indicate
that regularization is beneficial for various methods in the ’high σz’ class,
while this is not the case for ’low σz’. Here, a noticeable case is reported
by the performance of AS-SPoC which drastically loses performance for
Ntrain & 50.

4.4.1.4 Stability under label noise and reduced datasets

As in most real-world scenarios label noise challenges the decoding perfor-
mance of subspace methods like SPoC [31]. Thus, we studied its influence
for reduced datasets within the simulation data. Fig. 4.6 exemplary shows
the degrading decoding performance under label noise conditions for aTik-
SPoC and AS-SPoC for ’high σz’. Both methods have in common, that
performance estimates are very noisy under small dataset size and increas-
ing label noise. Regarding the maximally achievable decoding performance
for both methods at Ntrain = 900, the absolute performance z-AUCGA scales
almost linearly with the amount of label noise ξn. Referring to the relative
performance change shown in (C) and (D) as well as the statistical tests
in (E) and (F), they reveal that under increased levels of label noise ξn
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Figure 4.5: Simulation results: influence of training set size and fluctua-
tion width upon decoding performance of optimal regularization
strength α∗. The top row depicts the grand average absolute perfor-
mance of five regularized SPoC variants for ICs that either have low
(A) or high (B) bandpower fluctuation width. The middle row depicts
performance increase or decrease of the five regularized methods rela-
tive to the baseline SPoC method without any regularization and again
separately for IC’s of low (C) and high (D) fluctuation width. Subplots
(E) and (F) reveal color-coded points for each training set size in which
the regularized variant significantly outperformed the baseline method
(Wilcoxon signed-rank test with p < 0.05).

even larger training sets can profit from regularization when compared to
the unregularized SPoC. While for ξn = 0 a relative performance increase
on the GA can be found up to Ntrain ≈ 60, for ξn = 0.6 it increases up
to Ntrain ≈ 800. This effect is stronger for AS-SPoC than for aTik-SPoC.
Despite not shown here, we would like to mention, that under increased
label noise the performance gain of the regularized variants with larger
Ntrain can be observed also for the ’low σz’ case, but with a lower overall
decoding performance.

4.4.1.5 Optimal regularization parameter ranges

To identify suitable ranges of the regularization parameter for the CV-based
methods, color-coded contour maps of relative performance changes are
provided in Fig. 4.7. The maps show the grand average rel. z-AUCGA within
the (Ntrain, α) hyperparameter space separately for the two methods Tik-
SPoC (first column) and NTik-SPoC (second column). Maps in the upper
row summarize the performance changes in the absence of label noise (ξn =

0) while the lower one provides these results under systematic label noise
(ξn = 0.4). The blue areas in each map mark ranges in the hyperparameter
space, in which a relative performance increase is obtained, while “no-go”
areas in red associate with a decrease of decoding quality. When comparing
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Figure 4.6: Simulation results: interaction between label noise level ξn and
dataset size Ntrain. A level of ξn = 0 states the absence of label noise.
All curves report the grand average results for ICs belonging to the
’high σz’ class. Subplots (A) and (B) in the top row provide the absolute
grand average performances for aTik-SPoC and AS-SPoC, while the
middle row depicts relative performance changes. The dots in (E) and
(F) indicate configurations, for which the regularized variant signifi-
cantly outperformed the baseline method (Wilcoxon signed-rank test
with p < 0.05).

Fig. 4.7 (A) and (B), we observe that the trace norm in NTik-SPoC induces
a reduction of optimal α values by a few orders of magnitude as well as a
larger sensitivity range compared to Tik-SPoC. Both plots reveal consistently
a “no-go” area towards the top right corner, which indicates, that on the
grand average strong regularization is detrimental, when large training
datasets without label noise are available. With additional label noise in
Fig. 4.7 (C) and (D), the heterogeneity of the relative performance landscape
increases and the “no-go” areas at the top right shift towards larger Ntrain.
In accordance with the automatic shrinkage based methods visualized in
Fig. 4.6 we find, that the inclusion of label noise ξn into the simulation has
the effect that regularization might even be beneficial for large training sets.

For different training set sizes Ntrain, we now compare the CV-based
estimates of α with those of aTik-SPoC, which makes use of an analyti-
cal solution α∗. The grand average of α∗ is plotted into Fig. 4.7 (B) and
(D). As the analytical solution for α∗ [186, 187] is proportional to N−2

train,
it should scale anti-proportional with log10(Ntrain), which in fact was ob-
served in Fig. 4.7 (B). It is worth mentioning, that the analytic choices of
α∗ are not influenced by label noise – compare maps (B) and (D) – as the
involved covariance shrinkage (see Eq. (4.6)) does not make use of the label
information.
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Figure 4.7: Simulation results: landscape of the grand average relative perfor-
mance changes. The z-AUC is shown dependent on the training set
size Ntrain and regularization strength α for ICs of high fluctuation
width σz. The isolines of relative performance changes were interpo-
lated along a grid search. No label noise was applied to generate maps
(A) and (B) for methods Tik-SPoC and NTik-SPoC, respectively. The
second row reports the landscapes including a label noise level of
ξn = 0.4 for both methods. Additional diamond markers in subplots
(B) and (D) depict the grand average of α∗ for aTik-SPoC, which is
independent of label noise. This method utilizes analytically derived
values of α∗ and may serve as a reference for the CV-based NTik-SPoC.

4.4.2 Real-world data

4.4.2.1 Comparison of regularized SPoC variants

Fig. 4.8 contains the subject-wise performance comparison of all regularized
SPoC variants to standard SPoC for the two investigated datasets. To
compare each regularized variant to its baseline, we report the overall
ratio of subjects for which the regularized variant outperforms standard
SPoC. To verify if a regularized variant reaches a statistically significantly
higher performance compared to standard SPoC, a two-sided Wilcoxon
signed-rank test was evaluated on the group level. If the p-value was below
0.01, the top left subplot corner is annotated by a star symbol.

The following observations can be stated on the two real-world datasets:
The performance changes induced by aTik-SPoC are negligible small re-
gardless of the underlying dataset and in contrast to all other regularization
variants. Across the remaining approaches, the CV-based NTik-SPoC and
ASNTik-SPoC variants behave very similarly, which has been observed
before on simulation data (see Fig. 4.5).

Regarding the results on the SSAEP dataset (D3) in Fig. 4.8 (A)-(D), all
three CV-based variants as well as AS-SPoC significantly outperform the
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Figure 4.8: Real data: performance of different regularized SPoC variants for
two datasets. Single scatter plots reveal a comparison with the unregu-
larized baseline method SPoC. Each column refers to a regularization
variant. The first row reports results for dataset (D3), the second row
for (D1a,b). In each scatter plot, the marker size encodes the underlying
training dataset size. At the top left, the percentage of points for which
the regularized variant outperforms baseline SPoC is given. A star
symbol reports a significance level of p < 0.01.

baseline SPoC variant. Moreover, a regularization benefit was found for
both, initially poor and well performing models. This finding, however,
does not transfer to the results achieved for dataset (D1a,b), as shown in
Fig. 4.8 (F)-(J). Here, we can state a tendency towards larger benefits for
initially poorly performing subjects. On the group level, all regularization
methods except Tik-SPoC registered the majority of data points above
the bisectrix, while none of the approaches significantly outperform the
baseline SPoC performance.

4.4.2.2 Selected regularization strengths

The regularization parameter α f obtained on real-world data by the nested
CV-based regularization variants across folds f are reported in the first
two columns of Fig. 4.9. The plots should be compared with the maps
for simulations addressed in Fig. 4.7. The median regularization strength
across folds is plotted against the training set size and color coded by the
associated z-AUC performance. The results for both real-world datasets in-
dicate that NTik-SPoC operates in smaller absolute α ranges than Tik-SPoC
does, which is in accordance with the observations from the simulation in
Fig. 4.7. For both datasets, the regularization strength is in almost all cases
outside the “no-go” areas of the simulation as α was selected by nested
CV from the interval [10−8, 1]. For only a few subjects of dataset (D1a,b), a
large α was chosen for Tik-SPoC. As expected from simulations, this strong
regularization is linked with a low absolute decoding level. Interestingly,
comparing α-levels for NTik-SPoC across both datasets, it reveals mostly
stronger regularization for the SSAEP data than for the SVIPT scenario.
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Figure 4.9: Real data: averaged regularization strength for three different meth-
ods. As an average estimator, the median regularization strength is
computed across the 10-fold chronological cross-validation for each
dataset depending on the training set size Ntrain and color coded by the
achieved z-AUC decoding performance. The first row reports results
for dataset (D3), the second row for (D1a,b). Each column refers to a
regularized SPoC variant.

The median of the analytically computed α∗f across folds for aTik-SPoC
is presented in Fig. 4.9 (C) and (F). On dataset (D3), allmost all and on
(D1a,b) most subjects reveal a way smaller median regularization strength
compared to the CV-based NTik-SPoC method. As previously reported
in Fig. 4.8 (D) and (I), the analytical solution does not elicit a significant
decoding improvement.

To gain an intuition about the effect of the different regularization
strengths on resulting spatial activity patterns, an example regularization
parameter sweep is reported for an exemplary subject in the appendix A.2.

4.5 discussion

In summary, we have proposed a set of novel regularization techniques for
SPoC. We investigated their effectiveness by evaluating their performance
both on simulated and on real-world datasets. Overall, NTik-SPoC based on
Tikhonov regularization and additional covariance normalization turned
out to be the most beneficial technique.

4.5.1 Simulation scenario

A closer look upon the simulation results clearly shows that the regular-
ization benefit for SPoC strongly depends on the dataset size, prevalent
label noise conditions as well as on the fluctuation width of the underlying
component. As a strong absolute performance variability across datasets
was present in the simulation, the reported grand average performance
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provides a way less optimistic view than single dataset results do. The
largest regularization benefit was reported for low amount of data and
components with large fluctuation widths. The latter observation might
be explained by the intrinsic difficulty of SPoC to recover sources of small
bandpower changes.

Intuitively, additional label noise reduces the information content per
data point such that the estimation of Σz gets more demanding. Theoret-
ically, this disadvantage could be compensated by either enlarging the
training set or by adding regularization. Using the large amount of simu-
lation data, we were able to show that under label noise conditions even
larger datasets profit from regularization.

Surprisingly, in the simulation we found that AS-SPoC loses performance
for large datasets (especially for ’low σz’ components) while it outperformed
standard SPoC on small datasets and revealed a good performance on real-
world data as well. This observation might be explained as follows: In
the simulation data, the target variable is directly estimated from the EEG
(IC) epoch. As such, there should be enough samples in each epoch to
estimate reliably the target variable, since it was created this way. Epoch
regularization might thus not be necessary here. However, for real data this
might not be the case, as the target variable is not directly dependent on
the EEG epoch and contains an even unknown label noise level. As such,
epoch regularization might be much more useful in that case.

The direct transferability of the simulation results to real-world data
is limited by three major differences: First, in real-world experiments the
number of neural sources is not known a priori. Thus, a good decoding
of source power typically requires the use of several components and of
a regression model. Second, in real-world experiments both, label noise
and the components’ fluctuation widths act as latent variables and cannot
directly be estimated. Third, while in the simulation we can almost perfectly
recover the label information given sufficient amount of data (z-AUC > 0.9),
in real-world experiments we clearly expect a decreased upper limit of
the decoding performance—as solely bandpower information may not
suffice to fully explain the labels—which even strongly depends on the
experimental setting.

4.5.2 Real-world scenarios

The two utilized real-world datasets (D1a,b) and (D3) showed slightly
different outcomes in terms of the tested regularization variants. For the
SSAEP dataset a regularization benefit for the CV-based variants and AS-
SPoC was found irrespectively of baseline performance. On single datasets,
improvements of the decoding accuracy of up to 27 % was found. The more
challenging SVIPT data (D1a,b) revealed that predominantly models of
initially poorly performing subjects were improved by the aforementioned
regularized SPoC approaches. These different effects might be explained
by varying characteristics of the used datasets, such as the non-comparable
upper limits and ranges of achievable decoding accuracies as well as
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prevalent label noise conditions. An indicator for a large regularization
benefit might be the CV-based selected regularization strength, as we
observed that the SSAEP data required larger α values than the SVIPT data
(see Fig. 4.9). So far, we cannot report a single regularization variant that
systematically performed best on all tested datasets. Following the recently
proposed large-scale benchmarking concept [193], a future evaluation on
a multitude of real-world regression datasets—which were publicly not
available so far—could further deepen the understanding about identifying
the most promising regularized SPoC variants given a new data scenario.

Two important aspects can be transfered from the simulation to the real-
world data scenario. First, the simulation allowed deriving an operating
range of the regularization hyperparameter α for each CV-based regular-
ization variant. When comparing these findings with the real-word data,
we found that the optimal choice of the regularization intensity α for the
CV-based techniques is in good accordance with the derived ’no-go’ areas
obtained from our simulations.

Second, according to the simulation under label noise in Fig. 4.6, we
could gain an estimate of the label noise conditions ξn of any real-world
dataset directly by comparing the absolute achievable decoding levels with
the real-world decoding performances in Fig. 4.8. As an example, for the
best performing subject of Fig. 4.8 (E) with z-AUC ≈ 0.78 on Ntrain = 310
data points, the label noise level can be estimated as ξn ≈ 0.2 according to
Fig. 4.6 (B). Despite such estimates may not perfectly represent the ground
truth, they might be beneficial for comparing data from multiple exper-
imental paradigms, e.g., in order to choose most suitable regularization
strategies.

4.5.3 CV-based vs. analytical model selection

Overall, we introduced three CV-based Tikhonov regularization methods
for SPoC (see overview in Tab. 4.1) and compared their performance against
two variants based on automatic covariance shrinkage. Although the decod-
ing performance of all three Tikhonov variants are on comparable levels,
they strongly differ in terms of their sensitivity range for the regularization
parameter. This information, however, is of great importance when it comes
to choosing parameters by cross-validation. Interestingly, we found that
NTik-SPoC and ASNTik-SPoC profit from a logarithmically scaled search
space wrt. regularization parameter α while Tik-SPoC could also cope with
a linear scaling. We conclude that this behavior is introduced by the addi-
tional trace normalization. When comparing NTik-SPoC and ASNTik-SPoC,
the inclusion of additional LW-based shrinkage for the numerator regular-
ization realized by ASNTik-SPoC does not boost performance significantly.
Accordingly, NTik-SPoC seems preferable in a direct comparison due to
its lower computational effort. In future work, an alternative data-driven
estimation of the regularization parameter without cross-validation might
be achieved, e.g., by utilizing a Bayesian framework which estimates the
regularization strength via expectation maximization [194].
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Comparing both LW-based covariance shrinkage based approaches, AS-
SPoC seems to be the better choice compared to aTik-SPoC. Three ar-
guments support this view. First, referring to the label noise challenged
simulation in Fig. 4.6 we found that AS-SPoC profits from regularization
under high label noise even for larger training sets (Ntrain & 300) while
this effect was less pronounced for aTik-SPoC. Second, we found that the
analytically derived regularization parameter for aTik-SPoC across subjects
is chosen way smaller compared to values chosen by CV for NTik-SPoC.
For aTik-SPoC, the concatenation of epochs results in Ns · Ntrain sample
points to estimate Σavg. As the LW-based regularization parameter is anti-
proportional to the number of samples [186, 187], an overly small regulariza-
tion parameter is chosen, irrespectively of whether the covariance estimate
did improve. Third, the analytic approach makes an i.i.d. assumption about
the data. A violation thereof due to outliers might be compensated with a
CV-based strategy but not by aTik-SPoC. The i.i.d. assumption might also
be violated for AS-SPoC when the LW-based analytical solution for the
trial-wise covariance matrix is challenged by autocorrelated data of a single
epoch. A potential mitigation may be provided by alternative covariance
shrinkage estimators that accounts for autocorrelated data as proposed
by Bartz et al. [188]. Alternatively closed-form solutions for covariance
shrinkage assuming elliptical distributions could also prove superior to the
LW-based solution [195].

4.5.4 Guidance for the practitioner

Both, simulation and real-world data results strongly indicate that there
is not one single regularization variant that outperforms all others. Dif-
ferent global parameters, such as dataset size, the noise conditions or
non-stationarity in the data influence the achievable decoding accuracy.

The work by Engemann and Gramfort [196] reported the superiority
of CV-based compared to analytical model selection in the context of
spatial whitening of M/EEG data. This supports our proposal to prefer
the CV-based approaches Tik-SPoC or NTik-SPoC over the LW-based AS-
SPoC method. All three methods, however, are analytically solvable by an
eigenvalue decomposition and require relatively low computational effort.
As they may come up with partially disjunct components, we thus propose
in practice to evaluate all three variants in parallel. The final feature set
should be selected in a data-driven strategy to deduce the overall most
relevant oscillatory components for a given application scenario.

4.6 lessons learned

To sum up, this chapter provided novel regularization variants for SPoC and
evaluated their characteristics in simulation and real-world data scenarios.

The simulation delivered two main results: First, it allowed comparing
and explaining characteristics of the regularized SPoC algorithms. We
could study the influence of varying training set sizes, label noise and
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of the bandpower fluctuation width of the neural sources of interest. On
the one hand, we found that the achievable overall decoding performance
decays under increased label noise conditions and smaller datasets. On the
other hand, small datasets and label noise were the settings under which
several regularized SPoC variants could outperform the original unregular-
ized algorithm. Second, the simulation outcomes offered a guideline for
practitioners. It proposes to tune the search for a suitable regularization
parameter to a log-scaled search space. Furthermore, it indicates that the
number of training data points and label noise present in the data should
guide the choice of this parameter.

As an additional validation, we tested the regularized SPoC algorithms
on two real-world EEG datasets. Its outcome supported the guidelines
obtained by simulation concerning the choice of regularization parameters
and achievable performance improvements. We found, that varying datasets
could profit strongly from different forms of regularization with increased
decoding performances by up to 27 %. As a consequence, we recommend
testing several versions of regularization if decoding performance is to be
optimized in practice.

While we have chosen to compare relatively simple and general regu-
larization techniques, this work could be expanded to more sophisticated
regularization strategies, e.g., to realize session-to-session or subject-to-
subject transfer scenarios. The presented regularization framework and the
evaluation strategy using simulated and real-world datasets may pave this
way.
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M I N I N G W I T H I N - T R I A L O S C I L L AT O RY B R A I N
D Y N A M I C S O F S PAT I A L LY F I LT E R E D S I G N A L S

This chapter mainly builds upon the journal paper “Mining within-trial
oscillatory brain dynamics to address the variability of optimized spatial
filters” by Meinel, Kolkhorst, and Tangermann [34] c© 2019 IEEE. In this
collaborative work, I have taken the lead in developing the novel method,
in validating and evaluating the evolved concept, in visualizing the results
and writing the manuscript. For this thesis, the content has been extended
by evaluating the proposed approach on data of a second experimental
paradigm. Moreover, additional analysis aspects about the validation of the
proposed mining framework are provided.

Data-driven spatial filtering algorithms optimize scores such as
the contrast between two conditions to extract oscillatory brain
signal components. Most machine learning approaches for filter es-
timation, however, disregard within-trial temporal dynamics and
are extremely sensitive to changes in training data and involved
hyperparameters. This leads to highly variable solutions and im-
pedes the selection of a suitable candidate for, e.g., neurotech-
nological applications. Fostering component introspection, we
propose to embrace this variability by condensing the functional
signatures of a large set of oscillatory components’ into homoge-
neous clusters, each representing specific within-trial envelope
dynamics. The proposed method is evaluated on two paradigms
with a rich within-trial structure. For both scenarios, we found
that the components’ distinct temporal envelope dynamics are
highly subject-specific and strictly confined regarding their un-
derlying frequency band. As the analysis method is not limited
to a specific spatial filtering algorithm, it could be utilized for a
wide range of neurotechnological applications, e.g., to select and
monitor functionally relevant features for BCI protocols in stroke
rehabilitation.

summary

5.1 introduction

Spatial filtering algorithms have to deal with various challenges, such as
the low signal-to-noise ratio of high-dimensional M/EEG recordings, non-
stationarities over time and generally small training datasets [60, 90]. As a
result, even a slight change of the training data can cause a large variability
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of obtainable oscillatory features [31]. In addition, most approaches need
to be configured by a set of algorithm-specific hyperparameters such as
frequency bands, time intervals or regularization parameters, among others.
Every hyperparameter set can result in different oscillatory features, such
that applying a certain set may mean to miss relevant features. Conversely,
modifying the hyperparameters actively bears the chance to detect other
and even better features [197]. Overall, the selection of the (few) best
hyperparameter set(s) in a large space calls for an optimization criterion.

So far, most BCI applications were mostly tuned to solely maximize the
decoding quality. This criterion has been a good choice, if the final goal of the
BCI system is to gain rapid and precise control. Using solely performance
as an optimization criterion, however, does not consider the functional
role of oscillatory features directly [90]. While a manual assessment of
functional relevance is possible in small hyperparameter spaces, it turns
to be impractical if they become large. Omitting any feature introspec-
tion, however, may be a missed opportunity as details of, e.g., ERD/ERS
characteristic might provide an equally beneficial criterion from a clinical
perspective [198].

Stepping beyond decoding accuracy, current literature reveals a limited
amount of studies that specifically explore reliable and physiologically
plausible EEG features (both within and across sessions and subjects)
within the huge space of possible features. Typically, this can be achieved by
means of clustering approaches [90], e.g., to extract homogeneous groups
of spatial filters [156, 199], to identify EEG features encoding a similar
stimulus response [200], to partition oscillatory features into groups of
similar spatial, temporal and spectral properties [57, 59, 201–203] or to
identify artifactual components [204]. Consequently, it would be desirable
to consider these two aspects, decoding performance and the functional
role of features, in a unified approach.Research question Q2b

In this chapter, we contribute a novel data-driven approach to identify
reliable and functionally relevant oscillatory features evaluated on two differ-
ent motor task datasets. We hypothesize that the functional role of features
can be assessed by the rich inner temporal envelope dynamics that is ac-
companied within a single trial along multiple events of a complex task.
In an offline analysis performed on individual subjects, we first explore a
large configuration space to embrace the variability of oscillatory features
derived by a spatial filter approach. Then their event-related envelope
dynamics are exploited by a clustering step to condense the large space
to a small set of reliable oscillatory components that reveal homogeneous
event-related envelope dynamics. Our approach finally allows a component
selection that takes the functional role of oscillatory features into account.
Hence, we provide a tool to practitioners that might enhance the efficacy
of closed-loop interaction protocols, e.g., in the context of BCIs for stroke
rehabilitation.
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5.2 methods

5.2.1 Datasets for evaluation

For the evaluation of our method, the previously introduced datasets (D1a),
(D1b) in Sec. 3.2.2 and (D2) in Sec. 4.3.1.1 were utilized. Both datasets
comprise EEG recordings of a motor task but with different complexity
regarding the underlying within-trial structure. Hereafter, we will shortly
revisit the paradigms and explain their within-trial event structure which
will subsequently be exploited by our mining approach.
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Figure 5.1: Time course of a single SVIPT trial. For each within-trial event, the
user feedback on screen is shown (from bottom-left to top-right). His-
tograms left of the time axis indicate the distributions of transition
times between events. The distances between events on the time axis
are not realistically spaced. c© 2019 IEEE

5.2.1.1 SVIPT dataset

As already described earlier in Sec. 3.2.1, SVIPT is a repetitive visuo-motor
hand force task in which subjects are asked to control a horizontally moving
cursor by a force transducer.

A single SVIPT trial traverses three stages and contains multiple within-
trial events: the appearance of a light blue cursor initiates the get-ready
phase with duration uniformly varied between 2 and 3 s. As sketched in
Fig. 5.1, an inactive cursor appears on the leftmost border of the target field
T0, while the force transduction into a horizontal cursor position is inactive.
The subject was instructed to fixate the cursor and wait for a go-cue which
was indicated by switching the cursor’s color to dark blue. Starting with
the go-cue event, the cursor can be horizontally displaced by applying force.
Its rightmost position at Flimit is set to 30 % of the user’s maximal force.
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The go-cue marks the running phase of the trial in which the subject is
asked to maneuver the cursor through a sequence of target fields as fast and
as accurately as possible. A green shading visually indicates the current
target field at any time during the running phase (see Fig. 5.1). Entering a
target field with the cursor, a dwell time of 200 ms was required to evoke
a successful hit event. The latter was indicated visually by a switch of the
target field (another green-shaded target field appeared) or by the trial end.
Each trial consisted of four hit events (hit 1 to hit 4) and was randomly
assigned to one of the two possible conditions, namely the specific target
field sequence.

For the evaluation of our method, we utilized dataset (D1a) (for details
see Sec. 3.2.2 and Tab. 3.1). Results on (D1b) are shown in the appendix
Sec. A.3.

5.2.1.2 Motor imagery dataset

A typical use case for spatial filter optimization [53] is to classify between
two or more classes in motor imagery (MI) datasets. Thus, the MI dataset
(D2)—originally published by Blankertz et al. [190]—was utilized as previ-
ously introduced in Sec. 4.3.1.1. The dataset comprised single-session MI
calibration recordings of the three classes left hand, right hand and foot with
75 trials per class. After preprocessing, data of 12 subjects remained with a
minimum of Ne = 100 epochs.

time

get-ready cue pause

2 s 4 s

Figure 5.2: Time course of a single MI trial. For each within-trial event, the user
feedback on screen is shown. The pause lasted 2 s in each trial.

As shown in Fig. 5.2, a single MI trial consisted of the three within-trial
events: The appearance of a fixation cross on a screen indicated the get-ready
event. Subjects were instructed to focus their view on the cross and wait
for an upcoming cue. After 2 s, the cue event was visually displayed by an
arrow pointing either to the left, to the right or downwards. The subject
was instructed to perform the corresponding motor imagery task for 4 s
before the arrow vanished on screen and thereby indicated the pause event.
After 2 s of rest, the next trial started. Overall, the transition time between
events was constant throughout the full session which was not the case for
SVIPT as presented in Fig. 5.1.

5.2.1.3 EEG data preprocessing

The single-session EEG data of the datasets (D1a,b) and (D2) underwent the
same offline preprocessing. It comprised of low-pass filtering the raw data
at 100 Hz, sub-sampling to 500 Hz sample rate before high-pass filtering
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at 1 Hz. For frequency filtering, linear Butterworth filters of 5th order were
applied. Noisy channels were removed by a two-step procedure. First, the
variance of single epochs and channels was computed. Based on the pooled
statistics, all cases outside the [10, 90] percentiles and also exceeding twice
the corresponding inter-percentile range were registered as outliers. Second,
channels which allocated more than 10% of all outliers and a minimum of
5% outliers across epochs were removed. Furthermore, artifact cleaning was
done by an independent component analysis (ICA) decomposition on data
of the first run of each session. The ICs were rated for artifactual origin with
the automated artifact detection framework MARA [89]. Based on MARA’s
probability ratings, a conservative criterion was applied by removing only
up to 10 most likely artifactual ICs from the data before projecting the data
back into the original sensor space. Only this pre-cleaned data was used in
the next steps.

5.2.2 Optimized spatial filtering for single-trial EEG analysis

A variety of optimization criteria for spatial filter estimation can be found
in literature (see Sec. 2.3.4). Typical algorithmic solutions for unsupervised
scenarios include PCA or ICA. In the context of BCIs, supervised algorithms
such as CSP [93] or SPoC [94] are state-of-the art approaches, for which
also a large number of variants have been proposed. Regardless of the
specific algorithm, a set of hyperparameters needs to be determined, which
influences the spatial filter optimization. Prominent examples are the choice
of the training dataset, of a subject-specific frequency band or to select
components up to a particular rank. In general, choosing different sets from
the large search space of possible hyperparameter configurations typically
leads to different estimated filters.

In the following, we present a method to identify consistent spatial filters
within a non-trivial hyperparameter space. Even though this approach can
be utilized for any spatial filtering method, we exemplarily show and evaluate
its application for two different spatial filtering variants each applied on
data of a different paradigm. The resulting two decoding scenarios are
shortly introduced hereafter.

5.2.2.1 Hyperparameter space for oscillatory component analysis

Decoding scenario (1): NTik-SPoC analysis on SVIPT data

As a first application scenario, we chose the dataset (D1a) and (D1b) to
decode trial-wise reaction time from multi-channel EEG recordings seg-
mented relative to a time interval close to the SVIPT go-cue. This decoding
scenario has previously been described in Secs. 3.2.5 and 4.3.2.1. Following
the results of Chap. 4, we decided for the overall favorable NTik-SPoC
algorithm of Sec. 4.2.1 which includes a Tikhonov regularization and trace
normalization of two involved covariance matrices. For the computation
of a single spatial filter w, a set of different hyperparameters is involved.
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To explore the high variability in trained decoding models, the following
hyperparameters were considered for the SVIPT decoding scenario:

1. In the temporal domain, initial data segmentation into Ne epochs
requires the definition of a time interval [t0, t0 + ∆t] with starting
time point t0 and interval length ∆t. For motor performance decoding
in SVIPT, the recorded EEG data were segmented relative to the go-cue
event with fixed ∆t = 1 s. Time point t0 was chosen among the values
{−1,−0.75,−0.5} s.

2. The frequency domain is characterized by the central frequency f0

and bandwidth ∆ f . Overall, 45 exponentially increasing and overlap-
ping frequency bands with f0 ∈ [1, 95]Hz and ∆ f ∈ [2, 10]Hz were
evaluated.

3. The utilized spatial filtering method generally provides a full-rank
decomposition, thus the rank k can be seen as another hyperparameter
for thresholding the composition. We considered spatial filters of the
first k = 1, ..., 8 ranks for further analysis.

4. NTik-SPoC requires the tuning of the regularization strength α. Based
on findings reported in [32, 33], choosing the regularization strength
α ∈ [10−8, 10−3] allows outperforming non-regularized SPoC wrt. de-
coding accuracy (see Sec. 4.4).

5. Upon each hyperparameter configuration, a 5-fold chronological
cross-validation procedure was employed for the calculation of a
spatial filter. As many spatial filter optimization problems can be for-
mulated as a generalized eigenvalue problem, a set of filters {wk,q}
can be derived from each fold q, with k corresponding to the rank in
the decomposition.

In summary, the different hyperparameter configurations span the con-
figuration space Ω = {(t0, f0, ∆ f , k, α, q)} with an overall number of |Ω| =
81, 000 configurations. We will refer to a single configuration by ωj ∈ Ω
for j = 1, ..., |Ω|. It determines a single spatial filter calculation. Hereafter,
every spatial filter w corresponds to a single configuration ωj.

Decoding scenario (2): CSP analysis on MI data

As a second decoding scenario, a regularized version of the CSP algorithm
using automatic shrinkage [62] is deployed to compute spatial filters which
allow distinguishing between left hand and right hand trials in the motor
imagery dataset (D2). Based on a 1 s time interval after the cue event, CSP
was trained with the following hyperparameters involved:

1. In the temporal domain, data was segmented relative to the cue event
with fixed interval length ∆t = 1 s. Time point t0 was chosen among
20 values in the interval [0, 5] s.
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2. Regarding the frequency domain, the same configuration space as
before with logarithmically increasing and overlapping frequency
bands ranging from ≈ 1− 100 Hz were evaluated.

3. As CSP also provides a full-rank decomposition, we selected the first
four ranks k from both ends of the eigenvalue spectrum.

4. In analogy to scenario (1), a 5-fold chronological cross-validation
procedure was employed for filter estimation. Thus, a set of filters
{wk,q} can be derived from each fold q.

In summary, the configuration space Ω comprised |Ω| = 36, 000 config-
urations. Compared to scenario (1), the search space is barely halved but
the fraction of resulting informative configurations is almost doubled in
scenario (2) (see results in Tab. 5.1). Thus, the resulting configuration spaces
for both scenarios after denoising (see Sec. 5.2.3.2) were comparable.

5.2.2.2 Evaluation scheme for spatial filter computation

Both decoding scenarios were evaluated within a 5-fold chronological cross-
validation procedure such that the data is split in train {Xtr, ztr} and test
sets {Xte, zte}. After estimating the labels zest on different test data points xte,
the decoding performance of a single filter wtr was assessed by the z-AUC
metric (see Sec. 3.2.7) for the regression models trained in scenario (1)
and by the AUC metric [141] for the classification models in scenario (2).
Both measures characterize the separability of the estimated labels when
comparing them to the known test labels zte. A perfect decoding is reflected
by a value of 1, while chance level is reflected by 0.5. Hereafter, we will
omit the train/test subscripts to simplify the notation.

5.2.3 Method for mining oscillatory components

Our method to identify groups of functionally relevant oscillatory com-
ponents is depicted in Fig. 5.3. It consists of three steps: first, oscillatory
components from EEG data of a single subject are computed across a
large hyperparameter space. This results in a broad variety of spatial filter
examples and embraces the variability of the decoding method. Details
on the screened configuration space are given in Sec. 5.2.2.1. Second, the
large component space is de-noised by restricting the analysis to reliable
components via selection criteria on single components. Third, for all re-
maining components the event-related envelope dynamics of each source
component is exploited by a clustering step. Therefore, envelope features
are preprocessed and condensed. The goal is to finally identify clusters of
oscillatory components which reveal distinct and stable envelope dynamics.

In the following, details on the three steps are given. The Python code of
the method is accessible on GitHub1 and is partially based on the machine
learning library scikit-learn [205].

1 https://github.com/bsdlab/func_mining

https://github.com/bsdlab/func_mining
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Figure 5.3: Pseudo-code scheme for mining envelope dynamics. Subject-specific
data x(t) and labels z enter part (1) to sample oscillatory components
in a large hyperparameter space and thus sample variable spatial filter
solutions. In blue, all included hyperparameters for spatial filter w
estimation are highlighted. Part (2) is a denoising step by reducing the
overall configuration space before step (3) condenses envelope features
into clusters.

5.2.3.1 Extracting envelope dynamics

The temporal dynamics of an oscillatory source component w based on
configuration ωj, given sensor data x(t), can simply be derived via the
backward model ŝ(t) = w> x(t). It requires to bandpass filter the data x(t)
to the same frequency band [ f0 − ∆ f

2 , f0 +
∆ f
2 ] on which the spatial filter w

has been trained initially. Hereto, zero-phase linear Butterworth filters of
5th order were applied. As an alternative to the variance approximation,
the envelope time course φj(t) can be estimated by the magnitude of the
analytic signal which is given by the Hilbert transformation H (·) on
narrow-band data:

φj(t) = |H (ŝ(t))| = |H (w> x(t))| (5.1)

The component-specific envelope dynamics provide a rich source of in-
formation by integrating spatial, spectral and temporal aspects of the
multivariate data of individual subjects. Precisely, we analyzed within-trial
event-related envelope dynamics and thus exploit the inner event structure
of an underlying experimental paradigm. Hereafter, the paradigm-specific
feature extraction steps are described for both selected scenarios.
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Figure 5.4: Feature extraction scheme based on envelope dynamics of a single
component. The session average log-envelope of an oscillatory com-
ponent was epoched and aligned to the various within-trial events
occuring in SVIPT (A) or the MI paradigm (B). In gray, time intervals
for temporal subsampling of the event-related time series are depicted.
(C) After concatenating the subsamples of the most relevant events
(details see text), the resulting feature vector φcat,j was standardized
to zero mean and unit variance as illustrated by the color coding.
After dimensionality reduction, 10 condensed features plus the two
standardization features form the final feature vector for clustering.

Decoding scenario (1): NTik-SPoC analysis on SVIPT data

For the SVIPT dataset (D1a), each spatial filter w was solely trained on
data segments extracted from the vicinity of the go-cue event. However,
as depicted in Fig. 5.1, a single SVIPT trial also contains a rich inner
structure of multiple events m (get-ready, go-cue and hit 1 to hit 4). We expect
that this within-trial structure is at least partly captured by the temporal
envelope dynamics of single oscillatory components. In other words, we
test for the generalization strength of w on unseen data. Therefore, the
envelope time course of each configuration j was segmented in a time
interval t ∈ [−300, 2000]ms relative to each event m and averaged across
the Ne = 400 epochs. This resulted in φj(t, m) as exemplarily sketched for
one component in Fig. 5.4 (A).

Decoding scenario (2): CSP analysis on MI data

For the MI dataset (D2) and the corresponding CSP analysis, all components
were trained exclusively upon a 1 s time interval between the cue and pause
event (see blue shaded time intervals in Fig. 5.6). To test the generalization
strength of the optimized CSP filters, we segmented the component’s
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log-envelope along the included events (get-ready, cue and pause) and in
addition split the data by the corresponding class label (see Fig. 5.4 (B)).
The segmentation interval was identical to the one of scenario (1), while a
maximum of Ne = 75 epochs was available per class.

5.2.3.2 Denoising clustering input data

The overall spanned hyperparameter space Ω elicits a large variation of
derived spatial filters w of which a large fraction might be non-stable or of
artifactual origin. To control for their reliability, the overall component space
was reduced by deploying two hard selection criteria for both decoding
scenarios: first, each spatial filter is expected to exceed a robust decoding
performance level above chance. Therefore, each spatial filter is required to
result in minimum z-AUC/AUC decoding performance above a threshold
level of 0.6 on test data. The threshold was determined on a group-level
analysis [28]. Second, the neural origin of a spatial filter is verified by
applying MARA [89], an automatic classification tool to distinguish between
neural and artifactual components, including ocular or muscular activity.
It returns a posterior artifact probability part for a given single oscillatory
component. To restrict the resulting component space to mostly neural
components with a high certainty, we required a probability of part ≤ 10−5

for each component.
In summary, the two selection steps reduced the original configuration

space Ω to a subject-specific subset Ωsel ⊂ Ω which comprises all hyperpa-
rameter configurations that survived the component selection. Hereafter,
the configuration index j refers to the set Ωsel .

5.2.3.3 Features for clustering

For each configuration ωj ∈ Ωsel , the corresponding event-related envelope
dynamics φj(t) were extracted for both scenarios as depicted in Fig. 5.4 (A)
and (B). As clustering methods generally depend on the evaluation of a
distance metric which becomes unreliable for high-dimensional spaces,
a widely established strategy is then to reduce the dimensionality of the
input feature space [206] prior to clustering. Therefore, two steps were
taken:

1. Subsampling and standardization: the session-averaged envelope time
series aligned to multiple events—and also classes in scenario (2)—
were log-scaled and temporally subsampled as schematically shown
in Fig. 5.4 (A) and (B). The log-scaling was applied to obtain ap-
proximately normally distributed features. This step resulted in a
concatenated feature vector φcat,j = φcat(ωj) ∈ RDcat with Dcat = 72
for scenario (1) and Dcat = 66 for scenario (2). For the sake of compa-
rable feature dimensionality across scenarios, a larger subsampling
interval for the SVIPT scenario was chosen for the late phase of events
as less variations in time were observed here. After computing mean
µ and standard deviation σ of a feature vector φcat,j, it was standard-
ized to zero mean and unit variance. Overall, applying this procedure
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to all selected configurations ωj ∈ Ωsel , this yielded a subject-specific
dataset Λ = {φcat,j}.

2. Dimensionality reduction: on the concatenated feature set Λ, a dimen-
sionality reduction step was performed by either PCA or kernel PCA
to Dred = 10 components. The performance of both methods will be
compared in the results (see Fig. 5.9). Kernel PCA was computed by a
radial basis function kernel with γ = 1/Dred. The final feature vector
ej was composed of the 10 subspace features based on Λ and two
additional features of the standardization step (µ and σ) resulting in
ej ∈ RD with D = 12 dimensions. Overall, a subject-specific dataset
E = {ej} of |Ωsel | samples was obtained.

5.2.3.4 Clustering algorithms

To find sets of components with homogeneous envelope dynamics, we
aim to group them by searching non-overlapping clusters of components.
Assuming that a rich within-trial envelope structure is only expected for a
small fraction of all configurations, it may not be necessary to assign each
configuration ωj to a cluster. For more details on the general concept of
clustering, we refer to the review by Jain [207]. Let a clustering of E return
a set of disjoint clusters that splits E into |C| groups with C = {ck} and
k = 1, ..., |C|.

Density-based clustering

For partitioning the dataset E, the DBSCAN [208, 209] algorithm was
utilized, which realizes a density-based clustering. DBSCAN groups dense
regions of a dataset to clusters by checking for every sample if: (1) at
least mpts other samples are in ε range to this sample or (2) at least one
neighboring sample in ε distance is enclosed. In the first case, the sample is
called a core sample while in the second case it is referred to as a border point.
If none of the two criteria are fulfilled, the sample receives an outlier label.
As such, the density-based definition of a cluster requires that each cluster
sample reaches at least one other sample in ε distance. DBSCAN does not
make any assumption on the cluster shape, thus it provides the possibility
to identify non-linearly separable clusters. In this thesis, DBSCAN was
evaluated on Euclidean distances deuc(ei, ej) between samples ei and ej in a
condensed envelope feature space.

DBSCAN involves two hyperparameters, mpts and ε. Regarding mpts,
we followed the suggestion of Sander et al. [210] and took the feature
dimensionality D into account by setting mpts := 2D.

The choice of ε is the more sensitive parameter, as the number of clusters
|C| diminishes strongly for an increased ε [209]. Overall, we expected that
the envelope dynamics would not reveal a rich structure for all hyperpa-
rameter configurations ωj ∈ Ωsel , e.g., if ERD/ERS effects are not present.
Hence, we expected rather large outlier clusters. Typically, in many clus-
tering scenarios it is sufficient to simply maximize the average silhouette
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score S [211] which captures the ratio of within-cluster homogeneity to the
closest neighboring cluster (definition see Eq. (5.4) below). But then the
average silhouette S across all samples would most probably be dominated
by the outlier class. Thus instead of using the silhouette score to guide
the clustering, we aimed to obtain the maximal number of homogeneous
clusters Nhom:

Nhom(ε) = ∑
ck∈C(ε)

Θ(min
ei∈ck

(S(ei, ck)) ≥ Shom) (5.2)

with the unit-step function Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0.
Nhom refers to the total number of clusters and the sample ei with smallest
silhouette S(ei, ck)—as defined in Eq. (5.4)—of each cluster ck is required to
exceed a threshold silhouette score Shom. This translates to the following
optimization criterion for ε:

ε∗ = arg max
ε∈[εmin,εmax ]

Nhom(ε) (5.3)

For this thesis, a subject-independent threshold of Shom = 0.2 was set in
order to allow for comparable clustering results such as |C| per subject.
This threshold value enforces a slightly smaller within-cluster distance
compared to the nearest neighbor distance. The interval [εmin, εmax] was
automatically determined by an ordered k-distance plot which reports the
k-th nearest neighbor distance (NND) for each sample in E. The distances
are arranged in ascending order starting with the smallest distance. This
procedure was described by [208, 209] together with setting k = 2D− 1.
For εmax, we detected the first substantial increase of the k-distance plot
(starting with smallest distances) by a variance criterion in order to find
the end of the “valley” of lowest distances. As lower boundary, εmin was
determined by the 2nd percentile of the D-th NND distribution. Finally,
ε was evaluated at 60 values from the subject-specific interval [εmin, εmax].
In principle, the DBSCAN approach is of deterministic nature. With a
permutation of a dataset this characteristic may change in some cases
as then samples might be assigned to different clusters induced by the
switched order of the dataset [209].

K-means clustering

As a baseline method, the k-means algorithm [212] was also applied to
validate the approach of clustering subject-specific envelope data E into
|C| clusters. In contrast to DBSCAN, the number of clusters |C| is a hyper-
parameter of the k-means approach and thus is required to be specified
a-priori. The hyperparameter selection was accomplished by the same opti-
mization criterion as for the DBSCAN algorithm (see Eq. (5.3)). However,
|C| replaced ε and was evaluated in an interval |C| ∈ [2, ..., 2D]. k-means
partitions a dataset such that minimal intra-cluster variance is obtained.
To overcome the algorithm’s sensitivity to the initialization of the cluster
centroids, an extension of the k-means seeding strategy was used — known
as k-means ++ [213]) — by initializing along far apart centroids.
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5.2.3.5 Validation metrics for clustering

Given the condensed log-envelope dataset of different oscillatory compo-
nents, the ground truth cluster labels are unknown. Thus we require a
label-free validation metric [214, 215] to judge the quality of the cluster-
ing outcome. Three different categories of validation metrics are consid-
ered [211] here: (1) internal validation metrics based on features used for
the clustering, (2) external validation metrics which utilize features that
have not been used for the partitioning step and (3) context-specific metrics
which are defined by domain-knowledge given specific characteristics of
the oscillatory component datasets. In the following, for each metric a
reference symbol is given in brackets as well as an arrow that indicates the
direction towards a more preferable clustering (e.g., ↑ denotes “higher is
better”):

• Silhouette score S(ck) ↑ [216]: Given an arbitrary sample ei assigned
to cluster ck, this internal clustering validation score relates the within-
cluster similarity a(ei, ck) = |ck|−1 ∑ej∈ck\{ei} deuc(ei, ej) to the nearest
neighbor dissimilarity b(ei, ck):

b(ei, ck) = min
cl∈C\ck

[|cl |−1 ∑
ej∈cl

deuc(ei, ej)]

The silhouette score S(ei, ck) for a sample ei belonging to cluster ck is
defined as:

S(ei, ck) =
b(ei, ck)− a(ei, ck)

max[a(ei, ck), b(ei, ck)]
(5.4)

It can be verified easily that −1 ≤ S(ei, ck) ≤ +1, such that a “perfect”
clustering will return a value of +1. Among other metrics, the silhou-
ette metric has been shown to serve as a reliable internal clustering
validation method—computed upon features used for the clustering—
for various classes of clustering algorithms [211, 217]. Furthermore,
the within-cluster silhouette score S(ck) = |ck|−1 ∑ei∈ck

S(ei, ck) can be
determined with low computational effort.

• Intra-cluster mean squared error IC-MSE ↓: For the envelope clus-
tering, a number of preprocessing steps were applied in order to
reduce the dimensionality of the original time resolved event-related
envelopes (see Fig. 5.4). To verify the intra-cluster homogeneity of
cluster ck upon the original event-wise log-envelope time series, the
event-specific mean φavg(ck, t, m) = |ck|−1 ∑ωj∈ck

φj(t, m) for cluster ck
was utilized to compute the mean squared error across the full set of
events M and time samples T:

IC-MSE(ck) = β−1 ∑
ωj∈ck

∑
m∈M

∑
t∈T

(φj(t, m)− φavg)
2 (5.5)

with β = |ck||M||T|. To summarize, IC-MSE corresponds to the intra-
cluster envelope variance. It can be seen as an external validation
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metric as it is based on envelope features which were unseen by the
clustering.

• Intra-cluster central frequency variation std
(

f0(ck)
)
↓: A context-

specific validation is accessible via the central frequency hyperpa-
rameter f0 which is involved in the spatial filter optimization. When
capturing the within-cluster variation of f0 by std

(
f0(ck)

)
, this value

was expected to be rather small as EEG features are confined with
respect to their spectral occurrence.

• Intra-cluster pattern heterogeneity ICPH: As a context-specific char-
acterization metric, the spatial activity pattern aj for each sample
ej of a cluster ck was computed. As a measure of the within-cluster
heterogeneity of spatial activity patterns for a cluster ck, the cosine
angle θ as defined in [32] between each aj to a cluster representative
pattern a∗(ck) was averaged as follows:

ICPH(ck) = |ck|−1 ∑
ej∈ck

θ(aj, a∗(ck)) (5.6)

The representative pattern a∗ is defined by identifying the sample
e∗ ∈ ck with minimal Euclidean distance wrt. clustering features to
all other samples of the same cluster.

• Event-specific maximal envelope difference ∆φmax(m, ck): This metric
serves to functionally characterize single clusters by their underlying
ERD/ERS dynamics. As exemplarily sketched for hit 4 in Fig. 5.4,
∆φj,max(m) represents the maximum envelope difference across time
within an event m and for a single configuration ωj ∈ ck of a cluster
ck. The value is referenced to the average log-envelope in the interval
500 ms prior to the event m. Averaging across all cluster configurations
reveals the event-specific maximal within-cluster logarithmic envelope
differences ∆φmax,avg:

∆φmax,avg(m, ck) = |ck|−1 ∑
ωj∈ck

∆φj,max(m) (5.7)

Given a homogeneous cluster, ∆φmax,avg(m) < 0 refers to an ERD
effect for event m, while ∆φmax,avg(m) > 0 describes an ERS effect.

5.2.3.6 Evaluation scheme for clustering step

In this thesis, we evaluated our proposed methodology for two above
described decoding scenarios (1) and (2). Therefore, the SVIPT datasets
(D1a) and (D1b) as well as the MI dataset (D2) were utilized. For each
subject of the corresponding dataset, the size of the selected configuration
space |Ωsel | was substantially different (see results in Sec. 5.3.1.4). To ensure
comparability of clustering runs across subjects, we randomly sampled
N = 2000 feature vectors ej from each subject-specific dataset E while
keeping the original sample order—to ensure DBSCAN to be deterministic—
before entering the clustering. This procedure was repeated 12 times per
subject.
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5.3 results

First, the most relevant findings for practitioners (e.g., in the field of BCIs
for rehabilitation) are presented. Here, representative subject-specific clus-
ters of oscillatory components are described, and a way to functionally
characterize the grouped event-related envelope dynamics. Thereby, the
applicability of the method is demonstrated. Second, our approach is vali-
dated and characterized by presenting a group level analysis for the two
different decoding scenarios. Unless noted differently, all results shown
were achieved upon kernel PCA preprocessing.

5.3.1 Findings for the practitioner

For the practitioner, it may be of particular interest to gain understanding,
which insights our method can provide on the level of single subjects and
on the group level.

5.3.1.1 Envelope dynamics of clusters

Decoding scenario (1): NTik-SPoC analysis on SVIPT data

After applying the described within-subject approach on NTik-SPoC compo-
nents computed for dataset (D1a), the original (non-condensed) within-trial
event-related envelope dynamics of subject-specific clusters in Fig. 5.5 are
reported. For all examples, the spatial filter and corresponding activity pat-
tern of the cluster representatives—obtained by selecting the sample with
minimal Euclidean distance in the feature space—are shown in columns (G)
and (H). Rows (C1)–(C7) present different instances of exemplary clusters.
They were chosen to represent a broad range of typically observed effects
in terms of band-specific amplitude modulations, underlying frequency
ranges and cluster homogeneity. Specifically, rows (C1)–(C3) refer to clus-
ters of subject S13, while (C4)–(C5) are gained from subject S7 and (C6)–(C7)
correspond to S5.

Considering the transition times between single events as provided by
Fig. 5.1, the time between hit 1 and hit 2 as well as between hit 3 and hit
4 on average was around 800 ms. Thus, the event-locked envelopes in (C)
and (D), respectively (E) and (F), contain overlapping information.
Based on Fig. 5.5, the following observations can be reported:

First, regarding all shown examplary clusters, the envelope dynamics
aligned to the different within-trial SVIPT events reveal distinct and time-
locked ERD or ERS effects which can be separated well by the clustering
approach. For the cases reported in Fig. 5.5, ERD effects dominate for
get-ready and go-cue events, while hit 3 and hit 4 elicit ERS effects.

Second, the displayed examples demonstrate that the event-related enve-
lope dynamics reveal substantially different shapes both within and across
subjects. Taking a closer look at the selected cluster instances of S13 with
clusters (C1)-(C3) at the get-ready event, there are different effects visible.
While components grouped into (C2) and (C3) reveal a slight step-like
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Figure 5.5: Representative event-related envelope dynamics of single subject-
specific clusters. In rows (C1)–(C7), the corresponding envelope dy-
namics of all hyperparameter configurations for single subject-specific
clusters ck are reported. Columns (A)–(F) report the cluster-wise enve-
lope dynamics for within-trial SVIPT events, while in (G) the spatial fil-
ter and in (H) the related activity pattern of cluster representatives (with
annotated central frequency) are shown. In all subplots of columns (A)–
(F), every blue line refers to the log-envelope dynamics φj(t, m) of one
single hyperparameter configuration ωj ∈ ck. Only events highlighted
in blue were included for the clustering step. The text box on top of
each row provides the subject code, the mean and standard deviation
of the central frequency across all cluster samples, the cluster size, the
average decoding performance as well as three validation metrics. c©
2019 IEEE

behavior, cluster (C1) comes with a strong ERD followed by an ERS effect.
Regarding hit 4 of (C6) and (C7), the examples for subject S5 nicely illustrate
that amplitude differences can be substantially different across clusters and
configurations. While clusters (C4) and (C5) of subject S7 are characterized
by an ERS effect time-locked to hit 3, all remaining examples reveal the ERS
at hit 4.

Third, we can report under which conditions our clustering approach
works best, e.g., when comparing the cases (C2) and (C3). They nicely
demonstrate that smaller cluster sizes correspond to more homogeneous
clusters as visually observable and documented by, e.g., the IC-MSE values.
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Fourth, similar silhouette and IC-MSE scores do not directly imply a
high pattern homogeneity (low ICPH values), as can be seen comparing
clusters (C1) and (C6).

For completeness, exemplary clusters obtained on dataset (D1b) of vari-
ous chronic stroke patients are reported in the appendix A.3. Interestingly,
also for this patient dataset with remarkably less trials per session, the pro-
posed approach allowed to identify patent-specific clusters of homogeneous
but still distinct envelope dynamics.

Decoding scenario (2): CSP analysis on MI data
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Figure 5.6: Event-related envelope dynamics for motor imagery data. The enve-
lope dynamics of exemplary CSP model clusters are shown in rows
(C1-C4) separated by left (A) or right (B) hand labeled epochs. Time
t = 0 refers to movement onset. In column (C), the subject code, the
average time and frequency parameters of the CSP models, the cluster
size and thee validation metrics of the corresponding cluster are given.
In addition, the spatial filter and pattern of the cluster representative
are shown. For each cluster, the cluster-average time interval for the
training of the CSP model is highlighted in blue.

In analogy to the structure of Fig. 5.5, rows (E1)–(E4) of Fig. 5.6 present
representative cluster examples based on CSP components of the MI dataset
(D2). The columns (A) and (B) reveal the class-wise envelope dynamics,
while for each class three events were considered for the clustering step. The
results on the MI dataset in Fig. 5.6 nicely indicate that our method allows
for an individual assessment of envelope dynamics. This is demonstrated by
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cluster examples (E1) and (E2), which originate from two different subjects.
Both representative components live in a comparable frequency domain,
and their patterns are highly similar reflecting a well-known lateralized
motor component [53]. Interestingly, the underlying envelope dynamics of
the two clusters differ substantially. While for (E2) there is an ERD only for
left hand trials, there is an ERD for both classes observable in example (E1).
Moreover, (E1)-(E3) capture alpha-band associated clusters, (E4) reports
on a beta-band related cluster which shows already an ERD effect for the
get-ready event. Observable in all given examples, the envelope dynamics
among the two classes differs substantially, which is only partially enforced
by the CSP algorithm, namely along the 1 s training interval.

5.3.1.2 Functional assessment of clusters
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Figure 5.7: Individual cluster-specific ERD/ERS effects exemplarily for two spe-
cific SVIPT events. (A) The plot is based on pooled data from all
clusterings across subjects. A single data point refers to an individual
cluster and is encoded by its underlying subject. The inset plot shows
a magnified version of the central area. Attached to both axes, the cor-
responding distributions across all displayed configurations are shown.
Plots (B)–(E) show exemplary scatter plots for single subjects. c© 2019

IEEE

Cluster-specific ERD/ERS intensities along the within-trial events indi-
cate the functional role of the contained components and thus provide
a way to characterize single clusters post-hoc. An example is given in
Fig. 5.7 (A). It exemplarily describes the logarithmic envelope differences
within get-ready and hit 4 events.

The distributions on the x- and y-axis reveal ERD effects time-locked to
get-ready and go-cue (not shown here) and a subsequent ERS effect with the
last hit event per trial. Captured by the tails of the distributions reported
in Fig. 5.7(A), a small fraction of clusters behaves differently and reveals
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an ERS for get-ready, which might be caused by remaining artifactual
components.

As already stated for the examples given in Fig. 5.5, the event- and cluster-
specific maximal envelope differences ∆φmax,avg(m, ck) vary between and
even within subjects as exemplarily reported in Fig. 5.7 (B)–(E). The markers
related to a single subject in Fig. 5.7 are very close or even overlapping for
some cases, which is expected due to finding identical clusters over the
twelve clustering runs per subject.

For brevity, this analysis is only provided for the NTik-SPoC analysis
on dataset (D1a) but can in principle also be applied to the MI decoding
scenario.

5.3.1.3 Characterizing clusters by their associated components

From a domain expert’s point of view, it is interesting to know, which com-
ponents are assigned to clusters by the DBSCAN method. This information
becomes accessible through the approach.
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Figure 5.8: Cluster characterization by within-cluster distribution of various pa-
rameters. Distributions are contrasted for the two scenarios under in-
vestigation: (A) and (B) report the average within-cluster decoding
accuracy, while (C) and (D) report the average MARA ratings. The
vertical red lines refer to the denoising thresholds. (E) and (F) show
the range of mean central frequency values. (G) reports the log-scaled
average regularization parameter utilized for NTik-SPoC optimization,
while (H) displays the average time parameter t0 regarding the time
interval for CSP filter training.
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Table 5.1: Group-level cluster statistics. The numbers are gained across all sub-
jects and twelve repetitions for kernel PCA preprocessing.

decoding scenario dataset selected config. |Ωsel |/|Ω| no. of clusters |C|

SPoC on SVIPT (D1a) 6.2 ± 4.8% 7.4± 3.0

CSP on MI (D2) 10.5 ± 3.2% 3.7± 1.7

In Fig. 5.8, the distributions for different quantities are shown which
were obtained upon pooled clustering runs across all subjects for the two
decoding scenarios.

The reliability of clustered components is shown in the first two rows
of Fig. 5.8 with respect to their underlying decoding performance in (A)
and (B), and resolved by their artifactual MARA rating in (C) and (D).
The denoising step (see Sec. 5.2.3.2) required all components entering
the clustering to provide a minimum decoding accuracy as well as to
reveal minimal artifactual contamination. The plots nicely demonstrate
that the majority of clusters clearly exceed these reliability criteria. It can
be observed, that the MI decoding scenario reveals much larger decoding
accuracies compared to the SVIPT scenario.

(E) and (F) show the average within-cluster central frequency. Combining
this with the insight that within-cluster variations with respect to the central
frequency parameter f0 are rather small (see Fig. 5.9 (C) and 5.10 (C) later
on), the distributions in (E) and (F) report the probability of finding clusters
in specific frequency ranges. While for SVIPT the distribution is mostly
dominated by alpha- and beta-band frequencies, the MI scenario mostly
reveals clustered components in the alpha range.

Two distributions were specifically selected to characterize the underlying
decoding scenario: in (G), the log-scaled distribution of the within-cluster
regularization parameter utilized for the NTik-SPoC filter optimization is
displayed. Its distribution is in good accordance with parameter ranges that
were reported as suitable in Sec 4.4.1.5 and 4.4.2.2. (H) shows the average
time point t0 for the CSP training interval. On average, most clusters are
found for CSP components trained on data aligned to an interval 2 s after
the cue.

5.3.1.4 Group-level cluster statistics

The cluster statistics on the group-level for both decoding scenarios is sum-
marized in Tab. 5.1. For both decoding scenarios, we observed substantial
differences across subjects regarding the relative number of available robust
oscillatory components that survived the denoising step (see Sec. 5.2.3).
Comparing both scenarios, for SVIPT the number of robust components
after denoising is almost halved as in the MI scenario which emphasizes
the higher overall complexity of the decoding task—as mentioned earlier
in Fig. 5.8 (A) and (B). The overall number of identified clusters also differs
substantially for both scenarios: in SVIPT, the number of identified clusters
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is approximately doubled compared to the MI scenario which underlines
the richness of the evoked within-trial envelope dynamics.

5.3.2 Group-level validation of the approach

For the validation of our proposed envelope mining approach, the final
clustering results are analyzed on a group level in three manners: first, the
homogeneity of the clusters are investigated by multiple validation metrics
for both data scenarios including a comparison of different preprocessing
methods. Second, the role of the density-based clustering compared to
a standard k-means approach is investigated. Third, the comparison of
different validation metrics reveals information on the quality of clustering.
The following group level evaluation is based on pooled results across all
subjects per dataset and the corresponding twelve clustering repetitions.

5.3.2.1 Homogeneity of clusters

Decoding scenario (1): NTik-SPoC analysis on SVIPT data
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Figure 5.9: Contrasting distributions of within-cluster evaluation metrics for
two different preprocessing methods. Based on a clusterings on SPoC
envelope dynamics for SVIPT dataset (D1a), the results emerging from
PCA preprocessing are contrasted to the ones of kernel PCA. Internal
validation by average silhouette S(ck) is shown in (A). The horizon-
tal red line corresponds to the global silhouette threshold Shom. As
external validation, the log-scaled IC-MSE (B) is provided. In (C), the
within-cluster central frequency variation std

(
f0(ck)

)
is shown. For

each violin plot, the dashed horizontal lines refer to the two quartiles
and the median.

DBSCAN separates between cluster and outlier samples. In Fig. 5.9, the
distributions for three types of metrics (see Sec. 5.2.3.5) are contrasted
for all identified clusters against detected outlier sets. In addition, the
metrics are compared between the two applied dimensionality reduction
methods. (A) depicts the distribution for the within-cluster silhouette S(ck).
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As enforced by the applied selection criteria for ε∗, the distribution of
S(ck) across all clusters is mostly above the subject-independent threshold
criteria Shom = 0.2, while the outlier distribution (blue) is mostly negative.
In (B), the distribution of the within-cluster IC-MSE is shown. In accordance
with the silhouette distribution in (A) but in reverse direction, the IC-MSE
distribution is strictly shifted towards lower values compared to the outlier
class. (C) reports the variation of the central frequency std

(
f0(ck)

)
which

is consistently below 3 Hz for clusters (mostly in the alpha- and beta-band
range) and conversely not that confined for outliers. When comparing
the two preprocessing methods across the subplots (A)-(C), we observed
that kernel PCA results in more favorable partitionings than PCA. This
is documented by, e.g., larger silhouette values in (A) or smaller IC-MSE
values in (B). Unless noted otherwise, hereafter we report results based on
kernel PCA.

Decoding scenario (2): CSP analysis on MI data
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Figure 5.10: Contrasting distributions of within-cluster evaluation metrics for
clustering CSP components on the MI dataset. In analogy to Fig. 5.9,
(A) shows the average silhouette S(ck), while (B) provides the log-
scaled IC-MSE and (C) displays the within-cluster central frequency
variation std

(
f0(ck)

)
.

Based on clusterings of the second decoding scenario, Fig. 5.10 reports
on the homogeneity of clusters in an equal manner as Fig. 5.9. Three main
aspects can be stated: Fig. 5.10 (A) manifests that the vast majority of
identified clusters are above the silhouette threshold Shom = 0.2. In (B), a
distinct separation between the cluster and outlier clusters is observable for
our external validation metric while (C) shows that most clusters are again
frequency confined below 2 Hz. These three observations are in accordance
with scenario (1) and strongly support the general validity of harnessing
envelope dynamics of spatial filter models. However, when comparing
the absolute homogeneity of clusters measured by the IC-MSE metric, the
MI scenario delivers not as homogeneous clusters as the SVIPT scenario.
Furthermore, there are a few residual clusters which are rather large in
size (data not shown) and also reveal a rather broad frequency variation,
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captured by the cluster tail in Fig. 5.10 (C). These two observations for the
MI scenario might be influenced by the lower signal-to-noise ratio of the
envelope traces as for the MI scenario 75 trials per class and session were
used compared to 400 trials for SVIPT. Furthermore, the number of identi-
fied clusters in the MI scenario is halved compared to the SVIPT scenario
(see Tab. 5.1) which can also promote more inhomogeneous clusters.

5.3.2.2 Comparison of density-based clustering with k-means
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Figure 5.11: Contrasting performance of DBSCAN with k-means. The compari-
son is based on data of NTik-SPoC analysis for decoding scenario (1).
In analogy to Fig. 5.9, the three established validation metrics — sil-
houette score (A), mean squared error (B) and frequency variation (C)
— are shown.

As a baseline for the DBSCAN algorithm, it was substituted by k-means
for the final clustering step (see Fig. 5.3) while keeping all other building
blocks identical. Fig. 5.11 contrasts the performance of DBSCAN with k-
means. While the reported DBSCAN results can be separated between
cluster and outlier samples, k-means does not explicitly provide such an
outlier notation. To compensate for this feature of DBSCAN, each cluster of
a k-means run was post-hoc labeled as an outlier if the cluster homogeneity
measured by the within-cluster silhouette S(ck) was below the subject-
independent threshold. This resulted in a split between cluster and outlier
samples for DBSCAN and k-means as shown in Fig. 5.11.

In Fig. 5.11 (A), the distribution for the within-cluster silhouette S(ck) is
reported. This metric is finally optimized by the applied selection criteria
for ε∗. While the silhouette distribution for DBSCAN is mostly above the
subject-independent threshold criteria Shom = 0.2, for k-means barely half
of the distribution exceeds this value. This observation also translates to
the external validation metric, the within-cluster IC-MSE (B), as DBSCAN
reveals more homogeneous clusters compared to k-means. The only metric
in which k-means is almost comparable to DBSCAN is the within-cluster
central frequency variation. Here, both distributions are of similar shape, ex-
cept that the tail of DBSCAN ends for lower frequency values. In summary,
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for the shown data on scenario (1) we can report that DBSCAN reveals
substantially more homogeneous clusters and is thus the favorable method
if the identification of maximally homogeneous clusters is the ultimate
goal.

5.3.2.3 Comparing cluster (validation) metrics
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Figure 5.12: Group-level analysis of cluster (validation) metrics. On data of sce-
nario (1), each point refers to one single cluster resulting of all per-
formed clustering runs across subjects. Outliers are not shown here.
For all subplots, the log-scaled IC-MSE is shown on the y-axis. Three
different interactions are shown and the corresponding correlation
is reported: (A) is referenced against the log-scaled cluster size. The
dashed line displays the DBSCAN parameter mpts = 24. In (B), IC-
MSE is referenced against the within-cluster silhouette. (C) shows the
interplay with the pattern heterogeneity. For each of the four metrics,
the corresponding distributions are reported. c© 2019 IEEE

The interaction between the external validation metric IC-MSE to the
cluster size |ck| and two other evaluation metrics (see Sec. 5.2.3.5) is reported
in Fig. 5.12. In (A), the averaged envelope homogeneity revealed by the IC-
MSE is strongly dependent on the number of samples |ck| of the respective
cluster, even though it corrects for the cluster size. The smaller the cluster
size, the more probable it is to find a homogeneous cluster. The dashed
line in (A) reports the DBSCAN parameter mpts = 24. If border points
are within ε-distance of core points of multiple clusters, they will be
assigned to only one of them [208]. Thus, we find cluster sizes smaller
than mpts. Plot (B) shows a negative correlation of the external IC-MSE with
the internal silhouette score which was used for DBSCAN optimization.
The larger the silhouette value, the smaller the IC-MSE. Similarly in (C),
there is a comparable positive correlation between the IC-MSE and the
pattern heterogeneity. For small IC-MSE values, a high pattern homogeneity
(reflected by low values) is found. However, we also found cases with low
IC-MSE but substantial pattern heterogeneity. Highly similar interactions
between the validation metrics were found for the MI decoding scenario
(data not shown).
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5.4 discussion

In summary, a method for an informed component selection which ad-
dresses and exploits the variability of spatial filter estimates was established.
The method identifies groups of oscillatory components that satisfy two
optimization criteria: (a) components are required to display a robust de-
coding performance, and (b) they need to reflect functional relevance for
the given experimental task.

Applying these criteria, we demonstrated that the event-related envelope
dynamics of oscillatory components can provide a rich source of informa-
tion, as — in our two chosen data scenarios — these dynamics are strictly
time-locked to within-trial events of underlying behavioral tasks. In addi-
tion, we showed how this information can be exploited to identify reliable
and functionally relevant oscillatory features from a large hyperparameter
space. Thereby, our data-driven approach is capable to deal with the noisy
character of EEG data. Moreover, it was necessary to design the approach
such that it can explicitly cope with rank instabilities as these typically
are observed when dealing with eigenvalue decompositions on real-world
datasets (see Sec. 3.4.4). These instabilities are commonly caused by slight
variations of the training dataset, or when non-deterministic decoding
approaches are utilized.

5.4.1 Choice of features for clustering

The clustering step allows assessing the reliability as well as the functional
role of oscillatory brain signals. As discussed for the examples given in
Fig. 5.5 and 5.6, exclusively utilizing the within-trial event-related enve-
lope dynamics for clustering and no other features, such as scalp patterns,
turned out to be a suitable choice for our data scenario. In Fig. 5.12 (C),
we reported that single clusters can contain rather heterogeneous spatial
activity patterns. This could mean that the neural origins of these oscilla-
tory components differ despite the similarity in ERD/ERS features [59].
Accordingly, Bigdely-Shamlo et al. [202] showed that it might be beneficial
to additionally consider 3D dipole locations for clustering, which result
from a source reconstruction step. We agree on this view, as specifically
from a clinical perspective knowledge about functional brain regions could
provide added value [218]. However, source reconstruction comes at a
price, as results are sensitive to initial assumptions and raw signal quality,
among others [98, 219]. As additional source features would have enlarged
our dimensionality, here we decided against including them into our fea-
ture vectors. Moreover, the results by Onton and Makeig [59] support the
view that solely event-related dynamics might be sufficient to assess the
functional role of oscillatory EEG features. Our observations support this
judgment in the context of the investigated behavioral tasks.

Notably, our results show that the discovered clusters comprise com-
ponents with highly similar, strictly confined frequency ranges. Overall,
most clusters were found to represent oscillations of the alpha- and beta
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range (see Fig. 5.8 (C) and (D)). Regarding the MI scenario, this finding
is in accordance with literature as alpha- and beta-band features are com-
monly used for classification of left vs. right hand trials [220]. However,
beta-band clusters were sparsely present in the MI scenario compared to
the SVIPT scenario. A possible explanation might be the lower SNR of
session-average envelope features for the MI dataset (only 75 trials per
class). This limitation might aggravate the stable formation of beta-band
clusters which intrinsically come with weaker ERD/ERS modulations due
to the 1/ f spectral power decrease in EEG signals (see Sec. 2.1.2). As such,
measurable envelope modulations build the central prerequisite of the
proposed mining approach. This argument might also explain that we did
not identify clusters in the gamma-band range, even though we initially
identified predictive components for the SVIPT decoding scenario (see
Fig. 3.10).

5.4.2 Design choices for the clustering step

The clustering step required a limitation of the input dimensionality of
the envelope features [206]. In this context, we contrasted the performance
of PCA and kernel PCA for reducing the feature space. We could show
that clusters detected after condensation with kernel PCA were found to
be more homogeneous than those resulting from PCA preprocessing (see
Fig. 5.9).

While the literature on clustering of brain signal features is mostly
dominated by the k-means approach [201, 203], we chose the density-based
DBSCAN algorithm and reported for the SVIPT scenario that it delivers
favorable clusterings compared to k-means. Overall, DBSCAN holds various
advantages for our clustering problem: first, DBSCAN does not assign
each data sample to a cluster. Beside dense clusters, it handles outlier
samples without assumptions about the global distribution of outliers. This
is beneficial for our data scenario, as we can not expect every configuration
to display well-defined envelope dynamics. Second, as the non-parametric
DBSCAN does not make an explicit assumption about cluster shapes, it
copes well with non-linearly separable clusters. In contrast, the parametric
k-means method is biased towards convex cluster shapes and may not deal
well with non-convex shapes. Motivated by similar arguments, Bigdely-
Shamlo et al. [202] utilized an affinity propagation clustering to circumvent
the aforementioned shortcomings of k-means.

Revisiting our complete approach, we find several hyperparameters
which influence the outcome of the final clustering step. Among others,
these comprise the number and width of the time intervals for the tem-
poral subsampling (see Fig. 5.4) as well as the number of components
Dred obtained from the dimensionality reduction step. The choice of these
hyperparameters reveals a trade-off between an adequate (high) temporal
resolution of the envelope dynamics and avoiding the curse of dimension-
ality for large feature dimensions [221]. Similarly, the log-scaling of the
features could have also been renounced or replaced by other mapping
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functions. Thus, in principle, the framework could be further optimized
by, e.g., maximizing the correlation between within-cluster silhouette scores
and the IC-MSE scores. However, this optimization remains outside the
scope of this thesis.

5.4.3 Method applicable for within- and across-subject clusterings

To allow for a group-level analysis as well as for comparisons between
subjects and single subject analyses, we decided to create equally sized
datasets before running DBSCAN. For all but three subjects, this require-
ment lead to a downsampling of components, and we are aware, that we
may have omitted informative data especially for subjects with a large
component space Ωsel . The repeated downsampling (an ordered random
subset selection to Ωsel) typically resulted in quite disjoint subsets, and
each of them translated into different clusterings.

While we restricted the analysis to within-subject clustering, the proposed
approach can also be applied to perform across-subject clusterings in the
future [203]. However, this scenario is more challenging due to strong
subject-to-subject variations in brain activity caused by, e.g., anatomical
differences which evoke different scalp projections [90, 202] of the same
functional sources.

5.4.4 Many complex tasks provide a rich inner structure

One key ingredient of the introduced method is the exploitation of the rich
within-trial event structure of complex tasks, such as SVIPT (see Fig. 5.1).
The event-related envelope dynamics of single oscillatory components
enabled to partition a large number of oscillatory features into groups of
functionally relevant and reliable components.

Comparing the two investigated datasets, the overall number of identified
clusters was doubled for the SVIPT paradigm compared to the less complex
MI paradigm. This observation seems plausible as a more complex within-
trial structure could potentially evoke an enriched ERD/ERS dynamics
resulting in a larger cluster count.

The within-trial structure is defined by the sequence of events that occur
along a single trial of a paradigm. For SVIPT, these multiple events offer
a large number of choices when it comes to extracting ERD/ERS features:
oscillatory activity could have been extracted not only for hit events, but in
addition also aligned to error events (such as when the cursor overshoots
a target field) or other application-specific events. The proposed analysis
concept should generally be applicable to many complex real-world tasks,
as long as they reveal sub steps that can be utilized to define a “within-task”
event structure. For some real-world tasks the definition of “within-task”
structure might not be as straightforward or temporal markers of subtasks
may not have been recorded. In these cases we propose to consider implicit
behavior such as eye movements to identify sub-steps of an underlying
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task. Exploiting this additional information, current brain state decoding
approaches might gain access to the underlying functional role of features.

5.4.5 Identifying functional roles of components on novel data

Assuming we apply our method on novel data, we propose a simple
two-step procedure for identifying functionally relevant components: first,
the reliability of the identified clusters needs to be verified, e.g., using
the external IC-MSE metric. A comparison to the distribution reported
in Fig. 5.12 will enable to judge its reliability. Second, one can assess the
functional contribution of a cluster’s components by investigating the
ERD/ERS characteristics. Functionally relevant components should reveal
amplitude modulations time-locked to at least a few within-trial events (see
Fig. 5.5 and Fig. 5.7). Along this line, the exact timing of ERD/ERS effects
might provide valuable additional information.

5.4.6 Expected benefit for targeted closed-loop interaction

The offline results demonstrated the feasibility of the proposed approach
even in challenging data regimes of chronic stroke patients. Thus, our
method can provide a valuable offline tool to prepare informed closed-loop
interaction protocols (see next Chap. 6). To state an example, we foresee a
potential benefit in the field of BCI protocols for post-stroke rehabilitation
training [12], in which our method could be beneficial in multiple ways.

First, it can allow gaining introspection about the training progress by
monitoring underlying cortical processes across multiple sessions. As an
example, the introspective character of our method may allow contributing
to the current debate on the choice of signals to exploit for decoding the
movement-related information. Current approaches use neural activity
from the lesioned sensorimotor areas, from contralesional areas, a combina-
tion or any informative channels irrespectively from the lesion location [17,
222]. The monitoring of these various features over the course of a BCI-
supported training now becomes accessible by our method.

Second, it may help to increase the efficiency of current BCI systems as it
allows the practitioner to realize an informed feature selection such that
functionally specific BCI feedback can be realized.

5.5 lessons learned

We presented a data-driven method for assessing reliable and functionally
relevant oscillatory EEG components estimated by different spatial filtering
approaches. For this purpose, we first embrace the large variability of the
generated spatial filters before condensing their functional signatures by
the density-based DBSCAN clustering. For the first time, DBSCAN was
successfully applied on brain signals and in contrast to k-means clustering,
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this method allowed for the inclusion of an outlier cluster which proved
useful as brain activity recordings typically provide a low SNR ratio.

As a novelty, we make use of within-trial structure for the condensing
step. The approach was evaluated on data of two different motor task
scenarios of diverging complexity: (1) on motor imagery data together with
the CSP approach to identify class-discriminative oscillatory features. (2)
On SVIPT data in combination with the NTik-SPoC algorithm to predict
upcoming motor performance. Interestingly, in both scenarios we could
show that the within-trial task structure translates into clusters of rich
temporal dynamics of oscillatory components.

The proposed approach can be applied in combination with any spa-
tial filtering algorithm given that the paradigm provides within-trial task
structure. Providing introspection about individual, task-related ERD/ERS
envelope signatures, we see the method’s potential for understanding the
neurophysiological and thus functional roles of components. Finally, an
informed component selection may increase the efficiency of closed-loop
protocols with feedback based on oscillatory activity, such as deployed in
stroke rehabilitation.





6
M A N I P U L AT I N G M O T O R P E R F O R M A N C E B Y
C L O S E D - L O O P B R A I N S TAT E I N T E R A C T I O N

The conducted research of this chapter has not been published yet. More-
over, it is the starting point of the novel DFG project “SuitAble” for whose
successful grant proposal I have substantially contributed.

Repetitive motor tasks reveal strong trial-by-trial performance
variations especially when dealing with subjects suffering from
motor deficits. Based on a data-driven framework, we trained
robust models to extract brain states from oscillatory brain activity
which are predictive for the upcoming motor performance on
single-trial level. The real-time estimation of these pre-trial brain
states allowed the application of a gating strategy to specifically
select suitable and unsuitable starting time points for a repetitive
hand motor task. In a pilot study with four chronic stroke patients,
we performed an intensive motor training with approximately 15

hours of effective training in eight online sessions. Even under
challenging conditions with patients, we confirmed the expected
hypothesis that in all four patients single-trial reaction times were
overall significantly reduced for suitable trials. Moreover, shorter
trial times under suitable states were found in two patients. Added
value is provided by the introduced decoding framework as it
allowed tracking brain signatures along the training and thus
enables for a monitoring of training-induced changes.

A future randomized controlled study could investigate whether
training under specific pre-trial brain states is beneficial for post-
stroke motor learning. Overall, this successful proof-of-concept
motivates to transfer this framework to other application fields,
such as cognitive rehabilitation, sport sciences or systems neuro-
science.

summary

6.1 introduction

Machine learning methods allow for the single-trial decoding from brain
activity recordings, such as EEG, for real-time applications [19]. Particularly,
it has frequently been demonstrated that a direct decoding of a user’s
intention from EEG signals can be achieved, such as the distinction between
left and right hand movements [53] or target and non-target stimuli [223].
Recently, BCI systems were suggested to be also capable to extract and
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exploit additional information about a user’s current brain state by tracking
corresponding informative neural processes [20, 21, 224].

Focusing on the field of post-stroke motor rehabilitation, a variety of BCI
systems have been proposed and their efficacy—as well as the efficiency
compared to non BCI-supported baseline methods—is still under intense
investigation [12, 13, 17, 67]. In most applications, the BCI system exploits
brain signatures, which are directly informative about an attempted, exe-
cuted or imagined movement and subsequently triggers, e.g., a muscular
stimulation, an orthotic device or sensory feedback (see Sec. 2.2.2).

A use case in which the inclusion of the user’s current brain state might
provide added value can be stated for studying repeated motor tasks
as deployed in post-stroke rehabilitation. Here, behavioral intra-session
performance variations are observed on two different time scales [28]. While
intra-session trends mostly reflect motor skill acquisition, we showed that
trial-by-trial performance variations on the scale of seconds can partially
be explained by pre-trial oscillatory activity (see Chap. 3). Such oscillatory
power fluctuations were found to be affected by the interaction of various
networks—visual, premotor and motor cortex as well as subcortical and
spinal structures [46, 123, 225].

Our findings now allow to exploit such predictive oscillatory brain states
in real-time applications, which have rarely been transferred to closed-loop
experiments. One of the few online studies recently showed that the tar-
geted pre-trial modulation of sensorimotor rhythms can have an influence
on upcoming task performance [226, 227]. However, a successful influence
was only found in three of eight chronic stroke patients. While prospec-
tively such systems might enable to augment post-stroke motor learning,
such complementary BCI systems need to ensure a reliable decoding of
functionally relevant features under challenging conditions with patients.

Here, the contribution of this thesis chapter comes into play: we now
utilize the established workflow for single-trial motor performance predic-
tion based on the data-driven extraction of informative oscillatory brain
signal components (see Chaps. 3 and 4) and the subsequent contribution to
identify functionally relevant spatial filter models (see Chap. 5). Thereby,
these earlier findings are validated in an online scenario. We hypothesize,Research question Q3

that the computed performance prediction models directly enable to ex-
tract individual predictive brain states which allow to influence upcoming
single-trial motor performance. Specifically, the pre-go power of a robust,
predictive component shall be evaluated in real-time to specifically select
between suitable and unsuitable starting time points for SVIPT. Exemplified
for a multi-session post-stroke hand motor training, the hypothesis will be
evaluated in a pilot study.
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6.2 methods

6.2.1 Subjects

Tab. 6.1 reports on the demographic and impairment related data of the
four included chronic stroke patients abbreviated by P1 to P4. Here, the
term chronic implies the stroke to be dated back at least 3 months before
participation [228]. The patients were selected to reveal their first-ever,
unilateral ischemic stroke resulting in a mild to moderate hemiparesis
(except P1 revealed a stronger impairment). Three of four patients were
naïve to SVIPT and BCI applications, respectively. P4 had prior SVIPT
experience due to participation in the control group [228], P2 completed
a 30 hour language training with feedback based on task-relevant EEG
activity [70].

Prior to participation, all subjects provided written informed consent.
The study was approved by the local ethics committee of the University
Medical Center Freiburg.

Table 6.1: Patient characteristics of dataset (D1c). Demographic and impairment
related data of the four chronic stroke patients included for the pilot
study. The listed patients are disjunct with the ones of dataset (D1b).

Patient P1 P2 P3 P4

Age (years) 44 64 56 52

Gender (male/female) m m f m

Affected limb (right/left) r r r l

Time after stroke (months) 37 83 24 59

Initial Upper Extremity Fugl-Meyer (UEFM) 27 52 53 58

Naïve SVIPT user (yes/no) y y y n

Naïve BCI user (yes/no) n y n n

6.2.2 Experimental setup

All four pilot patients completed a high-intensity hand motor training
with their affected hand comprising about 15 hours of effective training
time. As shown in Fig. 6.1(A), the full training was overall composed of
10 training sessions—thereof 8 online sessions—of the EEG-tracked SVIPT
within maximal 3 consecutive weeks1.

Before the first online session and after the last training session, a clinical
assessment of the patients was performed. It contained the evaluation of the
patient’s maximal pinch and grip force, as well as the widely established
Upper Extremity Fugl-Meyer (UEFM) score [229, 230].

A single SVIPT training session consisted of ten runs with 20 trials each.
Throughout each session, the patient’s EEG signals were registered from 63

1 Patient P1 performed three offline and eight online sessions. As P1 had to cope with
muscular fatigue in six sessions, in those ones only 5-9 runs were performed.
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Figure 6.1: Experimental protocol of the online EEG-gated SVIPT. (A) Study
protocol for testing motor performance separability across eight online
sessions. Before and after the online training, a clinical assessment was
performed. (B) Scheme for the online EEG-gated SVIPT. Prior to the
start of each trial, the patient received continuous feedback about his
current brain state visualized by a real-time adaptation of the vertical
cursor position. A state-dependent gating strategy determined the go-
cue time point of every single trial. For details on the gating strategy,
see Fig. 6.2.

passive Ag/AgCl electrodes placed according to the extended 10-20 system.
If not explicitly noted differently, further experimental details of a single
EEG-tracked SVIPT session were identical to the performed offline studies
described in Sec. 3.2. After each run, an individual highscore with the best
average trial durations per run was displayed to motivate the patients to
further improve their SVIPT motor performance.

The offline sessions were used for the calibration of a performance
prediction model, which is further described in Sec. 6.2.2.1. In each online
session, the system tried to influence the patients’ upcoming performance
in the get-ready phase by: (1) providing continuous feedback about the
ongoing brain state to the patient as sketched in Fig. 6.1(B). This was
realized by a continuous adaptation of the vertical cursor position. As a
reminder, during the SVIPT get-ready phase a slight blue cursor is presented
in leftmost target field T0 while subjects are asked to fixate on the center of
T0. (2) Depending on the current brain state estimate, a temporal gating
strategy was realized prior to the start of a trial. A go-cue was elicited either
if a user-specific prediction model indicated a desired brain state or if a
timeout criterion was met (for details see Sec. 6.2.2.2).
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In the offline sessions, the patients unknowingly received pseudo-feedback
regarding their ongoing brain state as the vertical cursor position was al-
tered according to earlier recorded brain state estimates of another pilot
subject.

6.2.2.1 Performance prediction models

The calibration procedure to compute a performance prediction model
for an individual patient combined all developed buildings blocks of this
thesis. As a reminder, the detailed workflow for predicting single-trial
motor performance from oscillatory EEG data was described in Sec. 3.2.5.

Based on the findings in Chap. 4, we chose the NTik-SPoC variant with
Tikhonov regularization for this patient scenario with a strictly limited
amount of training data. The algorithm was trained on pooled patient-
specific data across the offline sessions, while the first 80 % (in chronological
order) of the data from each session were used. The remaining session data
were used for validation of the obtained models.2 Since reaction time (RT)
revealed the largest decoding accuracies in the earlier reported offline anal-
yses (see Sec. 3.3.5), we selected this most promising metric as label input
for NTik-SPoC and thus aimed to primarily influence upcoming RT in the
online SVIPT sessions. In analogy to Sec. 5.2.2.1, we again embraced spatial
filter variability under different hyperparameter configurations by training
NTik-SPoC components in a large configuration space. According to the
above described validation procedure, the cross-validation hyperparameter
was dropped here. Based on the component’s envelope dynamics across all
offline trials, the component mining framework (see Sec. 5.2.3) was then
also carried out to gain potential candidates for the closed-loop interaction.

In a final step, a manual inspection was performed among different
feature candidates to select one specific oscillatory component w for the
closed-loop interaction. Hereafter, this will be referred to as selected os-
cillatory component. According to the denoising step (see Sec. 5.2.3.2),
all candidate components were required to provide a minimal predictive
power z-AUCmin ≥ 0.6 on the validation data and a MARA rating of
their artifactual probability below part ≤ 10−5. In addition, the following
selection criteria were taken into consideration:

1. Rich envelope dynamics: Driven by the findings of Chap. 5, oscil-
latory components revealing a rich within-trial envelope dynamics
were preferred. As shown on SVIPT datasets (D1a) and (D1b), an
ERD effect with get-ready and/or go-cue as well as an ERS with hit 3
or hit 4 substantiate the neurophysiological plausibility of individual
components.

2. Motor-related spatial activity patterns: Regarding the spatial activity
patterns of the components (see Eq. (2.3)), a high similarity (visually

2 For patient P1, the model was trained on the first two sessions and evaluated on the third
one
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inspected) across the offline sessions was required to ensure across-
session stability of the target component. High priority was given to
motor components, specifically lateralized over the patient’s affected
hemisphere.

After each of the first three online sessions, a validation on the unseen ses-
sion data was done among all component candidates. In case the prediction
performance of such a candidate component was clearly outperforming
the selected one and simultaneously fulfilling all above stated criteria, the
originally selected component/decoding model was then exchanged.
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Figure 6.2: Single-trial online gating for triggering a go-cue. Arranged in the
columns, example data for three single trials visualize the applied
gating scheme during the get-ready phase. Rows show the continuosly
sampled power, the displayed cursor feedback for the patient and
the go-cue time point. All rows share the time axis. Initiated by the
get-ready event (yellow light), the power of the selected oscillatory
component was continuously estimated (black dots) and translated
into a vertical cursor position. The go-cue time point (green light) was
triggered earliest 2 s after get-ready and by distinguishing between three
cases: (A) if the power Φ(t) fell below the threshold Φlow, a suitable
trial was elicited. (B) If Φ(t) exceeded the threshold Φup, an unsuitable
trial was initiated. (C) A timeout trial was registered and still started, if
the power did not exceed either of the thresholds in the interval [2, 5] s.

6.2.2.2 Brain state-dependent gating strategy

The selected subject-specific spatial filter w was now utilized in a closed-
loop setting that is sketched in Fig. 6.1 (B). During the get-ready phase
(prior to the go-cue) of a single SVIPT trial, the component’s log-bandpower
Φ(t) was continuously evaluated every 40 ms according to the variance
approximation given in Eq.( 3.1). For brevity, power estimation hereafter
always refers to log-bandpower estimation. Therefore, data of the latest
400 ms for alpha components (300 ms for beta components) sampled with
1 kHz was utilized. Those values were determined on earlier pilot subjects.
The choice of the time window reveals a trade-off between the temporal
resolution to capture optimal go-cue time points and sufficient data to
estimate the ongoing power of the signal. The online data were bandpass



6.2 methods 111

filtered by a linear Butterworth filter to the same frequency band as the
training data of the selected model.

The closed-loop interaction was realized in two ways. First, the ongoing
estimated brain state according to the component’s power was directly
translated into a vertical cursor position for the patient (see second row of
Fig. 6.2). Second, a brain state-dependent single-trial online gating strategy
was applied. Therefore, go-cue events were preferably triggered if according
to the spatial filter model a highly preferable or extremely poor upcoming
reaction time was expected. Given the current power estimate Φ(t), a go-cue
event was triggered by a threshold scheme as sketched in Fig. 6.2: a suitable
trial was elicited if the component power was registered below a threshold
Φlow, while an unsuitable trial was triggered if Φ(t) exceeded an upper
threshold Φup.3 If none of the thresholds were passed 5 s after the get-ready
event, the go-cue was immediately given and the trial labeled as timeout. The
determination of both power thresholds will be addressed in the section
below. Note, that in the offline sessions the time teval between get-ready and
go-cue was sampled from the interval [2, 5] s based on statistics of earlier
pilot online sessions. For consistency, the same time limits were also applied
throughout all online sessions. Hence, the earliest go-cue was possible 2 s
after get-ready as marked by the gray shaded intervals in Fig. 6.2. Threshold
exceedances within the first two seconds, as sketched in Fig. 6.2 (C), were
ignored.

In the online sessions, the patients were instructed to find a strategy to
lower the vertical cursor position by modulating their brain signals during
the get-ready phase. They were instructed that the cursor position was
reflecting the quality of their upcoming motor performance. However, the
subjects did not know that RT was the targeted motor performance metric.

As single sessions were strictly limited to only 200 trials (corresponding
to ≈ 90 min), an online artifact detection was applied throughout the get-
ready phase to reduce the rate of artifactual trials [42, 231]. Therefore, a
min-max threshold of 100 µV was applied on bandpass-filtered data (to the
range [0.7, 45] Hz) of frontal EEG channels. In case of a threshold violation,
the trial was immediately aborted and patients received visual feedback,
followed by a restart of the trial after a 2 s pause. Such aborted trials did
not enter the post-hoc analysis.

6.2.2.3 Online adaptation of the prediction model

From a clinical point of view, we intended to control the ratio of suitable
to unsuitable trials during training as we prospectively expect an influence
of the ratio on post-stroke motor learning. Precisely, we decided to overall
trigger p∗sa = 0.55 suitable trials and p∗us = 0.35 unsuitable trials to provide
a fixed success rate to the patient while ensuring enough data for both
conditions (required for statistical comparison). By that, we expected 10 %

3 This mapping of thresholds to labels assumes a negative correlation of single-trial power
Φ(e) with single-trial motor performance z(e). This relation can be determined by evaluating
the sign of the correlation R(z, Φ(w))) on the training data.
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timeout trials in total. The gate ratio was controlled by a slight online
adaptation strategy as hereafter explained.

Given the calibrated model by the selected oscillatory component w,
when switching from the offline to the online phase the underlying compo-
nent power will most probably follow different distributions [232]. This is
commonly known as covariate shift [233]. In the field of BCI applications,
various approaches have been proposed to account for the non-stationarity
characteristics of neural signals in closed-loop applications [234–237]. In
this pilot study, the selected individual filter model w was kept fixed and
solely the decision boundaries, namely the gating thresholds Φlow and Φup,
were adapted along the online sessions.

session j session j+1

Φlow

Φup

time

lo
g
-p

o
w

e
r

time

Φm

supervised unsupervised
adaptation strategies:

Badaptation
step i

i+1 A

Figure 6.3: Online adaptation strategies for the prediction model. The continu-
ously sampled pre-trial log-bandpower (black line) of a selected com-
ponent is shown on exemplary data of P4. The data for each pre-trial
phase—1.5 s after get-ready up to go-cue—is successively reported for
the last (first) 25 trials from the end of session 9 in (A) (the start of
session 10 in (B)), respectively. For clarity, after each trial—when the
gating threshold was exceeded—a small gap is introduced. In (A), only
refined supervised adaptation steps were performed every 5 trials to
update the gating thresholds Φup and Φlow by means of the current
median estimate Φm. With the start of a new session (B), the associated
unsupervised coarse adaptation steps are highlighted. Overall, the tem-
poral distance of adaptations varies as the pre-trial phase is different
from trial-to-trial.

To accomplish both requirements to reach an intended gate ratio while
also coping with non-stationarities of brain signal recordings, two different
strategies were deployed during online training as shown in Fig. 6.3:

• (1) Coarse unsupervised adaptation: To cope with non-stationarities
in oscillatory fluctuations from session j to j + 1 or after longer breaks
within a session, a coarse unsupervised adaptation step was per-
formed. We make the simplified assumption that the component’s
log-bandpower fluctuation width is stable across sessions while the
average power level Φm(j) might be shifted from session j to j + 1, as
observed for CSP features [238]. Based on the median of the sampled
power Φm(j + 1) of the new session, the latest gating thresholds from
the previous session j were updated by:

Φup(j + 1) = Φup(j) + (Φm(j + 1)−Φm(j)) (6.1)
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In analogy, Φlow(j + 1) was determined by adapting the last lower
threshold Φlow(j) of the previous session to the novel median power
level. The respective power medians in Eq. (6.1) were estimated in a
session-specific ring buffer containing the latest 150 sample points. As
in each novel session j + 1 the buffer needed to be filled up with data,
this strategy was deployed throughout the first run of each online
session every five trials as reported in Fig. 6.3. The buffer was only
updated between 1.5 s after get-ready to the go-cue. An earlier interval
would have introduced a systematic bias as get-ready triggered an ERD
effect in most components (see Fig. A.3). In the first online session,
the gating thresholds were initialized by the 5th and 95th percentiles
of the power distribution of the selected component w on the initial
training data.

• (2) Refined supervised adaptation: To reach the intended gating
ratios, a refined, supervised adaptation from step i to i + 1 was
regularly applied every five trials during the online sessions, starting
with the second run. To this end, the sampled probabilities psa and
pus of both gating conditions were evaluated on the latest 60 trials
and used as labels to guide the adaptation. The applied iterative
adaptation rule took two aspects into account: First, the adaptation
was proportional to the signed quadratic condition-related probability
deviation δpus = (pus − p∗us) —and similarly for δpsa—to penalize
strong deviations from the expected label distribution. Second, the
update was relative to the absolute distance of the previous threshold
Φup(i) to the power median Φm based on the previously mentioned
ring buffer of the current session j + 1.

This translated into an update scheme from adaptation step i to i + 1
for the upper gating threshold:

Φup(i + 1) = Φup(i) + η · sign(δpus) · (δpus)
2 · |Φup(i)−Φm| (6.2)

with a fixed learning rate η = 2 which was determined on earlier
pilot data. In analogy, the lower gating threshold update Φlow(i + 1)
can be estimated from Eq. (6.2) by inserting Φlow(i) and δpsa instead
of Φup(i) and δpus. To accomplish a careful adaption, the class-related
probability deviations δpus and δpsa were required to exceed an ab-
solute tolerance level of δptol = 0.05. Smaller condition-specific de-
viations did not result in a threshold update. After each run, the
experimenter received feedback on the within-session component’s
power time course and the selected thresholds. In case of severe
non-stationarities, e.g., when noisy EEG channels had to be fixed
within a break, the experimenter was able to perform an optional
unsupervised adaptation (see Eq. (6.1)) with the start of each run.

6.2.2.4 Data preprocessing

For post-hoc evaluation, the raw EEG signals were low-pass filtered at
100 Hz, sub-sampled to 500 Hz sample rate before high-pass filtering at
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1 Hz. For frequency filtering, linear Butterworth filters of 5th order were
applied.

Noisy channels of single session recordings were removed by a two-step
procedure. First, the variance of single epochs and channels was computed.
Based on the pooled statistics, all cases outside the [10, 90] percentiles
and also exceeding twice the corresponding inter-percentile range were
registered as outliers. Second, channels which allocated more than 10% of
all outliers and a minimum of 5% outliers across epochs were removed.

Furthermore, artifact cleaning was done by an ICA decomposition on
pooled data of the active trial phase—from get-ready to trial end—of each
session. To restrict the computational effort for the ICA, a randomly selected
run of each session was utilized.4 The obtained ICs were rated for artifactual
origin with the automated artifact detection framework MARA [89, 239].
Based on MARA ratings, a maximum number of 10 probably artifactual
ICs were removed from the all single session EEG data before projecting it
back into the original sensor space. Only this pre-cleaned data was used in
the post-hoc feature analysis.

Based on the force sensor recordings, the different single-trial motor
performance metrics were extracted for each single trial (see Sec. 3.2.3).
In addition, the trial duration (TDUR) was computed. For the behavioral
post-hoc analysis, the first 10 trials of each session were omitted due to the
ramp-up phase of the threshold adaption with the start of each session.

6.3 results

The achieved results are organized as follows: First, we provide evidence
that the brain state selection separates the gating conditions—suitable and
unsuitable— as expected. Second, we present single-trial behavioral per-
formance results contrasted for the gating conditions. Third, an in-depth
feature introspection on the utilized oscillatory components for the closed-
loop training is given. Fourth, the clinical assessment scores are shown to
give an indication about individual post-stroke motor learning.

6.3.1 Brain state-dependent gating

As described in Sec. 6.2.2.2, the power of a selected oscillatory component
was continuously sampled after get-ready to specifically identify suitable
starting time points for SVIPT. As a reference for the behavioral validation,
a smaller ratio of unsuitable trials was sampled. On data of each patient,
Fig. 6.4 (A) reports the single-trial power distributions of the selected
oscillatory component at go-cue on pooled data (after post-hoc artifact
rejection) across all online sessions. Significance of the power contrast was
tested by a two-sided Wilcoxon rank-sum test.

4 For P1, the sessions 1 and 2 were excluded for ICA training due to instabilities in the
resulting decompositions.
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Figure 6.4: Brain state separation at go-cue. The shown results are obtained on
pooled data across all online sessions and split by the three gating
conditions. (A) The boxplot for each patient reports the component
power that triggered a go-cue event contrasted for the different gating
conditions. Statistical significance is indicated by * with p < 0.01. Each
box shows the quartiles of the underlying data, the whiskers refer to
2·IQR. (B) The achieved frequencies of gating conditions across all
sessions are displayed for each patient.

As intended by the single-trial gating strategy, there is a significant split
between the suitable and unsuitable power distributions across all online
sessions of all four patients. For P2 and P4, there is even no overlap of the
boxplots observable which is due to stable across-session power fluctuations
of the selected subspace components. Regarding the distribution observed
for P1, the gating thresholds were adapted according to a percentile strategy
of the recently sampled component power which led to just a temporal
but not a global power separation. As another plausibility check of the
established online framework, the timeout boxplot is located between the
other two extreme distributions on the data of all four patients. Fig. 6.4
(B) reports the achieved ratios across the different gating conditions. As
foreseen by the adaptation parameters p∗sa and p∗us (see Sec. 6.2.2.3), all four
patients trained under the majority of suitable brain states. Furthermore,
the gating statistics of P2 to P4 nicely demonstrate that the intended gating
ratio was achieved within the given tolerance.

6.3.2 Single-trial motor performance caused by different gating strategies

It is now of specific interest to verify the single-trial motor performance
that followed the previously detected brain state at go-cue. As the decoding
model was trained on reaction time (RT), this metric will be reported first.
In a second step, the transferability to other motor performance metrics that
integrate behavioral information on longer trial intervals will be verified.
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Figure 6.5: Comparison of single-trial reaction times contrasted for the two gat-
ing strategies. For the patients P1-P4, the RT distribution for suitable
and unsuitable trials is shown across all single online sessions. A star
refers to single sessions with a significant difference between condi-
tions (significance level of p < 0.05 with Holm-Bonferroni correction
for multiple testing).

Effect on single-trial reaction time (RT)

To test the central hypothesis of this chapter, namely, that upcoming motor
performance can be influenced by the ongoing brain state of the patient,
Fig. 6.5 reveals the behavioral results of the go-cue selection strategy. In
(A)–(D), the RT distributions for each patient across every single online
session and contrasted for the two different conditions are presented. The
significance of the obtained contrast in single sessions was tested by a two-
sided Wilcoxon rank-sum test. Even though two consecutive sessions are
not expected to be independent, a conservative Holm-Bonferroni correction
was applied on individual subjects.

In two of four pilot patients we found that single-session RT distributions
separate significantly in at least half of the sessions, especially in the second
half of the online training. Interestingly, in the best case of patient P4 a
significant difference throughout all eight online sessions was achieved.
Even though the online framework was tested with a heterogeneous patient
group regarding their initial hand motor impairment (UEFM varied from
27-58 as shown in Tab. 6.3), on pooled data across all online sessions a sig-
nificantly shorter RT for suitable trials can be stated for all four patients (see
Fig. 6.6 (A)). Hence, the intended RT manipulation worked out successfully.
Considering individually observed behavioral effects along the training,
the median difference between the two opposing conditions relative to the
interquartile range (IQR) varies between 27 % (P2) and 40 % (P3). The RT
range of patient P1 reflects the severe motor impairment, which suggests
handling the corresponding data with caution.
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Figure 6.6: Pooled single-trial motor performance data contrasted for the two
gating strategies. The boxplots on pooled data of different motor per-
formance metrics column-wise aligned by their temporal integration
range after go-cue: (A) reaction time, (B) cursor path length up to hit
1, (C) time to hit 1 and (D) full trial duration (session-wise median
subtracted). Each row refers to a single patient. The significance level
for each tested metric (with Holm-Bonferroni correction) is reported by
p < 0.01 (**) and p < 0.05 (*).

Indirect transfer to other motor performance metrics

While the utilized NTik-SPoC performance prediction model was optimized
for RT, it is of special interest if preferential brain states at go-cue translated
into improved motor performances captured by metrics integrating longer
periods of the trial. On pooled data of all online sessions, Fig. 6.6 reports
the individual distributions of different single-trial performance metrics.
Their arrangement from (A)–(D) is orientated by an increasing temporal
integration of behavior along the trial. While RT does only take a short
time window after go-cue into account, cursor path length (CPL) and du-
ration (DUR) were calculated up to hit 1 (≈ 40% of full trial time). Both
metrics were standardized per session and subsequently pooled for both
hit sequences. RT, CPL and DUR have been found to be rather uncorrelated
among each other [30]. For the trial duration (TDUR), the session-wise
median was subtracted before pooling to eliminate session-to-session dif-
ferences (see Fig. A.5). Significance between conditions was tested by a
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two-sided Wilcoxon rank-sum test with Holm-Bonferroni correction for
testing multiple metrics.

While on pooled individual RT data a homogeneous picture in terms
of a distinct separation was noticed in all four patients, the brain state-
dependent gating does only partially translate on single-trial metrics which
integrate performance over longer time intervals. Intriguingly, for half of
the pilot patients a significant effect on SVIPT trial duration can be stated
even though the utilized decoding model was not trained on these labels.

6.3.3 Across-session feature introspection

Hereafter, the presented results are based on a post-hoc analysis of the
recorded EEG data across the single training sessions.

As the utilized spatial filter model to extract an oscillatory subspace is
kept fixed during the online training, these features were required to be
robust across sessions. In other words, each online session serves as an
unseen validation dataset. Details about the selected oscillatory components
are summarized in Tab. 6.2. Hereafter, various stability aspects regarding
the utilized oscillatory subspace components are reported over the course
of the training.

Table 6.2: Details on the selected decoding model for closed-loop interaction.
For each patient, the hyperparameters as well as the initial decoding
accuracy are reported for the selected spatial filter model. If a component
was switched during online training, then two entries per patient are
specified. In the first row, the respective sessions are reported.

patient P1 P2 P3 P4

central frequency f0[Hz] (session)
9.5 (4) 21.8 18.8 (3-5) 9.7

8.7 (5-11) 10.9 (6-10)

reg. parameter α
1.0 · 10−2 4.4 · 10−5 8.7 · 10−6 1.0 · 10−2

8.5 · 10−4 3.4 · 10−3

training epochs Ntrain 342 344 289 347

decoding accuracy z-AUC
0.62 0.62 0.65 0.69

0.67 0.69

MARA reject prob. prej
1.43 · 10−9 1.22 · 10−6 6.81 · 10−6 7.44 · 10−9

5.56 · 10−9 3.28 · 10−7

Spectral and spatial feature analysis

The robustness of individually selected components—under scarce training
data and across multiple sessions—was an important characteristic for this
pilot study. The features’ robustness was favored by the developed methods
of Chaps. 4 and 5. For validation purposes, Fig. 6.7 displays the spectral
content of the selected individual spatial filters w which were deployed
for the online gating strategy. Therefore, the non-frequency filtered data



6.3 results 119

patient P1 patient P2

patient P4patient P3

+- (a.u.)

filter

pattern

0 10 20 30 40
frequency (Hz)

25

30

35

40

45

50

55

60

p
o
w

e
r 

(d
B

)

0 10 20 30 40
frequency (Hz)

25

30

35

40

45

50

55

p
o
w

e
r 

(d
B

)

1

2

3

4

5

6

7

8

9

10

11

tr
a
in

session

0 10 20 30 40
frequency (Hz)

35

40

45

50

p
o
w

e
r 

(d
B

)

0 10 20 30 40
frequency (Hz)

25

30

35

40

45

50

p
o
w

e
r 

(d
B

)

1

2

3

4

5

6

7

8

9

10

session

tr
a
in

Figure 6.7: Across-session spectral analysis of selected oscillatory components.
For each patient, the pre-go power spectra of the selected subspace
components for the online gating are shown. The gray shaded area
in each power spectrum refers to the frequency band in which the
training data were filtered to train the model. Patients P2-P4 all share
the same legend. In addition, the individually selected spatial filters
and corresponding pre-go spatial activity patterns averaged across all
sessions are displayed for each patient.

were projected to the selected subspace and segmented to the pre-go phase
on data of the single sessions. The resulting session-averaged spectra are
shown for each patient across the full hand motor training. For patients P1
and P3, the last selected oscillatory component is shown. On data of all four
patients, the power spectra of the selected features are highly similar across
sessions and reveal the well-known spectral 1/ f decaying behavior with
distinct α- and/or β-modulations. This observation is a strong indicator for
the across-session robustness of the selected components.

An additional neurophysiological introspection is provided by assessing
the spatial activation patterns of an oscillatory component (see Eq. (2.3)). As
documented in the appended Fig. A.7, the selected oscillatory components
revealed mostly stable pre-go activity patterns over the course of the multi-
session training. This again supports the successful selection of robust
oscillatory components.

Event-related envelope dynamics

As emphasized in Sec. 5.3.1.1, the SVIPT paradigm contains a rich within-
trial structure which nicely translates into a distinct event-related envelope
dynamics of certain oscillatory components. Exemplified for patient P2,
Fig. 6.8 reports the induced envelope dynamics of the selected filter w
extracted for every single session along the training. The average log-
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Figure 6.8: Session-wise envelope dynamics of selected component along the
sessions. In analogy to Fig. 5.5, the session-wise averaged envelope
dynamics aligned to various within-trial SVIPT events is exemplarily
shown for the utilized beta-band component of patient P2 across all
performed sessions. The corresponding filter model was trained on the
first two offline sessions.

envelope of each session was baselined to a 500 ms interval prior to each
event.

Remarkably, the envelope dynamics for this beta-band component is
highly homogeneous across all (unseen) online sessions and shows distinct
ERD/ERS modulations. As each online session provides novel data which
was not used for the calibration, then assessing the envelope dynamics can
be seen as a post-hoc generalization test of the selected subspace component.
The stable ERD/ERS effects strongly advocate the functional relevance
of the selected component. The ERD effect with go-cue and the ERS with
hit 3 suggests that the activation and deactivation of the sensorimotor
system [240] along the trial is depicted with its full dynamics. The corre-
sponding envelope dynamics of the remaining patients can be found in the
appended Fig. A.6.

6.3.4 Motor learning captured by clinical assessments

In order to evaluate the individual clinical outcome of the brain state-
dependent visuo-motor training, Tab. 6.3 show the three different clinical
scores before and after training as well as the corresponding relative change.

Table 6.3: Overview on clinical outcome metrics. For all pilot patients, different
clinical outcome metrics are reported for pre- and post-training assess-
ments. Pinch and grip refer to measurements with their affected hand.
∆ refers to the score-specific corresponding relative difference, taking
the pre-training assessment as baseline.

Pinch (N) Grip (N) UEFM (points)
patient Pre Post ∆ (%) Pre Post ∆ (%) Pre Post ∆ (%)

P1 17.8 14.8 -16.7 35.6 29.7 -16.7 27.0 26.0 -3.7
P2 46.0 50.4 9.6 94.9 102.4 7.8 52.0 59.0 13.4
P3 23.7 28.2 18.8 20.8 60.8 192.9 53.0 58.0 9.4
P4 74.2 80.1 8.0 415.3 299.6 -27.9 58.0 60.0 3.4

Even though a statistical group-level evaluation is not feasible with the
limited amount of pilot patients, one can still compare the relative changes
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for all three scores on the level of individual patients to get a first impres-
sion. Interestingly, the patients P2 and P3 do reveal an increase in their
pinch and grip force capabilities with their affected hand. Simultaneously,
the patients show a gain in the UEFM score by at least 5 points which was
reported as a clinically relevant improvement for mild to moderate motor
impairments [241]. Likewise, the clinical outcome of P1 reports that the
impairment exceeded a moderate level and suggests that SVIPT training
might not be the most beneficial paradigm for such patients. Conversely, P4
was a non-naïve SVIPT user which minimized the overall motor learning.
The individual clinical scores are also in good accordance with the SVIPT
learning curve over the course of the 10 training sessions which is shown
in the appended Fig. A.5.

6.4 discussion

In the following, the discussion of this chapter has a special role. Beside
the detailed examination of the current chapter’s findings, it also creates a
link to all previous contributions in Chaps. 3, 4 and 5.

In summary, this chapter presented a novel brain state-dependent closed-
loop interaction protocol exemplified for a repetitive hand motor training
with chronic stroke patients. It is the follow-up online validation of the
identified predictive oscillatory features that explain upcoming single-trial
motor performance (see Chap. 3). In all four pilot patients, the developed
methods were key to identify brain states that explain upcoming single-
trial motor performance. Prior to the start of a single trial, a real-time
brain state evaluation enabled to specifically select between suitable and
unsuitable starting time points to direct the patients’ upcoming motor
performance. Based on individually optimized, task-specific and robust
oscillatory features, reaction times under suitable brain states were on
average shortened by up to 40 % of individually measured reaction time
variability.

6.4.1 Manipulating single-trial motor performance by the ongoing brain state

The introduced closed-loop system to influence upcoming motor perfor-
mance strongly depends on the evaluation of the ongoing brain state. Our
system operated with an update rate of 40 ms which already resulted in a
strong separation of oscillatory power between conditions.

Despite the challenging conditions with patients and comparably low
predictive performances in the offline sessions (z-AUC between 0.62 and
0.69 as shown in Tab. 6.2), we found evidence to manipulate single-trial
reaction times in all four chronic stroke patients by specifically selecting
suitable and less frequent unsuitable starting time points for the online
EEG-gated SVIPT motor task. Although we did not apply a brain state-
dependent gating strategy in the offline sessions, we aimed for comparable
conditions between the offline and online phase. Therefore, in each offline
session the vertical cursor position was varied based on observed brain
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state fluctuations of earlier pilot online sessions. As an additional control
condition, we aimed to answer if there is already a split in reaction times
during the offline sessions between the lowest and highest vertical cursor
positions at go-cue. These positions referred to suitable and unsuitable trials
in the later online sessions. Based on data of patients P3 and P4, where
we extracted the corresponding markers, we did not find a significant
separation of RT distributions in these cases. While this observation is a
first indication that performance separation is not dependent on cursor
position at go-cue, further data is required to fully conclude about this
control condition.

For the majority of patients, we achieved a stable session-wise reaction
time separation in the second half of the online training. This might be
driven by the time to learn the reliable down-modulation of the pre-trial
power. While we have not fully controlled for the volitionally induced
modulation of the pre-trial power (versus a spontaneous fluctuation), an
explicit SMR training over multiple sessions prior to the online phase was
performed by Norman et al. [227]. In their pilot robot-assisted hand motor
training with 8 chronic stroke patients [227], only 4 of them achieved the
required reliable SMR control. In their online training over 3 sessions,
finally in 3 out of 8 patients shorter reaction times were found when pre-
trial oscillatory activity was low. Overall, the comparison of our study
with [227] yields that we have performed more than the double amount
of online motor training sessions—which supports a robust validation of
the gating concept and enables the patient to have maximal motor training
time—at the price of a reduced control over the pre-trial component power.

In accordance with earlier findings of three studies in total [226, 227, 242],
it was found that a reduced SMR power correlated with shorter reaction
times. Interestingly, this finding has now been shown in four different
motor tasks (including SVIPT) with substantial variety in their underlying
task complexity. While the three earlier studies could show the effect not
even on half of their subjects, remarkably we have achieved the performance
influence in all subjects. This finding advocates in favor of our data-driven
framework for building the performance predictors. Although reaction time
is not the final clinically relevant metric for post-stroke motor learning, it
might provide a useful basic building block for the successful execution of
higher-level sensorimotor tasks.

Even though the selected decoding model was optimized for reaction
time, the training under suitable brain states also partially translated into
enhanced motor performances captured by longer integration of behav-
ioral performance. Interestingly, SVIPT trial durations were found to be
significantly shorter for suitable than for unsuitable trials in two of four
patients. Intuitively, the more behavioral information is integrated along
the single trial, the less influence can be traced back by the brain state at
go-cue. This finding is also in accordance with studies [226, 227] in which a
behavioral performance split on metrics with longer integration intervals
was only observed in a smaller fraction subjects. However, in our pilot data,
we observed a separation on trial duration for the two patients (P2 and P3)
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which showed the largest SVIPT motor learning effects along the training
(see Fig. A.5) as well as the strongest clinical improvements (see Tab. 6.3).

6.4.2 Calibration of the prediction model

The calibration of a robust decoding model to predict upcoming single-
trial motor performance is challenged by the amount of available training
data which was limited to 200 trials per session. Due to the use of an
online artifact detection pipeline in the pre-go phase, we successfully
increased the number of available data points for model training after
EEG preprocessing. However, the novel regularized NTik-SPoC method—
introduced and evaluated in Chap. 4—requires about Ntrain ≥ 200 to ensure
a saturated decoding performance (see Sec. 4.4.1.3). Thus, two offline
sessions were performed for the initial calibration with a chronological
train/test-split to select an individual oscillatory component. A retraining
of the model on all available labeled data was not performed to maintain
feature introspection and not cope with rank instabilities (see Sec. 3.4.4). For
two patients, P3 and P4, an initial training of the spatial filter models on
all available channels resulted in a large fraction of artifactual components.
As a mitigation strategy in such cases, we removed frontal channels for the
training of NTik-SPoC and observed an increase in neural components.

Even though we utilized single predictive and functionally relevant com-
ponents, from a machine learning perspective it could even be beneficial
to combine regularized SPoC features across multiple frequency bands—
comparable to the filterbank CSP approach [243]. This fusion of features
can be achieved, e.g., by an additional regression model. This might allow
for enhancing the trial-wise performance prediction, given that the informa-
tion contained in different frequency bands is independent. Similarly, the
combination of predictors based on different performance metrics might
serve to gain an enhanced predictive power.

6.4.3 Careful adaptation of the prediction model

As non-stationarity effects in recorded brain activity generally impede a
robust decoding [238], an online adaptation was applied. Even though
each online session continuously provided novel labeled data and thus a
constant re-calibration after each session could have been performed, here
only a careful model adaptation was carried out. In fact, the selected spatial
filter model was fixed after the initial calibration. By the continuous but
refined adaptation of the gating thresholds, we could successfully achieve
the targeted gating ratio across the full training for each individual patient.
The control over this ratio is of specific importance if the influence of
different gating strategies on post-stroke motor learning is studied. As
previously argued by Biasiucci et al. [16], a repeated re-calibration during
the BCI training, such as realized by Ang et al. [244], might translate into
different oscillatory components with diverging efferent pathways and
thus hinder training-induced plastic changes. Overall, the degree of model
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adaptation over the course of a closed-loop training is an ongoing debate
and requires further investigation.

6.4.4 Spatial filters allow for in-depth introspection

The trained data-driven spatial filters for the performance prediction allow
for a comprehensive analysis of selected oscillatory features. As provided
in Sec. 6.3.3, across-session spectral and topographical characteristics can
directly be assessed by the deployed spatial filter models. The spectral
and topographical analysis contributes towards the neurophysiological
understanding of the targeted oscillatory features. In this pilot study, we
identified and utilized predictive features in alpha- and beta-band frequen-
cies which were reported to be crucial in the preparation and execution of
accurate motor performance [245, 246].

As a central novelty, the within-trial SVIPT envelope dynamics were
intensively exploited for the performed online experiments. The introduced
framework in Chap. 5 contributed to this application in two ways: first, the
mining approach on within-trial SVIPT envelope dynamics facilitated the
selection process of individual robust and functionally relevant oscillatory
components for the closed-loop interaction. However, keeping a neurophys-
iological expert for the final feature selection in the loop is (still) a common
strategy for BCI-based trainings [16, 74, 247]. Beside the feature’s predictive
power, we took a variety of feature characteristics into account, such as
spectral and topographical information as well as the envelope dynamics.
Such an in-depth feature introspection path finally grounds the component
selection on diversified sources of information.
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Figure 6.9: Component-specific changes in ERD/ERS characteristics across the
training sessions for patient P2. As a follow-up analysis based on
results in Fig. 6.8, the component-specific envelope difference (A) and
the corresponding ERS latency (B) after hit 3 is plotted over the course
of the training. For each reported data point, the mean value and corre-
sponding standard deviation resulting from a bootstrapping procedure
is reported. Both plots are complemented by a linear fit (dashed lines)
and the corresponding R2 value.

Second, the concept of taking the within-trial envelope dynamics as a
central source of information enabled for a direct evaluation of expected
training-induced functional changes. Precisely, changes in the temporal
envelope dynamics of patient-specific functionally relevant components
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over the course of the hand motor training become accessible, as reported in
Figs. 6.8 and A.3. As such, differences in amplitudes or timings of ERD/ERS
effects can be quantified as exemplarily shown for the selected oscillatory
component of patient P2 in Fig. 6.9. Therefore, event-specific ERD/ERS
envelope difference and latency was estimated in a bootstrapping procedure
with 20 repetitions. For each bootstrap sample, the session-average event-
related envelope dynamics was calculated on 75 % of the session-specific
data. Then, the event-specific maximum envelope difference (as introduced
in Sec. 5.2.3.5) as well as the corresponding latency was determined. The
latency was defined by the time interval from the event onset to the time
point in which 4 times the baseline envelope variation (measured in an
interval 500 ms prior to the event) was de- or exceeded.

For the beta-band component of P2, in all single SVIPT sessions a con-
sistent ERS effect can be observed after hit 3 due to the positive maximal
envelope difference ∆φmax. Interestingly, over the course of the training
there is a significant increase in the ERS amplitude as well as a significant
reduction of the corresponding ERS latency. Such training-induced changes
of sensorimotor bandpower features across sessions were reported earlier
in ERD-BCI paradigms, as users gain increased control over the BCI [248]
or modulated oscillatory features in a MI-based stroke rehabilitation train-
ing [74].

In summary, the proposed methodology shown in Fig. 6.9 can be applied
and extended to any SVIPT event and functionally relevant component.
This might pave the way for novel assessment tools to track and monitor
expected training-induced functional changes in individual patients.

6.4.5 Training under desired brain states might enhance post-stroke motor learn-
ing

Exemplified for SVIPT hand motor training, we provided a temporal gating
strategy on a millisecond time scale which can be further used to adapt
the task difficulty to the current brain state. In this pilot study, the patients
trained mostly under suitable brain states and we solely reported on cases
in which a low oscillatory power at go-cue was associated with a high motor
performance, particularly shortened reaction times. Brain states of low
oscillatory power prior to a movement might foster the cortex excitability
as well as the ability to generate and process afferent input [249].

For two patients we even found that suitable pre-trial brain states trans-
lated into significantly reduced SVIPT trial durations. Thus, a subsequent
research question would be to investigate if repetitive motor training under
desired brain states is then also beneficial for motor learning after stroke.
As done in the pilot study, one possible approach would be a facilitation
strategy by providing mostly suitable brain states. Due to the small sample
size, the effect on motor learning cannot be answered so far.

However, comparable to bilateral priming, a technique which was shown
to enhance the excitability of the motor system and subsequently accelerate
motor learning after stroke [250], a similar effect could be expected for the



126 manipulating motor performance

gating concept such that it could elicit desirable motor preparation states
on a shorter millisecond timescale.

6.4.6 Applicability of brain state-dependent gating

The provided brain state-dependent gating concept is complementary to
most existing BCI-based systems in the field of post-stroke motor rehabili-
tation [15, 74]. These systems focus on the direct decoding of movement
intentions, while the gating concept is taking trial-wise brain state fluctua-
tions into account which influence upcoming motor performance. Thus, the
gating concept could prove beneficial for other repetitive motor paradigms
in post-stroke rehabilitation.

Conceptually, the work provided in this chapter can be seen as a sample
application for brain state-dependent experimenting [20]. As our framework
is based on a data-driven decoding model without prior assumptions on the
underlying cortical network, it is not limited to a specific application. It only
requires single-trial labels of behavioral variability to identify a correspond-
ing neural correlate. As previously reported in Sec. 3.4.5 and 5.3.1.1, our
framework might allow to assess different cognitive sub-processes, which
are related to, e.g., an ongoing attentional level. Thus, there are various ap-
plication fields beyond motor rehabilitation. As an example, we foresee that
the brain state-dependent gating concept could be beneficial in cognitive
rehabilitation scenarios such as in attention-related disorders as attention
deficit hyperactivity disorder (ADHD) [251]. Moreover, sports science could
profit from the consideration of ongoing brain states, specifically for the
development of training concepts in which single-trial performance should
be optimized. These aspects might play an important role in disciplines
such as archery, darts or ski jumping.

6.4.7 Outlook

After successfully demonstrating the feasibility to manipulate upcoming
single-trial motor performance based on the contributed building blocks of
this thesis, a variety of further interesting research questions come up.

From a clinical perspective, one can now verify if such a brain state-
dependent post-stroke motor training is more effective for motor skill
learning than established training protocols without any selection of de-
sired brain states [17]. In this respect, I contributed substantially to a
successful grant proposal to test the brain state-dependent training efficacy
and efficiency in a randomized controlled trial on a larger sample size.

For the patient training, a major challenge is to decide about the poten-
tially most beneficial gating strategy for the brain state-dependent motor
training. So far, only little is known about the influence of task difficulty on
post-stroke motor learning [102]. Thus, we do not know a priori to which
extent a defined gating ratio affects post-stroke motor learning. For each
specific gating strategy, one would need to run a full study to evaluate the
underlying efficacy. Based on the current findings, the author suggests run-
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ning a training under mostly unsuitable brain states to carefully challenge
the patient in most trials of the training [252]. Still, a fraction of suitable
trials would be favorable both for the motivational level of the patient and
to continuously gain labels of both conditions.

Going beyond the proposed passive gating strategy, a further development
would be to study the active triggering of desired brain states, e.g., by means
of functional electrical stimulation [16].

From a computer science point of view, this specific clinical application
bears a number of interesting challenges:

The efficacy of the closed-loop gating strategy strongly depends on the
accuracy of the individually trained prediction model. To further improve
the finding of robust and functionally relevant features and eventually
save calibration time, various across-subject transfer learning strategies
could prove beneficial as they revealed promising results in comparable
BCI scenarios [62, 146]. An improvement in decoding accuracy could also
be achieved by involving further task-relevant features beyond oscillatory
power. Among others, phase-related information could be of particular
interest [44, 253]. Likewise, the consideration of deep learning strategies
might provide added value for performance prediction [1, 100], especially if
larger data collections are available. Finally, the real-time power estimation
could be further optimized by identifying optimal window sizes for power
estimation or by deploying stochastic methods for selecting optimal brain
states [254].

Regarding the feature selection strategy for the closed-loop interaction,
a fully automatic way to select the most promising functionally relevant
and predictive feature can be established in the future. For such a system,
it might be beneficial to define a set of metrics which express all feature
requirements and thus allow for an objective choice.

In the reported multi-session scenario, non-stationarities of the selected
oscillatory components could be characterized in detail for the design of
novel online adaptation strategies that directly cope with the observed fluc-
tuation characteristics. Also, the timing and strength of online adaptation
for closed-loop experimentation is only partially studied so far and requires
further investigation [16].

6.5 lessons learned

This chapter fuses all previous contributions of Chaps. 3, 4 and 5 into
a final closed-loop application: in a nutshell, the feasibility of a novel
online temporal gating strategy to influence upcoming single-trial mo-
tor performance was successfully established. This performance influence
was demonstrated in a pilot multi-session hand motor training with four
chronic stroke patients which revealed strong trial-to-trial motor perfor-
mance variations. Even under challenging conditions with patients, we
could identify robust and predictive brain states that allowed the gating
of suitable pre-trial starting time points of an upcoming motor task. Those
elicited an increased upcoming motor performance. Particularly, single-trial
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reaction times were significantly reduced—ranging from 27− 40 % of the
individual reaction time variations—for suitable trials than for unsuitable
labeled starting time points. As this framework on real-time brain state in-
teraction is not exclusively designed for motor rehabilitation, the detection
and exploitation of un-/suitable brain states can potentially be transferred to
different applications such as cognitive trainings or sports sciences.
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7
S U M M A RY A N D O U T L O O K

This section summarizes the overall contributions of this thesis and relates
them to the originally posed research questions (see Sec. 1.1). As sketched
in Fig. 7.1, the major findings of the previous chapters can be wrapped up
into two main categories: (1) methodological contributions for robust brain
state decoding which are of general relevance to the field of BCI research
and (2) application-related findings in the context of the newly introduced
brain state-dependent interaction strategy exemplified for a post-stroke
hand motor training. Finally, a brief outlook is provided focusing on the
possible impact on future research.

7.1 summary of contributions

Brain activity Behavior

Brain state decoding
Multivariate regression

chapter 3
ML model w

Closed-loop interaction
Influence performance

chapter 6

go!

wait...

model w

Algorithmic task (1):
Regularization strategies

chapter 4

Algorithmic task (2):
Mining of functional signatures

chapter 5

Figure 7.1: Conceptional overview on thesis contributions. The single contribu-
tions of the thesis are schematically visualized and related to the final
closed-loop application scenario.

Two algorithmic contributions for single-trial brain state decoding

From a machine learning point of view, this dissertation pushed forward
two types of algorithmic contributions that foster robust single-trial brain
state decoding under challenging data regimes, as typically encountered
for many BCI applications [18, 62]. As this thesis additionally focused on
a final clinical application scenario, strong emphasis was also put on a
model’s ability to allow for detailed feature introspection.

131
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The first algorithmic contribution (see Chap. 4) comprises regularization
techniques for the spatial filtering algorithm SPoC [94]. This supervised
multivariate approach allows regressing a continuous variable from oscil-
latory multichannel EEG activity. However, in the above described data
regimes the non-regularized SPoC method is prone to overfit to the training
data. To improve SPoC upon this challenge, different types of regularization
techniques were proposed and evaluated both in a novel simulation frame-
work and on real-world datasets, respectively. Confirming our expectations,
SPoC regularization generally reveals the largest benefit under small train-
ing datasets and severe label noise conditions [32, 33]. Overall, a variant
including a cross-validation based Tikhonov regularization and additional
covariance normalization turned out to be the most beneficial technique.
The introduced framework for the evaluation and benchmarking of various
regularization strategies allows validating further, e.g., application-driven
regularization strategies. Finally, regularized SPoC variants that are robust
in small data scenarios are of particular interest in various closed-loop
applications where continuous brain state estimates on single trial level
are necessary. Examples are the estimation of ongoing workload levels in
real-world scenarios [179, 180], the depth of cognitive processes [181] or
movement-related information [182].

The second algorithmic contribution (see Chap. 5) addresses the vari-
ability of optimized spatial filters, a widely used class of machine learning
models in BCI applications [53]. However, in most real-world data scenar-
ios trained spatial filter models are extremely sensitive to slight changes
in training data or involved hyperparameters, such as frequency bands,
time intervals or regularization parameters [31]. This sensitivity leads to
highly variable filter solutions and impedes the selection of a suitable can-
didate for, e.g., neurotechnological applications. Moreover, traditional BCI
applications are typically tuned to solely maximize the decoding accuracy,
while disregarding model interpretability or even the functional role of
oscillatory features [90]. This gap was closed by exploiting the within-trial
temporal dynamics of single oscillatory components. Precisely, I introduced
a novel method that embraces the observed filter variability by condensing
the functional signatures of a large set of oscillatory components’ into
homogeneous clusters, each representing subject-specific within-trial en-
velope dynamics [34]. The method was evaluated on data of two different
motor paradigms with a rich within-trial structure but of diverging task
complexity. For both scenarios, I found that the components’ distinct tem-
poral envelope dynamics are highly subject-specific and strictly confined
regarding their underlying frequency band. As the analysis method is not
restricted to a specific spatial filtering algorithm, it could potentially be
utilized to select reliable and functionally relevant features for a wide range
of neurotechnological applications. A prominent application example is
to support the process of selecting and monitoring features for BCI-based
protocols in stroke rehabilitation [10, 15, 74].

In a nutshell, the two algorithmic contributions overall improved on
the robustness and reliability of existing brain state decoding algorithms,
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as originally motivated by my research questions Q2a and Q2b. Both
algorithmic building blocks share a more general applicability for various
neurotechnological systems.

Oscillatory features enable for single-trial performance prediction

The thesis is complemented by two additional contributions that focus on
a real-world application scenario: I studied a repetitive hand force task,
named SVIPT [115], which was originally designed for post-stroke motor
learning. As a novelty, the paradigm was equipped with an additional
tracking of brain activity with a 63 channel EEG system. Overall, datasets
of two studies—one with chronic stroke patients and the other one with
normally aged control subjects—were recorded for offline analysis.

A behavioral data analysis revealed strong trial-by-trial motor perfor-
mance variations within single sessions, especially for the motor impaired
patients. As captured in my research question Q1, it was investigated
whether individual oscillatory brain activity [27] can provide valuable in-
formation about the upcoming behavioral performance (see Chap. 3). To
tackle this question, the above mentioned regularized SPoC algorithm was
deployed to regress various continuous motor performance metrics, such
as reaction times, path lengths or jerk related metrics, from multichannel
oscillatory brain activity recordings.

In an offline analysis, subject-specific single predictors that explain up
to 36 % of the observed performance fluctuations were identified [28, 29].
From a machine learning perspective, a set of robustness criteria was
developed that allows identifying robust predictive oscillatory features.
Such meaningful predictors were found both on data of normally aged
controls and on data of chronic stroke patients [142]. They might reflect
cognitive sub-processes that are relevant for successful preparation to the
visuo-motor task. Overall, reaction time turned out to reveal the largest
decoding performances among the investigated performance metrics.

Brain state-induced motor performance manipulation

The offline findings on predictive oscillatory features were finally trans-
ferred into a closed-loop experimental protocol as sketched in Fig. 7.1.
Given the two developed algorithmic advances at hand, they were indis-
pensable building blocks to finally establish and validate a novel brain
state-dependent interaction strategy (see Chap. 6):

As large behavioral trial-to-trial performance fluctuations occur in scenar-
ios like a post-stroke motor training, I verified if the real-time estimation
of a predictive pre-trial brain state can be utilized to influence upcoming
motor performance on single-trial level, as stated in my original research
question Q3. The performance influence was accomplished by a temporal
gating strategy prior to the start of a trial. A SVIPT trial start was mostly
elicited if a user-specific performance prediction model indicated a desired
brain state. In a proof-of-concept study, I demonstrated the feasibility of
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this concept in a high intensity hand motor training on four chronic stroke
patients—with ≈ 15 hours of effective training per patient. Even under
challenging conditions with patients, I could identify robust brain states
that allowed the gating of suitable pre-trial starting time points, which
elicited an increased upcoming motor performance compared to unsuitable
starting times. Noticeably, in all four patients single-trial reaction times
were significantly reduced—ranging from 27–40 % of the individual re-
action time variations—for suitable trials compared to unsuitable labeled
starting time points.

This gating approach can be categorized into the recently introduced
research branch of brain state-dependent experimenting [20]. Complemen-
tary to most BCI systems in which a direct decoding of user intention is
realized [12], here the focus was put on the active exploitation of additional
information about a user’s current brain state—as thoroughly discussed in
Sec. 6.4.

7.2 outlook

Finally, I want to briefly highlight the most promising future directions
that directly build upon the contributions of this thesis. A more in-depth
outlook can be found in Sec. 6.4.7.

Clinical applications and beyond

From a clinical point of view, it will be important to investigate if the intro-
duced brain state-dependent gating strategy can be effectively deployed
for motor training scenarios. Taking post-stroke rehabilitation as an appli-
cation field, it is mandatory to evaluate whether a brain state-dependent
post-stroke motor training is more effective for motor learning than the
established training protocol without temporal gating. To study this ques-
tion adequately, I contributed to a successful grant proposal to finally test
the brain state-dependent training efficacy and efficiency in a randomized
controlled trial on a larger sample size.

Likewise, the brain state-dependent adaptation of difficulty levels for
forthcoming tasks enable for novel application scenarios as the introduced
decoding framework was designed to come up with any informative neu-
ral sub-process—not at all restricted to a certain cortical area—that holds
relevant information about performance variations. Possible example ap-
plication fields might be: (1) cognitive rehabilitation trainings, e.g., for
people with attentional deficits as in ADHD and (2) novel training con-
cepts in sports sciences in which specific aspects of motor performance are
optimized as highly relevant for disciplines like archery or ski jumping.
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Algorithmic challenges

The above stated application fields yield novel challenging algorithmic
questions that could be tackled in future research:

First, the efficacy of brain state-dependent training systems are strongly
influenced by finding informative, robust and functionally relevant features.
To accomplish this challenge with minimal calibration effort [62], the de-
coding methods for performance prediction could potentially be improved
by applying transfer learning strategies which accumulate information
across sessions, subjects or even experimental tasks. At the same time, this
procedure would additionally promote the transfer of BCI systems from
the lab to home-use environments.

Second, the decoding of functionally relevant features or sub-processes
could be deepened. Especially in complex tasks, the interaction of various
neural sub-processes are necessary building blocks for evoking a favor-
able behavioral performance. Following the proposed path of exploiting
within-trial brain signatures, the tracking and monitoring of observable
sub-processes during motor tasks as well as a statistical evaluation of tim-
ings and interactions could be a valuable future track. In a next step, it
might be beneficial to utilize non-linear decoding approaches, such as deep
learning methods [1], which could aim to disentangle functionally relevant
sub-processes and their interactions from brain activity recordings. This
could be accomplished by directly integrating more fine-granular infor-
mation from complex tasks into decoding methods. This course of action
might contribute to the general understanding of the motor system as well
as motor learning, when comparing the findings of the novel approaches
on data of healthy controls and patients. By that, one might gain access to,
e.g., continuously monitor the patient’s rehabilitation progress based on
non-invasive brain activity recordings.

final statement

To conclude, my dissertation sets an example for interdisciplinary work
at the junction of computer science, clinical research and basic neuro-
science. The achieved algorithmic developments finally made it possible
to establish and conduct a novel neurotechnological application—a brain
state-dependent post-stroke motor training protocol. Interestingly, having
such a concrete application scenario at hand, a variety of machine learning
challenges come to light. Moreover, the present thesis has shown that im-
provements in a final (clinical) application were enabled by a holistic view
across different disciplines. In the future, more cross-domain efforts of this
kind could also be promising for other application scenarios.
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a.1 supplementary material to chapter 3

Single-trial envelopes of exemplary components

The computed spatial filters can be applied on single-trial level to verify
their predictive strength. Fig. 3.6 reveals the single-trial envelopes of two
exemplary oscillatory components. In order to emphasize the oscillatory
components’ ability to be informative about upcoming motor performance,
the single-trial envelopes are divided in trials of the upper and lower RT
distribution. For both examples it can be nicely seen that a large pre-go
power is dominated by the “high RT” class and vice versa. Interestingly,
in (B) the role of the timing of the components’ rhythmic activity can be
well observed. While envelopes of the “low RT” class reveal a high power
in an interval around [−2,−1] s and then decays to lower powers in the
gray shaded interval, the “high RT” class reveals the largest power in the
interval used for training. This supports our finding, that the actual pre-
go bandpower of an oscillatory components partially explains upcoming
single-trial motor performance.
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Figure A.1: Single-trial envelopes of predictive components grouped into ex-
treme single trial motor performance. The exemplary SPoC com-
ponents in (A) and (B) were trained on EEG data of the interval
[−800,−50]ms prior to the go-cue (gray boxes). Each line refers to a
single-trial envelope of the corresponding component. In green, all
envelopes corresponding to trials in the upper RT quartile are shown,
while in orange the trials related to lower quartile RTs are reported. The
thick lines correspond to the averaged envelope for the corresponding
quartile. The component shown in (A) is derived from subject S13 in
the alpha-band range, while (B) is the same configuration of subject
S5 which was reported in Fig. 3.6.
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Single-trial predictors of chronic stroke patients

In Fig. A.2, two exemplary predictive oscillatory SPoC components gained
on the dataset (D1b) of chronic stroke patients are shown. The example
of P2 was gained from the alpha band, the one of P6 was found in the
beta-band.
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Figure A.2: Exemplary predictive SPoC features of chronic stroke patients. The
presented components were gained on the single sessions of dataset
(D1b). Each component is characterized line-wise labeled by the used
performance metric and the rank according to the full-session filters.
The same characteristics as in Fig. 3.6 are reported.

a.2 supplementary material to chapter 4

Effect of regularization upon oscillatory components

For an exemplary subject, the effect of the regularization strength in NTik-
SPoC upon the underlying first four ranked oscillatory components is
depicted in Fig. A.3. In (A), the z-AUC is reported for the different α values,
in (B) the first four ranked patterns of the marked evaluation point (a)-(i)
are shown. As the sign of a pattern a is arbitrary, they have been corrected
to be consistent across the displayed patterns and scaled by their norm.

Consistent with the results presented in Sec. 4.4.1.3, three different α

ranges can be identified for the selected subject. They can be characterized
according to two aspects: the performance (A) and the underlying spatial
patterns (B).

For very small regularization values, represented by evaluation points (a)
and (b), the performance as well as the spatial patterns are stable despite
of increased α. In other words, NTik-SPoC is not sensitive for such small
values of α. The gray shaded area in Fig. A.3 (A) encloses the evaluation
points (c)–(f). This range is sensitive to changes of α which is revealed by
performance improvements as well as rank switches among the spatial
patterns (e.g. rank #4 from (d) tracked by a solid red line to (f)) or even novel
patterns that appear among the top four ranks (e.g. rank #3 at position
(d)). In Fig. A.3 (B), novel patterns are marked by a red circumference.
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Figure A.3: Example to visualize the effect of regularization strength on perfor-
mance and the spatial patterns. The shown results are reported for
an exemplary subject S3. (A) Performance of NTR-SPoC for choosing
α ∈ [10−8, 100]. (B) Corresponding activity patterns along first four
ranked components at the marked evaluation points (a)-(i).

Regularization beyond α > 10−2 (as in (g)–(i)) leads to a slight drop in
performance. This is accompanied by an increased number of components
among the first ranks, which display higher spatial frequencies in their
activation patterns. The latter observation was made for most subjects and
usually affected patterns of ranks 2–4.

a.3 supplementary material to chapter 5

Envelope dynamics of clusters

To demonstrate the applicability of the mining framework also for the
patient scenario with scarce training data, Fig. A.4 gives a detailed overview
on representative clusters of oscillatory NTik-SPoC components that were
gained on the SVIPT dataset (D1b) which contains data of chronic stroke
patients. Comparable to Fig. 5.5, each row (C1)–(C7) contains an exemplary
cluster and its set of associated within-trial event-related envelope traces.
The examples were again selected to represent typically observed effects
related to band-specific amplitude modulations, underlying frequency
ranges and cluster homogeneity. Specifically, rows (C1)–(C3) refer to clusters
of patient P3, while (C4)–(C5) are gained from patient P4 and (C6)–(C7)
correspond to P7.
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Figure A.4: Representative envelope dynamics for individual clusters on data
of chronic stroke patients. All configurations for single subject-
specific clusters are reported in rows (C1)–(C7). Columns (A)–(F) re-
port the cluster-wise envelope dynamics for within-trial SVIPT events,
while in (G) the spatial filter and in (H) the related activity pattern of
cluster representatives (with annotated central frequency) are shown.
In all subplots of columns (A)–(F), every blue line refers to the log-
envelope dynamics φj(t, m) of one single hyperparameter configu-
ration ωj ∈ ck. Only events shaded in blue were included for the
clustering step. The text box on top of each row provides the subject
code, the mean and standard deviation of the central frequency across
all cluster samples, the cluster size, the average decoding performance
as well as three validation metrics.

In accordance with the findings based on data of normally aged subjects,
the envelope dynamics aligned to the different within-trial SVIPT events
reveal distinct and time-locked ERD or ERS effects. Again, ERD effects can
be found for get-ready and go-cue, while hit3 and hit4 elicit ERS effects.

The analysis also confirms that the event-related envelope dynamics
reveal substantially different shapes both within and across subjects. To
state an example, the two clusters (C1) and (C3) of the same patient are
both associated with the beta-band domain, while their envelope dynamics
shows distinct differences over time, such as the diverging ERS effects
towards the end of the trial. Observable ERD/ERS effects are remarkably
different across subjects and clusters.
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This demonstrates that the proposed framework also allowed to identify
individual clusters of homogeneous envelope dynamics in the patient
scenario. This is an important prerequisite for the method’s applicability in
the preparation of closed-loop scenarios.

a.4 supplementary material to chapter 6

SVIPT motor learning
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Figure A.5: SVIPT motor learning over the course of the hand motor training.
For each pilot patient, the session-wise median of the SVIPT trial
duration and the corresponding standard deviation is shown.

The patient-specific SVIPT motor learning over the course of the inten-
sive training is quantified in Fig. A.5. For patients P2 and P3 a continuous
decrease of the average SVIPT trial duration can be stated accompanied by
a reduction of performance variation over the course of the training. The
remaining patients reveal a different behavior. P1 reveals larger overall trial
durations and a rather inconsistent behavior from session-to-session. This
can be attributed to the severity of his motor impairment (see UEFM in
Tab. 6.3). In contrast, P4 was a non-naïve SVIPT user and less motor im-
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paired as all other patients. As expected, the course of SVIPT performance
from session-to-session did not reveal a strong motor learning effect.

Oscillatory feature introspection

As the introduced decoding framework allows for a post-hoc inspection
of the utilized oscillatory features for closed-loop interaction, a patient-
specific summary of the underlying event-related envelope dynamics (for
details see chapter 5) is given in Fig. A.6. Overall, it can be observed
that the selected features reveal stable characteristics along the training,
highlighting a differently pronounced ERD with go-cue and an ERS with
hit 3 (for P2) or hit 4 (for all other patients).
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Figure A.6: Session-wise within-trial envelope dynamics of individual features
for closed-loop interaction. For all pilot patients, the session-averaged
envelope dynamics aligned to the different within-trial SVIPT events
are shown for single training sessions. Patients P2-P4 share the same
legend.

In addition, an overview on the session-wise pre-trial spatial activity
patterns of the underlying spatial filter model are reported for all pilot
patients in Fig. A.7. It can be observed that the patterns behave differently
across patients. While for P3 and P4 a mostly stable spatial topography
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from session-to-session is found, for P1 and P2 perceivable variations are
contained across sessions. These variations might be due to signal non-
stationarities, e.g. different impedances at electrodes from session-to-session
or systematic changes in the underlying brain activity.
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Figure A.7: Pre-trial spatial activity patterns of selected features. For all pilot
patients, the pre-trial activity pattern of the underlying oscillatory
component is reported for each session. In addition, the average pat-
tern across all sessions is provided. For patients P1 and P3, the lastly
selected oscillatory component is shown (according to Tab. 6.2). Please
note that the corresponding filter was only trained on the first two (for
P1: three) sessions.
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