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Figure S1: Mitochondria were primarily found within the cytoplasm and primary processes of podocytes, Related 

to Figure 1 

(A) Immunofluorescence image obtained from mouse glomeruli (8 weeks old) for synaptopodin (green, podocyte 

marker) and SOD2 (red, mitochondrial enzyme).  Arrowheads point to mitochondrial signal. 

(B) Immunofluorescence image obtained from mouse glomeruli (8 weeks old) for synaptopodin (green, podocyte 

marker) and PKM2 (red, glycolytic enzyme).  Arrowheads in the high magnification point to PKM2 signal, 

primarily found in foot processes. 

(C) Quantification of the maximal distance of SOD2 and PKM2 signal to the nucleus (obtained from 20 glomeruli). 

(D) Quantification of the volume of SOD2 and PKM2 signal compared to podocyte volume (obtained from 20 

glomeruli). 
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Figure S2: Impact of Drp1 deletion on the expression of mitochondria encoded genes and function, Related to 

Figure 4 

(A) qPCR for the abundance of mitochondrial DNA (Atp6, Cox I) normalized to genomic DNA (18s) (p-value ** 

≤ 0.01). 

(B) Principal component analysis of metabolite abundance from kidney cortex obtained from 24-week-old mice 

of respective genotype assessed by unbiased GC-MS based metabolomic analysis (n=4 each group). Lactate levels 

normalized to WT. 

(C) Western blot and densitometry for the abundance of DRP1 in human podocytes after siRNA-based knock-

down compared to scrambled siRNA controls (p-value *** ≤ 0.001).   

(D) Mitochondrial function of human podocytes after knock-down of Drp1 and respective controls. Oxygen 

consumption rate (OCR) was measured at basal level and after the sequential addition of oligomycin (1 mM), 

FCCP (0.5 mM), and rotenone (Rot; 1.0 mM) + antimycin A (Ant; 1.0 mM; n=3, technical replicates).  

(E) Combined results underline the minor role of Drp1 for mitochondrial respiratory function as shown for basal 

respiration, ATP-linked oxygen consumption rate and maximal respiratory capacity (p-value * ≤ 0.05). 

(F) Extracellular acidification rate (ECAR) of human podocytes with knock-down of Drp1 and respective controls 

at baseline and after injection of glucose followed by oligomycin. 

(G) Combined results underline the minor impact of Drp1 for anaerobic utilization of glucose as shown for 

glycolysis and maximal glycolytic capacity.  

(H) Dependency of fatty acid oxidation of human podocytes with knock-down for Drp1 and respective controls 

obtained after etomoxir and BPTES/UK5099 injection. Final concentrations: etomoxir: 100 µM, BPTES: 30 µM, 

UK5099: 30 µM. 

(I) Capacity of fatty acid oxidation of human podocytes with knock-down for Drp1 and respective controls 

obtained after BPTES/UK5099 injection followed by etomoxir, Final concentrations: etomoxir: 100 µM, BPTES: 

30 µM, UK5099: 30 µM. 

(J) Dependency of pyruvate oxidation of human podocytes with knock-down for Drp1 and respective controls 

obtained after UK5099 and BPTES/etomoxir injection. Final concentrations: UK5099: 30 µM, etomoxir: 100 µM, 

BPTES: 30 µM.  

(K) Capacity of pyruvate oxidation of human podocytes with knock-down for Drp1 and respective controls 

obtained after BPTES/etomoxir and UK5099 injection. Final concentrations: etomoxir: 100 µM, BPTES: 30 µM, 

UK5099: 30 µM.  

(L) Dependency of glutamine oxidation of human podocytes with knock-down for Drp1 and respective controls 

obtained after BPTES and UK5099/etomoxir injection. Final concentrations: BPTES: 30 µM, UK5099: 30 µM, 

etomoxir: 100 µM.  

(M) Capacity of glutamine oxidation of human podocytes with knock-down for Drp1 and respective controls 

obtained after UK5099/etomoxir and BPTES injection. Final concentrations: UK5099: 30 µM, etomoxir: 100 µM, 

BPTES: 30 µM.  

(N) Statistics for substrate dependency of human podocytes with knock-down for Drp1 and respective controls.  

(O) Statistics for substrate capacity of human podocytes with knock-down for Drp1 and respective controls.  
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Figure S3: Impact of Pgc-1a deletion on the expression of mitochondria encoded genes and function, Related to 

Figure 5 

(A) qPCR for the abundance of mitochondrial DNA (Atp6, Cox I) normalized to genomic DNA (18s) (p-value * 

≤ 0.05). 

(B) Principal component analysis of metabolite abundance from kidney cortex obtained from 24-week-old mice 

of respective genotype assessed by unbiased GC-MS based metabolomic analysis (n=4 each group). Lactate levels 

normalized to WT. 

(C) Western blot and densitometry for the abundance of PGC-1a in human podocytes after siRNA-based knock-

down compared to scrambled siRNA controls (p-value * ≤ 0.05).   

(D) Mitochondrial function of human podocytes after knock-down of Pgc-1a and respective controls. Oxygen 

consumption rate (OCR) was measured at basal level and after the sequential addition of oligomycin (1 mM), 

FCCP (0.5 mM), and rotenone (Rot; 1.0 mM) + antimycin A (Ant; 1.0 mM; n=3, technical replicates).  

(E) Combined results underline the major role of Pgc-1a for mitochondrial respiratory function as shown for basal 

respiration, ATP-linked oxygen consumption rate and maximal respiratory capacity (p-value * ≤ 0.05 and *** ≤ 

0.001). 

(F) Extracellular acidification rate (ECAR) of human podocytes with knock-down of Pgc-1a and respective 

controls at baseline and after injection of glucose followed by oligomycin. 

(G) Combined results underline the major impact of Pgc-1a for anaerobic utilization of glucose as shown for 

glycolysis and maximal glycolytic capacity (p-value * ≤ 0.05).  

(H) Dependency of fatty acid oxidation of human podocytes with knock-down for Pgc-1a and respective controls 

obtained after etomoxir and BPTES/UK5099 injection. Final concentrations: etomoxir: 100 µM, BPTES: 30 µM, 

UK5099: 30 µM. 

(I) Capacity of fatty acid oxidation of human podocytes with knock-down for Pgc-1a and respective controls 

obtained after BPTES/UK5099 injection followed by etomoxir, Final concentrations: etomoxir: 100 µM, BPTES: 

30 µM, UK5099: 30 µM. 

(J) Dependency of pyruvate oxidation of human podocytes with knock-down for Pgc-1a and respective controls 

obtained after UK5099 and BPTES/etomoxir injection. Final concentrations: UK5099: 30 µM, etomoxir: 100 µM, 

BPTES: 30 µM.  

(K) Capacity of pyruvate oxidation of human podocytes with knock-down for Pgc-1a and respective controls 

obtained after BPTES/etomoxir and UK5099 injection. Final concentrations: etomoxir: 100 µM, BPTES: 30 µM, 

UK5099: 30 µM.  

(L) Dependency of glutamine oxidation of human podocytes with knock-down for Pgc-1a and respective controls 

obtained after BPTES and UK5099/etomoxir injection. Final concentrations: BPTES: 30 µM, UK5099: 30 µM, 

etomoxir: 100 µM.  

(M) Capacity of glutamine oxidation of human podocytes with knock-down for Pgc-1a and respective controls 

obtained after UK5099/etomoxir and BPTES injection. Final concentrations: UK5099: 30 µM, etomoxir: 100 µM, 

BPTES: 30 µM.  

(N) Statistics for substrate dependency of human podocytes with knock-down for Pgc-1a and respective controls.  

(O) Statistics for substrate capacity of human podocytes with knock-down for Pgc-1a and respective controls.  

  





Figure S4: Podocyte-specific Tfam knockout mice do not develop glomerular disease, Related to Figure 6 

Podocyte-specific Tfam knockout mice do not develop glomerular disease. 

(A) TEM images obtained from 20- and 55 weeks-old Tfamflox/flox*hNPHS2Cre and littermate controls show 

normal foot process formation (representative pictures). 

(B) TEM images obtained from 20- and 55 weeks-old Tfamflox/flox*hNPHS2Cre and littermate controls showing 

maintained mitochondrial morphology. 

(C) Mitochondrial density in podocytes of Tfamflox/flox*hNPHS2Cre and littermate controls (based quantitative 

analysis of 48 TEM pictures obtained from 4 mice of each genotype, mean ± SD). 
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Figure S5: Impact of Tfam deletion on the expression of mitochondria encoded genes and function, Related to 

Figure 6 

(A) qPCR for the abundance of mitochondrial DNA (Atp6, Cox I) normalized to genomic DNA (18s) (p-value * 

≤ 0.05). 

(B) Principal component analysis of metabolite abundance from kidney cortex obtained from 24-week-old mice 

of respective genotype assessed by unbiased GC-MS based metabolomic analysis (n=4 each group). Lactate levels 

normalized to WT (p-value * ≤ 0.05). 

(C) Western blot and densitometry for the abundance of TFAM in human podocytes after siRNA-based knock-

down compared to scrambled siRNA controls (p-value * ≤ 0.05).   

(D) Mitochondrial function of human podocytes after knock-down of Tfam and respective controls. Oxygen 

consumption rate (OCR) was measured at basal level and after the sequential addition of oligomycin (1 mM), 

FCCP (0.5 mM), and rotenone (Rot; 1.0 mM) + antimycin A (Ant; 1.0 mM; n=3, technical replicates).  

(E) Combined results underline the major role of Tfam for mitochondrial respiratory function as shown for basal 

respiration, ATP-linked oxygen consumption rate and maximal respiratory capacity (p-value * ≤ 0.05 and *** ≤ 

0.001). 

(F) Extracellular acidification rate (ECAR) of human podocytes with knock-down of Tfam and respective controls 

at baseline and after injection of glucose followed by oligomycin. 

(G) Combined results underline the major impact of Tfam for anaerobic utilization of glucose as shown for 

glycolysis and maximal glycolytic capacity (p-value * ≤ 0.05 and *** ≤ 0.001).  

(H) Dependency of fatty acid oxidation of human podocytes with knock-down for Tfam and respective controls 

obtained after etomoxir and BPTES/UK5099 injection. Final concentrations: etomoxir: 100 µM, BPTES: 30 µM, 

UK5099: 30 µM. 

(I) Capacity of fatty acid oxidation of human podocytes with knock-down for Tfam and respective controls 

obtained after BPTES/UK5099 injection followed by etomoxir, Final concentrations: etomoxir: 100 µM, BPTES: 

30 µM, UK5099: 30 µM. 

(J) Dependency of pyruvate oxidation of human podocytes with knock-down for Tfam and respective controls 

obtained after UK5099 and BPTES/etomoxir injection. Final concentrations: UK5099: 30 µM, etomoxir: 100 µM, 

BPTES: 30 µM.  

(K) Capacity of pyruvate oxidation of human podocytes with knock-down for Tfam  and respective controls 

obtained after BPTES/etomoxir and UK5099 injection. Final concentrations: etomoxir: 100 µM, BPTES: 30 µM, 

UK5099: 30 µM.  

(L) Dependency of glutamine oxidation of human podocytes with knock-down for Tfam and respective controls 

obtained after BPTES and UK5099/etomoxir injection. Final concentrations: BPTES: 30 µM, UK5099: 30 µM, 

etomoxir: 100 µM.  

(M) Capacity of glutamine oxidation of human podocytes with knock-down for Tfam and respective controls 

obtained after UK5099/etomoxir and BPTES injection. Final concentrations: UK5099: 30 µM, etomoxir: 100 µM, 

BPTES: 30 µM.  

(N) Statistics for substrate dependency of human podocytes with knock-down for Tfam and respective controls.  

(O) Statistics for substrate capacity of human podocytes with knock-down for Tfam and respective controls.  
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Figure S6: Metabolic profiling of ex vivo isolated kidney cortex of Drp1, Pgc-1a and Tfam mice, Related to  

Figure 7 

(A) Principal component analysis of metabolites found in kidney cortex of respective genetic mouse models and 

liver tissue (n=4 each). 

(B) Heat map of top 25 significantly different metabolites found in kidney cortex of respective genetic mouse 

models and liver tissue (n=4 each). 
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