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ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Abstract

The Class of Timed Automata
with Quasi-Equal Clocks

by Sergio Christian Herrera Salazar

In this thesis we present an approach for reducing the number of quasi-
equal clocks in timed automata. Intuitively, two clocks are called quasi-
equal if and only if their values only differ at time points in which those
two clocks are reset.

Quasi-equal clocks are typically used in distributed real-time systems
modelled with networks of timed automata. These networks, for instance,
implement a time-triggered architecture which uses the Time Division Multi-
ple Access (TDMA) scheme. This scheme provides system components with
exclusive access to a shared medium whenever they generate events at pre-
defined time points.

TDMA divides time into cycles and cycles into slots. Each component is
allocated a unique slot whose length is measured by a quasi-equal clock. At
the end of each cycle and before a new one begins, each component resets
its quasi-equal clock. By the interleaving semantics of timed automata these
resets occur one after the other, however, the same configuration is reached
regardless of the order in which all these resets are executed.

Resetting quasi-equal clocks induces intermediate configurations. The
size of a set of intermediate configurations is determined by all possible per-
mutations of resets of the quasi-equal clocks. This size increases exponen-
tially in the number of quasi-equal clocks reset at the end of each cycle. The
verification effort induced by exploring these intermediate configurations
with tools like Uppaal is a major obstacle for model checking industrial-size
networks.

In this thesis we present an approach for reducing the number of quasi-
equal clocks, and thereby eliminating those intermediate configurations.
We apply this approach on networks with quasi-equal clocks where the re-
sulting networks reflect all reachability properties of their respective origi-
nal counterparts. Our experiments with nine industrial case studies show
significant savings of verification costs for properties verified in transfor-
med networks, as compared to the costs of verifying the same properties in
the original networks. Since neither syntactic nor semantic assumptions for
networks are required, our approach applies to the whole class of timed
automata with quasi-equal clocks.

HTTP://WWW.UNIVERSITY.COM
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ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Zusammenfassung

The Class of Timed Automata
with Quasi-Equal Clocks

by Sergio Christian Herrera Salazar

In dieser Doktorarbeit wird ein neuer Ansatz zur Reduzierung von quasi-
equal Uhren in Zeitautomaten vorgestellt. Zwei Uhren heißen quasi-equal,
genau dann wenn sich diese Uhren in ihren Werten nur an Zeitpunkten
unterscheiden, zu denen sie zurückgesetzt werden.

Quasi-equal Uhren werden typischerweise in verteilten Echtzeitsyste-
men verwendet, die durch Netzwerke von Zeitautomaten modelliert sind.
Diese Netzwerke implementieren zum Beispiel eine Time-Triggered Archi-
tecture, die das Time Division Multiple Access (TDMA) Schema verwendet,
um Systemkomponenten exklusiven Zugriff auf ein gemeinsam genutztes
Medium bereit zu stellen, wann immer diese Systemkomponenten Ereig-
nisse zu vordefinierten Zeitpunkten erzeugen.

TDMA unterteilt die Zeit in Zyklen und diese Zyklen wiederum in Slots.
Jeder Systemkomponente wird einem eindeutigen Slot zugewiesen, dessen
Länge durch eine quasi-equal Uhr gemessen wird. Am Ende eines Zyklus’
setzt jede Komponente ihre quasi-equal Uhr zurück, bevor sie mit einem
neuen Zyklus beginnt. Durch die Interleaving-Semantik von Zeitautomaten
werden die Uhren nacheinander zurückgesetzt. Jedoch erreicht das System
dieselbe Konfiguration, unabhängig von der Reihenfolge, in der alle diese
Resets ausgeführt werden.

Zwischenkonfigurationen werden durch Resets von quasi-equal Uhren
generiert. Die Größe der auftretenden Menge von Zwischenkonfiguratio-
nen wird durch alle möglichen Permutationen von Resets der quasi-equal
Uhren bestimmt. Diese Größe wächst exponentiell mit der Anzahl der
quasi-equal Uhren, die am Ende eines jeden Zyklus’ zurückgesetzt wer-
den. Durch Untersuchung der Zwischenkonfigurationen mit Tools wie Up-
paal wird der Verifikationsaufwand erhöht, was ein schweres Hindernis für
die Analyse von großen Netzwerken darstellt.

Diese Arbeit präsentiert ein Verfahren, welches Netzwerke so trans-
formiert, dass die Anzahl der quasi-equal Uhren reduziert und dadurch
Zwischenkonfigurationen entfernt werden, jedoch alle Erreichbarkeitsei-
genschaften der ursprünglichen Netzwerken erhalten bleiben. Außerdem
zeigen die in dieser Arbeit vorgestellten neun industriellen Fallstudien, dass
sich die Kosten, um Eigenschaften in den transformierten Netzwerken zu
verifizieren, signifikant reduziert haben. Da weder syntaktische noch se-
mantische Annahmen an die Netzwerke getroffen werden müssen, gilt der
in dieser Arbeit vorgestellte Ansatz für die gesamte Klasse von Zeitauto-
maten mit quasi-equal Uhren.

HTTP://WWW.UNIVERSITY.COM
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Chapter 1

Introduction

In distributed real-time systems that follow a time-triggered architecture [1]
components access a global time base by means of a local clock. These com-
ponents often follow a time division scheme, e.g. a Time Division Multiple
Access (TDMA) scheme [2], to gain exclusive access to a shared medium
whenever they generate events at predefined time points.

Modelling the local timing behaviour of components and the timing
synchronisation constraints among them, is the natural way to model dis-
tributed real-time systems by networks of timed automata [3].

The problem that we address in this work is related to the verifica-
tion overhead caused by using local clocks in networks of timed automata
which, for instance, implement a time division scheme like the TDMA.

A TDMA scheme divides time into cycles, then each cycle is divided
into slots, and each component is allocated a unique slot where it can gene-
rate local or communication events to other components. By limiting the
activity of each component to its allocated slot whose length is measured
by the local clock, exclusive access to a shared medium is guaranteed.

After the end of each cycle each component resets its local clock at the
same point in time so that a new cycle starts. Logically, these resets do not
consume time and all of them occur at once. However, by the interleaving
semantics of networks of timed automata, each reset occurs one after the
other. Nevertheless, the configuration resulting after all of these resets are
carried out is independent of any possible permutation of them.

Clocks whose values only differ at time points in which those clocks are
reset, are called quasi-equal [4]. Quasi-equality of clocks induces equivalence
classes in timed automata. Note that the local clocks used in networks im-
plementing the TDMA scheme adhere to the notion of quasi-equal clocks.

Resetting quasi-equal clocks induce intermediate configurations. The
size of a set of intermediate configurations is determined by all possible
permutations of resets of the quasi-equal clocks. This size increases expo-
nentially in the number of quasi-equal clocks reset at the end of each cycle.
The verification overhead induced by exploring these intermediate configu-
rations with tools like Uppaal [5], is a major obstacle for model checking [6]
industrial-size networks.

We consider that verification overhead unnecessary since typically these
configurations only differ in the information of which clock has already
been reset and which clock has not. Thus, efficiently encoding these diffe-
rences saves us that overhead. With the aim of removing the unnecessary
verification overhead, we reduce the number of quasi-equal clocks in timed
automata.
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The quasi-equal clocks reduction approach [4, 7, 8, 9] consists of transforma-
tions:

1. for replacing all clocks from an equivalence class of quasi-equal clocks
by a representative clock. The resulting transformed network reflects
all reachability properties of the original network,

2. for queries on networks where quasi-equal clocks occur so that they
can be verified in the respective transformed networks. The cost of
verifying properties is much lower in transformed networks than in
their original counterparts with quasi-equal clocks.

The approach is provided as an automatic source-to-source transforma-
tion which yields models optimised for verification. In these models fur-
ther techniques for the analysis of timed automata can directly be applied,
and the modelling language of Uppaal can be supported. In this way we
bridge the gap between efficiency and readability by enabling the modelling
engineer to use and maintain more natural representations of a system for
validation purposes. Our transformation frees the engineer from imple-
menting optimisations for verification purposes. This is specially relevant
in situations where the modelling engineer and the verification engineer are
two different persons, and the former lacks of an educational background
on verification methods. These situations occur often in small and medium
sized enterprises from the high-tech industry in the context of projects of
real-time systems [10].

We have mentioned before that verifying properties in transformed net-
works yields savings in verification costs as compared to the cost of veri-
fying properties in original networks with quasi-equal clocks. In [9] we
present a theoretical analysis that allows us to quantify and justify those
savings. Moreover, we present space and time bounds that characterise
a less expensive model checking effort in transformed networks wrt. the
effort in original networks with quasi-equal clocks.

The cheaper model checking effort is justified by the following facts:

1. Encoding in transformed networks all intermediate configurations in-
duced in original networks by executing all possible permutations of
resets of quasi-equal clocks, leads to a drastic reduction in the number
of configurations that Uppaal explores when verifying properties in
transformed networks.

2. A reduction in the size of the Difference Bound Matrices (DBMs) that
Uppaal uses to represent zones [11] is yielded by using only the re-
presentative clock of each equivalence class. This reduction leads to
a more efficient representation, storage, access and manipulation of
DBMs in memory.

A theoretical analysis in [9] allows us to conclude that the complexity of
the model checking problem for networks of timed automata using quasi-
equal clocks (in certain cases) is exponential in the number of equivalence
classes of quasi-equal clocks, while for networks of timed automata in gene-
ral is exponential in the number of clocks in those networks [6]. In this work
we update that theoretical analysis since we introduce improvements in
transformed networks that in our experiments yield up to 9% more savings
in verification time than those savings presented in [9].
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1.1 Contributions of This Thesis

This section provides a summary of the overall contributions of this thesis:

1. We present an approach which advances the state of the art in model
checking for timed systems, by providing an automatic reduction of
the number of quasi-equal clocks in any network of timed automata.
Our approach yields transformed networks where all properties of
the original networks are reflected. The cost of verifying properties
is significantly lower in transformed networks than in their original
versions with quasi-equal clocks. Our approach does not impose any
syntactical assumption neither on networks nor on single automata,
thus we are able to transform the whole class of timed automata with
quasi-equal clocks.

2. By implementing our approach, we found out that the worst-case
complexity of the model checking problem for networks of timed au-
tomata with quasi-equal clocks (in cases where those clocks are reset
by simple edges, c.f. Definition 22) is exponential in the number of equi-
valence classes of quasi-equal clocks, while for networks in general is
exponential in the number of clocks in those networks [6].

3. In networks of timed automata transformed with our approach the
full query language of Uppaal is supported, hence, any property on
an original network can be transformed and verified in the respective
transformed network.

4. Our source-to-source transformation is automatically delivered by our
tool sAsEt [12]. sAsEt implements distinct versions of our transforma-
tion in order to support several versions of Uppaal. This source-to-
source transformation outputs a network of timed automata where
further techniques for the analysis of networks can directly be ap-
plied, and where the rich modelling language of Uppaal can be sup-
ported.

5. We provide formulas to quantify the number of reachable configura-
tions (in terms of zones) in transformed automata, and thereby know
the number of configurations saved in those automata. For certain
transformed automata our quantification is exact, and for the other
automata we bound that number of reachable configurations. To the
best of our knowledge, no research before ours has been devoted to
predict the number of zones output by the verification analysis of
Uppaal.

6. We apply our quasi-equal clocks reduction approach on nine indus-
trial cases studies, and provide extensive experimental results which
show significant savings in verification costs.

We compare the savings in memory consumption and verification
time delivered by the distinct versions of our transformation, and for
some transformed versions of our industrial cases studies we are able
to predict their exact size.
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1.2 The Quasi-Equal Clocks Reduction Approach: An
Iterative Development

We here briefly recall the iterative development of the quasi-equal clocks
approach. Most of the content of this work is provided by the following
publications, however, in this work we introduce improvements for the
transformation of networks. With these improvements greater savings in
verification time are obtained than by the transformation presented in [9].

1. Reducing Quasi-Equal Clocks in Networks of Timed Automata.
In [4] we propose an approach based on quasi-equality of clocks which
reduces the verification time of so-called local queries, i.e. queries wrt.
a single timed automaton, in networks of timed automata satisfying
syntactical assumptions called well-formedness. In this approach we
transform the case studies: [13, 14, 15].

2. Quasi-Equal Clock Reduction: More Networks, More Queries.
Although the technique introduced in [4] shows promising results
for transformed networks, that technique has two severe drawbacks.
Namely, it loses all the information from unstable configurations, i.e.
configurations where quasi-equal clocks differ on their values, and it
supports only local queries. In [7] we carry out an enhancement of
the transformation algorithm from [4]. That is, we introduce: (1) a
transformation to support the full query language of Uppaal in trans-
formed networks, by summarizing unstable configurations into one
dedicated location without losing information. By using this location
we restate properties querying unstable configurations. (2) Weaker
well-formedness assumptions than needed by the approach in [4]
which allow us to transform the case studies: [16, 17, 18].

3. Quasi-Equal Clock Reduction: Eliminating Assumptions on Networks.
The approach from [7] still requires strong syntactic assumptions on
networks in order to soundly apply the reduction of the number of
clocks. In [8] we propose a transformation which does not require
any syntactic assumption on networks, and does not constrain the
support of properties of networks. We also introduce a strong dis-
tinction of edges that reset quasi-equal clocks in order to maximize
savings wrt. verification costs of properties. We include three case
studies: [19, 20, 21] which the algorithm in [7] does not transform.

4. The Model Checking Problem in Networks with Quasi-Equal Clocks.
In [9] we present a solid theoretical background that justifies the mea-
ningful savings in verification costs that our approach delivers. In
this work we propose formulas to quantify the number of reachable
configurations in transformed networks, and thereby know the num-
ber of configurations saved in those networks. By implementing our
approach we find out that a new complexity class characterises a less
expensive model checking effort in transformed networks wrt. the ef-
fort in networks with quasi-equal clocks. Additionally, we introduce
improvements to our transformation algorithm in order to maximize
savings in number of configurations, and of verification time of pro-
perties. We eliminate all remaining semantic assumptions from [8] on
networks with quasi-equal clocks.
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1.3 Sources and Outline

Most of the content of this thesis has been presented in the following con-
ferences:

1. Reducing Quasi-Equal Clocks in Networks of Timed Automata [4]
at FORMATS’12.

2. Quasi-Equal Clock Reduction: More Networks, More Queries [7] at
TACAS’14.

3. Quasi-Equal Clock Reduction: Eliminating Assumptions on
Networks [8] at HVC’15.

4. The Model Checking Problem in Networks with Quasi-Equal
Clocks [9] at TIME’16.

In Chapter 2 we discuss related work. In Chapter 3 we present prelimi-
naries. In Chapter 4 we recall the notion of quasi-equal clocks. In Chapter 5
we present a transformation to reduce the number of quasi-equal clocks.
In Chapter 6 we show our transformation correct. In Chapter 7 we present
a theoretical analysis that justifies savings obtained by our approach. In
Chapter 8 we present experimental results. We conclude in Chapter 9.





7

Chapter 2

Related Work

2.1 Introduction

In this chapter we discuss some of the different approaches related to our
quasi-equal clocks reduction approach. Note that we may use states as a
synonym for configurations of timed automata, and by state-space we mean
the set of reachable states of those automata.

2.2 State-Space Reduction Techniques

Memory consumption in state-space exploration is one major factor that
hampers the usage of model checking tools on industrial-size networks of
timed automata, due to the vast information, e.g. clock values and control
locations of networks, generated and stored during that exploration.

In this section we present a selection of techniques closely related to our
quasi-equal clocks reduction approach. These techniques share our aim of
reducing the state-space exploration when model checking timed systems.

2.2.1 Active and Equal Clocks Reduction

The approaches in [22, 23, 24] eliminate clocks by using static analysis over
single timed automata, networks of timed automata and parametric timed
automata, respectively. The approaches in [22, 23] reduce the number of
clocks in timed automata by detecting equal and active clocks. Two clocks
are equal in a location if both are reset by the same incoming edge, so just
one clock for each set of equal clocks is necessary to determine the future
behaviour of the system. A clock is active at a certain location if this clock
appears in the invariant of that location, or in the guard of an outgoing
edge of such a location, or another active clock takes its value through an
outgoing edge. Non-active clocks play no role in the future evolution of the
system and therefore can be eliminated.

Actually, active clock reduction is a special case of the more general lo-
cation dependent and guard abstraction techniques of [25]. In [24] the same
principle of active clocks is used in parametric timed automata.

Our industrial case studies use at most one clock per component which
is always active. Moreover, the clocks in those case studies are quasi-equal,
hence the equal and active approach will reduce no clocks in our industrial
case studies. However, combining both approaches could increase the re-
duction of clocks in timed automata in two steps. In the first we eliminate
equal and non-active clocks, then in a second step we eliminate quasi-equal
clocks.
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The work in [26] is another approach on reducing active clocks in timed
automata, but in this approach the detection of active clocks is carried out
on a semantic representation, i.e. the zone graph, of the timed automaton
rather than on its syntactic form as the previous approaches do.

2.2.2 Reduction of Clocks by Abstraction of Systems

Global Clocks

The approach in [27] proposes a technique for reducing clocks in systems
consisting of timed components. Each timed component represents a pro-
cess and uses one internal clock for its internal operations. The timed com-
ponents process input events, and trigger a wave of events along the system
– in the form of a sequence of input-output events – with some delay bound
within a given interval.

There is a working sequence for timed components. Each timed compo-
nent is activated when it receives and process an input, i.e. the output from
a previous component. Each timed component resets its internal clock at ac-
tivation. Within this context, every internal clock is used only to ensure the
time point that an output event needs to be produced. Therefore each com-
ponent is only active during a small fraction of time to process the events
generated along each wave. Because every internal clock is only measuring
a small fraction of time during a wave, therefore, only one clock can be used
to measure the duration of the complete wave.

The clocks in the industrial case studies we consider can in general not
be reduced by this approach as components in those cases do not assume a
working sequence of components.

Modelling multitasking applications running under real-time operating
systems compliant with the OSEK/VDX standard, can be achieved with net-
works of timed automata. Each task is modelled by one timed automaton.
The execution time of each task is measured by one internal clock.

The work in [28] proposes a technique to reduce clocks by constructing
networks where only one clock measures the execution time of all tasks. To-
tal o partial completion of each task is modelled by the expiration of its co-
rresponding execution time. However, only one task can be running on the
processor at a given time, and only the running task can be finished. There-
fore, only the clock of the currently running task can affect the progress of
the model. Hence, only one clock can be used for measuring the execution
time of the currently running task.

The technique in [28] is specially crafted for multitasking applications
running under real-time operating systems. Since none of our industrial
case studies model those applications, therefore, that technique will not re-
duce clocks in our case studies.
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Live Variable Analysis

The work in [29] presents a component slicing technique to shorten compu-
tation paths if those paths do not influence a property being verified. The
work in [29] performs an analysis of variables, e.g. clocks, which occur in
those paths candidates to be shortened. If those variables are irrelevant not
only for enabling those paths but as well for the property being verified,
then these variables are safely eliminated.

Applying this technique in our industrial case studies will show no re-
duction of clocks. Each component in our case studies uses at most one
clock and each clock is relevant for the timing behaviour of the system.

The works in [30, 31] use observers, i.e. automata representing safety or
liveness properties, to detect irrelevant modelling elements (clocks or even
a whole automaton) that do not influence a property being verified. These
irrelevant elements are deactivated (or ignored) without compromising the
validity of an arbitrary property.

Constructing one observer per safety or liveness property in our case
studies will unnecessarily increase their respective number of configura-
tions to be explored, therefore we do not use this technique. However, case
studies candidates for this technique and which use quasi-equal clocks can
profit from our quasi-equal clocks reduction approach.

CEGAR

The approaches in [32, 33, 34] are three examples of the iterative technique
Counter-Example Guided Abstraction Refinement (CEGAR) applied in the con-
text of model checking for timed systems. Intuitively, to verify a network
of timed automata against a safety property the CEGAR technique automa-
tically constructs an abstract system from the concrete one. Depending on
the implementation of the CEGAR the construction of the abstract system
begins with, either some of the variables (clocks and data) of the concrete
system or no variables at all.

Once that the first version of the abstract system is constructed, Uppaal
is used to verify the property. If Uppaal reports that the abstract system
satisfies the property, it can be concluded that the original system also sa-
tisfies the property, because the abstracted system is an over-approximation
of the concrete one. If Uppaal finds a counterexample in the abstract system
then an automatic analysis is carried out by a counterexample analyser, e.g.
a test automaton or an algorithm, to determine whether the counterexam-
ple is spurious or not. If the analyser outputs that the counterexample is
real, then it can be safely concluded that the property does not hold in the
concrete system either. Otherwise, the initial abstraction was too coarse,
and it must be in the next iteration refined by adding variables so that the
spurious counterexample is eliminated.

These CEGAR techniques are in principle property oriented. For ins-
tance, if a concrete system contains five quasi-equal clocks and in a property
four of them occur, the initial abstract system according to [32] will contain
four quasi-equal clocks. In the cases [33, 34] the initial abstract system be-
gins with zero clocks. However, that number increases in each iteration
since the property for being satisfied may require four quasi-equal clocks.
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In general, is not guaranteed that the number of clocks are reduced by
these three approaches, while with our approach all clocks from an equi-
valence class are replaced by a representative clock. Our source-to-source
transformation outputs a network of timed automata which is the input for
the techniques here discussed. We can use CEGAR techniques on our trans-
formed networks to reduce other elements of networks, e.g. data variables,
locations, etc., that do not play a role for satisfying a given property.

2.2.3 Partial Order Reduction Techniques

Partial order reduction techniques are numerous, have been extensively in-
vestigated and applied in the context of timed automata. We discuss a se-
lection of these techniques [29, 35, 36, 37, 38, 39, 40]. By these techniques
a significant reduction of the reachable state-space of timed systems can be
achieved when performing model checking.

Partial order reduction techniques exploit the permutability of concu-
rrently executed transitions. That permutability yields the same state inde-
pendently of the order of execution of those transitions. In timed automata
these transitions are justified by edges which are independent [37]. These
edges do not disable each other, and can be taken in any order and yet in-
duce the same state.

By these techniques a model checking algorithm computes a represen-
tative permutation to be explored without changing the structure of the
underlying states. In networks using quasi-equal clocks we have distin-
guished the edges that reset those clocks into simple and complex edges.
Simple edges are independent by exclusively resetting quasi-equal clocks,
and by not allowing communication neither through channels nor through
data variables. In this way simple edges do not disable each other, and any
permutation justified by these edges results in the same state.

The quasi-equal clocks reduction approach exploits the permutability of
simple edges, and removes computational effort by proposing a fixed per-
mutation of transitions justified by those edges (see [9]). In this work we re-
place that permutation of transitions by only one transition, similar to [29].
Furthermore, by reducing clocks our approach changes the state structure
by making DBMs more compact. Compact DBMs lead to a more efficient
representation, storage, access and manipulation of DBMs in memory. The
opposite is done in [36] which for implementing a partial order reduction
technique, clocks are introduced instead of being reduced.

The works in [38, 39, 40] address the problem that each clock in each
system component advancing at the same rate may hinder the application
of partial order reductions. For instance, the enabledness of a clock guarded
transition cmay depend on the order in which transitions a and b reset some
clocks relevant for c. Hence, transitions a and b are not independent since
their execution do not result in the same state, and only transition a or b
enables c.
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The works in [38, 39, 40] propose local time semantics to allow the imple-
mentation of standard partial order reduction techniques in cases like the
example from above. Local time semantics allow each clock in each compo-
nent to advance at its own rate, independently of the rate of other clocks in
other components. Only when components synchronise on channels, local
time rates of the participating automata are synchronised by new auxiliary
clocks.

Assuming the global time semantics from [41], i.e. all clocks in the sys-
tem advance at the same rate, does not hinder us to apply our particular
instance of a partial order reduction technique, because: (1) we use the as-
sumption that quasi-equal clocks have the same value except a time points
where those clocks are reset and, (2) the order by which simple edges are
taken leads to the same state.

Moreover, works in [38, 39, 40] rely on additional auxiliary clocks to im-
plement partial order reduction techniques on the systems being studied.
Hence, new clocks enlarge the state structure instead of reducing it. These
works only support properties related to the representative permutation
resulting from the partial order reduction technique applied. Networks
transformed with our approach preserve all properties from the original
networks, and in particular properties related to the states that our instance
of a partial order reduction technique eliminates.

We conclude that partial order reduction techniques are complementary
to our approach. Our approach is implemented as a source-to-source trans-
formation. That transformation does not require any particular translation
to implement the techniques here discussed, thereby, these techniques can
be further applied to remove unnecessary interleavings not induced by sim-
ple edges.

2.2.4 Sequential and Layered Compositions

Uppaal-like tools typically perform a parallel composition operation (shown
in Chapter 3) among all components of the system being model checked.
This composition, for instance, in a system with disjoint activity introduces
locations and edges that unnecessarily increase the state-space of the sys-
tem. Thereby, the underlying effort to model check a system with disjoint
activity increases as well.

In the following we discuss several works [37, 42, 43] that propose al-
ternative compositions, e.g. sequential and layered, for system components
in order to reduce the underlying state-space of their composition. We dis-
cuss the similarities of these works with the quasi-equal clocks reduction
approach.

In [42] systems following a time division scheme are analysed, in par-
ticular those implementing the TDMA scheme. TDMA divides time into
cycles and each cycle is divided into slots. Each component with its own
clock is allocated a unique slot to perform its activity, e.g. sending of me-
ssages, transiting to locations, etc., almost exclusively. This division of time
yields that the activity of each component is disjoint from each other’s, that
is, while one component is active the rest are idle except at the end of each
cycle.
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Evaluating the enabledness of most of the edges resulting from the para-
llel composition operation, is unnecessary in networks implementing the
TDMA scheme given the disjoint activity assumption. This evaluation in-
creases the cost of model checking those networks.

In order to obtain speedups of the model checking procedure for sys-
tems with disjoint activity, the work in [42] introduces a semantic sequential
composition. This composition together with an overclock for all compo-
nents, i.e. the representative of all components’ clock, yields a transformed
system with a reduced number of: clocks, locations and edges, than the one
obtained with the parallel product.

This semantic concatenation transformation is complementary to our
approach. We can apply in a first step our quasi-equal clocks reduction,
and in a second step the semantic concatenation transformation in order
to obtain extra speedups of the model checking procedure. No additional
translation of our transformed networks is required for the second step.

Systems can be divided into layers consisting of actions distributed over
the whole system [44]. The works in [37, 43] propose a layered composi-
tion for timed automaton which is intermediate between the parallel and
sequential composition. The layered composition yields a reduction of the
state-space through the exploitation of the so called independence between
actions of a given system. Actions are independent if they do not disable
each other, and if executing those actions in any order starting from a given
state, results in the same state or in an equivalent one. Note that this notion
of independence is common in partial order reduction techniques.

In a system consisting of two components where actions b of the second
component have dependencies on the actions a of the first one, applying
the parallel composition over these components does not respect the de-
pendencies between a and b due to the symmetric nature of the composition.
By symmetric nature we mean, synchronisation on common actions and in-
terleaving on disjoint ones.
As opposed to parallel composition the layered composition over those
components will respect those dependencies, i.e. in the layered composite
system actions b are allowed to be executed only after actions a of the first
component have been executed, while all other actions are not restricted.
Thus, with regard to parallel composition, layered composition applies a
partial ordering reduction technique.

Layered composition of timed automata is complementary to the quasi-
equal clocks reduction approach, it does not change the structure of configu-
rations, i.e. it does no reduce the number of clocks in the system, and can be
applied in our case studies to obtain additional reductions of the state-space
of systems.

2.3 Detecting Quasi-Equal Clocks

The notion of zones induces the zone graph whose construction for deciding
reachability in Uppaal-like tools results feasible due to its size. This size
although reduced in some cases can be infinite.

In principle, the zone graph can be used to detect quasi-equal clocks.
In general the size of the zone graph defeats the goal of reducing the effort
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induced by model checking transformed versions of timed automata with
quasi-equal clocks. The output of this detection is an input that can be used
for the transformation of those automata.

The work in [12] presents an abstraction of the zone graph called the
abstract zone graph, which is coarse enough to yield a drastic reduction of
the size of the zone graph, and precise enough to identify a large class of
quasi-equal clocks. Intuitively, for constructing the abstract zone graph a
coarse abstraction similar to the one yielded by the widening operator [23, 45]
on zones, is applied to configurations induced by non-zero delays. During
those delays no new quasi-equalities are neither introduced nor destroyed.
In contrast, no proper abstraction is applied to configurations induced by a
sequence of resets of quasi-equal clocks where time is not allowed to elapse.
For detecting quasi-equal clocks is important to track those configurations
where those clocks differ on their values.

An algorithm in [12] takes an automaton as input, constructs its abstract
zone graph and traverses it on the fly. The abstract zones of that graph
are used to check quasi-equalities for the clocks of the input automaton.
The algorithm after traversing the whole graph outputs a set of equivalence
classes of quasi-equal clocks. This algorithm is implemented in our tool
sAsEt. We can use sAsEt to detect that set which is an input for our quasi-
equal clocks reduction algorithm.

2.4 Quasi-Dependent Variables

The work in [46] generalises the notion of quasi-equality of clocks to quasi-
dependency of variables in the context of hybrid automata. Thus, the notion
of quasi-equality is a special case of quasi-dependency of variables.

In a similar way as for the quasi-equal clocks detection and reduction
approach, the work in [46] performs in a first step an analysis to detect
quasi-dependent variables, and in a second step a reduction of those variables
in hybrid automata. Intuitively, two variables x and y are quasi-dependent
if there exists a dependency function f that relates the values of x and y.
For instance, in the case of quasi-equal clocks, say x and y, the dependency
function f relates the values of those variables as follows, f(x) = y.

Since in hybrid automata resets of variables are not restricted to zero
values, as for clocks in timed automata, values of quasi-dependent varia-
bles are not related by the underlying dependency function at most in zero-
time configurations. In zero-time configurations time is forbidden to elapse.
In those configurations quasi-dependent variables may assume any value
without violating their quasi-dependency. In [46] a detection analysis simi-
lar to [12] establishes that the quasi-dependency function always holds in
non-zero-time configurations.

The quasi-dependent variables detection and reduction approach in [46]
replaces quasi-dependent variables by one representative variable and up-
dates appropriately the system structure where those variables occur.
Properties of the original system are reflected, that is, a forbidden configu-
ration is reachable in the transformed system if and only if it is reachable in
the original system.
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System complexity is reduced in two ways. First, there exists a reduc-
tion of the number of variables in the system. This step alone leads to a
more efficient system handling as the underlying data structures become
more compact. Furthermore, in many cases large performance boosts are
achieved by completely avoiding interleavings of resets of quasi-dependent
variables.

Actually, the quasi-dependent variables reduction can be only applied
under severe syntactic assumptions on hybrid automata, similar to those
that we have in [7] for timed automata. The results that we have obtained
in the quasi-equal clocks reduction can be straightforward extended to the
quasi-dependent variables reduction to transform more networks of hybrid
automata with quasi-dependent variables. Interestingly, our future work
goes in this direction.

2.5 Bounds of the Number of Zones

Predicting the number of zones in transformed networks helps us to know
the size of those networks, and gives us an idea of the memory require-
ments needed to model check them.

To the best of our knowledge, no research before ours has been devoted
to predict the number of zones output by the verification analysis of the
tool Uppaal. Empirically, we have been able to propose formulas which in
the best case exactly predict the number of zones of transformed networks,
and in the worst-case bound that number of zones.
We believe that more exact formulas can be proposed as soon as the authors
of the tool Uppaal publish its code, and researches understand how the tool
calculates the number of zones output by the verification analysis.

Of course that zones can be broken down into clock regions [41] if the
automaton is able to recognise them. The following publications propose
bounds of the number of clock regions for the following flavours of timed
automata: (classical) timed automata [3, 6, 41, 47], event-clock automata [48,
49], updatable timed automata [50, 51] and probabilistic timed automata [52].

2.6 Interleaving vs. Parallel Semantics

In Subsection 2.2.3 we discussed the permutability of concurrently executed
transitions. That permutability may increase the size of the underlying
state-space of timed systems. This permutability is one of the downsides
of modelling timed automata with interleaving semantics.

In the work of [53] the new formalism called finite state machines with
time (FSMT) is introduced. FSMTs use parallel semantics as an alternative
for parallelising transitions which in timed automata are concurrently exe-
cuted. Semi-symbolic approaches represent explicitly locations of timed au-
tomata and symbolically clocks values, e.g. zones. FSMTs work on fully
symbolic state sets containing both the clock values and the state variables,
e.g. locations in timed automata. These sets are technically implemented
with Linear And-Inverter-Graphs (LinAIGs).
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The work of [53] proposes two translations for networks of timed au-
tomata to FSMTs. One where the interleaving semantics are preserved, and
another where each component of a FSMT can run in parallel, since the aim
is to accelerate the model checking procedure for FSMTs without losing in-
termediate states induced by interleaving transitions. Thus, interleaving
transitions are as well preserved even in the parallelised translation.

As opposed to [53] we reduce (quasi-equal) clocks, and thereby change
the underlying state structure to make it more compact. In our work we
parallelise (in one step) transitions justified by simple edges, and we do not
offer both choices for simple edges, i.e. parallel and interleaving transitions.

In our work by parallelising transitions we do not risk losing interme-
diate states induced by interleaving transitions, since we transform pro-
perties querying these states. Hence, by our source-to-source transforma-
tion all properties are preserved. Moreover, in the prototype implementa-
tion of the formalism of [53], the prototype restricts assignments for integer
variables to constants, variables and additions of two integers. Because
of these restrictions the prototype could not transform our industrial case
studies. Our source-to-source transformation supports the whole mode-
lling and query language of Uppaal.
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Chapter 3

Preliminaries

3.1 Timed Automaton

A timed automaton [41] is a finite automaton extended with clock variables
ranging over real numbers. Those clock variables can be used to express
constraints in transitions and in locations, called guards and invariants, res-
pectively.
For self-containment the definitions in this section are borrowed from [3]
(pages 136-145). Some of those definitions have been adapted to the context
of this work.

Definition 1 Clock Constraints.

Let X be a set of clocks. The set Φ(X ) of clock constraints over X is defined
inductively by the following syntax: ϕ ::= x ∼ c | x−y ∼ c | ϕ1∧ϕ2, where
ϕ ∈ Φ(X ), x, y ∈ X , c ∈ Q≥0, and ∼ ∈ {<,≤,≥, >}. ♦

Definition 2 Timed Automaton.

A (pure) timed automaton A is a structure (L,B,X , I, E, `ini) where:

• L, alternatively L(A), is a finite set of locations with typical element `.

• B, alternatively B(A), is a finite set of channels with typical elements
α, β. Note that α? denotes an input (or listening) and α! the corres-
ponding output (or sending) on the channel α ∈ B.

• X , alternatively X (A), represents a finite set of clocks, with typical
elements x, y.

• I : L → Φ(X ) is a function that maps to each location a clock cons-
traint, i.e. its invariant.

• E ⊆ L × B?! × Φ(X ) × P(X ) × L is the set of edges, where B?! =
{a? | a ∈ B} ∪ {a! | a ∈ B} ∪ {τ} is the set of actions and τ /∈ B
is the internal action not visible from outside. P(X ) denotes the set of
reset operations. The alternative notation for E is E(A). Each edge
e = (`, α, ϕ,X, `′) ∈ E describes an edge from (origin) location ` to
(destination) location `′ labeled with the action α, the guard ϕ and the
set X of clocks to be reset. We use ϕ(e), `(e), etc. to denote the guard
of e, the origin location of e, etc.

• `ini ∈ L, alternatively `ini(A), is the initial location. ♦
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Definition 3 Valuations and Operations on Valuations

A valuation ν of clocks in X is a mapping ν : X −→ Time that assigns
to each clock x ∈ X a time value. We write ν |= ϕ, if ν satisfies the clock
constraint ϕ, which is defined inductively:

ν |= x ∼ c iff ν(x) ∼ c
ν |= x− y ∼ c iff ν(x)− ν(y) ∼ c
ν |= ϕ1 ∧ ϕ2 iff ν |= ϕ1 and ν |= ϕ2.

Two operations involving valuations are:

• Time-shift. For a clock valuation ν for X and t ∈ Time we write ν + t
to denote the valuation with (ν + t)(x) = ν(x) + t for all x ∈ X .

• Reset. For a clock valuation ν for X , a set X ⊆ X of clocks, and t ∈
Time we write ν[X := t] to denote the valuation with

ν[X := t](x) =

{
t, if x ∈ X,
ν(x), otherwise.

♦

Definition 4 Semantics of Timed Automata.

The semantics of a timed automatonA = (L,B,X , I, E, `ini) is given by the
(labelled) transition system:

T (A) = (Conf (A),Time ∪B?!, {
λ−→| λ ∈ Time ∪B?!}, Cini),

where the following holds:

• Conf (A) = {〈`, ν〉 | ` ∈ L ∧ ν : X −→ Time ∧ ν |= I(`)} is the set of
configurations of A.

• The set Time ∪B?! contains all labels that may appear at transitions.

• For each λ ∈ Time∪B?! the transition relation λ−→⊆ Conf (A)×Conf (A)
has one of the following two types:

– Delay transition, expresses that some time t ∈ Time elapses but
the location is left unchanged, i.e. 〈`, ν〉 t−→ 〈`, ν+t〉 iff ν+t′ |= I(`)
holds for all t′ ∈ [0, t].

– Action transition, expresses that an action α ∈ B?! occurs and
some clocks may be reset, but the time is unchanged, i.e. 〈`, ν〉 α−→
〈`′, ν ′〉 iff there is an edge (`, α, ϕ,X, `′) ∈ E, where ν |= ϕ, ν ′ =
ν[X := 0] and ν ′ |= I(`′).

• Cini = {〈`ini , νini〉} ∩ Conf (A) with νini(x) = 0 for all clocks x ∈ X is
the set of initial configurations. ♦

In this work for a configuration s = 〈`, ν〉 ∈ Conf (A) we use `s to denote
the location ` of s, and νs to denote the valuation ν of s. Alternatively, we
may write 〈`s, νs〉 to denote s. Furthermore we write s |= ϕ if and only if
νs |= ϕ as previously defined.
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Definition 5 Reachability of Configurations.

Let A be a timed automaton and T (A) = (Conf (A),Time ∪ B?!, {
λ−→| λ ∈

Time ∪B?!}, Cini) its transition system. A configuration 〈`, ν〉 ∈ Conf (A) is
reachable if and only if there is a sequence of the form:

〈`0, ν0〉
λ1−→ . . .

λn−→ 〈`, ν〉.

With 〈`0, ν0〉 ∈ Cini . If Cini = ∅ such a sequence does not exist. A location `
is reachable if and only if a configuration of the form 〈`, ν〉 is reachable. The
set ReachA contains all reachable configurations of automaton A, in other
words ReachA denotes the state-space of A. ♦

Definition 6 Computation Path.
A computation path (or simply a path) ofA starting in the configuration 〈`0, ν0〉, t0,
where the time stamp t0 ∈ Time corresponds to the value of a special clock
that is never reset, is a sequence

π : 〈`0, ν0〉, t0
λ1−→ 〈`1, ν1〉, t1

λ2−→ 〈`2, ν2〉, t2
λ3−→ . . .

of time-stamped configurations ofAwhich is either infinite or maximally fi-
nite, i.e. the sequence cannot be extended any further by some time-stamped
transition. A computation path ofA is a computation path starting in 〈`0, ν0〉, 0,
where 〈`0, ν0〉 ∈ Cini . We denote with πi the ith element of a path π. The set
of all paths of A is denoted by Paths(A). ♦

Definition 7 Real-Time Sequence.
A real-time sequence is an infinite sequence t0, t1, t2, t3, . . . of values ti ∈ Time
for i ∈ N with the following properties:

1. Monotonicity: ∀ i ∈ N • ti ≤ ti+1.

2. Non-Zeno behaviour or unboundedness: ∀ t ∈ Time ∃ i ∈ N • t < ti. ♦

3.2 Networks of Timed Automata

A network of timed automata is obtained by using the parallel composition
operator over single timed automata. In a network every single automa-
ton executes transitions independently, or can communicate with other au-
tomata by a synchronized communication via handshake, by using comple-
mentary actions a! and a?. For self-containment the definitions in this sec-
tion are borrowed from [3] (pages 145-150, 166-167), unless other sources
mentioned. Some of those definitions have been extended and adapted to
the context of this work.

Definition 8 Parallel composition.
The parallel composition operator A1 || A2 of two timed automata

Ai = (Li, Bi,Xi, Ii, Ei, `ini ,i),

i = 1, 2, with disjoint sets of clocks X1 and X2, and disjoint sets of locations
L1 and L2, yields the timed automaton

A1 || A2
def
= (L1 × L2, B1 ∪B2,X1 ∪ X2, I, E, (`ini ,1 , `ini ,2 ))
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where the following holds:

• Conjunction of location invariants: I(`1, `2)
def⇐⇒ I1(`1) ∧ I2(`2).

• The transition relation E is constructed following these rules:

– Handshake communication: τ the internal action is yield by syn-
chronizing a! with a?, i.e. if (`1, a!, ϕ1,X1, `

′
1) ∈ E1 and

(`2, a?, ϕ2,X2, `
′
2) ∈ E2, or if (`2, a!, ϕ2,X2, `

′
2) ∈ E2 and

(`1, a?, ϕ1,X1, `
′
1) ∈ E1, then also

((`1, `2), τ, ϕ1 ∧ ϕ2, X1 ∪X2, (`
′
1, `
′
2)) ∈ E.

– Asynchrony: if (`1, α, ϕ1,X1, `
′
1) ∈ E1 then for all `2 ∈ L2 also

((`1, `2), α, ϕ1,X1, (`
′
1, `2)) ∈ E

and conversely, if (`2, α, ϕ2,X2, `
′
2) ∈ E2 then for all `1 ∈ L1 also

((`1, `2), α, ϕ2,X2, (`1, `
′
2)) ∈ E. ♦

Definition 9 Restriction.

A local channel b is introduced by the restriction operator chan b•Awhich,
for a timed automaton A = (L,B,X , I, E, `ini) yields the timed automaton

chan b • A def
= (L,B \ {b},X , I, E′, `ini),

where the following holds:

• Restriction: if (`, α, ϕ,X, `′) ∈ E and α 6∈ {b!, b?} then (`, α, ϕ,X, `′) ∈
E′.

For list of channels we introduce the abbreviation

chan b1 . . . bm • A
def
= chan b1 • . . . chan bm • A.

♦

Definition 10 Closed Network.

A network N = chan b1, . . . , bm • (A1 || · · · || An) is called closed if all chan-
nels of the automata are local, i.e. if {b1, . . . , bm} is the set of all channels
used in one of the Ai. We use Ai ∈ N to denote the ith automaton Ai of N .
We may omit the subscript if it is clear from the context. ♦

According to [3] inN each component automatonAi has its own control
location `i. Hence, for the whole network a control vector ~̀ = (`1, . . . , `n) is
a collection of the control locations of the components in that network. A
change of the ith component’s location from `i to `′i is denoted by ~̀[`i := `′i].

Definition 11 Extended Clock Constraints.

Let V be a set of data variables, with typical element v.

• The set Ψ(V ) of integer expressions over V , with typical element ψint,
is defined by the usual syntax, using variables in V and the operator
symbols +,−, . . . .
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• The set Φ(V ) of integer constraints or data constraints over V , with typi-
cal element ϕint, is defined as the set of Boolean expressions with the
usual syntax, using variables in V , operator symbols +,−, . . . and the
predicate symbols <,≤,=,≥, >.

• Let X be a set of clock variables, with typical elements x, y. The set
Φ(X , V ) of extended clock constraints with typical element ϕ is de-
fined by the following syntax: ϕ ::= ϕclk | ϕint | ϕ1 ∧ ϕ2. Where
ϕclk ∈ Φ(X ) is a clock constraint, and ϕint ∈ Φ(V ) is an integer cons-
traint. ♦

Definition 12 Extended Valuations and Operations on Extended Valuations.

Valuations ν now assign values to both clocks and data variables. The satis-
faction relation ν |= ϕ between valuations and guards extends Definition 3
for data constraints in the straightforward way.
For the extended definition of valuations we adapt the operations of time
shift and modification.

• Time-shift. For a clock x ∈ X , a data variable v ∈ V and t ∈ Time, we
write ν + t to denote the valuation with

(ν + t)(x) = ν(x) + t,
(ν + t)(v) = ν(v).

A modification or reset operation is an assignment to a clock x ∈ X , i.e.
x := 0, or an assignment to a data variable v ∈ V of the form, v := ψi,
where ψi ∈ Ψ(V ).

• Reset. Let R(X ,V) denote the set of these reset operations, with typi-
cal element r. The modification of a valuation ν under a reset opera-
tion r is denoted by ν[r] and defined as follows:

ν[x := 0](v′) =

{
0, if v′ = x,
ν(v′), otherwise,

ν[v := ψi](v
′) =

{
ν(ψi), if v′ = v,
ν(v′), otherwise.

By ~r we denote a finite list of reset operations on clocks and data vari-
ables, ~r = 〈r1, . . . , rn〉, and we extend the definition of modification appro-
priately:

ν[〈r1, . . . , rn〉] = ν[r1] . . . [rn].

We use R(X ,V)∗ to denote the set of these list operations and 〈〉 to denote
the empty list of reset operations. ♦

According to [3] Uppaal restricts locations invariants to conjunction of
constraints

x � n with �∈ {<,≤} and n ∈ N.



22 3. PRELIMINARIES

With this restriction, location invariants I(`) are downward closed, i.e. when-
ever ν + t |= I(`) then also ν + t′ |= I(`) for all t′ ∈ [0, t].

Uppaal uses the following notion of extended timed automaton which
we take from [3] and we here extend it by adding committed and urgent
locations; rendez-vous, broadcast and urgent channels, and priorities on
those channels.

Definition 13 Extended Timed Automaton.

An extended timed automaton Ae is a structure

Ae = (L,B,X , V, I, E, `ini)

where X , I , `ini are defined as in Definition 2 of pure timed automata (but
I is restricted as just explained) and where:

• L is the set of locations which contains Lc, Lu ⊆ L, i.e. the sets of
committed locations (Lc(Ae) for short) and urgent locations (Lu(Ae)), res-
pectively.

• B is the set of channels where:

– Br ⊆ B is the set of rendez-vous channels which model binary
synchronization. Alternative notation Br(Ae).

– Bb ⊆ B is the set of broadcast channels which model one-to-many
synchronization. Alternative notation Bb(Ae).

– Bu ⊆ Br]Bb is the set of urgent channels which model “as soon as
possible" synchronization, i.e. synchronization on urgent chan-
nels cannot be delayed. Alternative notation Bu(Ae).

• V , alternatively V (Ae), is a set of data variables, with element v.

• E ⊆ L × B?! × Φ(X , V ) × R(X , V )∗ × L represents the finite set of
edges. Alternative notation E(Ae). Each edge (`, α, ϕ, ~r, `′) ∈ E that
describes an edge from (origin) location ` to (destination) location `′

labeled with an action α, a guard ϕ, and a list ~r of reset operations.

• If (`, α, ϕ, ~r, `′) ∈ E and in α occurs a channel in Bu then ϕ = true.
This condition prevents that urgent actions are prohibited by guards.

Referring to Definition 2 for I means that it assigns to each location ` an
invariant I(`) ∈ Φ(X ) = Φ(X , ∅). Thus location invariants constrain only
clocks but not data variables. ♦

The following functions clocks and vars allow us to obtain the clocks
and the variables which are updated by a given edge. These functions to-
gether with the definition of enabled edge are not provided by [3].
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Definition 14 Functions clocks and vars .
Let A be an extended timed automaton. Let (`, α, ϕ, ~r, `′) ∈ E(A) be an
edge. Then functions clocks and vars retrieve each clock and each variable
being updated in ~r, respectively.

clocks(~r) =


{x1, . . . , xn}, if ~r = 〈. . . , x1 := 0, . . . , xn := 0, . . . 〉,

and x1, . . . , xn ∈ X (A),
∅, otherwise.

vars(~r) =


{v1, . . . , vn}, if ~r = 〈. . . , v1 := ψ1, . . . , vn := ψn, . . . 〉,

and v1, . . . , vn ∈ V (A),
∅, otherwise.

♦

Definition 15 Enabled Edge.
Let e = (`, α, ϕ,X, `′) ∈ E(A) be an edge of a timed automaton A. Let
〈`, ν〉 ∈ Conf (A) be a reachable configuration of A. Then we call e enabled
if and only if the valuation ν satisfies ϕ, i.e. if ν |= ϕ, and the valuation
yielded by resetting the clocks in X satisfies the invariant of location `′, i.e.
if ν[X := 0] |= I(`′). ♦

In the following we introduce the semantics for extended timed au-
tomata which we take from [3] and here are extended by adding semantics
for: rendez-vous, broadcast and urgent channels, and priorities on those
channels. In this definition we use the function chan on actions, which
yields the channel used in an input or output action.

Definition 16 Semantics of Extended Timed Automata.
Let ρ : B ∪ {τ} → N be a function that assigns a priority to τ and to each
channel inB. For extended timed automataAei = (Li, Bi,Xi, Vi, Ii, Ei, `ini ,i)
with i = 1, . . . , n, pairwise disjoint set Xi of clocks, and pairwise disjoint set
Li of locations, consider the closed network N (A1, . . . ,An). Then its ope-
rational semantics is defined by the labelled transition system

T (N (A1, . . . ,An)) = (Conf (N ),Time ∪ {τ}, { λ−→| λ ∈ Time ∪ {τ}}, Cini)

where:

• X =
⋃n
k=1Xk and V =

⋃n
k=1 Vk.

• Conf (N ) = {〈~̀, ν〉 | `i ∈ Li ∧ ν : X ∪ V −→ Time ∪ Z ∧ ν |=∧n
k=1 Ik(`k)} is the set of configurations of N (A1, . . . ,An).

• For all λ ∈ Time∪{τ} the transition relation λ−→⊆Conf (N )×Conf (N )
has one of the following four types:

– Internal transition 〈~̀, ν〉 τ−→ 〈~̀′, ν ′〉 occurs if for some i ∈ {1, . . . , n}
there is a τ -edge e = (`i, τ, ϕ, ~r, `

′
i) ∈ Ei in the ith automaton

such that:

∗ ν |= ϕ, i.e. the guard is satisfied.
∗ ~̀′ = ~̀[`i := `′i].
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∗ ν ′ = ν[~r] and ν ′ |= Ii(`
′
i).

∗ If `k ∈ Lck for some k ∈ {1, . . . , n} then `i ∈ Lci , i.e. if there is
a committed location in ~̀ then the ith automaton is in such a
location.
∗ If for all j ∈ {1, . . . , n} such that j 6= i, there is ē ∈ Ej such

that the jth automaton is in `(ē) then ρ(τ) > ρ(chan(α(ē))),
i.e. the internal transition induced by taking edge e has a
higher priority over any transition induced by taking ē.

– Synchronization transition 〈~̀, ν〉 τ−→ 〈~̀′, ν ′〉 occurs if for some i, j ∈
{1, . . . , n} with i 6= j and some channel b ∈ Bi ∩ Bj there are
edges ei = (`i, b!, ϕi, ~ri, `

′
i) ∈ Ei and ej = (`j , b?, ϕj , ~rj , `

′
j) ∈ Ej ,

i.e. the ith and the jth automaton can synchronize their output
and input on the channel b, such that

∗ ν |= ϕi ∧ ϕj , i.e. both guards are satisfied.

∗ ~̀′ = ~̀[`i := `′i][`j := `′j ].
∗ ν ′ = ν[~ri][~rj ] and ν ′ |= Ii(`

′
i) ∧ Ij(`′j).

∗ If `k ∈ Lck for some k ∈ {1, . . . , n} then `i ∈ Lci or `j ∈ Lcj ,
i.e. if there is a committed location in ~̀ then the ith or the jth
automaton is in such a location.
∗ If for all q ∈ {1, . . . , n} such that i 6= q 6= j, there exists
ē ∈ Eq such that the qth automaton is in `(ē) then ρ(b) >
ρ(chan(α(ē))), i.e. the synchronization transition induced by
taking edges ei and ej has a higher priority over any transi-
tion induced by taking edge ē.

– Delay transition 〈~̀, ν〉 t−→ 〈~̀, ν + t〉 occurs if

∗ ν + t |=
∧n
k=1 Ik(`k) holds, i.e. all invariants are satisfied at

the end of the delay.
∗ There is no i ∈ {1, . . . , n}with `i ∈ Lci∪Lui , i.e. no automaton

is in a committed or in an urgent location.
∗ There are i, j ∈ {1, . . . , n} such that there are edges ei =

(`i, b!, ϕi, ~ri, `
′
i) ∈ Ei and ej = (`j , b?, ϕj , ~rj , `

′
j) ∈ Ej , where

the ith automaton is in `(ēi) and the jth automaton is in `(ēj)
and b ∈ Bu ∩ Br and ν+t′ 6|= ϕ(ei)∧ϕ(ej) for all t′ ∈ [0, t], i.e.
there is no action enabled on an urgent rendez-vous channel.
∗ There is i ∈ {1, . . . , n} such that there is ē ∈ Ei and the ith

automaton is in `(ē) and α(ē) = b!, with b ∈ Bu ∩ Bb, and
ν + t′ 6|= ϕ(ē) for all t′ ∈ [0, t], i.e. there is no action enabled
on an urgent broadcast channel.

– Broadcast transition 〈~̀, ν〉 τ−→ 〈~̀′, ν ′〉 occurs if

∗ there are a broadcast channel b ∈ Bb, an index 1 ≤ i0 ≤
n, an enabled edge (`i0 , b!, ϕi0 , ~ri0 , `

′
i0

) ∈ Ei0 , indices 1 ≤
i1, . . . , ik ≤ n, k ≥ 0, different from i0, and edges (possi-
bly enabled) (`ij , b?, ϕij , ~rij , `

′
ij

) ∈ Eij , ij ∈ {i1, . . . , ik}, such
that
· ν |= ϕi0 ∧ϕi1 ∧ · · · ∧ϕik , i.e. the guards of the mentioned

edges are satisfied.
· ~̀′ = ~̀[`i0 := `′i0 ][`i1 := `′i1 ] . . . [`ik := `′ik ].
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· ν ′ = ν[~ri0 ][~ri1 ] . . . [~rik ], ν ′ |= Ii0(`′i0)∧Ii1(`′i1)∧· · ·∧Iik(`′ik).

· If there exists k̂ ∈ {1, . . . , n} such that `k̂ ∈ L
c
k̂
, then there

exists k̄ ∈ {i0, i1, . . . , ik} such that `k̄ ∈ Lck̄.

· If for all q ∈ {1, . . . , n} such that k̂ 6= q 6= k̄, there
is ē ∈ Eq such that the qth automaton is in `(ē) then
ρ(b) > ρ(chan(α(ē))), i.e. the broadcast transition in-
duced by taking edges ei0 , ei1 , . . . eik has a higher prio-
rity over any transition induced by taking edge ē.

• Cini = {〈~̀ini, νini〉} ∩Conf (N ), where vector ~̀ini consists of the initial
location of all component automataAi and νini assigns 0 to each clock
x ∈ Xi and initial values to each variable v ∈ Vi, with 1 ≤ i ≤ n. ♦

We introduce the following notation, which is not in [3]. For a configu-
ration sk = 〈~̀, ν〉 ∈ Conf (N ), we write:

• ~̀sk , to denote the location vector ~̀ of sk.

• νsk , to denote the valuation ν of sk.

• `sk,i , to denote the ith location in the vector ~̀sk .

• sk |= ϕ, if and only if νsk |= ϕ, as already defined.

We denote by s0
λ1−→ . . .

λn−→ sn ∈ Te(N (A1, . . . ,An)) a computation path of
the transition system Te(N (A1, . . . ,An)), starting at s0 ∈ Conf (N ). The set
ReachN contains all reachable configurations of network N in other words
ReachN denotes the state-space of N .

3.3 The Logic of Uppaal

Before introducing the logic of Uppaal we extend constraints over clocks
and variables to include constraints over fresh logical variables. This exten-
sion is not in [3]. This extension will be used only in the logic of Uppaal,
which we borrow from [3] (pages 176-180) as well and we extend it here.

Definition 17 Constraints over Clocks, Integer and Logical Variables.

Let X be a set of clocks. Let V be a set of integer variables disjoint from
X . Let LogVars be a set of logical variables disjoint from X and V . The set
Φ(X , V,LogVars) of constraints over clocks, integer and logical variables
with typical element ϕ is defined by the following syntax:

ϕ ::= ϕclk | ϕint | ϕ1 ∧ ϕ2.

Where ϕclk ∈ Φ(X ) is a clock constraint, and ϕint ∈ Φ(V,LogVars) is an
integer constraint using variables in V and LogVars . ♦
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The following valuation of logical variables δ : LogVars → {0, 1} is a
mapping that assigns to each logical variable θ ∈ LogVars a value in {0, 1}.
An assignment to θ is defined as follows:

δ[θ := d](z) =

{
d, if z = θ,
δ(z), otherwise.

Definition 18 The Logic of Uppaal.

The logic of Uppaal is a subset of the Timed Computation Tree Logic,
tailored towards an efficient model checking procedure. Informally, this
logic allow us to express that the following properties ϕ of configurations
should hold along the computation paths of a given network

N (A1, . . . ,An) (3.3.1)

of extended timed automata:

• ∃♦ϕ expresses that there exists a computation path along which even-
tually ϕ holds.

• ∀�ϕ expresses that along all computation paths ϕ always holds.

• ∃�ϕ expresses that there exists a computation path along which ϕ
always holds.

• ∀♦ϕ expresses that along all computation paths ϕ eventually holds.

• ϕ1 −→ ϕ2 expresses that each occurrence of ϕ1 eventually leads to an
occurrence of ϕ2.

Additionally, the above expressions can include existential quantifica-
tion over logical variables θ1, . . . , θn ∈ LogVars , e.g. ∃♦∃ θ1, . . . , θn • ϕ. For-
mally the logic comprises basic formulas BF, configuration formulas CF (ex-
tended here to include existential quantification over logical variables in
LogVars), and path formulas PF, divided into existential path formulas EPF and
universal path formulas APF. The logic is defined by the following syntax:

BF ::= Ai.` | ϕ,
CF ::= BF | ¬CF | CF1 ∧ CF2 | ∃ θ1, . . . , θn • CF,
EPF ::= ∃♦CF | ∃�CF,
APF ::= ∀�CF | ∀♦CF | CF −→ CF,
PF ::= EPF | APF.

The basic formula Ai.` expresses that the automaton Ai of the network
N (A1, . . . ,An) is at location `, and basic formula ϕ is a constraint on clocks,
integer and logical variables. In configuration formulas CF the logical con-
nectives ∨,=⇒, and⇐⇒ are considered abbreviations. In path formulas PF
the quantifiers ∃ and ∀ express existential and universal quantification over
computation paths, respectively, and the modalities ♦ and � express exis-
tential and universal quantification over configurations, respectively. For
example the PF,

∃♦Ai.`
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expresses that there exists a computation path on which there exists a con-
figuration where the automaton Ai is at location `. In other words, the
location ` is reachable in Ai.

Given a path π of N (A1, . . . ,An) starting in the time-stamped configu-
ration 〈 ~̀0, ν0〉, t0 of the form

π : 〈 ~̀0, ν0〉, t0
λ1−→ 〈 ~̀1, ν1〉, t1

λ2−→ 〈 ~̀2, ν2〉, t2
λ3−→ . . .

and a value t ∈ Time we denote by π(t) the set of configurations at time t,
defined as follows:

π(t) = {〈~̀, ν〉 | ∃ i ∈ N • (ti ≤ t ≤ ti+1 ∧ ~̀= ~̀
i ∧ ν = νi + t− ti)}

Note that π(t) is defined as a set because in π a sequence of transitions
can occur at the same time. This set may be empty if the time stamps
t0, t1, t2, t3, . . . do not form a real-time sequence, i.e. do not grow unboun-
dedly. In that case there may be no index i with ti ≤ t ≤ ti+1.

The binary satisfaction relation |=δ, using the valuation of logical varia-
bles δ, between time stamped configurations of the network (3.3.1) and for-
mulas F of the Uppaal logic, is written as 〈 ~̀0, ν0〉, t0 |=δ F and defined in-
ductively as follows:

〈 ~̀0, ν0〉, t0 |=δ Ai.` iff `0,i = `, i.e. the ith component
of the location vector ~̀0 is `,

〈 ~̀0, ν0〉, t0 |=δ ϕ iff ν0 |=δ ϕ,
〈 ~̀0, ν0〉, t0 |=δ ¬CF iff 〈 ~̀0, ν0〉, t0 6|=δ CF,
〈 ~̀0, ν0〉, t0 |=δ CF1 ∧ CF2 iff 〈 ~̀0, ν0〉, t0 |=δ CF1 and 〈 ~̀0, ν0〉, t0 |=δ CF2,
〈 ~̀0, ν0〉, t0 |=δ

∃ θ1, . . . , θn • CF iff ∃ d1, . . . , dn ∈ {0, 1}•
〈 ~̀0, ν0〉, t0 |=δ[θ1:=d1,...,θn:=dn] CF,

〈 ~̀0, ν0〉, t0 |=δ ∃♦CF iff ∃ path π of (3.3.1) starting in 〈 ~̀0, ν0〉, t0
∃ ∈ Time, 〈~̀, ν〉 ∈ Conf (N ) • t0 ≤ t
∧〈~̀, ν〉 ∈ π(t) ∧ 〈~̀, ν〉, t |=δ CF,

〈 ~̀0, ν0〉, t0 |=δ ∀�CF iff ∀ path π of (3.3.1) starting in 〈 ~̀0, ν0〉, t0
∀ t ∈ Time, 〈~̀, ν〉 ∈ Conf (N ) • t0 ≤ t
∧〈~̀, ν〉 ∈ π(t) =⇒ 〈~̀, ν〉, t |=δ CF ,

〈 ~̀0, ν0〉, t0 |=δ ∃�CF iff ∃ path π of (3.3.1) starting in 〈 ~̀0, ν0〉, t0
∀ t ∈ Time, 〈~̀, ν〉 ∈ Conf (N ) • t0 ≤ t
∧〈~̀, ν〉 ∈ π(t) =⇒ 〈~̀, ν〉, t |=δ CF ,

〈 ~̀0, ν0〉, t0 |=δ ∀♦CF iff ∀ path π of (3.3.1) starting in 〈 ~̀0, ν0〉, t0
∃ t ∈ Time, 〈~̀, ν〉 ∈ Conf (N ) • t0 ≤ t
∧〈~̀, ν〉 ∈ π(t) ∧ 〈~̀, ν〉, t |=δ CF ,

〈 ~̀0, ν0〉, t0 |=δ CF −→ CF iff ∀ path π of (3.3.1) starting in 〈 ~̀0, ν0〉, t0
∀ t ∈ Time, 〈~̀, ν〉 ∈ Conf (N ) • t0 ≤ t
∧〈~̀, ν〉 ∈ π(t) ∧ 〈~̀, ν〉, t |=δ CF
implies 〈~̀, ν〉, t |=δ ∀♦CF.
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We lift the satisfaction relation |=δ to networks N (A1, . . . ,An), existen-
tial path formulas EPF, and universal path formulas APF as follows:

N (A1, . . . ,An) |=δ EPF iff 〈 ~̀0, ν0〉, 0 |=δ EPF for some 〈 ~̀0, ν0〉 ∈ Cini ,
N (A1, . . . ,An) |=δ APF iff 〈 ~̀0, ν0〉, 0 |=δ APF for all 〈 ~̀0, ν0〉 ∈ Cini ,

where Cini is the set of initial configurations in Te(N (A1, . . . ,An)), the
transition system of the network. Recall that Cini contains at most one ele-
ment. If Cini = ∅ the formula EPF is never satisfied whereas APF is trivially
satisfied. We may omit δ from |=δ if it is clear from the context. ♦
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Chapter 4

Quasi-Equal Clocks

4.1 Introduction

In this chapter we recall the formal notion of quasi-equal clocks and the
lemma that shows that quasi-equality is an equivalence relation.

4.2 Quasi-Equal Clocks

Real-timed clocks and the state-space they induce, present an obstacle for
model checking industrial-size networks of timed automata. We propose
to reduce the model checking effort in networks where we apply our quasi-
equal clocks reduction approach. To this end we present the notion of quasi-
equal clocks, and later an algorithm to reduce the number of quasi-equal
clocks.

Intuitively, two clocks are quasi-equal if and only if their values differ
only at time points in which those clocks are reset. We present the following
two examples where quasi-equal clocks occur.

Example 1 (Network with Quasi-Equal Clocks) Consider the network N in
Figure 4.1. Network N consists of automata A1 and A2 with respective clocks
x and y. After delaying ten time units at their respective initial locations `0 and
`2, automata A1 and A2 interleave by taking their unique edges which reset their
respective clocks. This interleaving induces configurations where clocks x and y
differ on their values. However, after being reset both clocks evolve with the same
value. Since the values of clocks x and y only differ at the time point when they are
reset, therefore they are quasi-equal clocks. ♦

`0 `1

A1:

x ≤ 10

`2 `3

A2:

y ≤ 10

x ≥ 10

x := 0

y ≥ 10

y := 0

FIGURE 4.1: Network N with quasi-equal clocks x and y.

The following is an example of a single automaton with quasi-equal
clocks. Since our quasi-equal clocks reduction approach is independent
from the structure of the timed automata where quasi-equal clocks occur,
we transform as well single automaton with quasi-equal clocks.
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`0 `1 `2

A:

x ≤ 10 y ≤ 10

x ≥ 10

x := 0

y ≥ 10

y := 0

FIGURE 4.2: Automaton Awith quasi-equal clocks x and y.

Example 2 (Single Automaton with Quasi-Equal Clocks) Consider the sin-
gle automaton A in Figure 4.2. Automaton A has clocks x and y. After delaying
ten time units at the initial location `0, automatonA resets the clock x and transits
to location `1. Note that at `1 the value of the clock y is ten, thus, no delay greater
than zero time units is allowed at that location, thus, A transits to location `2 and
resets the clock y. In A there is no interleaving of transitions. However, there is a
configuration where the clocks x and y differ on their values. Since the values of
clocks x and y only differ at the time point when they are reset, therefore they are
quasi-equal clocks. ♦

We recall from [4] the following definition of quasi-equal clocks. Note
that this definition applies as well for quasi-equal clocks in single automata.

Definition 19 Quasi-Equal Clocks.

Let N be a network of timed automata with a set of clocks X . Two clocks
x, y ∈ X are called quasi-equal, denoted by x ' y, if and only if for all
computation paths ofN , the values of x and y are equal, or the value of one
of both is equal to 0, i.e. if

∀ 〈`0, ν0〉, t0
λ1−→ 〈`1, ν1〉, t1

λ2−→ . . . ∈ Paths(N )∀ i ∈ N •

νi |= (x = 0 ∨ y = 0 ∨ x = y).

♦

In the following lemma we show that quasi-equality is an equivalence
relation by which we obtain equivalence classes of quasi-equal clocks. By
replacing all quasi-equal clocks of one equivalence class by a single re-
presentative clock, we obtain a transformed network which models the in-
tended behaviour of the original network.

Lemma 1 Quasi-Equality is an Equivalence Relation.

Let N be a network of timed automata, and X its set of clocks. The quasi-
equality relation '⊆ X × X is an equivalence relation.

Proof. We show that '⊆ X × X is an equivalence relation by showing
that ' is reflexive, symmetric and transitive.

1. ' is reflexive.
Let x ∈ X be a clock. We show that x ' x. By Definition 19,

∀ 〈`0, ν0〉, t0
λ1−→ 〈`1, ν1〉, t1

λ2−→ . . . ∈ Paths(N )∀ i ∈ N •

νi |= (x = 0 ∨ x = 0 ∨ x = x).



4.2. Quasi-Equal Clocks 31

Then by the reflexivity property of “ = ”, x = x always holds.
Thus x ' x. Hence ' is reflexive.

2. ' is symmetric.
Let x, y ∈ X be clocks. We show that x ' y =⇒ y ' x. Assume x ' y.
Then

∀ 〈`0, ν0〉, t0
λ1−→ 〈`1, ν1〉, t1

λ2−→ . . . ∈ Paths(N )∀ i ∈ N •

νi |= (x = 0 ∨ y = 0 ∨ x = y).

By the symmetry property of “ = ” and the associativity pro-
perty of “ ∨ ”,

(x = 0 ∨ y = 0 ∨ x = y)⇐⇒ (y = 0 ∨ x = 0 ∨ y = x).

Thus

∀ 〈`0, ν0〉, t0
λ1−→ 〈`1, ν1〉, t1

λ2−→ . . . ∈ Paths(N )∀ i ∈ N •

νi |= (y = 0 ∨ x = 0 ∨ y = x).

Thus y ' x. Hence ' is symmetric.

3. ' is transitive.
Let x, y, z ∈ X be clocks. We show that x ' y ∧ y ' z =⇒ x ' z.
Assume x ' y ∧ y ' z. Then

∀ 〈`0, ν0〉, t0
λ1−→ 〈`1, ν1〉, t1

λ2−→ . . . ∈ Paths(N )∀ i ∈ N •

νi |= (x = 0 ∨ y = 0 ∨ x = y) ∧ (y = 0 ∨ z = 0 ∨ y = z).

To show that x ' z, we prove by induction on the ith element
πi = (〈`i, νi〉, ti) of a path π, that if the valuation νi satisfies the
following strong constraint defined in terms of x, y and z,

φ := (x = 0 ∨ y = 0 ∨ x = y) ∧ (y = 0 ∨ z = 0 ∨ y = z) ∧

(x = 0 ∨ z = 0 ∨ x = z),

implies that the valuation νi+1 satisfies φ. In other words, we
show that

∀ 〈`0, ν0〉, t0
λ1−→ 〈`1, ν1〉, t1

λ2−→ . . . ∈ Paths(N )∀ i ∈ N •

νi+1 |= φ.

Base Case π0: In π0 = (〈`0, ν0〉, 0) the values of the clocks x, y and
z are ν0(x) = 0, ν0(y) = 0 and ν0(z) = 0, respectively. Thus

ν0 |= φ.

Induction Step πi → πi+1: Assume in πi = (〈`i, νi〉, ti) that

νi |= φ.

We prove in πi+1 = (〈`i+1, νi+1〉, ti+1) that the following holds

νi+1 |= φ.

We distinguish two cases based on the values of the clocks x, y, z
at πi.
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Case 1: at πi clocks x, y and z have the same value. We distinguish
the following changes of the values of the clocks x, y, z, after the
following transitions:

After the transition (〈`i, νi〉, ti)
τ−→ (〈`i+1, νi+1〉, ti+1), the va-

lue of one clock from x, y, z is different than the values from
the other two. Then,

νi+1 |= φ.
After the transition (〈`i, νi〉, ti)

τ−→ (〈`i+1, νi+1〉, ti+1), clocks
x, y, z have the same value. Then,

νi+1 |= φ.

After the transition (〈`i, νi〉, ti)
t−→ (〈`i+1, νi+1 + t〉, ti + t), the

clocks x, y, z have the same value. Then,
νi+1 |= φ.

Case 2: at πi, 0 is the value of one clock from x, y, z, and the other two
clocks have the same value different than 0. Or, 0 is the value of two
clocks from x, y, z and the value of the third clock is different than 0.

After the transition (〈`i, νi〉, ti)
τ−→ (〈`i+1, νi+1〉, ti+1), the value

of one clock from x, y, z is different than the value from the
other two. Then,

νi+1 |= φ.
After the transition (〈`i, νi〉, ti)

τ−→ (〈`i+1, νi+1〉, ti+1), clocks
x, y, z have the same value. Then,

νi+1 |= φ.

After the transition (〈`i, νi〉, ti)
t−→ (〈`i+1, νi+1 + t〉, ti + t),

νi+1 6|= φ.
That is, if, for instance, a delay transition of t = 10 occurs then
the clocks x, y, z could have the values νi+1(x) = 10,
νi+1(y) = 20, νi+1(z) = 20, which does not satisfy φ, and
violates the assumption that x ' y ∧ y ' z, which means
that the following does not hold,

∀ 〈`0, ν0〉, t0
λ1−→ 〈`1, ν1〉, t1

λ2−→ . . . ∈ Paths(N )∀ i ∈ N •
νi |= (x = 0 ∨ y = 0 ∨ x = y) ∧ (y = 0 ∨ z = 0 ∨ y = z).

Hence, a delay transition when the clocks x, y, z have the
values at πi as described in Case 2, is a contradiction to the
assumption that x ' y ∧ y ' z.

Since we showed that

∀ 〈`0, ν0〉, t0
λ1−→ 〈`1, ν1〉, t1

λ2−→ . . . ∈ Paths(N )∀ i ∈ N • νi+1 |= φ.

Thus x ' z. Thus ' is transitive. ut

For a given network we obtain the set of equivalence classes of quasi-
equal clocks by using ' over the set of clocks of that network. From each
equivalence class we choose a representative clock and use it in a trans-
formed network to model the intended behaviour of the original network.
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Definition 20 The Set ECN .

Let N be a network of timed automata and X its set of clocks. The set ECN
is the set of equivalence classes of quasi-equal clocks of N , or the quotient
set of X by ', i.e. if

ECN = {Y ∈ X/ '}.

We choose a representative clock of each Y ∈ ECN denoted by rep(Y ),
or rep(x) where x ∈ Y . ♦
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Chapter 5

Transformation of Automata
with Quasi-Equal Clocks.

5.1 Introduction

In this chapter we present two distinctions for edges resetting quasi-equal
clocks, namely, simple and complex edges. These distinctions allow us to pro-
vide qualitatively different savings wrt. space and time.

We present three transformations as well. The first is a transforma-
tion function for extended clock constraints in guards and invariants using
quasi-equal clocks which we use as a helper function in the second transfor-
mation. The second is a transformation algorithm which we use to reduce
clocks in any timed automaton or network with quasi-equal clocks. Finally,
the third is a transformation function which we use for properties over an
original automaton or network with quasi-equal clocks.

5.2 Simple and Complex Resetting Edges

In the following we make a distinction of edges resetting quasi-equal clocks.
Based on this distinction we are able to propose transformations for those
edges and thereby obtain in transformed networks qualitatively different
savings wrt. space and time.

We distinguish edges which reset quasi-equal clocks in two groups,
namely, simple and complex (resetting) edges. Simple edges are charac-
terised by resetting exclusively quasi-equal clocks, and enforcing delays
greater than 0 time units at their origin and destination locations. These
edges are independent, i.e. they do not communicate through channels or
shared variables, therefore, they are able to interleave in all possible orders
at a given time point. Due to their independence and since simple edges
do not update information to keep track of, i.e. values of data variables, we
are able to synchronise them by using a broadcast transition. This broad-
cast transition saves all configurations induced by each single transition
justified by a simple edge. Complex edges, as opposed to simple ones, ei-
ther update data variables or are not independent or do not enforce delays
greater than 0 time units at their origin or destination locations. Therefore,
in general we are not able to synchronise complex edges. We preserve in
transformed networks all configurations induced by transformed complex
edges, otherwise, transformed networks do not reflect the truth-value of all
queries on original networks.
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Definition 21 Pre/Post Delayed Edge.

Let N be a network of timed automata with a set of equivalence classes
of quasi-equal clocks ECN . An edge e = (`, α, ϕ, ~r, `′) ∈ E(N ) is called
pre/post-delayed if and only if time must pass in ` and `′ before and after e is
taken, respectively, i.e. if

Paths(N ) = Paths(Υ(N )),

where Υ is a transformation that adds a fresh clock x in N , and for each
edge incoming to and outgoing from `, a reset x := 0, and to the guard ϕ
the condition x > 0, and we add x > 0 as well to guards of all outgoing
edges of `′. Note that the added clock constraints enforce delays greater
than zero time units at locations ` and `′. We use DlayEdgesN to denote the
set of pre/post-delayed edges of N . ♦

Definition 22 Simple and Complex (Resetting) Edges.

Let N be a network of timed automata with a set of equivalence classes of
quasi-equal clocks ECN . LetA ∈ N be an automaton. Let e = (`, α, ϕ, ~r, `′) ∈
E(A) be an edge which resets at least one quasi-equal clock, i.e. clocks(~r) ∩
Y 6= ∅ for some Y ∈ ECN . Edge e is called simple edge if and only if

1. it is of the form (`, τ, x ≥ c, 〈x := 0〉, `′) for some local clock x ∈ X (A),

2. the invariant of ` is x ≤ c,

3. it is pre/post-delayed, i.e. e ∈ DlayEdgesN ,

4. it is the only outgoing edge of `, i.e. ∀ e1 = (`1, α1, ϕ1, ~r1, `
′
1) ∈ E(A) •

`1 = ` =⇒ e = e1, and it is the only incoming edge into `′, i.e.
∀ e1 = (`1, α1, ϕ1, ~r1, `

′
1) ∈ E(A) • `′1 = `′ =⇒ e = e1.

Otherwise, e is called complex edge. We use SimpEdgesY (A) to denote the
set of simple edges of A using a clock from Y . CompEdgesY (A) is used to
denote the set of those complex edges which reset at least one clock from
Y . We use SimCompEdgesY (A) = SimpEdgesY (A) ∪ CompEdgesY (A) to
denote the set of resetting edges of Awhich reset clocks from Y . ♦

5.3 A Running Example

Example 3 (Network N1) Consider the network N1 in Figure 5.1. Network N1

consists of automata A1 and A2 with respective clocks x and y, rendez-vous chan-
nel c, and global variable a. After delaying ten time units at their respective initial
locations, automataA1 andA2 interleave by taking their simple edges which exclu-
sively reset their respective clocks. This interleaving induces configurations where
clocks x and y differ on their values. AutomataA1 andA2 after a delay of five time
units at locations `1 and `5 interleave once again by taking their complex edges
which reset their respective clocks together with updates of the variable a. Note
that automata A1 and A2 can reset once again their respective clocks and transit
simultaneously to their respective locations `3 and `7 at any time, even without
delaying at locations `2 and `6. Since the valuations of clocks x and y only differ
at the time point when they are reset, therefore they are quasi-equal clocks. ♦
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`0 `1 `2

`3

A1:

x ≤ 10 x ≤ 5

`4 `5 `6

`7

A2:

y ≤ 10 y ≤ 5

x ≥ 10

x := 0

x ≥ 5

x := 0,
a := 1

c!x := 0

y ≥ 10

y := 0

y ≥ 5

y := 0,
a := 3

c?y := 0

FIGURE 5.1: Network N1 with quasi-equal clocks x and y.

Our approach in this work transforms any single automaton and net-
work with quasi-equal clocks. In this work we have removed any semanti-
cal and syntactical assumption on networks in order to soundly apply the
reduction of clocks, as opposed to the approaches in [4, 7, 8] where we
impose strong semantical and syntactical assumptions on networks. For
instance, N1 cannot be transformed by the approach from [7], since by that
approach: (a) the outgoing edges of locations `2 and `6 do not fulfill the
syntactical pattern of an edge resetting quasi-equal clocks, i.e. there are no
clock constraints that guard those edges, and the origin locations of those
edges have no invariants; and (b) there must be a delay greater than zero
time units at the origin location of any edge resetting a quasi-equal clock.

In the following we distinguish configurations of networks with quasi-
equal clocks, namely, stable and unstable configurations per equivalence class
Y . Intuitively, stable configurations are configurations where all clocks
from Y have the same value, thus, in particular the same value as the
representative rep(Y ). Unstable configurations are configurations where
some clocks from Y have been reset and some not yet, so each clock from
Y either has the value 0 or the same value as rep(Y ).

We make this distinction of configurations since it help us, for instance,
to analyse which configurations are preserved in transformed networks af-
ter reducing quasi-equal clocks. Then, based on that analysis later we de-
fine a transformation for querying those preserved configurations.

Definition 23 Stable Configuration.

Let N be a network of timed automata with a set of equivalence classes of
quasi-equal clocks ECN . A configuration s ∈ Conf (N ) is called stable wrt.
Y ∈ ECN if and only if all clocks in Y have the same value in s, i.e. if

∀x ∈ Y • νs(x) = νs(rep(x)).

We use StableConf Y to denote the set of all configurations that are stable
wrt. Y . A configuration not in StableConf Y is called unstable wrt. Y . ♦
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5.4 Reducing Quasi-Equal Clocks in Timed Automata

We now present the transformation for extended clock constraints in guards
and invariants using quasi-equal clocks. Recall that we distinguish sta-
ble and unstable configurations per equivalence class Y . We use a fresh
boolean token tx for each quasi-equal clock x ∈ Y to encode clock values
in unstable configurations. Configurations in a transformed network N ′
where token tx is 1, encode configurations of the respective original net-
workN where x = rep(x) holds, while the token being 0 encodes that x has
already been reset at the current time point and thus has value 0. Function Γ
(cf. Definition 24) transforms guards and invariants based on this encoding.

Definition 24 (Function Γ)
Let N be a network. Let Y,W ∈ ECN be sets of quasi-equal clocks of N ,
x ∈ Y and y ∈ W clocks. Let tx, ty /∈ V (N ) be boolean variables. Given a
clock constraint ϕclk , we define:

Γ0(ϕclk ) :=



((rep(x) ∼ c ∧ tx) ∨ (0 ∼ c ∧ ¬tx)) , if ϕclk = x ∼ c,(
(rep(x)− rep(y) ∼ c ∧ tx ∧ ty) , if ϕclk = x− y ∼ c,
∨ (0− rep(y) ∼ c ∧ ¬tx ∧ ty)

∨ (rep(x)− 0 ∼ c ∧ tx ∧ ¬ty)
∨ (0 ∼ c ∧ ¬tx ∧ ¬ty)

)
Γ0(ϕ1) ∧ Γ0(ϕ2) , if ϕclk = ϕ1 ∧ ϕ2.

We get the transformation Γ by setting Γ(ϕclk ∧ ψint) := Γ0(ϕclk ) ∧ ψint . ♦

Before we present the transformation algorithm we use to reduce quasi-
equal clocks in timed automata, we introduce the source and destination
locations, so-called reset locations, of simple and complex edges of automata.
Our algorithm mainly operates on those locations.

Definition 25 Reset and Reset Successor Locations.
Let N be a network of timed automata with a set of equivalence classes of
quasi-equal clocks ECN . Let e = (`, α, ϕ, ~r, `′) ∈ SimCompEdgesY (N ) be a
reset edge for some Y ∈ ECN . Then location ` (`′) is called reset (successor) lo-
cation wrt. Y . We use RstLocs−Y (N ) (RstLocs+

Y (N )) to denote the set of reset
(successor) locations wrt. Y . We set RstLocs−(N ) :=

⋃
Y ∈ECN RstLocs−Y (N )

and similarly RstLocs+(N ). ♦

Definition 26 Reset Automata.
Let N be a network of timed automata with a set of equivalence classes
of quasi-equal clocks ECN . We use ResetAutY (N ) to denote the set of au-
tomata in N which have simple or complex resetting edges wrt. Y ∈ ECN ,
i.e. if ResetAutY (N ) = {A ∈ N | SimCompEdgesY (A) 6= ∅}.

We use ResetAut (N ) =
⋃
Y ∈ECN ResetAutY (N ) to denote the set of all

automata in N which have simple or complex resetting edges. ♦

Our transformation algorithm takes two inputs, a network N and a list
of all equivalence classes of quasi-equal clocks of N , ECprioN , where those
equivalence classes are elements of ECN . Our algorithm outputs a trans-
formed networkN ′ which from each Y ∈ ECN uses only the representative
clock rep(Y ). Network N ′ reflects the truth-value of all queries on N .
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Definition 27 (Transformation Algorithm K)

Let N = {A1, . . . ,Aq} be a network with a set of equivalence classes of
quasi-equal clocks, ECN . Let ECprioN be a list of all elements of ECN . The
output of K is N ′ = {K(A1, ECprioN ), . . . , K(Aq, ECprioN )} ∪ {RY | Y ∈ ECN },
where K(A, ECprioN ) = (L(A), B′,X ′, V ′, I ′, Ecn ∪ Es, `ini) such that:

• B′ = B(A) ∪ {resetY , return , uY | A ∈ ResetAutY (N ), Y ∈ ECN },
i.e. the fresh broadcast channels resetY and return , and the fresh ur-
gent broadcast channel uY are added for each equivalence class whose
clocks are updated by A. Priorities on channels uY , return and resetY
are assigned as follows. For all Y ∈ ECN , channels resetY and uY
from the same Y have the same priority. Among equivalence classes
from ECN , the priorities for those two kinds of channels follow the
order given in ECprioN by the user of Algorithm K. All other channels
including return as well as local transitions, have the same priority
which is smaller than the priority assigned to channels resetY and uY .

• X ′ = {rep(x) | x ∈ X (A)}, i.e. only representative clocks are used.

• V ′ = V (A) ∪ {tx | x ∈ Y, Y ∈ ECN ,A ∈ ResetAutY (N )} ∪ {sAY |
SimpEdgesY (A) 6= ∅, Y ∈ ECN }, i.e. one fresh boolean token tx for
each quasi-equal clock x is added (initial value is one), and a fresh
boolean simple-edge indicator sAY (initial value is one if and only if
the initial location of A is a reset location of a simple edge).

• I ′ = {` 7→ Γ(I(`)) | ` ∈ L(A)}, i.e. invariants are transformed with
Γ to consider representative clocks and tokens related to quasi-equal
clocks.

• Complex and non-resetting edges are transformed as follows, and the
resulting edges contained in Ecn. Guards are transformed using Γ.
Reset vectors are transformed to consider tokens instead of the ori-
ginal clock, and extended by r1 as book-keeping for the simple-edge
indicator, where r1(`′) yields the update sAY := 1 if `′ is the origin
location of a simple resetting edge, and ε otherwise.

Ecn = {
(
`, α,Γ(ϕ), ~r[x := 0/tx := 0 | x ∈ Y, Y ∈ ECN ]; r1(`′), `′) |

(`, α, ϕ, ~r, `′) ∈ E(A) \ SimpEdgesY (A), Y ∈ ECN }.

• Simple edges are transformed as follows (cf. Figure 5.2 (a) and (b)),
and the resulting edges contained in Es. We place in the transformed
simple edge an output on resetY , we transform its guard by using Γ,
and its reset vector is transformed similarly as in transformed com-
plex edges. Additionally, we copy the transformed simple edge and
instead of an output on resetY , we place an input on resetY .

Es = {
(
`, resetY !,Γ(x ≥ c), tx := 0; r1(`′), `′

)
,(

`, resetY ?,Γ(x ≥ c), tx := 0; r1(`′), `′
)
|

(`, τ, x ≥ c, 〈x := 0〉, `′) ∈ SimpEdgesY (A), Y ∈ ECN }.



40
5. TRANSFORMATION OF AUTOMATA WITH QUASI-EQUAL

CLOCKS.

For each Y ∈ ECN , the resetterRY = (L,B,X , V, I, E, `iniRY
) is created

as follows (cf. Figure 5.2.(c)),

• L = {`iniRY
, `nstRY

,TlockY }.

• B = {resetY , return , uY }, i.e. the broadcast channels resetY and return ,
the urgent broadcast channel uY are added. Priorities on channels
uY , return and resetY are similarly assigned as above explained.

• X = {rep(Y ), z}, i.e. the set of clocks consists of the representative
clock rep(Y ), and the fresh clock z exclusively used in invariants of
urgent and committed locations.

• V = {tx, prioY | x ∈ Y } ∪ {sAY | SimpEdgesY (A) 6= ∅,A ∈ N},
i.e. the set of variables contains one boolean token tx for each quasi-
equal clock x, together with one fresh boolean priority variable prioY
(initial value is zero), and a boolean simple-edge indicator sAY for each
automaton with simple edges.

• I = {`iniRY
7→ true} ∪ {` 7→ z ≤ 0 | ` ∈ {`nstRY

,TlockY }}, i.e. the in-
variant of location `iniRY

is true, and the invariants of locations `nstRY

and TlockY use the fresh clock z. Note that this clock is not added by
this algorithm but internally used by Uppaal in urgent locations.

•

E = {

(`iniRY
, uY !, (

∑
x∈Y

tx = 0), 〈prioY := 1, z := 0〉, `nstRY
),

(`iniRY
, resetY ?, true, 〈prioY := 1, z := 0〉, `nstRY

),

(`nstRY
, τ, go(ECN ), 〈prioY := 0, z := 0〉,TlockY ),

(`nstRY
, return !, (blk(ECN ) ∧ prties(ECN )), 〈〉

[rep(Y ) := 0, prioY := 0, tx1 := 1, . . . , txn := 1 | x1, . . . , xn ∈ Y ],

`iniRY
)

(`nstRY
, return?, blk(ECN ), 〈〉[rep(Y ) := 0,

prioY := 0, tx1 := 1, . . . , txn := 1 | x1, . . . , xn ∈ Y ], `iniRY
)

},

where blk(ECN ) :=
∑

x∈Y tx = 0 ∧
∧
W∈ECN \{Y }(

∑
w∈W tw = 0 ∨∑

w∈W tw = |W |) is a function used to allow transitions if and only if
all equivalence classes in ECN are stable. Given ECprioN = 〈Y1, . . . , Ym〉,
for some index 1 ≤ j ≤ m, such that Yj = Y , then prties(ECN ) :=
¬prioYj+1 ∧ · · · ∧ ¬prioYm , is a function implementing a mechanism
to prioritise transitions which is based on the ordering given for equi-
valence classes in ECprioN .

Function go(ECN ) := prties(ECN ) ∧
∨
x∈Y sum(x) uses the output of

prties(ECN ), and the output of function sum(x), i.e. false if ¬∃ 1 ≤ i ≤
q ∃ (`, α, ϕ, ~r, `′) ∈ SimpEdgesY (Ai)•x ∈ clocks(~r), or (sAiY ∧ tx), other-
wise. Function sum(x) is used to detect from values of the boolean
variables sAiY and tx, cases where time is stopped (and no delay tran-
sitions greater than 0 are possible) either at origin or at destination
locations of simple edges. ♦
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From Definition 27 we note the following. As presented in [4, 7, 8, 9],
transformed networks include a resetter automaton RY which we use to
reset of the clock rep(Y ). ResetterRY has the location `nstRY

which, as in [7,
8, 9], is used to encode configurations induced by all possible permutations
of resets of clocks in Y . For instance, assuming `nstRY

inN ′ represents both
cases for a simple edge, that it has already been taken or not, and that the
clock x ∈ Y reset by this edge is already 0 or x = rep(Y ).

Similar to [8, 9] transformed automata use synchronisations to indicate
RY when to reset the clock rep(Y ) as opposed to encoding time points in
RY for resetting rep(Y ) as in [7]. Moreover, in order to reflect in N ′ the
truth-value of all queries on N , and given that simple edges are indepen-
dent, i.e. communication through channels or shared variables is not al-
lowed since it could enforce a certain dependency among those edges, we
prioritise transformed simple edges over all other edges as follows. At a
given time point where the clock rep(Y ) is reset, we allow enabled trans-
formed simple edges wrt. Y (if any) to be taken before any other edge that
inN could be enabled at that time point. This prioritisation is implemented
in two mechanisms executed by RY which together with an extra mecha-
nism to reduce interleavings among resetters, are described as follows (cf.
Figure 5.2).

1. Broadcast channel resetY . This mechanism replaces at reset time for
rep(Y ) all permutations of transitions of simple edges wrt. Y possible
in N by one single transition in N ′. That single transition is used if at
least one transformed automaton assumes the origin location of a sim-
ple edge, i.e. transformed simple edges wrt. Y indicate the reset time
for rep(Y ). Moreover, since simple edges are taken independently
from all other edges, this allows us to take all transformed simple
edges in N ′ before the first transformed complex one, which in turn
allows us to support all queries which ask for configurations where
some complex edges and none, only some, or all simple edges have
been taken. We enforce this prioritisation by setting the priorities of
all channels resetY higher than any other channel existing in the orig-
inal network, including local transitions.

In this mechanism any transformed automaton with transformed sim-
ple edges wrt. Y is able to send and listen on channel resetY . To
this end, we equip each transformed simple edge with an output on
resetY . A copy of that edge is made where the output is replaced
by an input on the same channel. Following this mechanism the co-
rresponding RY is equipped with an edge where the resetter listens
synchronisations on resetY . A synchronisation on resetY involves the
transformed simple edge if and only if the corresponding simple edge
would be enabled in N . There are two conditions in N ′ for which a
simple edge would not be enabled in N at reset time for rep(Y ): (1)
the underlying automaton Ai has reached the origin location of that
edge and the time for taking that edge has not been reached yet (as
indicated by sAiY = 1 and txi = 0), and trivially, (2) the underlying
automaton Ai has not reached the origin location of that edge yet (as
indicated by sAiY = 0).

The restrictions on simple edges from Definition 22, e.g. pre/post de-
lay, no communication on channels, only one outgoing edge from the
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origin location, etc., guarantee that at reset time for rep(Y ) a pre-delay
greater than 0 has been consumed by all enabled transformed simple
edges, and that they send and listen on resetY . Since multiple au-
tomata may have an edge synchronising on resetY enabled, there is
a slight verification time overhead for checking this enabledness, but
all edges induce the exact same follow-up configuration where RY
reaches `nstY , and all enabled transformed edges reach their respec-
tive destination location.

2. Urgent broadcast channel uY . For the case that no transformed sim-
ple edge is ready to indicate the reset time for rep(Y ), the RY also
(indirectly) observes whether transformed complex edges wrt. Y are
taken. If the first transformed complex edge is taken at reset time,
then the sum of tokens wrt. Y will decrease. The resetterRY uses the
urgent broadcast channel uY in order to transit to `nstRY

as soon as
the sum of tokens wrt. Y is 0, i.e. all enabled transformed resetting
edges have been taken, and before a delay greater than 0 time units
can occur in the transformed network. By transiting to the urgent lo-
cation `nstRY

, it is ensured that no time elapses unless a configuration
corresponding to stability wrt. Y is reached.

3. Variable prioY and broadcast channel return . We use a broadcast chan-
nel return to implement a similar mechanism to the one implemented
with the broadcast channel resetY , with the aim of avoiding interlea-
vings among resetters when they are located in their respective `nstRY

locations, and at the same time point they transit back to their respec-
tive initial locations `iniRY

.

In this mechanism any resetter is able to send and listen on the chan-
nel return , and this mechanism is used if: (1) at least resetter RY is
located at `nstRY

, (2) the sum of tokens wrt. Y is 0 and, (3) all other
equivalence classes different from Y are stable as expressed by the
function blk(ECN ). As part of this mechanism we equip an edge of
RY from `nstRY

to `iniRY
resetting the representative clock of Y and

updating values of tokens related to clocks in Y to 1, with an output
on return . A copy of that edge is made where the output is replaced
by an input on the same channel. Since multiple resetters may have
an edge with an output on return enabled, we eliminate the verifica-
tion time overhead for checking this enabledness by using the func-
tion prties(ECN ), so that the resetter with the highest priority for its
equivalence class at reset time sends on return . The synchronisation
on return allow all participating resetters to reach `iniRY

in parallel.

Transformed simple edges wrt. multiple equivalence classes may be ready
to indicate at the same time the reset time for the respective representative
clocks, or multiple edges in resetters with output on uY may be enabled. We
avoid interleavings among those edges by assigning priorities on channels
uY and resetY as follows. For all Y ∈ ECN , channels resetY and uY from the
same Y have the same priority. Among equivalence classes from ECN , the
priorities for those two kinds of channels follow the order given in ECprioN
by the user of Algorithm K. All other channels including return as well as
local transitions, have the same priority which is smaller than the priority
assigned to channels resetY and uY .
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` `′
A:

I(`)

` `′
K(A):

Γ(I(`))

(a) Pattern of a simple edge
wrt. Y in automaton A.

(b) Pattern of the simple edge of A
transformed in K(A).

ϕ

x1 := 0〈. . . 〉 〈. . . , sAY := 1〉

resetY ! Γ(ϕ)

tx1 := 0, [sAY := 0]

resetY ? Γ(ϕ)

tx1 := 0, [sAY := 0]

`iniRY
`unstRY

TlockuY

RY :

(c) Resetter RY .

uY ! tx1 + · · ·+ txn = 0

prioY := 1

resetY ?

prioY := 1

return?−−blk(ECN )

Yrep := 0, tx1 := 1, . . . , txn := 1, prioY := 0

return !−−blk(ECN ) ∧ prties(ECN )

Yrep := 0, tx1 := 1, . . . , txn := 1, prioY := 0

go(ECN ) prioY := 0

FIGURE 5.2: Patterns used to transform a network N with
ECN . In figures (a), (b) and (c) we consider the follow-
ing quasi-equal clocks Y = {x1, . . . , xn}, where Y ∈ ECN .
Urgent locations are denoted with the superscript u in the
name of those locations. For simplicity in figure (c) we omit
drawing the implicit invariants of both urgent locations,
and resets to clocks used in these invariants. In figure (c)
we use the fresh clock Yrep as the representative clock of Y .
In figure (b) the expression sAY := 0 in brackets is added if

and only if `′ is not a reset location of a simple edge.

Following [9] our transformation is able to: (1) transform corner cases
of networks with quasi-equal clocks where time may be stopped either at
origin or at destination locations of simple edges. To this end, RY checks
after synchronising on resetY whether a transformed automaton Ai did
not take the synchronisation. The latter is indicated by leaving unchanged
the values of txi and sAiY , for some i ∈ {1, . . . , q}. Therefore, RY transits
from `nstRY

to the urgent location TlockY (cf. Figure 5.2.(c)), where time is
stopped and no delay transitions greater than 0 are possible, if and only if
the following conditions denoted by the guard go(ECN ) of the edge inco-
ming to TlockY hold: (a) automaton Ai leaves unchanged the values of
txi and sAiY and, (b) resetters with higher priorities than RY have returned
to their respective initial locations. And, (2) provide a direct detection, by
reaching TlockY , of timelocks in the sense above mentioned, since this de-
tection is at least not direct and more involved in Uppaal.
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`0 `1 `2

`3

A′1:

(Yrep ≤ 10 ∧ tx)

∨(0 ≤ 10 ∧ ¬tx)

(Yrep ≤ 5 ∧ tx)

∨(0 ≤ 5 ∧ ¬tx)

(Yrep ≥ 10 ∧ tx)∨
(0 ≥ 10 ∧ ¬tx)

((Yrep ≥ 5 ∧ tx)∨
(0 ≥ 5 ∧ ¬tx))resetY ?

tx := 0, sA1
Y := 0

resetY ! (Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx)

tx := 0, sA1
Y := 0

tx := 0, a := 1

c!tx := 0

`4 `5 `6

`7

A′2:

(Yrep ≤ 10 ∧ ty)

∨(0 ≤ 10 ∧ ¬ty)

(Yrep ≤ 5 ∧ ty)

∨(0 ≤ 5 ∧ ¬ty)

(Yrep ≥ 10 ∧ ty)∨
(0 ≥ 10 ∧ ¬ty)

((Yrep ≥ 5 ∧ ty)∨
(0 ≥ 5 ∧ ¬ty))resetY ?

resetY ! (Yrep ≥ 10 ∧ ty) ∨ (0 ≥ 10 ∧ ¬ty)

ty := 0, sA2
Y := 0

ty := 0, sA2
Y := 0 ty := 0, a := 3

c?ty := 0

`iniRY
`unstRY

TlockuY

RY :

uY ! tx + ty = 0

prioY := 1

resetY ?

prioY := 1

return?−−blk(ECN )

Yrep := 0, tx := 1, ty := 1, prioY := 0

return !−−blk(ECN ) ∧ prties(ECN )

Yrep := 0, tx := 1, ty := 1, prioY := 0

go(ECN ) prioY := 0

FIGURE 5.3: Transformed network N ′
1 = K(N1, ECprio

N ).

Example 4 (Transformation of Network N1) ApplyingK to networkN1 from
Figure 5.1 yields N ′1 (cf. Figure 5.3). Similar to the algorithms in [7, 8, 9], only
the representative clock of each equivalence class remains, in our example we use
the fresh clock Yrep as representative of Y which is reset by resetter RY . Note
that each guard and invariant in automata A′1 and A′2 is transformed by Γ into a
disjunction of clauses. For instance, the guard x ≥ 10 of automaton A1 in N1,
is transformed in N ′1 into the disjunction (Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx).
Then the clause (Yrep ≥ 10 ∧ tx) is effective in configurations in N ′ where tx is 1
(encoding that clock x has the same value as Yrep), while the clause (0 ≥ 10∧¬tx)
is effective in configurations where tx is 0 (encoding that x has already been reset
and thus has value 0).

Note that in N ′1 the pair of transformed complex edges from locations `1 and
`5 preserve their original interleavings. Furthermore, the other pair of transformed
complex edges, outgoing from locations `2 and `6, are taken simultaneously even
without delaying at their origin locations. ♦
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5.5 Transforming Queries over Networks

The following function Ω syntactically transforms properties over a net-
work N with a list of all equivalence classes of quasi-equal clocks of N ,
ECprioN , into properties over N ′ = K(N , ECprioN ).

Definition 28 (Function Ω)
Let N = {A1, . . . ,An} be a network with a set of equivalence classes of
quasi-equal clocks ECN = {Y1, . . . , Ym}. Let ECprioN be a list of all elements
of ECN . LetN ′ = K(N , ECprioN ). Let β be a basic formula overN . Let `nstRY

be the location of resetter RY which encodes unstable configurations wrt.
Y ∈ ECN . Let p = |X (N )|. For simplicity below, from a basic formula Ai.`
we omit the reference to Ai. We define the function Ω as follows:
Ω0(β) =

(`′ ∧ x̃) ∨ ` , if β = `, (`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesYj (Ai).
(`′ ∧ ¬x̃) , if β = `′, (`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesYj (Ai).
β , if β ∈ {`, `′}, (`, α, ϕ, ~r, `′) ∈ E(Ai) \ SimpEdgesYj (Ai).
Γ(β)[tx/(tx∨ x̃) | x ∈ Y, Y ∈ ECN ]

, if β = ϕclk ∧ ϕint .

Ω(CF ) = ∃ x̃1, . . . , x̃p • Ω0(CF ) ∧ κN ,
where:

κN :=
∧

1≤i≤n,
1≤j≤m,

(`,α,ϕ,〈x:=0〉,`′)∈SimpEdgesYj (Ai)

κ(x), κ(x) : (x̃ =⇒
∨

(`,α,ϕ,〈x:=0〉,`′)∈SimpEdgesYj (Ai)

`′ ∧ `nstRYj
).

By structural induction Ω0 transforms configuration formulas CF . ♦

Function Ω takes a query over a network N with quasi-equal clocks,
and outputs an equivalent query that can be verified in the corresponding
transformed network N ′.

We explain the idea behind the transformation of queries carried out by
Function Ω. Recall that by AlgorithmK in networkN ′ we have replaced all
clocks in Y by a representative clock rep(Y ). Recall that N ′ implements a
mechanism such that at reset time for rep(Y ) all enabled transformed sim-
ple edges wrt. Y are taken at once. All destination locations of transformed
simple edges are reached together with the location `nstRY

of resetter RY .
Thus, all configurations induced in N by all possible permutations of re-
sets of quasi-equal clocks carried out by simple edges, are encoded inN ′ in
configurations where resetterRY is located at `nstRY

.
We provide query transformations for origin and destination locations

of simple edges, and for clock constraints using quasi-equal clocks. These
transformations together with consistency checks by means of fresh logical
variables, e.g. x̃ for the clock x ∈ Y reset by a simple edge, allow to query in
N ′ information from encoded configurations. Since a configuration inN in-
duced by a complex edge resetting quasi-equal clocks has a corresponding
one-to-one configuration inN ′, hence, no transformation for queries on ori-
gin and destination locations of complex edges is provided.

In the following we illustrate how Ω outputs a query transformation
and in particular how consistency checks are used.
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Example 5 (Querying Reset Locations) From automaton A2 of network N1

(cf. Figure 5.1) consider the simple edge e = (`4, τ, (y ≥ 10), 〈y := 0〉, `5).
The query ∃♦Ω(φ), where φ := A2.`4, after some simplifications (included those
where we omit the reference to Ai from a basic formula Ai.`) is transformed into

∃♦∃ ỹ ∈ {0, 1} • ((`5 ∧ ỹ) ∨ `4) ∧ (ỹ =⇒ (`5 ∧ `nstRY
)).

Note that ỹ is a logical variable related to clock y. From Ω(φ), the clause `4 is satis-
fied in configurations ofN ′1 which are related (cf. Lemma 2) to stable configurations
in N1 where automaton A2 is located at `4 during the pre-delay of 10 time units
required at that location. The clause (`5 ∧ ỹ) is satisfied in a configuration of N ′1
which is related to the unstable configuration of N1 where A2 has reset the clock y
while the value of x is still 10. This particular configuration of N ′1 is enforced by
the consistency check ỹ =⇒ (`5 ∧ `nstRY

). ♦

Example 6 (Querying Reset and Reset Successor Locations) From automa-
ton A2 of network N1 consider the simple edge e = (`4, τ, (y ≥ 10), 〈y := 0〉, `5)
(cf. Figure 5.1). The query ∃♦Ω(φ), where φ := A2.`4 ∧ A2.`5, is not satis-
fied in N1 for obvious reasons, i.e. an automaton cannot be at two locations in
the same configuration. Another purpose of logical variables is to avoid that our
query transformations output queries that are satisfiable in transformed networks
but unsatisfiable in original ones. To this end, we intentionally produce logically
unsatisfiable clauses like the one below.

After some simplifications ∃♦Ω(φ) is transformed into

∃♦∃ ỹ ∈ {0, 1} • ((`5 ∧ ỹ) ∨ `4) ∧ (`5 ∧ ¬ỹ) ∧ (ỹ =⇒ (`5 ∧ `nstRY
)).

From Ω(φ), the clause `4 ∧ (`5 ∧ ỹ) is not satisfied in N ′1 for obvious reasons, and
the clause (`5 ∧ ỹ) ∧ (`5 ∧ ¬ỹ) intentionally includes ỹ and ¬ỹ in order to make it
logically unsatisfiable. ♦



47

Chapter 6

Weak Bisimulation

6.1 Introduction

In order to prove our approach correct we establish a weak bisimulation
relation between a network with quasi-equal clocks and its respective net-
work transformed with Algorithm K. To this end, we carry out an analysis
of the configurations preserved in transformed networks, and we propose
a function that relates those configurations to the ones in original networks.

In this chapter we also show that properties wrt. an original network are
fully preserved in the transformed network, i.e. the transformed network
satisfies a transformed property if and only if the original network satisfies
the original property.

6.2 Weak Bisimulation

In the following we introduce Function QE which relates configurations
of original networks to configurations of transformed networks. Given a
networkN with quasi-equal clocks and its respective transformed network
N ′, Definition 29 (Function QE ) is used to relate pairs of configurations
ṡ ∈ Conf (N ) and r ∈ Conf (N ′) from an original and its corresponding
transformed network, respectively, by: (1) relating values of integer and
clock variables existing in both configurations, (2) relating location vectors
of both configurations and, (3) enforcing consistency conditions for confi-
gurations of transformed networks that we use for relating purposes.

Definition 29 (Function QE ) Let N be a network. Let ECN be a set of equiva-
lence classes of quasi-equal clocks ofN . Let ECprioN be a list of all elements of ECN .
LetN ′ = K(N , ECprioN ). Let QE : Conf (N )→ 2Conf (N ′) be the function defined
pointwise as follows,
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QE (〈~̀ṡ, νṡ〉) =
{
r = 〈{`ṡ,1, . . . , `ṡ,n, `RY1

, . . . , `RYm}, νr〉 |

(∀x ∈ V (N ) • νr(x) = νṡ(x)) (6.2.1)
∧ ∀ 1 ≤ i ≤ n • (6.2.2)((

`r,i = `ṡ,i ∧ ∀x ∈ X (Ai) • νṡ(x) = νr(rep(x)) · νr(tx)
)

(6.0.2a)

∨
(
∃ (`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesY (Ai) • `RY

6= `iniRY ∧

`ṡ,i = ` ∧ `r,i = `′ ∧ νṡ(x) = νr(rep(x)) ∧ νr(tx) = 0 ∧

∀ y ∈ X (Ai) \ {x} • νṡ(y) = νr(rep(y)) · νr(ty)
))

(6.0.2b)

∧ ∀Y ∈ ECN •(
(νr(sAi

Y ) = 1 ⇐⇒ ∃ (`, α, ϕ, ~r, `′) ∈ SimpEdgesY (Ai) • `r,i = `) (6.2.3)

∧ νr(prioY ) = 1 ⇐⇒ (`r,RY
= `nstRY

)
)}

(6.2.4)

♦
In the following we explain how Function QE is used. Since by Defi-

nition 27 of algorithm K, integer variables are not transformed, hence all
original integer variables are used in transformed networks, and their va-
lues in both configurations can be directly related (see Rule 6.2.1).

The transformation of resetting edges by algorithm K has a twofold
effect in configurations of transformed networks. On the one hand, we
are able to establish an one-to-one relation between configurations of both
networks induced by taking delays, or by taking non-simple edges in the
original network and non-transformed-simple edges in the transformed
network. For this relation we directly relate location vectors, and we also
relate values of clocks of the original network with values encoded in trans-
formed networks for those clocks (see Rule 6.0.2a).

On the other hand, we are also able to establish a one-to-many relation
between configurations induced: by taking simple edges one by one in the
original network, and by taking transformed simple edges in parallel in the
transformed network. A configuration of the transformed network where
the resetter RY , for some Y ∈ ECN , is located at `nstY encodes multiple
configurations of the original network that are induced by taking simple
edges. To establish this one-to-many relation we have Rule (6.0.2b), which
considers the locations of resetters and automata in both networks wrt. the
origin and destination of simple edges, and values of clocks being reset by
these edges.

The following two rules ensure that we relate to each ṡ only configu-
rations r whose values for book-keeping and priority variables introduced
by our transformation are consistent. For instance, rule 6.2.3 establishes a
consistent counter of the number of automata currently located at origin lo-
cations of simple edges, while rule 6.2.4 establishes a consistent counter of
the number of resetters currently located at their `nstY locations.
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We have observed that during stability phases, i.e. transitions between
stable configurations, there is a strong bisimulation (one-to-one) between
original and transformed networks. Only during unstability phases there
is a weak bisimulation (one-to-many) in both directions. There are cases (re-
sets of clocks carried out by simple edges) where original networks simu-
late one step of transformed networks with multiple steps, and cases (resets
clocks carried out by complex edges) where transformed networks simulate
one step of original networks with multiple steps. Using these observations
we introduce the following lemma.

Lemma 2 Weak Bisimulation.

Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN . Let ECprioN be a list of all elements of ECN . Let CFN be the set of confi-
guration formulas overN . ThenN is weakly bisimilar toN ′ = K(N , ECprioN ),
i.e. there is a weak bisimulation relation QE ⊆ Conf (N )×Conf (N ′) such that:

1. ∀ s ∈ Cini(N ) ∃ r ∈ Cini(N ′) • r ∈ QE (s) and ∀ r ∈ Cini(N ′) ∃ s ∈
Cini(N ) • r ∈ QE (s).

2. ∀CF ∈ CFN∀ r ∈ QE (s) • s |=δ CF =⇒ r |=δ Ω(CF ).

3. ∀CF ∈ CFN∀ r ∈ QE (s) • r |=δ Ω(CF ) =⇒ ∃ ṡ ∈ Conf (N ) • r ∈
QE (ṡ) ∧ ṡ |=δ CF .

4. ∀ r ∈ QE (s) • s λ−→ s′ =⇒ ∃ r λ−→∗ r′ • r′ ∈ QE (s′). A transition s λ−→ s′

is distinguished as follows:

(a) Transition is justified by a delay λ = d ≥ 0.

(b) s ∈
⋂
Y ∈ECN StableConf Y , s

′ /∈
⋂
Y ∈ECN StableConf Y , and the

transition is justified by a simple edge wrt. Y ∈ ECN .

(c) s /∈
⋂
Y ∈ECN StableConf Y and the transition is justified by a sim-

ple edge wrt. Y ∈ ECN .

(d) Transition is justified by a non-empty set of edges E, such that
none of them is simple wrt. any Y ∈ ECN .

5. ∀CF ∈ CFN∀ r ∈ QE (s) • r λ−→ r′ ∧ r′ |=δ′ Ω0(CF ) =⇒ ∃ s λ−→∗
s′ • r′ ∈ QE (s′). A transition r λ−→ r′ is distinguished as follows:

(a) transition is justified by a delay λ = d ≥ 0,

(b) transition is justified by a non-empty set of edges E.

Where r τ−→∗ r′ denotes zero or more successive τ -transitions from configu-
ration r to configuration r′.

The proof of Lemma 2 together with auxiliary material used in the proof
is available in Appendix A.
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The following theorem shows that properties wrt. an original network
with quasi-equal clocks are fully preserved in the transformed network,
i.e. the transformed network satisfies a transformed property if and only if
the original network satisfies the original property. In other words, in this
theorem we show that we construct correct networks where we are able to
verify all properties reflected by the original versions.

Theorem 1 Satisfiability of Queries in N ′.
Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN . Let ECprioN be a list of elements from ECN . Let N ′ = K(N , ECprioN ). Let
CF be a configuration formula over N . Then

N |=δ ∃♦(CF ) ⇐⇒ N ′ |=δ ∃♦Ω(CF ).

Proof. The proof is straightforward by using Lemma 2, and induction over
the length of paths to show that CF holds in N if and only if Ω(CF ) holds
in N ′.
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Chapter 7

Model Checking on Networks
with Quasi-Equal Clocks

7.1 Introduction

In the work of [9] we introduce the theoretical analysis that justifies savings
wrt. space and time that are obtained in networks transformed with the
version of Algorithm K from that work.

In that work we propose formulas to quantify the number of reachable
configurations in transformed networks, and thereby know the number of
configurations saved in those networks. We propose as well worst-case
space and time bounds that characterise a less expensive model checking
effort in transformed networks wrt. the effort in original networks with
quasi-equal clocks.

In this chapter we update that analysis since we introduce improve-
ments in networks transformed with Algorithm K, e.g. a broadcast mecha-
nism which in one transition synchronises transformed simple edges. These
improvements lead to savings greater than those obtained in networks trans-
formed with the version of Algorithm K from [9].

7.2 Zones and Operations on Zones

Recall that Uppaal is the model checker that helps us with the theoretical
analysis of the underlying state-space in transformed networks. Some fi-
gures used in our analysis, e.g. states explored, obtained from the reachability
analysis carried out by Uppaal are expressed in terms of zones, therefore,
we recall in this chapter the notion of zones and some operations on them.

Definition 30 Zones

Given an extended timed automatonAe = (L,B,X , V, I, E, `ini), a zone
Z ⊆ (X ∪V → Time ∪Z) is the maximal set of valuations satisfying a given
constraint ϕ ∈ Φ(X , V ), i.e. ν ∈ Z ⇐⇒ ν |= ϕ. Then each ϕ ∈ Φ(X , V ) is a
symbolic representation of a zone1.
We define the following operations on a zone Z:

• Time elapse: Z↑ = {ν[X + t] | ν ∈ Z ∧ t ∈ Time}, where ν[X + t]
denotes the valuations obtained from ν by increasing the valuations
of all clocks in X by t time units.

1Our notion of zones slightly differs from the one in [11]. In practice the part of a zone
related to data values can be explicitly stored, while the part related to clock values symboli-
cally, for instance, in DBMs.
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• Zone intersection: Z1 ∧ Z2 = {ν | ν ∈ Z1 ∩ Z2}.

• Zone update: Z[~r ] = {ν[~r ] | ν ∈ Z}, where ν[~r ] such that ~r = 〈Y :=
0, v1 := φ1, . . . , vn := φn〉 is the reset vector of a given edge, is an
abbreviation for ν[Y := 0, v1 := φ1, . . . , vn := φn] which denotes the
valuations obtained from ν by resetting all clocks in Y , and setting the
variables v1, . . . , vn to the integer values φ1, . . . , φn, respectively.

We lift configurations of networks to pairs consisting of a location vector
and a zone. For extended timed automata Aei = (Li, Bi,Xi, Vi, Ii, Ei, `ini ,i)
with i = 1, . . . , n, pairwise disjoint set Xi of clocks, and pairwise disjoint
set Li of locations, consider the network N = {Ae1 , . . . ,Aen}. The set of
configurations of N , i.e. Conf (N ), consists of pairs, e.g. 〈~̀, Z〉, of a location
vector ~̀ = 〈`1, . . . , `n〉 from ×ni=1Li, and a zone Z = Z ′ ∧

⋃
1≤i≤n Ii(`i) for

some Z ′.

Now redefining the semantics of extended timed automata, computa-
tions paths, the logic of Uppaal, and any other definition from the previous
chapters where we have used configurations in the sense of pairs consis-
ting of a location vector and a valuation (see Definition 16 of Chapter 3), is
straightforward by using Definition 30, however, we will not do this, and
from now on we will just assume that the semantics of extended timed au-
tomata, computations paths, the logic of Uppaal, etc., use configurations in
the sense of the above paragraph.

7.3 Savings in Transformed Networks

Recall the two principal facts that justify the savings wrt. space (in number
of configurations) and time obtained in networks transformed with Algo-
rithm K, whose original versions are networks where all quasi-equal clocks
are exclusively reset by simple edges:

1. The size of a set of reachable configurations induced in original net-
works by executing all possible permutations of resets of quasi-equal
clocks, increases exponentially in the number of quasi-equal clocks
reset. Replacing these permutations in transformed networks by a
broadcast transition and encoding these configurations, lead to a dras-
tic reduction in the number of configurations that Uppaal explores
when checking properties in transformed networks.

2. A reduction in the size of DBMs, which is yielded by using only the
representative clocks of each equivalence class in order to represent
zones in Uppaal, leads to a more efficient representation, storage, ac-
cess and manipulation of DBMs in memory.

In this section we exploit the first fact, and propose a formula to quantify
the number of reachable configurations in those transformed networks, and
thereby know the number of configurations saved in those networks. More-
over, we show that those transformed networks have a smaller state-space
as compared to the state-space of the original versions. Now we present
the notion for reset configurations which are essential to our quantification
of savings, since we use those configurations to calculate the number of
reachable configurations that we encode in transformed networks.
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Definition 31 (Reset Configuration)
Let N be a network, and Y ∈ ECN be a set of quasi-equal clocks of N . Let
s, s′ ∈ Conf (N ) be two reachable configurations of N . Then s is called re-
set configuration wrt. Y , if and only if s is stable wrt. Y , and if some edges
e1, . . . , ek ∈ SimCompEdgesY (N ) justify a transition from s to s′, i.e. if

∃ s0
λ1−→E1 s1 . . . sn−1

λn−→En sn ∈ Paths(N ) • e1, . . . , ek ∈ En ∧ sn−1 ∈
StableConf Y ∧ s = sn−1 ∧ s′ = sn. We write si

λi−→Ei si+1, i ∈ N, to denote

that the (non-delay) transition si
λi−→ si+1 is justified by the set of edges Ei;

Ei is empty for delay transitions, i.e. if λi ∈ Time . ♦

The set ResetConf Y contains all reset configurations of N wrt. Y ∈ ECN ,
and RC =

⋃
Y ∈ECN ResetConf Y contains all reset configurations wrt. each

Y . For a given reset configuration s ∈ ResetConf Y , clks(s) = {x ∈ X (N ) |
∃Y ∈ ECN • s ∈ ResetConf Y ∧ x ∈ Y } obtains the quasi-equal clocks to
be reset from s, and class(s) = {Y ∈ ECN | s ∈ ResetConf Y } obtains the
equivalence classes of those clocks.

Observe the following: in a network N where all quasi-equal clocks
are exclusively reset by simple edges, at a given time point a number of
reachable configurations is induced by executing all possible permutations
of resets of those clocks. We are able to precisely calculate that number
since:

1. Once that an automaton A reaches the origin location ` of a simple
edge e, which is the only outgoing edge from `, A must carry out a
pre-delay d > 0 at ` before resetting a quasi-equal clock x with e.

2. A post-delay d′ > 0 enforced at the destination location `′ of e, hinders
carrying out action transitions in zero time after resetting x.

Hence, at time points where x is reset we know that A is either located
at ` and x has the same value as rep(x), or located at `′ and the value of x is 0.

Observe that in a network transformed with AlgorithmK (Definition 27)
we remove all quasi-equal clocks but representative ones, and all reach-
able configurations (in the respective original network) induced by all pos-
sible permutations of resets of quasi-equal clocks, are encoded in the trans-
formed network by configurations induced by broadcast synchronisations
between resetters and automata with transformed simple edges.

The version of AlgorithmK from [9] constructs a fixed sequence of tran-
sitions that represents all those permutations. In this work Algorithm K
replaces that sequence by one transition to obtain greater savings.

Considering these observations we present a formula to calculate the
number of reachable configurations of transformed networks, and thereby
know the number of configurations saved.

Lemma 3 (SimpleEdge−Formula)
Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN , where all quasi-equal clocks are exclusively reset by simple edges.
Let ECprioN be a list of all elements in ECN . Let N ′ = K(N , ECprioN ). Then the
following formula yields the number of reachable configurations in N ′:

|ReachN | −
( ∑
s∈RC

2|clks(s)| )+
∑
s∈RC

[
|class(s)|+ 2

]
.



54
7. MODEL CHECKING ON NETWORKS WITH QUASI-EQUAL

CLOCKS

Proof. Let N be a network with a set of equivalence classes of quasi-equal
clocks ECN , where each clock x ∈ Y , Y ∈ ECN , is exclusively reset by sim-
ple edges in SimpEdgesY (N ). Let ECprioN be a list of all elements in ECN . Let
N ′ = K(N , ECprioN ). We calculate the number of reachable configurations of
N ′ as follows:

• The term |ReachN |, which can be obtained by verifying N in Uppaal,
is the number of reachable configurations of N which includes all
reachable configurations induced by all possible permutations of re-
sets of quasi-equal clocks.

• Considering a single clock x ∈ Y and a reset configuration s ∈ RC,
we obtain 2 intervals for the values of x, i.e. the value (in s) just before
and the value (in s′) just after resetting x by a simple edge. These
intervals can be characterised by the following constraints:

[x = rep(x)], [x = 0].

Considering all quasi-equal clocks, and all reset configurations inRC,
thus together yields

∑
s∈RC 2|clks(s)|, which is the number of reacha-

ble configurations induced by resetting all clocks in each set clks(s).
These configurations exist in N but are encoded in N ′.

• Considering a reset configuration s ∈ RC, the term |class(s)| + 2 is
the number of configurations that at a given time point are induced
in N ′, by a fixed sequence of transitions that represents all possible
permutations inN of resets of quasi-equal clocks wrt. all equivalence
classes in class(s). Then the term is calculated as follows:

– The subterm |class(s)| yields the number of equivalence classes
for which s is a reset configuration. This number is equal to the
number of configurations induced by taking in N ′ a sequence
of broadcast transitions on the channel resetY , with Y ∈ class ,
where all transformed simple edges wrt. Y enabled in a respec-
tive configuration r ∈ Conf (N ′), with r ∈ QE (s), participate
(point (b) of case 4 in Lemma 2 confirms this number of transi-
tions in N ′). Note that each resetter RY also participates and
transits to `nstRY

in each broadcast transition on the channel
resetY .

– The subterm 2 is the number of configurations comprising the
starting configuration of the sequence of broadcast transitions,
and the configuration reached when each RY transits to `iniRY

.
These configurations are induced whenRY participates in a broad-
cast transition on the channel return (points (a) and (b) of case 4
in Lemma 2 confirms this number).

Considering each reset configuration in the setRC together thus yields∑
s∈RC

[
|class(s)|+ 2

]
reachable configurations.

This completes our calculations. ut
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For networks with a set of equivalence classes of quasi-equal clocks,
where all those clocks are exclusively reset by simple edges, we distinguish
cases when the number of reachable configurations of original networks is
smaller than the one in their respective transformed networks. These cases
occur when some of those equivalence classes consist of only one clock.
Then in original networks there is one reachable configuration induced for
each reset of those single clocks, while in transformed networks there are
two reachable configurations induced by each fixed sequence of transitions
representing those transitions which reset single clocks.

The next lemma states for which transformed network its state-space
is strictly smaller than the state-space of the original network. That is, we
claim that the number of reachable configurations of a transformed network
is strictly smaller than the number of reachable configurations of its respec-
tive original version, if the original network has a set of equivalence classes
of quasi-equal clocks, where all those clocks are exclusively reset by simple
edges, and where each equivalence class consist of at least two clocks.

Lemma 4 (Smaller State-Space)

Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN , where |Y | ≥ 2, for all Y ∈ ECN , and where each clock x ∈ Y is ex-
clusively reset by simple edges in SimpEdgesY (N ). Let ECprioN be a list of all
elements in ECN . Let N ′ = K(N , ECprioN ). Then |ReachN ′ | < |ReachN |.

Proof. Let N be a network with a set of equivalence classes of quasi-equal
clocks ECN , where |Y | ≥ 2, for all Y ∈ ECN , and where each clock x ∈ Y is
exclusively reset by simple edges in SimpEdgesY (N ). Let ECprioN be a list of
all elements in ECN . Let N ′ = K(N , ECprioN ).

Since all quasi-equal clocks in N are exclusively reset by simple edges
we can consider the size of the set of all reachable configurations of N
as a sum of two numbers, i.e. |ReachN | = X +

(∑
s∈RC 2|clks(s)| ), where(∑

s∈RC 2|clks(s)| ) is the number of reachable configurations induced by all
possible permutations of resets of quasi-equal clocks, and X is the number
of all other reachable configurations of N .

By Lemma 3, |ReachN ′ | = |ReachN |−
( ∑
s∈RC

2|clks(s)| )+ ∑
s∈RC

[
|class(s)|+2

]
.

Given that |ReachN | = X +
(∑

s∈RC 2|clks(s)| ). Then

|ReachN ′ | = X +
( ∑
s∈RC

2|clks(s)|)− ( ∑
s∈RC

2|clks(s)|)+
∑
s∈RC

[
|class(s)|+ 2

]
=

X +
∑
s∈RC

[
|class(s)|+ 2

]
.

By |Y | ≥ 2, for all Y ∈ ECN , we have
∑

s∈RC |clks(s)| ≥
∑

s∈RC |class(s)|.
Hence,

X +
∑
s∈RC

2|clks(s)| ≥ X +
∑
s∈RC

2|class(s)| > X +
∑
s∈RC

[
|class(s)|+ 2

]
.

Thus, |ReachN ′ | < |ReachN |. ut
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7.3.1 Pathological Cases

The formula from Lemma 3 precisely yields the number of reachable con-
figurations of transformed networks. However, there are two pathological
cases for which the formula yields only a lower bound:

1. Networks where all quasi-equal clocks are exclusively reset by sim-
ple edges, and where time is stopped either at origin or at destination
locations of those edges. In those networks some simple edges may
not be taken and they may not reset quasi-equal clocks. However, the
SimpleEdge−Formula would be “blind" since its second term would
wrongly calculate the number of configurations induced by all possi-
ble permutations of resets of simple edges.

Checking that time is not stopped as above mentioned could require
model checking the network, which can be expensive. However, an
inexpensive syntactic check can be the following, if an edge has a
clock constraint which differs with guards of simple edges only in the
constrained clock, and the destination location of that edge is urgent
or committed with no outgoing edges, then is very likely that time is
stopped as above mentioned.

2. Uppaal uses the widening operator [23, 45] on zones to enforce termina-
tion of the forward reachability analysis performed by the tool. This
operator makes zones even coarser and helps to subsume configura-
tions during that analysis.

The following networks are examples where using the widening ope-
rator helps to subsume configurations during the forward reacha-
bility analysis. Networks where: (1) all quasi-equal clocks are reset
by only simple edges, (2) simple edges wrt. two or more equivalence
classes have in common the same constant occurring in their clock
guards and, (3) there is a “loop" through a non-looped edge incoming
to the origin location of these simple edges.

Configurations induced through the transit of those “loops" which
without the widening operator would differ only in their underlying
zones, are explored only once during that analysis because they are
subsumed. However, those widened configurations have correspon-
ding subsumable configurations (cf. Definition 32) in transformed ver-
sions of these networks. Subsumable configurations are explored mo-
re than once since the widening operator does not help them to be
subsumed during the reachability analysis.

The total number of subsumable configurations is difficult to calcu-
late. The formula from Lemma 3 would yield as well the exact num-
ber of reachable configurations of transformed networks with sub-
sumable configurations, if the reachability analysis in Uppaal could
be extended to subsume subsumable configurations under already
explored configurations.

Note that none of our benchmarks (see Chapter 8) are pathological cases.
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Definition 32 (Subsumable Configuration)

Let N be a network with a set Y ∈ ECN . Let ECprioN be a list of all ele-
ments in ECN . Let N ′ = K(N , ECprioN ). Let 〈~̀s, Zs〉, 〈~̀s′ , Zs′〉 ∈ Conf (N ′)
be two reachable configurations of N ′. Let (`, τ, x ≥ c, 〈x := 0〉, `′) ∈
SimpEdgesY (N ) be a simple edge.

Then configuration s′ is subsumable under s if and only if the following
conditions hold:

1. The ith automaton (excluding resetters) of N ′ is located at the same
location in both configurations, i.e. ∀ i ∈ N • `s′,i = `s,i.

2. Resetter RY is either located at the same location in both configura-
tions, or in s′ is located at `iniY and in s at `nstY .

3. The value of token tx, x ∈ Y, is either the same in both configurations,
or 1 in s′ and 0 in s.

4. The value of prioY is either the same in both configurations, or 0 in s′

and 1 in s.

5. The value of each sAY ,A ∈ N , is the same in both configurations.

6. The zone Z1 = {ν|X (N ′)∪V (N ) | ν ∈ Zs′} is a subset of the zone
Z2 = {ν|X (N ′)∪V (N ) | ν ∈ Zs}, i.e. Z1 ⊆ Z2. ♦

7.4 Bounds in Transformed Networks

In most of our experiments with transformed networks which contain trans-
formed complex edges we are only able to deliver savings wrt. time due to
the reduced size of DBMs. This reduction leads to a more efficient manipu-
lation of those data structures.

There are two reasons which in combination present a risk of increasing
the size of the reachable state-space of a transformed network. The first,
reachable configurations of a network induced by resetting quasi-equal clo-
cks with complex edges, have related (one-to-one) reachable configurations
in the respective transformed network (see (d) of Lemma 2). The second, is
the number of configurations induced by the involved interleaving caused
by resetters at time points where representative clocks are reset.

Precisely calculating the size of the reachable state-space in transformed
networks which contain transformed complex edges, is very complicated
and it would lead to introducing drastic changes in our Algorithm K. We
propose an alternative which consists of calculating the bounds where that
size lies. Thus, under assumptions on original networks in the following we
present lower and upper bounds of the number of reachable configurations
of transformed networks with transformed complex edges.
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Lemma 5 (Lower Bound ComplexEdge−Formula)
Let N be a network with ECN = {Y }, such that each clock in Y is exclu-
sively reset by complex edges in CompEdgesY (N ), and such that at any
time point in which a clock in Y is reset, only edges in CompEdgesY (N ) in-
terleave. Let ECprioN be a list of all elements in ECN . Let N ′ = K(N , ECprioN ).

Then |ReachN |+ (|RC| · 2) is a lower bound of the number of reachable
configurations of N ′.

Proof. Let N be a network with ECN = {Y }, such that each clock in Y
is exclusively reset by complex edges in CompEdgesY (N ), and such that at
any time point in which a clock in Y is reset, only edges in CompEdgesY (N )

interleave. Let ECprioN be a list of all elements in ECN . LetN ′ = K(N , ECprioN ).
We calculate the number of reachable configurations of N ′ as follows:

• The term |ReachN |, which can be obtained by model checking N in
Uppaal, is the number of reachable configurations of N which in-
cludes all reachable configurations induced by all possible permuta-
tions of resets of quasi-equal clocks. Note that in N ′ those permuta-
tions and their resulting configurations are preserved, because they
are executed by transformed complex edges.

• Recall the following condition, inN at any time point in which a clock
in Y is reset, only edges in CompEdgesY (N ) interleave. This condition
is as well preserved in N ′ so that when resetterRY performs its tran-
sitions no other automaton interleaves. Hence, considering a reset
configuration s ∈ RC, there are 2 reachable configurations induced
by transitions of RY from and back to its initial location added (see
point (a) case 4 in Lemma 2) . Considering each reset configuration
in the set RC together thus yields |RC| · 2 reachable configurations
added.

This completes our calculations. ut

Lemma 6 (Upper Bound ComplexEdge−Formula)
Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN , such that some clocks in some Y ∈ ECN are reset by some com-
plex edges in CompEdgesY (N ). Note that there might be clocks in some
Y ∈ ECN reset by simple edges in SimpEdgesY (N ). Let ECprioN be a list of
all elements in ECN . Let N ′ = K(N , ECprioN ). Then the number of reachable
configurations of N ′ is bounded above by |ReachN | ·

( ∑
s∈RC

2|class(s)|).
Proof. Let N be a network with a set of equivalence classes of quasi-equal
clocks ECN , such that some clocks in some Y ∈ ECN are reset by some com-
plex edges in CompEdgesY (N ). Let ECprioN be a list of all elements in ECN .
LetN ′ = K(N , ECprioN ).We calculate the number of reachable configurations
of N ′ as follows:

• The factor |ReachN |, which can be obtained by model checking N
in Uppaal, is the number of reachable configurations of N which in-
cludes all reachable configurations induced by all possible permuta-
tions of resets of quasi-equal clocks. Note that in N ′ those permuta-
tions and their resulting configurations are preserved if they are exe-
cuted by transformed complex edges.
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• Considering a reset configuration s ∈ RC and an equivalence class
Y ∈ class(s) there are 2 transitions of the resetter RY , i.e. from and
back to its initial location. These two transitions of RY may inter-
leave with transitions justified by other edges of other automata (see
point (a) case 4 in Lemma 2). These two transitions in the worst-case
multiplies by factor |ReachN | the number of reachable configurations
of N ′. Considering each reset configuration in the set RC, and each
equivalence class in the set class(s) together thus yields

∑
s∈RC

2|class(s)|

transitions which in the worst-case multiplies by factor |ReachN | the
number of reachable configurations of N ′.
This completes our calculations. ut

7.5 Complexity of the Model Checking Algorithm on
Networks with Quasi-Equal Clocks

The TCTL model checking algorithm from [6] provides us with a conve-
nient framework for discussing in this section worst-case space and time
complexity bounds, that characterise a less expensive model checking effort
in transformed networks wrt. the effort in original networks with quasi-
equal clocks. Recall that the worst-case space complexity of the Timed
Computation Tree Logic (TCTL) model checking algorithm (see Algorithm
44 in page 737 of [6]) on a network of time automata, is exponential in the
number of clocks in that network [6].

Consider a network N with quasi-equal clocks where all clocks are ex-
clusively reset by simple edges, and its transformed versionN ′. The worst-
case space complexity of the model checking algorithm onN ′ is exponential
in the number of equivalence classes of quasi-equal clocks despite the ad-
ditional modelling elements added to N ′, e.g. resetters, boolean flags, etc.
That is, the worst-case complexity of the model checking algorithm on N ′
lies in an easier complexity class than the worst-case complexity wrt. N .

Recall that zones of an automaton can be broken down into clock re-
gions [3] if the automaton is able to recognise those regions. Therefore, the
next bound follows the one for clock regions of timed automata presented
and proven in [3], pages 159-160.

Theorem 2

Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN = {Y1, . . . , Ym}, where each clock x ∈ Y , for each Y ∈ ECN , is ex-
clusively reset by simple edges in SimpEdgesY (N ). Let ECprioN be a list of
all elements in ECN . Let crep(Y ) ∈ N be the maximal constant for each
rep(Y ) that N can distinguish, and c = max{crep(Y ) | Y ∈ ECN }. Let
N ′ = K(N , ECprioN ), where N ′ = {A1, . . . ,An,RY1 , . . . ,RYm}. Then the
number of configurations of N ′ is bounded above by:

|L(A1)× · · · × L(An)× L(RY1)× · · · × L(RYm)|·

(2c+ 2)|ECN | · (4c+ 3)
1
2
|ECN |·(|ECN |−1) · 2|V (N )|.



60
7. MODEL CHECKING ON NETWORKS WITH QUASI-EQUAL

CLOCKS

Proof. [Sketch]. The size of the state-space of a network of timed automata
can be expressed as the multiplication of three numbers, where the first is
the number of locations of the network, the second is the number of clock
regions [3] of the network, and the third is the number of all possible com-
binations of values of variables of the network. We consider here for sim-
plicity and without loss of generality only boolean variables.

For N ′ the number of locations is at most:

|L(A1)× · · · × L(An)× L(RY1)× · · · × L(RYm)|.

We use the bound of the number of clock regions presented and proven
in [3], pages 159-160, which for the case ofN is exponential in the size of its
set of clocks X (N ):

(2c+ 2)|X (N )| · (4c+ 3)
1
2
|X (N )|·(|X (N )|−1),

and we briefly discuss why in the case of N ′ that bound is exponential in
the size of ECN .

In N all quasi-equal clocks are exclusively reset by simple edges, there-
fore there are configurations induced by all possible permutations of resets
of those clocks. In N ′ those permutations are replaced by broadcast transi-
tions in which the transitions justified by transformed simple edges are syn-
chronised (see point (b) of case 4 in Lemma 2). Using these broadcast transi-
tions reduces the number of reachable configurations ofN ′. Hence, despite
the additional modelling elements added toN ′, e.g. resetters, boolean flags,
etc., the size of the state-space of N ′ is strictly smaller than the size of the
state-space of N (see Lemma 4).

In N ′ there are no configurations which distinguish differences on the
values of either quasi-equal clocks of the same equivalence class, or of token
tx-variables related to the same equivalence class. Differences on the values
of representative clocks, or on the values of tx-variables related to the diffe-
rent equivalence classes, can be nevertheless distinguished. Thus, in the
case of N ′ the number of clock regions is at most:

(2c+ 2)|ECN | · (4c+ 3)
1
2
|ECN |·(|ECN |−1).

Recall that inN ′ there are only three kinds of variables, i.e. prioY , sAY and
tx, which do not exist inN . We mentioned that differences on the values of
tx-variables related to the same equivalence class cannot be distinguished.
Regarding variables prioY , sAY , their values do not enlarge the state-space of
N ′, since these variables are mere syntactic sugar for the location in a given
configuration of RY and A ∈ N ′, respectively. Thus, in the case of N ′ the
number of all possible combinations of values of variables is at most:

2|V (N )|.

ut
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Consider a network N with quasi-equal clocks where some of those
clocks are reset by complex edges, and its transformed version N ′. Recall
that N ′ preserves all configurations of N which are induced by all possible
permutations of resets of quasi-equal clocks carried out by complex edges.
Therefore, the worst-case space complexity of the TCTL model checking
algorithm on N ′ is exponential in the number of clocks of N . Thereby,
together with the additional configurations induced by interleavings of re-
setters, the size of the state-space of N ′ can be bigger than the one of N .

Theorem 3

Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN = {Y1, . . . , Ym}, such that for some Y ∈ ECN , some clocks in Y are
reset by some complex edges in CompEdgesY (N ). Let ECprioN be a list of
all elements in ECN . Let crep(Y ) ∈ N be the maximal constant for each
rep(Y ) that N can distinguish, and c = max{crep(Y ) | Y ∈ ECN }. Let
N ′ = K(N , ECprioN ), where N ′ = {A1, . . . ,An,RY1 , . . . ,RYm}. Then the
number of configurations of N ′ is bounded above by

|L(A1)× · · · × L(An)× L(RY1)× · · · × L(RYm)|·

(2c+ 2)|X (N )| · (4c+ 3)
1
2
|X (N )|·(|X (N )|−1) · 2V (N ′).

Proof. [Sketch]. Similar to the proof sketch for Theorem 2. For N ′ the num-
ber of locations is at most:

|L(A1)× · · · × L(An)× L(RY1)× · · · × L(RYm)|.

Regarding the upper bound of the number of clock regions presented
and proven in [3], pages 159-160, for the case ofN is exponential in the size
of its set of clocks X (N ), i.e. (2c+ 2)|X (N )| · (4c+ 3)

1
2
|X (N )|·(|X (N )|−1).

In N ′ since token tx-variables related to the same equivalence class are
updated by transformed complex edges, and the interleavings of those ed-
ges are preserved, therefore, we can distinguish differences on the values
of those variables. According to Lemma 2, case 4.(d) the configurations of
N ′ where those differences can be distinguished, are related one-to-one to
those configurations of N which are induced by all possible permutations
of resets of quasi-equal clocks carried out by complex edges. Thus, the same
bound of the number of clock regions for the case of N holds for N ′.

By the fact that differences on the values of token tx-variables related
to the same equivalence class can be distinguished in configurations of N ′,
therefore, the number of all possible combinations of values of variables in
N ′ is at most:

2|V (N ′)|.

ut
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With the bounds calculated in Theorem 2 and in Theorem 3 we are
able to calculate an upper bound for the worst-case run-time complexity of
the TCTL model checking algorithm on networks with equivalence classes
of quasi-equal clocks. In particular for the case of transformed networks
whose original versions contain quasi-equal clocks exclusively reset by sim-
ple edges, the upper bound characterises a less expensive run-time com-
plexity due to a reduced number of reachable configurations of those trans-
formed networks.

The following bounds follow the one presented in [6], page 736.

Theorem 4

Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN , where each clock x ∈ Y , for each Y ∈ ECN , is exclusively reset by
simple edges in SimpEdgesY (N ). Let ECprioN be a list of all elements in ECN .
Let N ′ = K(N , ECprioN ). Let S be the number of configurations obtained
in Theorem 2. Let T be the number of transitions which induce at most S
configurations of N ′. Let φ be a query over N and φ′ := Ω(φ). Let φ′parse
denote the parse tree of φ′ and |φ′parse | its size. Then the time complexity of
the TCTL model checking algorithm (see Algorithm 44 in page 737 of [6])
on the input N ′ is bounded from above by

(S + T ) · |φ′parse |.

Proof. [Sketch]. Let N be a network with a set of equivalence classes of
quasi-equal clocks ECN , where each clock x ∈ Y , for each Y ∈ ECN , is ex-
clusively reset by simple edges in SimpEdgesY (N ). Let ECprioN be a list of
all elements in ECN . Let N ′ = K(N , ECprioN ). Let φ be a query over N and
φ′ := Ω(φ). Let φ′parse denote the parse tree of φ′ and |φ′parse | its size.

The first summand, i.e. S, is the bound for the number of configurations
of N ′ obtained in Theorem 2. The second summand, i.e. T , is a bound
for the number of transitions which induce at most S configurations of N ′.
The bound T considers the number of transitions induced by: (1) delay
transitions and, (2) transitions that combine two steps: firstly time passes
and then an internal or synchronization or broadcast transition is taken.

Note that T does not consider a number of transitions representing all
possible permutations of resets of quasi-equal clocks justified by taking
simple edges, because inN ′ we use only representative clocks, and all those
possible permutations are replaced by a fixed number of broadcast transi-
tions (see point (b) of case 4 in Lemma 2).

Recall that the mentioned transitions involve operations on zones, e.g.
time elapse, zone interception, etc. Recall that zones are represented by
DBMs in Uppaal. The size of a DBM for the case of N ′ is quadratic in the
size of ECN . Note that these DBMs will induce less operations on them
because of their reduced size, as compared to the size of DBMs (quadratic
in the number of clocks) used to represent zones of N .

In the following we discuss the factor |φ′parse |. According to [6]: (1) the
TCTL model checking algorithm considers path formulas in existential nor-
mal form (ENF) and, (2) for each universal path formula there exists an
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equivalent path formula in ENF. Then the size of the parse tree of a path for-
mula equals the number of existential path operators located in the nodes
of that tree.

Recall that we use the model checker Uppaal and the logic of Uppaal is
a subset of the TCTL. In the following we discuss the size of the parse tree
of a query in this logic. The size of the parse tree of φ, i.e. |φparse |, equals the
number of existential path operators of φ located in the nodes of the tree,
for which there is a computation of the set of configurations that satisfy φ.
The truth-values for the basic formulas occurring in the leaves of the parse
tree are typically derived from the information of the configurations of the
network. Since nested path formulas are not supported by Uppaal, thus, in
φ occurs one existential path operator.2 Leaves of the parse tree, i.e. cons-
tant true or atomic propositions, do not contribute to the size of φ, hence,
|φparse | = 1. Note that |φparse | = |φ′parse | since Ω does not add extra path
operators to φ′. ut

Theorem 5

Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN , such that for some Y ∈ ECN , some clocks in Y are reset by some com-
plex edges in CompEdgesY (N ). Let ECprioN be a list of all elements in ECN .
Let N ′ = K(N , ECprioN ). Let S be the number of configurations obtained
in Theorem 3. Let T be the number of transitions which induce at most S
configurations in N ′. Let φ be a query over N and φ′ := Ω(φ). Let φ′parse
denote the parse tree of φ′ and |φ′parse | its size. Then the time complexity
of the TCTL model checking algorithm on the input N ′ is bounded from
above by

(S + T ) · |φ′parse |.

Proof. [Sketch]. Let N be a network with a set of equivalence classes of
quasi-equal clocks ECN , such that for some Y ∈ ECN , some clocks in Y are
reset by some complex edges in CompEdgesY (N ). Let ECprioN be a list of all
elements in ECN . Let N ′ = K(N , ECprioN ). Let φ be a query over N and
φ′ := Ω(φ). Let φ′parse denote the parse tree of φ′ and |φ′parse | its size.

The factor |φ′parse | is the same as in the proof sketch for Theorem 4. The
first summand, i.e. S, is the bound for the number of configurations of N ′
obtained in Theorem 3. The second summand, i.e. T , is a bound for the
number of transitions which induce at most S configurations of N ′. The
bound T considers the number of transitions induced by: (1) delay tran-
sitions and, (2) transitions that combine two steps: firstly time passes and
then an action transition is taken. Note that in N ′ since token tx-variables
related to the same equivalence class are updated by transformed complex
edges, and the interleavings of those edges are preserved, thus T considers
all possible transitions justified by taking transformed complex edges. Re-
call that the size of DBMs for the case of N ′ is quadratic in the size of ECN ,
thus T considers less transitions wrt. operations on zones, as compared to
the number of transitions to manipulate zones of N . ut

2For the special case of a formula using the leads-to operator, the number of existential
path operators in that formula is two.
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CLOCKS

In Chapter 8 we will observe that for the case of a transformed net-
work with transformed complex edges, even when the size of its state-
space is bigger than the one of the original network, speedups of the model
checking procedure on that transformed network are obtained and justi-
fied by a reduced computational effort related to a more efficient DBMs-
management.
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Chapter 8

Experiments

8.1 Introduction

In this section we present the experimental results that we have obtained
when model checking two groups of networks with quasi-equal clocks.
The first group consists of nine industrial case studies, for which we model
check the original networks and two respective networks transformed with
two versions of our Algorithm K. These two versions are, the version
presented in this work which implements a broadcast synchronisation for
transformed simple edges, and the version from [9] which simulates that
broadcast synchronisation with rendez-vous synchronisations.

We obtained our industrial case studies from the scientific literature and
projects with small companies in Germany. Each of our industrial case stu-
dies is a distributed system that follows a time-triggered architecture.

Predicting savings of configurations in our industrial case studies, is in
general a very difficult task due to the involved interleavings occurring in
those case studies. Therefore, we create a second group of networks con-
sisting of toy examples with reduced interleavings, where predicting savings
is easier than with the industrial case studies.

8.2 Source-to-Source Transformation

In Chapter 5 we present transformations for networks of timed automata
with quasi-equal clocks and for queries on those networks. Those transfor-
mations are implemented in the tool sAsEt [12] as fully automatic source-
to-source transformations which yield models optimised for verification. In
those optimised models further techniques for the analysis of networks can
directly be applied, and the modelling language of Uppaal can be as well
supported. Thus, with a source-to-source transformation, network design-
ers are able to focus on the design of a network of timed automata, its vali-
dation and maintenance. Hence, designers may rely on our transformation
for implementing technicalities related to optimisations for verification.

sAsEt is a rich tool built in Ocaml. We use sAsEt to automatically de-
tect equivalence classes of quasi-equal clocks, simple and complex edges,
and to transform networks of timed automata. We have extended sAsEt by
implementing two versions of our approach:

• The broadcast version. This version uses Algorithm K from this work
which implements broadcast transitions of transformed simple edges,
since the version 4.1.19 of Uppaal allows clock constraints on edges
with inputs on broadcast channels.
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• The rendez-vous version. This version uses the version of Algorithm K
from [9] which simulates broadcast transitions of transformed simple
edges as fixed sequences of rendez-vous transitions. This algorithm
supports versions of Uppaal (4.0.13 and lower) which do not allow
clock constraints on edges with inputs on broadcast channels.

8.3 Preprocessing of Case Studies

For comparison purposes with previous versions of our approach, we im-
plement Algorithm KO (cf. Definition 33) on networks transformed with
AlgorithmK (Definition 27). The graphical representation of AlgorithmKO
is shown in Figure 8.1.

` `′

`′uO`uO

KO(A):

I(`) I(`′)

I(`) I(`′)

α,ϕ, ~r
` `′A:

I(`) I(`′)

returnY ? returnY ?

α,ϕ′, ~r

α, ϕ, ~r

FIGURE 8.1: Transformation pattern of algorithm KO over
ECN and network N ′ = K(N , ECprio

N ), where A ∈ N ′, and
the guard ϕ′ = ϕ ∧

∧
Y ∈ECN ,Y ∩X (A) 6=∅

∑
x∈Y tx > 0. Algo-

rithm KO takes each edge of network N ′ (excluding edges
of resetters), cf. left-hand side, and transforms it according
to the right-hand side. The edge (`, α, ϕ, ~r, `′) originally
linking locations ` and `′ is redirected to `′uO if and only if
∃Y ∈ ECN ∃x ∈ Y • tx ∈ vars(~r) ∧ tx /∈ V (N ). Intuitively,
only transformed complex and simple edges are redirected.

Definition 33 (Transformation Algorithm KO)

Let N be a network with a set of equivalence classes of quasi-equal
clocks ECN = {Y1, . . . , Ym}. Let ECprioN be a list of all elements of ECN ,
and let N ′ = {A1, . . . ,An,RY1 , . . . ,RYm} be the output K(N , ECprioN ).

The output of KO is NO = {KO(A1, ECN ), . . . ,KO(An, ECN )} ∪ {RY ∈
N ′ | Y ∈ ECN }, where KO(A, ECN ) = (L′, B(A),X (A), V (A), I ′, E′, `ini)
such that:

• L′ = L(A) ∪ {`O | ` ∈ L(A)}, i.e. one fresh copied location, called
O-location, for each location in A is added.

• I ′ = {`O 7→ I(`)∧ z′ ≤ 0 | ` ∈ L(A) \Lc(A)}, i.e. O-locations are made
urgent by using a fresh clock z′. Note that this clock is not added by
this algorithm but internally used by Uppaal in urgent locations.
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•

E′ = E(A) \ {(`, α, ϕ, ~r, `′) ∈ E(A) | ∃Y ∈ ECN∃x ∈ Y • tx ∈ vars(~r)

∧ tx /∈ V (N )} ∪ {(`, α, ϕ, ~r, `′O) | (`, α, ϕ, ~r, `′) ∈ E(A) ∧
∃Y ∈ ECN ∃x ∈ Y • tx ∈ vars(~r) ∧ tx /∈ V (N )} ∪
{(`O, α,f(ϕ), ~r, `′O) | (`, α, ϕ, ~r, `′) ∈ E(A)}
∪ {(`O, returnY ?, true, 〈〉, `), (`′O, returnY ?, true, 〈〉, `′) |
(`, α, ϕ, ~r, `′) ∈ E(A)},

i.e. the set of edges E′ consists of original edges, redirected edges,
copied edges, and edges linking copied and original locations, where
f(ϕ) = ϕ ∧

∧
Y ∈ECN ,Y ∩X (A)6=∅

∑
x∈Y tx > 0. ♦

In a network NO = KO(N ′, ECN ) neither new automata nor new va-
riables nor new clocks are added, but a copy of the structure of each non-
resetter automaton existing in the input networkN ′ = K(N , ECprioN ), where
N is a network with quasi-equal clocks.

In previous versions of our approach this copied structure help us to
ensure that time does not elapse as soon as a transformed complex edge
is taken, since that edge is redirected to an urgent destination location in
the copied structure. Recall that as opposed to transformed simple edges,
transformed complex ones do not synchronise with resetters which after
taking this synchronisation ensure that time does not elapse by transiting
to their respective location `nstRY

.
Note that a carelessly constructed copied structure would double the

state-space of transformed networks. However, the copied structure has
been carefully constructed and linked by Algorithm KO to the original one
from N ′. That copied structure is transited if and only if the corresponding
original one is transited in zero time at time points where representative
clocks are reset. Thus, our construction avoids enabling transitions to the
original and to the copied structure at the same time. Hence, the size of the
reachable state-space of NO wrt. N ′ is the same.

There exists a standard strong bisimulation between N ′ and NO, and
since our case studies are transformed with AlgorithmKO, we have slightly
modified Function Ω (Definition 28) to include O-locations in our query
transformations. We have as well implemented Algorithm KO in sAsEt.

8.4 Industrial Case Studies: Experimental Results

In this section we present and compare the results obtained from model
checking networks of the following nine industrial case studies: FS [13],
CR [14], CD [15], LS [16], EP [17], TT [18] TA [19], PG [20] and FB [21].

We can group our case studies as implementations of the following
time-triggered architectures: (a) TDMA: FS, TA and CD, (b) Pragmatic Ge-
neral Multicast: PG, (c) Foundation Fieldbus Data Link Layer: FB, (d)
TTEthernet: TT, (e) Ethernet PowerLink: EP, and (f) others: CR and LS.
For more information wrt. the nine industrial case studies we refer the in-
terested reader to the respective sources.
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TABLE 8.1: Row X-N(KO) gives the figures for benchmark
X with N components (andKO applied, denoted by the suf-
fix KO in the name). ‘C’ gives the number of clocks in the
network, ‘kStates’ the number of 103 states explored, ‘M’
used memory in MB, and ‘t(s)’ verification time in seconds.
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We have model checked the following two versions of each case study:
(1) the original network and, (2) the network transformed by AlgorithmKO
on the output of Algorithm K (the broadcast version) from this work.

Table 8.1 gives figures for the verification of safety queries in instances of
the original and the network transformed with Algorithm KO (denoted by
the suffix KO in the name). This table provides a summary of the verifica-
tion results obtained for each industrial case study. The interested reader
finds in Appendix B an extensive list of instances and their respective veri-
fication results obtained for each industrial case study.

In Table 8.1 rows without results indicate the smallest instances of a
case study for which we did not obtain results within 24 hours. For that
case study we were able to verify queries in at least one more instance of
the transformed network than in the original one.

We want to point out that the overhead induced by parsing transformed
queries in Uppaal is imperceptible in the verification results of Table 8.1.

8.4.1 Savings of Memory Consumption

The biggest savings of memory consumption are obtained in the trans-
formed networks of FS, CD and CR since those networks have transformed
simple edges. As expected by Theorem 2, the size of the state-space of those
transformed networks is smaller than the size of the state-space of the res-
pective original networks. For instance, in Table 8.1 we observe savings of
at least 44% wrt. the number of states explored in transformed networks of
the case study FS.

Note in Table 8.1 that verifying queries in transformed networks of the
case studies EP, LS, PG, TT and TA consumes more memory than verifying
queries in the original counterparts.

To the memory consumption mainly contributes the size of the state-
space of the network being model checked, and the size of the data struc-
tures, e.g. DBMs, used in Uppaal to represent zones of that network. The
DBMs used to represent zones of transformed networks are more compact
than those DBMs for the original networks.

The size of the state-space (in number of configurations) of transformed
networks of the case studies EP, LS, PG, TT and TA is bigger than the size
of the state-space of the respective original counterparts (see the theoretical
justification in Theorem 3). This is expected since those transformed net-
works: (1) contain transformed complex edges, (2) preserve all configura-
tions induced by all possible interleavings of those edges, and (3) contain
as well configurations induced by interleavings of resetters. Moreover, the
mechanism that prioritises transitions in Uppaal contributes as well to the
overall memory consumption (we discuss this issue in Example 8). That
mechanism is implemented in all networks transformed with Algorithm K
while original networks do not require it.
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8.4.2 Savings of Verification Time

In Table 8.1 we show that for all transformed networks except for those of
the case study TA, we achieve savings of verification time of at least 16.5%
wrt. to the verification time in the original networks. For TA we achieve
savings of at most 9%. The biggest savings of verification time are obtained
in the transformed networks of the case studies FS, CD, CR, FB and PG.

The networks FS, CD, CR contain only simple edges, while the networks
FB and PG contain only complex edges. The reasons for these savings in the
cases FS, CD, CR are:

1. In transformed networks of those cases the state-space to be explored
when we verify queries, is smaller than the state-space of the origi-
nal networks. In those transformed networks we encode those con-
figurations which in the original networks are induced by all possi-
ble permutations of resets of quasi-equal clocks carried out by simple
edges. Hence, there are less configurations to explore (see kStates in
Table 8.1).

2. According to [11] the basic operations on DBMs are divided in two
groups, namely, property checking and transformation. The property
checking group includes operations to check whether a zone satis-
fies a given property. The transformation group includes operations
to transform zones, e.g. clock reset and time delay. Hence, a compact
representation of DBMs (as obtained by using representative clocks
in transformed networks) reduces the number of operations on them,
and increments the efficiency of DBMs-management.

3. Recall from [42] that during the model checking procedure, Uppaal
checks for enabledness of edges which generates an overhead that
contributes to the overall verification time. In original networks with
simple edges there exists an enabledness check each time that a simple
edge is taken. In the respective transformed networks that overhead
is reduced since we synchronise enabled transformed simple edges
with a broadcast transition.

A theoretical justification for the savings of verification time in the cases
FS, CD, CR is provided in Theorem 4.

The quasi-equal clocks in the original networks of FB, PG, EP, LS, TT
and TA are reset by complex edges, so all configurations induced by all
possible permutations of resets of those clocks are preserved in the respec-
tive transformed networks. This explains that the savings in transformed
networks of those mentioned case studies are related to a more efficient
DBM-management, and not to a reduction of their underlying state-space.
A theoretical justification for the savings of verification time in those case
studies is provided in Theorem 5.
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8.4.3 Algorithm K: Broadcast Versus Rendez-Vous Versions

Regarding savings when comparing the verification results of networks
where Algorithm KO has been applied on outputs of the broadcast version
of Algorithm K from this work, and on outputs of the rendez-vous ver-
sion of Algorithm K from [9], we obtain savings wrt. configurations of at
most 4%, and wrt. verification time of at most 9% for networks of the case
study FS transformed with the broadcast version. Recall that the version
of AlgorithmK from this work implements a broadcast synchronisation for
transformed simple edges, and the version from [9] simulates that broad-
cast synchronisation with rendez-vous synchronisations. Thereby, savings
are more significant in transformed networks with a large number of trans-
formed simple edges, as in the networks of FS.

8.4.4 Predicting Lower Bounds of the Number of Configurations

We predict lower bounds of the number of reachable configurations of trans-
formed networks for the cases EP and FB. In each of these cases there exists
only one equivalence class of quasi-equal clocks, and no other automata but
those with complex edges interleave when those clocks are reset.

Regarding EP, we know that its set of reset configurations RC contains
2 configurations in each instance. Considering EP-20 we obtain the size
of its set of reachable configurations, i.e. |ReachN |, from Table B.4 which
equals 3, 145, 794 configurations. Using the ComplexEdge−Formula, i.e.
|ReachN | + (|RC| · 2), from Lemma 5 we predict a lower bound for EP-
20KO as follows, 3, 145, 794 + (2 · 2) = 3, 145, 798, which indeed holds since
Table B.4 gives 3, 145, 799 states for EP-20KO.

We repeat the same exercise for FB, we know that its set of reset confi-
gurations RC contains 16 configurations in each instance. Considering FB-
16 we obtain the size of its set of reachable configurations from Table B.3
which equals 393, 243 configurations. Then we predict a lower bound for
FB-16KO as follows, 393, 243 + (16 · 2) = 393, 275, which indeed holds since
the same number of states is reported for FB-16KO in Table B.3.

8.5 Toy Examples: Experimental Results

In this section we present several toys examples whose simplicity allows us
to: (1) predict savings in number of configurations, (2) predict lower and
upper bounds of the number of reachable configurations of transformed
networks and, (3) show costs in memory consumption and verification time
of the prioritisation mechanism implemented in transformed networks.
Regarding our toy examples, the broadcast version of Algorithm K and
Algorithm KO have been applied in the way already mentioned.

Example 7 (Prediction of Savings in Number of Configurations) We cons-
truct network N (see Figure 8.2 for a partial view of this network) and use it as
toy example. The basic configuration for N consists of 10 clocks and 10 resetting
automata resetting each of those clocks with simple edges. There exist as well 6
non-resetting automata with no clocks dedicated to interleave. We know that the
interleavings of the non-resetting automata induce 2, 048 configurations at any
time point.
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A1:

x ≤ 10 x ≤ 1 x ≤ 1

x ≤ 100

A2:

A3:

y ≤ 10

x ≥ 10

x := 0

x ≥ 1

x ≥ 100

x := 0

y ≥ 10

y := 0

FIGURE 8.2: Examples of automata of network N used in
Example 7. Automata ofN can be grouped in three groups,
where only the fist two groups use quasi-equal clocks.
Group 1: automata syntactically similar toA1. Group 2: au-
tomata syntactically similar to A2. Group 3: automata with
no clocks dedicated to interleave, where A3 is an example.

There are 5 equivalence classes, i.e. A,B,C,D and E, with two clocks each.
In our experiments we instantiate only clocks of the equivalence class A, while the
other classes remain with the same number of clocks.

We know that there are 3 reset configurations, i.e. |RC| = 3. In the first reset
configuration the clocks of classes A and B are ready to be reset; in the second the
clocks of C,D and E, and in the third only the clocks of A.

The results of verifying a safety property expressing that time is never stopped
either at origin or at destination locations of simple edges, are given in Table 8.2.
Then we use the SimpleEdge−Formula from Lemma 3, i.e.
|ReachN | −

(∑
s∈RC 2|clks(s)| )+

∑
s∈RC

[
|class(s)|+ 2

]
, to calculate the number

of configurations of the transformed instance, say N -1KO. From Table 8.2 the
number of configurations of N -1, i.e. the size of ReachN , equals 184, 320. Using
the formula from above yields,

184, 320− ((2, 048 · 24) + (2, 048 · 26) + (2, 048 · 22))+

(2, 048 · (2 + 2)) + (2, 048 · (3 + 2)) + (2, 048 · (1 + 2)) = 36, 864.

Considering that our implementation of AlgorithmK induces one extra config-
uration for initialisation of variables, the number 36, 864 + 1 equals the number of
states reported in Table 8.2 forN -1KO. Hence, forN -1KO we save 147, 455 confi-
gurations by synchronising transformed simple edges with broadcast transitions.

The same exercise for the instance, say N -7, where |A| = 8, yields,

16, 183, 296− ((2, 048 · 210) + (2, 048 · 26) + (2, 048 · 28))+

(2, 048 · (2 + 2)) + (2, 048 · (3 + 2)) + (2, 048 · (1 + 2)) = 13, 455, 360,

which by adding the extra configuration for initialisation of variables equals the
number of states reported for N -7KO. Hence, for N -7KO we save 2, 727, 936 con-
figurations by synchronising transformed simple edges with broadcast transitions.

♦
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A: B:

y ≤ 1 y ≤ 1

y ≥ 1

y := 0, a := 3

y ≥ 1

y := 0, a := 3

FIGURE 8.3: Network P used in Example 8.
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TABLE 8.2: Results for the toy example N , where all clocks
are reset by simple edges.

Example 8 (The Cost of Using Priorities) This toy example is the network P
(see Figure 8.3) whose basic configuration consists of two automata: A with no
clocks and no variables, a single location and a self-loop, and B with a variable
and a quasi-equal clock which belongs to the equivalence class Y . Both clock and
variable are reset by the same non-looped complex edge with no synchronisation
channel.
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In our experiments we instantiate only automaton B, so that the size of Y
increases. There exist two versions of transformed networks, namely, P ′ and P ′′

which preserve all interleavings justified by the original complex edges, and which
only differ on the operation of the mechanism for prioritising transitions. That
is, in version P ′ the mechanism for prioritising transitions is activated, while in
version P ′′ is not.

This toy example is specially constructed to isolate and observe the effects on
the memory consumption and verification time of the mechanism for prioritising
transitions. Although not reported, the number of reachable configurations of P ′

and P ′′ is the same, hence, prioritising transitions in this case has no effect in the
overall number of reachable configurations. Obviously, the difference wrt. the num-
ber of reachable configurations between an instance of P and any its corresponding
transformed version, is the number of configurations induced by the transitions of
the resetter in the transformed network.

In Figure 8.4 we report the results of memory consumption and verification
time of a safety property in each network. DBMs in P ′ and P ′′ are more compact
than in P this contributes to less memory consumption and less verification time
of properties in transformed networks. Moreover, Figure 8.4 clearly shows that the
implementation of the mechanism for prioritising transitions in P ′ increases the
overall memory consumption and verification time wrt. P ′′, where that mechanism
is not operative.

Without looking into the code of Uppaal we can only expeculate how this tool
internally prioritises transitions. One idea is that in Uppaal the prioritisation
is not statically implemented but dynamically, so that Uppaal internally stores
an ordering of transitions in a data structure and refreshes it each time that, for
instance, a successor configuration is computed. ♦

Example 9 (Predicting Upper Bounds of the Number of Configurations )
We construct network N (consisting of automata syntactically similar to automa-
ton A2 of Figure 8.2) and use it as toy example. The basic configuration for N
consists of 6 clocks and 6 automata, each with a unique edge which is a non-looped
complex edge with no synchronisation channel and that resets each clock.

There are 3 equivalence classes, i.e. A,B and C, with two clocks each. In our
experiments we instantiate only clocks of the equivalence class A, while the other
classes remain with the same number of clocks.

We know that there is only 1 reset configuration, i.e. |RC| = 1, where all clocks
are ready to be reset. Considering, say N -1, we predict an upper bound of the
number of configurations of its respective transformed network. To this end, from
Table 8.3 we obtain the size of its set of reachable configurations, i.e. |ReachN |,
which equals 64 configurations.

The upper bound ComplexEdge−Formula, i.e. |ReachN | ·
( ∑
s∈RC

2|class(s)|),
from Lemma 6 yields an upper bound forN -1KO of, (64) · ((1) · 23) = 512 config-
urations. The upper bound holds since Table 8.3 reports 201 states for N -1KO.

The same exercise for, say N -18, predicts an upper bound of (8, 388, 608) ·
((1) ·23) = 67, 108, 864 configurations of the respective transformed network. The
upper bound holds since Table 8.3 reports 18, 350, 141 states for N -18KO. ♦
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FIGURE 8.4: Verification results for the toy example P and
its two transformed networks.



76 8. EXPERIMENTS

Network C States M t(s) Network C States M t(s)

N -1 6 64 5.7 0.0 N -1KO 3 201 6.1 0.0
N -2 7 128 5.8 0.0 N -2KO 3 341 6.3 0.0
N -3 8 256 5.9 0.0 N -3KO 3 621 6.4 0.0
N -4 9 512 6.0 0.0 N -4KO 3 1, 181 6.5 0.0
N -5 10 1, 024 6.1 0.0 N -5KO 3 2, 301 6.7 0.0
N -6 11 2, 048 6.3 0.0 N -6KO 3 4, 541 7.2 0.1
N -7 12 4, 096 6.6 0.2 N -7KO 3 9, 021 8.0 0.3
N -8 13 8, 192 7.5 0.5 N -8KO 3 17, 981 9.5 0.7
N -9 14 16, 384 8.9 1.4 N -9KO 3 35, 901 12.5 1.7
N -10 15 32, 768 11.8 3.5 N -10KO 3 71, 741 18.9 3.9
N -11 16 65, 536 20.2 8.5 N -11KO 3 143, 421 31.6 8.8
N -12 17 131, 072 35.2 20.4 N -12KO 3 286, 781 56.4 20.4
N -13 18 262, 144 65.9 49.1 N -13KO 3 573, 501 106.8 45.4
N -14 19 524, 288 127.8 115.8 N -14KO 3 1, 146, 941 206.5 103.5
N -15 20 1, 048, 576 252.0 274.7 N -15KO 3 2, 293, 821 405.3 227.2
N -16 21 2, 097, 152 502.3 639.6 N -16KO 3 4, 587, 581 836.7 516.5
N -17 22 4, 194, 304 1, 006.3 1, 492.3 N -17KO 3 9, 175, 101 1, 666.0 1, 114.3
N -18 23 8, 388, 608 2, 023.1 3, 435.0 N -18KO 3 18, 350, 141 3, 324.0 2, 409.7

TABLE 8.3: Results for the toy example N where all clocks
are reset by complex edges.
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Chapter 9

Conclusion

In this thesis, we present a fully automatic reduction of the number of quasi-
equal clocks in any network of timed automata. Our approach yields trans-
formed networks where all properties of the original networks are reflected.
The cost of verifying properties is much lower in transformed networks
than in their original versions with quasi-equal clocks. Our approach does
not impose any syntactical assumption neither on networks nor on single
automata, thus we are able to transform the whole class of timed automata
with quasi-equal clocks.

Considering a network with a set of equivalence classes of quasi-equal
clocks, where all clocks are exclusively reset by simple edges. In this thesis
we demonstrate that the worst-case space complexity of the model checking
algorithm on the transformed version of that network, is exponential in the
number of equivalence classes of quasi-equal clocks, despite the additional
modelling elements added to the transformed version.

We present a source-to-source transformation which is automatically
delivered by our tool sAsEt. Moreover, sAsEt implements distinct ver-
sions of our transformation in order to support several versions of Uppaal.
This source-to-source transformation outputs a network of timed automata
where: (1) further techniques for the analysis of networks can directly be
applied, (2) the full query language of Uppaal is supported and, (3) the rich
modelling language of Uppaal can be supported.

We provide formulas to quantify the number of reachable configura-
tions in transformed automata, and thereby know the number of configu-
rations saved in those automata. For certain transformed automata our
quantification is exact, and for the other automata we bound that number
of reachable configurations.

We apply our quasi-equal clocks reduction approach on nine industrial
cases studies, and provided extensive experimental results which show sig-
nificant savings in verification costs.

We compare the savings in memory consumption and verification time
delivered by the distinct versions of our transformation, and we predict the
exact size of some transformed versions of our industrial cases studies.

Future Work. We plan to extend the results obtained in this thesis, e.g.
source-to-source transformation, formulas to quantify reachable configura-
tions, etc., to the quasi-dependent variables reduction approach [46]. Cu-
rrently, that approach imposes strong assumptions (similar to those in [7])
on networks of hybrid automata. With the knowledge gained from the
quasi-equal clocks reduction approach we are able to eliminate those as-
sumptions. Preliminary work in this direction has been carried out in [54].
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Appendix A

Weak Bisimulation and
Auxiliary Propositions

A.1 Introduction

We recommend to begin with Lemma 2 (page 105), and then read these
functions and propositions as required by the lemma.

Definition 34 (Functions δs,r, $ and ζ )
Let N be a network with ECN . Let N ′ = K(N , ECN ) Let s ∈ Conf (N )

and r ∈ Conf (N ′), such that r ∈ QE (s). Then:

1. δs,r : LogVars → {0, 1} is a function defined point-wise as follows,

δs,r(x̃) :=



1 , if ∃ 1 ≤ i ≤ n, 1 ≤ j ≤ m,
(`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesYj (Ai) • `s,i = ` ∧
`r,i = `′ ∧ `r,RYj = `nstRYj

∧ νs(x) = νr(rep(x)) ∧
νr(tx) = 0,

0 , otherwise.

2. $ : (Conf (N ) × Conf (N ′) × N × (LogVars → {0, 1})) → L(N ) is a
function defined point-wise as follows, $(s, r, i, δ) :=

` , if ∃ `′, α, ϕ, x, Y • (`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesY (Ai) ∧(
(δ(x̃) = 1 ∧ `r,i = `′) ∨ (`r,i = `)

)
,

`′ , if ∃ `, α, ϕ, x, Y • (`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesY (Ai) ∧
δ(x̃) = 0 ∧ `r,i = `′,

`s,i , otherwise.

3. ζ : (Conf (N )×Conf (N ′)×X (N )× (LogVars → {0, 1}))→ Time is a
function defined point-wise as follows, ζ(s, r, x, δ) :=

νr(rep(x)) , if ∃ i, `, α, ϕ, `′, Y • (`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesY (Ai)
∧
(
(δ(x̃) = 1 ∧ `r,i = `′ ∧ νr(tx) = 0) ∨

(`r,i = ` ∧ νr(tx) = 1)
)
,

0 , if ∃ i, `, α, ϕ, `′, Y • (`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesY (Ai)
∧ δ(x̃) = 0 ∧ `r,i = `′ ∧ νr(tx) = 0,

νs(x) , otherwise.

♦
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Proposition 1

Let N be a network with a set of equivalence classes of quasi-equal
clocks ECN . Let N ′ = K(N , ECN ). Let s ∈ Conf (N ) be a configuration
of N . Let κN be as defined in Definition 29. Then

∀ r ∈ QE (s) • r |=δs,r κN .

Proof. Let N = {A1, . . . ,An} be a network with a set of equivalence
classes of quasi-equal clocks ECN = {Y1, . . . , Ym}. Let N ′ = K(N , ECN ).
Let s ∈ Conf (N ) be a configuration of N .

Pick r ∈ QE (s). By Function Ω, κN consists of the following conjunction
of implications: ∧

1≤i≤n,
1≤j≤m,

(`,α,ϕ,〈x:=0〉,`′)∈SimpEdgesYj (Ai)

κ(x).

We claim that each implication κ(x) holds as follows:

• κ(x) =

(x̃ =⇒
∨

(`,α,ϕ,〈x:=0〉,`′)∈SimpEdgesYj (Ai)

`′ ∧ `nstRYj
).

We distinguish the following values that Function δs,r assigns to x̃.

– δs,r(x̃) = 0. Then the implication κ(x) is trivially true and satis-
fied by r.

– δs,r(x̃) = 1. The premise x̃ = 1 of κ(x) is true and we now carry
out a consistency check for the value assigned to x̃, by check-
ing that the conclusion of κ(x) is also true. Since δs,r(x̃) = 1,
then by Definition 34 of Function δs,r there exists a simple edge
(`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesYj (Ai), such that the ith au-
tomaton in r is located at `′, i.e. `r,i = `′, and the resetter automa-
ton RYj in r is located at `nstRYj

, i.e. `r,RYj = `nstRYj
. From the

conclusion of κ(x) (which is a disjunction of clauses), the config-
uration r satisfies the disjunct (`′∧ `nstRYj

). Hence, r satisfies the
conclusion of κ(x). Thus, the implication κ(x) is satisfied by r.

ut

Proposition 2

Let N = {A1, . . . ,An} be a network with a set of equivalence classes of
quasi-equal clocks ECN = {Y1, . . . , Ym}. Let N ′ = K(N , ECN ). Let s ∈
Conf (N ) and r ∈ Conf (N ′) be two configurations such that r ∈ QE (s). Let
CF be a configuration formula over N . Then

A. s |=δ CF =⇒ r |=δ Ω(CF ).

B. r |=δ Ω(CF ) =⇒ ∃ ṡ ∈ Conf (N ) • r ∈ QE (ṡ) ∧ ṡ |=δ CF .

Proof. Let p = |X (N )|. Let CV be the set of logical variables introduced by
Ω in transformations for locations and clock constraints occurring in CF .
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• By induction over the structure of CF we prove the following claim

s |=δ CF =⇒ r |=δ[x̃i:=δs,r(x̃i)|1≤i≤p,x̃i∈CV ] Ω0(CF ), (?)

which implies the claim A as follows:

s |=δ CF
=⇒ By (?).
r |=δ[x̃i:=δs,r(x̃i)|1≤i≤p,x̃i∈CV ] Ω0(CF )

=⇒ By Proposition 1.
r |=δ[x̃i:=δs,r(x̃i)|1≤i≤p,xi∈CV ] Ω0(CF ) ∧ κN
=⇒ Set di := δs,r(x̃i).
∃ d1, . . . , dp ∈ {0, 1} •
r |=δ[x̃i:=di|1≤i≤p,x̃i∈CV ] Ω0(CF ) ∧ κN
⇐⇒ By Definition 18.
r |=δ ∃ x̃1, . . . , x̃p • Ω0(CF ) ∧ κN
⇐⇒ By Function Ω.
r |=δ Ω(CF )

In the following we show (?). Let δ′ := δ[x̃i := δs,r(x̃i) | 1 ≤ i ≤
p, x̃i ∈ CV ].

– Base case i. CF = ϕint . We show that s |=δ ϕint ⇐⇒ r |=δ′

Ω0(ϕint).
s |=δ ϕint

⇐⇒ By Definition 18.
νs |=δ ϕint

⇐⇒ Since ϕint is a constraint over V (N ).
νs|V (N ) |=δ ϕint

⇐⇒ By (†).
νr|V (N ) |=δ′ ϕint

⇐⇒ Since Ω0(ϕint) = ϕint .
νr|V (N ) |=δ′ Ω0(ϕint)

⇐⇒ Since ϕint is a constraint over V (N ).
νr |=δ′ Ω0(ϕint)
⇐⇒ By Definition 18.
r |=δ′ Ω0(ϕint)

(†) By Rule (6.2.1): νs(x) = νr(x), for each x ∈ V (N ). Moreover,
variables occurring in δ′ are fresh ones and do not occur in ϕint .

– Base case ii. LetAj , with 1 ≤ j ≤ n, be an automaton ofN , CF =
Aj .`, such that ` is neither an origin nor a destination location of
a simple edge. We show that s |=δ Aj .` ⇐⇒ r |=δ′ Ω0(Aj .`).
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s |=δ Aj .`
⇐⇒ By s = 〈~̀s, νs〉, t.
〈~̀s, νs〉, t |=δ Aj .`
⇐⇒ By Definition 18.
`s,j = Aj .`
⇐⇒ By Rule (6.0.2a): `s,j = `r,j .
`r,j = Aj .`
⇐⇒ By Definition 18 and Ω0(Aj .`) = Aj .`.
〈~̀r, νr〉, t |=δ′ Ω0(Aj .`)
⇐⇒ By r = 〈~̀r, νr〉, t.
r |=δ′ Ω0(Aj .`)

Note that Rule (6.0.2b) does not apply in this base case since in
that rule Aj is located at the origin location of a simple edge.

– Base case iii. Let Aj , with 1 ≤ j ≤ n, be an automaton of N ,
CF = Aj .`, where ` is the origin of the simple edge (`, α, ϕ, 〈x :=
0〉, `′) ∈ SimpEdgesY (Aj), for some Y ∈ ECN . We show that
s |=δ Aj .` =⇒ r |=δ′ Ω0(Aj .`).

s |=δ Aj .`
⇐⇒ By s = 〈~̀s, νs〉, t.
〈~̀s, νs〉, t |=δ Aj .`
⇐⇒ By Definition 18.
`s,j = Aj .`
=⇒ By (†).
`r,j = Aj .` ∨
(`r,j = Aj .`′ ∧ δs,r(x̃) = 1)
⇐⇒ By Definition 18 and

Ω0(Aj .`) = (Aj .` ∨ (Aj .`′ ∧ x̃)).
〈~̀r, νr〉, t |=δ′ Ω0(Aj .`)
⇐⇒ By r = 〈~̀r, νr〉, t.
r |=δ′ Ω0(Aj .`)

(†) Since r ∈ QE (s) then either Rule (6.0.2a) or Rule (6.0.2b)
holds for this base case. We make the following distinctions.

∗ If Rule (6.0.2a) holds then the jth automaton in both configu-
rations is located at the same location, i.e. `s,j = `r,j , thus,
`r,j = Aj .` holds.
∗ If Rule (6.0.2b) holds then the jth automaton in both configu-

rations, and automaton RY are located as follows, `s,j =
Aj .`, `r,j = Aj .`′, `r,RY = `nstRY

and νr(tx) = 0, there-
fore, 1 is assigned to x̃ by Function δs,r (Definition 34), thus,
(`r,j = Aj .`′ ∧ δs,r(x̃) = 1) holds.

– Base case iv. Let Aj , with 1 ≤ j ≤ n, be an automaton of N ,
CF = Aj .`′, such that `′ is the destination of the simple edge
(`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesY (Aj), for some Y ∈ ECN . We
show that s |=δ Aj .`′ =⇒ r |=δ′ Ω0(Aj .`′).
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s |=δ Aj .`′

⇐⇒ By s = 〈~̀s, νs〉, t.
〈~̀s, νs〉, t |=δ Aj .`′
⇐⇒ By Definition 18.
`s,j = Aj .`′
=⇒ By (†).
`r,j = Aj .`′ ∧ ¬(δs,r(x̃) = 0)
⇐⇒ By Definition 18

and Ω0(Aj .`′) = (Aj .`′ ∧ ¬x̃).
〈~̀r, νr〉, t |=δ′ Ω0(Aj .`′)
⇐⇒ By r = 〈~̀r, νr〉, t.
r |=δ′ Ω0(Aj .`′)

(†) By Rule (6.0.2a) the jth automaton in both configurations is
located at the same location, i.e. `s,j = `r,j . However, `s,j 6= `,
hence, Function δs,r assigns 0 to x̃.
Note that Rule (6.0.2b) does not apply in this base case since in
that rule Aj is located at the origin location of a simple edge.

– Base case v. Let Aj , with 1 ≤ j ≤ n, be an automaton of N .
Let Y ∈ ECN . Let e = (`, α, ϕ, ~r, `′) ∈ SimpEdgesY (Aj) be a
simple edge. Let CF = x ∼ c, with x ∈ X (Aj). We show that
s |=δ x ∼ c =⇒ r |=δ′ Ω0(x ∼ c).

s |=δ x ∼ c
⇐⇒ By s = 〈~̀s, νs〉, t.
νs |=δ x ∼ c
⇐⇒ By Definition 18.
νs(x) ∼ c
=⇒ By (†).
(νr(rep(x)) ∼ c ∧
(νr(tx) = 1 ∨ δs,r(x̃) = 1)) ∨
(0 ∼ c ∧ ¬(νr(tx) = 1) ∧
¬(δs,r(x̃) = 1))
⇐⇒ By Definition 18.
νr |=δ′ (rep(x) ∼ c ∧ (tx ∨ x̃))
∨ (0 ∼ c ∧ ¬tx ∧ ¬x̃)
⇐⇒ By Definition 18 and

Ω0 over x ∼ c.
〈~̀r, νr〉, t |=δ′ Ω0(x ∼ c)
⇐⇒ By r = 〈~̀r, νr〉, t.
r |=δ′ Ω0(x ∼ c)

(†) Since r ∈ QE (s) then either Rule (6.0.2a) or Rule (6.0.2b)
holds for this base case. We make the following distinctions.

1. If Rule (6.0.2a) holds then the jth automaton in both configu-
rations is located at the same location, i.e. `s,j = `r,j , and
either (a) νs(x) = νs(rep(x)) or (b) νs(x) 6= νs(rep(x)). We
distinguish:
(a) νs(x) = νs(rep(x)). By Rule (6.0.2a), νs(x) = νr(rep(x)) ·

νr(tx), where νr(tx) = 1. Because of the value of tx in r,
the conjunction (0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1))
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yields false. Because `s,j = `r,j , Function δs,r assigns 0 to
x̃, and from (νr(rep(x)) ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1))
the conjunction (νr(rep(x)) ∼ c ∧ νr(tx) = 1) holds.

(b) νs(x) 6= νs(rep(x)). By Rule (6.0.2a), νs(x) = νr(rep(x)) ·
νr(tx), where νr(tx) = 0. Because `s,j = `r,j , Function δs,r
assigns 0 to x̃, and since νr(tx) = 0, then (νr(rep(x)) ∼
c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1)) yields false. Because of
the mentioned values for tx and x̃ the conjunction (0 ∼
c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1)) holds.

2. If Rule (6.0.2b) holds then `s,j = `, `r,j = `′ and `r,RY =
`nstRY

. We distinguish the following cases:
(a) x is reset by e. By Rule (6.0.2b), νs(x) = νr(rep(x)) and

νr(tx) = 0. Function δs,r assigns 1 to x̃, since `s,j =
`, `r,j = `′, `r,RY = `nstRY

and νr(tx) = 0. Because
of the value of x̃, the conjunction (0 ∼ c ∧ ¬(νr(tx) =
1) ∧ ¬(δs,r(x̃) = 1)) yields false. Since νr(tx) = 0, from
(νr(rep(x)) ∼ c ∧ (νr(tx) = 1∨ δs,r(x̃) = 1)) the conjunc-
tion (νr(rep(x)) ∼ c ∧ δs,r(x̃) = 1) holds.

(b) x is not reset by e. By Rule (6.0.2b), νs(x) = νr(rep(x)) ·
νr(tx), where νr(tx) = 1. Function δs,r assigns 0 to x̃,
since νr(tx) = 1. Because of the value of tx, the conjunc-
tion (0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1)) yields false.
Since x̃ has value 0, from (νr(rep(x)) ∼ c ∧ (νr(tx) = 1 ∨
δs,r(x̃) = 1)) the conjunction (νr(rep(x)) ∼ c∧νr(tx) = 1)
holds.

– Base case vi. Let Aj and Ak, with 1 ≤ j ≤ k ≤ n, be automata
of N . Let e1 = (`j , αj , ϕj , ~rj , `

′
j) ∈ SimpEdgesY (Aj) and e2 =

(`k, αk, ϕk, ~rk, `
′
k) ∈ SimpEdgesW (Ak), with Y,W ∈ ECN , be sim-

ple edges. Let CF = x − y ∼ c, with x ∈ X (Aj) and y ∈ X (Ak).
We show that s |=δ x− y ∼ c =⇒ r |=δ′ Ω0(x− y ∼ c).
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s |=δ x− y ∼ c
⇐⇒ By s = 〈~̀s, νs〉, t.
νs |=δ x− y ∼ c
⇐⇒ By Definition 18.
νs(x)− νs(y) ∼ c
=⇒ By (†).(
νr(rep(x))− νr(rep(y)) ∼ c ∧

(νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)
∨(

0− νr(rep(y)) ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

(νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)
∨(

νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
∨(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)

⇐⇒ By Definition 18.
νr |=δ′

(
rep(x)− rep(y) ∼ c ∧ (tx ∨ x̃) ∧ (ty ∨ ỹ)

)
∨(

0− rep(y) ∼ c ∧ ¬tx ∧ ¬x̃ ∧ (ty ∨ ỹ)
)
∨(

rep(x)− 0 ∼ c ∧ (tx ∨ x̃) ∧ ¬ty ∧ ¬ỹ
)
∨(

0 ∼ c ∧ ¬tx ∧ ¬x̃ ∧ ¬ty ∧ ¬ỹ
)

⇐⇒ By Definition 18.
and Ω0 over
x− y ∼ c.

〈~̀r, νr〉, t |=δ′ Ω0(x− y ∼ c)
⇐⇒ By r = 〈~̀r, νr〉, t.
r |=δ′ Ω0(x− y ∼ c)

(†) Since r ∈ QE (s) then either Rule (6.0.2a) or Rule (6.0.2b)
holds for x and y. We carry out the following distinctions.

1. If Rule (6.0.2a) holds for x then `s,j = `r,j and either νs(x) =
νs(rep(x)) or νs(x) 6= νs(rep(x)). If Rule (6.0.2a) holds for
y then `s,k = `r,k and either νs(y) = νs(rep(y)) or νs(y) 6=
νs(rep(y)). We distinguish the following cases:
(a) νs(x) = νs(rep(x)) and νs(y) = νs(rep(y)). By Rule (6.0.2a)

for x, νs(x) = νr(rep(x)) · νr(tx), where νr(tx) = 1. By
Rule (6.0.2a) for y, νs(y) = νr(rep(y)) · νr(ty), where
νr(ty) = 1. Because of the values of tx and ty in r, the
following disjunction yields false:
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(
0− νr(rep(y)) ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

(νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(
νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)

∨
(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
.

Function δs,r assigns 0 to x̃ and to ỹ, since `s,j = `r,j ,
`s,k = `r,k, respectively. Therefore, from (νr(rep(x)) −
νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧ (νr(ty) =
1∨δs,r(ỹ) = 1) the conjunction (νr(rep(x))−νr(rep(y)) ∼
c ∧ νr(tx) = 1 ∧ νr(ty) = 1) holds.

(b) νs(x) 6= νs(rep(x)) and νs(y) = νs(rep(y)). By Rule
(6.0.2a) for x, νs(x) = νr(rep(x))·νr(tx), where νr(tx) = 0.
By Rule (6.0.2a) for y, νs(y) = νr(rep(y)) · νr(ty), where
νr(ty) = 1. Function δs,r assigns 0 to x̃ and to ỹ, since
`s,j = `r,j , `s,k = `r,k, respectively. Because of the men-
tioned values of tx, ty, x̃ and ỹ the following disjunction
yields false:(
νr(rep(x))− νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1)

∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(
νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)

∨
(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
,

and from (0−νr(rep(y)) ∼ c ∧¬(νr(tx) = 1)∧¬(δs,r(x̃) =
1) ∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1) the conjunction (0 −
νr(rep(y)) ∼ c ∧¬(νr(tx) = 1)∧¬(δs,r(x̃) = 1) ∧νr(ty) =
1) holds.

(c) νs(x) = νs(rep(x)) and νs(y) 6= νs(rep(y)). This case is
symmetrical to the previous one.

(d) νs(x) 6= νs(rep(x)) and νs(y) 6= νs(rep(y)). By Rule
(6.0.2a) for x, νs(x) = νr(rep(x))·νr(tx), where νr(tx) = 0.
By Rule (6.0.2a) for y, νs(y) = νr(rep(y)) · νr(ty), where
νr(ty) = 0. Function δs,r assigns 0 to x̃ and to ỹ, since
`s,j = `r,j , `s,k = `r,k, respectively. By the values of tx, ty,



A.1. Introduction 87

x̃ and ỹ the following disjunction yields false:(
νr(rep(x))− νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1)

∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(

0− νr(rep(y)) ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

(νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(
νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
,

and the conjunction (0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) =
1) ∧ ¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)) holds.

2. If Rule (6.0.2a) holds for x then `s,j = `r,j and either νs(x) =
νs(rep(x)) or νs(x) 6= νs(rep(x)). If Rule (6.0.2b) holds for y
then e2 may reset y. We distinguish the following cases:
(a) νs(x) = νs(rep(x)) and e2 resets y. By Rule (6.0.2a) for x,

νs(x) = νr(rep(x))·νr(tx), where νr(tx) = 1. Function δs,r
assigns 0 to x̃ since `s,j = `r,j . By Rule (6.0.2b) and since
e2 resets y, hence, `s,k = `k, `r,k = `′k, `r,RW = `nstRW

and
νr(ty) = 0, therefore, Function δs,r assigns 1 to ỹ. By the
values of tx, ty, x̃ and ỹ the following disjunction yields
false:(

0− νr(rep(y)) ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

(νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(
νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)

∨
(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
,

and from (νr(rep(x)) − νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨
δs,r(x̃) = 1) ∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1) the conjunction
(νr(rep(x)) − νr(rep(y)) ∼ c ∧ νr(tx) = 1 ∧ δs,r(ỹ) = 1)
holds.

(b) νs(x) = νs(rep(x)) and e2 does not reset y. By Rule
(6.0.2a) for x, νs(x) = νr(rep(x))·νr(tx), where νr(tx) = 1.
Function δs,r assigns 0 to x̃ since `s,j = `r,j . By Rule
(6.0.2b) and since e2 does not reset y, hence, νs(y) =
νr(rep(y)) · νr(ty), where νr(ty) = 1, therefore, Function
δs,r assigns 0 to ỹ. By the values of tx, ty, x̃ and ỹ the
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following disjunction yields false:(
0− νr(rep(y)) ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

(νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(
νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)

∨
(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
,

and from (νr(rep(x)) − νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨
δs,r(x̃) = 1) ∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1) the conjunction
(νr(rep(x)) − νr(rep(y)) ∼ c ∧ νr(tx) = 1 ∧ νr(ty) = 1)
holds.

(c) νs(x) 6= νs(rep(x)) and e2 resets y. By Rule (6.0.2a) for x,
νs(x) = νr(rep(x))·νr(tx), where νr(tx) = 0. Function δs,r
assigns 0 to x̃ since `s,j = `r,j . By Rule (6.0.2b) and since
e2 resets y, hence, `s,k = `k, `r,k = `′k, `r,RW = `nstRW

and
νr(ty) = 0, therefore, Function δs,r assigns 1 to ỹ. By the
values of tx, ty, x̃ and ỹ the following disjunction yields
false:(
νr(rep(x))− νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1)

∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(
νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)

∨
(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
,

and from (0−νr(rep(y)) ∼ c ∧¬(νr(tx) = 1)∧¬(δs,r(x̃) =
1) ∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1)) the conjunction (0 −
νr(rep(y)) ∼ c ∧¬(νr(tx) = 1)∧¬(δs,r(x̃) = 1) ∧δs,r(ỹ) =
1) holds.

(d) νs(x) 6= νs(rep(x)) and e2 does not reset y. By Rule
(6.0.2a) for x, νs(x) = νr(rep(x))·νr(tx), where νr(tx) = 0.
Function δs,r assigns 0 to x̃ since `s,j = `r,j . By Rule
(6.0.2b) and since e2 does not reset y, hence, νs(y) =
νr(rep(y)) · νr(ty), where νr(ty) = 1, therefore, Function
δs,r assigns 0 to ỹ. By the values of tx, ty, x̃ and ỹ the
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following disjunction yields false:(
νr(rep(x))− νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1)

∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(
νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)

∨
(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
,

and from (0−νr(rep(y)) ∼ c ∧¬(νr(tx) = 1)∧¬(δs,r(x̃) =
1) ∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1) the conjunction (0 −
νr(rep(y)) ∼ c ∧¬(νr(tx) = 1)∧¬(δs,r(x̃) = 1) ∧δs,r(ỹ) =
1) holds.

3. If Rule (6.0.2b) holds for x then `s,j = `j , `r,j = `′j , `r,RY =
`nstRY

and e1 may reset x. If Rule (6.0.2a) holds for y then
`s,k = `r,k and either νs(y) = νs(rep(y)) or νs(y) 6= νs(rep(y)).
This case is symmetrical to the previous one.

4. If Rule (6.0.2b) holds for x then `s,j = `j , `r,j = `′j , `r,RY =
`nstRY

and e1 may reset x. If Rule (6.0.2b) holds for y then
`s,k = `k, `r,k = `′k, `r,RW = `nstRW

and e2 may reset y.
(a) e1 resets x and e2 resets y. By Rule (6.0.2b) and since e1

resets x, hence, `s,j = `j , `r,j = `′j , `r,RY = `nstRY
and

νr(tx) = 0, therefore, Function δs,r assigns 1 to x̃. By
Rule (6.0.2b) and since e2 resets y, hence, `s,k = `k, `r,k =
`′k, `r,RW = `nstRW

and νr(ty) = 0, therefore, Function
δs,r assigns 1 to ỹ. By the values of tx, ty, x̃ and ỹ the
following disjunction yields false:(

0− νr(rep(y)) ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

(νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(
νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)

∨
(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
,

and from (νr(rep(x)) − νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨
δs,r(x̃) = 1) ∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1)) the conjunction
(νr(rep(x)) − νr(rep(y)) ∼ c ∧ δs,r(x̃) = 1 ∧ δs,r(ỹ) = 1)
holds.

(b) e1 resets x and e2 does not reset y. By Rule (6.0.2b) and
since e1 resets x, hence, `s,j = `j , `r,j = `′j , `r,RY = `nstRY

and νr(tx) = 0, therefore, Function δs,r assigns 1 to x̃. By
Rule (6.0.2b) and since e2 does not reset y, hence, νs(y) =
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νr(rep(y)) · νr(ty), where νr(ty) = 1, therefore, Function
δs,r assigns 0 to ỹ. By the values of tx, ty, x̃ and ỹ the
following disjunction yields false:(

0− νr(rep(y)) ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

(νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(
νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)

∨
(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
,

and from (νr(rep(x)) − νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨
δs,r(x̃) = 1) ∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1)) the conjunction
(νr(rep(x)) − νr(rep(y)) ∼ c ∧ δs,r(x̃) = 1 ∧ νr(ty) = 1)
holds.

(c) e1 does not reset x and e2 resets y. This case is symmet-
rical to the previous one.

(d) e1 does not reset x and e2 does not reset y. By Rule
(6.0.2b) and since e1 does not reset x, hence, νs(x) =
νr(rep(x)) · νr(tx), where νr(tx) = 1, therefore, Func-
tion δs,r assigns 0 to x̃. By Rule (6.0.2b) and since e2

does not reset y, hence, νs(y) = νr(rep(y)) · νr(ty), where
νr(ty) = 1, therefore, Function δs,r assigns 0 to ỹ. By the
values of tx, ty, x̃ and ỹ the following disjunction yields
false:(

0− νr(rep(y)) ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

(νr(ty) = 1 ∨ δs,r(ỹ) = 1)
)

∨
(
νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)

∨
(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δs,r(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δs,r(ỹ) = 1)
)
,

and from (νr(rep(x)) − νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨
δs,r(x̃) = 1) ∧ (νr(ty) = 1 ∨ δs,r(ỹ) = 1)) the conjunction
(νr(rep(x)) − νr(rep(y)) ∼ c ∧ νr(tx) = 1 ∧ νr(ty) = 1)
holds.

– Induction step i. CF = ¬CF 1. We show that
s |=δ ¬CF 1 =⇒ r |=δ′ Ω0(¬CF 1).
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s |=δ ¬CF 1

⇐⇒ By Definition 18.
¬(s |=δ CF 1)
=⇒ By induction assumption.
¬(r |=δ′ Ω0(CF 1))
⇐⇒ By Definition 18 and Ω0.
r |=δ′ Ω0(¬CF 1)

– Induction step ii. CF = CF 1 ∧ CF 2. We show that s |=δ CF 1 ∧
CF 2 =⇒ r |=δ′ Ω0(CF 1 ∧ CF 2).
s |=δ CF 1 ∧ CF 2

⇐⇒ By Definition 18.
s |=δ CF 1 ∧ s |=δ CF 2

=⇒ By induction assumption.
r |=δ′ Ω0(CF 1) ∧ r |=δ′ Ω0(CF 2)
⇐⇒ By Definition 18.
r |=δ′ Ω0(CF 1) ∧ Ω0(CF 2)
⇐⇒ By Ω0 Definition 28.
r |=δ′ Ω0(CF 1 ∧ CF 2)

– Induction step iii. CF = ∃ θ1, . . . , θn • CF . We show that s |=δ

∃ θ1, . . . , θn • CF =⇒ r |=δ′ Ω0(∃ θ1, . . . , θn • CF ).
s |=δ ∃ θ1, . . . , θn • CF
⇐⇒ By Definition 18.
∃ d̄1, . . . , d̄m ∈ {0, 1} •
s |=δ[θi:=d̄i|1≤i≤m] CF

=⇒ By induction assumption.
∃ d̄1, . . . , d̄m ∈ {0, 1} •
r |=δ′[θi:=d̄i|1≤i≤m] Ω0(CF )

⇐⇒ By Definition 18.
r |=δ′ ∃ θ1, . . . , θn • Ω0(CF )
⇐⇒ By Ω0 Definition 28.
r |=δ′ Ω0(∃ θ1, . . . , θn • CF )

• By induction over the structure of CF we prove the following claim:

r |=δ′ Ω0(CF ) =⇒ r ∈ QE (ṡr,δ′) ∧ ṡr,δ′ |=δ CF , (??)

which implies the claim B as follows:
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r |=δ Ω(CF )
⇐⇒ By Function Ω.
r |=δ ∃ x̃1, . . . , x̃p • Ω0(CF ) ∧ κN
⇐⇒ By Definition 18.
∃ d1, . . . , dp ∈ {0, 1} • r |=δ[x̃i:=di|1≤i≤p,xi∈CV ] Ω0(CF ) ∧ κN

=⇒ Let δ′ := δ[x̃i := di | 1 ≤ i ≤ p, xi ∈ CV ],
s. t. r |=δ′ Ω0(CF ) ∧ κN .

r |=δ′ Ω0(CF ) ∧ κN
=⇒ By Proposition 1.
r |=δ′ Ω0(CF )
=⇒ By (??).
r ∈ QE (ṡr,δ′) ∧ ṡr,δ′ |=δ CF
=⇒ Set ṡ := ṡr,δ′ .
∃ ṡ ∈ Conf (N ) • r ∈ QE (ṡ) ∧ ṡ |=δ CF

In the following we show (??). We construct a configuration ṡr,δ′ ,
such that r ∈ QE (ṡr,δ′) ∧ ṡr,δ′ |=δ CF . Propose configuration ṡr,δ′ =
〈($(s, r, 1, δ′), . . . , $(s, r, n, δ′)), {x 7→ ζ(s, r, x, δ′) | x ∈ X (N )∪V (N )}〉.
In the following we show that r ∈ QE (ṡr,δ′).

– The value of each variable v ∈ V (N ) is the same in configura-
tions ṡr,δ′ and r, i.e. νṡr,δ′ (v) = νr(v) since ζ does not change
values of v. Therefore, Rule (6.2.1) holds.

– Now we discuss the (possible) changes carried out by $. For
1 ≤ i ≤ n and for each 1 ≤ j ≤ m, either Rule (6.0.2a) or Rule
(6.0.2b) holds:

∗ If Rule (6.0.2a) holds then the ith automaton is located at the
same location in ṡr,δ′ and r, i.e. `ṡr,δ′ ,i = `r,i and the value
of each clock x ∈ X (Ai) is related as follows, νṡr,δ′ (x) =
νr(rep(x)) · νr(tx).
∗ If Rule (6.0.2b) holds then there exists a simple edge
e = (`, α, ϕ, ~r, `′) ∈ SimpEdgesYj (Ai) such that the ith au-
tomaton in ṡr,δ′ is located at `, and that automaton in r is
located at `′, and if e resets x ∈ X (Ai) then the value of x in
ṡr,δ′ is the same as the value of the representative rep(x) in r,
i.e. νṡr,δ′ (x) = νr(rep(x)), and since the ith automaton in r is
located at `′, thus, νr(tx) = 0. Otherwise, e does not reset x,
hence, the value of x is related in both configurations in the
following way, νṡr,δ′ (y) = νr(rep(y)) · νr(ty).

– Rule (6.2.3) holds since the value of the variable sAiY is consis-
tent with the location of the transformed version of Ai in r, i.e.
νr(s

Ai
Y ) = 1 if there exists (`, α, ϕ, ~r, `′) ∈ SimpEdgesYj (Ai) such

that `r,i = ` and 0 otherwise.

– Rule (6.2.4) holds since the value of the variable prioY is consis-
tent with the location of the resetter RY in r, i.e. νr(prioY ) = 1 if
`r,RY and 0 otherwise.

We now show that r |=δ′ Ω0(CF ) =⇒ ṡr,δ′ |=δ CF . We begin with
base case iii, since base cases i (CF = ϕint) and ii (CF = `, such that `
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is neither an origin nor a destination location of a simple edge) have
been shown in A.

– Base case iii. Let Aj , with 1 ≤ j ≤ n, be an automaton of N ,
CF = Aj .`, such that ` is the origin of the edge e = (`, α, ϕ, 〈x :=
0〉, `′) ∈ SimpEdgesY (Aj), for some equivalence class Y ∈ ECN .
We show that r |=δ′ Ω0(Aj .`) =⇒ ṡr,δ′ |=δ′ Aj .`.
Note that Ω0(Aj .`) = (Aj .` ∨ (Aj .`′ ∧ x̃)) and that

r |=δ′ Ω0(Aj .`) ⇐⇒ (`r,j = ` ∨ (`r,j = `′ ∧ δ′(x̃) = 1)). (†)

We make the following distinctions based on the values for the
logical variable x̃.

∗ δ′(x̃) = 0. Clearly the clause (`r,j = `′ ∧ δ′(x̃) = 1) from the
disjunction in (†) yields false. Hence, the clause (`r,j = `)
yields true. By construction of ṡr,δ′ , Aj is located at ` since
$(ṡr,δ′ , r, j, δ

′) outputs Aj .` because `r,j = `. Thus, ṡr,δ′ |=
Aj .`.
∗ δ′(x̃) = 1. We make the following distinctions:
· `r,j = ` ∧ ¬(`r,j = `′). Clearly the clause (`r,j = `)

from the disjunction in (†) yields true (the right-hand
side clause yields false). By construction of ṡr,δ′ , Aj is
located at `, since $(ṡr,δ′ , r, j, δ

′) outputs Aj .` because
`r,j = `. Thus, ṡr,δ′ |= Aj .`.
· ¬(`r,j = `) ∧ `r,j = `′. Clearly the clause (`r,j = `′ ∧
δ′(x̃) = 1) from the disjunction in (†) yields true (the left-
hand side clause yields false). By construction of ṡr,δ′ ,Aj
is located at `, since $(ṡr,δ′ , r, j, δ

′) outputs Aj .` because
δ′(x̃) = 1 and `r,j = `′. Thus, ṡr,δ′ |= Aj .`.
· `r,j = `∧ `r,j = `′. Clearly e is a self-looped edge. Either

clause from (†) yields true. By construction of ṡr,δ′ , Aj
is located at `, since $(ṡr,δ′ , r, j, δ

′) outputs Aj .` because
`r,j = `, or because δ′(x̃) = 1 and `r,j = `′. Thus, ṡr,δ′ |=
Aj .`.

– Base case iv. LetAj , with 1 ≤ j ≤ n, be an automaton ofN , CF =
Aj .`′, such that `′ is the destination of the edge (`, α, ϕ, 〈x :=
0〉, `′) ∈ SimpEdgesY (Aj), for some equivalence class Y ∈ ECN .
We show that r |=δ′ Ω0(Aj .`′) =⇒ ṡr,δ′ |=δ′ Aj .`′.
Note that Ω0(Aj .`′) = (Aj .`′ ∧ ¬x̃) and that r |=δ′ Ω0(Aj .`′) ⇐⇒
(`r,j = `′ ∧ ¬(δ′(x̃) = 1)). Clearly there exists only one value,
namely 0, for the logical variable x̃ such that r |=δ̄ Ω0(Aj .`′).
By construction of ṡr,δ′ , Aj is located at `′, since $(ṡr,δ′ , r, j, δ

′)
outputs Aj .`′ because δ′(x̃) = 0 and `r,j = `′. Thus, ṡr,δ′ |= Aj .`′.

– Base case v. Let Aj , with 1 ≤ j ≤ n, be an automaton of N . Let
Y ∈ ECN . Let CF = x ∼ c, with x ∈ X (Aj). We show that
r |=δ′ Ω0(x ∼ c) =⇒ ṡr,δ′ |=δ′ (x ∼ c). Note that Ω0(x ∼ c) =
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(rep(x) ∼ c ∧ (tx ∨ x̃)) ∨ (0 ∼ c ∧ ¬tx ∧ ¬x̃) and that

r |=δ′ Ω0(x ∼ c) ⇐⇒
(νr(rep(x)) ∼ c ∧ (νr(tx) = 1 ∨ δ′(x̃) = 1)) ∨
(0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δ′(x̃) = 1)).

We make the following distinctions based on the values for the
logical variable x̃.

∗ δ′(x̃) = 0. We distinguish the following cases:
· νr(rep(x)) ∼ c ∧(νr(tx) = 1∨δ′(x̃) = 1)). By construction

of ṡr,δ′ , x obtains from ζ(ṡr,δ′ , r, x, δ
′) either:

1. νr(rep(x)), if there exists an edge (`, α, ϕ, 〈x := 0〉, `′) ∈
SimpEdgesY (Aj) for some Y ∈ ECN , such that the
transformed version of Aj is located at ` in ṡr,δ′ and
νr(tx) = 1 or,

2. νs(x), if the transformed version ofAj in ṡr,δ′ is neither
located at origin nor at destination location of a simple
edge resetting x.

Thus, ṡr,δ′ |= x ∼ c.
· (0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δ′(x̃) = 1)). By construction

of ṡr,δ′ , x obtains from ζ(ṡr,δ′ , r, x, δ
′) either:

1. 0, if there exists a simple edge (`, α, ϕ, 〈x := 0〉, `′) ∈
SimpEdgesY (Aj) for some Y ∈ ECN , such that the
transformed version of Aj is located at `′ in ṡr,δ′ ,
νr(tx) = 0 and δ′(x̃) = 0 or,

2. νs(x) if the transformed version ofAj in ṡr,δ′ is neither
located at origin nor at destination location of a simple
edge resetting x.

Thus, ṡr,δ′ |= x ∼ c.
∗ δ′(x̃) = 1. Clearly the clause (0 ∼ c ∧ ¬(νr(tx) = 1) ∧
¬(δ′(x̃) = 1)) yields false, hence, (νr(rep(x)) ∼ c ∧ (νr(tx) =
1 ∨ δ′(x̃) = 1)) yields true. By construction of ṡr,δ′ , x obtains
from ζ(ṡr,δ′ , r, x, δ

′) either:
1. νr(rep(x)), if there exists an edge (`, α, ϕ, 〈x := 0〉, `′) ∈

SimpEdgesY (Aj) for some Y ∈ ECN , such that the trans-
formed version of Aj is located at `′ in ṡr,δ′ , νr(tx) = 0
and δ′(x̃) = 1 or, that automaton is located at ` in ṡr,δ′

and νr(tx) = 1.
Thus, ṡr,δ′ |= x ∼ c.

– Base case vi. Let Aj and Ak, with 1 ≤ j ≤ k ≤ n, be automata
of N . Let CF = x − y ∼ c, with x ∈ X (Aj) and y ∈ X (Ak). We
show that r |=δ′ Ω0(x − y ∼ c) =⇒ ṡr,δ′ |=δ′ (x − y ∼ c). Note
that Ω0(x− y ∼ c) =((

rep(x)− rep(y) ∼ c ∧ (tx ∨ x̃) ∧ (ty ∨ ỹ)
)
∨(

0− rep(y) ∼ c ∧ ¬tx ∧ ¬x̃ ∧ (ty ∨ ỹ)
)
∨(

rep(x)− 0 ∼ c ∧ (tx ∨ x̃) ∧ ¬ty ∧ ¬ỹ
)
∨(

0 ∼ c ∧ ¬tx ∧ ¬x̃ ∧ ¬ty ∧ ¬ỹ
))
,
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and that

r |=δ′ Ω0(x− y ∼ c) ⇐⇒(
νr(rep(x))− νr(rep(y)) ∼ c ∧ (νr(tx) = 1 ∨ δ′(x̃) = 1) ∧

(νr(ty) = 1 ∨ δ′(ỹ) = 1)
)
∨(

0− νr(rep(y)) ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δ′(x̃) = 1) ∧

(νr(ty) = 1 ∨ δ′(ỹ) = 1)
)
∨(

νr(rep(x))− 0 ∼ c ∧ (νr(tx) = 1 ∨ δ′(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δ′(ỹ) = 1)
)
∨(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δ′(x̃) = 1)∧

¬(νr(ty) = 1) ∧ ¬(δ′(ỹ) = 1)
)
.(†)

We make the following distinctions based on the values for the
logical variables x̃ and ỹ.

∗ δ′(x̃) = 0 and δ′(ỹ) = 0. We distinguish the following cases:
· (νr(rep(x))− νr(rep(y)) ∼ c ∧ (νr(tx) = 1∨ δ′(x̃) = 1) ∧

(νr(ty) = 1 ∨ δ′(ỹ) = 1)). By construction of ṡr,δ′ , x and y
respectively obtain from ζ(ṡr,δ′ , r, x, δ

′) and ζ(ṡr,δ′ , r, y, δ
′)

the following values. Firstly x:
1. νr(rep(x)), if there exists an edge (`, α, ϕ, 〈x := 0〉, `′) ∈

SimpEdgesY (Aj) for some Y ∈ ECN , such that the
transformed version of Aj is located at ` in ṡr,δ′ and
νr(tx) = 1 or,

2. νs(x), if the transformed version ofAj in ṡr,δ′ is neither
located at origin nor at destination location of a simple
edge resetting x.

Secondly y:
1. νr(rep(y)), if there exists an edge (`, α, ϕ, 〈y := 0〉, `′) ∈

SimpEdgesW (Ak) for some W ∈ ECN , such that the
transformed version of Ak is located at ` in ṡr,δ′ and
νr(ty) = 1 or,

2. νs(y), if the transformed version ofAk in ṡr,δ′ is neither
located at origin nor at destination location of a simple
edge resetting y.

Thus, ṡr,δ′ |= x− y ∼ c.
· (0 ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δ′(x̃) = 1) ∧ ¬(νr(ty) =

1) ∧ ¬(δ′(ỹ) = 1)). By construction of ṡr,δ′ , x and y res-
pectively obtain from ζ(ṡr,δ′ , r, x, δ

′) and ζ(ṡr,δ′ , r, y, δ
′)

the following values. Firstly x:
1. 0, if there exists a simple edge (`, α, ϕ, 〈x := 0〉, `′) ∈

SimpEdgesY (Aj) for some Y ∈ ECN , such that the
transformed version ofAj is located at `′ in ṡr,δ′ , νr(tx) =
0 and δ′(x̃) = 0 or,



96 A. WEAK BISIMULATION AND AUXILIARY PROPOSITIONS

2. νs(x) if the transformed version ofAj in ṡr,δ′ is neither
located at origin nor at destination location of a simple
edge resetting x.

Secondly y:
1. 0, if there exists a simple edge (`, α, ϕ, 〈y := 0〉, `′) ∈

SimpEdgesW (Ak) for some W ∈ ECN , such that the
transformed version ofAk is located at `′ in ṡr,δ′ , νr(ty) =
0 and δ′(ỹ) = 0 or,

2. νs(y) if the transformed version ofAk in ṡr,δ′ is neither
located at origin nor at destination location of a simple
edge resetting y.

Thus, ṡr,δ′ |= x− y ∼ c.
∗ δ′(x̃) = 0 and δ′(ỹ) = 1. Clearly the following clauses from

(†) yield false:
(
νr(rep(x))−0 ∼ c ∧(νr(tx) = 1∨δ′(x̃) = 1) ∧

¬(νr(ty) = 1) ∧ ¬(δ′(ỹ) = 1)
)
∨
(

0 ∼ c ∧ ¬(νr(tx) = 1) ∧

¬(δ′(x̃) = 1)∧¬(νr(ty) = 1) ∧¬(δ′(ỹ) = 1)
)

. We distinguish
the remaining clauses from (†):
· (νr(rep(x))− νr(rep(y)) ∼ c ∧ (νr(tx) = 1∨ δ′(x̃) = 1) ∧

(νr(ty) = 1 ∨ δ′(ỹ) = 1)). By construction of ṡr,δ′ , x and y
respectively obtain from ζ(ṡr,δ′ , r, x, δ

′) and ζ(ṡr,δ′ , r, y, δ
′)

the following values. Firstly x:
1. νr(rep(x)), if there exists an edge (`, α, ϕ, 〈x := 0〉, `′) ∈

SimpEdgesY (Aj) for some Y ∈ ECN , such that the
transformed version of Aj is located at ` in ṡr,δ′ and
νr(tx) = 1 or,

2. νs(x), if the transformed version ofAj in ṡr,δ′ is neither
located at origin nor at destination location of a simple
edge resetting x.

Secondly y:
1. νr(rep(y)), if there exists an edge (`, α, ϕ, 〈y := 0〉, `′) ∈

SimpEdgesW (Ak) for some W ∈ ECN , such that the
transformed version of Ak is located at `′ in ṡr,δ′ ,
νr(ty) = 0 and δ′(ỹ) = 1 or, that automaton is located
at ` in ṡr,δ′ and νr(ty) = 1.

Thus, ṡr,δ′ |= x− y ∼ c.
· (0 − νr(rep(y)) ∼ c ∧ ¬(νr(tx) = 1) ∧ ¬(δ′(x̃) = 1) ∧

(νr(ty) = 1 ∨ δ′(ỹ) = 1)). By construction of ṡr,δ′ , x and y
respectively obtain from ζ(ṡr,δ′ , r, x, δ

′) and ζ(ṡr,δ′ , r, y, δ
′)

the following values. Firstly x:
1. 0, if there exists a simple edge (`, α, ϕ, 〈x := 0〉, `′) ∈

SimpEdgesY (Aj) for some Y ∈ ECN , such that the
transformed version of Aj is located at `′ in ṡr,δ′ ,
νr(tx) = 0 and δ′(x̃) = 0 or,

2. νs(x) if the transformed version ofAj in ṡr,δ′ is neither
located at origin nor at destination location of a simple
edge resetting x.

Secondly y:
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1. νr(rep(y)), if there exists an edge (`, α, ϕ, 〈y := 0〉, `′) ∈
SimpEdgesW (Ak) for some W ∈ ECN , such that the
transformed version of Ak is located at `′ in ṡr,δ′ ,
νr(ty) = 0 and δ′(ỹ) = 1 or, that automaton is located
at ` in ṡr,δ′ and νr(ty) = 1.

Thus, ṡr,δ′ |= x− y ∼ c.
∗ δ′(x̃) = 1 and δ′(ỹ) = 0. This case is symmetrical to the

previous one.
∗ δ′(x̃) = 0 and δ′(ỹ) = 0. For this case we discuss only the

clause (0 ∼ c∧¬(νr(tx) = 1) ∧¬(δ′(x̃) = 1)∧¬(νr(ty) = 1) ∧
¬(δ′(ỹ) = 1)), the discussion of the remaining clauses is sim-
ilar as in the previous cases. By construction of ṡr,δ′ , x and
y respectively obtain from ζ(ṡr,δ′ , r, x, δ

′) and ζ(ṡr,δ′ , r, y, δ
′)

the following values. Firstly x:
1. 0, if there exists a simple edge (`, α, ϕ, 〈x := 0〉, `′) ∈

SimpEdgesY (Aj) for some Y ∈ ECN , such that the trans-
formed version of Aj is located at `′ in ṡr,δ′ ,
νr(tx) = 0 and δ′(x̃) = 0 or,

2. νs(x) if the transformed version of Aj in ṡr,δ′ is neither
located at origin nor at destination location of a simple
edge resetting x.

Secondly y:
1. 0, if there exists a simple edge (`, α, ϕ, 〈y := 0〉, `′) ∈

SimpEdgesW (Ak) for someW ∈ ECN , such that the trans-
formed version of Ak is located at `′ in ṡr,δ′ , νr(ty) = 0
and δ′(ỹ) = 0 or,

2. νs(y) if the transformed version of Ak in ṡr,δ′ is neither
located at origin nor at destination location of a simple
edge resetting y.

– Induction step i. CF = ¬CF 1. We show that r |=δ′ Ω0(¬CF 1) =⇒
ṡr,δ′ |=δ′ ¬CF 1.
r |=δ′ Ω0(¬CF 1)
⇐⇒ By Definition 18 and Ω0.
¬(r |=δ′ Ω0(CF 1))
=⇒ By induction assumption.
¬(ṡr,δ′ |=δ′ CF 1)
⇐⇒ By Definition 18.
ṡr,δ′ |=δ′ ¬CF 1

– Induction step ii. CF = CF 1∧CF 2. We show that r |=δ′ Ω0(CF 1∧
CF 2) =⇒ ṡr,δ′ |=δ′ CF 1 ∧ CF 2.
r |=δ′ Ω0(CF 1 ∧ CF 2)
⇐⇒ By Ω0 Definition 28.
r |=δ′ Ω0(CF 1) ∧ Ω0(CF 2)
⇐⇒ By Definition 18.
r |=δ′ Ω0(CF 1) ∧ r |=δ′ Ω0(CF 2)
=⇒ By induction assumption.
ṡr,δ′ |=δ′ CF 1 ∧ ṡr,δ′ |=δ̄ CF 2

⇐⇒ By Definition 18.
ṡr,δ′ |=δ′ CF 1 ∧ CF 2
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– Induction step iii. CF = ∃ θ1, . . . , θn • CF . We show that r |=δ′

Ω0(∃ θ1, . . . , θn • CF ) =⇒ ṡr,δ′ |=δ′ ∃ θ1, . . . , θn • CF .
r |=δ′ Ω0(∃ θ1, . . . , θn • CF )
⇐⇒ By Ω0 Definition 28.
r |=δ′ ∃ θ1, . . . , θn • Ω0(CF )
⇐⇒ By Definition 18.
∃ d̄1, . . . , d̄m ∈ {0, 1} •
r |=δ′[θi:=d̄i|1≤i≤m] Ω0(CF )

=⇒ By induction assumption.
∃ d̄1, . . . , d̄m ∈ {0, 1} •
s |=δ[θi:=d̄i|1≤i≤m] CF

⇐⇒ By Definition 18.
s |=δ ∃ θ1, . . . , θn • CF

ut
The following proposition is used to construct and reach a configuration

r′ of a given transformed networkN ′ = K(N , ECprioN ), such that from r′ de-
lay transitions greater or equal than 0 time units are possible. The intuition
is as follows, we characterise a starting configuration r, such that from r we
are able to sequentially "pull" resetters to their respective `nstRY

-locations,
and later synchronously all resetters are "pulled" to their respective initial
locations.

Proposition 3

Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN = {Y1, . . . , Yn}. Let ECprioN = 〈Y1, . . . , Yn〉 be a list of all elements of
ECN . Let N ′ = K(N , ECprioN ). Let φ := ∀Y ∈ ECN • (`RY = `nstRY

∧∑
x∈Y tx = 0 ∧ prioY = 1) ∨ (`RY = `iniRY

∧ (
∑

x∈Y tx = |Y | ∨
∑

x∈Y tx =
0) ∧ prioY = 0). Let r = (〈`1, . . . , `m, `RY1

, . . . , `RYn 〉, νr) ∈ Conf (N ′) be a
configuration such that r |= φ. Then there is a sequence of transitions σ :
r
λ−→∗ r′, such that r′ |= ∀Y ∈ ECN , x ∈ Y •`RY = `iniRY

∧tx = 1∧prioY = 0.

Proof. To construct σ we proceed as follows:

• Let S1 = {Y ∈ ECN | r |= ∀x ∈ Y •`RY = `iniRY
∧tx = 0∧prioY = 0}.

Note that S1 may be empty.

• Set σ := r and execute the following algorithm while S1 6= ∅:

1. Pick W ∈ S1, such that W has a higher index in ECprioN than any
other element in S1.

2. Consider the edge sending on the urgent broadcast channel uW ,
eW = (`iniRW

, uW !, ϕW , 〈prioW := 0〉, `nstRW
) ∈ E(RW ), (by Al-

gorithm 27 there are no edges listening on uW ) and propose the
configuration r′ = (~̀r[`RW := `nstRW

], νr[〈prioW := 0〉]).
Note that ϕW = (

∑
w∈W tw = 0). Recall that W ∈ S1 if and only

if r |= ∀x ∈ W • `RW = `iniRW
∧ tx = 0 ∧ prioW = 0. Thus νr |=

ϕW . Note as well that νr[〈prioW := 0〉] |= I(`nstRW
) because

I(`nstRW
) is the invariant of an urgent location constraining the

lapse of time with the help of a fresh clock, and if invariants of
other locations are satisfied in r then they are still satisfied in r′

since onlyRW changes location in r′. Hence, eW is enabled.
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Recall the edge e = (`iniRW
, resetW ?, ϕ, ~r, `nstRW

) ∈ E(RW )
which is not enabled because there are no transformed simple
edges sending on resetW enabled at the current time, which is
deduced from r |= ∀x ∈W • `RW = `iniRW

∧ tx = 0∧ prioW = 0.
Since W has a higher index in ECprioN than any other element in
S1, thus, in N ′ the transition justified by eW has the highest pri-
ority at the current time (see the prioritisation mechanism imple-
mented by Algorithm K, Definition 27). Hence, r uW−−→ r′.

3. Set S1 := S1 \ {W}, r := r′ and σ := σ
uW−−→ r′.

Note that the above algorithm terminates because we leave its loop
by decrementing the size of S1 in each iteration until S1 = ∅.

• Let S2 = {Y ∈ ECN | r |= ∀x ∈ Y •`RY = `nstRY
∧tx = 0∧prioY = 1}.

Note that S1 and S2 are empty if r |= ∀Y ∈ ECN , x ∈ Y • `RY =
`iniRY

∧ tx = 1 ∧ prioY = 0.

If S1 and S2 are empty then we use r to construct r′, i.e. r′ := r, where
r′ |= ∀Y ∈ ECN , x ∈ Y • `RY = `iniRY

∧ tx = 1 ∧ prioY = 0, and we
propose σ 0−→ r′. Otherwise, we assume that S2 is not empty, and we
consider the equivalence classes in the set S2 = {W1, . . . ,Wṅ} and the
two sets of edges: P̂ = {êW1 = (`nstRW1

, return !, ϕ̂W1 , ~̂rW1 , `iniRW1
) ∈

E(RW1), . . . , êWṅ = (`nstRWṅ
, return !, ϕ̂Wṅ , ~̂rWṅ , `iniRWṅ

) ∈ E(RWṅ)},
and Ṗ = {ėW1 = (`nstRW1

, return?, ϕ̇W1 , ~̇rW1 , `iniRW1
) ∈ E(RW1), . . . ,

ėWṅ = (`nstRWṅ
, return?, ϕ̇Wṅ , ~̇rWṅ , `iniRWṅ

) ∈ E(RWṅ)} of N ′. Exe-
cute the following steps:

1. Pick W ∈ S2, such that W has a higher index in ECprioN than any
other element in S2.

2. Let W be the equivalence class of the resetter sending on the
channel return , and let {W1, . . . ,Wṅ−1} := {W1, . . . ,Wṅ} \ {W}
be the set of equivalence classes of resetters listening on return .
Propose r′ = (~̀r[`RW := `iniRW

][`RW1
:= `iniRW1

] . . . [`RWṅ−1
:=

`iniRWṅ−1
], νr[~̂rW ][~̇rW1 ] . . . [~̇rWṅ−1 ]).

Note that ϕ̂W = (
∑

w∈W tw = 0 ∧ blk(ECN ) ∧ prties(ECN )) and that
νr |= ϕ̂W by the following reasons:

1. prioW = 1, W has a higher index in ECprioN than any other ele-
ment in S2, and prioW̄ = 0, for each W̄ /∈ S2 with a higher index
than W in ECprioN , since the resetter RW̄ is located at `iniRW̄

in
r (by φ, RW̄ cannot be located at TlockW̄ in r), therefore, νr |=
prties(ECN ),

2. W ∈ S2 if and only if r |= ∀x ∈ W • `RW = `nstRW
∧ tx =

0 ∧ prioW = 1, therefore, νr |=
∑

w∈W tw = 0,

3. `r,RW̄ = `nstRW̄
and νr |=

∑
w∈W̄ tw = 0, for each W̄ ∈ S2, while

`r,RẆ = `iniRẆ
and νr |=

∑
w∈Ẇ tw = |Ẇ |, for each Ẇ /∈ S2,

therefore, νr |= blk(ECN ).

Similarly, ϕ̇W̄ = (
∑

w∈W̄ tw = 0 ∧ blk(ECN )), for each equivalence
class W̄ ∈ {W1, . . . ,Wṅ−1} and νr |= ϕ̇W̄ by reasons 2 and 3. Note as
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well that νr[~̂rW ][~̇rW1 ] . . . [~̇rWṅ−1 ] |=
∧
Y ∈{W,W1,...,Wṅ−1} I(`iniY ) because

`iniRW
, `iniRW1

, . . . , `iniRWṅ−1
have trivial invariants, i.e. true , and if

invariants of other locations are satisfied in r then they are still sat-
isfied in r′ since only RW ,RW1 , . . . ,RWṅ−1 changed locations in r′.
Hence, the edges êW , ėW1 , . . . , ėWṅ−1 are enabled.

Recall each edge e = (`nstRW
, τ, go(ECN ), 〈〉,TlockW ) ∈ E(RW ), with

W ∈ S2, which is not enabled because νr 6|= go(ECN ), in particu-
lar, because in r no token related to a clock in W has value 1 (which
is required by go(ECN )) as defined for each equivalence class in S2.
Thus, by the semantics of timed automata (Definition 16), the broad-
cast transition justified by taking edges êW , ėW1 , . . . , ėWṅ−1 occurs, i.e.
σ := σ

τ−→ r′. Note that by construction of r′, r′ |= ∀Y ∈ ECN , x ∈
Y • `RY = `iniRY

∧ tx = 1 ∧ prioY = 0. ut

The following proposition is used to construct and reach a configuration
r′ of a given transformed network N ′ = K(N , ECprioN ), which results from
taking all simple edges enabled at the current time.

In this proposition we consider cases where time is stopped (and no de-
lay transitions greater than 0 are possible) either at origin or at destination
locations of simple edges. The intuition for this proposition is as follows,
we characterise a starting configuration r, such that from r we sequentially
reach configurations resulting from taking all simple edges enabled at the
current time. In this case we reach the configuration r′where all resetters re-
lated to those enabled edges, are located at their respective `nstRY

-locations.
Moreover, if we recognise that time has been stopped in N then we intro-
duce the respective configurations and transitions, such that we reach the
configuration r′ where time has been stopped as well in N ′.

Proposition 4
Let N = {A1, . . . ,Aq} be a network with ECN = {Y1, . . . , Yn}. Let ECprioN =

〈Y1, . . . , Yn〉 be a list of all elements of ECN . Let N ′ = K(N , ECprioN ). Let
CF ∈ CFN be a property over N . Let s, s′ ∈ Conf (N ) and r ∈ Conf (N ′)
be configurations, such that r ∈ QE (s), s ∈ StableConf Y , and the transition
s
λ−→EY s

′ is justified by the set EY of simple edges wrt. some Y ∈ ECN , and
s′ |=δ CF .

Then there exists a configuration r′, and a sequence of transitions σ :
r
λ−→∗ r′, such that r′ ∈ QE (s′).

Proof. Let S = {Y ∈ ECN | s
λ−→EY s′ ∧ s ∈ StableConf Y }. We know

that S is not empty, and at least contains Y ∈ ECN since the transition from
s to s′ is justified by the set EY of simple edges wrt. Y .

• Set σ := r and execute the following steps while S 6= ∅:

1. Pick W ∈ S, such that W has a higher index in ECprioN than the
index of any other equivalence class in S.

2. Let P̄ := {(`, α, ϕ, ~r, `′) ∈ SimpEdgesW (N ) | ∃ i ∈ N • `s,i = `},
i.e. the set of simple edges wrt. W whose origin locations are the
current locations in s of some automata of N .
Let P := {(`, α, ϕ, ~r, `′) ∈ SimpEdgesW (N ) | ∃ i ∈ N • `s,i =
` ∧ νs |= ϕ ∧ νs[~r ] |= I(`′)}, i.e. the set of simple edges wrt. W
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enabled in s. By Definition 22 there is a delay d > 0 at the origin
location ` of each simple edge e before e can be taken, and by the
same definition each ` has a unique outgoing edge, namely, edge
e. Therefore, we are able to obtain in P all simple edges wrt. W
that are enabled in configuration s at the current time.
Note that P ⊆ P̄ , since there may be simple edges in P̄ whose
guards are not satisfied by νs.
Recall that the set P = {e1 = (`1, α1, ϕ1, ~r1, `

′
1), . . . ,

em = (`m, αm, ϕm, ~rm, `
′
m)} has corresponding sets P̂ = {ê1 =

(ˆ̀
1, resetW !, ϕ̂1, ~̂r1, ˆ̀′

1), . . . , êm = (ˆ̀
m, resetW !, ϕ̂m, ~̂rm, ˆ̀′

m)} and
Ṗ = {ė1 = ( ˙̀

1, resetW ?, ϕ̇1, ~̇r1, ˙̀′
1), . . . ,

ėm = ( ˙̀
m, resetW ?, ϕ̇m, ~̇rm, ˙̀′

m)} (where ˆ̀
i = ˙̀

i and ˆ̀′
i = ˙̀′

i, for
each 1 ≤ i ≤ m), which together with
eRW= (`iniRW

, resetY ?, true, 〈prioY := 1〉, `nstRW
) ∈ L(RW ) are

obtained by applying Algorithm K on N (see transformation of
simple edges and construction of resetters in Definition 27).
Since s ∈ StableConfW and r ∈ QE (s) we distinguish two situa-
tions in which the resetterRW can be located in r:

(a) RW is not located at `iniRW
. Set r′ := r. By Proposition 2,

r′ |=δ Ω(CF ). We propose a 0-delay transition. Thus, by
the semantics of extended timed automata (Definition 16),
r

0−→ r′. Set r := r′ and σ := σ
0−→ r′. We take r′ as cons-

tructed and we show that r′ ∈ QE (s′).
– Values of integer variables existing in N are neither up-

dated from s to s′ (simple edges reset only clocks) nor
from r to r′ since r′ = r. Hence, for each v ∈ V (N ) the
value of v is the same in s′ and in r′, i.e. νs′(v) = νr′(v).
Thus, s′ and r′ satisfy Rule (6.2.1).

– s′ and r′ (both) satisfy either Rule (6.0.2a) or Rule (6.0.2b).
If s′ and r′ satisfy Rule (6.0.2a) then automaton A′j , for
some j ∈ {1, . . . , q}, and its original version are located
at the same location, i.e. `r′,j = `s′,j , and values of rep(x)
and tx, with x ∈ X (Ai), encode in r′ the value of x in s,
thus, νs′(x) = νr′(rep(x)) · νr′(tx).
Otherwise, s′ and r′ satisfy Rule (6.0.2b) and the resetter
RY is not located at `iniRY

, Y ∈ ECN ; the automaton
A′j is located in r′ at the destination location of a trans-
formed simple edge ewrt. Y , while the origin location of
e is the current location of Aj in s′; νr′(rep(x)) = νs(x),
and νr′(tx) = 0, for each clock x ∈ X (Aj) reset by e.

– The book-keeping variable sAiY , with 1 ≤ i ≤ q and Y ∈
ECN , is not updated from r to r′, hence, has in r′ value
1 if A′i is located at the origin location of a transformed
simple edge wrt. Y , otherwise value 0. Thus, r′ satisfies
Rule (6.2.3).

– The variable prioY , Y ∈ ECN , is not updated from r to
r′, hence, prioY has value 1 if the resetter RY is located
at `nstRY

in r′, otherwise 0. Thus r′ satisfies (6.2.4).
(b) RW is located at `iniRW

. Proceed as follows.
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i. Let k ∈ {1, . . . ,m} be the index of the automaton in P̂
sending on the channel resetW , and {1, . . . ,m − 1} =
{1, . . . ,m}\{k} be the set of indices of automata in Ṗ re-
ceiving on resetW . Propose configuration r′ = (~̀r[`r,k :=
ˆ̀′
k][`r,1 := ˙̀′

1] . . . [`r,m−1 := ˙̀′
m−1][`RW := `nstRW

],

νr[~̂rk][~̇r1] . . . [~̇rm−1][prioW 7→ 1]). By Proposition 2, r′ |=δ

Ω(CF ).
Note that by construction of N ′, ϕ̂i = ϕ̇i, for each 1 ≤
i ≤ m, and that each ϕ̂i is equivalent to ϕi. Since s ∈
StableConf Y and r ∈ QE (s), by Rule (6.0.2a), the value
of each clock x ∈W in s is equal to the value that the rep-
resentative rep(x) and token tx encode in r for x. Hence,
νr |= ϕ̂k ∧ ϕ̇1 ∧ · · · ∧ ϕ̇m−1, and
νr[~̂rk][~̇r1] . . . [~̇rm−1] [prioW 7→ 1] |= I(ˆ̀′

k) ∧ I( ˙̀′
1) ∧ · · · ∧

I( ˙̀′
m−1) ∧ I(`nstW ), because I(ˆ̀′

k) = I(Γ(`′k)), I( ˙̀′
1) =

I(Γ(`′1)), . . . , I( ˙̀′
m−1) = I(Γ(`′m−1)) and I(`nstW ) is the

invariant of an urgent location constraining the lapse of
time with the help of a fresh clock. Hence, the edges
êk, ė1, . . . , ėm−1, eRW are enabled. Thus, by the seman-
tics of extended timed automata (Definition 16), r τ−→ r′.
We take r′ as constructed and we show that r′ ∈ QE (s′).
– Values of integer variables existing in N are not up-

dated from r to r′ (neither simple edges nor trans-
formed simple ones update integer variables existing
in N ). Hence, for each v ∈ V (N ) the value of v is the
same in s′ and in r′, i.e. νs′(v) = νr′(v). Thus, r′ satis-
fies Rule (6.2.1).

– Both configurations s′ and r′ satisfy either Rule (6.0.2a)
or Rule (6.0.2b). If s′ and r′ satisfy Rule (6.0.2a) then
for the automaton A′j (and its original version), for
some j ∈ {1, . . . , q}, i.e. an automaton which did not
change location from r to r′ (holds as well for the au-
tomaton which justifies the transition from s to s′),
`r′,j = `s′,j and νs′(x) = νr′(rep(x)) · νr′(tx), with x ∈
X (Aj). Otherwise, s′ and r′ satisfy Rule (6.0.2b) and
the resetter RY is not located at `iniRY

, Y ∈ ECN ; the
automaton A′j is located in r′ at the destination loca-
tion of a transformed simple edge e wrt. Y , while the
origin location of e is the current location of Aj in s′;
νr′(rep(x)) = νs(x), and νr′(tx) = 0, for each clock
x ∈ X (Aj) reset by e.

– Values of book-keeping variables sAiW , for each index
i ∈ {k, 1, . . . ,m− 1}, are set to 1 in r′ if the destination
locations of the respective edges that update sAiW are
origin locations of transformed simple edges wrt. W ,
otherwise are set to 0.
Let P ′ := P̄ \ P , i.e. the set of simple edges wrt. W
which are not enabled since their guards are not satis-
fied by νs, and whose origin locations are the current
locations in s of some automata ofN . By construction
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of N ′ there exists a set P ′′ corresponding to P ′. Book-
keeping variables reset by edges in P ′′ have value 1
since they are in r′ still located at the origin locations
of edges in P ′′.
Moreover, book-keeping variables related to Y ∈ ECN \
{W} have in r′ value 1 if the respective transformed
automata updating these variables are located at loca-
tions which are origin locations of transformed simple
edges wrt. Y , otherwise have value 0. Thus, r′ satisfies
Rule (6.2.3).

– Variable prioW is set to 1 since the resetter RW is lo-
cated at `nstRW

in r′. Variable prioY , Y ∈ ECN \ {W},
has value 1 if the resetterRY is located at `nstRY

in r′,
otherwise 0. Thus r′ satisfies (6.2.4).

3. Set S := S \ {W}. Set r := r′ and σ := σ
τ−→ r′.

Note that the above algorithm terminates because we leave its loop by
decrementing the size of S in each iteration until S = ∅.

Let S = {Y ∈ ECN | s
λ−→EY s′ ∧ s ∈ StableConf Y }. We extend σ by

executing the following steps while S 6= ∅:

1. Pick W ∈ S, such that W has a higher index in ECprioN than the index
of any other equivalence class in S.

2. Let P̄ := {(`, α, ϕ, ~r, `′) ∈ SimpEdgesW (N ) | ∃ i ∈ N • `s,i = `}, i.e.
the set of simple edges wrt. W whose origin locations are the current
locations in s of some automata of N .

3. Let P := {(`, α, ϕ, ~r, `′) ∈ SimpEdgesW (N ) | ∃ i ∈ N • `s,i = ` ∧ νs |=
ϕ ∧ νs[~r ] |= I(`′)}, i.e. the set of simple edges wrt. W enabled in s.

4. Let P ′ := P̄ \ P , i.e. the set of simple edges wrt. W which are not
enabled since their guards are not satisfied by νs, and whose origin
locations are the current locations in s of some automata of N .
If P ′ 6= ∅ then:

• By construction of N ′ there exists the set of edges P ′′ correspon-
ding to P ′. Consider the following edge of the resetterRW ,
eW = (`nstRW

, τ, go(ECN ), 〈prioW := 0〉,TlockW ). Recall that the
current location of RW in r is `nstRW

. Propose r′ := (~̀r[`RW :=
TlockW ], νr[prioW := 0]). Note that r′ ∈ QE (s′). By Proposi-
tion 2, r′ |=δ Ω(CF ).
Note that the guard go(ECN ) = prties(ECN ) ∧

∨
x∈W sum(x) of

eW is satisfied by r by the following reasons:
(a) prioW = 1 (the current location ofRW in r is `nstRW

), W has
a higher index in ECprioN than any other element in S, and
prioW̄ = 0, for each W̄ /∈ S with a higher index than W in
ECprioN , since the resetter RW̄ in r is either located at `iniRW̄

(because no simple edge wrt. W̄ is enabled at the current
time), or at TlockW̄ (because a transition to that location was
possible and has been taken at the current time). Therefore,
νr |= prties(ECN ).
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(b) Since P ′′ 6= ∅, then there is e ∈ P ′′ and the value of the
variables occurring in the reset vector of e is as follows: (a)
sAiW = 1, for some 1 ≤ i ≤ m, since A′i is located at the ori-
gin location of e, (b) tx = 1, for some x ∈ X (Ai), since s ∈
StableConfW , and wrt. automata Ai in s and A′i in r′, both
configurations satisfy Rule (6.0.2a). Thus, νr |=

∨
x∈W sum(x).

Note that I(TlockW ) is the invariant of an urgent location con-
straining the lapse of time with the help of a fresh clock. Thus,
νr[prioW := 0] |= I(TlockW ). Hence, e is enabled. Thus, by the
semantics of extended timed automata (Definition 16), r τ−→ r′.
Set r := r′ and σ := σ

τ−→ r′.

5. Set S := S \ {W}. Set r := r′ and σ := σ
τ−→ r′.

Note that the above algorithm terminates because we leave its loop by
decrementing the size of S in each iteration until S = ∅. ut
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In the following lemma we show that there exists a weak bisimulation
between a network N with equivalence classes of quasi-equal clocks ECN ,
and its corresponding transformed network N ′ = K(N , ECprioN ).

Lemma 2 Weak Bisimulation.
Let N be a network with a set of equivalence classes of quasi-equal clocks
ECN . Let ECprioN be a list of all elements of ECN . Let CFN be the set of con-
figuration formulas overN . ThenN is weakly bisimilar toN ′ = K(N , ECprioN ),
i.e. there is a weak bisimulation relation QE ⊆ Conf (N )×Conf (N ′) such that:

1. ∀ s ∈ Cini(N ) ∃ r ∈ Cini(N ′) • r ∈ QE (s) and ∀ r ∈ Cini(N ′) ∃ s ∈
Cini(N ) • r ∈ QE (s).

2. ∀CF ∈ CFN∀ r ∈ QE (s) • s |=δ CF =⇒ r |=δ Ω(CF ).

3. ∀CF ∈ CFN∀ r ∈ QE (s) • r |=δ Ω(CF ) =⇒ ∃ ṡ ∈ Conf (N ) • r ∈
QE (ṡ) ∧ ṡ |=δ CF .

4. ∀ r ∈ QE (s) • s λ−→ s′ =⇒ ∃ r λ−→∗ r′ • r′ ∈ QE (s′). We distinguish the
transition s λ−→ s′ as follows:

(a) transition is justified by a delay λ = d ≥ 0,

(b) s ∈
⋂
Y ∈ECN StableConf Y , s

′ /∈
⋂
Y ∈ECN StableConf Y , and the

transition is justified by a simple edge wrt. Y ∈ ECN ,

(c) s /∈
⋂
Y ∈ECN StableConf Y and the transition is justified by a sim-

ple edge wrt. Y ∈ ECN ,

(d) transition is justified by a non-empty set of edges E, such that
none of them is simple wrt. any Y ∈ ECN .

5. ∀CF ∈ CFN∀ r ∈ QE (s) • r λ−→ r′ ∧ r′ |=δ′ Ω0(CF ) =⇒ ∃ s λ−→∗
s′ • r′ ∈ QE (s′).

We distinguish the transition r λ−→ r′ as follows:

(a) transition is justified by a delay λ = d ≥ 0,

(b) transition is justified by a non-empty set of edges E.

Proof.

Let N = {A1, . . . ,An} be a network with a set of equivalence classes of
quasi-equal clocks ECN . Let ECprioN be a list of all elements of ECN . Let CFN
be the set of configuration formulas over N . Let N ′ = K(N , ECprioN ). We
show that the binary relation QE is a weak bisimulation relation such that:

1. ∀ s ∈ Cini(N ) ∃ r • r ∈ QE (s) and ∀ r ∈ Cini(N ′) ∃ s • r ∈ QE (s). For
the sets Cini(N ) and Cini(N ′) we have:
Cini(N ) = ∅ ⇐⇒ Cini(N ′) = ∅.
The only candidates for valuations in the initial configuration are νs0
and νr0 which assign all clocks to 0 and all variables to their initial
values. Then we have
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Cini(N ) = ∅
⇐⇒ By Definition 16.
νs0 6|=δ

∧n
i=1 I(`ini ,s0 ,i)

⇐⇒ By Algorithm K (Definition 27).
νr0 6|=δ

∧n
i=1 Γ(I(`ini ,s0 ,i)) ∧∧

Y ∈ECN I(`iniRY
)

⇐⇒ By Definition 16.
Cini(N ′) = ∅

2. ∀CF ∈ CFN∀ r ∈ QE (s) • s |=δ CF =⇒ r |=δ Ω(CF ). This claim
holds by Proposition 2.

3. ∀CF ∈ CFN∀ r ∈ QE (s) • r |=δ Ω(CF ) =⇒ ∃ ṡ ∈ Conf (N ) • r ∈
QE (ṡ) ∧ ṡ |=δ CF . This claim holds by Proposition 2.

4. ∀ r ∈ QE (s) • s λ−→ s′ =⇒ ∃ r λ−→∗ r′ • r′ ∈ QE (s′). We distinguish the
transition s λ−→ s′ as follows:

(a) transition is justified by a delay λ = d ≥ 0.

(N )

(N ′)

s s′λ

λ′ λ′ λ

r r̄ r′
...

We show there exist r̄, r′ ∈ Conf (N ′), such that r λ′−→∗ r̄ λ−→ r′,
r̄ ∈ QE (s) and r′ ∈ QE (s′). We distinguish two cases based on
d, namely, d = 0 and d > 0.
The first case d = 0 is trivial, since this transition in N is of the
type 〈~̀s, νs〉

0−→ 〈~̀s, νs + 0〉, i.e. s = s′, and we propose r̄, r′ such
that r = r̄ = r′. Thus, by the semantics of extended timed au-
tomata (Definition 16), r 0−→ r̄

0−→ r′. Since r ∈ QE (s), s = s′ and
r = r̄ = r′, hence, r̄ ∈ QE (s) and r′ ∈ QE (s′).
We show the second case d > 0.

• This transition is of the type 〈~̀s, νs〉
d−→ 〈~̀s, νs + d〉. Hence,

s ∈
⋂
Y ∈ECN StableConf Y , otherwise, if s /∈ StableConf Y , for

some Y ∈ ECN , then quasi-equality does not hold for Y (see
Lemma 1) after the delay d.
• Since s ∈

⋂
Y ∈ECN StableConf Y and r ∈ QE (s), we know

that by Function QE (Definition 29), r |= φ, with φ := ∀Y ∈
ECN • (`RY = `nstRY

∧
∑

x∈Y tx = 0 ∧ prioY = 1) ∨ (`RY =
`iniRY

∧ (
∑

x∈Y tx = |Y | ∨
∑

x∈Y tx = 0) ∧ prioY = 0), other-
wise r would violate, in particular, rules (6.0.2a) and (6.0.2b).
• Use Proposition 3 to construct and reach r̄. We take r̄ as

constructed and we show that r̄ ∈ QE (s).
– Values of integer variables existing in N are not chan-

ged, since Proposition 3 uses only edges in resetters and
these do not update integer variables of N . Hence, for
each v ∈ V (N ) the value of v is the same in s and in r̄,
i.e. νs(v) = νr̄(v). Thus, r̄ and s satisfy Rule (6.2.1).

– Values of rep(x) and tx, for some Y ∈ ECN and for each
x ∈ Y , have been updated to 0 and 1, respectively. Recall



A.1. Introduction 107

that in r̄ we have changed locations of resetters to their
respective initial locations (other automata are located as
in r). Thus, for each 1 ≤ i ≤ n, `s,i = `r̄,i, values of rep(x)
and tx, with x ∈ X (Ai), encode in r̄ the value of x in s.
Thus, νs(x) = νr̄(rep(x)) · νr̄(tx). Hence, r̄ and s satisfy
Rule (6.0.2a).

– Values of book-keeping variables are not updated in con-
figuration r̄. Thus, the value of the book-keeping vari-
able sAiY , for some index i ∈ {1, . . . , n} and for some
Y ∈ ECN , is 1 in r̄ if and only ifA′i is located at the origin
location of a transformed simple edge wrt. Y . Thus, r̄
satisfies Rule (6.2.3).

– All resetters are now located at their initial locations and
their respective variables prioY have value 0. Thus r̄
satisfies (6.2.4).

• Propose r′ := 〈~̀r̄, νr̄ + d〉, where all clocks in X (N ′) have
advanced d time units. The configuration r′ still satisfies the
rules of QE . Thus, r′ ∈ QE (s′).

• Note that the invariants of the current locations of trans-
formed automata in r̄ are invariants equivalent to the res-
pective original ones of current locations of automata in s′,
i.e. I(`r̄,i) = Γ(I(`s,i)), for each 1 ≤ i ≤ n, which have been
introduced by Algorithm 27. That algorithm introduces as
well resetter automata, and since those automata are in r̄
currently located at their respective initial locations, their
invariants are trivially satisfied. In other words, νr̄ + d |=∧n
i=1 Γ(I(`s′,i)) ∧

∧
Y ∈ECN I(`RY ). Thus, by the semantics of

extended timed automata (Definition 16), r̄ d−→ r′ .

(b) s ∈ StableConf Y , s
′ ∈ Conf (N ′), for some Y ∈ ECN , and the

transition is justified by a set of simple edges EY .

(N )

(N ′)

s s′λ

λ λ

r r′
...

We show there exists r′ ∈ Conf (N ′), such that r λ−→∗ r′, with
r′ ∈ QE (s′). Use Proposition 4 to construct and reach r′, and to
show that r′ ∈ QE (s′).

(c) s /∈ StableConf Y , for some Y ∈ ECN , and the transition is justi-
fied by a simple edge wrt. Y

(N )

(N ′)

s s′λ

0

r r′

We show there exists r′ ∈ Conf (N ′), such that r 0−→ r′ and r′ ∈
QE (s′).
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• Note that since s /∈ StableConf Y and r ∈ QE (s), thus, reset-
ter RY cannot be located at `iniY in configuration r, other-
wise, there is a violation of Rule (6.0.2a) and Rule (6.0.2b).
• Propose r′ := r and r

0−→ r′. We take r′ as constructed and
we show that r′ ∈ QE (s′).

– Values of integer variables existing in N are neither up-
dated from s to s′ (simple edges reset only clocks) nor
from r to r′ since r′ = r. Hence, for each v ∈ V (N ) the
value of v is the same in s′ and in r′, i.e. νs′(v) = νr′(v).
Thus, r′ and s′ satisfy Rule (6.2.1).

– Both r′ and s′ satisfy either Rule (6.0.2a) or Rule (6.0.2b).
If r′ and s′ satisfy Rule (6.0.2a) then for the automaton
A′j , for some j ∈ {1, . . . , n}, (and its original version),
`r′,j = `s′,j and νs′(x) = νr′(rep(x)) · νr′(tx), with x ∈
X (Aj). Otherwise, r′ and s′ satisfy Rule (6.0.2b) and
the resetter RY is not located at `iniRY

, Y ∈ ECN ; the
automaton A′j is located in r′ at the destination loca-
tion of a transformed simple edge e wrt. Y , while the
origin location of e is the current location of Aj in s′;
νr′(rep(x)) = νs(x), and νr′(tx) = 0, for each x ∈ X (Aj)
reset by e.

– Book-keeping variable sAiY , with 1 ≤ i ≤ n and Y ∈ ECN
is not updated from r to r′, hence, has in r′ value 1 if
A′i is located at a location which is the origin location
of a transformed simple edge wrt. Y , otherwise value 0.
Thus, r′ satisfies Rule (6.2.3).

– Variables prioY , Y ∈ ECN , are not update from r to r′,
hence each of those has value 1 if the resetter RY is lo-
cated at `nstRY

in r′, otherwise 0. Thus, r′ satisfies (6.2.4).

(d) Transition is justified by a non-empty set of edges E, such that
none of them is simple wrt. any Y ∈ ECN .

(N )

(N ′)

s s′λ

λ′ λ

r r′
...

We show there exists r′ ∈ Conf (N ′), such that r λ−→∗ r′, with
r′ ∈ QE (s′). We distinguish the following cases based on the
edges contained in E.

i. All edges in E are non-resetting edges.
• Recall that the set of edges E = {(`1, α1, ϕ1, ~r1, `

′
1), . . . ,

(`m, αm, ϕm, ~rm, `
′
m)} has a corresponding set of edges

Ṗ = {( ˙̀
1, α̇1, ϕ̇1, ~̇r1, ˙̀

1), . . . , ( ˙̀
m, α̇m, ϕ̇m, ~̇rm, ˙̀

m)} which
is obtained by applying Algorithm K on N (see trans-
formation of non-resetting edges in Definition 27). Pro-
pose configuration r′ = (~̀r[`r,1 := ˙̀′

1] . . . [`r,m := ˙̀′
m],

νr[~̇r1] . . . [~̇rm]). We take r′ as constructed and we show
that r′ ∈ QE (s′).
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– Values of integer variables existing in N are updated
in r′ by taking edges in Ṗ if and only if those variables
are updated in s′ by taking edges inE. Hence, for each
v ∈ V (N ) the value of v is the same in s′ and in r′, i.e.
νs′(v) = νr′(v). Thus, r′ and s′ satisfy Rule (6.2.1).

– Both configurations r′ and s′ satisfy either Rule (6.0.2a)
or Rule (6.0.2b). If r′ and s′ satisfy Rule (6.0.2a) then
the automaton A′j , for some j ∈ {1, . . . , n}, updated
its current location in r′ (by taking an edge ė in Ṗ ) if
and only if Aj updated its current location in s′ (by
taking the original version of ė in E), thus, `r′,j = `s′,j
and because non-resetting edges do not update quasi-
equal clocks, hence, νs′(x) = νr′(rep(x)) · νr′(tx), with
x ∈ X (Aj). Otherwise, r′ and s′ satisfy Rule (6.0.2b)
and the resetter RY is not located at `iniRY

, Y ∈ ECN ;
the automaton A′j is located in r′ at the destination lo-
cation of a transformed simple edge e wrt. Y , while
the origin location of e is the current location of Aj in
s′; νr′(rep(x)) = νs(x), and νr′(tx) = 0, for each clock
x ∈ X (Aj) reset by e.

– The value of the book-keeping variable sAiY , for some
index i ∈ {1, . . . , n} and some Y ∈ ECN , is set to 1 in
r′ if and only if the destination location of an edge of
A′i in Ṗ is the origin location of a transformed simple
edge wrt. Y . IfA′i does not have an edge in Ṗ then the
value of sAiY is 1 if A′i is located in r′ at the origin loca-
tion of a transformed simple edge wrt. Y , otherwise 0.
Thus, r′ satisfies Rule (6.2.3).

– Variables prioY , Y ∈ ECN , are not modified in r′ since
all edges in Ṗ are transformed non-resetting edges,
which do not synchronise with edges of resetter RY
that may update prioY . However, prioY has value 1 if
the resetter RY is located at `nstRY

in r′, otherwise 0.
Thus r′ satisfies (6.2.4).

The value of each clock x ∈ X (N ) in s is equal to the
value that rep(x) and token tx encode in r for x. Hence,
νr |= ϕ̇1 ∧ · · · ∧ ϕ̇m, and νr[~̇r1] . . . [~̇rm] |= I( ˙̀′

1) ∧ · · · ∧
I( ˙̀′

m) because I( ˙̀′
1) = I(Γ(`′1)), . . . , I( ˙̀′

m) = I(Γ(`′m)) by
Function Γ (Definition 24); invariants of automata which
do not change locations are still satisfied in r′. Hence,
all edges in Ṗ are enabled. Thus, by the semantics of
extended timed automata Definition (16), r τ−→ r.

ii. There exists at least one complex edge wrt. Y in E.
• As a result of applying Algorithm K on N , in N ′ tran-

sitions justified by taking transformed simple edges are
prioritised over transitions justified by taking complex
ones, therefore, use Proposition 4 to obtain and reach ṙ
where all transformed simple edges enabled in r have
been taken. Note that ṙ = r if there are no transformed
simpled edges enabled in r.
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• Recall that the set of edges E = {(`1, α1, ϕ1, ~r1, `
′
1), . . . ,

(`m, αm, ϕm, ~rm, `
′
m)} has a corresponding set of edges

Ṗ = {( ˙̀
1, α̇1, ϕ̇1, ~̇r1, ˙̀

1), . . . , ( ˙̀
m, α̇m, ϕ̇m, ~̇rm, ˙̀

m)} obtai-
ned by applying Algorithm K on N (see transformation
of complex and non-resetting edges in Definition 27).
Propose r′ = (~̀ṙ[`ṙ,1 := ˙̀′

1] . . . [`ṙ,m := ˙̀′
m], νṙ[~̇r1] . . . [~̇rm]).

We take r′ as constructed and we show that r′ ∈ QE (s′).
– Values of integer variables existing in N are updated

in r′ by taking edges in Ṗ if and only if those variables
are updated in s′ by taking edges inE. Hence, for each
v ∈ V (N ) the value of v is the same in s′ and in r′, i.e.
νs′(v) = νr′(v). Thus, r′ and s′ satisfy Rule (6.2.1).

– Both configurations r′ and s′ satisfy either Rule (6.0.2a)
or Rule (6.0.2b). If r′ and s′ satisfy Rule (6.0.2a) then
the automatonA′j , for some j ∈ {1, . . . , n}, updated its
current location in r′ (by taking an edge Ė in Ṗ ) if and
only if Aj updated its current location in s′ (by taking
the original version of ė in E), thus, `r′,j = `s′,j and
because complex edges do update quasi-equal clocks,
value of tx, with x ∈ X (Aj), is set to 0 in r′ if and only
if clock x is reset in s′, hence, νs′(x) = νr′(rep(x)) ·
νr′(tx). Otherwise, r′ and s′ satisfy Rule (6.0.2b) and
the resetter RY is not located at `iniRY

, Y ∈ ECN ; the
automaton A′j is located in r′ at the destination loca-
tion of a transformed simple edge e wrt. Y , while the
origin location of e is the current location of Aj in s′;
νr′(rep(x)) = νs(x), and νr′(tx) = 0, for each clock
x ∈ X (Aj) reset by e.

– The value of the book-keeping variable sAiY , for some
index i ∈ {1, . . . , n} and some Y ∈ ECN , is set to 1 in
r′ if and only if the destination location of an edge of
A′i in Ṗ is the origin location of a transformed simple
edge wrt. Y . IfA′i does not have an edge in Ṗ then the
value of sAiY is 1 if A′i is located in r′ at the origin loca-
tion of a transformed simple edge wrt. Y , otherwise 0.
Thus, r′ satisfies Rule (6.2.3).

– Variables prioY , Y ∈ ECN , are not modified in r′ since
all edges in Ṗ are edges which do not synchronise
with edges of resetter RY that update prioY . How-
ever, prioY has value 1 if the resetter RY is located at
`nstRY

in r′, otherwise 0. Thus r′ satisfies (6.2.4).
The value of each clock x ∈ X (N ) in s is equal to the
value that the representative rep(x) and token tx encode
in ṙ for x. Hence, νṙ |= ϕ̇1∧· · ·∧ ϕ̇m, and νṙ[~̇r1] . . . [~̇rm] |=
I( ˙̀′

1)∧· · ·∧I( ˙̀′
m) because the invariants I( ˙̀′

1) = I(Γ(`′1)),
. . . , I( ˙̀′

m) = I(Γ(`′m)) by Function Γ (Definition 24); in-
variants of automata which do not change locations are
still satisfied in r′. Hence, all edges in Ṗ are enabled.
Thus, by the semantics of extended timed automata (De-
finition 16), ṙ τ−→ r′.
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• Let S1 = {Y ∈ ECN | r′ |= ∀x ∈ Y • `RY = `iniRY
∧ tx =

0 ∧ prioY = 0}. Note that S1 may be empty.
• Set r := r′ and execute the following algorithm while
S1 6= ∅:

A. Pick W ∈ S1, such that W has a higher index in ECprioN
than any other element in S1.

B. Consider the edge eW = (`iniRW
, uW !, ϕW , 〈prioW :=

0〉, `nstRW
) ∈ E(RW ) sending on the urgent broad-

cast channel uW , (by Algorithm 27 there are no edges
listening on uW ) and propose the configuration r′ =

(~̀r[`RW := `nstRW
], νr[〈prioW := 0〉]). It is easy to see

that r′ ∈ QE (s′).
Note that ϕW = (

∑
w∈W tw = 0). Recall that W ∈ S1

if and only if r |= ∀x ∈ W • `RW = `iniRW
∧ tx =

0 ∧ prioW = 0. Thus νr |= ϕW . Note as well that
νr[〈prioW := 0〉] |= I(`nstRW

) because I(`nstRW
) is the

invariant of an urgent location constraining the lapse
of time with the help of a fresh clock, and if invariants
of other locations are satisfied in r then they are still
satisfied in r′ since only RW changes location in r′.
Hence, eW is enabled.
Recall the edge e = (`iniRW

, resetW ?, ϕ, ~r, `nstRW
) ∈

E(RW ) which is not enabled because there are no trans-
formed simple edges sending on resetW enabled at
the current time, which is deduced from r |= ∀x ∈
W • `RW = `iniRW

∧ tx = 0 ∧ prioW = 0.
SinceW has a higher index in ECprioN than any other el-
ement in S1, thus, in N ′ the transition justified by eW
has the highest priority at the current time (see the pri-
oritisation mechanism implemented by Algorithm K,
Definition 27). Hence, r uW−−→ r′.

C. Set S1 := S1 \ {W}, r := r′.
Note that the above algorithm terminates because we
leave its loop by decrementing the size of S1 in each ite-
ration until S1 = ∅.

5. ∀CF ∈ CFN∀ r ∈ QE (s)•r λ−→ r′∧r′ |=δ′ Ω0(CF ) =⇒ ∃ s λ−→∗ s′•r′ ∈
QE (s′). We distinguish the transition r λ−→ r′ as follows:

(a) transition is justified by a delay λ = d ≥ 0.

(N ′)

(N )

r r′λ

λ

s s′

We show there exists s′ ∈ Conf (N ), such that s λ−→ s′, with s′ ∈
QE (r′). We distinguish two cases based on d, namely, d = 0 and
d > 0. The first case d = 0 is trivial. Since this transition in N ′ is
of the type 〈~̀r, νr〉

0−→ 〈~̀r, νr + 0〉, thus, r = r′, and we propose s′,
such that s = s′.
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Hence, by the semantics of extended timed automata (Defini-
tion 16), s 0−→ s′. Trivially, s′ ∈ QE (r′). We show the second
case d > 0.

• This transition in N ′ is of the type 〈~̀r, νr〉
d−→ 〈~̀r, νr + d〉.

Each resetter is located in r at its initial location, i.e. `r,RY =
`iniRY

, for all Y ∈ ECN (all other locations of each resetter
are urgent, thus, delays d > 0 are not possible at those loca-
tions).
• Since r ∈ QE (s), we know that s ∈

⋂
Y ∈ECN StableConf Y ,

otherwise, if s /∈ StableConf Y , for some Y ∈ ECN , then
quasi-equality would not hold for Y (see Lemma 1) after the
delay d.

• Propose s′ := 〈~̀s′ , νs′ + d〉, where all clocks in X (N ) have
advanced d time units. We take s′ as constructed and we
show that r′ ∈ QE (s′).

– Values of integer variables existing inN are not updated
in delay transitions. Hence, for each v ∈ V (N ) the value
of v is the same in s′ and in r′, i.e. νs′(v) = νr′(v). Thus,
r′ and s′ satisfy Rule (6.2.1).

– Configurations r′ and s′ do not satisfy Rule (6.0.2b), since
in r′ each resetter is located at its initial location. Confi-
gurations r′ and s′ do satisfy Rule (6.0.2a), therefore, the
location of Aj , with j ∈ {1, . . . , n}, is the same in s′ as
the location of A′j in r′, i.e. `s′,j = `r′,j . The value of each
x ∈ X (Aj) in s′ is equal to the value that the represen-
tative rep(x) and the token tx encode in r′ for x, thus,
νs′(x) = νr′(rep(x)) · νr′(tx).

– The value of the book-keeping variable sAiY , for some
index i ∈ {1, . . . , n} and some Y ∈ ECN , is 1 in r′ if
and only if A′i is located at the origin location of a trans-
formed simple edge wrt. Y . Thus, r′ satisfies Rule (6.2.3).

– All resetters are now located at their initial locations and
their respective variables prioY , with Y ∈ ECN , have
value 0. Thus r′ satisfies (6.2.4).

• Note that the invariants of the current locations of automata
in s are invariants equivalent to the transformed ones of cur-
rent locations of automata in r, i.e. I(`r,i) = Γ(I(`s,i)), for
each 1 ≤ i ≤ n, which have been introduced by Algorithm 27.
Hence, νs + d |=

∧n
i=1 I(`s′,i). Thus by the semantics of ex-

tended timed automata (Definition 16), s d−→ s′.

(b) transition is justified by a non-empty set of edges E.

(N ′)

(N )

r r′λ

λ

s s′

We show there exists s′ ∈ Conf (N ), such that s λ−→∗ s′, r′ ∈
QE (s′).
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In the following we distinguish five cases based on the edges
contained in E. We want to point out that each case is justified
by the setE, that is, each edge in that set is taken to justify the un-
derlying transition. Therefore, some combinations of edges are
not possible to be contained inE. For instance, transformed sim-
ple edges and transformed complex ones cannot be contained in
E, since that would imply to take all those edges in one tran-
sition, namely, a broadcast one, however, neither simple edges
nor their transformed version are equipped with a mechanism to
synchronise with complex edges and transformed complex ones,
respectively. We refer the interested reader to Definition 22 and
AlgorithmK, Definition 27 to respectively recall the definition of
resetting edges and their transformation.

i. The set E contains edges of the kind: (1) transformed com-
plex edges and (or), (2) transformed non-resetting edges.
• Recall that the set of edges E = {e1 = (`1, α1, ϕ1, ~r1, `

′
1)

, . . . , en = (`n, αn, ϕn, ~rn, `
′
n)} obtained by applying Al-

gorithm K (Definition 27) onN , has a corresponding set
of original edges Ṗ = {ė1 = ( ˙̀

1, α̇1, ϕ̇1, ~̇r1, ˙̀
1), . . . ,

ėn = ( ˙̀
n, α̇n, ϕ̇n, ~̇rn, ˙̀

n)}.
Propose s′ = (~̀s[`s,1 := ˙̀′

1] . . . [`s,n := ˙̀′
n], νs[~̇r1] . . . [~̇rn]).

We take s′ as constructed and we show that r′ ∈ QE (s′).
– Values of integer variables existing in N are updated

in s′ by taking edges in Ṗ if and only if those variables
are updated in r′ by taking edges inE. Hence, for each
v ∈ V (N ) the value of v is the same in s′ and in r′, i.e.
νs′(v) = νr′(v). Thus, r′ and s′ satisfy Rule (6.2.1).

– Both configuration r′ and s′ satisfy either Rule (6.0.2a)
or Rule (6.0.2b). If r′ and s′ satisfy Rule (6.0.2a) then
the automatonAj , for some j ∈ {1, . . . , n}, updated its
current location in s′ (by taking an edge ė in Ṗ ) if and
only if A′j updated its current location in r′ (by taking
the transformed version of ė in E), thus, `r′,j = `s′,j ,
νs′(x) = νr′(rep(x)) · νr′(tx), with x ∈ X (Aj). Oth-
erwise, r′ and s′ satisfy Rule (6.0.2b) and the resetter
RY is not located at `iniRY

, Y ∈ ECN ; the automaton
Aj is located in s′ at the origin location of a simple
edge e wrt. Y , while the destination location of e is the
current location of A′j in r′; νr′(rep(x)) = νs(x), and
νr′(tx) = 0, for each clock x ∈ X (Aj) reset by e.

– The value of the book-keeping variable sAiY , for some
index i ∈ {1, . . . , n} and some Y ∈ ECN , is set to 1 in
r′ if and only if the destination location of an edge of
A′i in E is the origin location of a transformed simple
edge wrt. Y . IfA′i does not have an edge in E then the
value of sAiY is 1 if A′i is located in r′ at the origin loca-
tion of a transformed simple edge wrt. Y , otherwise 0.
Thus, r′ satisfies Rule (6.2.3).

– Variables prioY , Y ∈ ECN , are not modified in r′ since
no edge inE synchronises with an edge of resetterRY
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that may update prioY . However, prioY has value 1 if
the resetter RY is located at `nstRY

in r′, otherwise 0.
Thus r′ satisfies (6.2.4).

The value of each clock x ∈ X (N ) in s is encoded by
the representative rep(x) and token tx in r. Moreover,
recall that the guards ϕ1, . . . , ϕn of edges in E are ob-
tained by Algorithm K from guards ϕ̇1, . . . , ϕ̇n of edges
in Ṗ . Hence, νs |= ϕ̇1 ∧ · · · ∧ ϕ̇n, and νs[~̇r1] . . . [~̇rn] |=
I( ˙̀′

1)∧· · ·∧I( ˙̀′
n) since the invariants I(`r′,i) = Γ(I(`s′,i)),

for each 1 ≤ i ≤ n, which have been introduced by Algo-
rithm 27. Hence, all edges in Ṗ are enabled. Thus, by the
semantics of extended timed automata (Definition 16),
s
τ−→ s′.

ii. The set E consists exclusively of the edge e =
(`iniRY

, uY !, ϕ, 〈prioY := 1〉, `nstRY
) ∈ E(RY ), for some Y ∈

ECN .
• Recall that e has an output on the urgent broadcast chan-

nel uY , and by Algorithm K there is no edge in N ′ with
an input on uY .
• Propose s′ := s. We take s′ as constructed and we show

that r′ ∈ QE (s′).
– Values of integer variables existing in N are neither

updated in r′ (by e) nor in s′. Hence, for each v ∈
V (N ) the value of v is the same in s′ and in r′, i.e.
νs′(v) = νr′(v). Thus, r′ and s′ satisfy Rule (6.2.1).

– Both configurations r′ and s′ satisfy either Rule (6.0.2a)
or Rule (6.0.2b). If r′ and s′ satisfy Rule (6.0.2a) then
for the automaton Aj (and for its transformed ver-
sion), for some j ∈ {1, . . . , n}, `r′,j = `s′,j and because
e does not update clocks, hence, νs′(x) = νr′(rep(x)) ·
νr′(tx), with x ∈ X (Aj).
Otherwise, r′ and s′ satisfy Rule (6.0.2b) and the reset-
ter RY is not located at `iniRY

, Y ∈ ECN ; the automa-
tonAj is located in s′ at the origin location of a simple
edge e wrt. Y , while the destination location of e is the
current location of A′j in r′; νr′(rep(x)) = νs(x), and
νr′(tx) = 0, for each clock x ∈ X (Aj) reset by e.

– The value of the book-keeping variable sAiY , for some
index i ∈ {1, . . . , n} and some Y ∈ ECN , is 1 in r′

if A′i is located in r′ at the origin location of a trans-
formed simple edge wrt. Y , otherwise 0. Thus, r′ sat-
isfies Rule (6.2.3).

– The variable prioY , with Y ∈ ECN , has value 1 if the
resetterRY is located at `nstRY

in r′, otherwise 0. Thus
r′ satisfies (6.2.4).

We propose a 0-delay transition. Hence, by the seman-
tics of extended timed automata (Definition 16), s 0−→ s′.

iii. The set E exclusively consists of edges with an input or out-
put on the channel return .
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• Recall that inputs and outputs on the channel return oc-
cur only in edges of resetters of N ′ (see construction of
resetters by Algorithm K, Definition 27). Hence, E ex-
clusively consists of edges of resetters.
• Let P := {(`, α, ϕ, ~r, `′) ∈ SimpEdgesY (N ) | ∃ i ∈ N •
`s,i = ` ∧ νs |= ϕ ∧ νs[~r ] |= I(`′) ∧ Y ∈ ECN }, i.e. the

set of simple edges enabled in the configuration s.
• We distinguish two cases based on the set P . If P = ∅

then:
– Propose s′ := s. We take s′ as constructed and we

show that r′ ∈ QE (s′).
∗ Values of integer variables existing in N are neither

updated in r′ nor in s′. Hence, for each v ∈ V (N )
the value of v is the same in s′ and in r′, i.e. νs′(v) =
νr′(v). Thus, r′ and s′ satisfy Rule (6.2.1).
∗ Both configurations r′ and s′ do satisfy Rule (6.0.2a)

then automaton Aj , for each j ∈ {1, . . . , n}, and A′j
are located at the same location, i.e. `r′,j = `s′,j , and
because some edges in E do update rep(x) and tx,
for some x ∈ X (Aj), hence, νs′(x) = νr′(rep(x)) ·
νr′(tx).
∗ The value of the book-keeping variable sAiY , for some

index i ∈ {1, . . . , n}, for some Y ∈ ECN , is 1 in r′ if
A′i is located in r′ at the origin location of a trans-
formed simple edge wrt. Y , otherwise 0. Thus, r′

satisfies Rule (6.2.3).
∗ The variable prioY , with Y ∈ ECN , has value 1 if

the resetter RY is located at `nstRY
in r′, otherwise

0. Thus r′ satisfies (6.2.4).
– We propose a 0-delay transition. Hence, by the se-

mantics of extended timed automata (Definition 16),
s

0−→ s′.
Otherwise, P 6= ∅ and we execute the following algo-
rithm while P 6= ∅:
– For some 1 ≤ i ≤ n, pick the following simple edge
e = (`, α, ϕ, 〈x := 0〉, `′) ∈ P , such that e ∈ E(Ai).

– Propose s′ := (~̀s[`s,i := `′1], νs[〈x := 0〉]). Recall that
e is an edge enabled in s. This implies that νs |= ϕ ∧
νs[〈x := 0〉] |= I(`′). Thus, by the semantics of ex-
tended timed automata (Definition 16), s τ−→ s′.
Recall that guards of simple edges consist of a single
clock constraint y ≥ c, with y ∈ Y , Y ∈ ECN and c ∈
N>0. Note that the above transition only updates the
value of clock x in s′. Therefore, this update does not
hinder other enabled simple edges in s′ to be taken.

– Set P := P \ {e} and s := s′.
Note that the above algorithm terminates because we
leave its loop by decrementing the size of P in each ite-
ration until P = ∅. We take s′ as constructed and we
show that r′ ∈ QE (s′).
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– Values of integer variables existing in N are neither
updated in r′ nor in s′. Hence, for each v ∈ V (N ) the
value of v is the same in s′ and in r′, i.e. νs′(v) = νr′(v).
Thus, r′ and s′ satisfy Rule (6.2.1).

– Both configurations r′ and s′ satisfy Rule (6.0.2a) then
automata Aj , for each j ∈ {1, . . . , n}, and A′j are lo-
cated at the same location, i.e. `r′,j = `s′,j , and because
some edges in E do update rep(x) and tx, for some
x ∈ X (Aj), hence, νs′(x) = νr′(rep(x)) · νr′(tx).

– The value of the book-keeping variable sAiY , for some
index i ∈ {1, . . . , n}, for some Y ∈ ECN , is 1 in r′

if A′i is located in r′ at the origin location of a trans-
formed simple edge wrt. Y , otherwise 0. Thus, r′ sa-
tisfies Rule (6.2.3).

– The variable prioY , with Y ∈ ECN , has value 1 if the
resetterRY is located at `nstRY

in r′, otherwise 0. Thus
r′ satisfies (6.2.4).

iv. The set E exclusively consists of transformed simple edges.
• Recall that r′ |=δ′ Ω0(CF ). Let CV be the set of logical

variables introduced by Ω in transformations for loca-
tions and clock constraints occurring in CF .
Let Cks := {x ∈ X (N ) | x̃ ∈ CV ∧ δ′(x̃) = 1}. Let
Ė = {(`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesY (Ai) | 1 ≤ i ≤
n ∧ x ∈ Cks ∧ Y ∈ ECN ∧ `s,i = `}.
Note that any edge ė = (`, α, ϕ, 〈x := 0〉, `′) of Ė is en-
abled in s, since its transformed version is enabled in r
and was taken in the transition from r to r′. This infor-
mation is obtained from the logical variables occurring
in δ′ with value true.
• If Ė = ∅ then propose s′ := s. We propose a 0-delay

transition. Hence, by the semantics of extended timed
automata (Definition 16), s 0−→ s′. Take s′ as constructed
to show r′ ∈ QE (s′):
– In 0-delays no integer variables are updated. Hence,

for each v ∈ V (N ) the value of v is the same in s′

and in r′, i.e. νs′(v) = νr′(v). Thus, r′ and s′ satisfy
Rule (6.2.1).

– Both configurations s′ and r′ satisfy either Rule (6.0.2a)
or Rule (6.0.2b). If s′ and r′ satisfy Rule (6.0.2a) then
the automata Aj , for some j ∈ {1, . . . , n}, and A′j are
located at the same location, i.e. `r′,j = `s′,j , and the
value of the clock x ∈ X (Aj) in s′ is encoded by rep(x)
and tx in r′, hence, νs′(x) = νr′(rep(x)) · νr′(tx).
Otherwise, s′ and r′ satisfy Rule (6.0.2b) and the re-
setter RY is not located at `iniRY

, Y ∈ ECN , but at
`nstRY

; the automaton Aj is located in s′ at the origin
location of a simple edge e wrt. Y , while the destina-
tion location of e is the current location of A′j in r′;
νr′(rep(x)) = νs′(x), and νr′(tx) = 0, for each clock
x ∈ X (Aj) reset by e.
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– The value of the book-keeping variable sAiY , for some
index i ∈ {1, . . . , n}, for some Y ∈ ECN , is 1 in r′ if and
only if the destination location of an edge ofA′i in E is
the origin location of a transformed simple edge wrt.
Y . If A′i does not have an edge in E then the value of
sAiY is 1 if A′i is located in r′ at the origin location of a
transformed simple edge wrt. Y , otherwise 0. Thus, r′

satisfies Rule (6.2.3).
– Variable prioY , Y ∈ ECN , has value 1 if the resetterRY

is located at `nstRY
in r′, otherwise 0. Thus r′ satisfies

(6.2.4).
Otherwise, Ė 6= ∅ and we execute the following steps
until Ė = ∅:
– For some 1 ≤ i ≤ n and some Y ∈ ECN , pick an edge
ė = ( ˙̀, α̇, ϕ̇, ~̇r, ˙̀′) ∈ Ė, such that ė ∈ SimpEdgesY (Ai).

– Propose s′ = (~̀s[`s,i := ˙̀′
i], νs[~̇ri]). Take s′ as construc-

ted, we show that r′ ∈ QE (s′) holds:
∗ Simple edges do not update integer variables of N .

Hence, for each v ∈ V (N ) the value of v is the same
in s′ and in r′, i.e. νs′(v) = νr′(v). Thus, r′ and s′

satisfy Rule (6.2.1).
∗ Both s′ and r′ satisfy either Rule (6.0.2a) or Rule

(6.0.2b). If s′ and r′ satisfy Rule (6.0.2a) then the
automaton Aj , for some j ∈ {1, . . . , n}, updated
its current location in s′ (by taking an edge ė in Ė)
if and only if A′j updated its current location in r′

(by taking the transformed version of ė in E), thus,
`r′,j = `s′,j and because simple edges do reset quasi-
equal clocks, hence, νs′(x) = νr′(rep(x)) · νr′(tx),
with x ∈ X (Aj).
Otherwise, s′ and r′ satisfy Rule (6.0.2b) and the re-
setter RY is not located at `iniRY

, Y ∈ ECN , but at
`nstRY

; the automaton Aj is located in s′ at the ori-
gin location of a simple edge e in Ė, while the desti-
nation location of e is the current location ofA′j in r′;
νr′(rep(x)) = νs′(x), and νr′(tx) = 0, for each clock
x ∈ X (Aj) reset by e.
∗ The value of the book-keeping variable sAiY , for some

index i ∈ {1, . . . , n}, for some Y ∈ ECN , is set to 1 in
r′ if and only if the destination location of an edge of
A′i in E is the origin location of a transformed sim-
ple edge wrt. Y . If A′i does not have an edge in E
then the value of sAiY is 1 if A′i is located in r′ at the
origin location of a transformed simple edge wrt. Y ,
otherwise 0. Thus, r′ satisfies Rule (6.2.3).
∗ Variable prioY , Y ∈ ECN , has value 1 if the resetter
RY is located at `nstRY

in r′, otherwise 0. Thus r′

satisfies (6.2.4).
The value in r that the representative rep(x) and token
tx, with Y ∈ ECN , encode in r is equal to the value of
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x in s. Hence, νs |= ϕ̇, and νs[~̇r] |= I( ˙̀′) since the in-
variant of the current location of automaton Ai in s′,
is an invariant equivalent (by Function Γ) to the trans-
formed invariant of the current location of automaton
A′i in r′. Hence, edge ė is enabled. Thus, by the se-
mantics of extended timed automata (Definition 16),
s
τ−→ s′.

Note that the above transition only updates the value
of clock x in s′. Therefore, this update does not hinder
other enabled simple edges in s′ to be taken.

– Eliminate ė from Ė, and set s := s′.
Note that the above algorithm terminates because we
leave its loop by decrementing the size of Ė in each it-
eration until Ė = ∅.

v. The set E consists exclusively of the edge e =
(`nstRY

, τ, ϕ, 〈prioY := 0〉,TlockY ) ∈ E(RY ), for some Y ∈
ECN .
• Recall that r′ |=δ′ Ω0(CF ). Let CV be the set of logical

variables introduced by Ω in transformations for loca-
tions and clock constraints occurring in CF .
Let Cks := {x ∈ X (N ) | x̃ ∈ CV ∧ δ′(x̃) = 1}. Let
Ė = {(`, α, ϕ, 〈x := 0〉, `′) ∈ SimpEdgesY (Ai) | 1 ≤ i ≤
n ∧ x ∈ Cks ∧ `s,i = `}.
Note that any edge ė = (`, α, ϕ, 〈x := 0〉, `′) of Ė is en-
abled in s, since its transformed version is enabled in r
and was taken in the transition from r to r′. This infor-
mation is obtained from the logical variables occurring
in δ′ with value true.
• If Ė = ∅ then propose s′ := s. We propose a 0-delay

transition. Hence, by the semantics of extended timed
automata (Definition 16), s 0−→ s′. Take s′ as constructed
to show r′ ∈ QE (s′):
– In 0-delays no integer variables are updated. Hence,

for each v ∈ V (N ) the value of v is the same in s′

and in r′, i.e. νs′(v) = νr′(v). Thus, r′ and s′ satisfy
Rule (6.2.1).

– Both configurations s′ and r′ satisfy either Rule (6.0.2a)
or Rule (6.0.2b). If s′ and r′ satisfy Rule (6.0.2a) then
the automata Aj , for some j ∈ {1, . . . , n}, and A′j are
located at the same location, i.e. `r′,j = `s′,j , and the
value of the clock x ∈ X (Aj) in s′ is encoded by rep(x)
and tx in r′, hence, νs′(x) = νr′(rep(x)) · νr′(tx).
Otherwise, s′ and r′ satisfy Rule (6.0.2b) and the re-
setter RY is not located at `iniRY

, Y ∈ ECN , but at
`nstRY

; the automaton Aj is located in s′ at the origin
location of a simple edge e wrt. Y , while the destina-
tion location of e is the current location of A′j in r′;
νr′(rep(x)) = νs′(x), and νr′(tx) = 0, for each clock
x ∈ X (Aj) reset by e.



A.1. Introduction 119

– The value of the book-keeping variable sAiY , for some
index i ∈ {1, . . . , n}, for some Y ∈ ECN , is 1 in r′ if and
only if the destination location of an edge ofA′i in E is
the origin location of a transformed simple edge wrt.
Y . If A′i does not have an edge in E then the value of
sAiY is 1 if A′i is located in r′ at the origin location of a
transformed simple edge wrt. Y , otherwise 0. Thus, r′

satisfies Rule (6.2.3).
– Variable prioY , Y ∈ ECN , has value 1 if the resetterRY

is located at `nstRY
in r′, otherwise 0. Thus r′ satisfies

(6.2.4).
Otherwise, Ė 6= ∅ and we execute the following steps
until Ė = ∅:
– For some 1 ≤ i ≤ n and some Y ∈ ECN , pick an edge
ė = ( ˙̀, α̇, ϕ̇, ~̇r, ˙̀′) ∈ Ė, such that ė ∈ SimpEdgesY (Ai).

– Propose s′ = (~̀s[`s,i := ˙̀′
i], νs[~̇ri]). Take s′ as construc-

ted, we show that r′ ∈ QE (s′) holds:
∗ Simple edges do not update integer variables of N .

Hence, for each v ∈ V (N ) the value of v is the same
in s′ and in r′, i.e. νs′(v) = νr′(v). Thus, r′ and s′

satisfy Rule (6.2.1).
∗ Both s′ and r′ satisfy either Rule (6.0.2a) or Rule

(6.0.2b). If s′ and r′ satisfy Rule (6.0.2a) then the
automaton Aj , for some j ∈ {1, . . . , n}, updated
its current location in s′ (by taking an edge ė in Ė)
if and only if A′j updated its current location in r′

(by taking the transformed version of ė in E), thus,
`r′,j = `s′,j and because simple edges do reset quasi-
equal clocks, hence, νs′(x) = νr′(rep(x)) · νr′(tx),
with x ∈ X (Aj).
Otherwise, s′ and r′ satisfy Rule (6.0.2b) and the re-
setter RY is not located at `iniRY

, Y ∈ ECN , but at
`nstRY

; the automaton Aj is located in s′ at the ori-
gin location of a simple edge e in Ė, while the desti-
nation location of e is the current location ofA′j in r′;
νr′(rep(x)) = νs′(x), and νr′(tx) = 0, for each clock
x ∈ X (Aj) reset by e.
∗ The value of the book-keeping variable sAiY , for some

index i ∈ {1, . . . , n}, for some Y ∈ ECN , is set to 1 in
r′ if and only if the destination location of an edge of
A′i in E is the origin location of a transformed sim-
ple edge wrt. Y . If A′i does not have an edge in E
then the value of sAiY is 1 if A′i is located in r′ at the
origin location of a transformed simple edge wrt. Y ,
otherwise 0. Thus, r′ satisfies Rule (6.2.3).
∗ Variable prioY , Y ∈ ECN , has value 1 if the resetter
RY is located at `nstRY

in r′, otherwise 0. Thus r′

satisfies (6.2.4).
The value in r that the representative rep(x) and token
tx, with Y ∈ ECN , encode in r is equal to the value of
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x in s. Hence, νs |= ϕ̇, and νs[~̇r] |= I( ˙̀′) since the in-
variant of the current location of automaton Ai in s′,
is an invariant equivalent (by Function Γ) to the trans-
formed invariant of the current location of automaton
A′i in r′. Hence, edge ė is enabled. Thus, by the se-
mantics of extended timed automata (Definition 16),
s
τ−→ s′.

Note that the above transition only updates the value
of clock x in s′. Therefore, this update does not hinder
other enabled simple edges in s′ to be taken.

– Eliminate ė from Ė, and set s := s′.
Note that the above algorithm terminates because we
leave its loop by decrementing the size of Ė in each it-
eration until Ė = ∅.

ut
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Appendix B

Detailed Verification Results

B.1 Introduction

This appendix complements Chapter 8 and contains tables with detailed
verification results for the case studies: FS, CD, LS, EP, TT, PG, FB.

These verification results are provided for networks transformed with
Algorithm KO on the output of Algorithm K (the broadcast version).

Note that in each case study we report on the minimal instances that a
network consists of, and on the maximal instances that by our experience
are possible to model check in our experimental environment.

B.2 Tables

Network C kStates M t(s) Network C kStates M t(s)

LS-1 8 0.44 6.0 0.0 LS-1KO 4 0.91 6.5 0.0
LS-2 10 1.02 6.1 0.0 LS-2KO 4 2.17 6.7 0.0
LS-3 12 3.02 6.3 0.0 LS-3KO 4 5.50 7.1 0.0
LS-4 14 10.26 6.9 0.2 LS-4KO 4 15.44 8.0 0.2
LS-5 16 37.82 9.2 1.3 LS-5KO 4 48.37 11.3 0.9
LS-6 18 145.14 18.4 6.3 LS-6KO 4 166.45 24.3 4.1
LS-7 20 568.70 56.5 30.7 LS-7KO 4 611.50 76.2 18.1
LS-8 22 2, 251.38 224.2 150.1 LS-8KO 4 2, 337.20 284.7 82.4
LS-9 24 8, 759.10 876.5 723.6 LS-9KO 4 8, 822.47 1, 387.2 352.7
LS-10 26 33, 743.86 3, 401.2 3, 427.3 LS-10KO 4 34, 451.53 5, 556.2 1, 561.8

TABLE B.1: Detailed results for the case study LS. Row X-
N(KO) gives the figures for benchmark X with N compo-
nents (and KO applied). ‘C’ gives the number of clocks in
the network, ‘kStates’ the number of 103 visited states, ‘M’

memory usage in MB, and ‘t(s)’ verification time in secs.
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Network C kStates M t(s) Network C kStates M t(s)

CD-1 2 0.01 5.8 0.0 CD-1KO 1 0.01 6.0 0.0
CD-2 3 0.04 5.8 0.0 CD-2KO 1 0.03 6.2 0.0
CD-3 4 0.14 5.9 0.0 CD-3KO 1 0.08 6.4 0.0
CD-4 5 0.50 6.0 0.0 CD-4KO 1 0.16 6.7 0.0
CD-5 6 1.74 6.2 0.0 CD-5KO 1 0.37 6.9 0.0
CD-6 7 6.07 6.7 0.1 CD-6KO 1 0.82 7.2 0.0
CD-7 8 20.92 8.4 0.4 CD-7KO 1 1.86 7.5 0.0
CD-8 9 71.07 14.0 1.8 CD-8KO 1 4.17 8.0 0.1
CD-9 10 238.57 31.3 7.4 CD-9KO 1 9.30 9.0 0.2
CD-10 11 792.52 90.3 29.3 CD-10KO 1 20.57 10.8 0.5
CD-11 12 2, 609.51 286.0 113.8 CD-11KO 1 45.16 14.3 1.2
CD-12 13 8, 527.73 959.8 453.0 CD-12KO 1 98.41 21.7 3.1
CD-13 14 27, 688.28 2, 920.5 1, 719.2 CD-13KO 1 213.11 38.6 7.5
CD-14 15 89, 396.89 9, 492.4 6, 457.8 CD-14KO 1 458.88 73.4 18.1
CD-15 16 – – – CD-15KO 1 983.18 146.8 42.9

TABLE B.2: Detailed results for the case study CD.

Network C States M t(s) Network C States M t(s)

FB-1 3 39 5.7 0.0 FB-1KO 3 71 5.9 0.0
FB-2 4 51 5.8 0.0 FB-2KO 3 83 5.9 0.0
FB-3 5 75 5.8 0.0 FB-3KO 3 107 6.0 0.0
FB-4 6 123 5.8 0.0 FB-4KO 3 155 6.1 0.0
FB-5 7 219 5.9 0.0 FB-5KO 3 251 6.2 0.0
FB-6 8 411 6.0 0.0 FB-6KO 3 443 6.4 0.0
FB-7 9 795 6.1 0.0 FB-7KO 3 827 6.5 0.0
FB-8 10 1, 563 6.3 0.0 FB-8KO 3 1, 595 6.7 0.0
FB-9 11 3, 099 6.6 0.1 FB-9KO 3 3, 131 7.0 0.1
FB-10 12 6, 171 7.2 0.4 FB-10KO 3 6, 203 7.6 0.2
FB-11 13 12, 315 8.3 0.8 FB-11KO 3 12, 347 8.6 0.5
FB-12 14 24, 603 10.5 9.5 FB-12KO 3 24, 635 10.6 1.3
FB-13 15 49, 179 14.8 80.3 FB-13KO 3 49, 211 15.0 2.9
FB-14 16 98, 331 25.2 424.7 FB-14KO 3 98, 363 23.7 6.6
FB-15 17 196, 635 45.6 2, 100.6 FB-15KO 3 196, 667 40.9 15.0
FB-16 18 393, 243 86.7 9, 427.0 FB-16KO 3 393, 275 76.7 33.3
FB-17 19 – – – FB-17KO 3 786, 491 146.5 76.5

FB-18KO 3 1, 572, 923 286.0 172.0
FB-19KO 3 3, 145, 787 564.7 384.6
FB-20KO 3 6, 291, 515 1, 122.0 839.0
FB-21KO 3 12, 582, 971 2, 318.9 1, 851.5
FB-22KO 3 25, 165, 883 4, 631.4 3, 997.3
FB-23KO 3 50, 331, 707 8, 732.3 8, 604.0

TABLE B.3: Detailed results for the case study FB.
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Network C States M t(s) Network C States M t(s)

EP-1 2 15 6.0 0.0 EP-1KO 1 20 6.4 0.0
EP-2 3 24 6.1 0.0 EP-2KO 1 39 6.7 0.0
EP-3 4 39 6.2 0.0 EP-3KO 1 44 7.0 0.0
EP-4 5 66 6.2 0.0 EP-4KO 1 71 7.3 0.0
EP-5 6 117 6.4 0.0 EP-5KO 1 122 7.6 0.0
EP-6 7 216 6.5 0.0 EP-6KO 1 221 8.0 0.0
EP-7 8 411 6.6 0.0 EP-7KO 1 416 8.4 0.0
EP-8 9 798 6.7 0.0 EP-8KO 1 803 8.8 0.0
EP-9 10 1, 569 7.0 0.0 EP-9KO 1 1, 574 9.2 0.1
EP-10 11 3, 108 7.3 0.1 EP-10KO 1 3, 113 9.9 0.1
EP-11 12 6, 183 7.9 0.2 EP-11KO 1 6, 188 10.8 0.3
EP-12 13 12, 330 8.9 0.5 EP-12KO 1 12, 335 12.3 0.5
EP-13 14 24, 621 10.8 1.2 EP-13KO 1 24, 626 14.9 1.1
EP-14 15 49, 200 14.5 2.9 EP-14KO 1 49, 205 20.9 2.5
EP-15 16 98, 355 22.7 6.9 EP-15KO 1 98, 360 34.7 5.5
EP-16 17 196, 662 39.5 16.3 EP-16KO 1 196, 667 59.2 12.2
EP-17 18 393, 273 72.5 38.4 EP-17KO 1 393, 278 109.5 27.8
EP-18 19 786, 492 140.2 89.8 EP-18KO 1 786, 497 211.7 61.7
EP-19 20 1, 572, 927 273.6 210.7 EP-19KO 1 1, 572, 932 419.8 135.8
EP-20 21 3, 145, 794 556.3 485.8 EP-20KO 1 3, 145, 799 826.5 310.1
EP-21 22 6, 291, 525 1, 105.3 1, 123.7 EP-21KO 1 6, 291, 530 1, 672.6 658.4
EP-22 23 12, 582, 984 2, 235.4 2, 578.2 EP-22KO 1 12, 582, 989 3, 332.5 1, 440.0
EP-23 24 25, 165, 899 4, 462.5 5, 921.0 EP-23KO 1 25, 165, 904 6, 783.9 3, 078.9
EP-24 24 – – – EP-24KO 1 50, 331, 731 12, 506.5 6, 640.1

TABLE B.4: Detailed results for the case study EP.
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Network C kStates M t(s) Network C kStates M t(s)

FS-2 8 3, 058.91 315.1 98.0 FS-2KO 5 3, 505.05 5, 656.7 95.0
FS-3 9 3, 194.52 327.9 120.7 FS-3KO 5 3, 533.14 5, 671.4 100.2
FS-4 10 3, 437.60 360.0 160.4 FS-4KO 5 3, 561.18 5, 686.0 106.2
FS-5 11 3, 895.72 404.9 231.2 FS-5KO 5 3, 589.22 5, 700.3 111.4
FS-6 12 4, 783.92 501.4 386.8 FS-6KO 5 3, 617.26 5, 715.3 117.5
FS-7 13 6, 532.28 669.4 704.8 FS-7KO 5 3, 645.30 5, 728.5 121.8
FS-8 14 10, 000.96 1, 041.5 1, 503.3 FS-8KO 5 3, 673.34 5, 742.6 127.5
FS-9 15 16, 910.28 1, 844.4 3, 300.7 FS-9KO 5 3, 701.38 5, 756.8 134.2
FS-10 16 – – – FS-10KO 5 3, 729.42 5, 772.2 140.6

FS-15KO 5 3, 869.62 5, 845.4 173.9
FS-20KO 5 4, 009.82 5, 920.3 210.8
FS-25KO 5 4, 150.02 5, 994.9 249.3
FS-30KO 5 4, 290.22 6, 069.6 297.6
FS-35KO 5 4, 430.42 6, 144.5 346.6
FS-40KO 5 4, 570.62 6, 240.8 395.3
FS-45KO 5 4, 710.82 6, 313.3 461.0
FS-50KO 5 4, 851.02 6, 390.4 525.6
FS-55KO 5 4, 991.22 6, 464.9 586.3
FS-60KO 5 5, 131.42 6, 542.1 659.4
FS-65KO 5 5, 271.62 6, 620.3 726.8
FS-70KO 5 5, 411.82 6, 699.0 802.5
FS-75KO 5 5, 552.02 6, 777.5 880.3
FS-80KO 5 5, 692.22 6, 855.5 967.2
FS-85KO 5 5, 832.42 6, 933.7 1, 062.4
FS-90KO 5 5, 972.62 7, 013.6 1, 166.5
FS-95KO 5 6, 112.82 7, 090.5 1, 274.1
FS-100KO 5 6, 253.02 7, 170.7 1, 368.7
FS-105KO 5 6, 393.22 7, 250.1 1, 494.3
FS-110KO 5 6, 533.42 7, 330.1 1, 630.4
FS-115KO 5 6, 673.62 7, 411.7 1, 748.1
FS-120KO 5 6, 813.82 7, 490.8 1, 887.5
FS-125KO 5 6, 954.02 7, 562.4 2, 075.7
FS-126KO 5 6, 982.76 7, 580.9 2, 102.4

TABLE B.5: Detailed results for the case study FS.
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Network C kStates M t(s) Network C kStates M t(s)

PG-1 5 0.26 5.8 0.0 PG-1KO 3 0.51 6.1 0.0
PG-2 6 0.62 5.8 0.0 PG-2KO 3 1.07 6.2 0.0
PG-3 7 1.42 5.9 0.0 PG-3KO 3 2.31 6.4 0.0
PG-4 8 3.16 6.0 0.1 PG-4KO 3 5.05 6.6 0.0
PG-5 9 6.98 6.2 0.7 PG-5KO 3 11.05 6.9 0.1
PG-6 10 15.23 6.6 4.1 PG-6KO 3 24.11 7.5 0.4
PG-7 11 33.03 7.3 22.9 PG-7KO 3 52.34 8.6 1.0
PG-8 12 71.18 8.7 143.5 PG-8KO 3 99.18 10.7 2.1
PG-9 13 152.59 11.7 704.5 PG-9KO 3 242.81 15.6 5.9
PG-10 14 325.65 17.7 3, 688.6 PG-10KO 3 455.79 24.1 12.1
PG-11 15 692.24 29.5 17, 763.6 PG-11KO 3 1, 106.05 45.1 31.8
PG-12 16 – – – PG-12KO 3 2, 060.41 82.4 64.6

PG-13KO 3 4, 964.49 174.9 166.8
PG-14KO 3 9, 191.55 335.9 333.0
PG-15KO 3 22, 020.24 722.0 854.6
PG-16KO 3 46, 203.03 1, 479.1 1, 910.6
PG-17KO 3 96, 731.29 3, 034.9 4, 165.8
PG-18KO 3 202, 113.18 6, 234.1 9, 179.0

TABLE B.6: Detailed results for the case study PG.

Network C kStates M t(s) Network C kStates M t(s)

TT-1 2 0.03 5.9 0.0 TT-1KO 1 0.03 6.3 0.0
TT-2 3 1.04 6.1 0.0 TT-2KO 1 1.04 6.9 0.0
TT-3 4 6.88 6.6 0.0 TT-3KO 1 7.02 7.8 0.0
TT-4 5 49.18 9.3 0.8 TT-4KO 1 50.40 12.7 0.6
TT-5 6 319.23 25.8 6.7 TT-5KO 1 327.17 42.5 5.2
TT-6 7 1, 873.07 123.1 36.3 TT-6KO 1 1, 916.68 217.0 26.9
TT-7 8 10, 847.61 625.3 236.3 TT-7KO 1 11, 054.97 1, 232.3 197.2

TABLE B.7: Detailed results for the case study TT.
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