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Abstract

A lack of order seems to be easily achievable. However, during the crystallization pro-

cess, a system seeks for perfect order, that is, its configuration of minimal energy. By

evolving the phase-transition on timescales beyond the exchange of information be-

tween different sections of the crystal, sub-ensembles reach perfect crystalline order.

However, they might become incommensurate at their common boarders. We recently

revealed in Coulomb crystals of laser-cooled trapped ions that these topological defects

are created and stored in a stable manner in their self-induced trapping potential. Such

defects can be treated as quasi-particles and it has been predicted that their description

is identical to those of solitons.

In this thesis, I present experimental results on radial eigenmode spectroscopy, depend-

ing in frequency on the existence of the soliton. Resonant excitation in the presence of

the continuous damping drives the structural defect out of its self-induced potential.

Timescales depend on the excitation strength. We experimentally derive the depth of

the Peierls-Nabarro potential. In addition, we resolve transport directionality of the

defect to the side of the crystalline structure, depending on the structure of the defect

itself.
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Zusammenfassung

Unordnung scheint leicht generierbar zu sein. Trotzdem strebt jedes System während

des Kristallisationsprozesses nach dem Zustand minimaler Energie, in diesem Fall die

fehlerfreien Kristallstruktur. Wenn der Phasenübergang auf Zeitskalen erfolgt, die so

schnell sind, dass kein Informationsaustausch zwischen unterschiedlichen Subdomänen

des Kristalls stattfinden kann, bilden sich Untereinheiten der optimalen Struktur. Je-

doch passen diese aneinander grenzenden Bereiche nicht zwangsläufig zusammen. Wir

konnten zeigen, dass Coulomb Kristalle aus gespeicherten, laser-gekühlten Ionen solch

topologische Defekte aufweisen und diese stabil für längere Zeit in ihrem selbsterzeugten

Speicherpotential gehalten werden können. Solche Defekte können als Quasi-Teilchen

betrachtet werden, deren Beschreibung der von Solitonen gleicht.

In dieser Arbeit zeige ich experimentelle Ergebnisse radialer Eigenmodenspektroskopie,

die in der Frequenz von der Anwesenheit des Solitons im Kristall abhängen. Resonante

Anregung bei zeitgleicher Laserkühlung führt zum Verlust der strukturellen Defekte

aus ihrem selbstinduzierten Potential. Die Zeitskalen hängen von der Anregungsstärke

ab. Wir leiten aus experimentellen Ergebnissen die Tiefe des Peierls-Nabarro Potentials

ab. Zudem können wir abhängig von der Struktur des Defekts die Transportrichtung

der Defekte zum jeweiligen Ende des Kristalls auflösen.
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Chapter 1

Introduction

1.1 Motivation

Nature features imperfections, as defects disturb periodicity inside crystaline structures.

Examples for naturally structural defects are Schottky defects [3] (missing atom in the

lattice) and Frenkel defects [4] (additional atom). These defects can become useful,

namely by doping of silicon with foreign atoms like boron or phosphor. This leads

to a change in the valence-conduction band gap, allowing to manipulate macroscopic

conductivity of semiconductors. Addressing and controlling these structural defects is

challenging, as their interatomic distance is on the order of few Å.

Recently, it was proposed that magnifying the interatomic distance of the crystalline

structure enables individual control and adressability. This can be realized by atoms

in optical lattices [5] or by ion crystals confined in radiofrequency traps [6]. Ionic

crystals are generated, by decelerating charged atoms to Coulomb crystals by laser-

cooling [7]. In addition, ion crystals can be doped by foreign atomic ions or even

molecular ions [1, 8, 9]. The trapping potential of the radiofrequency trap can be tuned

deterministically, allowing structural phase transitions from linear over planar to three-

dimensional crystals [1, 10–12]. For the case of two dimensions, crystals might feature

subdomains of individual periodicity. These subdomains are devided by a domain wall,

having properties of quasi-particles. These can be described as discrete solitons, also

referred to as kinks. Many groups, both theoretical and experimental, study these

solitons in the context of condensed matter, atomic physics, optics or cosmology [13–

15].

Several proposals predict, that defects in finite ion crystals can be created by multiple

methods. The most prominent one is a non-adiabatic change of the trapping potential

[16, 17]. These phase-transitions has been theoretically studied by Kibble and Zurek

[18–21]. These predictions have been experimentally realized by several groups [22–

24]. Localized defects in ion crystals have been experimentally generated during a

1



Chapter 1. Introduction

first order phase transition from an ion cloud to the crystalline structure [2, 6]. Since

these discrete defects have been deterministically created, they are in many cases of

experimental interest. In all these experiments the lifetime of these defects has been

limited to hundreds of milli-seconds. This short lifespan impedes the investigation of

fundamental properties of the solitons. It has been predicted that these properties give

insight into gap seperated vibrational eigenmodes [16], meaning the change of dispersion

relation due to the presence of the defect. In addition, they might be suited to study

effects in quantum information [25, 26] and quantum coherence [27, 28].

In this thesis, I realize long term stable solitons in Coulomb crystals and measure their

properties. The experimental results reveal that the lifetime of these defects is related

to the size of the system. In the next step, I performed spectroscopy on the vibrational

eigenmodes of Coulomb crystals related to the presence of the soliton. In addition,

I derive the energy barrier the soliton has to overcome related to the Peierls-Nabarro

potential. Furthermore, I excite on resonance a vibrational eigenmode to study internal

energy transfer and motional excitation of quasi-particles.

1.2 Outline

This thesis is structured the following:

• In chapter 2, I introduce on relevant theoretical aspects, like ion trapping and laser

cooling. In addition, I point out aspects of structural defects in Coulomb crystal,

like occurrence and shape, as well as their relevance on the eigenmode spectrum.

In order to study dynamical aspects, I define the position of the structural defect

as well as its velocity. Finally, I adopt an established model [29] to our system,

to obtain access on the depth of the soliton induced trapping potential.

• Chapter 3 gives a general overview on the experimental setup. I focus on the

important modifications, like the quadrupol excitation field and the image anal-

ysis routine. Furthermore I summarize the numerical methodes, we use to gain

deeper understanding on the timescales inside the system.

• Chapter 4 shows the results of eigenmode spectroscopy of a structural defect based

on quadrupol excitation. We achieve frequency selectivity as well as structure se-

lectivity in the Coulomb crystal. Based on this, I show first results on the lifetime

of solitons in the presence of resonant excitation of the crystal. In combination

with numerics, we can estimate the depth of the Peierls-Nabarro potential.

• Chapter 5 focuses on the dynamical aspects of these structural defects inside the

ion crystal. There are transformation processes between individual conforma-

tions, which reveal their relative conformational energy. Additionally I present

the results on the direction of motion of the individual conformations.

2



Chapter 2

Theoretical background

In this thesis, we present first systematic results on static and dynamical aspects of

structural defects in Coulomb crystals. These consist of trapped ions, which are con-

fined by electric fields and cooled to the milli-Kelvin regime. In the first part we discuss

the theoretical background of the relevant physical concepts of ion trapping and laser

cooling of atomic ions.

In the following section, we give a short overview on the properties of structural defects

and their dynamics inside these laser cooled crystalline structures [1, 2, 30]. This can

be described as a diffusion process of a quasi-bound particle. As they escape their local

potential well on long timescales, we use Kramers’ escape model to derive the barrier

height of the Peierls-Nabarro potential.

2.1 Atomic ions in a confining potential

This chapter summarizes main aspects of trapping of charged particles in a linear Paul

trap, as shown in [31]. Subsequently, a short summary on laser cooling of atomic ions

is presented. Further details are described, e.g. in [32, 33].

2.1.1 Trapping atomic ions

Single ions are harmonically confined at a certain place, if there is a restoring force ~F ,

pushing them back to a local minimum of the potential Φ. As ~F = −∇Φ, we describe

a three dimensional confining potential to trap particles by:

Φ(x, y, z) ∝ (αx2 + β y2 + γ z2). (2.1)

To confine charged particles, we use in our experiment electric fields to generate the

trapping potential. Laplace’s equation ∆Φ = 0 = α + β + γ has to be fulfilled for

electric fields. Thus, W. Paul [31] suggested to choose, e.g. α = 0 and β = −γ to

3



Chapter 2. Theoretical background

Figure 2.1: Scetch of a linear Paul trap: An alternating voltage is applied to four

pairwaise connected electrode rods. Both pairs are ≈ π out of phase.

(a) Ux is applied to two ring shaped electrodes and controls the confinement of charged

particles in x-direction.

(b) Lateral view on the trap: The vector ~r0 indicates the radial distance from the

center of the trap.

generate a two dimensional trapping potential, like:

Φ(y, z) =
Φ0

2r2
0

(
y2 − z2

)
, (2.2)

where r0 is the radial distance from the trap center to one of the four electrodes, see

fig. 2.1 (b). This is realized in Paul traps by a combination of static and alternating

(DC, AC) electric fields, whereas Φ0 is time dependent:

Φ0(t) = UDC − URF · cos (ΩRFt) , (2.3)

with ΩRF as alternating frequency of the radiofrequency drive. The AC electric field

is applied to four rods arranged in a square, which are diagonally connected, see

fig. 2.1 (b). They are pairwise π out of phase. This results to a saddle potential in

two dimension: y and z. Such a potential confines in one direction, whereas it de-

focuses in the other direction. A charged particle moves along the gradient of the

potential in direction of the minima of the saddle. We invert the voltages pairwise, so

the particle is pushed back again. Switching the voltages on short timescales (1/ΩRF),

the particles are on time average confined in radial direction.

The axial confinement is given by Ux, a DC voltage, applied to two ring shaped elec-

trodes, see fig. 2.1 a. So the whole potential to trap charged particles can be written

as

Φ (x, y, z, t) =
1

2 r2
0

(UDC − URF · cos (ΩRF t))
(
y2 − z2

)
+

1

2
αx Ux x

2 − 1

2
αx Ux

(
y2 + z2

)
(2.4)

and αx is a geometrical factor specific for each Paul trap. The relevant parameters of

our trap are described in [8, 9]. The ion’s motion inside the potential is described by

4



2.1. Atomic ions in a confining potential

the solution of the equation of motion in each of the three dimensions. The derivation

is scetched for instance in one of the radial directions:

ÿ = e/m
UDC − URF · cos (ΩRF t)

r2
0

y, (2.5)

with the electron charge e and the mass of the atomic ion m. The differential equation

is a Mathieu equation and can be solved by Matthieu’s ansatz. The solution of equation

2.5 can be written as

y(t) ∝
[
1− q

2
cos (ΩRFt)

]
cos

(
βyΩRF

2
t

)
, (2.6)

with q = 2 eURF

mΩ2
RF r

2
0

and βy =
√
a+ q2/2� 1, with a = 4 eUDC

mΩ2
RF r

2
0
. Particles are long term

stable, if a and q are in regions of stable trapping of the stability diagram, for instance

a ≤ q < 0.5 [31].

The solution of the equation of motion has two periodic terms, one with ΩRF and a

second with
βy ΩRF

2 . The first part has the same frequency as the RF-drive of the Paul

trap and is caused by the oscillation of the electric field. It is called micromotion and

its contribution to the ion’s motion increases with its distance from the trap axis.

The oscillatory motion of the second term of the ion with mass m has a smaller fre-

quency compared to the micromotion and is called the secular frequency ωsec,i.

ωsec,y = ωy =

√
1

2

(
eURF

mr2
0 ΩRF

)2

− eUDC

mr2
0

. (2.7)

These calculations can be done analogous for the z-direction to derive the corresponding

secular frequency.

ωsec,z = ωz =

√
1

2

(
eURF

mr2
0 ΩRF

)2

+
eUDC

mr2
0

. (2.8)

Both frequencies are degenerate in the case of UDC ≈ 0. Secular frequencies of ions

depend on the ion’s mass as ωsec,i ∝ 1/m.

So far, we focused on the radial directions. In axial direction, there is no time dependent

electric field. The secular frequency is calculated by:

ωsec,x = ωx =

√
eUx
mx2

0

, (2.9)

with Ux the voltage symmetrically applied to both ring electrodes as introduced above.

The global trapping potential can be rewritten as an harmonic oscillator potential.

ωsec,i are the eigenfrequencies of each of the three dimensions of the potential. For

instance in axial direction, it can be written as

Φ′(x) = mω2
x x

2. (2.10)

5



Chapter 2. Theoretical background

Figure 2.2: Scetch of the level scheme of Magnesium (Mg). On the left, the photo

ionization process of a neutral magnesium atom is depicted. Two photons are necessary

to exceed the binding energy of the electron. One excites the atom to the 1P1 level and

another photon transfer the electron to the continuum [34]. This is accomplished by

two photons with the energy corresponding to at least 285 nm.

The right part shows the relevant levels of the ion. Line width of the transition is

Γ = 2π · 42 MHz. As there are no additional levels, this is a closed transition necessary

for laser cooling, see text. Figure similar to [35].

Based on these equations, we trap a charged particle.

Introducing the reduced mass of several ions to the equations of motion, we can extend

these equations for several particles. As we are interested in crystalline structures, we

have to cool the motional degrees of freedom of the particles. We want to study struc-

tures, that are dominated by Coulomb repulsion. The kinetic energy of the particles

has to be at least in the same order as the repulsive energy due to identical charges,

otherwise the ions would not crystallize to an ordered structure [7]. Therefore, we use

the laser cooling technique as introduced in the next section.

2.1.2 Laser cooling of Magnesium ions

As discussed above charged particles can be confined in a certain volume. We use

magnesium ions in our experiments, as the atomic species is well established in the

group. Its properties will be discussed in the following:

Magnesium has three isotopes - 24Mg, 25Mg and 26Mg - with a natural abundance of

0.79, 0.1 and 0.11. Ionized 25Mg atoms are used at the quantum simulation experiments

in our lab, as it has a nuclear spin of 5/2 and therefore a hyperfine structure, for details

see [6, 36, 37]. In addition, there are no D-Levels, so we do not have to take care of

additional atomic levels we have to repump.

24Mg+ ions are used in this thesis, as these are the ions of the dominant isotope. The

magnesium atom belongs to the group of alkaline earth atoms. To ionize the atom, we

6



2.1. Atomic ions in a confining potential

use a two photon transition, introduced by [34]. The ions are confined by the electric

fields of the Paul trap. Once ionized it has a single valence electron and offers a so

called closed cycling transition between the indicated levels, see fig. 2.2 on the right

side. Thus, it is suitable for laser cooling.

Laser cooling The deceleration of ions is realized by laser cooling techniques [38].

Here is only given a short overview, for details see [33]:

If ion and photon counter- propagate, the ion will be decelerated due to momentum

transfer. An ion absorbs a photon out of the laser beam, which has the corresponding

wavelength λ = 280 nm to the S1/2 → P3/2 transition, as shown in fig. 2.2. This

inelastic process leads to momentum transfer from the photon to the atomic ion. The

photon is reemitted in random direction and as indicated by the level scheme the atom

decays to the ground state within the mean lifetime 1/Γ = 1/(2π× 41.8 MHz) ≈ 3.8 ns

of the excited state (a so called closed transition). Averaging over time the momentum

transfer via absorption is along ~kL of the laser, whereas the repulsion of the reemission of

the photon averages to zero. The laser force ~FL interacting with the ion is proportional

to the scattering rate:

~FL =
h

2π
~kLRsc, (2.11)

with h as Planck’s constant and the scattering rate Rsc:

Rsc =
I/Isat · Γ/2

1 + I/Isat +
(

2 δ−~kL·~v
Γ

)2 (2.12)

and I as the intensity of the laser beam, Isat the saturation intensity calculated by

Isat = π h cΓ
3λ3

. δ = ω − ω0 is the detuning with respect to the atomic transition ω0 =

2π c/λ, c speed of light and ~v the velocity of the atoms. The scattering rate depends

on the detuning δ and the intensity of the laser. The detuning of the laser frequency

has to match the Doppler shift of the internal electronic transitions. Ions, propagating

along −~kL, absorb photons with a higher energy. We choose ω < ω0 to ensure that

only atoms counter propagating the laser absorb photons. To obtain optimized cooling

rates, we set δ ≈ −Γ/2 and obtain a “red” detuned laser. For such a detuning, we do

not reach minimal temperature, but we still have a reasonable scattering rate.

We use this force to decelerate the ions, so their kinetic energy decreases to the same

order of magnitude as their Coulomb repulsion. The cooling in one dimension and

the coupling of all motional degrees of freedom due to the trapping potential of the

Paul trap leads to a deceleration in all three dimensions. This process is limited by

repulsion, as the excited state of the atom decays via spontaneous emission of a photon.

The temperature limit that can be reached in one dimension in the case of no further

scattering events and is given by

TD =
hΓ

4π kB
≈ 1 mK, (2.13)

7



Chapter 2. Theoretical background

the Doppler temperature, with kB as the Boltzmann constant and the line width of the

transition Γ. Therefore, it is the limit that we can achieve with classical laser cooling

techniques.

The 24Mg+ ions are confined in a Paul trap and laser cooled to the milli-Kelvin regime.

In addition, we use such light forces to excite motion. For instance, we modulate the

intensity in time to drive motion corresponding to eigenvectors via light pressure (for

details see [35, 39]).

Photo chemistry Laser cooled ions are well isolated from their environment in the

global confining potential. Their mean lifetime inside the trap is mostly limited by

collisions with background gas. Elastic collisions lead to an impulse transfer to the

trapped ion. In the case of weak confining potential, the ions might be pushed away from

the stable trapping volume. Inelastic collision result in chemical reactions. Background

gas, such as H2, can react with Magnesium ions in the P3/2 state of the ion [8, 9], like

Mg∗+ + H2 → MgH+ + H∗. (2.14)

Reactions can also take place with water as reactant. Depending on the mass of the

molecular ion, the reaction product can stay in the crystalline structure as Coulomb

interaction leads to a sympathetic recooling. But the closed transition necessary to cool

the ion and to reemit photons for detection does not exist any more. Recorded pictures

of such crystals show the crystalline structure with an interruption. A non-fluorescing

(dark) ion is incorporated in the periodic structure and it looks as if there is an ion

missing.

Ions of different mass at the crystalline structure show interesting effects on the struc-

ture of the crystal. They might even interact with defects inside the periodic structure,

as shown in [1, 40] and have to be investigated further.

2.2 Structural defects in Coulomb crystals

Laser cooled trapped ions form crystalline structures [7]. We are interested in crystalline

structures, consisting of several tens of ions. Their shape depends on the properties of

the trapping potential:

ΦPaul Trap = m
(
ω2
x x

2 + ω2
y y

2 + ω2
zz

2
)
. (2.15)

It depends strongly on the individual set of parameters like the number of ions N

and the characteristic trapping frequencies ω{x,y,z} and is discussed in detail, e.g. in

[42, 43]. In the case of ωx � ω{y,z}, ions form a linear chain, lowering one of the

radial frequencies, the crystal undergoes a structural phase transition. We obtain a

two dimensional structures of up to 50 ions, choosing ωx � ωy < ωz, with image
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2.2. Structural defects in Coulomb crystals
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Figure 2.3: One- and two-kink configurations in a crystal of 50 ions. For ion crystals,

there are two parameters, which we use to describe the dimensionality of the crystal:

γy ≡ ω2
y/ω

2
x and ωz/ωy. On the left, we depict the transitions from a linear chain to

planar zigzag and structures with kinks as γy is lowered, while ωz � ωy. On the right

for fixed γy = 121, ωz/ωy is lowered. As indicated in the configurations (e) and (f)

the ions forming the kink extend into the third dimension, as they leave the crystal

plane. At each parameter value, there are many possible crystal configurations and

only few of these are indicated in the figure, showing how they continuously depend

on the parameters. The spatial configurations emphasizes the central part, where the

kink is located. The black dashed line indicates axial symmetry of the crystal, and the

arrows depict the direction and relative amplitude of ion motion in the normal mode

of highest frequency, further details and the figure are published in [1].

The so called “Extended kink” is not stable for such large crystals. Whereas the

“Blurred kink” is stable for long time, even for crystals of about 30 ions only. In

crystalline structures of such a size even the “Extended Kink” is a stable configuration.
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Chapter 2. Theoretical background

x

y

x

y

(a) (b)

Figure 2.4: Schematics of a structural defects inside a Coulomb crystal.

Two mismatching domains at the center of the crystal form a topological protected

structural defect. A dashed red line indicates the solution of the SG equation, see

equation 2.17.

(a) A kink is depicted for a topological charge σ = 1. In the context of spin chains, it

would be represented by (· · · ↓↓↓↓↑↑↑↑ · · · ).
(b) The anti-particle of a kink a kink is depicted. It has a topological charge of σ = −1.

Here the spin chain representation would be (· · · ↑↑↑↑↓↓↓↓ · · · ).

and mirror image, labeled as zigzag and zigzag. Properties of these structures are

discussed in the following. In this chapter, we focus on the occurrence and properties of

structural defects inside these Coulomb crystals as well as the spectrum of normal modes

(phonons) for zigzag (zigzag) as well as kinks (kinks). First, theoretical predictions on

structural defects in Coulomb crystals are published in [16, 17] and the experimental

realization is shown in [6].

2.2.1 Occurrence and shape of structural defects

We study ion crystals with defects in the x-y-plane. The square of the ratio of radial

to axial confinement γy ≡ ω2
y/ω

2
x is used to define the transition from a linear to a two

dimensional crystal, as long as ωz � ωy is valid. In numerical simulations, we start

with a linear chain and continuously lower γy, undergo a structural phase transition and

reach the parameter range of two dimensional structures, as shown for the representative

case of 50 ions in fig. 2.3 [1]. At (a) the solution space splits in “Zigzag” and its mirror

conformation “Zigzag”, both containing one domain only, of undisturbed periodicity.

Further lowering γy, we obtain stable configurations containing structural defects, as

shown in (d) and (e) [1, 2]. Via tuning γy, we can shape characteristic parameters of

the kink.

In these configurations two mismatching domains occur in the same crystal. Zigzags

can be written in the context of spin chains as: (· · · ↓↓↓↓↓↓↓↓ · · · ), whereas a Zigzag

as (· · · ↑↑↑↑↑↑↑↑ · · · ). Two mismatching domains in the same ion crystal lead to a

configuration like: (· · · ↑↑↑↑↓↓↓↓ · · · ) which is a structural defect, a so called kink. A

single mismatch in the pattern would be illustrated as (· · · ↑↑↑↑↓↑↑↑ · · · ). In contrast

to the topological protected defects, only one spin mismatches the pattern.
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2.2. Structural defects in Coulomb crystals

(a)

(b)

Figure 2.5: Comparing numerical results of ion crystal configurations consisting of 34

ions (gray discs) confined in the harmonic potential of linear Paul trap.

(a) The periodic configuration, labeled as Zigzag, shows the configuration of minimal

energy, the energetic ground state. A rotation of 180◦ with respect to the crystal’s

x-axis, a mirror image, is labeled as Zigzag.

(b) An ion crystal contains a defect, here a so called extended structural defect, which

results in two ions on the vertical axis at the center of the crystal. These defects are

created by two mismatching subdomains referrec to as “kinks”. The mirror image is

labeled as kink. As depicted, the kink coordinate is ~K(x, t) = 0, see eq. 2.18.

Structural defects as kinks - topological solitons

Structural defects form domain walls inside crystalline structures. A kink moves in-

side the crystal, when the domain wall moves along the axis of weak confinement

(· · · ↑↑↑↑↑↑↓↓ · · · ). If two mismatching domains are created during a non-adiabatic

phase transition from the gas phase to the crystalline phase, a topological protected

defect is created. The assumption of a non-adiabatic phase transition is valid, as long

as the relevant timescale is short compared to the inverse of the given eigenfrequency of

the harmonic oscillator potential along the axial direction 2π/ωx, related to the speed

of sound. Another approach is a so-called “quenching” of the trapping potential on

similar timescales as needed for a laser induced phase transition, shown by [6, 22, 23].

Strictly speaking, a topological protection is perfect, only if the crystal was of infinite

size or had periodic boundary conditions, like a circular shaped crystal [44, 45].

Periodic one dimensional systems can be described by the sine-Gordon-equation (SG),

for details see [41].

∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
+ sin (x) = 0, (2.16)

where u is the coordinate of a particle upon the periodic potential. There are three

types of excitations as solution of a general system described by the SG: phonons,

kinks and breathers. In ion crystals, phonons and kinks are relevant. Phonons are

global excitations of the system as a whole, the quantized excitation of the vibrational

eigenmodes as discussed in the following. Kinks are static, non-perturbative excitations

related to the structural defects as discussed before. They show a localization of the

11



Chapter 2. Theoretical background

Figure 2.6: Schematics of the Peierls-Nabarro (PN) potential dependent on the size

of the system as function of the kink coordinate ~K(x, t) depending on N and ω{x,y,z}.

(a) The PN potential is sinusoidale for systems of infinite size, N →∞ [41].

(b) As the system is of finite size, there is an additional finite potential superimposed,

that can be averaged to a harmonic shape, see fig. 2.7.
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Figure 2.7: Numerical simulation of the effective Peierls-Nabarro (PN) potential en-

ergy of a kink dependent on its distance from the center of the Coulomb crystal, defined

by its coordinate ~K(x, t), see eq. 2.18.

(a) The potential depth is calculated for a so called “Blurred Kink”, as shown in [2]

(parameter range is in fig. 2.3 at point (e)). The potential is symmetric about the trap

center and reaches its maximum roughly at the extremal values shown (dependent on

the total ion number).

(b) The kink escapes its self induced trapping potential by reaching the sides is given

in dependence of the number of ions, fitted by a quadratic function (blue line) [2].
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2.2. Structural defects in Coulomb crystals

vibrational eigenmode to the few ions forming the periodicity breaking defect. The

position of a defect in axial direction is given by the solution of the SG equation

~K(x, t) = 4 arctan
(
e−σ γ(ẋ) (x−ẋ t)

)
(2.17)

and depends on its topological charge σ and the kink’s velocity in axial direction ẋ.

γ(ẋ) is the Lorentz contraction γ(ẋ) = 1/
√

1− (ẋ/c)2 as the SG equation is relativistic

invariant. The topological charge indicates, whether the solution is labeled as kink

(σ = +1, see fig. 2.4 (a)) or as anti-kink (kink, σ = −1, see fig. 2.4 (b)).

In the case of crystals with finite size, the kink is only a quasi topological protected

and anneals, if it is translated along the x-axis to the edge of the crystal. As this is

a discrete effect related to the domain wall, there is no dispersion in the localization,

even a change in γ does not influence the prescence of the kink, only its shape.

Structural defects fulfill the properties of discrete solitons: localized, topological pro-

tected and non-perturbative [46]. Further details are discussed in [47] and references

therein, such as [14].

Kink coordinate

We want to investigate the dynamics of defects, for the representative case of the

“Extended Kink” in fig. 2.5 (b). Dynamics of the defect are limited by the extension

of the crystalline structure in one dimension, the axial direction x of finite length. The

kink can move along this single degree of freedom. Therefore it is appropriate to define

the kink’s position inside the crystal relative to the axial coordinates. We use the

approach by H. Partner et al. [40], determining the position ~K(x, t) of the “Extended

kink” as the point of maximal deviation of comparing zigzag and a kinked crystal in

axial direction

~K(x, t) =

N−1∑
j
〈x〉j (t)

[
ψ
(
〈x〉j , t

)
− ψ(Z)

(
〈x〉 (Z)

j

)]2

N−1∑
j

[
ψ(〈x〉j , t)− ψ(Z)

(
〈x〉 (Z)

j

)]2
. (2.18)

〈x〉 is the mean distance between two neighboring ions, while ψ
(
〈x〉j

)
= xj+1 − 〈x〉j

as the distribution of the mean distance of all j ions in axial direction and 〈x〉j =

(xj+1 + xj)/2. ψ(Z)
(
〈x〉(Z)

j

)
denotes the distances of the ions in a periodic zigzag

crystal. It is introduced to remove contribution that are related rather to deviations

from the assumed trapping potential than the presence of the kink. This definiton is

valid as long as there is a difference in the amount of ions in the upper and the lower ion

chain inside the Coulomb crystal, which is fulfilled by our types of kinks, see fig. 2.5 (b).

Thus, we can calculate the kink’s center and coordinate, respectively in each crystalline
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Chapter 2. Theoretical background

structure. The velocity of a kink ~̇K(x, t) is defined by

~̇K(x, t) =
~K(x, t)− ~K(x, t+ ∆ t)

∆t
, (2.19)

where ∆t is the difference in time between two succeeding measurements of the crys-

talline structure.

Peierls-Nabarro potential

In theoretical descriptions, the Peierls-Nabarro (PN) potential is of infinite size [41]

and is sinusoidal on the length scale of the lattice constant, see fig. 2.6 (a). Even in

experimental realizations for appropriate trapping parameters, defects are stable for

long time, compared to the natural timescales relevant for the crystal: τ � 1
ΩRF

�
1

ωsec,i
. They create their own self induced trapping potential inside the crystalline

structure. The PN potential considering finite size effects confines the kink at the

center of the crystal. The finite size of our system combines the periodic potential

with an additional quasi-harmonic potential, as shown in fig. 2.6 (b). The depth VPN

depends on all parameters especially on the size of the crystal, see fig. 2.7 from [2]. We

might explain this by a simple picture: One defect can only leave the crystal if one half

of the structure finally appears as “flipped” to the pattern matching the other half of

the crystal. In a crystal of finite size, only a finite number of ions have to change their

position. In addition, the global trapping potential of the Paul trap affects the depth

of the PN potential [35].

We experimentally study the occurrence of such defects and published first time sys-

tematic results in [2]. Therein we analyzed the occurrence of defects in dependence on

the number of ions of these crystals for a dedicated confining potential.

In the following, crystals of the size of 34 ions are discussed. Numerical studies reveal

two crystal configuration, as shown in fig. 2.5, a Zigzag and a two domain crystal.

2.3 Internal degrees of freedom of an ion crystal

The N ions of a Coulomb crystal are confined in a superposition of the trapping and

the Coulomb potential V = Vtrapping +VCoulomb and have 3N degrees of freedom (DoF),

further details are described in [49–51]. There are center of mass and rotational motion,

so there remain (3N − 6) internal DoF. Considering only small oscillations around

equilibrium positions, we can Taylor expand the potential up to second order:

V = V0 +

3N−6∑
i

∂V

∂xi

∣∣∣∣
xi=0

xi +
1

2

3N−6∑
i,j

∂2V

∂xi ∂xj

∣∣∣∣
0

xi xj + . . . (2.20)

We choose the global minimum of the potential to be 0 and assume that the internal

dynamics can be described by small oscillations. The sum of kinetic (Ekin) and potential
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2.3. Internal degrees of freedom of an ion crystal

Figure 2.8: 102 normalized motional eigenfrequencies of an ion crystal consisting of

34 ions in a harmonic confining potential. The numerical calculation is done with a

code provided by H. Landa [1, 48]. The grey squares represent the frequencies of a

periodic zigzag structure, the orange crosses frequencies of a kink containing structure.

The eigenfrequencies of both structures deviate most in the high and low frequencies

range, emphasized in the insets:

(a) Mode ω100 - ω102 are shifted in the high frequency spectral range of the crystal

with kink compared to the zigzag configuration.

(b) The defect containing crystal has an eigenfrequency shifted below the axial COM-

mode (mode q2 of the kinked crystal), scetched in fig. 2.9 (c).

energy V of the system can be written as

Etot = Ekin + V =
1

2

3N−6∑
i

mi ẋ
2
i +

1

2

3N−6∑
i,j

∂2V

∂xi ∂xj

∣∣∣∣
0

xi xj (2.21)

where mi denotes the mass of each particle with its velocity ẋi = ∂
∂txi. The coordinates

are rescaled with the mass of the ions xm,i =
√
mi xi. In our case all ions have the

same mass. The Hessian Matrix K is defined as

Kij =
∂2V

∂xm,i ∂xm,j

∣∣∣∣
0

. (2.22)

Rewriting 2.21 in the new coordinates

Etot =
1

2

3N−6∑
i

ẋ2
m,i +

1

2

3N−6∑
i,j

Kij xm,i xm,j (2.23)
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Chapter 2. Theoretical background

(a)

(b)

(c)

Figure 2.9: Numerically derived 34 ion crystal confined in a linear Paul trap with

ω{x, y, z} = {1, 6.0, 7.5}ωx incorporating a structural defect.

Numerically obtained ion positions (gray discs) in harmonic confinement and charac-

teristic vibrational eigenmodes of the ion crystal containing a kink. Each ion’s motional

amplitude is drawn as a orange lines. Length indicates relative amplitudes and direc-

tion the motional phases, as all arrows are magnified by the same ratio for illustrative

reasons.

(a) Eigenmode q100: mainly radial contributions to the movement profile. Both ion

chains move in radial direction out of phase.

(b) Eigenmode q97: contains 2 knots symmetrical to the y-axis with mainly radial

movement contributions. The projection of the eigenvector to the ions delivers mo-

tional amplitudes for each ion. The upper ion chain can be seperated into three region:

The outer parts move in phase, whereas the centre part is shifted π out of phase. The

motional direction of the lower chain is shifted by π with respect to the upper chain.

(c) Eigenmode q1: mainly axial contributions to the movement profile, which could be

described as an axial sliding mode, which allows for an axial motion of the kink. The

axial position is defined by ~K(x, t).

oscillatory motions are coupled in the basis of these coordinates. The matrix A diago-

nalizes K:

A
−1
KA = Ω (2.24)

The eigenvalues of Ω determine the square of the eigenfrequencies ωi.

The vectors derived by

~q = A
−1
~xm (2.25)

are called the normal coordinates of the system.

We can describe the dynamics of the ion crystal in the basis of the eigenmodes.

Beside the change in pattern of the ions’ positions, a structural defect influences the

eigenmode spectrum, as shown in fig. 2.8. The eigenmodes are sorted based on their

eigenfrequencies and for comparison the ωi of a zigzag crystal (gray squares) and a

kink containing crystal (orange crosses) are shown. In most parts of the eigenfrequency

spectrum there are differences due to the presence of the kink. In high frequency

16



2.4. Dynamics of discrete solitons

q100 − q102 and the low frequency spectral range q1, there are significant deviations, as

the spectral range is extended due to the presence of the kink. Some of these vibrational

eigenmodes are shown in fig. 2.9. In (a) q100 and (c) q1 only few ions contribute to the

eigenmode, whereas in (b) almost all ions oscillate, if eigenmode q97 is excited. q100 can

be described as radial breathing mode and q1 as axial sliding mode. The localization of

the mode in the presence of the kink can be used for several aspects, e. g., individually

addressing of a quasi-particle, especially in the context of quantum simulation and

quantum information processing, as discussed in [16, 17] and [52].

2.4 Dynamics of discrete solitons

Properties of structural defect allow to handle it analogue to a discrete soliton, a quasi-

particle inside the crystal. Dynamical aspects like diffusion inside the crystal and the

viscosity of the system will be discussed in this section. In the last paragraph, the well

established model of Kramers [29] is introduced to describe the escape dynamics out

of a potential well and adopt it to our system of a kink inside a Coulomb crystal. The

motion is damped due to the prescence of the laser cooling.

2.4.1 Brownian motion

Following the discussion above, structural defects can be interpreted as quasi-particles.

Brown discovered in 1827 the intrinsic motion of particles in a solvent [53]. Einstein,

Smoluchowski and Langevin [54, 55] derived in the beginning of the 20th century the

dependency on time t of the mean quadratic distance from the starting point in a

system based on Brownian motion:〈
~K(x, t)2

〉
= 2D t (2.26)

where D is the diffusion coefficient of the particle inside the solvent and can be calcu-

lated by the Stokes-Einstein-Equation:

D =
kB T

6 r π ξ
(2.27)

with temperature T , the radius of the particle r and ξ the viscosity of the solvent. We

study ion crystals initialized in thermal equilibrium near the Doppler cooling limit. In

our case the position of the domain wall is described by ~K(x, t) and given by the motion

of the ions inside the crystalline structure.

2.4.2 Dynamics of indistinguishable particles

The ion crystal consists of N ions of the same species. Ions are laser cooled along

axial direction to the milli-Kelvin regime. There is no tracer to resolve dynamics of
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Chapter 2. Theoretical background

an individual ion in the crystalline structure. Incorporating a different isotope or a

molecular ion, we can identify the trajectory of a single ion inside the ion crystal.

However this would influence our eigenmode spectrum as it shifts the eigenfrequencies

and changes the motional profiles.

In our case, the ions are specially separated but indistinguishable particles, i.e. we are

not yet able to resolve, whether two neighboring ions interchanged their position on

any timescales.

Diffusion in systems of identical particle is refered to as “self diffusion” [56, 57]. Relevant

time scales and the viscosity ξK depend on the temperature T of the system. They can

be derived by the relation of Green and Kubo [58, 59], in dependence on the velocity

auto correlation function (vACF) derived from the time derivative the kink coordinate.

In a system with high viscosity the velocities are damped on short timescales, so the

dot product of ~̇K (x, t, T ) ~̇K (x, t+ ∆t, T ) decays to zero. The viscosity of such systems

can be described by the following formular:

ξK(T ) = ρIC

∫ ∞
0

〈
~̇K (x, t, T ) ~̇K (x, t+ ∆t, T )

〉
dt (2.28)

where ~̇K(x, t, T ) is the discrete time derivative of the kink coordinate for a certain

temperature T and 〈〉 indicates the time average. ρIC gives the density of the ion

crystal.

The viscosity within an ion crystal strongly depends on its internal temperature. There

are at least two approaches to describe this dependency. One is published by Raman

and Andrade [60, 61], called the Arrhenius-Andrade model:

ξK(T ) = ξ0e
b/T (2.29)

where ξ0 can be interpreted as the intrinsic viscosity of the system and b as mate-

rial constant. These models have been originally introduced for liquids, like water or

ethanol.

Another approach is to model the temperature dependency [62] by:

ξK(T ) ∝ T−α/2, (2.30)

where α takes the dimensionality of the system into account. In our case the kink can

only move along the axial direction of the crystal, that is, it is limited to one dimension.

In this case the temperature dependency might be described by the T−1/2.

Both models are discussed in comparison with the data to reveal, which approach

might be suited best to incorporate the temperature dependency of the viscosity into

the Kramers’ model.

Any energy transfer to the system leads to motion of the kink at its lattice site or even

its propagation to the next one in the Peierls-Nabarro (PN) potential VPN, see fig. 2.7.

We have to distinguish between a kink moving to the neighboring local potential min-

imum, a lattice constant apart, and a kink leaving the finite PN potential, as reaches
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2.4. Dynamics of discrete solitons

Figure 2.10: One dimensional energy landscale with a energy barrier at B on the

x-axis. Kramers model describes the timescale, a particle located in A needs to over-

come the energy barrier U(B) in dependency on the viscosity and the temperature of

the bath. To calculate the mean time for the passage in the regime of strong viscosity,

the curvature ωA ∝ ∂2

∂x2
U(x)

∣∣
x=A

to the left and the curvature at the transition state

ωB ∝ ∂2

∂x2
U(x)

∣∣
x=B

are relevant.

The energy U(C) represents the energetic groundstate within the potential energy land-

scape. In the context of the crystalline structures, this can be interpreted as the energy

of a Zigzag, the periodic crystalline structure without a defect. The energy difference

U(B)− U(C) can be derived by numerical studies and amounts to about 40 kB TD.

the edge of the crystal. In the following, we focus on the latter, the kink vanishing from

the finite two dimensional region of crystal to the outer linear part.

2.4.3 Kramers’ escape model

Kinks are quasi bound to the crystals and have to overcome a barrier EB = U(B)−U(A),

see fig. 2.10. Thus, the motional excitation of the defect inside the crystal is interpreted

in the context of reaction-rate theory [63]. Relevant timescales are described by the

reaction rate k, described by the Arrhenius law

k ∝ e−
EB
kB T . (2.31)

Hendrik Anthony Kramers derived in 1940 a relation for the escape time of a particle

from a thermal bath inside a one dimensional potential [29]. The model is based on

the assumption, that a particle can only escape via a single barrier of height EB and

gets trapped in a second potential well, which is lower in energy than the initial one.

Damping leads to a stabilization of the system.

The timescale depends on the viscosity of the system. Kramers derived two solutions

for the problem, one in the case of small and one for large viscosity. In both cases, there

is the Arrhenius factor, see eq. 2.31, whereas the prefactor differs. In our realization the
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structural defect is stable for long time (≈ 2.7 s, [35]) at the place of minimal energy,

labeled with A, which corresponds to the kink coordinate ~K(x, t, T ) = 0. Here we focus

on Kramers derivation for the strong viscosity and assume the motion of the kink to

be overdamped. In this case the Kramers’ rate is given by [29]:

k =
ωA ωB

2π ξ
e
− EB
kB T , (2.32)

where ωA ∝ ∂2

∂x2
U(x)

∣∣
x=A

the curvature at the centre and ωB ∝ ∂2

∂x2
U(x)

∣∣
x=B

, as shown

in fig. 2.10. ωB ≥ 0 in the transition state approach, as used by H.A. Kramers. ξ is

interpreted as the viscosity of the Coulomb crystal. Latter depends on the temperature

of the laser cooled ion crystal, see eq. 2.28.

The energy landscape can be interpreted in the context of the ion crystal and the

Peierls-Nabarro potential. So B represents the outermost stable position of a kink

closest to the crystal edge inside the PN potential. The minimum of U(x) in A can be

identified as the configuration with the kink located at the centre of the crystal. The

curvature is given by ωA and reflects the local shape of the PN potential ωPN(A).

The barrier height can be estimated by EB = U(B) − U(A). The depth of the PN

potential EPN is given by the barrier height EB. So the rate to escape from the PN

potential is given by

kPN =
ωPN ωB

2π ξ(T )
e
−EPN
kB T . (2.33)

Inside the PN potential, the kink can move in both directions to the left and to the

right and escape from the crystal, thus an extension of the model is required. So there

is a second exit channel in contrast the original Kramers energy landscape. We assume,

that this increases the escape rate by a factor of two, as to first order, the PN potential

is symmetric.

We have no direct experimental access on the shape of the PN potential, but we can

measure mean lifetimes. The mean lifetime τPN is the invers of the escape rate kPN, as

given in the following:

τPN =
1

2
· 2π ξ(T )

ωPN ωB
e
EPN
kB T , (2.34)

as the shape of the potential is constant. ωPN can be identified as the eigenfrequency

of eigenmode q1. So we can rewrite eq. 2.34 to

τPN =
π ξK(T )

ω1

e
EPN
kB T

ωB
. (2.35)

ξK(T ) can be derived by the relation given in equation 2.28. There are still two param-

eters to be determined: In the following, we exploit our experimental data to derive

the barrier height EPN as well as the outermost curvature of the PN potential ωB.
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Chapter 3

Experimental setup and

molecular dynamics simulation

In the chapter before, the theoretical background of our experiments is described that

we want to carry out. Here I short summary on the experimental setup is given to

introduce our excitation methode and explain in detail, how we analyse our camera

pictures. For numerical studies, we use a molecular dynamics code, which will be

described at the end of this chapter.

3.1 Ion trap apparatus and laser system

The linear radiofrequency ion trap is part of a 45 cm long RF-guide housed in a vacuum

chamber, for details see [8, 9]. It has been set up in three parts separated by differential

pumping stages. Additional ring shaped DC-electrodes segment the radial symmetry

of the RF-guide to generate local potential wells. There is an additional electrode next

to the trap used for the experiments to apply additional DC, as well as AC electric

fields, see [35]. The experiments were carried out in the experimental part of the trap

in chamber 3, see fig. 3.1.

As the vacuum chamber is constructed around a U-shaped RF-guide, there is only

limited optical access along the trap axis. In addition small window flansches, long

distance apart from the experimental trap limit the focal strength of the laser cooling

beam at the trap.

The vacuum chamber has been used in the past to optically trap Barium ions in radial

direction. For this, the optical access has been improved at several points [64, 65].

The counter-propagating electron beam source has been removed, used in former times

to ionize the atoms via electron scattering. In addition, the lid of the oven has been

removed to avoid scattering and charging of surfaces caused by the optical trapping

beam.
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Chapter 3. Experimental setup and molecular dynamics simulation

Figure 3.1: View in camera perspective on our Paul trap. It is located inside a ultra-

high vacuum chamber, to protect the ions from the surroundings. The four goldplated

rods are a part of the RF-guide. Three cylindrically shaped copper plates are 2 cm

apart from each other and ensure the confinement in x-direction along the RF-guide.

The wire electrode above the rods is removed to improve optical access to the left trap,

the experimental trap. To the right the loading trap is located directly above the oven.

An homebuild oven heats a small piece of Magnesium to create a hot cloud of atoms

next to the trapping volume. There are three Magnesium isotopes, but we are only

interested in 24Mg+.

Philip Kiefer and myself planned and setup the whole laser beamline consisting of two

laser sources, frequency doubling stages and several acusto-optical modulators [35]:

We use a resonantly frequency doubled C-Wave [66], based on an optical parametrical

oscillator [67], pumped by a solid state laser to photoionize Magnesium atoms at the

appropriate wavelength (285 nm). As the atoms are ionized from a hot cloud of ions,

the unstabalized C-Wave provides stable loading rates for several hour. The ions are

Doppler cooled on the S1/2 ↔ P3/2 transition (280 nm) with a quadrupled fiberlaser

(1118 nm) (further called BD). BD is used as an abbreviation for “blue doppler” as

the electronic transition is higher in energy than the S1/2 ↔ P1/2. It is stabilized

in frequency by a Doppler free Iodine spectroscopy and detuned red (δ ≈ −Γ/2 =

−2π · 42 MHz/2) to the atomic transition, see equation 2.12. The BD laser frequency

can be shifted by a double passed acousto-optical modulator (AOM) and its cooling

power can be tuned up to 140µW =̂ 0.035 Isat = 0.035 · 2550 W/cm2). During the

experimental sequence the crystal is melted to an ion cloud by the blue shifted BD

laser (δ ≈ +Γ/10) BDbl with respect to the atomic transition and gets recooled with

BD at δ ≈ −Γ/2. An additional permanently running red detuned (δ ≈ −10 Γ) cooling

laser (BDD) ensures that ions do not get lost from the trap volume. Further details on

the laser system are described in [35].

The fluorescence light of the laser cooled ions is detected on a charged-coupled device

(CCD) camera to obtain structural information of the ion crystal inside the Paul trap.

A camera pixel of 6µm length corresponds to 1.3µm distance in the trap. Based on

a home build National Instruments LabView interface [65], we are able to control all
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3.2. Amplitude modulation of the RF

relevant parameters during the experimental sequence. Further details like the relevant

measurements to characterize the laser system and the Paul trap are described in detail

in [35]. Inside the vacuum chamber, we can trap laser cooled ions, shape the crystal

via trapping potential and record pictures, as shown for instance in fig. ?? (a).

3.2 Amplitude modulation of the RF

In this thesis, we present experiments based on a frequency selective quadrupol field

excitation of vibrational eigenmodes of an axial laser cooled ion crystal. To generate

such an electric field, we use the radial trapping electrodes, see fig. 3.1, as they are

arranged in quadrupol configuration. For this purpose, we had to modify the control of

the amplitude of our trapping amplitude URF. Therefore we add the output voltage of

an arbitrary waveform generator Umod(t) via a capacitor to the control voltage of the

amplitude modulation input of our radiofrequency generator1.

3.2.1 Tuning the secular frequencies via DC amplitude modulation

First, the influence of a constant voltage is scetches, as we apply it to the modulation

input of our radiofrequency generator. 34 24Mg+ ions are confined in a linear Paul

trap, consisting of four radiofrequency rods with a RF drive ΩRF = 2π 5.84 MHz

and two ring electrodes, providing a radial, respectively axial trapping potential. As

introduced in eq. 2.7 and eq. 2.8 the secular frequencies depend on the amplitude of

the trapping potential URF,0. Amplying a constant voltage Umod, we can increase

or decrease the curvature of the trapping potential. As the shape of the potential

defines the eigenfrequencies /-modes of the ion crystal, we try to keep them as constant

as possible during the experiment. With an additional electrode parallel to the RF-

electrodes, we lift the radial degeneracy applying a DC voltage.

To measure the radial secular frequencies, we use the following approach: The real time

observation via our camera2 enables us to selectivly detect a motional excitation of the

ion crystal. This is prominent when we tune the excitation frequency to the resonance

of the secular frequency. As we scan the applied frequency and reduce the amplitude

to become more sensitive on resonance, we can resolve the eigenfrequencies with an

inaccuracy of several ten Hz. The AC voltage is applied to the electrode behind the

trap, as shown copper wire between the goldplated rods in fig. 3.1. In axial direction,

the overlap of electric field vector and eigenmode vector is to small to achive reasonable

frequency selectivity. Thus, we use an intensity modulation of the axial cooling laser to

drive the motional excitation of the axial secular frequency. This is described in detail

in [35]. The axial secular frequency is ωx/(2π) = (38.2±0.5) kHz and the radial secular

1Rohde & Schwarz, SMG B1
2PCO, DicamPro
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Chapter 3. Experimental setup and molecular dynamics simulation

Figure 3.2: Beating signal measured in front of the helical resonator. We record the

signal reflected by the helical resonator at a directional coupler with an oscilloscope.

The beating signal (blue line) represents the recorded trace. As we know the modulation

frequency of ωmod = 2π 327 kHz, we can measure the amplitude of the modulation (red

line). Taking the frequency selectivity of the helical resonator into account, we can

calculate the modulation depth η as the ratio of Umod and URF.

frequencies are ω{y, z}/(2π) = {(232.3±0.2), (293.0±0.3)} kHz. The errorbars indicate

the uncertainty within the whole set of data, that is taken into account in this thesis.

Individual dataset have smaller uncertainties of the secular frequencies. To generate

comparable sets of data, we use the DC voltages to tune the eigenfrequencies of the ion

crystal to the level of 0.1 kHz.

These single ion secular frequencies result for a crystal consisting of 34 ions to a

spectrum of 102 normalmodes (see fig. 2.8) with a range in frequency for the zigzag

ωzigzag
i ∈ 2π {38 kHz, . . . , 328 kHz} and the kink containing crystal ωkink

i ∈ 2π{23 kHz,

. . . , 345 kHz}.

3.2.2 Modulation of the RF trapping potential with sidebands

The aim of this thesis is to perform spectroscopy of eigenmodes of the ion crystal.

We will study eigenfrequencies ωi/(2π) between 300 und 350 kHz with mainly radial

motional profile, see fig. 2.9. Therefore we modulate the amplitude URF, 0 of the RF-

field with a frequency ωmod/(2π) in this range. In the case of constant modulation
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3.2. Amplitude modulation of the RF

voltage Umod, the RF-voltage can be described by

URF, 0 = [U0 + Umod] sin (ΩRF t) (3.1)

Adding a timedependent voltage, the RF-voltage is modified to

URF(t) = [U0 + Umod sin (ωmod t)] sin (ΩRF t) . (3.2)

We can rewrite this as

URF(t) =U0 sin (ΩRF t)

+
Umod

2
· {sin [(ΩRF − ωmod) t] + sin [(ΩRF + ωmod) t]}. (3.3)

The modulation of the RF-amplitude results in sidebands in the frequency spectrum

next to ΩRF. Voltages at the rods of the Paul trap are resonantly enhanced via a

helical resonator [8, 9, 35]. The enhancement of the helical resonator is described by a

lorentzian profile:

URF, rods(ω) ∝ URF
σ2

(σ/2)2 + [ω/(2π)− ΩRF/(2π)]2
, (3.4)

with URF,rods(ω) represents the voltage applied to the rods inside the vacuum chamber

and σ ≈ 2π 40 kHz as full width at half maximum.

The helical resonator acts as a frequency filter and reflects frequencies outside its am-

plification profile. A directional coupler in front of the resonator enables us to measure

the rejected power for each frequency. We measure the secular frequencies detecting

the blurring due to resonant excitation, as described before, in dependence on the re-

flected part of URF,0 at the directional coupler. Considering the frequency selectivity

of the helical resonator, we derive the relative amplitudes of carrier URF and sideband

Umod at the directional coupler, condicering the amplitudes in the beating signal, see

fig. 3.2. Based on this, we estimate the relative amplitude at the trap electrodes. The

modulation depth η′ is defined by:

η =
Umod, rods

URF, rods
, (3.5)

where Umod, rods is the modulation amplitude at the electrodes. As the sidebands are

about 300 kHz apart from resonance of the helical resonantor, these frequencies are

supressed.

In the frequency spectrum relevant for the experiments, the modulation depth varies

in the order of 4% due to the frequency selectivity of the helical resonator, see eq. 3.4.

The amplitude modulation results in a time dependent radial confinement and, with

this, a force sensitive to the distance of the ions from the center (x-axis) inside the

crystal.
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Chapter 3. Experimental setup and molecular dynamics simulation

3.2.3 Isotope selective cleaning

In addition to the secular frequencies representing the trapping potential, the mass of

the individual particles is relevant in the eigenmode derivation. We want to compare

sets of data taken during several days at the experiment, so we have to do our mea-

surements under comparable conditions. For this, we have to ensure to trap only the

isotope 24Mg+ inside the potential well.

In the beginning of each measurement, we load ions into the trapping volume. As

there are all three isotopes around, we trap together with 24Mg+ other isotopes or

even molecular ions. They are of different mass and their secular frequency decreases

with the an increase of the mass ωsec, i ∝ 1/
√
m, see eq. 2.7. We lower the excitation

frequency and resonantly enhance mass selective their motion in the same way as we

determine the secular frequencies of the potential. In addition, we lower the confine-

ment of the RF potential, so we can drive ions of different mass than 24Mg+ out of the

trapping potential, as they are not laser cooled. Further details on this methode are

described in [8, 35].

3.3 Acquisition of data and structure identification

3.3.1 Experimental sequence for data acquisition

The mean lifetime of the crystals is in the order of several seconds, which is limited

by residual background gas collisions. We set up an experimental sequence consisting

of four steps to obtain statistical independent measurements. They are scetched in

figure 3.3 and described in detail in the following:

1. To initialize structures, we melt crystals with a laser triggered first order phase

transitions to a cloud of ions with BDbl. Then we tune the laser frequency red

(BD) and increase the power to crystallize the ion cloud. The laser power is

optimized to create kinks inside the crystalline structure. Timescales as well as

the laser power dependency are aspects studied in detail in [68]. This preparation

of the ion crystals enables us to perform quantitative statistically independant

measurements.

2. The cooling laser power is decreased to reduce the probability of photo assisted

chemical reactions with background gas. The fluorescence light of the initial

recrystalized configuration is recorded for an exposure time of 150 ms with an

uv-sensitive CCD camera .

3. The radial trapping potential of the ion crystal is modulated with relative ampli-

tude η and a frequency ωmod/(2π) for a time tmod. During the modulation, the
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Figure 3.3: Experimental sequence: To investigate individual crystals, we melt our

ion crystal with the blue detuned (δ ≈ +Γ/10) laser (BDbl, blue line) to a hot cloud. In

the next step we recrystallize the cloud via our red detuned Doppler cooling laser (BD,

red line). During the phase transition, we apply a high BD laser power as this leads to a

increase of the propability to create a kink. The ion crystal’s structure is detected with

a first picture of 150 ms exposure time by our CCD camera (green line). Then we lower

the cooling power, to reduce photochemical reactions. However it is still strong enough

to prevent ions from leaving the crystal. In addition, we modulate URF,0 by η with

a selected frequency ωmod/(2π) to excite vibrational eigenmodes (purple sinosoidal).

After a certain time of modulation tmod, we record a second picture of the crystalline

structure with our CCD camera, to determine whether the initial structure survived.

The laser powers are varied between 0.003 and 0.035 Isat.

For each experimental datapoint, we run this sequence at least 100 times to determine

the structure survival probability (SSP).

laser power of the cooling laser is reduced by a factor of three to reduce additional

damping.

4. In the next step the laser power is rised again to increase the fluorescence signal

of the ions. The structure is recorded again by the CCD camera.

The sequence is repeated for each experimental set of data at least a hundred times.

Subsequently, we analyze the frames based on an image processing algorithm, see be-

low. The crystals are labeled in three groups: zigzag configuration, with kink and not

obviously identifiable (less than 1%). We compare the CCD pictures recorded in step

2 and step 4 of the sequence. If a kink is present in both images, the kink survived the

modulation of the trapping potential. As experimental measurand, we calculate the

ratio of runs, wherein a crystal with kink survives the modulation duration, to all crys-

tals initially created with kink. We discard crystals containing two kinks and frames

with ongoing dynamics during the exposure time. The ratio is called structure survival
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probability (SSP) and depends on the modulation frequencies ωmod/(2π), depth η and

duration tmod

SSP
(ωmod

2π
, η, tmod

)
=

total kinks at step 4

total kinks at step 2
. (3.6)

This ratio is a quantity to describe the excitation probability of the kink, which leads

to a loss of the kink out of the Peierls-Nabarro potential. Based on this evaluation

we can not distinguish between kinks that survived tmod and melted crystals, that

recrystallize with a two mismatching domains. This will be discussed in the contaxt of

the experimental results.

To calculate SSP, we have to label each camera frame on the detected fluorescence light,

showing the structure of the ion crystal. The SSP will be studied in dependency on all

three parameters in the results part of this thesis.

3.3.2 Crystal identification

The structure survival propability, as introduced before, is based on the identification

of the structure of the crystal in each individual recorded camera frame.

Analyzing the acquired data results to six different crystal conformations: Kink8,

Kink8, Kink10, Kink10, Zigzag and Zigzag, as shown in fig. 3.4. In the following,

the identification routine is described for the experimentally obtained data, how the

individual configuration and its mirror image are identified in our case.

This is done in three steps by a script based on the computer algebra program Math-

ematica, developed by Wolfram: First we distinguish between structures with and

without a kink. We are interested in kinks that are stable at the center of the crystal

for several seconds.

Structure identification We select the central part of the crystal as region of in-

terest and evaluate the position of each ion, see fig. 3.5. To label each structure, we

compare the results of two methodes based on the coordinates of the ions:

• We calculate the axial distance between neighboring ions in the upper and in the

lower string seperately. The variance of the axial distances is used to distiguish

between three cases “Zigzag”, kinked crystal (“Kink”) and “Trash”.

– Zigzags have a periodic structure, so the variance in axial direction is very

small (< 1.5 pixel2).

– Crystals with kink have a defined structure, but the axial distances are not

as similar as in the case of the zigzag, so the variance is larger. Based on

several benchmark measurements, we use the variance of axial distances of

the individual ions inside the crystal as criteria. For a kinked crystal it has

to be > 1.5 pixel2 and < 5 pixel2.
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(a)

Kink8

(b)

Kink10

(c)

Kink8

(d)

Kink10

(e)

Zigzag

(f)

Zigzag

Figure 3.4: Experimentally derived coordinates of 34 ions obtained by the image

analysis routine and rescaled by the magnification of the objective in front of the

camera. The presented data shows the results of the analysed camera frames. The origin

of the coordinate system is located at the center of mass (CoM) of the crystal, calculated

from the experimental data. Structures are labeled based on the ions’ position relative

to the CoM x-coordinate as well as the forth ion from the right, both highlighted in

red.

(a) The configuration called “Kink8” is depicted and in (b) “Kink10”, whereas in (c)

and (d) their anti-particles (“Kink8” and “Kink10”) are depicted.

In (e) a “Zigzag” is shown and in (f) a “Zigzag” is scetched. The CoM in the crystals

is slightly shifted to the left, as the red line is not at the center between the ions in

the middle. This offers a measure to determine the related deviations of the trapping

potential of our Paul trap from the harmonic approximation.
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Figure 3.5: Experimentally derived coordinates of 34 ions obtained by the frame

analysis routine.

(a) Crystalline structures with a disturbance in the periodicity at the center are labeled

“Kink”. Note: Two ions are not located at the same x-coordinate as the CoM, as

indicated by the numerical result shown in fig. 2.5.

(b) The ions form a “Zigzag” structure, as each ion is on the opposite side of the

y-coordinate of the CoM as the ion before.

– A small amount of crystals shows a variance of > 5 pixel2. In most of the

cases this is related to an ion, which was not identified as bright spot by

the coordinate routine, often related to an insufficient signal to noise ratio.

Some of the pictures show no identifiable crystalline structure, as the ion

position changes during the exposure time of the camera. These pictures

with a disordered structure are labeled as “Trash”.

• The second approach is based on the alternating position of each ion with respect

to the radial CoM coordinate. The radial distance of each ion from the axial

crystal axis is calculated. An ion above the axis has a positive sign, whereas an

ion below a negative one. The ions are sorted based on their x-coordinate. Now

the signs of the radial coordinate of following ions are multiplied by each other.

The result is compared to the following three cases:

– All products are “−1”. This means, that all pairs of ions are on opposite

sides of the crystal axis. So the crystal is labeled as “Zigzag”.

– All results are “−1”, except one that is “+1”. There is one pair of ions

located at the same side of the y-coordinate of the center of mass of the ion

crystal. This crystalline structure is labeled as “Kink”.

– If the number of “+1” in the list is larger than one, something in the inden-

tification routine went wrong. This structure is labeled as “Trash”.

If both criteria yield the same result, the label is stored and the routine proceeds with

the next frame until it reaches the end of the image stack. In the case that the labeling

does not match or both methodes label the frame as “Trash”, the routine shows the

frame to the user, to allow to analyze the origin of the fail.

30
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Figure 3.6: Experimentally derived coordinates of 34 ions, containing two type of

kinks, obtained by the frame analysis routine and rescaled by the magnification of the

objective in front of the camera. As both structures clearly differ at the x-coordinate

of the CoM, the latter is highlighted by a red line. The eigenmode spectrum is with in

the experimental resolution identical.

(a) Two ions are on opposite sides of the crystal axis and with similar x-coordinates

as the CoM. We label this structure a Kink10.

(b) There is a gap at the center of the crystal next to the CoM. We label this structure

a Kink8.

Kink configuration identification In a second step, we take all “Kink” labeled

structures from the set of data and check whether there are ions around the x-coordinate

of the center of mass. Configurations with ions at the center are labeled as “Kink10”,

as there are about 10 ions displaced from the original periodic “Zigzag”, see fig. 3.4 for

comparism.

A second configuration appears at comparable rate in the experimental data. There

is a gap in the ion crystal at the CoM and the Kink extends to about eight ions, see

fig. 3.6 b. So it is labeled as Kink8.

Crystal conformation identification Each experimentally observed structure is

labeled by its configuration. The last degree of freedom is the symmetry inside the

trapping potential. We have in z-direction a confinement ≈ 1.3 stronger than in y-

direction. So the radial degeneracy is canceled and the ions are pushed into two di-

mensional structures. Assuming symmetric potentials, planar structures like the ion

crystals have two degenerate conformations: an image and its mirror image. Indepen-

dent on the configuration of the crystal, we label all identified structures based on the

forth ion from the right side, shown as red disc in fig. 3.7. Around the ion’s position, we

define a region of interest (ROI) in the order of twice the width of the ion in axial di-

rection and take the complete height of the recorded frame in y-direction into account.

Now we sum up each row of the ROI. In the next step, we compare the fluorescence

below the y-coordinate of the CoM with the signal above. The crystals with more

fluorescence below the y-coordinate of the CoM are labeled as “Down” conformation,
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Figure 3.7: Coordinates of 34 ions obtained by the frame analysis routine and rescaled

by the magnification of the objective in front of the camera.

The crystallization is a random process and the two dimensional structure might also

be rotated by 180◦ around the x-axis of the crystal. Both structures are energetically

degenerate. A rotation without melting is not possible in the trapping potential. So

both structures are individual distinguishable conformations and have to be labeled

independently. This is done by the position of the 4th ion from the right side, highlighted

as a red disc.

(a) Crystalline structure with a Kink10 at the center and the outer ion below the

crystal axis, is labeled as Kink10.

(b) Ion crystal with a Kink10 at the center and the outer ion above the x-axis is labeled

as Kink10.

the others as “Up”. Comparing both conformations of kinks inside crystals, it becomes

obvious that one can define “Down” as the particle and “Up” as the anti-particle, as

introduced in fig. 2.4.

3.4 Molecular dynamics simulation

We can tune the experimental parameters and study their influence on the structure

survival probability, see chapter 4. However, the signal to noise ratio of each camera

frame limits us to study processes on timescales below the chosen exposure time of our

CCD camera of 150 ms. During detection, we increase the laser power to detect enough

photons on each pixel. We alternate the laser power during the rest of the sequence to

reduce the amount of photo chemical reactions of our Magnesium ions. In the context

of this limitations, we study relevant timescales and dynamical processes inside the

crystal, assisted by numerical simulation. Haggai Landa developed during his master

thesis [47] a molecular dynamics (MD) simulation for Coulomb crystals in a Paul trap,

considering micromotion [48].

The simulation is based on classical mechanics and neglects quantum mechanical effects.

The global potential, starting positions of the ions and initial velocities are relevant for

the simulation. First the energy is minimized as the positions of the ions inside the
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potential are optimized. Ions move inside the potential due to their initial velocity

and momentum transfer due to interaction with other particles. The simulation is

concatenated by timesteps small compared to 1/ω102. Within a timestep each particle

moves independently along its trajectory. At the end of each timestep, velocities and

interaction with neighboring particles are recalculated and set as initial conditions for

the next timestep.

A first comparison between simulation and experimental results is published in [2].

Further studies on the kink dynamics in simulation are shown in [1].

Amplitude modulation In the experiments, we modulate the amplitude of the

trapping potential, see chapter 3.2. This is implemented in the differential equation of

motion in pseudo-potential approximation in radial direction, see eq. 2.6:

∂2

∂t2
y +

[
ω2

y +

(
q

2

ΩRF/ωx

2

)2 (
η′ · sin (ωmodt) + η′ 2sin2 (ωmodt)

)]
y = 0 (3.7)

with q=
2 eURF,0

mα2
RF ΩRF

, where αRF represents the scaling to the trap geometry [8, 9]. η′ is

the modulation depth as defined above in eq. 3.5 and η′ � 1, so the term in η′ 2 can

be neglected.

Laser cooling During the experimental sequence, we reduce the laser power in step

3, see fig. 3.3, but it is still present. This is considered in the molecular dynamics

simulation with a Langevin-type equation [69, 70]. The cooling rate depends on the

laser power and is a free parameter sD in the simulation, similar to I/Isat as introduced

in eq. 2.12. In addition the simulation takes into account, that we directly cool the

ions primarily along the axial direction only. To compare simulation and experiment,

we have to calibrate sD to the laser intensity used during the experiments.

We calculate trajectories of the ions of the Coulomb crystal with the simulation. The

motion inside the crystal can be decomposed to the normal coordinates as shown in

sec. 2.3. Two vibrational eigenmodes of a kinked crystal as a function of simulation

time are shown in fig. 3.8 (a),(b). The trapping parameters correspond to the experi-

mental conditions. We derive relevant timescales like the excitation of each vibrational

eigenmode from the simulation. Based on our definition of the kink coordinate we can

trace its position during the simulation, as shown in fig. 3.8 (c).

In addition, we estimate the viscosity ξK(T ) from results of the simulation, as we cur-

rently do not have direct experimental access to measure the auto correlation function

of the kink velocity and the shape of the Peierls-Nabarro potential.

In the following, we present numerically derived data colored in orange or gray, to allow

the reader to distinguish between experimentally and numerically derived data.
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Figure 3.8: Numerically simulated amplitudes of vibrational eigenmodes on

timescales, the RF modulation excites the system.

(a) The eigenmode amplitude of q100 increases in the prescence of the RF modulation

until 0.15 ms, then it drops to about half the amplitude. This is an indication, that the

amplitude reaches a certain level, when nonlinear mode coupling becomes relevant in

the dynamics inside the ion crystal.

(b) In addition there is no change for instance in the amplitude of mode q1 until about

0.3 ms. At this point the amplitude of mode q100 reaches its minimum and the ampli-

tude of q1 increases.

(c) The location of the kink is depicted as a function of time. The kink coordinate is

defined by eq. 2.18.
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Chapter 4

Resonant excitation of structural

defects

The experimental setup and the data analysis are described in the previous chapter.

Here we focus on the results and their discussion in detail. In this chapter, the results are

presented for the eigenmode spectroscopy and the related mean lifetime measurements

of the kink inside the ion crystal. The last part of this chapter discusses the derivation

of the depth of the Peierls-Nabarro potential based on Kramers’ model.

4.1 Spectroscopy of vibrational eigenmodes

Coulomb crystals with structural defects feature a characteristic eigenmode spectrum

compared to crystals without a defect, see fig. 2.8. For instance, there is an axial sliding

mode, whose frequency is below the axial centre of mass frequency. An excitation to

the anharmonic regime leads to an escape of the kink in axial direction. The outer

frequency rage of the normalmode spectrum is shifted in the prescence of a structural

defect up to 30 kHz away from the frequencies from a zigzag.

We excite eigenmodes of the ion crystal with motional components mostly in radial

direction via amplitude modulation of the radial trapping potential, as discussed be-

fore. Eigenmodes located on the ions contributing to the kink are of further interest.

First we set tmod = 85 ms and η = 1.45 × 10−3. We run the experimental sequence

and modulate the amplitude of the RF-field with frequencies ωmod/(2π) of choice in

the range from 315 to 336 kHz in random order. The result is shown in fig. 4.1 as blue

squares.

Reference level of 0.9 is in agreement with the mean lifetime of such crystalline struc-

tures, limited by residual gas collisions. The errorbars are calculated based on binomial

statistics, indicating the 1σ interval. The structure survival probability (SSP) is reduced

to about 15% at a modulation frequency ωmod = 2π(325.3±0.3) kHz. The full width at
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Figure 4.1: The experimentally determined structure survival probability (SSP) as

a function of modulation frequency ωmod/(2π) and modulation depth η (blue squares:

η = 1.45 × 10−3, red circles: η = 1.74 × 10−3). During data evaluation, there is

only distinguished between kink containing crystals and zigzags. Around a frequency

ωmod/(2π) of (325.3 ± 0.2) kHz the soliton is excited and leaves the crystal in about

85 % of the analyzed experimental sequences.

This ratio depends on the modulation depth. In the case of η = 1.74×10−3 the survival

ratio is for several ωmod/(2π) around zero. For a modulation frequency of (311±1) kHz,

there is an additional local minimum in the survival probability related to q97.

half maximum (FWHM) of the resonance is 2π(4.8± 0.5) kHz. Data taken for a mod-

ulation depth η = 1.74× 10−3 is labeled in red discs and broadened around resonance

due to a stronger modulation compared to η = 1.45× 10−3. The modulation frequency

is close to an eigenfrequency of the crystal, and its eigenvector has an sufficient over-

lap with the radial excitation modulation. The eigenfrequency q100 (see fig. 2.9 (a))

calculated for such an ion crystal in pseudo-potential approximation deviates to the

minimum of the experimental data about 1% in frequency. The shift is comparable

to the results obtained by molecular dynamics (MD) simulation in pseudo-potential

approximation, as shown in fig. 2.8. Simulations with time dependent radial trapping

potential reveal a shift of q100 less than 0.5%, due to micromotion.

The datapoints for larger modulation depth (η = 1.74×10−3) show at ωmod = 2π(311±
1) kHz an additional local minimum with a depth of 25%. This is next to the eigenfre-

quency of mode q97, see fig. 2.9 (b). SSP drops at the eigenfrequencies of q97 and q100,

in both cases the eigenvector projected to the ions has mainly radial components, as
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4.1. Spectroscopy of vibrational eigenmodes

(a)

(b)

Figure 4.2: 34 ion crystal confined in a linear Paul trap with ω(x, y, z)/(2π) = (38.1±
0.5, 233.3± 0.2, 293.74± 0.3) kHz.

(a) Experimentally obtained flourescence images:

(I) Ion crystal with periodic zigzag structure interrupted at the center by a structural

defect (extended kink), stable for several seconds and linear chains to the outer sides.

The two central ions are almost on top of each other, the other ions are arranged in

zigzag configuration.

(II) At the center of the crystal the ions oscillate due to external high frequency

excitation at 327 kHz and nonlinear coupling of energy to excite the low energy kink

mode q102, indicated by the white ↔ at the top. The outer parts do not contribute in

the motion.

(III) Similar to (II), but we increase η further, so the kink is heated out of the crystal

to the right, as depicted by the white arrow. As the motion is fast compared to the

exposure time of the camera, the right half of the crystal is recorded as a superposition

of a kink containing and a zigzag crystal.

(b) Simulated ion positions (black dots) in pseudo-potential approximation (PPA) and

certain vibrational eigenmodes of the ion crystal containing a kink. Eigenmode q1:

mainly axial contributions to the movement profile, which could be described as an

axial sliding mode.
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Chapter 4. Resonant excitation of structural defects

shown in fig. 2.9 (a), (b).

We drive a high frequency eigenmode of the ion crystal and this leads to a loss of the

kink out of the PN potential. In the following, I discuss two possible explanations:

First the resonant enhancement of q100 (q97) leads to a melting of the crystalline struc-

ture to a non-neutral plasma. This might lead to a loss of the kink, but this explanation

we neglect due to a SSP of zero on resonance of q100 for η = 1.74× 10−3. If the crystal

is heated up to an ion cloud, the recrystalization leads to a nonzero probability to ob-

tain a crystalline structure with kink. So camera frames recorded during step 4 in the

experimental sequence would show at least few crystals with a kink. In our definition

the kink would have survived the excitation.

The second approach to identify the mechanism, which leads to the loss of the kink,

is to record camera frames during tmod. We modified the experimental sequence in

such a way that the exposure time of the camera is parallel in time to the quadrupol

modulation. Recorded frames are identified in the basis set as shown in fig. 3.4. The

fluorescence images from step 4 of crystals with the same structure at step 2 are averaged

to increase signal to noise ratio. Results of this procedure are shown in fig. 4.2 (a) (II).

They reveal a central region in the crystals of undefined structural order. This is related

to an oscillatory motion of the ions contributing the kink, which corresponds to the

motional directions related to eigenvector q1, see fig. 4.2 (b). Further increasing η,

and analyzing the frames the same way as before, we obtain images (from “step 4”) as

shown in fig. 4.2 (a) (III). One half of these crystals shows in axial direction a periodic

structure, whereas the other side is smeared out. The ions’ motion is faster than the

exposure time of the camera (150 ms). Therefore, we conclude that the kink leaves the

crystal, if its axial motion q1 is excited.

This is in agreement with the MD simulation, which shows in first step an increase of

amplitude in mode q100, see fig. 3.8 (a). At about 0.15 ms the motion of q100 decreases

and the amplitude of q1 starts to increase at about 0.3 ms, see fig. 3.8 (b). So motional

energy is transfered to other modes and on a second timescale to the low energy mode.

The Peierls-Nabarro potential confines the kink inside the ion crystal, there should be

an oscillatory motion of the kink in its harmonic potential. The experimental data

does not show such a behaviour, but this might be related to damping of the cooling

laser necessary to detect fluorescence light. Even in the simulation the kink moves

only related to the temperature of the crystal on its position of minimal energy at the

central lattice side of the crystal.

Results from the MD simulation show that mode coupling is relevant on short timescales

(up to 0.5 ms), but the loss of the kink happens on a timescale, where the whole mode

spectrum is excited.

So the mechanism is rather related to a heating of the phonon bath than a direct

coupling or even coherent drive of selected eigenmodes in the crystal.
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4.2. Mean kink lifetime

Latter we tested by a random phase shift of Umod at tmod/2, but there is no evidence

that this would increase the SSP. This might be limited by the finite temperature of

the system above the Doppler limit. We proceed on this topic as soon as we have a

sub-doppler laser cooling setup [71] available at the ion trap apparatus.

We did similar experiments on eigenmode spectroscopy with an intensity modulated

radial laser, focused to a single ion. The modulation frequency corresponds to ω1, but

the secular frequencies were different, so there are ions having motional components

along the ~kL of the focused laser beam, adressing a single ion. Details are discussed in

[35].

With our experimental approach, we can resolve individual vibrational eigenmodes of

Coulomb crystals containing a kink. The time scale of kink loss mechanism is studied

in the following.

4.2 Mean kink lifetime

The experimental data presented in figure 4.1 show the structure survival probability

(SSP) as a function of the modulation frequency ωmod/(2π). For η = 1.74×10−3 (shown

in red) the resonance is broadened. The kinks do not survive for several modulation

frequencies around 2π(326 ± 3) kHz. The measurement with reduced η = 1.45 × 10−3

shows a local minimum at 2π × 326 kHz. The excitation duration of 85 ms is constant

in both measurements. To get a deeper insight in the loss mechanism, we vary the

excitation duration tmod for different η. In contrast to the experimental data shown

above (see fig. 4.1), the trapping potential of the ion crystal is modulated with the fixed

frequency corresponding to the minimal survival probability. The results are shown

in fig. 4.3. Each datapoint represents at least a hundred runs of the experimental

sequence (see fig. 3.3) with a certain modulation amplitude η and duration tmod. The

SSP decreases with an increase of η, as shown in fig. 4.1, and is in addition dependent

on the modulation time tmod. The data is corrected by the loss rate of kinks due to their

limited lifetime, because this is limited to about 3.2 s. The set of datapoints, shown

in fig. 4.3, are taken during several days at the lab, which causes certain fluctuations

of the experimental parameters. They are represented by the error bars given at the

experimental parameters like trapping frequencies.

SSP can be described by an exponential decay e−t/τ for each η. Further discussion of

the experimental data is split in two separate parts: the data for (1) η > 1.4 × 10−3

and (2) η < 1.4× 10−3.

(1) The SSP drops to zero within ≈ 200 ms of modulation. The mean lifetime for

η = 1.45×10−3 is (71± 5) ms (blue) and in the case of η = 1.74×10−3 it is (23± 2) ms

(red).

(2) The structure survival probability does not drop to zero within 300 ms. We assume
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Figure 4.3: Structure survival probability as a function of modulation duration tmod.

The data is shown for four modulation depths η. η × 103 ∈ {1.15, 1.30, 1.45, 1.74} are

labeled in {green, black, blue, red}. Mean lifetimes result to {(544 ± 35) ms, (248 ±
16) ms, (71 ± 5) ms, (23 ± 2) ms}. Datapoints represent at least a 100 measurements.

Data is rescaled by losses due to the natural lifetime (≈ 3.2 s) of kinks inside ion crystals.

The results of an approximation of an exponential decay are shown as dashed lines in

the corresponding color.

that for these η the SSP drops to zero as well, but on timescales longer than studied in

these experiments. So we calculate the decay constants and obtain in the case of black

with η = 1.3 × 10−3, τ = (248± 16) ms and for η = 1.15 × 10−3, τ = (544± 35) ms.

However, this is still under investigation and has to be studied further as there are first

hints that the SSP does not drop to zero within 1000 ms. These diverging timescale

have to be studied further are might be a way to test theoretical prediction on self-

stablizing phase-space trajectories [72].

We achieve similar SSP for short but strong excitation as for long and weak. So we can

interprete this as a heating mechanism inside the crystal. It does not matter, whether

the internal energy is rised on short or on long timescales. The excitation based on the

modulation of the trapping potential η is stronger than the stabilization due to laser

cooling, the structural defects leave the crystal. A linear increase in the modulation

effects the mean lifetime in a nonlinear way.

So we can resolve the individual mean lifetime of structural defects inside the crystals

in dependence of η. The modulation depth results to an internal energy via nonlinear

mode coupling, the mean kink lifetime depends on the internal energy. As discussed

before, kinks move along the crystal axis and vanish, so the structural defects leave the
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4.3. Estimation of the barrier height of the kink trapping potential

Peierls-Nabarro (PN) potential. The barrier height of the PN potential can be derived

based on the mean lifetime and the internal energy.

4.3 Estimation of the barrier height of the kink trapping

potential

As introduced in chapter 2, we approximate the barrier height of the Peierls-Nabarro

(PN) potential based on the Kramers’ model [29]. This can be interpreted as a measur-

and of the quasi topological protection. For this, we have to calculate the viscosity of

the ion crystal for several temperatures based on the numerical simulation introduced

in chapter 3.4.

4.3.1 Viscosity ξK of an ion crystal

We compute based on the results of the numerical simulation the velocity autocorre-

lation function (vACF) of the kink coordinate for several internal temperatures, see

fig. 4.4. The simulation is run without laser cooling and quadrupol modulation. To

calculate the integral of the vACF, we neglect the fast oscillatory components and focus

on the envelope. We slice the simulation duration in 50 short intervals. The maximum

of the absolute value of each slice is taken and its corresponding time to describe the

envelope of the vACF. This is valid as long as we are only interested in the decay con-

stant of the envelope. The suggested offset is related to the methode, as we take the

maximum into account. The results are shown as gray dots in fig. 4.4. We approximate

an exponential decay to these datapoints as depicted as gray dashed line. The decay

constants of at least 24 runs for each temperature are averaged. Using eq. 2.28, we

calculate the viscosity ξK for each temperature seperately, assuming that the density of

the ion crystal ρIC stays constant in this temperature regime. The results are plotted

in fig. 4.5 as orange datapoints.

The viscosity depends strongly on the temperature of the system. Kramers’ model is

based on the viscosity of the system, so it has to be described by an analytical expres-

sion. First we discuss the approach derived by Raman and Andrade [60, 61] as shown

by a light gray line in fig. 4.5:

ξK (TD)

ρIC
= ξ0 e

b/TD = (1.90± 0.05) 10−10 m2

ms
e(2.6±0.4) 10−4 TD/T (4.1)

where ξ0, b are free parameter approximated to numerically obtained datapoints. The

approach underestimates the data, especially for low internal temperatures.

This is also the case for the model ∝ T−α/2, as shown by a dark gray line in fig. 4.5.

ξK (TD)

ρIC
= (4.1± 0.3) 10−10 m2

ms
T (−0.35±0.05) (4.2)
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Figure 4.4: Velocity autocorrelation function for T = 3TD. Data shown in orange rep-

resents the trace calculated based on the numerical simulation. The data is dominated

by two timescales, fast oscillations and the decaying envelope. As we are interested in

the decay constant, we neglect the highfrequency oscillatory motion of the kink, slice

the timetrace into 50 parts of 10µs each, and take the maximum absolute value, indi-

cated by the gray datapoints. It can be described by an exponential decay, shown as

dashed gray line. As we take the maximum value of each slice, on longer timescales the

gray points suggest an offset in the data. However, this is due to the noisy environment

and is neglegted.

We derive an effective dimension of the system α = (0.7± 0.1). As the kink can only

move along the x-axis of the crystal, the system is quasi one dimensional, thus, we

expect α to be 0.5.

For low internal temperatures the description with both models deviates strongly from

the numerical data, as shown by orange datapoints in fig. 4.5 in comparism to the

gray lines representing the models. Both models are developed for systems with a

continuous dispersion relation and temperatures, which ensures that all modes are

equally populated with phonons.

As long the internal temperature is above 4TD, both models describe the dependency

of viscosity ξK and temperature well.

So far, we only take the internal temperatures, representing the internal energy of the

system, into account. During the experiments, we have access to the modulation depth

η and the cooling rate sD, which is related to the intensity of the laser Isat. However,

we can not directly measure the internal energy distribution or even the temperature

T of the ion crystal in experiment.

We perform further numerical studies to derive a relation between T , sD and η. The

system is initialized at a certain temperature, the internal energy increases in the pres-
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Figure 4.5: Viscosity ξK/ρIC versus internal temperature of the ion crystal. The MD

simulation is run for at least twenty times for each temperature and we calculate the

integral of the vACF for each run. Mean and standard deviation are plotted for each

temperature. As we need an analytical expression as input for the Kramers’ model, we

approximate the datapoints by ξ0 e
b/T (light gray line) and ∝ T−α/2 (dark gray line),

describing the viscosity in dependency of temperature T . Both models underestimate

the increase of the viscosity in the low temperature regime.

ence of quadrupol modulation. The mean kinetic energy turns into equilibrium after

a certain duration for given modulation η and cooling rate sD. Since the relevant

timescales are much longer than the timescale for the heating process, we can as-

sume equipartition of all eigenmodes corresponding to the internal energy distribution.

Running simulations in the experimentally accessable parameter range, we derive the

datapoints shown in fig. 4.6. Each datapoint represents at least ten runs of simulation.

Assuming a linear dependency of modulation depth, cooling rate and mean kinetic en-

ergy, we interpolate the data and get a calibration surface, as shown in gray in fig. 4.6.

This can be described by the following formular:

〈Ekin (sD, η)〉 =

#ions∑
i = 1

Ekin,i (sD, η)

#ions

= (2.9± 0.1)− (389± 24) sD + (2140± 68) η. (4.3)

The energy is given in units of TD. In the experiments the number of ions (#ions)

amounts to 34. All experiments are run under same cooling conditions during step 3

(see fig. 3.3).
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Figure 4.6: Relation between mean kinetic energy in units of TD, cooling parameter

sD and modulation depth η. We run the MD simulation to study the influence of cooling

sD and quadrupol modulation on the internal temperature. Numerical studies were

carried out several times for each combination of parameter sets and we calculate mean

and standard deviation of the mean kinetic energy (orange datapoints). To interpolate

the data, we assume a linear dependency on both parameters and approximate the

model to the data, as shown by the gray surface.

We can not quantify the difference between the cooling model in the simulation and the

laser cooling by photon scattering in the experiment. In the experiment combinations

for laser cooling and η result to a mean lifetime of the kinks, as shown in fig. 4.3.

The parameter sD is approximated iteratively to sD = 2.25 × 10−3 by tuning the

mean lifetime τ in the simulation for an excitation η = 1.15 × 10−3 to achieve the

experimentally obtained results τ = (544± 35) ms.

Subsequently, we apply the derived relation between mean kinetic energy and the

cooling parameter sD to rescale the x-axis in fig. 4.5 in terms of η. Therefore, we

obtain an analytic expression corresponding to the numerically derived datapoints for

the viscosity:

ξK (η)

ρIC
= (1.90± 0.05) 10−10 m2

ms
e
− (−2.7±0.4)10−4

η′ . (4.4)

The alternative model results in

ξK (η)

ρIC
= (4.5± 1.2) 10−11 m2

ms
η (−0.25±0.03). (4.5)

Both models describe the viscosity for experimental relevant η. In the following we use

the model, taking the dimensionality of the system into account: ∝ η−α/2.

This equation is used to describe the viscosity in the Kramers’ model and we calculate

the barrier height of the PN potential in the next step.
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4.3. Estimation of the barrier height of the kink trapping potential

Figure 4.7: Viscosity ξK/ρIC in dependency on the quadrupol modulation depth. For

a fixed cooling rate sD, we can relabel the T -axis of fig. 4.5 with the modulation depth

η, as we derived the linear relation in eq. 4.3. Mean and standard deviation are plotted

for each η. Again we test both models to describe the relation between η and viscosity

ξK. The light gray curve (∝ eb/T ) as well as the ∝ T−α/2 (dark gray curve) describe

the relation in the relevant range of η between 0.001 and 0.002.

4.3.2 Barrier height of the Peierls-Nabarro potential

The numerically derived results are combined to calculate the barrier height EPN of

the PN potential. Kramers’ equation as shown above (see eq. 2.35) is extended by the

numerically derived analytic expression for the viscosity of the ion crystal as function

of the internal temperature, respectively the modulation depth:

τ (η) =
π ξK(η)

ρIC

ω1

ρIC

ωB
e
EPN
η (4.6)

There are still two free parameters, EPN and ωB. Both parameters are optimized to the

numerically derived mean lifetimes and the result is shown in fig. 4.8. Experimental

datapoints are colored the same way as in fig. 4.3 and are in agreement with the

numerically derived Kramers’ model. ρIC
ωB

amounts to (1.2± 0.07) 1010 kg
m3 s

. A rough

estimate on the density ρIC amounts to 2.5 · 10−12 kg
m3 = 2.5 ng

m3 for 24Mg+ assuming an

average distance of ≈ 25µm in all three dimensions. Thus, we derive ωB = 2π(3.3 ±
0.3)× 10−23 Hz.

As before all parameters are still a function of η, we rescale the data with eq. 4.3 as

shown by the upper x-axis. We derive the barrier height EPN = (24.2± 0.7) TD. As

Kramers’ model [29] estimates the mean first passage time over a certain potential
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Figure 4.8: Experimentally obtained mean lifetimes of the kink in dependence of the

modulation depth η. The errorbars are hidden in the symbols of each datapoint.

In addition we derive the mean lifetime of the kinks by numerical studies and ap-

proximated Kramers’ model to the data. The result is shown by the gray line. The

uncertainty of the approximation is indicated by the light gray corridor. Based on

the interpolation function in eq. 4.3, we can rescale η to a mean kinetic energy as

shown on the upper x-axis. Kramers’ model gives a barrier height in terms of energy

of (24.2± 0.7) TD.

barrier, originally developed to describe rates in chemical reactions. Thus, we obtain

by this approach the mean lifetimes of structural defects trapped inside, a lower bound

of the trap depth of the Peierls-Nabarro based on the internal dynamics of the ion

crystal.

There are several assumption in the derivation, so this is only an estimate of the barrier

height of the Peierls-Nabarro potential. We use models to describe the dynamics of the

system and to determine relevant timescales to calculate for instance the viscosity ξK.

Self-diffusion and the viscosity described by Raman and Andrade are developed to de-

scribe dynamical aspects in the liquid phase of systems of infinite size.

The approach ∝ T−α/2 takes the dimensionality of the system into account. A kink

inside a two dimensional ion crystal can move only along the crystals x-axis. So the di-

mensionality of the system is reduced to one degree of freedom the kink can move along.

Beside this, our extension of Kramers’ model presumes a symmetric barrier to the left

and to the right, as we reduce the mean lifetime by a factor of two. The Peierls-Nabarro

potential depends strongly on the trapping potential, as shown in [35]. An assymetric

trapping potential would lead to barriers of different height. The x-coordinate of center

of mass, illustrated by the red line in fig. 3.4 (e) and (f), is shifted to the left of both

central ions. So the ion distribution is more dense to the left than to the right.
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Chapter 5

Transformation and dynamics of

structural defects inside Coulomb

crystals

In the previous chapter, we evaluated the SSP based on the differentiation of kinks and

zigzags. However, the experimental data contains in a statistical relevant manner six

crystalline configurations. We already introduced in chapter 3.3 four configurations of

kinks and two zigzags. In the following, we want to study the structure transformation

probability seperately for each configuration.

In the first part of this chapter, we focus on the transformation dynamics of individual

structures due to the increase of the internal energy in the presence of the external

drive. In the second part the directionality of escape out of the Peierls-Nabarro (PN)

potential is discussed individually for each configuration of kink. Based on the shape of

the ion crystal derived from the experimental data, we extend the harmonic confining

potential of the Paul trap by higher order terms and suggest an explanation for the

preferred escape directionality.

5.1 Structure survival probability of individual conforma-

tions

In this chapter, we are interested in the conformational resolved dynamics of each

type of kink in the presence of the quadrupol modulation, as shown in fig. 3.4. First,

we discuss the influence of certain modulation depths on each configuration of the

ion crystals. In the second, part we show the results for selected kink configurations

comparing several modulation depths.
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5.1.1 Fixed modulation amplitude

The experimental data in fig. 4.2 (a) (III) depict a kink moving to the right during the

exposure time (150 ms) of the CCD camera. Up to now, we analysed video frames to

decide, whether there was a kink in the crystal or whether there was a pure zigzag. To

study the dynamical aspects in more detail, we analyse the data based on each of the

individual conformations of the ion crystals, as listed in fig. 3.4.

Thus, we can identify transformations between certain structures and decay mecha-

nisms of the kink containing structures to zigzags.

Analysis of measurements with η = 0

To study the effect of the external modulation, first, we have to analyze the data

recorded for modulation η = 0, as shown in fig. 5.1. Without modulation the crystalline

conformations survive in about 90% tmod of 1000 ms. We first seperate the experimental

data based on all six initial configuration detected during step 2. To increase statistics,

we individually sum up modulation duration between 400 ms and 1000 ms. The results

depicted as matrix in fig. 5.1, indicate that almost all structures stay in their initial

configuration during tmod as the diagonal elements show at least 81% structure survival

probability. The ratio of each structure represents the recorded configuration in step 4

normalized to all initially detected. The upper and lower number on the right depict

the 1σ interval based on binomial statistics. The data is rescaled by background gas

collisions in that sense, that we averaged the transfer ratios of Zigzag to Zigzag and

vice versa and substract them from the whole set of data. Thus, a Kink8, for instance,

survives the modulation duration with a ratio of 0.92 +0.03
−0.04. Within the errorbars the

stability of Kink8 and Kink10 is similar, but less stable than in the case of Kink8 and

Kink10. In addition crystal with kink are less stable than zigzag configurations. This

might be explained by the finite lifetime of these crystalline structures, due to the finite

depth of the Peierls-Nabarro potential.

The last row represents frames recorded during step 2 that do not fit to any of the given

structures. This is most times related to residual dynamics, like a kink escaping the

crystal, during exposure time and the process of recrystallization. Two third of these

are identified in step 4 as zigzags, the configuration of minimal energy, but statistics is

not the best.

Mean lifetime of all of these crystalline structures is sufficient to study effects on

timescales beyond 1000 ms.

Analysis of measurements with η = 1.30× 10−3

We discuss in the following the influence of the modulation, resulting in an increase

of internal energy allowing dynamics, like structural transformation. Considering only
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Figure 5.1: Conformational dependency of structure transformation probability with

modulation η = 0. Full structural analysis is shown in the basis set defined in fig. 3.4.

The structures recorded and identified in step 2 (see fig. 3.3) are listed on the left side as

initial configuration. In addition, the number of analysed crystals for each configuration

is listed. In the upper row, the identified structures from step 4 are listed. Diagonal

entries of the matrix are brigth and indicate that initial and final structure are identified

as the same. In addition, ratios of each combination are given and illustrated in the

color scheme from blue via white and yellow to red, indicating high ratios in red and

small ones in blue. The ratios are rescaled to consider the limited lifetime of crystalline

structures, indicated by of the transfer rate between zigzag and zigzag.

Errors as listed in the figure (above and below the central value) are calculated based

on binomial statistics and indicate the 1σ interval. The probability for crystals with

kink to survive is smaller than for zigzag crystals.
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Figure 5.2: Structure survival probability as a function of the modulation duration

tmod, as shown in fig. 4.3. The gray shaded area indicates the data selected for the

following studies. The time span is chosen as there are measurements for all modulation

depths η × 103 ∈ {1.15, 1.30, 1.45, 1.74} and the transformation signal to noise in the

case of weak modulation is maximal.

data for tmod between 100 ms and 200 ms, as highlighted by the gray shaded area in

fig. 5.2, we have a comparable set of data for all four modulation depths, corresponding

to different internal energies. We analyzed the data obtained for a modulation depth

η = 1.30 × 10−3 the same way as for η = 0. The matrix is shown in fig. 5.3 and

discussed in the following. Zigzag crystals survive with the same probability as in the

undisturbed case. However, crystals with kink are transformed and kinks are driven

out of the crystal: Kinks initialized as Kink8 are transferred to Kink10 or driven out

of the crystal, such as the video frame in step 4 shows a Zigzag or Zigzag with equal

ratios. The transformation of the kink can be understood as a reorganisation of the

two ions at the center of the crystal, as depicted in fig. 5.4 (a). Defects of type Kink10

stay in their configuration and only about 10% are transferred to a Kink8. The ratios

for a transformation to one of the zigzag configurations are similar to those of Kink8.

Kink8 is as stable as Kink10. It has a preference to be transformed to a Zigzag, if the

kink is driven out of the crystal. In the case of Kink10, the major part is detected

in step 4 as Kink8 configuration. The survival ratio of Kink10 is about 8%, similar

to the structure transformation ratio from Kink8 to Kink10, see fig. 5.3. Based on

the data, we can not identify, whether Kink10 survives, or is transformed to a Kink8

configuration which is transformed back, as scetched in fig. 5.4 (b). Data obtained for

an intial configuration Kink8 shows a relevant transformation to Kink10.
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Figure 5.3: Conformational dependency of structure transformation probability with

a modulation depth η = 1.30× 10−3.

Data processing and labeling is identical to fig. 5.1. Kink8 (Kink10) is transferred

to Kink10 (Kink8), whereas Kink10 and Kink8 are stable as initial configuration, or

decay to zigzag structures. The survival ratios of Kink8 and Kink10 are similar. Further

investigations have to be performed to clearify, whether the configurations survive or

they are transformed from Kink10 (Kink8).

Kinks are transformed almost equally to Zigzag and Zigzag. However, for kinks, there

is a preference for the Zigzag configuration.

Crystals without kinks are not disturbed by the modulation, as there is no eigenmode

in spectral range of excitation.
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Chapter 5. Transformation and dynamics of structural defects inside Coulomb crystals

Figure 5.4: Schematics of the central part of an ion crystal with a kink depicting the

configurational change as revealed by the experimental data. The dashed black line

indicates the symmetry axis. The position of the ions connected by a red bar defines

the type of kink. Blue arrows indicate the moving direction of the ions related to the

transformation.

(a) Transformation of a Kink8 to a Kink10: The central ions are located in the upper

string of ions. One of them crosses the crystal axis, whereas the other moves slightly

to the middle.

(b) Kink10 is transformed to a Kink8. The ions located next to the x-coordinate of

the CoM rearrange their position inside the crystalline structure, as both are finally

located at the lower ion chain.

Both structures are stable for long time for η = 0, so their configurations are separated

by a structural energy barrier, that prohibits the ions from crossing the crystal axis.

The prescence of the modulation η > 0 rises the energy inside the system that the ions

can cross the energy barrier and the kinks are transformed. In parallel laser cooling

damps the system that the motion of the ions is damped and they equilibrate to their

position given by the configurations of less energy.

Further numerical studies are neccessary to evaluate the amount of energy that is

neccessary to overcome the internal energy barrier to transform a Kink8 (Kink10) to

a Kink10 (Kink8). First estimations reveal a barrier height of less than 3 kB TD. We

have to set up a system of transformation rate equations, to derive quantitative results

from the numerical simulation comparable to the experimentally derived transformation

matrices.

Kinks can only change their structure to anti-kink configurations during melting the

crystalline structures and a recrystallization, a first order phase transition. As discussed

already above, this would lead in the case of a zigzag to at least in one half of the cases

to a kink containing structure. Such events would be listed as off-diagonal contributions

in the transformation matrix, in the row of the crystals initialized as zigzags.

Until now, I discuss the structural change of the crystalline configuration for a modu-

lation depth η = 1.30× 10−3. Data analysis is done for all different modulation depths

and is presented in the appendix A.1.
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Figure 5.5: Transformation dynamics of Kink8 in dependence on η:

Data evaluation is performed the same way as before, for details see fig. 5.1 and text.

We label the columns based on the six crystal configurations. The vertical axis gives

the modulation depth analysed in each of the rows. We select the dataset with Kink8

as initial configuration and study in dependency on the modulation depth the resulting

structure, recorded during step 4 in the experimental sequence.

Kink8 is first transferred to a Kink10 and for stronger modulation most Kink8 are

transformed to zigzag and zigzag crystals in similar ratios.

5.1.2 Resolving structural changes of an individual type of kink

The set of data is limited, so a statistical relevant analysis of each configuration on

more than one timestep is not possible. As numerical studies confirm, the crystal is

heated by the quadrupol modulation. Instead of analyzing several modulation dura-

tions tmod, we compare the four different modulation depth, as shown in fig. 5.2. As

discussed before, the structure survival probability decays exponentially, see fig. 4.3.

This approach can be interpreted as a study of a weak modulation for several times.

Data is processed and presented as described above. However, we select in this evalu-

ation one configuration of the kinks and compare the structure transformation proba-

bility for several modulation depths η, as shown in fig. 5.5. Columns are labeled with

the structures obtained in step 4. In vertical direction, the modulation depth increases

from η = 0 to η = 1.74× 10−3.

First, we discuss the experimental results of Kink8 to gain deeper insight in the trans-
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Figure 5.6: Decay dynamics of Kink8 in dependence on η:

Data evaluation is performed as discussed already in the context of fig. 5.5.

We select the dataset with Kink8 as initial configuration and studied in dependency of

the modulation depth (vertical axis) the resulting structure, recorded during step 4 in

the experimental sequence.

Kink8 is only transformed for weak modulation with a ratio of 1:4 to a Kink10. In-

creasing the modulation results to a transformation of 2:1 to a Zigzag as the preferred

configuration in comparisom with Zigzag.

formation process and study the appearance of different conformations. On the left

bottom Kink8 stays itself, as the modulation depth η = 0. Increasing the modulation

depth leads a transformation of Kink8 to other structures. The crystals are transferred

to a Kink10 configuration with a ratio of about 1:3. Further increasing the modulation,

the configuration Kink8 is transformed to Kink10 or is driven out of the crystal.

There are no contributions in the columns of kink, as discussed above.

Kinks are transformed in almost equal ratios to Zigzag / Zigzag and appear for all

modulation depths with similar probabilities within the errorbars. This analysis re-

veals that a Kink8 is transformed to a Kink10 and for stronger modulation leaves the

PN potential. As modulation depth corresponds to internal energy, the transformation

of kinks is relevant only for energies small compared to the depth of the Peierls-Nabarro

potential.

The data analysis is done for the Kink10 the same way, as shown in fig. A.4. The

structure survival rate of Kink10 decreases with an increase of the modulation depth.
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Figure 5.7: Decay dynamics of Kink10 in dependence on η:

Data evaluation is performed as discussed already in the context of fig. 5.5.

We select the dataset with Kink10 as initial configuration and studied in dependency

of the modulation depth the resulting structure, recorded during step 4 in the ex-

perimental sequence. As indicated by the bright entries of the array plot, Kink10 is

first transformed to a Kink8 with a ratio of 2:1. For stronger modulation it is further

transformed to a Zigzag.

The zigzags increase with similar ratios in the case of Kink8. Kink10 configurations

are transformed to Kink8, but not in a comparable amount as the Kink8 decays to a

Kink10.

The analysis of Kink8 and Kink10 configurations reveals a different dynamic compared

to kinks. We discuss the Kink8 first. Its decay dynamics for individual modulation

depths is shown in fig. 5.6. Configurations of kinks are not created during the decay, as

this is only possible in the case that the whole crystalline structure is dissolved. Weak

modulation leads to a transformation from Kink8 to Kink10 in one out of four cases.

However, the configurations created by this transformation get lost with an increase

in modulation. The configuration Kink8 is more stable, as they appear for stronger

modulation in the data. Further increasing the modulation to η = 1.74×10−3 all Kink8

are transformed to the zigzags.

The ratio of transformation of Kink8 to a Zigzag configuration is for all modulations

depths (η 6= 0) at least twice the ratio compared to Zigzag.
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Chapter 5. Transformation and dynamics of structural defects inside Coulomb crystals

Analyzing decay dynamics of the crystal configuration Kink10, we obtain a similar

picture as for Kink8 crystals. However, applying the modulation leads in first place to

a change in conformation from Kink10 to a Kink8 and decays similarly as Kink8 to its

preferred conformation, the Zigzag. Comparing kinks initialized as Kink10 and Kink8,

the ratio of 0.3 for a Kink10 to stay in the presence of the modulation η = 1.15× 10−3

a Kink10 is significant larger than the transformation ratio of 0.2 to be created from a

Kink8. So two third of the ratio listed as survival probability might be interpretated as

transformation ratio originally coming from the Kink8. Kink is transformed via Kink8

to the Zigzag configuration with twice the probability as for Zigzag.

The experimental data shows transformation processes, that might indicate the relative

conformational energy of each type of crystal. During the transformation the ions have

to overcome the energy barrier seperating the upper and the lower ion chain. The mod-

ulation of the trapping potential transfers energy to the bath of phonons via nonlinear

mode coupling and increases the internal energy of the crystal, thus a transformation

gets reasonable. In the experiment, laser cooling is present during the modulation.

The damping rate given by the laser cooling is similar to the phonon excitation, as

discussed in chapter 4. This is evidenced by the fact, that we record a second frame

in our experimental sequence (step 4) identifiable crystalline structure of different kink

configuration. The ions motional excitation has to be damped by laser cooling rate,

otherwise the ion crystal would not be stabilized in a well distinguishable configuration,

different to the inital one. The ratio of kinks that change their configuration during

the experimental sequence, enables us to estimate the relative conformational energy

of kinks and kinks: Kink10 is the structure of lower energy compared to Kink8, as it

is transferred to Kink10 and the inverse process is supressed. For kink configurations,

Kink8 is the energetic more favorable configuration compared to Kink10.

These transformation processes have to be studied further and this has to be supported

in detail by numerical studies. In addition, the influence of the trapping potential of

our Paul trap on the transformation dynamics has to be studied in detail by numerics.

It would be helpful to calculated the conformational energies and energy barriers an

ion has to overcome to move from the lower to the upper chain of the ion crystal, as

shown in fig. 5.4. Afterwards, we might set up a system of rate equations to describe

these processes in quantitative way and proof whether these explanations are realistic.

5.2 Experimental test on the symmetry of the Peierls-

Nabarro potential

We have labeled our conformations based on the position of the forth ion from the

right side. Camera frames reveal dynamics of reorganization in one half of the crystal,

see fig. 4.2 (a) (III). So a kink leaving the crystal to on side leads to a rearrangement
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Figure 5.8: The experimentally derived transport directionality (TD) for kinks and

kinks. TD is defined as a the difference of the probabilities to move to the right and

to the left normalized to the sum of all kinks driven out of the PN potential. If both

ratios are similar, TD will amount to zero. The color coding is related to the modulation

depth η × 103 ∈ {1.15, 1.30, 1.45, 1.74} by {green, black, blue, red}, as introduced in

fig. 4.3.

The TD of kink configurations is within 2σ in agreement with zero, so there is no

preference to leave the crystal to left or to right. Comparing Kink8 and Kink10, both

configurations show the same directionality within 2σ for each modulation depth.

In the case of kink, more defects leave the crystal to the right than to the left. Both

configurations have similar directionalities for a chosen modulation depth. A weak

modulation shows a stronger directionality than a strong modulation.

of the ions on this side. In the theory part, we discussed the spin chain analogon to

illustrate the domain wall. A pure zigzag is described by (· · · ↑↑↑↑↑↑↑↑ · · · ) and a

crystal with a domain wall by (· · · ↑↑↑↑↓↓↓↓ · · · ). If a kink leaves the crystal to the

right, it would result in: (· · · ↑↑↑↑↑↑↑↑ · · · ). But moving to the left would result in a

crystalline structure that appears like (· · · ↓↓↓↓↓↓↓↓ · · · ). In the first case, the labeling

of the conformation (Kink → Zigzag) is changed due to the loss of kink, in the latter

the position of the ions in the right part did not change, but the configuration is labeled

as a Zigzag. So we consider the resulting structure and derive the motional direction

of the kink.

The data analysis above focuses on the internal dynamics, how a kink is transformed

to another.

As discussed before, kinks and kinks are transformed to other configuration, but at

a certain time, they gain enough energy to overcome the barrier and they can escape

from the Peierls-Nabarro (PN) potential. In chapter 2.4.3 and 4.3.2, we discuss the

extension the Kramers’ model with a second barrier of same height to consider the

axial symmetry of the crystal. The transformation of the kinks to zigzags can be used

57



Chapter 5. Transformation and dynamics of structural defects inside Coulomb crystals
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Figure 5.9: Schematics of the structure dependency of the Peierls-Nabarro potential.

Kinks are confined inside their self induced trapping potential, the Peierls-Nabarro

potential. Kinks have a symmetric potential, whereas kinks have an asymmetric con-

finement along the x-axis of the crystal. However, this depends on higher order terms

in the trapping potential of the Paul trap, for details see text.

to confirm the extension of the PN potential.

In the following, we focus on the initialized kink structure and the final zigzag confor-

mations, to study the direction of motion of the structural defect. A kink moves to the

left or to the right in these crystalline structures. The set of data taken into account

is the same as in the chapter before, evaluating the data with an initialized kink, that

is transformed to one of the zigzags. We calculate the ratio of kinks vanishing to the

right and to the left separately. The ratio to the left is substracted from the ratio of

kinks moving to the right. The results are individually depicted for all four types of

kinks in fig. 5.8. The colors represent the modulation depth, as already introduced in

fig. 4.3. The errorbars represent binomial statistics based on the sample size.

Datapoints derived for kinks are located around zero, so the amount of kinks leaving

the crystal to the right is the same as to the left. There is no obvious dependency on

the modulation depth, as the green datapoint is within 2σ compatible with zero.

In the case of Kink, there is a preference leaving the crystral to the right. Thus, Kinks

counterpropagate the ~kL of the cooling laser and with this it can not be epxlained by

any effect due to light pressure. The amount of directionality depends on the modula-

tion depth η. Small η results to a strong directionality, whereas an increase of η leads

to a loss in directionality.

In the chapter before, we study the mean lifetime of the defects in dependency on the

modulation depth, see fig. 4.3. As numerical studies reveal, the mean lifetime is related

to the internal energy of the system. A weak modulation results to a small increase

of internal energy in comparism with the depth of the PN potential. As the damping

by the laser and the external modulation result to an equilibrium state, the difference

in the barrier height is resolved for weak modulation by the kink itself. Whereas a

strong modulation leads to fast transformation of the kink to a Zigzag. Similar to

kink configurations, the directionality of escape is not sensitive to being a Kink8 or a

Kink10. This similarity might be caused by the kink transformation mechanism, as

discussed in chapter 5.1. Kinks decay mostly via the Kink10 configuration, and for
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kink configurations the Kink8 seems to be relevant.

Based on the experimental data, we have a configuration dependency in the escape

directionality. We can interprete the experimental results in the context of the PN

potential. Kinks are trapped inside a symmetric potential, whereas the Kinks exploit

an assymmetric one, see fig, 5.9.

The crystalline structures, as depicted in fig. 3.4, are slightly assymmetric, so we eval-

uate the ions’ position and calculate the center of mass, as discussed in chapter 3.3. In

this way, we use our ion crystal to sense the potential of our linear Paul trap.

This derivation hints that we have to take higher order terms into account to describe

the trapping potential. With the help of the experimentally derived coefficients, we

can extend the numerical simulation by third and forth order terms in axial as well

as radial direction. We extend the trapping potential in the numerical simulation by

anharmonicities in the potential: λ1 x
3 + λ2 x

4 + λ3 y
3 + λ4 y

4.

With the help of simulation code, we derive the conformational energy at each timestep.

As we are interested in the transition state, almost at the top of the PN potential barrier,

we first have to move the kink to one side of the crystal and search for the outermost

stable position. This is done several times to ensure that the routine delivers similar

kink configuration and energies of the system. Comparing the energy for a configuration

with a kink to the side and a crystal with a kink at the center, we calculate the energy

difference and assume that this amounts to the energy a kink has to gain for an escape

from the PN potential. In this way, we can calculate each barrier for all types of kinks

with respect to the anharmonicities of the trapping potential. It gives a hint on the

preferred escape direction, as we assume that the kink leaves the crystal on the side of

the lower barrier. These first results, as shown in fig. 5.10, derived by this method are

in qualitative agreement with our experimental data.

Taking the eight barriers into account, we derive a mean average of 25.3 kB TD. The

numerical results represent the barrier height of each configuration of kink, see fig. 5.10.

The mean branching in the barrier heights related to the nonlinearities is in the order

of 2 kB TD, which is similar to the internal energy difference due to the modulation

depths. The calculation of escape rates and transformation ratio, as discussed above,

remains to be investigated.

Thus, kinks are sensitive to the higher order terms of the trapping potential and leave

the crystal for weak modulation in the direction of the lower energy barrier. For given

anharmonicities, we obtain a directionality in motion, which can be interpreted as

transport effect. In a next step, it is worth to test, whether we can invert this effect by

inverting the higher order terms of the Paul trap and drive for instance kink structures

to the left.
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Figure 5.10: Numerical study on the individual barrier heights for each type of kink

[62]. It is individually driven to the boarders of the crystalline structure and the internal

energy of the crystal is calculated. The energy of the crystalline structure with the kink

at the center is substracted. So we obtain the minimum energy minW of each barrier

as a function of the normalized prefactors λi of the third and forth order of the trapping

potential of the Paul trap. A nonlinearity of one indicates, that it amounts to the value

as obtained by fitting the ions’ position of the fluorescence images.

(a) Barrier height to the left (blue) and right (orange) of Kink10: The barrier to the

right is lower compared to the left.

(b) Barrier height to the left (blue) and right (orange) of Kink8: The barrier to the

right is lower than the left one.

(c) Barrier height to the left (blue) and right (orange) of Kink10: The right barrier is

below the left one.

(d) Barrier height to the left (blue) and right (orange) of Kink8: The barrier to the

left is in the order of 10TD lower than to the right.
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Chapter 6

Conclusion and outlook

In this thesis, I present resonant excitation, mean lifetimes and directed transport of

topological defects on timescales up to 300 ms. The eigenmode spectroscopy offers

an conformational selective way to excite crystalline structures containing a soliton.

Amplitude modulation of the quadrupol electric field of the RF trap rises the possibility

to transfer energy in a well controlled way to the crystal without melting it, as it is

shown by the lifetime measurements. A first estimate on the depth of the Peierls-

Nabarro potential is derived from these measurements and amounts to (24.2± 1.0) TD.

In addition we can experimentally resolve energetic favorable conformations inside the

trapping potential of our ion trap. The transport directionality of the solitons out of

the crystal might offer a new way to study internal dynamics in crystalline structures.

We will study in the next steps the inversion of the transport direction, as we tune the

anharmonicities with additional electric fields. So we expect, that there is a prefered

directionality for the Kinks and the Kinks loose their preference to the right.

In addition we proceed with longer timescales of quadrupol modulation and see whether

also in the case of weak modulation all kinks are driven out of the crystal.

As we have shown in [35], we are able to address single ions contributing the structural

defect inside the crystal. In the high frequency spectral range, there is an eigenmode

separated in frequency of tens of kHz from all the other normalmodes. This gap isolates

the vibrational eigenmode from the rest of the phonon bath and reduces the intermode

coupling.

A cooling of this localized vibrational eigenmode below Doppler temperature would rise

the possibility to study reheating processes in the crystal. So we can measure internal

mode coupling strength, which results in a study of system-bath interaction.

But to cool the eigenmode below the Doppler limit, we have first to install a Raman

cooling setup at the experiment. There is already a well established approach by A.

Friedenauer [71] for 25Mg+. But we can also combine the approach by B. Hemmerling

[73] in combination with a zeeman splitting of 24Mg+ ions [74].
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[4] J. Frenkel. Über die Wärmebewegung in festen und flüssigen Körpern. Zeitschrift

für Physik, 35(8-9):652–669, 1926.

[5] I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ultracold gases.

Rev. Mod. Phys., 80:885–964, 2008.

[6] Ch. Schneider, D. Porras, and T. Schaetz. Experimental quantum simulations of

many-body physics with trapped ions. Rep. Prog. Phys., 75(2):024401, 2012.
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Appendix A

Additional experimental data

In this thesis, I present four modulation depth and six types of crystals in chapter 5.

In the main part, I show characteristic figures, that are of interest for the discussion.

Here, I add the figures, that might be of further interest for the reader.

A.1 Dynamical studies on the conformation resolved struc-

ture survival probability

In chapter 5.1, I individually discuss the experimentally derived structure survival prob-

ability of each conformation. Here the figures are shown that we obtain for a modulation

depth η × 103= {1.15 (fig. A.1), 1.45 (fig. A.2) and 1.74 (fig. A.3)}.

In chapter 5.1.2, we discuss the individual decay mechanism of each type of kink. The

figure with the dynamics of Kink10 is shown in fig. A.4.
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Appendix A. Additional experimental data
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Figure A.1: Conformational dependency of structure survival probability with a mod-

ulation of η = 1.15× 10−3.

Data processing and labeling is identical to fig. 5.1. The initial crystalline structure

survives the modulation time with η = 1.15 as the same structure (labeled based on

fig. 3.4) with different probabilities. Kink8 ([Kink10) are transformed in a significant

way to Kink10 (Kink8). The other way round is happens not that often, but is also

present in the data. Only few kinks are heated out of the crystal. The zigzag crystals

are not influenced by the modulation.
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A.1. Dynamical studies on the conformation resolved structure survival probability
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Figure A.2: Conformational dependency of structure survival probability with a mod-

ulation of η = 1.45× 10−3.

Data processing and labeling is identical to fig. 5.1. The initial crystalline structure

survives the modulation time with η = 1.45 × 10−3 as the same structure (labeled

based on fig. 3.4). Most of the kinks are heated out of the Peierls-Nabarro potential.

In the case of kinks both types appear within the errorbars with equal ratios. For

kinks the Zigzag is more likely than the Zigzag. The zigzags are not influenced by the

modulation.
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Appendix A. Additional experimental data
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Figure A.3: Data processing and labeling is identical to fig. 5.1. The initial crystalline

structure survives the modulation time with η = 1.74×10−3 only in the case of zigzags

as the same structure (labeled based on fig. 3.4). Kink containing structures do not

survive the modulation duration for this amplitude. Kinks leave the crystal in both

direction, whereas kinks show a prefered direction to the right side.
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Figure A.4: Decay dynamics of Kink10:

The color scheme from blue via white and yellow to red, indicates high ratios in red

and small ones in blue. The numbers of each cell represent the ratio normalized to the

amount of studied crystals. Above and below are the bionomial errors.

We select the dataset with Kink8 as initial configuration and studied in dependency of

the modulation depth the resulting structure, recorded during step 4 in the experimental

sequence. We label the columns based on the six crystal configurations. The vertical

axis gives the modulation depth analysed in each of the rows.

As indicated by the bright entries of the array plot, Kink10 decays to zigzag crystals

in similar ratios. In contrast to the Kink8, as shown in fig. 5.5, there are only few

transformation to a Kink8 structure.

73


