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Zusammenfassung

Ein wichtiges Ziel der Robotik-Forschung ist die Entwicklung intelligenter Service-
Roboter, die uns verschiedenste Aufgaben in unserer alltäglichen Umgebung abnehmen
können. Um das zu erreichen, müssen Roboter in der Lage sein, ein breites Spektrum
von alltäglichen Gegenständen zu manipulieren und diese in gewünschte räumliche
Beziehungen zu bringen, zum Beispiel um Objekte in Regale einzuordnen oder einen
Tisch zum Abendessen zu decken. Um jedoch intelligent in häuslichen Umgebungen zu
operieren, müssen Roboter mit mehreren Herausforderungen umgehen können. Zum
Beispiel gibt es typischerweise mehrere gültige Möglichkeiten, alltägliche Aufgaben zu
erledigen, die von der Umgebung und den persönlichen Präferenzen der Endnutzer
abhängen. Darüber hinaus werden Roboter im Zusammenhang mit beliebigen Aufgaben
ständig neuen Objekten begegnen. Solche Faktoren machen es für Experten unmöglich,
einen Roboter mit ausreichendem Wissen auszustatten, um mit allen Situationen um-
zugehen. Stattdessen sollten Roboter in der Lage sein, ständig von ihren Nutzern zu
lernen und Aufgaben zu erledigen, ohne dabei ständig nachfragen zu müssen.

In dieser Arbeit stellen wir mehrere Beiträge vor, die es Robotern erlauben, mit diesen
Herausforderungen umzugehen, und Manipulationsfähigkeiten durch die Interaktion
mit ihren Nutzern und Umgebungen zu erwerben, um wünschenswerte Konfigurationen
von Objekten zu erreichen. Als erstes stellen wir einen neuartigen Ansatz vor, der auf
Recommender-Systemen basiert und es einem Roboter erlaubt, aus der Beobachtung
mehrerer Nutzer Muster für die Organisation von Objekten zu lernen und dadurch
persönliche Präferenzen für Nutzer vorherzusagen. Dies ermöglicht einem Roboter,
sein Verhalten an einen bestimmten Nutzer anzupassen, wenn er eine Aufgabe wie
beispielsweise das Aufräumen von Objekten ausführt. Zweitens schlagen wir neuartige
Techniken vor, um multimodale räumliche Bedingungen zu lernen, die notwendig sind,
um eine neue Manipulationsaktion aus einer kleinen Anzahl von Demonstrationen zu
modellieren und zu generalisieren. Wir stellen ein neuartiges Verfahren vor, das es
Robotern ermöglicht, mit Hilfe dieser Modelle sequentielle Manipulationsaufgaben durch
Beobachtungen eines Endnutzers zu lernen. Im Gegensatz zu bestehenden Paradigmen
und Verfahren erlauben unsere Beiträge einem Roboter, Lösungen von Aufgaben zu
improvisieren, indem er Aktionen sequenziert und erwünschte Ziele erreicht, ohne dass
der Nutzer einen expliziten Zielzustand spezifizieren muss. Schließlich stellen wir einen
neuen Ansatz für das Problem des lebenslangen Lernens von räumlichen Beziehungen
vor. Unsere Lösung basiert auf dem Lernen von Distanzmetriken und ermöglicht einem
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Roboter, seine bisherigen Kenntnisse über räumliche Beziehungen zwischen Objekten
zu nutzen, um neue Beziehungen zu lernen und sie über Objekte verschiedener Formen
und Größen zu verallgemeinern.
Wir haben unsere vorgestellten Ansätze mit realen Daten, die wir von verschiede-

nen Benutzern gesammelt haben, ausgiebig ausgewertet. Unsere Ergebnisse zeigen die
Wirksamkeit unserer Techniken beim Lernen und Erreichen von wünschenswerten Ob-
jektkonfigurationen im Rahmen alltäglicher Manipulationsaufgaben. Darüberhinaus
haben wir unsere Arbeit auf einem echten Roboter implementiert und getestet. Un-
sere Experimente demonstrieren die Anwendbarkeit unserer Systeme in realistischen
Szenarien und zeigen, dass unsere Algorithmen es Robotern ermöglichen, verschiedene
Manipulationsaufgaben erfolgreich zu lösen.
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Abstract
A key goal of robotics research is to develop intelligent service robots that are capable
of undertaking a variety of tasks in our everyday environments. To realize this, robots
should be equipped with the capabilities to reason about and manipulate a rich spectrum
of everyday objects to achieve desirable spatial relations using them, for example to
organize objects on shelves or set a table for dinner.
However, to operate intelligently in domestic environments, robots should overcome

several challenges. For example, there usually are several valid ways of attending to
everyday chores depending on the environment and the preferences of the end-users.
Moreover, robots will constantly encounter novel objects while attending to arbitrary
tasks. Such factors render it infeasible for an expert to pre-program a robot with sufficient
knowledge to handle all situations. Instead, robots should be able to continuously learn
from their users and attend to tasks without having to constantly query them.
In this thesis, we present several contributions that address these challenges and

enable robots to acquire manipulation skills to achieve desirable object configurations
by interacting with their users and environments. Firstly, we present a novel approach
based on recommender system theory that allows a robot to predict user preferences by
extracting patterns of organizing objects across several users. This enables the robot
to tailor its behavior to a specific user when solving a task such as organizing objects
in containers. Secondly, we propose novel techniques to infer the multi-modal spatial
constraints necessary to model and generalize a new manipulation action using a small
number of demonstrations. We build on these techniques and propose a novel approach
to learning sequential manipulation tasks from non-expert users. Our contribution goes
beyond existing paradigms by allowing the robot to sequence actions and improvise
feasible task solutions without requiring the user to provide an explicit goal state for
planning. Finally, we tackle the problem of lifelong learning of spatial relations and
generalizing them to objects of various shapes and sizes. For this, we propose a novel
approach based on distance metric learning to allow a robot to leverage its previous
knowledge of relations to efficiently learn and generalize new ones.

We extensively evaluate our proposed approaches using real-world data acquired from
different users, and demonstrate the effectiveness of our techniques in learning and
reproducing desirable object configurations in the context of everyday manipulation
tasks. Additionally, we evaluate our implementation on a real robot and demonstrate
the applicability of our solutions in realistic scenarios.
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1. Introduction

Robots are changing our lives. Automated machines and manipulators have revolu-
tionized our industries and boosted our economies by accurately and tirelessly welding,
assembling, and mass-producing numerous products we use in our daily lives, from our
smartphones to our cars. Our cars are becoming increasingly more capable of driving
themselves, promising a new era of safe transportation in which we waste less time
in traffic and reduce loss of life due to accidents caused by human errors. Addition-
ally, robots continue to play a large role in the health sector by assisting doctors in
complicated medical and surgical procedures.
To a certain extent, robots have also made their way to our daily lives at home

or work. The most ubiquitous example of this are vacuum-cleaning robots, currently
navigating the apartments of millions of people who rely on them to keep their floors
clean (iRobot Corp, 2017). Robots are also assisting warehouse workers in transporting
heavy items (Fetch Robotics, 2017) and have even started delivering pizzas to our
doorsteps (Domino’s Pizza Inc., 2017; Marble, 2017) and tooth paste to our hotel
rooms (Savioke, 2017).
Indeed, recent advancements in computer vision and perception, fueled by rapid

progress in deep learning techniques and an increasing availability of datasets, have
brought us closer than ever to robots that are capable of perceiving and understanding
everyday, unstructured environments (Lai et al., 2011a; Zhou et al., 2014; He et al., 2015;
Eitel et al., 2015). Nowadays, robots are also capable of constructing detailed (semantic)
maps of their environments and localizing themselves in them while safely negotiating
various terrains and structures such as stairs (Thrun et al., 2005; Nüchter and Hertzberg,
2008; Henry et al., 2010; Rusu, 2010; Oßwald et al., 2011; Hornung et al., 2013; Endres
et al., 2014; Feng et al., 2015). Moreover, advancements in motion planning, grasping,
and reinforcement learning have enabled robots to safely and reliably reach for, grasp,
and manipulate everyday objects (Ratliff et al., 2009; Dogar and Srinivasa, 2011; Sucan
et al., 2012; Prattichizzo and Trinkle, 2016; Kavraki and LaValle, 2016; Englert and
Toussaint, 2016; Levine et al., 2016).

Yet one domain in which robotics has not lived up to our aspirations so far is personal,
assistive robotics. While robots continue to explore the surface of Mars and the depths
of oceans, they have not yet found their way to our kitchens and living rooms beyond
specialized tasks such as vacuum-cleaning or as social companions (Jibo, 2017). For
decades, we have envisioned service robots that operate amongst us, improving the
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quality of our lives by assisting the elderly and disabled with their daily needs, and
undertaking a wide variety of mundane chores such as tidying up and cleaning. Whereas
robots continue to get better at folding and unfolding laundry (Miller et al., 2012;
Doumanoglou et al., 2014), cleaning (Hess et al., 2012), loading the dishwasher (Saxena
et al., 2008), operating appliances and cooking (Beetz et al., 2011; Sung et al., 2015),
and assisting the disabled with basic tasks such as shaving or drinking (Chen et al., 2012;
Schröer et al., 2015), such robots can typically handle a limited range of pre-specified
situations. There exist numerous challenges that have prevented the majority of such
robots from leaving the realms of research laboratories and science fiction.
To solve a complex task such as tidying up an apartment, robots require the means

to combine their sensory data, manipulation skills, and navigation modules to compute
feasible and safe plans based on the specific environment they are operating in. Today’s
high-level controllers address this by reasoning on both a high (symbolic) and a low
(geometric) level simultaneously. Integrated task and motion planners (Dornhege et al.,
2009; Plaku and Hager, 2010; Kaelbling and Lozano-Pérez, 2011, 2013; Srivastava et al.,
2014; Gharbi et al., 2015) have made it possible to efficiently compute high-level plans
based on symbolic state representations that abstract the continuous nature of the
world (e.g., pick up cup, go to kitchen, open cupboard, etc.), while ensuring the
feasibility of such plans on the geometric level (e.g., can the robot reach the cup or
go through the kitchen door?). Furthermore, knowledge-based, high-level controllers
enable robots to reason about the information they need to successfully solve such a
task (e.g., is this the correct cup?), and to handle sensor noise and unexpected events
(Petrick and Bacchus, 2002; Rockel et al., 2013; Lemaignan and Alami, 2013; Tenorth
and Beetz, 2013; Schwering et al., 2016; Gierse et al., 2016; Hofmann et al., 2016).
Despite being able to deal with complex domains, the vast majority of the above

planning paradigms share the same strong assumption: the user or an expert provides
the robot with a concrete, explicit goal to achieve before the robot can compute a plan for
solving the task. The most common form of such a goal is a logical expression specifying
which conditions should be satisfied (or negated) for the task to be successfully solved.
For example, such a goal expression can describe a specific cup that the robot should
fetch from the kitchen and place on the living room table, or the fact that all cups
should be moved back to the kitchen and placed in the dishwasher. Similarly, a robot
with the task of assembling a new chair should be provided with an exact geometric
description of what the chair should look like.

Whereas specifying such a goal could be straightforward or somehow feasible in some
cases, this does not apply to a vast portion of the everyday tasks we expect robots to
undertake. The main reason for this is the variations across domestic environments, and
hence the personalized and ever-changing needs and preferences of their users. Imagine,
in the not-too-distant future, a user who has just brought home some groceries and
placed them on her kitchen table. By pushing a button on her smartphone, the user
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then notifies her robot that it should put away the groceries by placing each item in its
correct place in the kitchen as she would prefer (e.g., refrigerator door, lower cupboard
shelf, kitchen counter, etc.). Unless the robot has encountered these exact same items
before, solving this task using a state-of-the-art planner would require the user to specify
the preferred location to place each item. Obviously, this is extremely inconvenient
for the user, and renders practical robotic applications infeasible. At the same time,
programming a robot with a set of rules that cater to all possible environments and
users is a daunting task for an expert. This is due to the fact that user preferences
often stem from factors such as culture, common sense, and personal taste, which are
hard to model or account for using a fixed set of rules. Additionally, the robot may
need to adapt the solution of the task based on practical considerations with respect to
the specific environment it is operating in such as the number of cupboards and other
containers in the kitchen.
The same challenges apply to a variety of tasks that we envision service robots to

perform in human-centered environments. There typically are numerous ways of solving
tasks such as sorting groceries or clothes, arranging books or personal items on shelves,
or setting a desk for work or a table for dinner. Rather than following an arbitrary
strategy when solving these tasks, several studies have revealed that people expect
service robots to attend to those tasks in a manner that corresponds to the personal
preferences of their end users (Cakmak and Takayama, 2013; Forlizzi and DiSalvo, 2006;
Dautenhahn et al., 2005; Pantofaru et al., 2012; Ray et al., 2008; Smarr et al., 2014; Cha
et al., 2015). For example, the results of Pantofaru et al. (2012) show that people exhibit
strong feelings with respect to robots organizing personal items, suggesting the need for
the robot to ask humans to make decisions about where to store them. At the same
time, Pantofaru et al. emphasize that “a robot should not continuously nag its owner.”
Instead, we seek to design service robots that are capable of intelligently inferring
the best way to behave in a specific environment autonomously by leveraging their
previous observations and experiences, while continuously augmenting and adapting
their knowledge as needed.

In addition to predicting the preferences of users for solving a particular task, robots
should be able to continuously learn new arbitrary skills and tasks from their users.
Everyday tasks such as organizing objects and tidying up are domains which involve
reasoning about desirable spatial relations between objects. A service robot attending to
such tasks has to manipulate objects in order to achieve arbitrary spatial configurations
that users prefer, e.g., stacking plates or boxes, aligning shoes in a row, or setting a desk
by placing the mouse diagonally with respect to the keyboard and the coffee mug behind
the monitor on the opposite side with respect to a photo frame. Moreover, robots should
be able to solve such tasks even if they do not have prior semantic knowledge about
the involved objects. At the same time, it is clear that we cannot program robots with
sufficient skills and knowledge to handle all potential tasks in domestic environments
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before deploying them.
In this context, learning from demonstrations has emerged as a key paradigm for

transferring knowledge from non-expert users to robots (Billard et al., 2008; Argall
et al., 2009). By observing demonstrations of a desirable behavior by a human teacher,
this approach enables a robot to learn a model of the demonstrated skills and to imitate
them on its own without requiring an expert to program them. However, for practical
applications, robots should be able to learn using a small number of demonstrations.
This often introduces ambiguity with respect to the intention of the teacher when
learning complex tasks. Consider, for example, a teacher demonstrating to the robot
how to arrange objects on the table in a desirable way. In the general case, the teacher
may demonstrate a few valid ways of manipulating and arranging the objects. Without
prior knowledge about the task, there typically are several ways of interpreting the
demonstrations, rendering it challenging to infer the latent intention of the teacher.
Did the teacher intend to place the cup at a specific location on the table, or are the
spatial constraints between the cup and the other objects more important for solving
the task? How can the robot reproduce the task when faced with new conditions such
as a different table height or if some of the objects are missing?

Clearly, adopting a single model for a task based on limited training data will signifi-
cantly limit the robot’s ability to generalize and solve it in new situations. Therefore,
it is important to endow robots with the flexibility to reason about multiple valid
interpretations of the teacher’s demonstrations and to continuously update the learned
models from new experiences. More importantly, robots should be able to adapt their
knowledge by improvising new solutions that align with the preferences of their users
and without requiring users to constantly specify how to deal with each new situation.
This is a key requirement for robots to be able to learn from non-expert users and then
autonomously infer the best way to behave based on the current state they observe.

Another challenge that service robots have to overcome in order to cope with everyday
tasks is the ability to generalize useful spatial relations they have learned to new objects.
For example, having learned to place a toy inside a basket or hang a clothes hanger in the
closet, a robot should be able to achieve the corresponding spatial relations using objects
of different shapes and sizes, e.g., placing a book in a drawer or hanging a key chain on
a rack, respectively. However, today’s robots are typically restricted to reasoning about
spatial relations that have been hand-coded by experts for specific domains. In such
cases, the expert provides the robot with a library of symbols that represent abstractions
of geometric states (e.g., inside) as well as the conditions in which these relations are
satisfied for a set of objects, e.g., a classifier mapping the poses of the objects to the
truth value of the symbol. This greatly limits the ability of a robot to solve tasks using
objects that are not accounted for in its prior knowledge. Additionally, our everyday
environments and tasks involve arbitrary spatial relations that cannot be accounted
for beforehand using expert knowledge. In fact, our world encompasses a continuous
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spectrum of spatial relations that do not easily lend themselves to being modeled using
a finite set of discrete concepts. It is therefore, crucial to endow robots with the ability
to continuously learn such relations from their users and environments and to imitate
them using new objects.
The above considerations and challenges facing service robots lead us to posing the

following research questions, which we address in this thesis:

• How can a robot autonomously predict the personalized preferences of its users
with respect to organizing objects, e.g., when tidying up?

• Given a small number of demonstrations of a new manipulation skill such as
grasping or placing an object, how can a robot infer several valid interpretations
of the demonstrations and autonomously choose the best way to reproduce the
skill in a new situation?

• Given a small number of demonstrations of a new task, how can a robot learn
models of the goal of the task and the involved skills? Accordingly, how can a
robot use this knowledge to improvise a suitable solution of the task without
querying the user with an explicit goal state to achieve?

• How can a robot generalize its knowledge about everyday spatial relations to new
objects of different sizes and shapes?

In the scope of this thesis, we tackle the problems raised by these questions and
provide solutions for them.

1.1. Key Contributions
In this thesis, we present several contributions to the field of robotics research in
general, and to the subfields of service robotics and learning manipulation skills from
demonstrations in particular. Our contributions address the challenges highlighted
above, bringing us closer to deploying intelligent service robots in human-centered
environments. The novel techniques we present in this thesis are all motivated by the
same underlying philosophy: i) domestic robots should consider the preferences of their
users: task solutions and even spatial relations are typically subjective concepts that
vary across users and environments, ii) to handle tasks in domestic environments, future
service robots should rely less on expert design as a source of knowledge, and more
on lifelong learning through interacting with their users and environments, and iii) we
should equip service robots with the ability to adapt their knowledge and improvise
solutions even when faced with new situations and without constantly querying their
users. By developing approaches that take the above points into consideration, we place
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the user at the center of robotic design. This is a crucial requirement for intelligent
service robots operating amongst humans in domestic environments.
Firstly, we present a novel technique for predicting user preferences with respect to

organizational tasks and based on the theory of recommender systems. This enables
robots to learn models of user preferences in a lifelong manner by observing various users
and environments, and to tailor tasks to individual users accordingly. Secondly, we tackle
the challenge of learning models of skills from a small number of ambiguous, non-expert
demonstrations. We present novel techniques that enable a robot to construct a flexible
model of a demonstrated skill such that it is able to reproduce it in previously unseen
situations. Thirdly, a key contribution of this thesis is a novel approach that allows a
robot to simultaneously learn models of task goals and skills from a small number of
demonstrations. We propose an algorithm that leverages these models to compute a
sequence of actions to reproduce the task by improvising solutions based on the current
state and without requiring the user to specify a goal explicitly. Finally, we propose a
novel approach based on distance metric learning that enables a robot to learn spatial
relations in a lifelong manner and generalize them to new objects. We briefly describe
these contributions in the following.

Predicting user preferences for organizational tasks In Chapter 3, we address the
challenge of predicting the preferences of users with respect to organizing objects in
domestic environments by presenting a novel approach based on collaborative filtering, a
popular paradigm from the field of recommender systems theory. Our contribution is the
first to bridge the gap between the worlds of personalized recommendations and service
robotics, thereby enabling robots to learn patterns of user preferences for the domain of
organizing objects in containers, e.g., shelves or boxes. We extract these patterns from
a corpus of observations of how users in different environments tend to organize objects.
Accordingly, and using only a few observations of a new environment or a small number
of queries to the user, we enable a service robot to predict the preferences of the user
and thus the best way to organize the objects for her based on the number of available
containers. To deal with novel objects for which we have no data, we propose a method
that complements standard collaborative filtering by leveraging information mined from
the Web. Our extensive evaluation using crowdsourcing data from over 1,200 users
demonstrates the effectiveness of our approach in predicting user preferences, as well as
its applicability on a real robot.

Learning action models from teacher demonstrations In Chapter 4, we address the
challenge of acquiring new skills from teacher demonstrations. In particular, we consider
the problem of learning new manipulation actions such as reaching for or placing an
object using a small number of teacher demonstrations. A key challenge in this context
is selecting an appropriate feature representation in terms of spatial constraints for
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modeling the new action. The majority of learning from demonstrations techniques rely
on an expert to specify the relevant features for the action (e.g., the pose of the robot’s
end-effector relative to an object) and focus on learning the action on the motion level
(i.e., how to imitate). In contrast to that, we rely on existing solutions to compute
feasible motions, and instead tackle the problem of inferring the best feature space for
modeling a new action (i.e., what to imitate). Specifically, we tackle learning the relevant
spatial constraints between the involved objects before and after applying the action.
This is crucial for successfully generalizing teacher demonstrations and for sequencing
several actions when planning. By learning these constraints, we eliminate the need
for an expert to specify the relevant spatial relations for every new action. Due to
the small number of demonstrations and the large number of potentially relevant (and
often contradictory) spatial constraints, we tackle the ambiguity in the demonstrations
from two perspectives. Firstly, we present a novel approach that leverages prior expert
knowledge about manipulation actions in general to bootstrap learning the new action.
We formulate this as a model selection problem in which the robot reasons about multiple
valid models of the action based on the demonstrations, and selects the most likely model
to reproduce the action based on the current situation. Secondly, we propose a novel
approach that does not require the availability of such prior expert knowledge about
actions. Instead, we overcome the ambiguity in the demonstrations in a data-driven
manner, and learn an implicit action model corresponding to a multi-modal distribution
of goals based on a mixture of possible interpretations of the teacher demonstrations.
Using our approaches, the robot avoids the need to commit to a single model of the
action beforehand, thereby achieving flexibility and generalization. Through experiments
with simulated and real-world data, we demonstrate the effectiveness of our method
and its ability to reproduce an action successfully in previously-unseen states.

Simultaneously learning task goal and action models from teacher demonstrations
The above approaches either focused on inferring a preferred goal state for a task while
relying on existing actions and planners to achieve it (Chapter 3) or focused on learning
new action models from teacher demonstrations (Chapter 4). In Chapter 5, we tackle
the problem of simultaneously learning models for the goals and actions associated with
a task from a small number of non-expert teacher demonstrations. We introduce teach
and improvise, a novel learning from demonstrations framework that enables a robot
to compute plans for solving a manipulation task by generalizing and sequencing the
learned actions. For this, we build our work on Monte Carlo tree search (MCTS), a
popular decision-making framework typically used for solving Markov Decision Processes
(MDPs). We leverage the implicit action models we introduce in Chapter 4 and extend
the standard MCTS tree structure to reason about multiple interpretations of each
action while searching for promising task solutions. Our technique does not assume any
semantic knowledge about the task such as a library of predefined symbols to model
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spatial relations. Instead, we adopt a continuous, multi-modal model of spatial relations
based on the relative poses between the objects. Moreover, a key contribution of our
approach is that, as opposed to standard planning paradigms, we do not require the
user to specify a goal state to achieve. Instead, we formulate solving the task as an
optimization problem in which the robot aims to maximize the likelihood of satisfying
the intention of the teacher with respect to relevant spatial relations between the objects.
This allows the robot to improvise physically feasible solutions in an anytime fashion,
i.e., based on the budget of iterations or time available for solving the task, and to
adapt these solutions based on the initial state. Finally, our approach enables the
robot to continuously improve its performance by practicing the task in simulation and
subsequently updating the learned action models without requiring additional teacher
demonstrations. Through extensive experiments in simulation and with a real robot, we
demonstrate the effectiveness and flexibility of our approach in improvising solutions
from arbitrary initial states and for a variety of tasks.

Generalizing Spatial Relations to New Objects The methods above either relied
on predefined spatial relations for solving a task (e.g., an object being on a shelf as
in Chapter 3), or modeled spatial relations as distributions defined over relative poses
between objects (Chapters 4 and 5). Those models are unable to generalize relations to
objects of varying shapes and sizes, thereby limiting the robot to solving tasks using
previously-known objects. We address this issue in Chapter 6 by first proposing a novel
descriptor that encodes a pairwise spatial relation based only on 3D models of the
objects and their poses, and without assuming prior semantic knowledge about the
objects or the relation. Using this feature representation, we then leverage large margin
nearest neighbor, a popular distance metric learning approach, to learn a metric that
captures the similarities between relations. For training, our approach relies only on
partially labeled data describing how similar pairs of relations are to each other, and
which the robot accumulates from non-expert users over time and in an interactive
manner. Using the learned metric, we bootstrap learning a new relation by relating
it to similar, previously-learned ones. Our approach reduces the problem of imitating
a relation to one of minimizing the distance between two scenes, even if they involve
objects of varying shapes and sizes. Our work goes beyond existing approaches that
learn a model (e.g., a classifier) for each relation individually, and that are therefore
limited to reasoning about a finite number of relations. Our extensive evaluation with
real-world data demonstrates the effectiveness of our method in reasoning about a
continuous spectrum of spatial relations and generalizing them to new objects.
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1.2. Publications
Parts of the research presented in this thesis have undergone international peer review.
In the following, we list the corresponding publications in chronological order.

• N. Abdo, L. Spinello, W. Burgard, and C. Stachniss. Inferring what to imitate
in manipulation actions by using a recommender system. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2014.

• N. Abdo, L. Spinello, C. Stachniss, and W. Burgard. Collaborative filtering for
learning user preferences for robotic tasks. In Workshop on Learning Plans with
Context from Human Signals at Robotics: Science and Systems (R:SS), 2014.

• N. Abdo, C. Stachniss, L. Spinello, and W. Burgard. Robot, Organize my
Shelves! Tidying up objects by predicting user preferences. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2015. Finalist for
best service robotics paper, best student paper, and best conference
paper awards.

• N. Abdo, C. Stachniss, L. Spinello, and W. Burgard. Organizing objects by
predicting user preferences through collaborative filtering. In the International
Journal of Robotics Research (IJRR), 35(13):1587–1608, 2016.

• O. Mees, N. Abdo, M. Mazuran, and W. Burgard. Metric learning for generalizing
spatial relations to new objects. Accepted for publication at the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2017.

Moreover, the following publications and preprints of the author of this thesis present
work related to perception as well as (combined) task and motion planning. They are,
however, outside the main focus of this thesis and therefore not covered (in detail). The
works concern motion planning in environments with deformable obstacles, learning
symbolic representations of manipulation actions, robust high-level reasoning and sensor
fusion, active perception, and the recognition of everyday objects.

• N. Abdo, H. Kretzschmar, and C. Stachniss. From low-level trajectory demonstra-
tions to symbolic actions for planning. In Proc. of the Workshop on Combining
Task and Motion Planning for Real-World Applications (TAMPRA) at the Inter-
national Conference on Automated Planning and Scheduling (ICAPS), 2012.

• N. Abdo, H. Kretzschmar, L. Spinello, and C. Stachniss. Learning manipulation
actions from a few demonstrations. In Proc. of the IEEE International Conference
on Robotics and Automation (ICRA), 2013.
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• T. Niemueller, N. Abdo, A. Hertle, G. Lakemeyer, W. Burgard, and B. Nebel.
Towards deliberative active perception using persistent memory. In Proc. of the
Workshop on AI-based Robotics at the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2013.

• C. Schwering, T. Niemueller, G. Lakemeyer, N. Abdo, and W. Burgard. Sensor
fusion in the epistemic situation calculus. In Proc. of the International Cognitive
Robotics Workshop (CogRob) at the European Conference on Artificial Intelligence
(ECAI), 2014.

• C. Schwering, T. Niemueller, G. Lakemeyer, N. Abdo, and W. Burgard. Sensor
fusion in the epistemic situation calculus. In Journal of Experimental & Theoretical
Artificial Intelligence, 28(5):871-887, 2016.

• P. Jund, N. Abdo, A. Eitel, and W. Burgard. The Freiburg groceries dataset.
arXiv preprint, arXiv:1611.05799, 2016.

1.3. Collaborations
This thesis covers work that involved collaborations with other researchers, which we
outline in the following.

• As supervisor of this thesis, Wolfram Burgard contributed to all parts through
scientific discussions.

• Chapter 3: The work on predicting user preferences using collaborative filtering
was supervised by Luciano Spinello and Cyrill Stachniss (see Abdo et al. (2014b,
2015, 2016) for the related publications).

• Chapter 4: The work on feature selection based on expert templates was supervised
by Luciano Spinello and Cyrill Stachniss (see Abdo et al. (2014a)). The work
on implicit action models was supervised by Gian Diego Tipaldi and supported
through discussions with Christian Dornhege.

• Chapter 5: The work on the teach-and-improvise framework was supervised by
Christian Dornhege and Gian Diego Tipaldi. Gian Diego Tipaldi contributed
during the early stages of this work to the formulation of the problem and with
ideas concerning the use of the implicit action models in the framework. Christian
Dornhege contributed to the teach-and-improvise algorithm through discussions
and his expertise in planning. Additionally, Christian Dornhege contributed his
expertise with the MoveIt! motion planning library for performing the feasibility
checks and for realizing the algorithm on the PR2 robot.
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• Chapter 6: The work on distance metric learning for generalizing spatial relations
is an extension of the Master’s thesis of Oier Mees, which the author of this
thesis co-supervised with Mladen Mazuran (see Mees et al. (2017)). The author
of this thesis and Mladen Mazuran contributed substantially to the ideas and
formulation of the metric learning problem and the novel descriptor for modeling
spatial relations. The author of this thesis and Mladen Mazuran also contributed
to data collection and the prototyping of the implementation of the descriptor.
The implementation and evaluation of the approach was realized by Oier Mees.
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2. Problem Formulation

In the course of this thesis, we consider problems that address
how a robot can learn to solve tasks in the context of human-
centered environments. We tackle these problems by proposing
novel techniques that enable a robot to learn models of actions,
tasks, and spatial relations between objects. Our work is flexi-
ble in that it is able to leverage different sources of information
for learning. On the one hand, we address learning in settings
in which the robot has no prior knowledge about the task. In
this context, we propose techniques that are able to learn and
generalize based on a small number of examples provided by non-
expert teachers. On the other hand, given expert knowledge or
large amounts of data gathered across different users and environ-
ments, we propose novel methods that enable a robot to use this
knowledge to bootstrap learning new models. In this chapter, we
introduce the concepts and definitions needed to formalize and
present our work in the subsequent chapters. Moreover, we con-
cretely define the problems we address in this thesis and highlight
where they lie on the spectrum of assumptions and prior knowl-
edge available to the robot.

2.1. Preliminaries and Notation
In this work, we consider the problem of enabling a robot to solve tasks in domestic
environments. Specifically, we focus on goal-oriented manipulation tasks in which the
aim of the robot is to achieve arrangements of objects to satisfy spatial constraints that
are desirable by its users. In this section, we introduce the components involved in such
tasks, as well as the corresponding notation that we adopt throughout this work.

2.1.1. Objects and State Representation
We consider tasks in which a robot has to change the state of the environment by
manipulating objects in order to achieve a desirable goal state. Each task is associated
with a non-empty set of objects O = {o1, . . . , o|O|} that are used to define the state s and
to model desirable goals. In this work, we assume the robot is able to identify objects
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of interest using existing perception techniques, which allow it to map each perceived
object instance in the scene to a unique id and to estimate its pose. Additionally,
the techniques we present in this thesis are able to leverage different sources of prior
knowledge about the objects. For example, the robot can use prior semantic knowledge
(e.g., the type of an object) as well as geometric information (e.g., the shape or 3D model
of an object) in order to generalize a learned task to new objects. In the general case,
we rely on a function go(ok, s) to represent an object ok in a state s, i.e., go(ok, s) = ok.
An example of ok is a point cloud of ok or an id based on its semantic type, e.g., cup1.

We define the state st at time t in terms of the poses of all objects expressed relative
to a stationary world frame. We describe the pose of an object ok ∈ O in SE(3) as a
homogeneous transformation matrix Tk, composed of a 3D translation vector tk and
3D rotation matrix Rk, i.e.,

Tk =
[
Rk tk
0 1

]
. (2.1)

We denote the pose of object ok at time t by Tk(t). Furthermore, we use lTk to denote
the pose of object ok relative to ol. Similarly, lTk(t) denotes the pose of ok relative to ol
at time t. Moreover, in this work, we consider learning goal-oriented tasks and actions
in which the robot manipulates objects to achieve desirable goals. Therefore, we do
not consider the complete joint state of the robot as part of our state representation.
Instead, we only consider the pose Tee(t) and joint configuration oee(t) (e.g., gripper
opening) of its end-effector oee as part of our state space.
Finally, note that the dimensionality of the state depends on the number of objects

in the environment. In general, we aim for flexible approaches that allow for solving a
task using only a subset of the objects O typically associated with it, e.g., if some of
the objects are missing. Therefore, we denote the set of objects that exist in state st as
O(st) ⊆ O.

2.1.2. Pairwise Relations
To model the goals of actions and tasks in terms of desirable object configurations, we
rely on spatial relations between the involved objects. Specifically, we adopt pairwise
relations between objects as the building blocks for such models. We denote the pair
consisting of objects ok and ol as p(k,l) = {ok, ol}, and the set of pairs over all objects in
O as P . Moreover, we denote the set of pairs over the subset of objects O(st) existing
in state st as P(st) ⊆ P .

We represent a pairwise spatial relation between two objects ok and ol using a relation
function fR that maps the pair p(k,l) and the current state s to a K-dimensional feature
representation r(k,l) of the relation, i.e., fR(p(k,l), s) = r(k,l) ∈ RK .

In general, one can design or learn the function fR to model the relation between ok
and ol on different levels of abstraction, see Figure 2.1. For instance, on a semantic
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Figure 2.1.: Five examples of spatial relations between pairs of objects. In this thesis,
we adopt pairwise relations as building blocks for learning models of actions
and tasks to allow a robot to achieve object configurations that are desired
by its users. For this, we either leverage existing expert models of relations
in the form of high-level predicates (e.g., inside), or aim to model relations
on a low, geometric level in the absence of prior semantic knowledge about
the objects. Additionally, we address the problem of generalizing a learned
spatial relation to objects of various shapes and sizes.

level, an expert can provide the robot with a hand-crafted model of fR based on a
set of K predefined relations (e.g., on top, inside, on the same shelf, etc.), such
that each dimension of r(k,l) captures whether the corresponding relation is satisfied
or not in the state s (or the degree to which it is satisfied). In the absence of such
prior knowledge, one could model fR to describe the spatial relation between ok and ol
based on their relative pose in s, i.e., a 6D representation of lTk. Moreover, given 3D
models of the objects, one can learn a function fR to compute a feature representation
of spatial relations that additionally encodes the geometries of the objects. In this work,
we adopt different models of fR depending on the domain and the corresponding prior
knowledge available to the robot for modeling actions and tasks.

2.1.3. Point-to-Point Actions

In order to achieve a desirable goal state of a task, the robot relies on executing actions
to change the state of the environment. In this work, we consider learning so-called
point-to-point, goal-directed actions from demonstrations, which can be modeled in
terms of the pairwise relations between the objects before and after applying an action.
We aim to learn the desirable goal states when applying the action (i.e., what to imitate),
and not the trajectory or motion demonstrated by the teacher (i.e., how to imitate). For
example, the goal of an action could be to move a cup on a tray to a desirable position
next to a plate on the table. We want to enable the robot to infer likely goal poses for
the cup as a result of executing this action, irrespective of the specific trajectory needed
to achieve this goal. Having inferred a goal state to achieve, we assume the existence of
a suitable motion planning technique or a controller that is capable of computing and
executing the corresponding motion.
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Figure 2.2.: We consider learning point-to-point actions from teacher demonstrations,
and which we model in terms of the state before and after applying the
action. Top: a random state that we use to illustrate the action of moving
the box of cereals. Bottom left: we aim to learn a distribution of state
affordability for this action. This allows us to reason about initial states that
afford applying the action with a high likelihood, e.g., states in which the
end-effector is in a grasping pose relative to the box. Bottom right: we learn
a goal probability distribution of the action that captures multiple modes
of the intention of the teacher with respect to desirable spatial relations
between the objects after applying the action, e.g., placing the box around
the bowl to set the table.

We denote the set of actions that the robot can execute by A = {a(1), . . . , a(|A|)}. We
aim to learn actions from non-expert teacher demonstrations. In this context, we assume
the teacher does not provide the robot with the conditions necessary for the action to
succeed, e.g., an object must be grasped by the robot before it can move it. Instead,
we assume this knowledge is implicit in the demonstrations and adopt a data-driven
approach to construct a model p(st | a) of the starting states st in which the teacher
applied the action a. We refer to this distribution as the state affordability, which
captures the likelihood that a starting state st affords applying the action based on
the demonstrations. We use this concept to formulate constraints that ensure that the
robot only applies an action in states with high affordability to increase the likelihood
of the action succeeding as intended by the teacher, see Figure 2.2-bottom left.

Additionally, we associate each action a ∈ A with a probability distribution (transition
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Figure 2.3.: Top: examples of goal states for everyday tasks such as organizing objects
on shelves, setting a table, or tidying up a desk. In this thesis, we aim to
enable a robot to learn and solve manipulation tasks that can be modeled
in terms of spatial relations between the involved objects. Bottom: rather
than requiring the user to provide the robot with an explicit goal state to
achieve when solving a task, we aim to enable the robot to infer valid ways
of solving a task based on the initial state and thus to improvise feasible
solutions that align with the preferences of the user.

function) p(st+1 | st, a) over the goal state st+1 at time t+ 1 as a result of applying the
action starting in state st at time t, see Figure 2.2-bottom right. In general, we consider
multi-modal distributions that capture multiple valid goals of the action with respect to
the spatial relations between the objects in st+1.

2.1.4. Task Goals

As mentioned above, the aim of our work is to enable a robot to solve tasks by
manipulating objects in the environment in order to achieve desirable goal states in
human-centered environments. In the general case, there is typically more than one valid
way of solving a task (e.g., arranging objects on shelves), the choice of which depends on
the starting state, the environment, and the preferences of the users. Accordingly, rather
than specifying a fixed goal state that the robot should always achieve, we associate
each task with an intention likelihood function Ψ : S → R that models the intended
goal of the task, where S is the set of all possible states. In other words, Ψ(s) captures
how well a goal state s aligns with or satisfies the goals of the task.
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In some cases, a user or an expert could specify Ψ as a formula expressing which
conditions (spatial relations) have to be satisfied for solving the task (e.g., all objects
on the kitchen table should be moved to the sink). However, in this work, we focus on
enabling a robot to learn arbitrary tasks even if it is infeasible to provide it with an
explicit goal state. Instead, we enable the robot to leverage demonstrations by a user
(or several users) to construct a model of Ψ for the task. For instance, by observing
examples of goal states, the robot learns which spatial relations between the objects
are (more) important for solving the task, see Figure 2.3. Ideally, this model should
enable the robot to generalize previously-seen goal states to new situations while still
satisfying the preferences of its users.

2.2. Solving a Task
Given the components defined above, we now formally describe what we mean by solving
a task. We consider tasks whose goals can be expressed in terms of the spatial relations
between the involved objects. The robot achieves such goals by applying actions from
a set of actions associated with the task. Therefore, we define a task T as a tuple
T = 〈O,A,Ψ〉, where O and A are respectively the objects and actions associated with
the task, and Ψ is the intention likelihood function modeling its desirable goal states.
Given an initial state s0, solving the task is the problem of computing a plan Π

consisting of a sequence of T actions and intermediate states to achieve a desirable goal
state sT , i.e., Π =

(
〈a0, s1〉, . . . , 〈aT−1, sT 〉

)
, see Figure 2.4. Each step 〈at, st+1〉 of the

plan consists of an action at ∈ A applied in state st at time t to reach state st+1.
Given a specific goal state sT to achieve, this corresponds to solving a (task and

motion) planning problem. However, in this work, we aim to enable a robot to solve
tasks without requiring its users to provide an explicit goal state to achieve in each case.
Instead, the robot should autonomously infer a desirable goal state sT to achieve based
on the model Ψ. Specifically, we formulate an optimization problem, the aim of which
is to compute a plan Π that trades off Ψ(sT ) with the cost (length) of the solution:

maximize
T∈N≥0
a0:T−1∈A

s1:T

Ψ(sT )−
T−1∑
t=0

cost(at),

subject to st ∈ Sf ∀t,

(2.2)

where a0:T−1 and s1:T are the plan actions and states, respectively. Note that in general,
the length T of the plan is unknown beforehand. Moreover, cost(at) denotes the cost
of applying an action, which we incorporate in order to bias the solution towards less
expensive plans. Furthermore, Sf denotes the set of all physically feasible states. The
corresponding constraints ensure that each step of the computed plan is feasible. This
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s0 s1

. . .

sT

a0

Figure 2.4.: We formulate solving a task starting in an initial state s0 as an optimization
problem, the goal of which is to compute a plan consisting of a sequence
of actions (a0, . . . , aT−1) and the corresponding goal states (s1, . . . , sT ) to
achieve a goal state sT that maximizes the intention likelihood Ψ(sT )
modeling the intention or preference of a user for the task. Rather than
querying the user for the best goal state sT to achieve in each case, we aim
to enable the robot to autonomously infer a valid goal based on s0.

allows the robot to adapt the solution of the task based on the initial state and what is
physically possible in reality. In the next section, we briefly describe these constraints
and how we enforce them in our work.

State Feasibility Whereas full-fledged feasibility checks (e.g., based on physics simu-
lations) are outside the scope of this thesis, we consider three types of constraints in
our work as shown in Figure 2.5. Firstly, while we allow objects (including the robot’s
end-effector) to come in contact with each other (e.g., when stacking blocks or grasping
a cup), we rely on collision checks to reject solutions in which two objects penetrate each
other (e.g., attempting to place two objects in the same place). Secondly, we consider
stability constraints that ensure that each object is in contact with a supporting surface
beneath it such as a table or shelf, i.e., no object is “floating”. We approximate this
using a heuristic that ensures an overlap between the 2D convex hulls of objects (when
projecting their 3D models to the x-y plane) and by checking the smallest distance
between objects in the z (gravity) direction. Thirdly, we consider inverse kinematic
constraints to ensure that the robot is able to reach for and place objects based on its
degrees of freedom and joint limits. To check all feasibility constraints in our work, we
implemented tools that leverage the collision detection capabilities and inverse kinematic
solvers of the MoveIt! library (Sucan and Chitta, 2013) using 3D mesh models of all
objects and a joint model of the robot. Finally, as we consider point-to-point actions
in our work, the above constraints ensure state feasibility for every step of a plan. To
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Figure 2.5.: We consider feasibility constraints to allow the robot to reason about
its ability to realize task solutions in practice. Left: we allow contacts
between objects (including the end-effector), for example when stacking or
grasping objects. However, we check collisions to reject states in which two
objects penetrate each other (e.g., placing two objects in the same place).
Additionally, we consider stability constraints to ensure that each object is
supported by another (e.g., a table) to reject states in which an object is
“floating”. Right: for a desirable end-effector pose, we ensure that there is a
feasible inverse kinematics solution based on the robot’s degrees of freedom.
Additionally, with the exception of the end-effector, we disallow collisions
between the robot and the rest of the environment.

compute and execute feasible manipulation trajectories between consecutive plan states,
we rely on existing motion planners and controllers.

2.3. Problem Variants
Eq. (2.2) above describes the main problem we address in this thesis in a general form.
To solve a task T from a starting state s0, we need both action models A and a model
Ψ of desirable goal states for the task. Such models can either be provided by an
expert, specified by the user, or learned by the robot from teacher demonstrations or by
observing its environment over time. Moreover, we define these models over relations
between the objects O involved in the task. Depending on the context, the robot can
leverage different representations of the objects, both on semantic and geometric levels,
in order to learn the relevant task models.

Therefore, in this section, we briefly discuss different variants of this problem. Each
variant considers a different set of assumptions with respect to which of the above
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2.3. Problem Variants

Table 2.1.: Different variants of the general problem in Section 2.2. Green cells indicate
components that are assumed to be known a-priori, blue cells indicate models
we aim to learn, and gray cells represent irrelevant components.

object
models

relation
models

action
models

task goal
model

semantic and
geometric

symbolic
predicates

planning
operators goal formula P1

semantic and
geometric

learned from
a teacher

learned from
a teacher goal formula P2

semantic and
geometric

symbolic
predicates

planning
operators

lifelong,
continual
learning

P3

geometric learned from
a teacher

learned from
a teacher

learned from
a teacher P4

geometric
lifelong,
continual
learning

P5

components are known a-priori, and which are learned or inferred by the robot. We
identify five such cases P1-P5 in Table 2.1, where green cells indicate components that
are assumed to be known a-priori, blue cells indicate that we aim to learn or infer models
of the corresponding components, and gray cells correspond to irrelevant components.
We now briefly explain these cases and highlight which of them we focus on and

tackle in the course of this thesis.

• P1: This corresponds to the case where the robot is provided with action models
in the form of planning operators, as a well as an explicit goal state to achieve in
the form of a goal formula. Both the planning operators and the goal are typically
expressed in terms of logical predicates that model relations between the objects.
Additionally, the robot is equipped with object models that describe both their
geometric properties (e.g., 3D models) and semantics (e.g., type). This problem is
a form of combined task and motion planning, in which the robot computes a plan
that satisfies the specified high-level goal while ensuring that the intermediate
actions are physically feasible, i.e., by planning trajectories on a geometric level
(Dornhege et al., 2009; Kaelbling and Lozano-Pérez, 2013; Srivastava et al., 2014;
Gharbi et al., 2015).

• P2: Whereas P1 focuses on planning to achieve a specified goal state given
existing action models, in this work we are interested in enabling the robot to
learn new tasks from its users. One aspect of this is to equip the robot with
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techniques to learn new action models and relations between the objects from
teacher demonstrations. P2 describes this problem variant, in which the robot
learns actions and relevant relations between the objects on symbolic and geometric
levels of abstraction from teacher demonstrations. This then allows the robot to
leverage existing state-of-the-art planning techniques in order to compute plans
leading to a specified goal state, as in the case of P1. There exists a large body
of works addressing learning action models from teacher demonstrations on both
geometric and symbolic levels of abstraction (Billard et al., 2008; Argall et al.,
2009). In general, such techniques focus on learning the action on the motion
level to reproduce trajectories demonstrated by a teacher and achieve a specified
goal. In contrast to that, in Chapter 4, we tackle learning the relevant spatial
constraints between objects before and after applying an action. In this way, we
eliminate the need for an expert to provide a suitable model or set of features to
use for learning each new action. We propose flexible models that enable a robot
to reason about multiple modes in the intention of the teacher with respect to
action goals, allowing the robot to generalize an action to new situations.

• P3: Rather than relying on the user to specify the goal of the task, this case
considers learning a model Ψ of task goals from training data. Examples of this
are tasks in which the robot has to arrange objects according to the preferences
of its users. Here, it is impractical to expect an expert to pre-program the robot
with a fixed goal model that should apply to all users. Instead, we aim at learning
personalized goal models using training data we collect from different users and
environments, e.g., preferred object arrangements. Additionally, the robot should
be able to continuously update this model in a lifelong manner given more data.
We address this problem in Chapter 3, where we present an approach that leverages
collaborative filtering to learn user preferences with respect to object arrangements.
Here, we assume that the robot is equipped with prior knowledge about the objects,
as well as with action models that enable it to use existing planning techniques to
solve the task given the inferred goal state.

• P4: Whereas P2 considered learning action models from a teacher in order
to solve the task given a specified goal state, here we address the problem of
additionally inferring the intended task goal model Ψ from teacher demonstrations.
By observing demonstrations of how the non-expert teacher solves the tasks, we
aim to simultaneously learn models of the actions as well as the overall goal of the
task. As opposed to classical planning given an explicit goal state, this enables
the robot to improvise desirable goal states sT (i.e., maximizing Ψ(sT )) without
requiring the user to explicitly specify them for each starting state s0. In this
problem setting, we leverage the action models introduced in Chapter 4 to tackle
the inherent ambiguity in the teacher demonstrations and provide the robot with
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great flexibility when solving the task. Finally, we address how the robot can
improve the learned action models by practicing to solve the task in simulation,
such that it is able to better generalize the teacher demonstrations and compute
more efficient plans. Accordingly, in Chapter 5 we present a novel method for
solving a task by sequencing actions to achieve desirable goal states by learning
from a small number of ambiguous demonstrations.

• P5: Finally, cases P1-P4 relied on either known relation models fR (e.g., predi-
cates defined by an expert), or on modeling relations based on the relative poses
between the objects. However, this limits the robot’s ability to generalize relations
(and hence action and task goals) to new objects of previously unseen shapes and
sizes. Therefore, here we focus on learning relation functions fR that capture
the underlying meaning of a pairwise relation irrespective of the object models.
One way to address this is to provide the robot with labeled training examples of
relations in order to learn a model (e.g., a classifier) that generalizes a relation
to different objects (Rosman and Ramamoorthy, 2011; Kulick et al., 2013; Fichtl
et al., 2014). However, this typically requires a large number of training examples
that need to be labeled (e.g., on top, inside, etc.) by an expert or a user. More
importantly, this requires learning a model for each such new relation we aim
to teach the robot, which can be infeasible. Instead, we address this problem
in Chapter 6 from the perspective of metric learning, where we propose to learn a
feature representation fR that results in small distances between similar relations
and large distances between dissimilar ones. We learn such a model using only a
soft labeling of training data in the form of how similar two examples are. This
enables the robot to reason on a continuous spectrum of spatial relations and to
generalize a newly-demonstrated relation to different objects.
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3. Organizing Objects by Predicting
User Preferences via Collaborative
Filtering

In this chapter, we address the problem of predicting user pref-
erences with respect to task goals. Specifically, we consider orga-
nizational tasks in domestic environments such as tidying up ob-
jects by arranging them on different shelves. In this context, dif-
ferent users typically have their own preferences, many of which
depend on a variety of factors including personal taste, cultural
background, or common sense. This makes it challenging for an
expert to pre-program a robot to accommodate all potential users.
At the same time, it is impractical for robots to constantly query
users about the preferred way to attend to such tasks. We tackle
this challenge by presenting a novel approach based on collabora-
tive filtering, a popular paradigm from the field of recommender
systems theory. Our approach enables robots to learn patterns of
user preferences with respect to organizing objects in containers
such as boxes or shelves. We extract these patterns from a corpus
of data from different users, which we gather using crowdsourc-
ing. To deal with novel objects for which we have no data, we pro-
pose a method that complements standard collaborative filtering
by leveraging information mined from the Web. When solving a
tidy-up task, we first predict pairwise object preferences of the
user. Then, we subdivide the objects in containers by modeling a
spectral clustering problem. Our solution is easy to update, does
not require complex modeling, and improves with the amount of
user data. We evaluate our approach using crowdsourcing data
from over 1,200 users and demonstrate its effectiveness for two
tidy-up scenarios. Additionally, we show that a real robot can
reliably predict user preferences using our approach.

One of the key goals of robotics is to develop autonomous service robots that assist
humans in their everyday life. One envisions smart robots that can undertake a variety of

25



3. Organizing Objects by Predicting User Preferences via Collaborative Filtering

Figure 3.1.: Left: different ways of organizing a set of grocery objects on shelves according
to varying user preferences. Right: our approach enables a service robot
to tidy up objects by predicting and following such subjective preferences.
We predict pairwise preferences between objects with respect to placing
them on the same shelf. We then assign objects to different shelves by
maximally satisfying these preferences while considering the number of
shelves available for solving the task.

tasks including tidying up, cleaning, and attending to the needs of disabled people. For
performing such tasks effectively, each user should teach her robot how she likes those
tasks to be performed. However, learning user preferences is an intricate problem. In a
home scenario, for example, each user has a preferred way of sorting and storing groceries
and kitchenware items in different shelves or containers. Many of our preferences stem
from factors such as personal taste, cultural background, or common sense, which are
hard to formulate or model a priori. At the same time, it is highly impractical for the
robot to constantly query users about their preferences.

In this work, we provide a novel solution to the problem of learning user preferences
for arranging objects in tidy-up tasks. Our method is based on the framework of
collaborative filtering, which is a popular paradigm from the data-mining community.
Collaborative filtering is generally used for learning user preferences in a wide variety of
practical applications including suggesting movies on Netflix or products on Amazon.
Our method predicts user preferences of pairwise object arrangements based on partially-
known preferences, and then computes the best subdivision of objects in shelves or
boxes. It is able to encode multiple user preferences for each object and does not require
that all user preferences are specified for all object-pairs. Our approach is even able
to make predictions when novel objects, unknown to previous users, are presented to
the robot. For this, we combine collaborative filtering with a mixture of experts that
compute similarities between objects by using object hierarchies. These hierarchies
consist of product categories downloaded from online shops, supermarkets, etc. Finally,
we organize objects in different containers by finding object groups that maximally
satisfy the predicted pairwise constraints. For this, we solve a minimum k-cut problem
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by efficiently applying self-tuning spectral clustering. Our prediction model is easy to
update and simultaneously offers the possibility for lifelong learning and improvement.

To discover patterns in user preferences, we first bootstrap our learning by collecting
many user preferences, e.g., through crowdsourcing surveys. Using this data, we learn a
model for object-pair preferences for a certain tidy-up task. This enables the robot to
infer the preferences of a new user based only on partial knowledge of her preferences,
e.g., a few observations of the environment or a small number of interactions with her.
Accordingly, the robot is able to predict the unknown object-pair preferences of the new
user, and sort the objects (see Figure 3.1).
Our approach is the first to bridge the gap between the worlds of personalized

recommendations and service robotics, thereby enabling robots to learn patterns of user
preferences with respect to organizing objects in a lifelong manner. Concretely, we make
the following contributions in this chapter:

• We model the problem of organizing objects in different containers using the
framework of collaborative filtering for predicting personalized preferences.

• We present an approach by which a service robot can easily learn the preferences
of a new user using observations from the environment and a model of preferences
learned from several previous users.

• We present a novel method to complement standard collaborative filtering tech-
niques by leveraging information from the Web in cases where there is not enough
ratings to learn a model.

• We present an extensive experimental evaluation using crowdsourcing data that
demonstrates that our approach is suitable for lifelong learning of user preferences
with respect to organizing objects.

Our evaluation covers two relevant tidy-up scenarios, arranging toys in different boxes
and grocery items on shelves, as well as a real-robot experiment. For training and
evaluation, we collected preferences from over 1,200 users through different surveys.
Finally, in this chapter, we focus on the problem of inferring the best goal state, i.e.,
object arrangement, given the preferences of a user and the available containers in the
environment. To achieve these goals in our real-robot experiments, we rely on existing
actions and solutions for task and motion planning.

3.1. Problem Formulation
In this section, we formalize the problem we address in this chapter. Our goal is to
enable a service robot to reason about the preferred way to sort a set of objects into
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containers when tidying up in the environment of a specific user. To achieve this,
we aim at predicting the preferences of the user with respect to grouping different
objects together. As the types of objects (e.g., grocery items) and number of containers
(e.g., shelves) typically vary across environments, we aim to learn user preferences for
object-object combinations, rather than directly learning an association between an
object and a specific container. The problem of predicting an object-object preference
for a user closely resembles that of suggesting products to customers based on their
tastes. This problem is widely addressed by employing recommender systems, commonly
used by websites and online stores such as Amazon and Netflix. The key idea there is
to learn to make recommendations based on the purchasing histories of different users
collaboratively. In the same spirit of reasoning about products and users, our method
relates pairs of objects to users. We predict a rating that captures the preference of a
user for an object-pair based on two sources of information: i) known preferences of the
user, e.g., how the user has previously organized other objects, and ii) how other users
have organized these objects in their environments.

3.1.1. State Representation
More formally, let O = {o1, o2, . . . , o|O|} be a set of objects, each belonging to a known
class, e.g., book, coffee, stapler, etc. In this work, we rely on existing perception
techniques to recognize objects, identify their types, and estimate their poses in the
scene. Additionally, we define P = {p1, p2, . . . , pM} as the set of all pairs of objects
from O. Moreover, we assume to have a finite number of containers C = {c1, c2, . . . , cC},
which the robot can use to organize the objects, e.g., shelves, drawers, boxes, etc. In
this work, we assume the robot is provided with a map of the environment such that
the poses and geometric models of the containers are known. Additionally, we do not
address the problem of identifying sub-containers that the robot could use to organize
the objects (e.g., shelves within a cupboard). Instead, we assume that each provided
container in itself corresponds to a unique location in the environment that the robot
can use, e.g., a specific shelf in a cabinet or a drawer in the kitchen.
Furthermore, we model each container as a set which could be ∅ or could contain a

subset of O. Accordingly, we use o1 ∈ c2 to denote the fact that object o1 is assigned
to container c2. In this chapter, we do not address learning models of spatial relations
between objects and containers and instead rely on prior expert knowledge to provide
this information. For example, this could be in the form of predicates such as in(o1, c2)
or on(o1, c2) in the case of c2 being a box or a shelf, respectively. We assume the expert
models of such spatial relations enable the robot to map object poses to the truth values
of those predicates based on the known poses and geometric properties of the containers.

Accordingly, we express the state s in terms of the poses of all objects and containers
in the environment (see Section 2.1.1). Together with the provided spatial relations
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between objects and containers (e.g., on(o1, c2)), this enables us to reason about which
objects are assigned to which containers in the current state. To organize objects, we
aim to satisfy user preferences with respect to assigning pairs of objects to the same
container. Therefore, for a pair pi = {ok, ol}, we adopt a binary relation function
fR(pi, s) ∈ {0, 1} that is 1 if objects ok and ol are assigned to the same container and 0
otherwise, i.e.,

fR(pi, s) =

1 if ∃cm ∈ C s.t. ok, ol ∈ cm
0 if ∃cm, cn ∈ C s.t. ok ∈ cm, ol ∈ cn,m 6= n.

(3.1)

3.1.2. Users and Ratings
Given a set of users U = {u1, . . . , uN}, we aim to assign a rating rij to a pair pi = {ok, ol}
to denote the preference of user uj for placing ok and ol in the same container. Each
rating takes a value between 0 and 1, where 0 means that the user prefers to place the
objects of the corresponding pair into separate containers, and 1 means that the user
prefers placing them together. For convenience, we use r(ok, ol) to denote the rating
for the pair consisting of objects ok and ol when the user is clear from the context.
Accordingly, we construct a ratings matrix R of size M ×N , where the rows correspond
to the elements in P and the columns to the users, see Figure 3.2. We use R to denote
the number of known ratings in R. Note that typically, R � MN , i.e., R is missing
most of its entries. This is due to the fact that each user typically “rates” only a small
subset of object-pairs. In this work, we denote the set of indices of object-pairs that
have been rated by user uj by Ij ⊆ {1, . . . ,M}. Analogously, Ji ⊆ {1, . . . , N} is the
set of indices of users who have rated object-pair pi.

3.1.3. The Problem
Given a set of objects O′ ⊆ O that the robot has to sort for a specific user uj, and the
set of containers C available for the robot to complete this task, our goal is twofold.
Firstly, we aim to predict the unknown preference r̂ij of the user for each pair pi in the
set of object-pairs P ′ over O′. Secondly, our goal is to assign each object to a specific
container such that the predicted user preferences are maximally satisfied. For this, we
adopt a function Ψ : s→ R that captures the degree to which an object arrangement,
modeled by the state s, satisfies the predicted preferences r̂ij of the user:

Ψ(s) = −
∑
pi∈P ′

(
r̂ij − fR(pi, s)

)2
. (3.2)

Ideally, Ψ(s) is 0 if we are able to compute an arrangement such that all object-pair
preferences are satisfied, e.g., fR(pi, s) = 1 if r̂ij = 1 and fR(pi, s) = 0 if r̂ij = 0.
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Figure 3.2.: The ratings matrix R. Each entry rij corresponds to the rating of a user uj
for an object-pair pi = {ok, ol}, a value between 0 and 1 denoting whether
the two objects should be placed in the same container or not. Our goal is
to predict the missing ratings denoted by * and thus compute a partitioning
of the objects in different containers that satisfies the user preferences.

However, given the limited number of containers available for solving the task and the
often contradictory pairwise preferences, it is typically not possible to satisfy all user
preferences. Accordingly, we seek a feasible goal state s∗ that maximizes Ψ(s):

s∗ = arg max
s∈Sf

Ψ(s), (3.3)

where Sf is the set of all feasible states (see Section 2.2). Note that the solution
of Eq. (3.3) is a state modeled in terms of the poses of all objects O′. However, in this
chapter, we focus on computing (semantically) preferred task goals in terms of assigning
objects to containers, and not on a low level in terms of object poses. Therefore, we first
leverage our model of relations (Eq. (3.1)) to abstract away from the object poses and
determine which pairs of objects should be placed in the same container. Accordingly,
we rely on existing task and motion planning solutions to sample a feasible state s∗ that
corresponds to this assignment and to compute a plan that achieves it.

3.2. Collaborative Filtering for Predicting Pairwise
Object Preferences

In this section, we describe how we learn models of user preferences from the ratings
matrix R. Accordingly, we address the problem of predicting the ratings of a new user
for pairs of objects based on partial knowledge of the user’s preferences.
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3.2.1. Collaborative Learning of User Preferences
We aim to discover latent patterns in the ratings matrix R that enable us to make
predictions about the preferences of users. For this, we leverage a popular technique
from the field of factorization-based collaborative filtering (Koren, 2008, 2010). First,
we decompose R into a bias matrix B and a residual ratings matrix R:

R = B + R. (3.4)

Each entry bij in B is formulated as follows:

bij = µ+ bi + bj, (3.5)

where µ is a global bias term, bi is the bias of the pair pi, and bj is the bias of user uj.
We compute µ as the mean rating over all users and object-pairs in R, i.e.,

µ = 1
R

M∑
i=1

∑
j∈Ji

rij. (3.6)

The bias bj describes how high or low a certain user uj tends to rate object-pairs
compared to the average user. Similarly, bi captures the tendency of a pair pi to receive
high or low ratings. For example, the pair {salt, pepper} generally tends to receive high
ratings compared to the pair {candy, vinegar}.
After removing the bias, the residual ratings matrix R captures the fine, subjective

user preferences that we aim to learn by factorizing the matrix to uncover latent
patterns. Due to the large amount of missing ratings in R, it is infeasible to apply
classical factorization techniques such as singular value decomposition. Instead, we
learn a data-driven factorization based only on the known entries in R. This approach
has been shown to lead to better results in matrix completion or factorization problems
compared to imputation of the missing values (Canny, 2002; Koren, 2008). We express
R as the product of an object-pair factors matrix V>, and a user factors matrix W
of sizes M × K and K × N , respectively. Each column vi of V is a K-dimensional
factors vector corresponding to an object-pair pi. Similarly, each column wj in W is a
K-dimensional factors vector associated with a user uj . We compute the residual rating
rij as the dot product of the factor vectors for object-pair pi and user uj, i.e.,

rij = v>i ·wj. (3.7)

The vectors v and w are low-dimensional projections capturing latent characteristics of
the pairs and users, respectively. Users who are close to each other in that space are
similar with respect to some property. For example, some users could prefer to group
objects together based on their shape, whereas others do so based on their function.
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Accordingly, our prediction r̂ij for the rating of an object-pair pi by a user uj is
expressed as

r̂ij = bij + rij

= µ+ bi + bj + v>i ·wj.
(3.8)

We learn the biases and factor vectors from all available ratings in R by formulating
an optimization problem. The goal is to minimize the difference between the observed
ratings rij made by users and the predictions r̂ij of the system over all known ratings.
Let the error associated with rating rij be

eij = rij − (µ+ bi + bj + v>i ·wj). (3.9)

We jointly learn the biases and factors that minimize the error over all known ratings,
i.e.,

b∗,V,W = arg min
b∗,V,W

M∑
i=1

∑
j∈Ji

(eij)2 + λ

2 (b2
i + b2

j + ‖vi‖2 + ‖wj‖2), (3.10)

where b∗ denotes all object-pair and user biases and λ is a regularizer. To do so, we use
L-BFGS optimization with a random initialization for all variables (Nocedal, 1980). At
every step of the optimization, we update the value of each variable based on the error
gradient with respect to that variable, which we derive from Eq. (3.10).

3.2.2. Probing and Predicting for New Users
In this section, we describe our approach for predicting the preferences of a new user
based on the factorization model learned in the previous section. After learning the
biases and factor vectors for all users and object-pairs (Eq. (3.10)), we can use Eq. (3.8)
to predict the requested rating r̂ij of a user uj for an object-pair pi that she has not
rated before. However, this implies that we have already learned the bias bj and factors
vector wj associated with that user. In other words, at least one entry in the j-th
column of R should be known. The set of known preferences for a certain user, used
for learning her model, are sometimes referred to as probes in the recommender system
literature. In this work, we use probing to refer to the process of eliciting knowledge
about a new user.

3.2.2.1. Probing

In the context of a tidy-up service robot, we envision two strategies to do so. In the
first probing approach, the robot infers some preferences of the user based on how she
has previously sorted objects in the containers C in the environment. By detecting the
objects it encounters there, the robot can infer the probe rating for a certain object-pair
based on whether the two objects are in the same container or not in the observed
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Figure 3.3.: A simple illustration of the probing process by which the robot can infer
some preferences for a new user. We set a rating of 0 for a pair of objects
that the robot observes to be in different containers, and a rating of 1 for
those in the same container. Using these ratings, we learn a model of the
user to predict her preferences for other object-pairs.

state s. In other words, we set rij = fR(pi, s) for all object-pairs pi that the robot
observes in the environment (Eq. (3.1)) and fill the corresponding entries in the user’s
column with the inferred ratings. Figure 3.3 illustrates this with an example.
In the second probing approach, we rely on actively querying the user about her

preferences for a set of object-pairs. For this, we rely on simple, out-of-the-box user
interface solutions such as a voice- or text-based interface through which the user can
provide ratings. For instance, the robot would query the user for her preference with
respect to placing sugar and salt in the same container and set the corresponding rating
to 1 if that is what she said. We assume the robot is able to query the user with a
maximum of P probe ratings. One naive approach is to acquire probes by randomly
querying the user about P object-pairs. However, we aim at making accurate predictions
with as few probes as possible. Thus, we propose an efficient strategy based on insights
into the factorization of Section 3.2.1. The columns of the matrix V can be seen as
a low dimensional projection of the rating matrix capturing the similarities between
object-pairs; object-pairs that are close in that space tend to be treated similarly by
users. We therefore propose to cluster the columns of V in P groups, randomly select one
column as a representative from each cluster, and query the user about the associated
object-pair. For clustering, we use k-means with P clusters (MacQueen (1967)). In this
way, the selected queries to the users capture the complete spectrum of preferences.

The nature of a collaborative filtering system allows us to continuously add probe
ratings for a user in the ratings matrix by observing how objects are organized in the
environment or by active querying as needed. This results in a flexible, lifelong learning
approach that enables the robot to continuously update its knowledge about the user.

3.2.2.2. Inferring a New User’s Preferences

After acquiring probes for the new user, we can append her ratings column to the ratings
matrix and learn her biases and factors vector along with those of all object-pairs and
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other users in the system as in Eq. (3.10). In practice, we can avoid re-learning the
model for all users and object-pairs known in the system. Note that the computation of
the factorization will require more time as the number of known ratings in R increases or
for higher values of K. Here, we propose a more efficient technique suitable for inferring
a new user’s preferences given a previously learned factorization. After learning with
all object-pairs and users in the database, we assume that all object-pair biases bi and
factor vectors V are fixed, and can be used to model the preferences of new users. This
allows us to formulate a smaller problem to learn the bias bj and factors vector wj of
the new user uj based on the probe ratings we have for this user, i.e.,

bj,wj = arg min
bj ,wj

∑
i∈Ij

(eij)2 + λ

2 (b2
j + ‖wj‖2),

= arg min
bj ,wj

∑
i∈Ij

(
rij − (µ+ bi + bj + v>i ·wj)

)2
+ λ

2 (b2
j + ‖wj‖2).

(3.11)

Note that, in general, the inclusion of the ratings of a new user in R will affect the biases
and factor vectors of the object-pairs. Whereas Eq. (3.10) represents the batch learning
problem to update the model for all users and object-pairs, Eq. (3.11) assumes that the
object-pair biases and factor vectors have already been learned from a sufficiently-large
set of users that is representative of the new user. This is useful in a lifelong learning
scenario where the robot can efficiently make predictions for a new user when solving a
tidy-up task. With more knowledge accumulated about the new users, we can update
the factorization model and biases for all object-pairs and users in a batch manner.

3.3. Mixture of Experts for Predicting Preferences of
Unknown Objects

Thus far, we presented how our approach can make predictions for object-pairs that
are known to the robot. In this section, we introduce our approach for computing
predictions for an object-pair that no user has rated before, for example when the
robot has to handle an object o∗ that is not in O. There, we cannot rely on standard
collaborative filtering since we have not learned the similarity of the pair (through its
factors vector) to others in P .

Our idea is to leverage the known ratings in R as well as prior information about object
similarities that we mine from the internet. The latter consists of object hierarchies
provided by popular websites, including online supermarkets, stores, dictionaries, etc.
Figure 3.4 illustrates parts of two example experts for a grocery scenario. Formally,
rather than relying on one source of information, we adopt a mixture-of-experts approach
where each expert Ei makes use of a mined hierarchy that provides information about
similarities between different objects. The idea is to query the expert about the unknown
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Figure 3.4.: Two examples of expert hierarchies used to compute the semantic similarities
between object classes. For example, expert E1 on the left assigns a similarity
ν of 0.4 to the pair {canned corn, canned tuna}, whereas E2 on the right
assigns a similarity of 0.33 to the same pair, see Eq. (3.12).

object o∗ and retrieve all the object-pair preferences related to it. The hierarchy is a
graph or a tree where a node is an object and an edge represents an “is-a” relation.
When the robot is presented with a set of objects to organize that includes a new

object o∗, we first ignore object-pairs involving o∗ and follow our standard collaborative
filtering approach to estimate preferences for all other object-pairs, i.e., Eq. (3.8). To
make predictions for object-pairs related to the new object, we compute the similarity
ν of o∗ to other objects using the hierarchy graph of the expert. For that, we employ
the wup similarity (Wu and Palmer, 1994), a measure between 0 and 1 used to find
semantic similarities between concepts

νkl = depth(LCA(ok, ol))
0.5(depth(ok) + depth(ol))

, (3.12)

where depth(·) is the depth of a node, and LCA denotes the lowest common ancestor.
In the example of expert E1 in Figure 3.4-left, the lowest common ancestor of canned
corn and canned tuna is Canned Foods. Their wup similarity based on E1 and E2

(Figure 3.4-right) is 0.4 and 0.33, respectively. Note that in general, multiple paths
could exist between two object classes in the same expert hierarchy. For example, coffee
could be listed under both Beverages and Breakfast Foods. In such cases, we take the
path (LCA) that results in the highest wup measure for the queried pair.

Given this similarity measure, our idea is to use the known ratings of objects similar
to o∗ in order to predict the ratings related to it. For example, if salt is the new object,
we can predict a rating for {salt, coffee} by using the rating of {pepper , coffee} and
the similarity of salt to pepper . We compute the expert rating r̂Ei(o∗, ok) for the pair
{o∗, ok} as the sum of a baseline rating, taken as the similarity ν∗k, and a weighted
mean of the residual ratings for similar pairs, i.e.,

r̂Ei(o∗, ok) = ν∗k + η1
∑
l∈L

ν∗l (r(ol, ok)− νlk), (3.13)
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where η1 = 1/∑l∈L ν∗l is a normalizer, and L is the set of object indices such that the
user’s rating of pair {ol, ok} is known. In other words, we rely on previous preferences
of the user (r(ol, ok)) combined with the similarity measure extracted from the expert.
The expert hierarchy captures one strategy for organizing the objects by their similarity.
If this perfectly matches the preferences of the user, then the sum in Eq. (3.13) will be
zero, and we simply take the expert’s baseline ν∗k when predicting the missing rating.
Otherwise, we correct the baseline based on how much the similarity measure deviates
from the known ratings of the user.

Accordingly, each of our experts predicts a rating using its associated hierarchy. We
compute a final prediction r̂E∗ as a combined estimate of all the expert ratings:

r̂E∗(o∗, ok) = η2
∑
i

wi r̂Ei(o∗, ok), (3.14)

where wi ∈ [0, 1] represents the confidence of Ei, E∗ denotes the mixture of experts, and
η2 = 1/∑iwi is a normalizer. We compute the confidence of expert Ei as wi = exp(−ei),
where ei is the mean error in the expert predictions when performing a leave-one-out
cross-validation on the known ratings of the user as in Eq. (3.13). We set this score to
zero if it is below a threshold, which we empirically set to 0.6 in our work. Moreover,
we disregard the rating of an expert if o∗ cannot be found in its hierarchy, or if all
associated similarities ν∗l to any relevant object ol are smaller than a threshold νmin.

Note that in general, both objects in a new pair could have been previously encountered
by the robot separately, but no rating is known for them together. When retrieving
similar pairs to the new object-pair, we consider the similarities of both objects in
the pair to other objects. For example, we predict the rating of {sugar , coffee} by
considering the ratings of both {flour , coffee} and {sugar , tea}.

3.4. Grouping Objects Based on Predicted Preferences
The approach we presented so far in this chapter enables the robot to predict the missing
preferences of a user with respect to both known (Section 3.2) and novel (Section 3.3)
objects. In this section, we describe our approach for organizing the objects into the
available containers based on the predicted preferences.

Specifically, we aim to solve the problem in Section 3.1.3 by computing a goal state s∗

that maximizes the preference Ψ(s∗) of the user (Eq. (3.2)). For this, we first abstract
away from computing arrangements in terms of object poses and instead determine which
object-pairs pi should be grouped together (fR(pi, s∗) = 1) or separated (fR(pi, s∗) = 0).
In general, finding a partitioning of the objects such that all pairwise constraints are
satisfied is non-trivial. For example, the user may have a high preference for {pasta, rice}
and for {pasta, tomato sauce}, but a low preference for {rice, tomato sauce}. Therefore,
we aim at satisfying as many of the preference constraints as possible when grouping
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Figure 3.5.: Left: a graph depicting the relations between objects. Nodes depict objects
whereas the weights (different edge thickness) correspond to the pairwise
ratings. We partition the graph into subgraphs using spectral clustering.
Right: we assign objects in the same subgraph to the same container.

the objects into C ′ ≤ C containers, where C is the total number of containers the robot
can use.

We propose to tackle this problem from the perspective of graph partitioning. For this,
we first construct a weighted graph in which the nodes represent the objects and each
edge weight is the rating of the corresponding object-pair, see Figure 3.5. Accordingly,
we formulate the subdivision of objects into C ′ containers as a problem of partitioning
the graph into C ′ subgraphs such that the cut (the sum of the weights between the
subgraphs) over all pairs of subgraphs is minimized. This is called the minimum k-cut
problem (Goldschmidt and Hochbaum, 1994). Hence, we approximate the problem
in Eq. (3.3) by translating it into one that aims to minimize separating pairs of objects
for which the predicted rating is high.
However, finding the optimal partitioning of the graph into C ′ ≤ C subgraphs is

NP-hard. In practice, we efficiently solve this problem by using a spectral clustering
approach (Chung, 1996). The main idea is to partition the graph based on the eigenvec-
tors of its Laplacian matrix, L, as this captures the underlying connectivity of the graph.
Let C be the matrix whose columns are the first C ′ eigenvectors of L. We represent
each object by a row of the matrix C, i.e., a C ′-dimensional point, and apply k-means
clustering using C ′ clusters to get a final partitioning of the objects. To estimate the
best number of clusters, we implement a self-tuning heuristic which sets the number of
clusters C ′ based on the position of the biggest eigengap from the decomposition of L,
which typically indicates a reliable way to partition the graph based on the similarities
of its nodes. A good estimate for the eigengap position is the number of eigenvalues of
L that are approximately zero (von Luxburg, 2007; Zelnik-Manor and Perona, 2004). If
there exist less containers in the environment than this estimate, we use all C containers
for partitioning the objects.
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Finally, the computed partitioning of objects represents an object arrangement that
captures the preferences of the user on a semantic level. On the low, geometric level,
there typically are numerous goal states s∗ that achieve this partitioning. In this chapter,
we focus on predicting the semantic preferences of the user with respect to organizing
objects and not on computing the pose of each object in its target container. Therefore,
we rely on existing task and motion planners to compute a feasible state s∗ as well as a
plan for the robot to manipulate the objects and achieve the desired arrangement.

3.5. Experimental Evaluation
In this section, we present the experimental evaluation of our approach by testing it
on two tidy-up scenarios. We first demonstrate different aspects of our approach for
a simple scenario of organizing toys in boxes based on a small dataset with 15 survey
participants. In the second scenario, we address sorting grocery items on shelves, and
provide an extensive evaluation based on ratings we collected from over 1,200 users
using crowdsourcing. We demonstrate that: i) users indeed have different preferences
with respect to sorting objects when tidying up, ii) our approach can accurately predict
personal user preferences for organizing objects (Section 3.2.1), iii) we are able to
efficiently and accurately learn a model for a new user’s preferences based on previous
training users (Section 3.2.2), iv) our mixture of experts approach enables making
reasonable predictions for previously unknown objects (Section 3.3), v) our approach is
suitable for life-long learning of user preferences, improving with more knowledge about
different users, vi) our object partitioning approach based on spectral clustering can
handle conflicting pairwise preferences and is flexible with respect to the number of
available containers (Section 3.4), and vii) our approach is applicable on a real tidy-up
robot scenario.
In the following experiments, we evaluate our approach using two different methods

for acquiring probe ratings, and compare our results to different baselines. For that, we
use the following notation:

• CF refers to our collaborative filtering approach for learning user preferences, as
described in Section 3.2.1. When selecting probes to learn for a new user, we do
so by clustering the object-pairs based on their learned factor vectors in order to
query the user for a range of preferences, see Section 3.2.2.1.

• CF-rand selects probes randomly when learning for a new user and then uses our
collaborative filtering approach to make predictions as in Section 3.2.1.

• CF-rand′ selects probes randomly and learns the preferences of a new user based
on the object-pair biases and factor vectors learned from previous users as in Sec-
tion 3.2.2.2.
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Figure 3.6.: Left: we considered a scenario of organizing toys in boxes. Right: a
visualization of user tastes with respect to organizing toys, where we plot
the user factor vectors projected to the first two dimensions. For example,
the cluster U1 corresponds to users who grouped all building blocks together
in one box. Cluster U2 corresponds to users who separated building blocks
into standard bricks, car-shaped blocks, and miscellaneous.

• Baseline-I uses our probing approach as in CF, and then predicts each unknown
pair rating as the mean rating over all users who rated it.

• Baseline-II selects probes randomly and then predicts each unknown pair rating
as the mean rating over all users.

In all experiments, unless stated otherwise, we set the number of factor dimensions to
K = 3 and the regularizer to λ = 0.01. As part of our implementation of Eq. (3.10)
and Eq. (3.11), we rely on the L-BFGS implementation by Okazaki1. For our mixture-
of-experts approach, unless otherwise stated, we set the wup similarity threshold νmin

to 0.4, see Section 3.3. Finally, in this work, we assume that the robot is equipped
with suitable techniques for recognizing the objects of interest. In our experiments, we
relied on fiducial markers attached to the objects, and also implemented a classifier
that recognizes grocery items by matching visual features extracted from the scene to a
database of product images.

3.5.1. Task 1: Organizing Toys

In this experiment, we asked 15 people to sort 26 different toys in boxes, see Figure 3.6-
left. This included some plush toys, action figures, a ball, cars, a flashlight, books, as
well as different building blocks. Each participant could use up to six boxes to sort the
toys. Overall, four people used four boxes, seven people used five boxes, and four people
used all six available boxes to sort the toys.

1http://www.chokkan.org/software/liblbfgs/
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We collected these results in a ratings matrix with 15 user columns and 325 rows
representing all pairs of toys. Each entry in a user’s column is based on whether the user
placed the corresponding objects in the same box or not, see Section 3.2.2.1. For a fine
quantification, we used these ratings to bootstrap a larger ratings matrix representing
a noisy version of the preferences with 750 users. For this, we randomly selected 78
ratings out of 325 from each column. We repeated this operation 50 times for each user
and constructed a ratings matrix of size 325×750 where 76% of the ratings are missing.
As a first test, we computed a factorization of the ratings matrix as described

in Section 3.2.1. Figure 3.6-right shows the user factors W projected to the first two
dimensions, giving a visualization of the user tastes. For example, the cluster of factors
labeled U1 corresponds to users who grouped all building blocks together in one box.

3.5.1.1. Predicting User Preferences for Pairs of Toys

We evaluated our approach for predicting the preferences of the 15 participants by using
the partial ratings in the matrix we constructed above. For each of the participants, we
queried for the ratings of P probes. We hid all other ratings from the user’s column and
predicted them using the ratings matrix and our approach. We rounded each prediction
to the nearest integer on the rating scale [0,1] and compared it to the ground truth
ratings. We evaluated our results by computing the precision, recall, and F-score of our
predictions with respect to the two rating classes: no (r = 0), and yes (r = 1). We
set the number of probes to P = 50, 100, . . . , 300 known ratings, and repeated the
experiment 20 times for each value, selecting different probes in each run. The mean
F-scores of both rating classes, averaged over all runs are shown in Figure 3.7-left.
Both collaborative filtering techniques outperform baselines I and II. By employing

the same strategy for all users, these baselines are only able to make good predictions
for object-pairs that have a unimodal rating distribution over all users, and cannot
generalize to multiple tastes for the same object-pair, achieveing a mean F-score of
0.89. Using CF and CF-rand significantly improves the mean F-score to around 0.98
(two-sample t-test, p-value < 0.01).

3.5.1.2. Sorting Toys into Boxes

We evaluated our approach for grouping toys into different boxes based on the predicted
ratings in the previous experiment. For each user, we partitioned the objects into boxes
based on the probed and predicted ratings as described in Section 3.4, and compared
that to the original arrangement. We computed the success rate, i.e., the percentage
of cases where we achieve the same number and content of boxes, see Figure 3.7-right.
Our approach has a success rate of 80% at P = 300. As expected, the performance
improves with the number of known probe ratings. On the other hand, even with
P = 300 known ratings, Baseline-I and Baseline-II have a success rate of only 56% and
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Figure 3.7.: Left: the mean F-score of the predictions of our approach (CF) in the
toys scenario for different numbers of known probe ratings. We achieve an
F-score of 0.98-0.99 on average over all predicted ratings. CF-rand selects
probes randomly and then uses our approach for predicting. It is able to
achieve an F-score of 0.98. On the other hand, baselines I and II are unable
to adapt to multimodal user preferences. Right: the percentage of times
our approach is able to predict the correct arrangement of boxes for sorting
different toys. We outperform both baselines and improve with more probe
ratings as expected, reaching a success rate of 80%. By selecting probes
based on object-pair factor vectors, we are able to achieve higher success
rates with less probes compared to CF-rand.

58%, respectively. Although we cannot report any statistically-significant difference
in the performance between CF and CF-rand, our results indicate that CF achieves
higher success rates with fewer probes. For example, CF-rand requires at least 200
known probe ratings on average to achieve a success rate over 50%, compared to only
100 known probe ratings using CF. The probes chosen by our approach capture a more
useful range of object-pairs based on the distribution of their factor vectors, which is
precious information to distinguish a user’s taste.

3.5.1.3. Predicting Preferences for New Objects

We evaluated the ability of our approach to make predictions for object-pairs that no
user has rated before (Section 3.3). For each of the 26 toys, we removed all ratings
related to that toy from the ratings of the 15 participants. We predicted those pairs
using a mixture of three experts and the known ratings for the remaining toys. We
evaluated the F-scores of our predictions as before by averaging over both no and yes
ratings. We based our experts on the hierarchy of an online toy store (toysrus.com),
appended with three different hierarchies for sorting the building blocks (by size, color,

41



3. Organizing Objects by Predicting User Preferences via Collaborative Filtering

or function). The expert hierarchies contained between 165-178 nodes. For one of the
toys (flash light), our approach failed to make predictions since the experts found no
similarities to other toys in their hierarchy. For all other toys, we achieved an average
F-score of 0.91 and predicted the correct box to place a new toy 83% of the time.

3.5.2. Task 2: Organizing Groceries
In this scenario, we considered the problem of organizing different grocery items on
shelves. We collected data from over 1,200 users using a crowdsourcing service2, where
we considered a set of 22 common grocery item types, e.g., cans of beans, flour, tea, etc.
We asked each user about her preferences for a subset of pairs related to these objects.
For each pair, we asked the user if she would place the two objects together on the same
shelf. Each user could answer with no, maybe, or yes, which we translated to ratings of
0, 0.5, and 1, respectively. We aggregated the answers into a ratings matrix R of size
179×1,284. Each of the user columns contains between 28 and 36 known ratings, and
each of the 179 object-pairs was rated between 81 to 526 times. Overall, only around
16% of the matrix is filled with ratings, with the ratings distributed as in Table 3.1.
Due to the three possible ratings and the noise inherent to crowdsourcing surveys, the
ratings we obtained were largely multi-modal, see Figure 3.8 for some examples.

Table 3.1.: The distribution of ratings for the groceries scenario obtained through
crowdsourcing. Overall, we gathered 37,597 ratings about 179 object-pairs
from 1,284 users. For each object-pair, users indicated whether they would
place the two objects on the same shelf or not.

Rating Classes
no maybe yes

(r = 0) (r = 0.5) (r = 1)
Rating Percentage 47.9% 29.2% 22.9%

3.5.2.1. Predicting User Preferences for Pairs of Grocery Items

We show that our approach is able to accurately predict user ratings of object-pairs using
the data we gathered from crowdsourcing. For this, we tested our approach through 50
runs of cross-validation. In each run, we selected 50 user columns from R uniformly at
random, and queried them with P of their known ratings. We hid the remaining ratings
from the matrix and predicted them using our approach. We rounded each prediction to
the closest rating (no, maybe, yes) and evaluated our results by computing the precision,
recall, and F-score. Additionally, we compared the predictions of our approach (CF) to

2http://crowdflower.com/
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Figure 3.8.: Example distributions of the ratings given by users for different object-pairs.
Each user could answer with no (r = 0), maybe (r = 0.5), or yes (r = 1) to
indicate the preference for placing the two objects on the same shelf. The
three possible rating classes, as well as the noise inherent to crowdsourcing
surveys, resulted in multi-modal taste distributions. This highlights the
difficulty of manually designing rules to guide the robot when sorting objects
into different containers.

CF-rand, Baseline-I, and Baseline-II described above. The average F-scores over all runs
and rating classes are shown in Figure 3.9-left for P = 4, 8, . . . , 20. Both collaborative
filtering approaches significantly outperform the baseline approaches for all values of P
(two-sample t-test, p-value < 0.01), reaching a mean F-score of 0.63 at P = 20 known
probe ratings. Baseline-I and Baseline-II are only able to achieve an F-score of 0.45
by using the same rating of a pair for all users. Note that, by employing our probing
strategy, our technique is able to achieve an F-score of 0.6 with only 8 known probe
ratings. On the other hand, CF-rand needs to query a user for the ratings of at least 12
object-pairs on average to achieve the same performance.

For a closer look at the performance with respect to the three rating classes, we select
the results at P = 12 and show the per-class precision, recall, and F-score values for
both CF and Baseline-I in Figure 3.10-left. Note that the baseline achieves its highest
recall value for the maybe class since it uses the mean rating received by a specific
object-pair to predict its rating for new users. On the other hand, we are able to achieve
a similar recall (0.63) for the maybe class, as well as higher recall values for the no
and yes classes despite the large degree of noise and the variance in people preferences
in the training data. Our approach is able to achieve higher F-scores over all rating
classes compared to the baseline. Out of the three classes, we typically achieved better
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Figure 3.9.: Results for the scenario of organizing grocery items on different shelves.
Left: the mean F-score of our predictions averaged over all rating classes no,
maybe, and yes. Despite the large degree of multi-modality and noise in the
user preferences we collected through crowdsourcing, our approach (CF) is
able to achieve an F-score of 0.63 with 20 known probes and to outperform
the baselines. Moreover, our performance improves with more knowledge
about user preferences as expected. Right: the mean prediction error for
different numbers of probes, P . The baselines are unable to cope with
different modes of user preferences. They consistently result in a prediction
error of around 0.27 irrespective of the number of probes. On the other
hand, the mean prediction error using CF drops from 0.24 to 0.18 as P
increases from 4 to 20. Using our probing technique, we are able to achieve
a lower error with fewer probes compared to CF-rand.

scores for predicting the no class compared to maybe or yes. This is expected due
to the distribution of the training ratings we gathered from the crowdsourcing data,
see Table 3.1.
Additionally, we computed the prediction error (Eq. (3.9)) averaged over all experi-

mental runs for each value of P , see Figure 3.9-right. The baselines are unable to cope
with the different modes of user preferences, and consistently result in a prediction
error of around 0.27 irrespective of the number of probes. On the other hand, the mean
prediction error using CF and CF-rand drops from 0.24 to 0.18 and from 0.25 to 0.19 as
P increases from 4 to 20, respectively. Note that, using our probing technique, we are
able to achieve a lower error with fewer probes compared to CF-rand. This illustrates
the importance of selecting more intelligent queries for users to learn their preferences.
For a closer inspection of the prediction error, Figure 3.10-right shows the distribution of
the error for our approach and Baseline-I given P = 12 probes. Our approach achieves
an error of 0 for 64.62% of the predictions we make, compared to 49.78% only for
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Figure 3.10.: Left: the detailed evaluation for the groceries scenario with P = 12 probes.
Our approach results in higher F-scores across all rating classes compared
to the baseline. Figure 3.9-left shows the mean F-score for different values
of P . Right: the detailed distribution of the prediction errors using P = 12
probes, see Figure 3.9-right for the mean error for different values of P .

Baseline-I. Moreover, Baseline-I results in an absolute error of 0.5 (confusing no/yes
with maybe) for 47.60% of the predictions, compared to 32.88% only for our approach.
Finally, our approach and the baseline result in a prediction error of 1.0 (misclassifying
no as yes or vice versa) for only 2.49% and 2.62% of the predictions, respectively.

3.5.2.2. The Effect of the Number of Latent Dimensions

In this experiment, we investigated the effect of varying the number of latent dimensions
K used when learning the factorization of R on the quality of the learned model. We
repeated the experiment in Section 3.5.2.1 for K = 3, 6, 9, 15. For each setting of K, we
conducted 50 runs where, in each run, we selected 50 random user columns, queried
them for P random probe ratings, and learned the factorization in Section 3.2.1 to
predict the remaining ratings. As in the previous experiment, we evaluated the quality
of predicting the unknown ratings by computing the average F-score for the no, maybe,
and yes classes. Additionally, we computed the root mean square error (RMSE) for
reconstructing the known ratings in R used in training, i.e.,

RMSE =
√√√√ 1
R

∑
i

∑
j∈Ji

(
rij − (µ+ bi + bj + v>i ·wj)

)2
.

The results are shown in Figure 3.11. When using larger values of K, we are able
to reconstruct the known ratings in R with lower RMSE values. This is expected
since we are computing a more accurate approximation of R when factorizing it into
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Figure 3.11.: We learned different factorizations of the ratings matrix R by varying the
number of latent dimensions, K. For each learned model, we evaluated
the RMSE when reconstructing the known ratings in R (left), and the
F-score for predicting unknown ratings in R given different numbers of
probes P for randomly selected user columns (right). Learning factors
(V and W) with larger dimensionality leads to reconstructing the known
ratings in R with a higher fidelity (lower RMSE). However, this comes
at the expense of over-fitting to the known ratings for users, leading to
lower F-scores with larger K when predicting new ratings given the same
number of probes, P .

higher-dimensional matrices (V and W), thus capturing finer details in user preferences.
However, this results in over-fitting (lower F-scores) when predicting unknown ratings,
especially for lower values of P . In other words, for higher values of K, we need more
probes per user when predicting unknown ratings, since we need to learn more factors
for each user and object-pair. In general, the more known ratings we have in the user
columns, the more sophisticated are the models that we can afford to learn.

Furthermore, we found interesting similarities between object-pairs when inspecting
their learned biases and factor vectors. For example (for K = 3), users tend to rate
{coffee, honey} similarly to {tea, sugar} based on the similarity of their factor vec-
tors. Also, the closest pairs to {pasta, tomato sauce} included {pancakes,maple syrup}
and {cereal, honey}, suggesting that people often consider whether objects can be
used together or not. With respect to the biases (bi) learned, object-pairs with
the largest biases (rated above average) included {pepper , spices}, {pasta, rice} and
{cans of corn, cans of beans}. Examples of object-pairs with the lowest biases (rated be-
low average) included {candy, olive oil}, {cereal, vinegar}, and {cans of beans, cereals}.
On the other hand, object-pairs like {cans of corn, pasta} and {pancakes, honey} had
a bias of almost 0.
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Figure 3.12.: Left: we tested our approach for learning the preferences of new users
based on the object-pair biases and factors vectors learned from rating
matrices RN of different sizes. The results are shown for predicting with a
set of 100 test users based on P random probe ratings each, averaged over
50 runs. The performance improves with more training users as expected,
approaching the performance when training with all users, see Figure 3.9-
left for comparison. Given sufficient users in the robot’s database (≥ 750),
we can infer the preferences of new users by assuming fixed object-pair
biases and factor vectors without loss in prediction accuracy. Right: the
prediction error given P = 12 probe ratings when inferring the preferences
of test users given a previously-learned factorization (CF-rand′) compared
to batch learning with the training and test users combined (CF-rand). As
expected, the error for both approaches drops given more training users,
converging to 0.20 for R750 and R1000, i.e., approaching the performance
when training with the full R, see Figure 3.9-right.

3.5.2.3. Learning of New User Preferences

In this experiment, we show that our approach is able to learn the preferences of new
users based on the object-pair biases and factor vectors learned from previous users,
see Section 3.2.2.2. We conducted an experiment similar to that in Section 3.5.2.1 using
a random probing strategy. However, we first learned the biases bi and factor vectors
V using rating matrices R100, R250, . . . , R1000, corresponding to 100, 250, . . . , 1000
training users, respectively (Eq. (3.10)). We then used this model to compute the biases
bj and factor vectors W for a set of 100 (different) test users (Eq. (3.11)) and predict
their missing ratings. As before, we repeated this experiment for different values P of
known probe ratings for the test users. The prediction F-score averaged over 50 runs is
shown in Figure 3.12-left. As expected, the performance improves given more training
users for learning the bi’s and V, converging to the performance when training with all
user columns (compare to CF-rand in Figure 3.9-left). This validates that, given enough
users in the robot’s database, we can decouple learning a projection for the object-pairs
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Figure 3.13.: An application of our approach that demonstrates how our predictions for
a new user change based on how (probing) objects are arranged on the
shelves. Left: the camera image of the scene. To label the objects, we relied
on matching SIFT features from a database of images for the used products.
Right: a visualization of the predicted preferred arrangement of other
objects based on the corresponding learned model. Our method is able
to infer the user’s preferences by adapting to the perceived arrangement.
For example, by moving coffee from the shelf containing tea to the one
containing flour , the predicted arrangement separates cake mix and sugar
and moves them to different shelves.

from the problem of learning the new users’ biases and factor vectors.
Moreover, we compared the predictions using this approach (CF-rand′) to the standard

batch approach that first appends the 100 new user columns to the training matrix
and learns all biases and factor vectors collaboratively (CF-rand). The prediction error,
averaged over the 50 runs, is shown in Figure 3.12-right for P = 12 probe ratings. As
expected, the error for both approaches drops given more training users, converging
to 0.20 for R750 and R1000, i.e., approaching the performance when training with the
full R (compare to CF-rand in Figure 3.9-right for P = 12). Furthermore, with smaller
training matrices, we observed a slight advantage in performance for CF-rand′. In other
words, given fewer ratings, it might be advantageous to solve the smaller optimization
problem in Eq. (3.11).

Probing and Learning for New Users Using our method, the time for computing the
model for one new user (based on a previously-learned factorization) on a consumer-
grade notebook was 10-20ms on average, compared to about 4 s for batch learning with
all 1,248 user columns (K = 3). To demonstrate the applicability of our approach
(Section 3.2.2) in a real-world scenario, we conducted an experiment where we used
a Kinect camera to identify a set of objects that we placed on shelves and used the
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perceived pairwise ratings as probes for inferring a user’s preference. For perception, we
clustered the perceived point cloud to segment the objects, and relied on SIFT features
matching using a database of product images to label each object. We learned the
bias and factors vector for the user associated with this scene using the object-pairs
model that we learned with our crowdsourcing data. Accordingly, we predicted the
pairwise ratings related to objects that are not in the scene and computed the preferred
shelves to place them on. Figure 3.13 shows an example where the left image shows the
camera image of the scene, and the right image shows the corresponding computed shelf
arrangement in the rviz visualization environment. Due to physical space constraints,
we assume that each shelf is actually equally divided into two shelves.

3.5.2.4. Using a Mixture of Experts to Predict User Preferences

The purpose of this experiment is to evaluate our mixture-of-experts approach for
predicting user preferences. For this, we defined three experts by mining the hierarchies of
the groceries section of three large online stores (amazon.com, walmart.com, target.com).
This includes up to 550 different nodes in the object hierarchy.

Predicting Preferences for New Objects In this experiment, we demonstrate that
our mixture of experts approach is able to make reasonable predictions for previously
unrated objects. For each of the 22 grocery objects, we removed ratings related to
all of its pairs from R, such that the typical collaborative filtering approach cannot
make predictions related to that object. We used the mixture of experts to predict
those ratings using the remaining ratings in each column and the expert hierarchies as
explained in Section 3.3. The mean F-score over all users for three grocery objects is
shown in Figure 3.14-left, where the mixture of experts is denoted by E∗. We also show
the individual expert results (E1-E3) and their corresponding baseline predictions (E ′1-E ′3).
The baselines take only the wup similarity of two objects as the rating of the pair but
do not consider the ratings of similar pairs made by the same user as our approach does.
As we can see, the results of each individual expert outperform the baseline predictions.
Note that E∗ is able to overcome the shortcomings of the individual experts, as in the
case of rice. There, E1 is unable to find similarities between rice and any of the rated
objects, whereas E2 and E3 are able to relate it to pasta in their hierarchies. For two of
the objects (bread and candy), we were unable to make any predictions, as none of the
experts found similarities between them and other rated objects. For all other objects,
we achieve an average F-score of 0.61.

Predicting Ratings for New Object-Pairs In this experiment, we demonstrate how
we can use the mixture of experts above to extend our ratings matrix R with rows
for object-pairs that no user rated in our crowdsourcing surveys. We created a new
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Figure 3.14.: Left: we predict preferences related to new objects by using a mixture of
experts approach. The experts E1-E3 are based on the hierarchies of three
online grocery stores. The mixture of experts E∗ is a merged prediction of
all three experts based on their confidence for a specific user. Therefore,
it is able to recover if a certain expert cannot find similarities for a new
object, as in the case of rice. The baselines E ′1-E ′3 make predictions based
only on the semantic wup similarity of two objects without considering
the ratings of similar pairs rated by the user, see Section 3.3. Right: the
mean F-score for predicting the ratings for a new object vs. the number of
training user columns who have rated pairs related to it. As soon as some
users have rated pairs related to a new object, our collaborative filtering
approach is able to make predictions about it. The performance improves
with more users rating pairs related to the object.

ratings matrix R′ of size 214×1284, i.e., with 35 additional object-pair rows. These
included pairs related to the new object cake mix , as well as other object combinations.
For each user column in the original R, the mixture of experts used already-rated
object-pairs to infer ratings for the new pairs. Figure 3.15 shows examples of rating
distributions in the resulting ratings matrix for two object-pairs: {cans of beans, sugar}
and {cake mix ,flour}. Additionally, for each of them, we show the rating distributions
of two of their most similar object-pairs that the experts used when making their
predictions. In a later experiment, we use the resulting R′ with this combination of
crowdsourcing and expert-generated ratings to train a factorization model for predicting
preferred arrangements of survey participants, see Section 3.5.2.6.

3.5.2.5. The Advantage of Learning from Different Users

In this experiment, we compare the performance of collaborative filtering, which leverages
the ratings of different users when predicting for a specific user, to that of the mixture of
experts E∗, which only considers the known ratings of the user when making predictions
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Figure 3.15.: The rating distributions depicted in red correspond to example object-
pairs that no user had rated in the original crowdsourcing data. We
generated those ratings using our mixture of experts approach based on
the hierarchies of three online stores. In the case of {cans of beans, sugar},
the experts relied on how each user rated similar object-pairs such as
{cans of beans,flour} and {cans of tuna, sugar}. The rating distributions
of those pairs (over all user columns who rated them) are depicted in blue
on the same row. Similarly, in the case of {cake mix ,flour}, the experts
relied on the known ratings of {flour , sugar} and {pancake mix ,flour}.

for her. We performed the experiment described in Section 3.5.2.1 using the mixture of
three experts. In each run of the experiment, we selected 50 random users and queried
them randomly for P of their ratings. We then used the mixture of experts to predict
the remaining ratings for each user by considering the similarities between object-pairs
with unknown ratings and those with known ratings as described in Section 3.3. We
repeated this 50 times for each value of P . Since the experts consider two object-pairs
similar if their wup similarity ν is at least a threshold νmin according to their hierarchies,
we repeated this experiment for three different values of νmin (0.2, 0.4, and 0.6). For
each setting, we computed the percentage of cases in which the mixture of experts was
able to make predictions by relating object-pairs using their similarities. For those cases,
we computed the mean F-score over all rating categories as before. The results are
shown in Figure 3.16, in which we also show the results of CF-rand from Section 3.5.2.1
for convenience.
The mixture of experts is able to make predictions for only a subset of the required

ratings for each user, see Figure 3.16-left. As P increases, the experts are able to
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Figure 3.16.: We compared the predictions made by CF-rand and the mixture of experts
E∗ given different numbers P of known probe ratings. We tested E∗ for
three different settings of νmin, the minimal wup similarity of any of its
expert hierarchies to consider two object-pairs similar. Left: The mixture
of experts does not consider the ratings made by other users, and is only
able to make predictions for a subset of the desired object-pair ratings,
i.e., those where it finds at least one similar object-pair where the user
indicated a known preference. On the other hand, CF-rand is able to make
predictions for all unknown ratings by learning a model from all users.
Right: whereas E∗ is able to make more predictions for lower values of
νmin, this is associated with a lower mean F-score for the predictions made.
CF-rand is able to make predictions for all desired-object pairs and its
performance improves with more probe ratings known for the user.

make more predictions as expected by finding more similar object-pairs to use for
making predictions. However, for higher values of νmin, it is more challenging for the
experts to find object-pairs with known ratings that are considered similar enough to
the queried object-pairs. Given four probes only, E∗ is able to make predictions for less
than 20% of the cases for all settings of νmin. At P = 20, this percentage increases
to 38% for νmin = 0.6 and to 87% for νmin = 0.2. In contrast to that, collaborative
filtering (CF-rand) is able to make predictions for all queried object-pairs even with
lower numbers of probes, since it leverages the ratings made by all other users in the
training data.

Moreover, whereas the mixture of experts is able to make more predictions for lower
threshold values of νmin, this comes at a cost in terms of the quality of the predictions,
see Figure 3.16-right. E∗ achieves a mean F-score of 0.58 with νmin = 0.2. On the other
hand, when considering only the ratings of object-pairs with a similarity of at least
νmin = 0.6, E∗ achieves a mean F-score of 0.64. Whereas CF-rand achieves lower F-score
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values for small values of P , its performance increases steadily with the number of
probes reaching 0.63 at P = 20, and it is consistently able to make predictions for all
missing ratings as opposed to E∗.
Finally, we conducted an experiment to show that the performance of our approach

improves with more users in the system. For each object, we removed from R all columns
with ratings related to that object. Over 20 runs, we randomly sampled ten different
user columns (test users) from these and hid their ratings for pairs related to the object.
We predicted those ratings using our approach (Section 3.2.1) by incrementally adding
more columns of other (training) users who rated that object to the ratings matrix in
increments of 25. We evaluated the mean F-score for the predictions for the test users.
The results (CF - overall) are shown in Figure 3.14-right averaged over 20 different
types of objects (those where we had at least 300 user ratings). We also show the
improvement with respect to two of the objects individually. The performance of our
approach improves steadily with the number of users who rate pairs related to a new
object, as opposed to a baseline that updates the mean rating over all users and uses
that for predicting. This shows that collaborative filtering is suitable for lifelong and
continual learning of user preferences.

3.5.2.6. Assigning Objects to Shelves Based on Pairwise Preferences

In this section, we show that our approach is able to group objects into containers to
satisfy pairwise preferences, see Section 3.4. We evaluated our approach in two settings.
In the first, we compute the object groupings given ground truth pairwise ratings from
users. In the second, we predict the pairwise ratings according to our approach and use
those when grouping the objects on different shelves.

Arrangements Based on Ground Truth Ratings We conducted a qualitative evalu-
ation of our approach for grouping objects into different containers based on known
object-pair preferences. We asked a group of 16 people to provide their ratings (0
or 1) for 55 object-pairs, corresponding to all pairs for a set of 11 objects. For each
participant, we then computed an object arrangement allowing our spectral clustering
approach to use up to 6 shelves. We showed each participant the shelf arrangement we
computed for them in the rviz visualization environment. We asked each of them to
indicate whether they think the arrangement represents their preferences or not. They
then had the choice to make changes to the arrangement by indicating which objects
they would move from one shelf to another.

The results are shown in Figure 3.17. In five out of 16 cases, the participants accepted
the arrangements without any modifications. Overall, the participants modified only
two objects on average. Even given ground truth object-pair ratings from the users,
there are often several inconsistencies in the preferences that can make it challenging for
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Figure 3.17.: In a small survey with 16 participants, we computed groupings of 11
objects based on each participant’s ground truth object-pair ratings. We
presented the arrangement to each participant by visualizing it in a 3D
visualization environment. Each participant then indicated which objects
they would like to move in order to achieve a better arrangement. Despite
inconsistencies in the pairwise preferences of the participants, we are able to
compute reasonable object groupings that correspond to their preferences.
On average, the participants modified the locations of only two objects.

Figure 3.18.: We asked survey participants to organize different types of grocery objects
to test our approach for predicting their preferences, see Section 3.5.2.6.

the eigengap heuristic to estimate the best number of shelves to use. Nonetheless, we are
able to compute reasonable groupings of objects. Moreover, the nature of our approach
allows the robot to observe arrangements given by users to modify its knowledge about
their preferences and use this when making new predictions in the future.

Arrangements Based on Predicted Ratings The goal of this experiment is to evalu-
ate the performance of our approach for grouping objects based on predicted object-pair
ratings. To collect ground truth data for arrangements, we asked 15 people to organize
17 different grocery items according to their preferences, using up to six shelves, see Fig-
ure 3.18. Four people grouped the items on four shelves, three people used five shelves,
and eight people used all six shelves. Figure 3.1-left shows examples of arrangements
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Figure 3.19.: Our approach is able to adapt to the number of containers C available for
organizing the objects. In this example, applying the self-tuning heuristic
correctly estimates the best number of shelves to use (C ′ = 4), matching
the original user preferences. Given more shelves in the scene (C = 5),
our approach still prefers grouping the objects on four shelves, as this
maximally satisfies the user’s preferences. With only two or three shelves,
our method attempts to satisfy the preferences of the user as much as
possible by grouping the objects differently.

produced by the survey participants. We translated these arrangements to user rating
columns with 0 or 1 ratings as described in Section 3.2.2.1. Figure 3.19 shows the
arrangements our method computes for one of the participants (who used four shelves)
when given all ground truth object-pair ratings of that participant. Given four or more
shelves to use, we are able to reproduce the original object grouping of this user with
C ′ = 4 shelves. The figure also shows how our approach adapts by merging some object
groups together when given only two or three shelves to sort the objects.
Our goal is to evaluate the arrangements we compute for the 15 participants given

only partial knowledge of their ratings, and based on a previously-learned model of
object-pair biases bi and factor vectors V from training users. To learn the model,
we used the ratings matrix R′ described in Section 3.5.2.4 above, as this covers all
object-pairs relevant for the objects in this experiment. For each of the 15 participants,
we simulated removing O random objects from their arrangement, and hid all ratings
related to those objects. Using the remaining ratings as probes, we learned the bias bj
and factors vector wj of each participant (Section 3.2.2.2), and predicted the missing
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Figure 3.20.: We evaluated our approach (CF-rand′) for predicting the correct shelves
for O randomly-selected objects (out of 17) given the shelves that the
remaining objects have been assigned to. CF-rand′ predicts the missing
object-pair ratings using our approach and then partitions the objects
using our spectral clustering method. Baseline-II predicts the missing
ratings as the mean rating over all training users, and uses our method for
partitioning the objects. Baseline-III makes no predictions, but randomly
assigns each object to one of the six shelves. Left: the mean error in the
computed arrangements (ratio of misplaced objects). Right: the prediction
F-score of the object-pair ratings averaged over the 0 and 1 categories.
Our approach outperforms both baselines for O ≤ 10. As O increases, the
error in our predictions increases since there are less probe ratings based
on the remaining objects on the shelves to infer the preferences of a user.

ratings accordingly. Finally, we used those ratings to compute an object arrangement
for each participant, and compared it to their ground truth arrangement. We conducted
this experiment for O = 1, 2, 3, . . . , 12, repeating it 100 times for each setting.
We evaluated the results by computing an “edit distance” d between the computed

and ground truth arrangements. We compute d as the minimum number of objects we
need to move from one shelf to another to achieve the correct arrangement, divided
by O. This gives a normalized error measure between 0 and 1 capturing the ratio of
misplaced objects. The results (averaged over all runs) are shown in Figure 3.20-left,
where we denote our method by CF-rand′. We compared our results to two baselines.
The first is Baseline-II, which predicts the missing object-pair preferences using the
mean ratings over all users in R′ and then computes the object groupings using our
approach. The second is Baseline-III, which makes no predictions but simply assigns
each object to a random shelf. Figure 3.20-right also shows the mean F-score of our
approach and Baseline-II averaged over the 0 and 1 rating categories.
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Our approach outperforms both baselines for O ≤ 10, and results in a mean error
from 0.19 to 0.41, and an F-score from 0.80 to 0.78, as O changes from 1 to 10. The
model we learned from R′, the noisy crowdsourcing data from 1284 users augmented
by ratings from a mixture of experts, is able to accurately predict the preferences of
the new 15 survey participants. For the same values of O, Baseline-II achieves a mean
error ranging between 0.36 and 0.54, and an F-score of 0.77. As O increases, the error
in our predictions increases as expected, since we have less probe ratings based on the
remaining objects on the shelves to infer the preferences of a new user. For O > 11,
Baseline-II results in less error than our approach when computing arrangements as this
baseline does not depend on the remaining objects to make predictions. On the other
hand, using a random strategy for assigning objects to shelves (Baseline-III) resulted in
an error above 0.72 for all values of O.

Predictions by Humans We conducted a qualitative evaluation to gauge the difficulty
of the above task for humans. We asked 15 new participants (who did not take part in
the previous surveys) to complete partial arrangements by predicting the preferences of
the 15 users above, whom they do not know. Each participant solved six tests. In each
test, we manually reconstructed an arrangement from the surveys on the six shelves,
then we removed O objects randomly and placed them on a nearby table. We asked
each participant to predict the preference of another user by inspecting the arrangement
in front of them, and to finish sorting the remaining O objects accordingly. Each
participant solved six such cases (O = {2, 4, . . . , 12}), each corresponding to a different
user. As before, we computed the error d, the ratio of objects that were placed on
wrong shelves. The results are shown in Table 3.2. When presented with two objects to
place only, most participants were able to predict the correct shelf for them based on
the arrangement of the remaining objects. However, given four to twelve objects, the
participants found the task increasingly difficult and misplaced between one forth to
one third of the objects on average.

Table 3.2.: The error d in the arrangements produced by 15 participants whom we asked
to sort O objects by predicting the preferences of users they do not know.

# objects, O 2 4 6 8 10 12
Error, d 0.07± 0.17 0.27± 0.25 0.24± 0.22 0.27± 0.18 0.33± 0.18 0.34± 0.17

3.5.2.7. Real Robot Experiments

We conducted an experiment to illustrate the applicability of our approach (Section 3.2.1)
on a real tidy-up robot scenario using our PR2 robot platform, see Figure 3.21-left.
We executed 25 experimental runs in which the task of the robot was to fetch two
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Figure 3.21.: Left: the robot has to assign the two objects that are on the table to
shelves according to predicted user preferences. In this example, the robot
places coffee on the same shelf as tea, and rice next to pasta. Right: an
example where the robot places coffee next to tea and sugar next to salt.

objects from the table and return them to their preferred shelves as predicted by our
approach. In each run, we arranged 15 random objects on the shelves according to
the preferences of a random user from the survey we conducted in Section 3.5.2.6,
and provided this information as probes for the robot to learn a model of that user
(Section 3.2.2.1). The robot used this to predict the pairwise preferences related to
the two objects on the table, which it recognized with its Kinect camera using unique
fiducial markers we attached to the objects. It then computed an assignment of the
objects to one of the shelves (Section 3.4), and expressed those assignments as planning
goals in the form of logical predicates in PDDL (e.g., on(coffee, shelf2 )). To achieve
those goals, we used a state-of-the-art planner (Dornhege and Hertle, 2013) to generate
a plan for the robot to navigate to the table, grasp the detected objects, navigate to the
shelves, and place the objects on their corresponding shelves (that may be empty or
have objects on them) after detecting free space on them. For manipulation, we relied
on an out-of-the-box motion planner. Additionally, we provided the robot with a 3D
map of the environment for localizing itself, where we labeled the table and the six
shelves. Overall, the robot predicted the correct shelf assignment for 82% of the objects
using our approach, see Figure 3.21-right for an example where the robot successfully
placed coffee on the same shelf as tea.

3.5.3. Summary and Discussion of Results
In this section, we present a brief summary of our results, highlighting the characteristics
of our approach. Our experimental evaluation for two different tidy-up scenarios confirms
the claim that users have varying preferences with respect to organizing objects, making it
hard to provide the robot with a fixed strategy for all users. Our experiments demonstrate
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that collaborative filtering overcomes this challenge by learning a model of preferences
from all users collaboratively. They also supported the claim that our method is able to
make accurate predictions for a user given partial knowledge of her preferences, and that
the performance of our method improves with more probe ratings (Section 3.5.1.1 and
Section 3.5.2.1), and with more users in the system (Section 3.5.2.5). This shows the
suitability of our method for lifelong learning applications. Moreover, the results indicate
that our method is able to leverage models learned from previous users in order to infer
the preferences of a new user in an efficient manner (Section 3.5.2.3). Furthermore, our
spectral clustering method is able to handle conflicting user preferences and take into
account the number of containers available for organizing the objects (Section 3.5.1.2
and Section 3.5.2.6). We demonstrated the applicability of our techniques in practice
through experiments with a real robot, see Section 3.5.2.7. We also highlighted the
difficulty of this task through a qualitative survey in which we asked human volunteers
to predict the preferences of other users, see Section 3.5.2.6.

In cases in which there are no ratings related to a specific object-pair in the training
data, our mixture-of-experts method is able to make reasonable predictions using prior
knowledge of object similarities that we mined from the Web. This allowed us to make
predictions for new objects (Section 3.5.1.3 and Section 3.5.2.4), as well as to extend
our ratings matrix with training ratings for new object-pairs (Section 3.5.2.4).

In this work, we focused on learning latent patterns for organizing objects based on
their known semantic categories (e.g., book, coffee, pencil). One of the main advantages
of our method is that it does not require an expert to define features to describe objects
in order to learn how to organize them. However, this limits the degree to which the
robot can exploit other aspects of the objects or the environment that could be relevant
for the task. While outside the scope of this work, it would be interesting to extend our
method in the future to take such features into consideration. For example, considering
the geometry and physical properties (e.g., weight, size, color, etc.) of objects could
lead to computing a more fine-grained prediction of organizational preferences. It would
be interesting to combine content-based recommender system approaches that take such
features into consideration with our collaborative filtering method, as in the case of the
so-called hybrid recommender systems (Adomavicius and Tuzhilin, 2005).

Finally, there are cases in which the mixture of experts is unable to make predictions
for a new object-pair if none of the experts is able to find sufficient similarities between
the relevant objects in their hierarchies (Section 3.5.2.4). In practice, the robot could
address such cases by querying the user for her preference related to such pairs using
the probing techniques we presented in Section 3.2.2.1. As soon as ratings for a new
object-pair have been appended to the ratings matrix, the robot can learn an updated
model and use it when making predictions in the future.
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3.6. Related Work
In this chapter, we presented a novel approach that enables a service robot to organize
objects in a way that aligns with the preferences of its users. To the best of our
knowledge, our contribution is the first in the literature to bridge the gap between
the worlds of recommender systems and service robotics to allow a robot to tailor its
behavior to a specific user. Indeed, equipping robots with the knowledge and skills
needed to attend to complex chores in domestic environments has been the aim of
researchers for years. Recent advances in perception, manipulation, planning, and
control have enabled robots to perform a variety of chores that range from cleaning
and tidying up to folding laundry (Saxena et al., 2008; Hess et al., 2012; Miller et al.,
2012; Doumanoglou et al., 2014). However, as highlighted by a number of researchers,
service robots should also be able to attend to such tasks in a manner that corresponds
to the personal preferences of end users (Cakmak and Takayama, 2013; Forlizzi and
DiSalvo, 2006; Dautenhahn et al., 2005; Pantofaru et al., 2012; Ray et al., 2008; Smarr
et al., 2014; Cha et al., 2015). For example, the results of Pantofaru et al. (2012) show
that people exhibit strong feelings with respect to robots organizing personal items,
suggesting the need for the robot to ask humans to make decisions about where to store
them (Pantofaru et al., 2012).

By leveraging the paradigm of collaborative filtering, our approach enables a robot to
discover organizational patterns from a corpus of user preferences to compute preferred
object arrangements when tidying up for a specific user. Accordingly, the robot is able
to predict the preferred location (e.g., a specific shelf) to store an object by observing
how the user has previously arranged other objects in the same environment. Several
researchers have also leveraged the fact that our environments are rich with cues that can
assist robots in various tasks that require reasoning about objects and their locations.
For example, different works have addressed object classification or predicting the
locations of objects using typical 3D structures in indoor environments or object-object
relations such as co-occurrences in a scene (Joho et al., 2011; Aydemir and Jensfelt,
2012; Lorbach et al., 2014; Nyga et al., 2014; Kunze et al., 2014). However, in contrast
to our work, these approaches do not consider the personal preferences of end-users.
In the remainder of this section, we discuss prior work in the literature that is most
relevant to the problem we addressed and the techniques we presented in this chapter.

Learning Object Arrangements and Placements Recently, Schuster et al. (2010)
presented an approach for distinguishing clutter from clutter-free areas in domestic
environments so that a robot can reason about suitable surfaces for placing objects.
Related to that, the work of Jiang et al. (2012b) targets learning physically stable and
semantically preferred poses for placing objects given the 3D geometry of the scene.
Joho et al. (2012) developed a novel hierarchical nonparametric Bayesian model for
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learning scenes consisting of different object constellations. Their method can be used
to sample missing objects and their poses to complete partial scenes based on previously
seen constellations. Other approaches have targeted synthesising artificial 3D object
arrangements that respect constraints like physical stability or that are semantically
plausible (Xu et al., 2002; Fisher et al., 2012). We view such works as complementary
to ours, as we address the problem of learning preferred groupings of objects in different
containers (e.g., shelves) for the purpose of tidying up. After predicting the preferred
container for a specific object, our approach assumes that the robot is equipped with a
suitable technique to compute a valid placement or pose of the object in that location.
Moreover, as we explicitly consider organizing objects when tidying up, we do not reason
about object affordances associated with various human poses and activities in the scene
(e.g., cooking, working at a desk, etc.) when computing arrangements, as in the work of
Jiang et al. (2012a) and Savva et al. (2014).

Related to our work, previous approaches have addressed learning organizational
patterns from surveys conducted with different users. Schuster et al. (2012) presented
an approach for predicting the location for storing different objects (e.g., cupboard,
drawer, fridge, etc.) based on other objects observed in the environment. They consider
different features that capture object-related properties (e.g., the purpose of an object
or its semantic similarity to other objects) and train classifiers that predict the location
at which an object should be stored. Similarly, Cha et al. (2015) explored using
different features describing both objects and users to train classifiers for predicting
object locations in user homes. Similar to Schuster et al. (2012), we also make use of
a similarity measure based on hierarchies mined from the Web and use it for making
predictions for objects for which we have no training data. However, in contrast to
these works, our approach learns latent organizational patterns across different users
in a collaborative manner and without the need for designing features that describe
objects or users. Recently, Toris et al. (2015) presented an approach to learn placing
locations of objects based on crowdsourcing data from many users. Their approach
allows for learning multiple hypotheses for placing the same object, and for reasoning
about the most likely frame of reference when learning the target poses. They consider
different pick-and-place tasks such as setting a table or putting away dirty dishes, where
the aim is to infer the final object configuration at the goal. Our approach is also able
to capture multiple modes with respect to the preferred location for placing a certain
object. In contrast to Toris et al. (2015), we target learning patterns in user preferences
with respect to sorting objects in different containers.

Moreover, Brawner and Littman (2016) recently presented an approach that extends
our work to incorporate contextual information about a kitchen environment to enable
predicting item-location preferences for a user. In contrast to our work, they use features
describing items (e.g., edible) and locations (e.g., low cabinet) whereas our approach
assumes no such prior knowledge. Instead of partitioning the objects based on the

61



3. Organizing Objects by Predicting User Preferences via Collaborative Filtering

available number of containers, they combine item-item and item-location ratings to
select the best location for storing an item.
Similar to the above works, we assume the robot is equipped with a map of the

environment where all locations relevant to the task are already identified (e.g., shelves,
drawers, etc.), which we refer to as containers. Previous work has focused on constructing
semantic maps that are useful for robots when planning to solve complex household
tasks (Vasudevan et al., 2007; Zender et al., 2008; Pangercic et al., 2012). However,
in contrast to the above works, our method allows the robot to adapt to the available
number of containers in a certain environment to sort the objects while satisfying the
user’s preferences as much as possible.

Service Robots Leveraging the Web Recently, several researches have leveraged
the Web as a useful source of information for assisting service robots in different
tasks (Tenorth et al., 2011; Kehoe et al., 2013). To cope with objects that are not in
the robot’s database, our method combines collaborative filtering with a mixture-of-
experts approach based on object hierarchies we mine from online stores. This allows
us to compute the semantic similarity of a new object to previously known objects to
compensate for missing user ratings. The work by Schuster et al. (2012) has also utilized
such similarity measures as features when training classifiers for predicting locations for
storing objects. Pangercic et al. (2011) also leverage information from online stores but
in the context of object detection. Kaiser et al. (2014) recently presented an approach
for mining texts obtained from the Web to extract common sense knowledge and object
locations for planning tasks in domestic environments. Moreover, Nyga et al. (2014)
presented an ensemble approach where different perception techniques are combined in
the context of detecting everyday objects.

Collaborative Filtering We predict user preferences for organizing objects based on
the framework of collaborative filtering, a successful paradigm from the data mining
community for making personalized user recommendations of products (Canny, 2002;
Bennett and Lanning, 2007; Koren, 2008, 2010; Sarwar et al., 2001). Such techniques
are known for their scalability and suitability for life-long learning settings, where the
quality of the predictions made by the recommender system improves with more users
providing their ratings. Outside the realm of customers and products, factorization-
based collaborative filtering has recently been successfully applied to other domains
including action-recognition in videos (Matikainen et al., 2012) and predicting drug-
target interactions (Temerinac-Ott et al., 2015). Recently, Matikainen et al. (2013)
combined a recommender system with a multi-armed bandit formulation for suggesting
good floor coverage strategies to a vacuum-cleaning robot by modeling different room
layouts as users. To the best of our knowledge, our work (Abdo et al., 2014b, 2015,
2016) was the first to leverage collaborative filtering for predicting personalized user
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preferences in the context of service robotics. Recently, Brawner and Littman (2016)
presented an approach that builds on our work to enable a robot to predict the preferred
locations for organizing items in a kitchen. In addition to predicting ratings with respect
to pairs of items, they present a context-aware recommender system that incorporates
information about the environment such as location categories to enable predicting
item-location preferences directly.

Crowdsourcing for Robotics To learn different user preferences, we collected data
from many non-expert users using a crowdsourcing platform. Prior work has also
leveraged crowdsourcing for data labeling or as an efficient platform for transferring
human knowledge to robots (Deng et al., 2013; Kent et al., 2014). For example, Sorokin
et al. (2010) utilized crowdsourcing to teach robots how to grasp new objects. Moreover,
several researchers have used crowdsourcing to facilitate learning manipulation tasks
from large numbers of human demonstrations (Chung et al., 2014; Toris et al., 2014,
2015; Ratner et al., 2015). In the context of learning user preferences, Jain et al.
(2015) recently presented a new crowdsourcing platform where non-experts can label
segments in robot trajectories as desirable or not. This is then used to learn a cost
function for planning preferred robot trajectories in different indoor environments. Also
in the context of user preferences, their prior work enables a robot to learn preferred
manipulation trajectories by interacting with a teacher (Jain et al., 2013).

3.7. Conclusion
In this chapter, we presented a novel approach built on recommender system theory
that enables robots to predict user preferences with respect to tidying up objects in
containers such as shelves or boxes. To do so, we first predict pairwise object preferences
of the user by formulating a collaborative filtering problem. This allows us to subdivide
the objects in containers by modeling and solving a spectral clustering problem. Our
approach is able to make predictions for new users based on partial knowledge of their
preferences and a model that we learn collaboratively from several users. Furthermore,
our technique allows for easily updating knowledge about user preferences, does not
require complex modeling of objects or users, and improves with the amount of data,
allowing for lifelong learning of user preferences. To deal with novel objects for which
we have no data, we presented an approach that complements collaborative filtering
with a mixture of experts based on object hierarchies mined from the Web. This
enables the robot to relate these objects to similar ones it knows about. We trained
our system using data we collected from over 1,200 users through crowdsourcing, and
thoroughly evaluated the effectiveness of our approach for two tidy-up scenarios: sorting
toys in boxes and arranging groceries on shelves. Additionally, we demonstrated the

63



3. Organizing Objects by Predicting User Preferences via Collaborative Filtering

applicability of our approach in a real service robot scenario. Our results show that our
technique is accurate and is able to sort objects into different containers according to
user preferences.
The approach presented in this chapter focused on computing object arrangements

that align with user preferences while adapting to the number of containers in the
environment. This enables the robot to predict a desirable goal state to achieve
without constantly querying its users for the best way to handle each new situation. To
manipulate the objects and achieve the predicted goal state of the task, we leveraged
predefined spatial relations between objects and containers and out-of-the-box solutions
for task and motion planning. However, this assumes prior semantic knowledge about
the involved objects and relations as well as suitable action models for manipulation.
This limits the robot to handling objects that are supported by its prior knowledge. In
the next chapters, we address this and tackle the problems of learning to manipulate
objects by acquiring new action models from teacher demonstrations (Chapter 4), and
using them to compute plans that achieve desirable task goals based on the intention
of the teacher (Chapter 5). Additionally, in Chapter 6, we tackle the problem of
learning arbitrary spatial relations between pairs of objects from non-expert teachers
and generalizing them to new objects.
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Teacher Demonstrations

The previous chapter dealt with enabling a robot to predict the
preferences of its user by inferring the best way to solve a task
such as arranging objects. By extracting patterns in user prefer-
ences from a corpus of data related to different users, the robot
is able to tailor the task to a specific user and infer the best goal
state for her. To compute a plan to achieve this goal in practice,
we relied on existing actions and planners. However, for a robot
to operate effectively alongside humans, it should also be able to
continuously acquire new action models in order to handle new
situations such as grasping and moving novel objects to achieve
arbitrary desirable configurations. In this chapter, we tackle the
problem of learning models of actions from a small number of
non-expert teacher demonstrations. Specifically, we tackle learn-
ing the relevant spatial constraints between the involved objects
before and after applying an action. This is crucial for success-
fully generalizing the demonstrations and for sequencing several
actions when planning. Due to the small number of training ex-
amples, a key challenge in this context is the ambiguity in the
intention of the teacher with respect to the relevant constraints.
We first address this problem from a model-selection perspective
by leveraging prior expert knowledge about actions in general
to infer a model of the new action. Our experiments demon-
strate the effectiveness of this method and its ability to repro-
duce an action successfully in new starting states. Additionally,
we propose a novel approach that overcomes the ambiguity in the
demonstrations in a data-driven manner without requiring prior
expert knowledge. Rather than committing to a single model,
our techniques provide the robot with the flexibility to reason
about multiple valid interpretations of the learned action.

In Chapter 3, we proposed a method to enable a robot to predict the preferences of
its user with respect to the goal of a task. This allows the robot to infer preferred goal
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Figure 4.1.: In this chapter, we tackle the problem of teaching a robot action models from
user demonstrations. This enables the robot to deal with novel situations
(e.g., new objects) and adapt to the continuous needs of its users. In this
example, the teacher demonstrates to the robot how to move a cup in order
to achieve desirable spatial relations between the cup and the other objects
on the table.

states (object arrangements) by relating its knowledge about the user to data collected
from different users and environments. To achieve this goal state, Chapter 3 relied
on previous action models and planners for solving the task by computing a plan to
move objects to their desirable locations. Typically, these action models are provided
beforehand by an expert with domain knowledge.

In practice, however, it is infeasible to pre-program the robot with action models for
handling all potential situations it can face in a domestic environment. On the one hand,
the robot may encounter new objects that it does not know how to handle or grasp yet.
On the other hand, new tasks might require the robot to manipulate objects to achieve
arbitrary arrangements that are not accounted for in the robot’s prior knowledge of
actions and their goals. To address these limitations, robots should have the ability
to continuously acquire new action models by learning from their users, which is the
problem we address in this chapter.

In this context, programming by demonstration is a promising paradigm that enables
non-expert users to intuitively transfer their knowledge about actions to robots simply
by demonstrating them, see Figure 4.1. This typically involves addressing two main
challenges, namely the questions of what to imitate and how to imitate (Billard et al.,
2008). The former question aims at identifying the features, constraints, or symbols
that are relevant for reproducing an action, whereas the latter addresses learning the
motion associated with the action, i.e., generating feasible trajectories of the robot’s
manipulators when imitating the action. In this thesis, we consider point-to-point
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actions that are modeled in terms of constraints before and after applying an action.
Therefore, we focus on addressing the first challenge, i.e., what to imitate, and not on
learning the motion associated with the action. Given a set of demonstrations of an
action, we seek to infer the relevant aspects of the action before and after applying it so
that a robot can reproduce it in starting states that differ from the ones demonstrated
by the teacher. To execute the action on the trajectory level based on the learned spatial
constraints, we rely on existing motion planners or controllers.

In general, learning the relevant spatial constraints for the action from a small number
of teacher demonstrations is hard due to the ambiguity in the demonstrations. This
is because the feature space defining the geometric constraints between the objects is
large. Imitating an action naively based on a few training points in this space will
considerably limit the robot’s ability to generalize the action to new settings. The most
direct solution to this problem is to identify relevant features by making use of large
sets of training data. However, from a robotics standpoint, it is highly impractical to
generate large amounts of data by non-expert users for every action. Therefore, in this
chapter, we consider learning actions from a small number of examples and address
the challenge of inferring the best way to model an action despite the ambiguity in the
teacher demonstrations. We do so from two perspectives.
First, we propose a method to identify the relevant features of the new action by

leveraging expert knowledge about actions in general. We encode this knowledge by
borrowing ideas from the theory of recommender systems. As discussed in Chapter 3,
these systems typically identify patterns in user preferences either through identifying
similarities between users or by analyzing a user’s purchase history (Goldberg et al.,
1992; Koren, 2008; Basu et al., 1998; Pazzani and Billsus, 1997). Analogously, we
consider multiple experts who provide recommendations with respect to which sets of
features are relevant for an action. Our approach considers these recommendations
based on the state perceived by the robot and the training demonstrations. The experts
are users that have in-depth knowledge of robot manipulation. Their rules and their
recommendations are collected offline, before training, and without knowledge of which
specific action will be demonstrated. Based on their recommendations, our system
builds multiple probabilistic models of the action. Thus, we formulate a model-selection
problem to select the model with the best explanation of the action each time the robot
has to reproduce it. We implemented and tested our approach in simulation using
real-world data obtained via kinesthetic teaching on a PR2 robot. We demonstrate
that we are able to leverage expert knowledge about actions in order to reproduce new
actions based on a small number of demonstrations.
The second approach we present enables the robot to reproduce an action in the

absence of such prior expert knowledge about relevant features. Rather than learning or
inferring an explicit model of the action, we tackle the ambiguity in the demonstrations
by constructing an implicit action model in a data-driven manner. The idea of our
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approach is to let the starting state “vote” for the most likely goal state of an action
based on the spatial relations demonstrated by the teacher. In this way, we consider
multiple modes in the intention of the teacher by combining several interpretations of the
action at the same time. The robot thus selects the most likely goal state of the action
based on the state in which it has to reproduce it. Even in completely new situations,
our method enables the robot to “improvise” by reproducing as many aspects of the
demonstrations as possible. Accordingly, we build on these action models in Chapter 5
to compute desirable task solutions that require sequencing several actions.
The remainder of this chapter is organized as follows. We formalize the problem of

learning point-to-point action models in Section 4.1. In Section 4.2, we present our
model-selection approach for reproducing a new action based on prior expert knowledge.
We demonstrate this approach through experiments with real-world data recorded using
a PR2 robot. In Section 4.3, we present our approach for learning implicit action models
without prior expert knowledge. Finally, we discuss related work in Section 4.4 before
concluding the chapter in Section 4.5.

4.1. Problem Formulation
In this section, we formalize the problem we address in this chapter: learning an action a
from teacher demonstrations such that the robot can generalize it to new situations.

4.1.1. State Representation

Let O be the set of objects involved in the action, which includes the end-effector of
the robot, denoted by oee. We follow Section 2.1.1 and model the state st at time t
using the poses of all objects expressed relative to a world frame. We describe the pose
of an object ok ∈ O in SE(3) as a homogeneous transformation matrix Tk, composed
of a 3D translation vector tk and 3D rotation matrix Rk. We use lTk to denote the
pose of object ok relative to ol. Moreover, Tk(t) and lTk(t) respectively denote the pose
of object ok and the pose of ok relative to ol at time t. Additionally, our state model
considers the joint configuration oee(t) of the end-effector at time t, e.g., the degree of
opening of the gripper.

4.1.2. Action Demonstrations

To learn a model of an action a, we rely on a teacher who provides the robot with a set
of Na demonstrations D(a) = {d(1), . . . ,d(Na)} of how to apply the action from different
starting states. We consider different methods of demonstrating an action to the robot,
see Figure 4.2.
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Figure 4.2.: We considered different methods of providing the robot with demonstrations.
Top: the teacher provides kinesthetic demonstrations by directly moving
the robot’s manipulator to achieve the goal of an action. Bottom: we
additionally relied on fiducial markers to emulate the end-effector of the
robot and to facilitate detecting the table when providing demonstrations.
The left scene shows the camera image of the scene with the detected
objects using SimTrack (Pauwels and Kragic (2015)). The right side shows
a visualization of the corresponding scene with the robot’s end-effector.

In this work, we assume complete observability during the demonstrations, i.e., the
robot can observe the state (the poses of all objects) using existing perception techniques.
Moreover, as we consider point-to-point actions (Section 2.1.3), we assume that the
demonstrations are segmented by the teacher such that each demonstration starts from
an arbitrary state sts and ends with a desired goal state ste that reflects the intention of
the teacher for this action. Accordingly, we express each demonstration d(n) ∈ D(a) as a
sequence of two states such that D(a) = {(sts , ste)(1), . . . , (sts , ste)(Na)}, where ts and te
are the start and end time of a segment, respectively.

Furthermore, the teacher demonstrates the intention of the action by moving a subset
of the objects in each case. Accordingly, we associate an action a with two sets of
objects. The first, denoted by Oa

M , consists of the objects that move when applying the
action. The second, denoted by Oa

S, is the set of objects that remain stationary when
applying the action. These sets are non-empty and partition the set of objects O, i.e.,
Oa
M 6= ∅, Oa

S 6= ∅, Oa
M ∩Oa

S = ∅, and Oa
M ∪Oa

S = O. Finally, we assume that no object
can move unless it is manipulated by the robot. Therefore, the set Oa

M includes the
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end-effector oee for all actions.

4.1.3. State Affordability

Using the set of demonstrations D(a), we aim to learn a model of the action. One aspect
of that is learning a model p(sts | a) of states sts that afford applying the action a.
We refer to this as the state affordability (see Section 2.1.3). We assume the teacher
demonstrations implicitly encode the conditions necessary for the action to succeed
based on the starting state sts . By ensuring that the robot applies the action in states
with a high affordability, we therefore increase the likelihood of the action succeeding
and achieving a goal state that aligns with the intention of the teacher.

4.1.4. Action Transition Model

Moreover, we aim to learn a transition model p(ste | sts , a), capturing the likelihood
of a state ste being an intended goal of the action when applied in state sts . This is
potentially a multi-modal distribution reflecting different valid ways of applying the
action as demonstrated by the teacher, e.g., placing a cup on either side of a plate. This
is analogous to the transition probabilities of stochastic actions in Markov Decision
Processes (Bellman, 1957a,b; Sutton and Barto, 1998). However, in our case, we assume
that the only source of stochasticity is the hidden intention of the teacher and not in
the dynamics of executing the action. In other words, if the robot infers a likely and
feasible goal state ste , then it is able to achieve it deterministically using an existing
motion planner or controller.

4.1.5. Action Templates

The main challenge in learning the above models lies in the inherent ambiguity in
the demonstrations of the teacher. Given only a small number of demonstrations and
the large feature space of relations between the objects, the intention of the teacher
can be “explained” in different ways. Depending on the degree of variation in the
demonstrated starting states, some spatial relations between the objects can seem to
be relevant or irrelevant for correctly reproducing the action. This ambiguity renders
learning the action challenging, as different spatial constraints can conflict with each
other, see Figure 4.3 Without a model specifying the relevant features for the action,
the robot will be limited in its ability to generalize the action in new starting states not
demonstrated by the teacher.
To address this, we rely on so-called action templates for modeling the action. A

template γ provides an interpretation of the action by specifying the subset of features
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Figure 4.3.: An illustration of the inherent ambiguity in learning actions from a small
number of teacher demonstrations. Each of the top three rows shows a
demonstration for the action of moving the green box. The left side shows
the starting state and the right side shows the corresponding goal state
according to the latent intention of the teacher. Given such demonstrations,
we tackle the problem of generalizing the action by applying it in a previously
unseen starting state (bottom row). In such a case, the robot has to infer a
likely goal state to generalize the action as it cannot satisfy all demonstrated
spatial constraints involving the green box at the same time, e.g., with
respect to the table and the blue box.
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(spatial constraints) that are relevant for learning it, thereby reducing the dimensionality
of the problem.

4.1.6. The Problem
Using these models, we now formulate the problem we address in this chapter. Given
an arbitrary starting state sts , the robot should apply the action in order to achieve
a goal state s∗te that aligns with the intention of the teacher. Concretely, our goal is
twofold: i) to use the teacher demonstrations to construct a distribution p(ste | sts , a) of
goal states for the action given the starting state, and ii) to use this model to compute
a feasible goal state s∗te maximizing the likelihood of the intended action goals, i.e.,

s∗te = arg max
ste

p(ste | sts , a), (4.1)

subject to ste ∈ Sf , (4.2)

where Sf denotes the set of feasible states. The constraint in Eq. (4.2) ensures that
the robot is able to achieve s∗te in practice, for example with respect to the inverse
kinematics constraints of its manipulator, see Section 2.2.
In this chapter, we investigate two approaches to solving this problem, each with

different assumptions regarding prior knowledge. In the first (Section 4.2), we assume
the existence of a set of candidate models Γ = {γ1, . . . , γ|Γ|} designed beforehand by
experts in order to interpret different manipulation actions. Accordingly, we formulate
a model selection problem to infer the best model γ∗ ∈ Γ to apply the new action
based on the affordability of sts given γ∗. We then use γ∗ to compute a goal s∗te that
maximizes p(ste | sts , a, γ∗). In the second (Section 4.3), we propose a method that does
not assume such prior knowledge in the form of expert models. Instead we introduce
an implicit action model corresponding to a flexible, multi-modal distribution of goals
based on a mixture of possible interpretations of the teacher demonstrations. Note that
in this work, we focus on inferring the best goal state s∗te that aligns with the intention
of the teacher, and not on computing a feasible trajectory to achieve this state starting
in sts . To execute the motion associated with the action, we rely on existing motion
planners and controllers.

4.2. Action Models Based on Expert-Designed
Templates

In this section, we propose an approach for learning an action by leveraging prior expert
knowledge about manipulation actions in general. Specifically, we aim to learn the
spatial constraints between the involved objects that are relevant for reproducing the
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4.2. Action Models Based on Expert-Designed Templates

action in arbitrary initial states. We represent the spatial relations between the objects
in terms of features that we use to model the action. It is clearly infeasible to expect
an expert to pre-program a robot with knowledge about the relevant features for all
potential actions and objects it can encounter in the real world. At the same time,
learning a new action from a small number of demonstrations is challenging due to the
large dimensionality of the feature space capturing relations between the involved objects.
Therefore, we propose to leverage knowledge about previously-known manipulation
actions that are similar with respect to patterns in the feature changes associated
with applying the action. This allows us to significantly reduce the dimensionality of
the problem by considering the smaller feature spaces defined by such previous action
models. Furthermore, this results in a flexible approach in which we select the best
model for applying the action depending on the starting state rather than committing
to the same model for all cases.

4.2.1. Feature Representation
We propose to model point-to-point actions in terms of changes in feature values before
and after applying an action. Therefore, we first seek a feature representation to encode
the teacher demonstrations. For this, we consider two types of feature functions. The
first is a relation function fR(p(k,l), s)→ R that describes a certain relation between a
pair of objects p(k,l) = {ok, ol} in state s such as the distance between them or their
relative position with respect to the x-axis. The second go(ok, s) → R is an object-
specific function that describes a property of an object ok such as its size or the degree
of opening in the case of the end-effector object oee. Accordingly, we represent a state
st at time t as a feature vector ft ∈ RF such that

ft = [f1, . . . , fN1 , g1, . . . , gN2 ]> , (4.3)

where F = N1 + N2 and f1, . . . , fN1 and g1, . . . , gN2 are the feature values computed
using functions f 1

R, . . . , f
N1
R , and g1

o , . . . , g
N2
o , respectively. In general, ft has a large

dimensionality based on all possible relation and object functions for the set of objects
O(st) in state st.

Based on this representation, we can express a teacher demonstration d = (sts , ste) in
terms of the corresponding feature vectors at ts and te, i.e., d := (fts , fte). This is an
abstraction of the trajectory (fts , . . . , fte) consisting of the sequence of features computed
at each time step of the demonstration (assuming a discrete-time system).

4.2.2. Modeling an Action
Learning an action a corresponds to building a model for it based on the teacher
demonstrations D(a). Specifically, in the context of point-to-point actions, we are
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interested in learning a probability density function that models the interaction between
features at the start and the end of the action. In this work, we assume that all
dimensions of a feature vector f are independent of each other, and therefore aim to
model these interactions for each feature individually.

Let si and ei be the i-th dimension of fts and fte , respectively. We construct a bivariate
density function φi(si, ei) capturing the joint likelihood of si and ei for this feature
dimension. We adopt a discretized model that approximates the continuous feature
space by dividing it into bins. Accordingly, we define φi in terms of a 2-dimensional
histogram Hi as follows:

φi(si, ei) := ηiHi(bsic, beic), (4.4)

where ηi is a normalizer and b·c is a quantization operator that returns the histogram
bin for the given feature value. We build φi by populating the corresponding histogram
with the training data (feature values) across all demonstrations.

To reproduce the action from a new starting state s∗ts , our idea is to use the
corresponding feature values f∗ts to reason about goal values f∗te defined by the dis-
tribution associated with each feature dimension. In the general case, the robot has not
seen the teacher execute the action in s∗ts before. However, our discretized model allows
us to use all demonstrations with starting features fts that fall in the same si bins as
f∗ts in each feature histogram Hi. The possible goals f∗te are therefore modeled by the
conditional distribution φi(ei | si = s∗i ), which we construct by taking the (normalized)
1-dimensional histogram over ei for bin bs∗i c.

The shape of φi(ei | si = s∗i ) is important as it models the distribution of possible
goals observed in D(a) with respect to the i-th feature dimension given the starting
state. We assume that aspects considered by the teacher to be relevant for the action
are associated with consistent demonstrations, i.e., low variance in the corresponding
feature values. Accordingly, if the goals are concentrated in a few possible values, we
interpret this as an indication of goodness. In other words, based on the training data,
the goal state with respect to that feature dimension is known with high certainty. We
illustrate this idea with an example in Figure 4.4.
We compute this confidence using the entropy Hi of ei based on φi(ei | si = s∗i )

Hi(ei) = −
∑
ei

P (ei) log (P (ei)) , (4.5)

where P (ei) = φi(ei | si = s∗i ), i.e., the probability of ei being a goal with respect to the
i-th feature when starting in s∗i .
Let Φa be the set of all bivariate distributions φi modeling the action. Based on

the entropy Hi associated with each feature dimension, we aim to compute a score
q(f∗ts | Φa) that captures the likelihood of starting state s∗ts given the model, i.e., the
likelihood of s∗ts leading to goal states that align with the teacher demonstrations. This
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Figure 4.4.: An example of two feature distributions constructed based on ten demon-
strations for the action of placing a grasped object A on top of another
object B. The left side shows feature f1, which describes the pose of A
relative to B in the x direction. The right side depicts feature f2 describing
the pose of the end-effector relative to the robot’s torso frame in the x
direction. Given a new starting point s∗i , the conditional distribution of goal
values for f1 exhibits less entropy compared to that of f2. This results in a
higher likelihood (Eq. (4.6)) with respect to f1 compared to f2, indicating
a higher relevance to the action compared to f2.

is similar to the affordability of s∗ts , see Section 4.1.3. We define this affordability score
as follows

q(f∗ts | Φ
a) :=

F∏
i=1

e−Hi . (4.6)

Lower entropy values for each feature dimension given the starting state correspond to a
higher confidence about the goal feature values. Note that if the new starting state for
some feature dimension corresponds to a bin where no training data points are available,
we use the marginalized goal distribution over all starting feature values observed in the
demonstrations for computing the entropy.
As mentioned before, the main issue with this model is the dimensionality of the

feature space. A large number of features that might be irrelevant for the action will
render the model unlikely. Moreover, different feature dimensions with a high confidence
about the goal might impose contradictory constraints with respect to the goal states.
This is especially true when data is scarce, resulting in ambiguity regarding the intetion
of the teacher. Therefore, we address this issue using a feature selection method to
reduce the dimensionality of the feature space based on pre-existing action models.

4.2.3. Feature Selection Using a Template Recommender System
From a robotics standpoint, it is impractical to generate large sets of training examples
for each action. Instead of collecting a large amount of data, we seek to reduce the
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dimensionality of the problem. The key idea of our approach is to perform feature
selection by means of a “recommender system” based on expert knowledge. This system
proposes a portfolio of various low-dimensional feature spaces that are able to explain
some actions. The spaces are based on a set of feature functions (see Section 4.2.1 above)
that are provided by domain experts with in-depth knowledge of robotic manipulation.
We collect this information offline, before training, and without knowledge of the
demonstrated action a beforehand.
We represent this expert knowledge in the form of action templates introduced

in Section 4.1.5. Note that here, we consider templates that are not tailored to a specific
action. Instead, each template specifies, on an abstract level, a set of feature functions
that are typically relevant for modeling a variety of actions. An example of an expert
template γ1 is one that considers only the spatial relations between the end-effector of
the robot, a grasped object, and a second object in the scene to be relevant. Features
related to any other object are considered irrelevant by γ1. The robot can leverage such
a template to learn different actions, e.g., one where the teacher demonstrates how to
place a grasped cup next to a plate, and one where the teacher demonstrates placing a
grasped toy inside a box. In other words, we consider expert templates that are generic
or abstract with respect to the specific object instances used by the teacher, and which
can therefore be grounded in different ways based on the demonstrations. We use Γ to
denote the set of all templates provided by potentially multiple experts.
Moreover, each template γ ∈ Γ is associated with a template relevance function

p(γ | s∗ts , a) designed by the expert. This function specifies whether γ should be
considered for modeling the action given the teacher demonstrations D(a) and the
starting state s∗ts . In this work, we consider this function to be boolean, i.e., taking
a value of either 0 or 1. For example, in the case of γ1 above, p(γ1 | s∗ts , a) is 1 if the
teacher demonstrations involved a grasped object moving with the end-effector, as well
as consistent relative poses between the grasped object and a stationary object os in
Oa
S. On the other hand, p(γ1 | s∗ts , a) is 0 if the object os is not in the scene when

applying the action, i.e., os /∈ Oa
S(s∗ts). The expert designs such template relevance

functions beforehand based on domain knowledge and independent of the new actions
or demonstrations that the robot could encounter.

Accordingly, we compute a subset of recommended templates Γ∗ using all templates
for which p(γ | s∗ts , a) = 1. As the same template can be grounded in different ways
(e.g., for several objects in Oa

S(s∗ts)), we consider all possible interpretations individually
when constructing Γ∗. This can be interpreted as a form of content-based recommender
systems (Pazzani and Billsus, 1997; Basu et al., 1998). Such systems recommend
different items or products to a user by analyzing her profile or purchase history. In
our context, we aim to predict which templates to consider for modeling the action by
analyzing the teacher demonstrations and the new starting state in which the robot has
to reproduce the action.

76



4.2. Action Models Based on Expert-Designed Templates

Note that we recommend the set of templates Γ∗ each time the robot has to reproduce
the action, as this depends on which objects exist in s∗ts . Rather than committing to
a specific action model all the time, we are therefore able to generalize to changes in
conditions between the teacher demonstrations and the new starting state. Finally, each
template γg ∈ Γ∗ addresses the dimensionality problem in Section 4.2.2 by defining a
low dimensional feature space of size Fg � F for modeling the action and evaluating
the state affordability likelihood in Eq. (4.6). In the next section, we discuss how we
use this to select the best template for applying the action in s∗ts .

4.2.4. Model Selection for Reproducing the Action

Given the recommended set of templates Γ∗, the robot has to select a template γg ∈ Γ∗
corresponding to the best subset of features for applying the action in s∗ts .

4.2.4.1. Selecting the Best Template

We address the problem of selecting a template from a model-selection perspective
and compute a score βg for each template γg ∈ Γ∗ based on two criteria. The first
favors templates with a high confidence about the intended goal of the action given
s∗ts , i.e., a high state affordability, see Eq. (4.6). Such templates are able to explain
the demonstrations by relating them to the new starting state. The second encourages
using templates that consider more features when reproducing the action, as these
imitate more aspects of the action with respect to the objects and the relations between
them. This regularizes the first criterion and avoids selecting “trivial”, over-confident
templates, e.g., one that considers only the distance between two objects.

We compute the affordability score q(f∗ts | Φa, γg) given template γg by only considering
the populated bivariate distributions φ of features specified by the template. In other
words, we compute q(f∗ts | Φ̂a

g), where Φ̂a
g are the distributions of the template features,

i.e., |Φa
g| = Fg. Accordingly, we compute the score βg as follows:

βg = − ln
(
q(f∗ts | Φ̂

a
g)
)
− αFg, (4.7)

where α is a weight controlling the trade-off between the state affordability of the
template and its complexity Fg. Thus, we select the best template γ∗ ∈ Γ∗ as

γ∗ = arg min
γg

βg. (4.8)

We perform this selection each time the robot has to apply the action in a new state as
the recommended templates and their scores depend on the starting state.
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4.2.4.2. Applying the Action

After selecting γ∗, we solve the problem in Section 4.1.6 by computing a goal state
s∗te that maximizes the likelihood of the intended action goals p(ste | s∗ts , a, γ∗). Here,
we model action goals in terms of constraints describing desirable goal feature values
fte demonstrated by the teacher. We assume that each teacher demonstration d(n) =
(sts , ste)(n) encodes the preferred way of applying the action given the corresponding
starting state sts . For example, the teacher could place a grasped cup on a specific side
of a plate depending on the positions of other objects relative to the plate. Similarly,
the teacher would demonstrate to the robot how to move its end-effector to achieve the
best grasp for a specific object depending on how it is placed on the table beforehand.

Therefore, given the new starting state s∗ts , we seek to compute s∗te such that the goal
feature values f∗te correspond to those of the demonstration d∗ ∈ D(a) with the closest
resemblance with respect to the starting conditions, i.e.,

d∗ = arg min
d(n)∈D(a)

‖f (n)
ts − f∗ts‖γ∗ , (4.9)

where f (n)
ts is the starting feature vector of the n-th demonstrations, and ‖ · ‖γ∗ is the

distance computed using only the feature dimensions defined by γ∗. We compute this
as a weighted sum of the distances with respect to each feature scaled by the entropy of
starting values in that dimension over all demonstrations. In this way, we give more
importance to dimensions with consistent feature values.

Finally, given the selected demonstration d∗, we compute the goal state s∗te by sampling
goal poses of the end-effector that satisfy feature values f∗te observed in d∗. For this, we
only consider features in the selected template γ∗ that describe spatial relations between
the end-effector and stationary objects in the scene. We construct the goal state s∗te by
computing a goal end-effector pose satisfying all such constraints, and assuming that
all other moving objects will maintain their current poses relative to the end-effector
after applying the action, i.e., no grasped object slips during the motion. Note that
in this work, we focus on computing the goal of an action based on a small set of
ambiguous demonstrations. Our approach enables the robot to select the best set of
spatial constraints for modeling the action and to compute a goal state accordingly.
This eliminates the need for an expert to provide this information for each new action.
To achieve the computed goal state, we assume the robot is equipped with a suitable
technique for computing a feasible trajectory. This can either be done by adapting the
trajectory demonstrated by the teacher in d∗ (transformed based on the new goal pose
of the end-effector), or by relying on a motion planner to compute a new trajectory.
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...
...

...
...

Figure 4.5.: Six examples of abstract expert templates we considered in this work. Blue
objects indicate objects that move with the end-effector, whereas gray
objects indicate stationary objects. The coordinate systems in the lower
row indicate the world frame. We use the dashed red edges to indicate that
the template considers spatial relations between the corresponding objects
as relevant for the action.

4.2.5. Approach Evaluation

In this section, we evaluate our approach for learning an action based on expert-designed
templates. We consider three actions that we demonstrated on a real PR2 robot
kinesthetically. For perceiving the state during the demonstrations, we relied on fiducial
markers that we attached to the objects and measured their poses using a camera
mounted on the robot’s head, see Figure 4.1.

4.2.5.1. Expert Templates

To evaluate our method, we designed a set Γ of generic action templates along with
their relevance functions p(γ | s∗ts , a) that determine when they are recommended for
applying an action a based on the demonstrations D(a) and a new starting state s∗ts , as
described in Section 4.2.3.
Each template considers only a subset of the potential spatial relations between the

objects that seem relevant during the demonstrations. We based our templates on
typical pick-and-place actions that achieve desirable spatial arrangements of objects. For
instance, one template considers the relation between the end-effector and one stationary
object os ∈ Oa

S if the teacher demonstrations involved a “consistent” goal pose of the
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Figure 4.6.: Left: we demonstrated to the robot how to reach for a specific object (red
cup). The positions of the other objects on the table do not change in
the demonstrations, adding to the ambiguity of the intended action goals.
Right: we demonstrated to the robot how to place a grasped cup next to a
plate on the table. The cup is always placed on the side opposite to that of
the fork.

end-effector relative to os. We defined consistency based on the compactness of the
corresponding feature values according to the approach of Abdo et al. (2013). This
method considers a feature dimension to be relevant for the action if its demonstrated
values can be modeled using a small number of compact clusters. Similarly, other
templates considered features describing the relation between the end-effector and all
stationary objects.

Additionally, we designed templates that consider spatial relations between stationary
objects or the end-effector and the global reference frame (e.g., the table or the torso
of the robot). Our system recommends such templates if the involved objects had
consistent poses relative to the global frame across the demonstrations.

Moreover, we designed templates that additionally consider spatial relations between
other moving (grasped) objects om ∈ Oa

M and the end-effector or stationary objects,
and which we recommend if there are consistent feature values between om and those
objects across the demonstrations. Figure 4.5 illustrates some of the templates we used
in our experiments. When recommending a set of templates Γ∗ to consider for applying
an action, we include all valid ways of grounding those abstract templates based on
the objects in the starting state. Finally, for computing the distributions φi, we used
histograms with a bin size of 0.2m for translation and distance features, and 45 deg for
angular features.

4.2.5.2. Demonstrated Actions

We demonstrated three different actions to the robot as follows:

• Action a(1): placing an object on another. We provided the robot with ten
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demonstrations of how to place a grasped cup on top of a coaster starting from
arbitrary initial poses of the coaster on the table and of the end-effector with the
grasped cup.

• Action a(2): reaching for a specific object. We provided the robot with ten
demonstrations of how to reach for a red cup placed on the table in order to grasp
it. Each demonstration started with the red cup placed at an arbitrary position
on the table. All demonstrations involved two other cups (green and blue) in fixed
positions on the table, see the two left-most images in Figure 4.6.

• Action a(3): setting a table. We provided the robot with twelve demonstrations of
how to place a grasped cup next to a plate and a fork on the table. The teacher
always placed the cup on the opposite side of the plate with respect to the fork,
providing six training demonstrations for each setting, see the two right-most
images in Figure 4.6.

4.2.5.3. Experiments and Results

We tested our approach on each of the three actions in simulation. In each case, we used
our approach to apply the action by computing a goal state from a random starting
state that was not demonstrated by the teacher. For a(1) and a(3), we sampled a random
grasping pose of the grasped cup relative to the end-effector in the starting state. We
repeated this 500 times for each action. We used our method to reason about the
best template to apply the action in each case and compute a goal state accordingly.
We considered a run successful only if we were able to compute a feasible goal state
satisfying all features considered by the best template, and if this goal state aligns with
the true intention of the teacher, which we did not provide to the robot.

Placing a Cup on a Coaster For a(1), we considered a goal state to be correct if it
corresponded to the grasped cup being placed on the coaster. Figure 4.7-right depicts
the success rate given different numbers of demonstrations for training. As expected,
the performance improves with the number of demonstrations. With more training data,
we are able to better disambiguate the demonstrations since feature dimensions that are
more relevant for the action will contribute to higher template scores. Figure 4.7-left
depicts the ratio of times a specific template was selected as the best template for
applying the action given five and ten demonstrations. Overall, our method selected
two templates, γ1 and γ2, for explaining the action. We achieved a success rate of 75.8%
when given five demonstrations for learning. With ten demonstrations, our method
solved 93.6% of the cases using γ1, which includes features describing the poses of the
end-effector and the cup relative to the coaster. On the other hand, γ2 contains features

81



4. Learning Action Models from Teacher Demonstrations

γ1 γ2

0

0.5

1

S
el
ec
ti
o
n
ra
ti
o

5 demos

10 demos

6 8 10

0

50

100

Number of demonstrations

S
u
cc
es
s
ra
te

(%
)

Figure 4.7.: Results for action a(1): placing a grasped object onto another object on the
table. Left: the selection of templates given five and ten demonstrations
for learning the action. Out of all available templates, the recommender
system suggested only two. Our system selected γ1 most of the time, as
this template considers features describing the pose of the gripper and the
grasped object relative to the target object on the table. Right: the success
rate increases up to 93.6% with ten demonstrations.

describing the pose of the coaster relative to the global reference frame, which are less
relevant for the action.

Reaching for a Specific Object In each test case for this action, we started with all
three cups placed in random positions on the table. We considered a run successful if the
goal state corresponded to correctly grasping the red cup. Figure 4.8-right depicts the
success rate as we varied the number of demonstrations from five to ten. When using the
full training dataset, we achieve a success rate of 88.8%. As expected, the success rate
increases with the size of the training set. Additionally, we analyzed which templates
were more influential for applying the action in given five and ten demonstrations,
see Figure 4.8-left. Our approach frequently selected three templates, γ3 - γ5, when
reproducing the action from varying starting poses. γ3 contains features describing
the pose of the end-effector relative to the red cup. On the other hand, γ4 and γ5

contain features involving the poses of the other two cups and the end-effector relative
to the robot reference frame. Combined, they provided successful interpretations of the
action in 74% of the 500 trials given five demonstrations. With ten demonstrations, γ3

successfully explained 88.8% of all the initial configurations. In other words, changes
in the poses of the green and blue cups in the starting state rendered the templates
considering irrelevant features to become unlikely with more data, enabling the robot
to generalize the demonstrations of the teacher.

82



4.2. Action Models Based on Expert-Designed Templates

γ3 γ4 γ5

0

0.2

0.4

0.6

0.8

S
el
ec
ti
o
n
ra
ti
o

5 demos

10 demos

6 8 10

0

50

100

Number of demonstrations

S
u
cc
es
s
ra
ti
o
(%

)

Figure 4.8.: Results for action a(2): reaching for a specific object. Left: with more
demonstrations, the system prefers γ3 to the other models. This template
contains features describing the pose of the gripper relative to the target
object. Right: the success rate increases with the number of training
demonstrations, reaching up to 92.6%.

Setting a Table In all starting configurations for this action, we placed the fork to
the left of the plate. We recorded the success rate as the number of times the robot
placed the cup on the right side of the plate (i.e., opposite to the fork). The results
are shown in Figure 4.9-right. We achieved a success rate of 96% when using all twelve
training examples. Additionally, we analyzed the influence of the number of training
data on the success rate. As expected, the success rate increased with the quantity of
the learning examples. We also analyzed the template selection over the varying number
of training demonstrations, see Figure 4.9-left. With five training demonstrations, four
templates were selected approximately equally during the 500 trials. Even with such a
small number of demonstrations, our method succeeded in solving 65% by leveraging the
different templates based on the starting state. The most selected templates included
features describing the pose of the grasped cup relative to the fork and plate. With
twelve training demonstrations, there was an increasing preference for explaining the
action using template γ7 which considers features describing the pose of the end-effector
and the grasped cup relative to the fork. Using the recommended templates, our system
achieved 96% success rate given twelve demonstrations.
To further illustrate the flexibility of our method in reproducing the action under

different starting conditions, we ran the experiment again after removing the fork from
the scene. In this case, we consider a run successful if our method placed the cup on
either side of the plate. Since our method recommends templates based on the objects in
the scene, we are able to cope with such changes relative to the teacher demonstrations.
In this case, we often selected a template that considers the pose of the cup relative to
the plate, and achieved a success rate of 82% given twelve demonstrations.
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Figure 4.9.: Results for action a(3): placing a grasped cup next to a plate and fork. Left:
template selection given five and twelve demonstrations. The system prefers
templates that describe the pose of the cup relative to the other objects on
the table. Right: the success rate as a function of the number of training
demonstrations, reaching up to 96% given twelve demonstrations.

4.2.5.4. Discussion

So far in this chapter, we presented an approach for learning manipulation actions
from a small number of demonstrations by leveraging expert knowledge. The inherent
ambiguity in the demonstrations can lead to conflicting effects and less generalization
to new conditions if one commits to a specific action model. Instead, our method
uses techniques inspired from recommender system theory to reason about multiple
interpretations of the action and select which features are relevant for reproducing it
given a new state. We generate these features based on action templates designed
beforehand by experts to model a variety of actions. We use these interpretations to
build multiple probabilistic models that we evaluate for each new initial condition in
which the robot has to apply the action. In this way, we are able to account for several
interpretations of the demonstrations and select the best one depending on the scene.

4.3. Implicit Action Models
The approach we presented in Section 4.2 addressed inferring a suitable action model to
use in a new situation based on a set of existing templates designed by experts. This
enables us to tackle the ambiguity in the teacher demonstrations by considering only a
subset of the potential features (spatial relations) as relevant for applying the action
based on the expert recommendations. However, this assumes that the expert models
are suited for modeling any arbitrary action that the teacher could demonstrate to
the robot. Moreover, after selecting such a model, we assume that the robot is able
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to compute a goal state that satisfies all constraints specified by the corresponding
template in order to apply the action.
To address this, in this section, we present an approach for modeling an action that

does not assume the existence of prior expert knowledge about actions. At the same
time, we do not aim to commit to an explicit model of the action goals, as this limits
the robot’s ability to apply the action in states that differ from the demonstrations.
Instead, we present an implicit action model that takes into consideration a mixture of
interpretations of the intention of the teacher simultaneously.
The main idea of our approach is to model an action a in terms of spatial relations

between the set of moving objects Oa
M and the stationary objects Oa

S in the scene.
Accordingly, each stationary object os implicitly represents one potential interpretation γ
that “votes” for desirable poses of the moving objects. By combining these interpretations
into one flexible model, we construct a multi-modal distribution of action goals that
adapts to the starting state.
This is analogous to the concept of implicit shape models in computer vision, a

technique for learning flexible models of object shapes in order to recognize them in
2D images (Leibe and Schiele, 2003; Leibe et al., 2004). The idea there is to construct
a codebook of features from training image patches based on co-occurrences between
those features and the center of the target object being learned. This results in learning
an implicit model of what the target object looks like. Recognizing a new instance of the
object is done by matching parts of an image to learned codebook entries and having
them vote for the position of the object. The method is thus able to reason about the
likelihood of the object being in the scene based only on partial observations of features
commonly associated with it. In the same manner, our method represents action goals
in a flexible manner based on the poses of the stationary objects in the scene.

In Section 4.3.3, we present a continuous model for this distribution based on kernel
density estimation. Subsequently, in Section 4.3.4, we present a method for discretizing
this distribution to approximate it using a finite set of goal states, each associated with
a probability of being an intended goal of the action. This enables us to efficiently
sample a likely goal state for the action while still considering multiple modes in the
intention of the teacher.

4.3.1. Pairwise Relations
In Section 4.2, we presented action models that use feature functions fR defined by
expert templates. These features describe different spatial relations between the objects
such as their distances and relative positions. Similarly, to construct our implicit action
model, we rely on a feature representation describing the relation between a pair of
objects p(k,l) = {ok, ol} in terms of the 6D pose lTk of ok relative to ol.

We use this representation to model distributions p(lTk) of relative poses for an object
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pair given the set of demonstrated poses {lT(1)
k , . . . ,l T(Na)

k }, where lT(n)
k is the relative

pose in the n-th demonstration (either at time t = ts or t = te). This distribution
captures the likelihood of a certain state satisfying an intended pairwise constraint with
respect to the two objects.

On the one hand, we seek a model that is based on a small number of demonstrations.
On the other hand, we aim to capture fine details in the intention of the teacher. There-
fore, we adopt a non-parametric, data-driven model and use kernel density estimation
to compute the likelihood of a relative pose lTk:

p(lTk) = 1
Na

Na∑
n=1

k
(
lT(n)

k , lTk

)
. (4.10)

Here, the function k(·, ·) is the Gaussian kernel

k
(
T(n),T

)
= 1√

2πσ2
exp

(
−dist(T(n),T)2

2σ2

)
, (4.11)

where σ is the kernel bandwidth. In this work, we compute the distance dist between
two poses as a weighted sum of the distances between the translational and rotational
components of the corresponding transforms, i.e.,

dist(T(n),T) = αt‖t(n) − t‖2 + αrdg(R(n),R), (4.12)

where dg is the (scaled) geodesic distance between the two rotations, i.e.,

dg(R(n),R) = 1
π
√

2

∥∥∥log
(
(R(n))> R

)∥∥∥
F
. (4.13)

Here, log is the principal logarithm of the relative rotation matrix and ‖ · ‖F is the
Frobenius norm. The scaling by 1

π
serves to restrict the rotational distances to be

between 0 and 1. The constants αt and αr correspond to weighting coefficients for the
translational and rotational distances, respectively. In this work, we set both to 0.5.

In the following sections, we build on such distributions to model the state affordability
and goal distributions of the action.

4.3.2. Modeling State Affordability
Recall that the state affordability (Section 4.1.3) encodes the likelihood that a starting
state sts is suitable for applying the action as intended by the teacher. In Section 4.2,
we modeled the affordability of state sts based on the feature distributions specified by
an expert template γ. In this section, we aim for a model that does not rely on such
expert knowledge.

Since we associate the action with the set of objects Oa
M that move when applying it,

we propose to model the state affordability p(sts | a) based on the pairwise relations
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over objects in Oa
M , which we assume to be independent of each other. To achieve this,

we select a representative object o∗ ∈ Oa
M , and construct a distribution over the pose of

o∗ relative to other objects in Oa
M , i.e.,

p(sts | a) =
∏

ok∈OaM
ok 6=o∗

Na∑
n=1

1
Na

k
(
kT(n)
∗ (ts), kT∗(ts)

)
, (4.14)

where kT(n)
∗ (ts) is the pose of o∗ relative to ok at the start of the n-th action demonstration.

In other words, each pair of objects in Oa
M is associated with a multi-modal distribution,

with each training example representing a desirable starting pose from which the action
can be applied. In this work, we select o∗ to be the end-effector object oee for all actions.
Note that this distribution models pairwise relations, and is therefore only defined

for actions for which |Oa
M | ≥ 2. This excludes the case in which Oa

M includes only the
end-effector of the robot, e.g., moving the end-effector to achieve a desirable object
grasp. In this case, we consider all states to be equally likely for applying the action,
corresponding to a uniform distribution over sts

By applying the action starting in states sts with a high affordability, we increase the
likelihood of the action succeeding based on the knowledge that the teacher implicitly
included in the demonstrations, e.g., achieving a grasping pose of the end-effector
relative to a cup before moving the cup. In this chapter, we do not address inferring
starting states with a high affordability and focus on inferring a goal state ste of the
action assuming the action is applicable in the given starting state sts . In Chapter 5, we
present an approach that enables the robot to compute a sequence of actions such that
each action is applied in a state satisfying a minimal desirable affordability constraint.

4.3.3. Implicit Action Goals
We aim to model a distribution p(ste | sts , a) of goal states ste when applying action a in
state sts . The approach we presented in Section 4.2 relied on selecting an interpretation
γ for the action based on an expert template. Accordingly, we modeled the goal states
p(ste | sts , a, γ) based on goal features fte defined by the template γ. By specifying the
set of relevant features for the action, γ enabled us to select one specific interpretation
of the action based on the starting state sts .

Without such expert knowledge, we treat the true intention of the teacher γ as a latent
random variable. Accordingly, we compute the distribution of action goals p(ste | sts , a)
by integrating over all potential interpretations Γ, i.e.,

p(ste | sts , a) =
∫

Γ
p(ste | sts , a, γ) p(γ | sts , a)dγ, (4.15)

where p(γ | sts , a) is the template-relevance probability capturing the importance of
template γ for modeling the action in sts , see Section 4.2.3. In practice, however,
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considering all possible action templates is infeasible as there are numerous ways of
selecting subsets of spatial relations for modeling the action. Moreover, we do not have
prior knowledge about the relevance p(γ | sts , a) of each template.

Therefore, and rather than relying on an expert to explicitly specify these models, we
seek an implicit model of the action goals that encodes different ways of interpreting the
teacher demonstrations at the same time. We assume that the intention of the teacher
is to move objects in Oa

M to achieve desirable spatial relations relative to stationary
objects Oa

S. Accordingly, we approximate Eq. (4.15) using a finite set of templates
Γ = {γ1, . . . , γ|OaS |} that we construct automatically based on the stationary objects
Oa
S of the action. Specifically, each object os ∈ Oa

S represents one interpretation of the
action by “voting” for goal poses of the moving objects relative to it.

In the following, we break down computing the goal distribution in Eq. (4.15) by first
considering the distribution p(ste | sts , a, γs) of goal states with respect to one stationary
object modeled by γs (Section 4.3.3.1) before constructing the overall goal distribution
as a mixture of all such templates based on their relevance p(γs | sts , a) (Section 4.3.3.2).

4.3.3.1. Action Goals Relative to One Stationary Object

We assume that applying an action maintains all rigid transforms between the moving
objects in Oa

M . For example, moving the end-effector along with a grasped cup results
in the same relative pose between those two objects in both sts and ste . Therefore, we
model the distribution of goal states ste based on the pose of one representative object
o∗ ∈ Oa

M relative to all other objects in Oa
S.

Furthermore, we consider a finite set of templates Γ, each interpreting the action
using relations between o∗ and one stationary object os ∈ Oa

S only. Accordingly, for
each template, we define the distribution p(ste | sts , a, γs) of goal states to reflect the
intended poses T∗(te) of o∗ in the goal state ste . Here, γs denotes the template that
considers only object os to be relevant for the action. As in Section 4.3.1, we adopt a
non-parametric model for this distribution based on the training poses for the relation
sT∗ as observed at the end of each demonstration.
Let sV∗ denote the set of these poses (votes), i.e., sV∗ = {sT(1)

∗ (te), . . . , sT(Ns)
∗ (te)},

where Ns ≤ Na is the number of demonstrations involving os and sT(v)
∗ (te) ∈ sV∗ is the

pose of o∗ relative to os at the end of the v-th demonstration. To use these votes in a
new starting state sts , we transform them to the world frame using the pose Ts(ts) of the
voting object in the scene. We use the resulting transformed poses T∗ = Ts(t) sT(v)

∗ (te)
for modeling a multi-modal goal distribution using kernel density estimation:

p(ste | sts , a, γs) =
Ns∑
v=1

1
Ns

k
(
Ts(ts) sT(v)

∗ (te),T∗(te)
)
, (4.16)

where k(·, ·) is the Gaussian kernel as in Eq. (4.11).
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This continuous distribution models the state sts in terms of the goal pose T∗(te) of
o∗. Computing the pose for all other moving objects om ∈ Oa

M in ste is straightforward
since we assume all transforms ∗Tm between moving objects to stay the same before
and after applying the action, i.e., Tm(te) = T∗(te) ∗Tm(ts). Moreover, the pose of
each stationary object os ∈ Oa

S(sts) is simply its pose before applying the action, i.e.,
Ts(te) = Ts(ts). Finally, this distribution captures multiple modes of the action goal
with respect to object os as demonstrated by the teacher. As it depends on the starting
pose Ts(ts) of os in the starting state, we are able to generalize the goal poses sV∗
demonstrated by teacher to new starting states.

4.3.3.2. Combined Action Goals Distribution

Eq. (4.16) models the action goals by assuming that the intention of the teacher is
to move object o∗ relative to only one stationary object os. Given a small number of
demonstrations, it is typically unclear which other interpretations are also relevant for
the action based on the stationary objects in the scene. To tackle this ambiguity, we
construct a distribution p(ste | sts , a) of goal states as a mixture of all such interpretations.
In other words, we allow all Oa

S(sts) in the scene to contribute by voting for the goal pose
of o∗ as in Eq. (4.16). This approximates Eq. (4.15) using the finite set of templates Γ,
each considering one stationary object, i.e.,

p(ste | sts , a) =
∫

Γ
p(ste | sts , a, γs) p(γs | sts , a)dγ

≈
∑
γs∈Γ

p(ste | sts , a, γs) p(γs | sts , a)

≈
∑
γs∈Γ

p(γs | sts , a)
Ns∑
v=1

1
Ns

k
(
Ts(ts) sT(v)

∗ (te),T∗(te)
)
.

(4.17)

Without prior knowledge about the relevance of each template γs (i.e., stationary
object os), we assume the relevance probability p(γs | sts , a) to be uniformly distributed
over all templates, i.e., all stationary objects contribute votes with equal weight to the
goal distribution. At the same time, a template γs is irrelevant for applying the action
in state sts if the corresponding stationary object is not in the scene, i.e.,

p(γs | sts , a) :=


1
|OaS |

if os ∈ Oa
S(sts)

0 if os /∈ Oa
S(sts).

(4.18)

Therefore, we express Eq. (4.17) in terms of the stationary objects Oa
S(sts) that exist

in the starting state sts and their votes:

p(ste | sts , a) = η
∑

os∈OaS(sts )

Ns∑
v=1

k
(
Ts(ts) sT(v)

∗ (te),T∗(te)
)
, (4.19)
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where η is a normalizer. Note that in this way, we model the intention of the teacher in
a flexible, data-driven way. We are able to generalize the demonstrations and apply the
action even if some of the stationary objects are missing in the scene. Moreover, we do
not commit to a particular model of the goals beforehand, but change the shape of the
distribution “on the fly” based on the starting state. By aggregating the transformed
votes from all stationary objects, the peaks of the resulting distribution will correspond
to likely modes of the intention of the teacher based on the current state.
Note that Eq. (4.19) is only defined if there is at least one stationary object in the

scene. Otherwise, the action cannot be applied. Finally, our model is generic with
respect to which representative moving object o∗ is selected to construct the distribution.
In this work, we randomly select an object other than the end-effector if |Oa

M | ≥ 2 to
model the goal of the action. Otherwise, we select the end-effector as o∗.

4.3.4. Discretized Action Models
The above section described how we construct a continuous distribution of action
goals. Given a new starting state s∗ts , we use the teacher demonstrations to construct
this distribution as in Eq. (4.19). To apply the action, we seek a goal state s∗te that
maximizes p(ste | s∗ts , a) subject to s∗te being feasible, see Section 4.1.6. In general, this
is challenging due to the large state space and the highly non-convex nature of the
distribution. In principle, we are interested in goal states corresponding to regions of
high (voting) density in the distribution. One way to address this is in practice is to
rely on a sampling-based approach. For instance, we draw samples from Eq. (4.19) by
viewing it as a mixture of Gaussians distribution over T∗ with each Gaussian component
centered at one transformed vote for the pose of o∗. However, such a method could
require a large number of samples before finding a feasible state that maximizes the
goal likelihood.
Therefore, in this section, we propose a more efficient solution by approximating

the above distribution with a finite set of discrete goal states and their probabilities.
Specifically, we seek a finite set of S goal states Ŝte = {ŝ(1)

te , . . . , ŝ
(S)
te }, along with their

probabilities P (ste = ŝ(s)
te | sts , a) for s = 1, . . . , S, to approximate the distribution

in Eq. (4.19). As this distribution depends on the initial state, the number S of goal
states is unknown beforehand.

One approach to achieve this would be to discretize the whole state space in a regular
grid and consider each cell as one potential (discrete) state. Although correct, this
would require many unnecessary computations for exploring states with low probabilities,
since only a small part of the state space is occupied with points corresponding to the
teacher demonstrations. Instead, we rely on clustering to achieve this discretization by
determining regions of the state space with a high probability density in Eq. (4.19). In
this way, we are able to efficiently select the best goal state for a given situation while

90



4.3. Implicit Action Models

still reasoning about the complete spectrum of intended goals.
In the following, we first describe how we construct a discretized voting distribution for

each stationary object in order to efficiently draw votes for the goal poses of the moving
objects (Section 4.3.4.1). Accordingly, we describe how we use these votes to compute a
discretized version of the distribution in Eq. (4.19) (Section 4.3.4.2), which allows us to
efficiently select the most likely goal state for applying the action (Section 4.3.4.3).

4.3.4.1. Pairwise Voting Distributions

We constructed the distribution of goal states in Eq. (4.19) by relying on all votes
sV∗ = {sT(1)

∗ (te), . . . , sT(Ns)
∗ (te)} representing poses of o∗ relative to os ∈ Oa

S at the end
of each teacher demonstration. Each (transformed) vote corresponds to one component
in the final distribution of goal poses for o∗ in the world frame. We build on this
motivation to achieve our approximate discretized model.
However, rather than using all Ns votes each time we apply the action, we as-

sociate each stationary object os with a discrete voting distribution p̂s over rela-
tive poses sT∗, such that a relative pose can take one of N̂s ≤ Ns possible values
sV̂∗ = {sT̂(1)

∗ , . . . , sT̂(N̂s)
∗ }. Each possible pose sT̂(n)

∗ ∈ sV̂∗ represents a vote for the
relative transform between o∗ and os, and is associated with a weight ŵ(n)

s equal to its
probability p̂s(sT∗ = sT̂(n)

∗ ). To construct the voting distribution, we aim to “compress”
the demonstrations sV∗ by merging poses that are close to each other into one discrete
vote sT̂(n)

∗ . The distribution p̂s therefore reflects the importance of each vote sT̂(n)
∗ based

on how many original poses sT(v)
∗ (te) were used to compute it. The intuition behind this

is that pairwise relations that are important for the action are typically demonstrated
more often by the teacher, resulting in multiple relative poses that are close in distance.
We therefore rely on clustering to merge similar poses in sV∗. Instead of specifying

the number of clusters, as is required by techniques such as k-means clustering, we
adopt a hierarchical clustering approach and impose a compactness δmax specifying the
maximum allowed distance between any two poses in one cluster. Specifically, we use
the complete-linkage version of agglomerative hierarchical clustering. Starting with each
of the Ns poses as its own cluster, we iteratively merge clusters together until there
are no two clusters left such that the maximum distance (Eq. (4.12)) between any of
their poses is less than or equal to δmax. The result is N̂s clusters Ĉ(1)

s , . . . , Ĉ(N̂s)
s , where

N̂s ≤ Ns. Moreover, each demonstrated pose sT(v)
∗ (te) from sV∗ belongs to one of the

resulting clusters, which we denote by sT(v)
∗ (te) ∈ Ĉ(n)

s .
Based on this, we construct the set of discretized votes sV̂∗ = {sT̂(1)

∗ , . . . , sT̂(N̂s)
∗ } by

computing the mean pose sT̂(n)
∗ of each cluster Ĉ(n)

s . We compute the mean of a set
of poses by considering the translation and rotational components independently and
computing the mean on the corresponding topological space (R3 and SO(3)).
By setting the compactness δmax of each cluster, we have an upper bound on the
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maximum distance between any two poses inside it. Therefore, clusters with more poses
in them correspond to regions of space with a higher density of desirable relative poses.
Accordingly, we compute the weight ŵ(n)

s associated with each cluster Ĉ(n)
s as the ratio

of poses that belong to it, i.e.,

ŵ(n)
s = 1

|sV∗|

Ns∑
v=1

1
Ĉ

(n)
s

(sT(v)
∗ (te)), (4.20)

where 1
Ĉ

(n)
s

(·) is the indicator function, which is equal to 1 if sT(v)
∗ (te) ∈ Ĉ(n)

s and to
0 otherwise. In fact, by viewing p̂s as a multinomial distribution over sT∗ with N̂s

possible outcomes, Eq. (4.20) corresponds to the maximum likelihood estimate for the
probability ŵ(n)

s of outcome sT̂(n)
∗ (i.e., sT∗ falling in Ĉ(n)

s ).

4.3.4.2. Discretized Action Goal States

We now use the discrete voting distribution p̂s associated with each each stationary
object to compute a discretized version of the goal distribution in Eq. (4.19). As before,
we aim to construct a multi-modal distribution capturing different ways of applying the
action by mixing the votes by all stationary objects in the scene. However, instead of
using all Ns votes sT(v)

∗ (te) demonstrated by the teacher, we rely on I samples sT̃(i)
∗ from

the voting distribution of each object os. We draw these samples with replacement such
that the probability of sampling a vote sT̂(n)

∗ is ŵ(n)
s , see Eq. (4.20). Given a specific

template γs representing a stationary object os, we use the I samples, transformed
to the world frame, to approximate the distribution p(ste | sts , a, γs) in Eq. (4.16) as
follows:

p(ste | sts , a, γs) ≈
1
I

I∑
i=1

k
(
Ts(ts) sT̃(i)

∗ ,T∗(te)
)
. (4.21)

As in Eq. (4.17), we mix the votes from all stationary objects in the scene, weighted
by their relevance p(γs | sts , a), to construct the overall distribution of goals p(ste | sts , a)
as follows:

p(ste | sts , a) ≈ η̃
∑
γs∈Γ

p(γs | sts , a)
I∑
i=1

k
(
Ts(ts) sT̃(i)

∗ ,T∗(te)
)
,

≈ η̃
∑
γs∈Γ

p(γs | sts , a)
I∑
i=1

k
(
T̃(i)
∗ ,T∗(te)

)
,

(4.22)

where I is the number of samples sT̃(i)
∗ drawn from each voting distribution p̂s of

stationary object os, T̃(i)
∗ = Ts(ts) sT̃(i)

∗ is the transformed i-th vote sample, and η̃ is a
normalizer.

We note that Eq. (4.22) describes a mixture distribution based on a total of J votes
from all stationary objects in the scene, i.e., J = I |Γ|. As in Section 4.3.3.2, each of the
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J votes defines one possible goal state s̃(j)
te based on the corresponding pose T̃∗ of o∗.

Moreover, each state s̃(j)
te is associated with a weight w̃(j)

γs , which is equal to the relevance
p(γs | sts , a) of the template γs responsible for the corresponding vote.

To discretize this distribution, we seek a finite set of goal states Ŝte = {ŝ(1)
te , . . . , ŝ

(S)
te },

along with their probabilities P (ste = ŝ(s)
te | sts , a) for s = 1, . . . , S. This approxi-

mates Eq. (4.22) such that the probability of any state not in Ŝte is zero. For this, we
are interested in determining regions in state space with a high density with respect to
the continuous distribution. As in Section 4.3.4.1, we accomplish this using agglomera-
tive hierarchical clustering on the set of goal state samples S̃te = {s̃(1)

te , . . . , s̃
(j)
te }. We

perform the clustering with respect to the poses of the moving object o∗ with the same
compactness threshold δmax used for learning the voting distributions p̂s. Starting with
each state s̃(j)

te as its own cluster, we iteratively merge clusters until no two clusters exist
such that the maximum distance between any of their states (i.e., the distance between
the corresponding T̃∗ poses) is less than or equal to δmax.
The result is a set of S clusters Ŝ(1), . . . , Ŝ(S) that partition the samples S̃te . We

compute each desired discrete goal state ŝ(s)
te as the mean state of the corresponding

cluster Ŝ(s) by averaging the poses of each object independently. Moreover, since all
clusters have the same upper bound on the distance between any two states inside them,
we approximate the probability of each goal state ŝ(s)

te using the density of state samples
that fall in the corresponding cluster Ŝ(s). We do this by counting the (weighted) state
samples in the cluster, i.e.,

P (ste = ŝ(s)
te | sts , a) ≈

∫
B(Ŝ(s))

p(ste | sts , a) dste

≈ η̂
J∑
j=1

w̃(j)
γs 1Ŝ(s)(s̃(j)

te ),
(4.23)

where B(Ŝ(s)) is the volume in state space corresponding to cluster Ŝ(s) and 1Ŝ(s)(·) is
the indicator function that is equal to 1 if s̃(j)

te ∈ Ŝ(s) and to 0 otherwise. Moreover,
η̂ = 1/

(∑S
s=1

∑J
j=1 w̃

(j)
γs 1Ŝ(s)(s̃(j)

te )
)
is a normalizer. We illustrate the overall process of

computing the goal distribution of an action according to our approach with an example
in Figure 4.10.

Note that this distribution is conditioned on the starting state sts in terms of which
stationary objects exist in the scene and what their poses are. In this way, we reason
about a finite set of potential goals when applying the action while still maintaining
the flexibility of the continuous model in Section 4.3.3.2. Moreover, the clustering
compactness threshold δmax defines a degree of coarseness for the discretization of
goals. The smaller δmax is, the closer are the pairwise relations (relative poses) in the
final goal states to those demonstrated by the teacher. As δmax → 0, we construct
voting distributions p̂s where each possible vote corresponds to one of the Ns poses
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Figure 4.10.: Constructing the goal distribution for the action of moving the green box
(see Figure 4.3). Top: we draw samples from the voting distributions
(left) p̂s of the three stationary objects to compute likely goal poses of the
moving objects (right). Bottom-right: we aggregate all votes to construct
the multi-modal mixture distribution, which we discretize via clustering
(the color opacity reflects the probability of each goal state). Our approach
tackles the ambiguity in the demonstrations by reasoning about likely goals
in a data-driven way based on the initial state. Bottom-left: we select the
feasible goal state with the largest probability to apply the action.
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demonstrated by the teacher, resulting in a finer imitation of the action. On the other
hand, larger values of δmax correspond to merging demonstrated relations that are
close to each other, resulting in fewer discrete states that average the corresponding
demonstrations.
Finally, the shape of this distribution depends on two main ingredients: the voting

distribution p̂s of each stationary object os, and the associated weight w̃(j)
γs . These re-

spectively determine which goal states are sampled and how strongly they are considered
in the final distribution. In this work, we rely only on the teacher demonstrations to
learn p̂s (Section 4.3.4.1), and assume that all templates (i.e., stationary objects) have
equal influence on the action, see Eq. (4.18). In Chapter 5, we present an approach that
enables the robot to re-learn these distributions using its own experience of sequencing
different actions to solve a complex task.

4.3.4.3. Selecting a Goal State

Having computed a finite set of goal states Ŝte = {ŝ(1)
te , . . . , ŝ

(S)
te }, and their probabilities,

P (ste = ŝ(s)
te | sts , a), we solve the problem in Section 4.1.6 by selecting the best goal

state s∗te ∈ Ŝte . For this, we first exclude the infeasible sates in Ŝte , and simply return
the state with the highest probability out of the remaining ones.

4.4. Related Work
In this chapter, we addressed the problem of learning models of manipulation actions from
teacher demonstrations. Learning from demonstrations is a framework for transferring
knowledge from non-expert users to robots (see the surveys by Billard et al. (2008);
Argall et al. (2009)). The techniques we presented in this chapter enable a robot to
reason about the relevant spatial constraints for reproducing an action despite ambiguity
in the demonstrations of the teacher and a small number of training examples. In
this section, we discuss prior work in the literature related to the problem of learning
manipulation skills from teacher demonstrations.

Feature Selection and Abstraction Learning One key problem in learning manipu-
lation actions from demonstrations is determining the relevant spatial constraints for
reproducing an action. The most common representation of such constraints is in terms
of the reference frames useful for reproducing a demonstrated motion. Whereas our
work enables a robot to reason about several valid interpretations of the demonstrations
with respect to these constraints, other approaches rely on interacting with the teacher
to specify this information in terms of keyframes during the demonstrations (e.g., Akgun
et al. (2012); Alexandrova et al. (2014); Akgun and Thomaz (2016)). On the other hand,
the approach by Mühlig et al. (2009b) automatically selects task spaces for modeling
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demonstrated motions using different criteria such as attention to salient objects or
inter-trial variance. Related to that, Eppner et al. (2009) and Mühlig et al. (2009a)
consider the variance in the demonstrations to determine less relevant parts of the tasks.
The approach by Jäkel et al. (2011) uses demonstrations to generate a so-called strategy
graph that segments tasks into sub-goals. An evolutionary algorithm is used to eliminate
irrelevant spatial and temporal constraints using a motion planner in simulation.
The above works focus on selecting the relevant spatial constraints that enable a

robot to reproduce demonstrated trajectories. In contrast to this, our work focuses on
point-to-point actions and enables a robot to select the best goal state when reproducing
an action based on the initial state by constructing multi-modal distributions of goals.
We model these distributions either based on subsets of spatial constraints (expert
templates) or as mixture models in a data-driven manner (implicit action models).
The problem of feature selection for modeling actions is also closely related to the

problem of learning a suitable feature abstraction. In the context of hierarchical
reinforcement learning, Konidaris and Barto (2009) presented an approach for choosing
between different state abstractions to enable an agent to learn options (macro actions)
out of primitive skills. Konidaris et al. (2012) leveraged this method when segmenting
demonstrated trajectories into different options represented in a skill tree. Each option is
assigned to a different abstraction that defines a small subset of relevant variables using
a trade-off between model likelihood and model complexity. Similarly, our approach
based on expert templates enables reasoning about different subsets of features to model
a new action. However, we focus on enabling a robot to select a suitable model based
on the initial state and do not tackle the problem of decomposing tasks into sequences
of actions.
Whereas the above works considered learning abstractions in continuous domains,

other approaches have addressed learning symbolic abstractions to leverage high-level,
symbolic planners for solving tasks. For example, Veeraraghavan and Veloso (2008)
learn symbolic representations of actions for planning by instantiating preprogrammed
behaviors and learning the corresponding preconditions and effects. Moreover, Pasula
et al. (2007) learn action models as probabilistic rules based on a dictionary of basic
symbolic predicates for planning. Such rules have recently been successfully used in
planning to solve complex manipulation tasks (Lang and Toussaint, 2010) or to learn
kinematic models of articulated objects (Höfer et al., 2014). Whereas existing symbolic
state abstractions facilitate planning complex tasks by reducing the dimensionality of the
problem, we do not assume to have such prior semantic knowledge about demonstrated
actions. Additionally, the approaches above require an expert to provide the mapping
between the symbolic and continuous state representations.
To address this, other researchers proposed methods to learn both symbolic state

abstractions and the mapping to geometric features to represent actions. In our previous
work, we presented an approach to learn the relevant preconditions and effects of actions
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by clustering the endpoints of segmented demonstrations and expressing the resulting
models symbolically (Abdo et al., 2013). Recently, Cubek et al. (2015) presented an
approach that infers relevant concepts from teacher demonstrations of manipulation
actions using subspace clustering such that action effects can be reproduced using a
symbolic planner. Moreover, Konidaris et al. (2014) presented an approach to construct
a symbolic representation for planning in a continuous, low-level environment. They
use supervised learning over continuous features to represent preconditions and effects.
Recently, they extended this approach to a probabilistic formulation that captures the
uncertainty in the learned action models (Konidaris et al., 2015). On the other hand, our
implicit action models approach enables learning continuous, multi-modal distributions
of action goals based on relative poses between the objects. We use hierarchical clustering
to discretize these distributions by identifying regions of the state space corresponding to
goals with a high likelihood. Whereas these clusters can be seen as analogous to symbolic
state abstractions, we do not tackle the problem of sequencing actions using symbolic
planners. In Chapter 5, we present a novel approach that leverages these models to
plan sequences of actions for solving tasks without requiring symbolic information.

Learning Action Effects Based on Object Affordances Several approaches have
addressed the problem of inferring action effects by reasoning about object affordances
(Gibson, 1979) in terms of feature changes associated with actions (Krüger et al., 2011).
For example, Dogar et al. (2007) compute differences of feature vectors such as the
distances, shapes, and orientations of objects extracted from laser scans and cluster the
difference vectors to represent the effects of actions. Analogously, Ugur et al. (2014)
recently proposed an approach to learn affordance classifiers that predict effect categories
given object features and based on single-object actions. Accordingly, these predictions
are later used to model higher-level affordance features, which the robot leverages to
learn more complex, multi-object affordances. Whereas the above methods considered
actions such as pushing or stacking objects, the approach of Mar et al. (2015) enables a
robot to autonomously learn the affordances of various tools based on visual features.
Moreover, the approaches of Montesano et al. (2008) and Rudolph et al. (2010) model
actions and their effects probabilistically using Bayesian networks. Moldovan et al.
(2012) extended these approaches to learn interactions between multiple objects by
leveraging statistical relational learning techniques. Related to that, Song et al. (2010)
proposed an approach that models the relations between object- and action-related
features using a Bayesian network to learn object grasping strategies. In contrast to
such works, we do not consider learning the affordances of objects to reason about using
tools or the effect of pushing an object based on its shape. Instead, we address learning
point-to-point actions based on spatial constraints between the objects before and after
applying an action. Specifically, we enable robots to reason about multiple modes in the
intention of the teacher for the demonstrated actions. Finally, rather than relying on
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teacher demonstrations, other approaches have leveraged physics simulations to reason
about the effects of actions such as pushing objects or pouring liquids during cooking
(Weitnauer et al., 2010; Kunze and Beetz, 2015), but this is orthogonal to the problem
addressed in this chapter.

Learning Motor Skills from Demonstrations There exists a large spectrum of works
that addressed encoding skills on the trajectory level to enable a robot to reproduce a
desirable motion or gesture. One popular approach for learning movement primitives is
to represent desired motions as stable dynamical systems with well-defined attractor
dynamics that can generalize demonstrated trajectories to new goals (e.g., Ijspeert et al.
(2002); Pastor et al. (2009)). To learn the attractor landscape of the system, these
methods rely on locally weighted regression techniques. Related to that, other approaches
leverage Gaussian mixture models to model movement primitives probabilistically
(e.g., Calinon et al. (2007, 2010); Khansari-Zadeh and Billard (2011); Welschehold et al.
(2016)). On the other hand, the approach by Asfour et al. (2006) models demonstrated
movements using hidden Markov models and detects key points across demonstrations
that the robot should reproduce. Similarly, Kulic et al. (2012) leverage hidden Markov
models to encode, recognize, and reproduce demonstrated motions.

In the context of reinforcement learning, teacher demonstrations have been leveraged
to initialize policies for complex motor skills such as opening doors or playing tennis,
and relied on techniques such as policy search to enable robots to improve these policies
by interacting with the environment (Kober and Peters, 2009; Kalakrishnan et al., 2011;
Englert et al., 2013). Additionally, inspired by inverse optimal control, Jetchev and
Toussaint (2011) addressed the problem of learning complex grasping policies as one
of learning cost functions that reflect the important control dimensions of the skill.
Finally, recent advancements in deep learning have enabled robots to learn grasps or
manipulation skills without requiring engineered features (Lenz et al., 2015; Pinto and
Gupta, 2016; Finn et al., 2016; Levine et al., 2016; Rahmatizadeh et al., 2016).

In contrast to these works, we do not consider learning control policies or primitives
on the trajectory level, i.e., how to imitate. Instead, we focus on inferring the relevant
spatial constraints for reproducing point-to-point actions given a small number of
demonstrations, i.e., what to imitate. To execute an action based on the learned spatial
constraints, our method can be combined with existing motion planners or controllers
using the techniques above to generate the required trajectories.

Implicit Shape Models Our approach for learning implicit action models shares
similarities with the concept of implicit shape models, a popular method for learning
flexible models of object shapes in order to recognize them in 2D images (Leibe et al.,
2004; Leibe and Schiele, 2003). The key idea is to learn a codebook of features from
training image patches, and to associate a codeword with a distribution over its position
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relative to the center of the target object. This results in learning an implicit model
of what the target object looks like. Recognizing a new instance of the object is
done by matching parts of an image to learned codebook entries and having them
vote for the position of the object. An estimate of the object location is found by
searching for local maxima in the voting density using mean-shift. This concept has
been successfully applied to different pose estimation and object recognition problems
in 3D (Arie-Nachimson and Basri, 2009; Knopp et al., 2010). Recently, Meißner et al.
(2014, 2016) presented a hierarchical approach based on implicit shape models to address
3D scene recognition. By learning from scenes demonstrated by a teacher, they leverage
implicit shape models to reason about expected object poses for object search. Similarly,
our work enables a robot to reason about the likely poses for placing objects based on
the current scene and teacher demonstrations.

4.5. Conclusion

In this chapter, we addressed the problem of learning models of point-to-point actions
from a small number of teacher demonstrations. Specifically, we focused on inferring
the spatial constraints that are relevant for reproducing an action and generalizing it to
new initial states. This is challenging due to the small number of training examples,
resulting in several valid and often contradictory ways of interpreting the demonstrations.
We addressed this from two perspectives. Firstly, we proposed a novel approach that
leverages expert-designed models of manipulation actions in general in order to bootstrap
learning a new action. Each model represents the action based on a subset of the involved
spatial constraints, thereby reducing the dimensionality of the problem. Accordingly,
we formulated a model-selection problem that allows the robot to select the most likely
model for applying the action based on the initial state. Secondly, we presented a novel
approach that learns an implicit model of an action in a data-driven way and without
requiring prior expert knowledge about actions. The idea of this approach is to allow the
stationary objects of the action to vote for the likely poses of the moving objects. This
allows the robot to construct a multi-modal distribution of intended action goals based
on a mixture of interpretations of the demonstrations. By conditioning this distribution
on the initial state, our approach is able to select the best goal state to achieve based
on the stationary objects in the scene and their poses. This provides the flexibility to
adapt to new initial states and without committing to a single model beforehand.
The majority of techniques for learning from demonstrations focus on learning the

action on the motion level to reproduce demonstrated trajectories and achieve a specified
goal. In contrast to that, our work considered point-to-point actions that do not depend
on the dynamics of the motion. Accordingly, we focused on learning the relevant
spatial constraints between objects before and after applying an action. In this way, we
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eliminate the need for an expert to provide a suitable model or set of features to use for
learning each new action. Additionally, we are able to reason about multiple modes in
the intention of the teacher with respect to the goal states to achieve.
Finally, in this chapter, we focused on selecting the most likely goal state when

applying a single action. For this, we assumed that the action is applicable based
on the affordability of the initial state. In the next chapter, we leverage the implicit
action models introduced in this chapter and tackle the problem of sequencing several
actions to solve a task. In this context, we aim to select action sequences and goals
such that we apply an action in states with high affordability. We demonstrate how
our implicit action models provide our approach with the flexibility to select between
different ways of applying an action while reasoning about a desirable final task goal to
achieve. Additionally, we show how our discretized action goal distributions allow for
efficiently sampling likely goal states when planning while still reasoning about desirable
spatial relations in a continuous space.
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5. Teach and Improvise:
Simultaneously Inferring Task and
Action Goals

In Chapter 3, we addressed the problem of learning task goals
and focused on predicting user preferences with respect to object
arrangements. We assumed the robot is able to achieve predicted
arrangements by manipulating objects using existing action mod-
els and planners. Alternatively, Chapter 4 addressed learning
new action models from teacher demonstrations. In this chap-
ter, we tackle the problem of learning both task goals and action
models simultaneously from non-expert teacher demonstrations.
We introduce teach and improvise, a novel learning from demon-
strations framework that enables a robot to compute plans for
solving a manipulation tasks by generalizing and sequencing ac-
tions based on a small number of ambiguous demonstrations. We
build our work on Monte Carlo tree search to reason about mul-
tiple interpretations of each action while searching for promising
task solutions. A key contribution of our approach is that we do
not require the user to specify an explicit goal state for the robot
to solve the task. Instead, we formulate an optimization problem
that aims at maximizing the likelihood of satisfying the intention
of the teacher with respect to relevant spatial relations. This en-
ables the robot to improvise feasible and desirable task solutions
in an anytime fashion. Moreover, our approach enables the robot
to continuously improve its performance by practicing the task in
simulation and subsequently updating the learned action models
without requiring additional teacher demonstrations. Through
extensive experiments in simulation and with a real robot, we
demonstrate the effectiveness and flexibility of our approach in
improvising task solutions from arbitrary initial states.

So far in this thesis, we considered the problem of learning task goals and action
models individually. On the one hand, in Chapter 3, we focused on learning user
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preferences with respect to object arrangements using large amounts of data gathered
from different users and environments. To achieve those arrangements in practice, we
relied on expert-designed pick-and-place actions that the robot combined using existing
planners. On the other hand, as it is infeasible for an expert to provide such actions for
all tasks and domains, Chapter 4 tackled the problem of learning action models from
non-expert teacher demonstrations. For example, this enables the robot to learn how to
reach for a new object in order to grasp it, or where to place it relative to other objects
in the scene.

In this chapter, we address the problem of jointly learning both task goals and action
models from a teacher. Specifically, we consider the scenario of a teacher demonstrating
to the robot how to manipulate objects in the scene, step by step, in order to achieve
the goal of a new task. As in Chapter 3, we focus on tasks whose goals can be modeled
in terms of the final object configuration. However, in this chapter, we consider learning
arbitrary object arrangements of interest to a user (e.g., setting a table, arranging blocks,
etc.) that are not confined to tidying up objects in containers.
For some domains, there exists a predefined library of logical predicates or relations

that facilitate learning models for solving such tasks. In those cases, the robot could
leverage such a library to abstract continuous states and make planning feasible. For
instance, in Chapter 3, we assumed that the goal of the task is modeled in terms of
placing pairs of objects in the same container, and focused on learning the preference of a
user for such relations. Similarly, for learning action models, one could build on existing
predicates to instantiate or extract symbolic or logical rules from teacher demonstrations
(Pasula et al., 2007; Veeraraghavan and Veloso, 2008; Höfer and Brock, 2016). However,
this is not always feasible since an expert is needed to program those predicates and
provide the robot with the means to ground them based on its continuous sensor data.
Moreover, the teacher may demonstrate arbitrary relations to the robot that are not
accounted for in such a library, making it difficult to use these predicates to encode all
goals it has to learn in the future.
Therefore, in this chapter, we assume to have no prior semantic knowledge about

tasks and actions and rely only on a small number of teacher demonstrations to learn
them. A major challenge in this context is the ambiguity in the demonstrations. On
the one hand, the goal of each action is not always clear as the demonstrations may
involve manipulating the objects in different orders. On the other hand, the teacher
may demonstrate several valid object configurations representing multiple modes of
the task goal, see Figure 5.1. Without prior knowledge of the task, the robot has to
generalize these configurations and reproduce the task from new initial states without
an explicit goal being provided each time. In other words, we cannot rely on traditional
task and motion planning techniques, which expect a concrete goal state as input.
Therefore, we propose to formulate this as an optimization problem in which the

robot has to maximize the likelihood that the final goal state aligns with the intention of
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Figure 5.1.: We aim to learn tasks whose goals are modeled based on the spatial relations
between the involved objects. This figure shows four examples of valid ways
for solving a task as demonstrated by a teacher. Without providing the
robot with an explicit formulation for the goal of the task, the robot has to
generalize such configurations and reproduce the task from arbitrary initial
states. To achieve this, the robot may improvise new goal states based on
the demonstrated spatial relations between the objects.

the teacher given the demonstrations. Additionally, we model goals in terms of pairwise
spatial relations between objects based on their relative poses. In this way, we bypass
the need for an expert to provide predicates that are useful for learning the task, and
directly tackle the continuous nature of real-world spatial relations.

However, maximizing the intention of the teacher in this continuous space is challenging
and often infeasible without a good initialization. We address this issue by leveraging
the discretized implicit action models proposed in Section 4.3.4 to explore the state
space using the demonstrations. Accordingly, we propose a novel approach based on
Monte Carlo Tree Search to compute plans that maximize the intention of the teacher
for the task. We present an algorithm that tackles the ambiguity in the actions and
task goals simultaneously. On the one hand, we compute plans by reasoning about the
best model (template) to use for reproducing each demonstrated action based on the
current state. On the other hand, we guide these decisions based on the final object
configuration achieved. As a result, the robot generalizes a small number of ambiguous
teacher demonstrations by improvising task solutions (i.e., final configurations and ways
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of applying the learned actions). We refer to this framework as teach and improvise. Our
approach is an anytime method in which the robot is able to achieve better solutions
given more planning time.
We evaluated our approach extensively using several tasks in simulation and with a

real robot. Our results show the ability of our method to use a few demonstration to
reproduce the intention of the teacher for the task and achieve desirable spatial relations
between the objects. Moreover, our approach is able to compute plans for achieving
different valid modes of the task goals based on the initial state and without requiring
the user to explicitly specify desired goals.
The remainder of this chapter is organized as follows. We formalize the problem of

learning a task and its actions in Section 5.1, in which we also highlight the major
challenges involved in this problem. In Section 5.2, we present our model for the
intention likelihood, capturing how well a state aligns with the intention of the teacher
for the goal of the task. In Section 5.3, we discuss how we leverage the implicit action
models proposed in Chapter 4 when computing plans to solve the task. Subsequently,
we use these models in Section 5.4 to cast our problem as one of sequential decision
making, allowing us to use Monte Carlo tree search by drawing similarities between our
problem and Markov Decision Processes. Accordingly, we present our model for the
tree structure enabling us to make decisions on three levels when planning: actions,
action templates, and action goals. In Section 5.5, we detail our algorithm for iteratively
growing such a tree to search for task solutions guided by the intention likelihood as
a heuristic. Additionally, in Section 5.6, we present a method by which the robot
can improve its noisy action models by practicing the task in simulation and without
requiring additional teacher demonstrations. We present an extensive experimental
evaluation of our approach on several tasks in Section 5.7. Finally, we discuss related
work in Section 5.8 before concluding the chapter in Section 5.9.

5.1. Problem Formulation
We aim at learning a model for a task T from a small numberN of teacher demonstrations.
As introduced in Section 2.2, we define a task as a tuple T = 〈O,A,Ψ〉, where O and A
are respectively the objects and actions associated with the task, and Ψ is the function
modeling its desirable goal states. In this work, we consider tasks whose goals can be
modeled in terms of the spatial configuration of the objects.

We assume that each demonstration is segmented (either by the teacher or automati-
cally using a suitable technique) into a set of segments, which we use to learn the set
of actions A = {a(1), . . . , a(|A|)} associated with the task. By observing how the state
evolves after each segment, our approach learns a model of each demonstrated action,
as well as a model Ψ that captures the intention of the teacher for the overall goal of
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the task. The approach we present in this chapter enables the robot to use these models
to solve the same task from new starting configurations, and to generalize the intention
of the teacher without requiring an explicit goal to be specified in each case.

5.1.1. State Representation
In this chapter, we adopt the state representation we used in the case of learning actions
(Section 4.1.1). Specifically, we construct the state st at time t based on the poses
Tk(t) of all objects ok (including the end-effector of the robot), which we express as
homogeneous transforms. Additionally, our state model considers the joint configuration
oee(t) of the end-effector at time t, e.g., the degree of opening of the gripper.

5.1.2. Teacher Demonstrations
To learn the task T and set of actions A, our approach relies on a teacher providing the
robot with N demonstrations D(T ) = {d(1), . . . ,d(N)} of how to solve the task from dif-
ferent starting states. We rely on the same demonstration techniques as in Section 4.1.2,
see Figure 4.2. We make the following assumptions about the demonstrations:

1. Complete observability: the robot can observe the state, i.e., the poses of all
objects, at each time step of a demonstration.

2. Each demonstration starts from an arbitrary state st0 and ends with a desired
goal state sTn that reflects the intention of the teacher for this task.

3. Each demonstration d(n) ∈ D(T ) is segmented into a sequence of Tn + 1 states that
correspond to applying Tn actions by the teacher, i.e., d(n) = (s(n)

t0 , s
(n)
t1 , . . . , s

(n)
Tn ),

where s(n)
t denotes the state at time step t of the n-th demonstration. The segmen-

tation is performed either by the teacher or by post-processing the demonstrations
using an existing technique, see Section 5.3 below. Note that each demonstration
can have a different number of steps, Tn.

Figure 5.2 shows examples of demonstrations for the task in Figure 5.1. The main
idea of our method is to use the final state sTn of each demonstration to learn the overall
goal of the task, see Section 5.2. Additionally, we use the demonstrated sequences
of states to learn actions that help the robot reproduce the intended task goal from
different starting states by generalizing the demonstrations, see Section 5.3.

5.1.3. The Problem
Our goal is to enable the robot to first use the teacher demonstrations to infer a model
of the task and demonstrated actions, and then to use this model to solve the task from

105



5. Teach and Improvise: Simultaneously Inferring Task and Action Goals

d(1)

s
(1)
t0 s

(1)
t1

. . .

s
(1)
T1

a(1)

d(2)

s
(2)
t0 s

(2)
t1

. . .

s
(2)
T2

a(1)

d(3)

s
(3)
t0

. . .

s
(3)
T3−1 s

(3)
T3

a(2)

d(4)

s
(4)
t0

. . .

s
(4)
T4−1 s

(4)
T4

a(3)

Figure 5.2.: Each row illustrates one demonstration for the task in Figure 5.1. We
assume that the demonstrations are segmented such that each starts from
an arbitrary state s(n)

0 and ends with a goal state s(n)
Tn . We use the final states

s(n)
Tn to learn a model for the overall goal of the task. Moreover, we use all
segments (pairs of consecutive states) to learn action models that the robot
uses when solving the task. We associate all segments in which the teacher
moved the same set of objects with the same action, see Section 5.3.1. For
example, a(1) represents the action of moving the end-effector (e.g., to reach
for and grasp some object), whereas a(2) represents the action of moving
the end-effector and the green box.
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new starting states. This is a challenging problem as we rely only on a small number of
demonstrations for learning, which results in ambiguity in the intention of the teacher.
Specifically, we are interested in inferring which spatial relations between the objects are
more relevant for each action and for the overall goal of the task, see Figure 5.1. This
knowledge is crucial for the robot to be able to generalize the learned task and actions
to new situations. Additionally, the robot should achieve this generalization without
requiring the (non-expert) teacher to provide an explicit formulation of the desired goal.

We propose to formulate this as an optimization problem. Rather than requiring an
explicit specification of the task goal, we model the intention likelihood Ψ of the teacher
for the task, i.e., Ψ(s) captures the degree to which a state s aligns with the goal states
demonstrated by the teacher. Consequently, given an initial state s0, solving the task
corresponds to computing a feasible plan Π =

(
〈a∗0, s∗1〉, . . . , 〈a∗T−1, s∗T 〉

)
consisting of a

sequence a∗0:T−1 of T actions and intermediate states s∗1:T to achieve a desirable goal
state s∗T that maximizes the intention likelihood as much as possible.

Note that in general, we do not know the number of actions to apply in order to solve
the task from s0. Therefore, the problem also entails computing the best number of
steps T before achieving a desirable state s∗T . Moreover, we aim for a trade-off between
the number of applied actions and the intention likelihood Ψ(s∗T ) of the final state
achieved. We capture this formally by the following optimization problem:

maximize
T∈N≥0
a0:T−1∈A

s1:T

Ψ(sT )−
T−1∑
t=0

cost(at), (5.1)

subject to p(st | at) ≥ εs, ∀t, (5.2)
st ∈ Sf , ∀t. (5.3)

Here, at denotes the action (selected fromA) to apply at time step t, thereby transforming
the state from st to st+1. Furthermore, cost(at) denotes the cost of applying an action,
which is meant to bias the solution towards less expensive plans. In this work, we use a
constant cost c0 > 0 for all actions a ∈ A.
Moreover, we impose two constraints on the computed plans. The first (Eq. (5.2))

is the state affordability (see Section 4.1.3), which models our desire to restrict the
application of an action to starting states that are similar to those in which the teacher
demonstrated the action. Accordingly, p(st | at) captures the likelihood that the teacher
would have also selected state st to apply action at. The second constraint in Eq. (5.3)
ensures that we compute (intermediate) goal states that are feasible, i.e., belong to the
set of feasible states Sf . Here, we check state feasibility as described in Section 2.2.
This is important since the robot should not only reason about goal states with a high
intention likelihood, but also consider how feasible those states are when executing the
plan in practice. This formulation results in a flexible approach that allows the robot

107



5. Teach and Improvise: Simultaneously Inferring Task and Action Goals

to “improvise” task solutions by trading off the intention of the teacher with practical
considerations.

5.1.4. Challenges
In this section, we briefly highlight the challenges involved in solving the problem
in Eqs. (5.1)-(5.3). We summarize them as follows:

• C1: The goal of the task is not explicitly specified. We do not require the
(non-expert) teacher to provide the goal of the task as a specific state or a formula.
Instead, we infer a model Ψ of desirable task goals from the demonstrations, and
use it to improvise goal states depending on the initial state s0.

• C2: Action goals are ambiguous. Due to the small number of demonstrations
and the different order of applying the actions in the demonstrations, there is
an inherent ambiguity in the intention of each learned action. Considering all
demonstrated relations to be relevant for the action increases the dimensionality
of the problem and limits the robot’s ability to generalize to new situations.

• C3: The stopping problem. As the goal state is not explicitly specified, the
optimal plan length T is unknown beforehand. Depending on the starting state s0,
the robot may need to apply a different number of actions to achieve a desirable
goal state.

• C4: Non-convexity. In general, the problem is highly non-convex due to the
multi-modality of Ψ (Section 5.2) and action models A (Section 5.3). This makes
it challenging to compute an optimal solution without a good initial guess.

• C5: The hybrid nature of the problem. Eqs. (5.1)-(5.3) is a mixed-integer
optimization problem involving both the continuous state variables st and discrete
variables (the solution length T ∈ N≥0 and action labels at ∈ {a(1), . . . , a(|A|)}).

• C6: Feasibility constraints. The computed plan should correspond to physi-
cally feasible actions and states (e.g., collision free). This requires improvising goal
states that adapt the intention of the teacher based on practical considerations.

We first address C1 by presenting our model for the intention likelihood Ψ in Sec-
tion 5.2, which captures multiple modes in desirable task goals based on a small number
of demonstrations. We address C2 by leveraging our discretized implicit action models
presented in Chapter 4, which consider multiple interpretations for each action, see Sec-
tion 5.3. Additionally, we tackle the stopping problem in C3 by introducing a virtual
no-op action that does not change the state when applied (Section 5.3.4). Given these
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models, we revisit the problem in Eqs. (5.1)-(5.3) and reformulate it as one of sequential
decision making (Section 5.4).

Finally, in Section 5.5, we propose a novel method based on Monte Carlo Tree Search
to address challenges C4-C6 by interleaving feasibility checks with exploring the space
of actions and states. By doing so, we compute feasible plans that trade off the intention
likelihood with the complexity of the solution based on the initial state s0.

5.2. Modeling the Intention Likelihood
In this section, we present our model for the intention likelihood Ψ, which captures
how well a state aligns with the intention of the teacher for the goal of the task. In
this work, we do not assume to have any semantic knowledge about the objects or the
task. Instead, we assume that the intention of the teacher is to achieve certain pairwise
spatial relations between the objects, which we use to model Ψ. We aim to learn these
relations from a small number of demonstrations, and yet capture fine details in the
intention of the teacher. Accordingly, we adopt the data-driven approach we introduced
in Section 4.3.1, which models the relation between a pair of objects p(k,l) = {ok, ol} as
a distribution based on their relative poses at the end of each demonstration. We use
kernel density estimation to compute the likelihood of a pose lTk given the training
poses as follows:

p
(
lTk

)
= 1
N

N∑
n=1

k
(
lT(n)

k (Tn), lTk

)
, (5.4)

where lT(n)
k (Tn) is the pose of ok relative to ol at the end of the n-th demonstration,

and k(·, ·) is the Gaussian kernel as in Eq. (4.11).
This distribution captures multiple modes for a relation, as it can be seen as a

mixture of Gaussians with each training example lT(n)
k (Tn) representing the center of

one component. In this way, we model relations as continuous constraints defined over
object poses, such that “satisfying” a relation translates to searching for regions of high
density in its distribution. This corresponds to computing states sT in which lTk(T )
is close to those demonstrated by the teacher with respect to the distance function
in Eq. (4.12). This is analogous to logical predicates (e.g., NextTo(ok,ol)) used in
classical planning to define a goal formula for the task. Rather than using symbolic goals
that are either satisfied (true) or not (false), our model provides a flexible interpretation
of relations in a continuous space. In this way, we are able to learn arbitrary pairwise
relations from the teacher without prior knowledge of such predicates or requiring
classifiers that map the continuous state to the equivalent binary truth values.
We model Ψ based on the relation distributions for all pairs of objects. Typically,

however, not all relations are equally relevant for the task, see Figure 5.3 for an example.
Moreover, it is not always possible for the robot to satisfy all relations when solving
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Figure 5.3.: We model the intention likelihood of the task based on the spatial relations
between pairs of objects. We construct a non-parametric distribution for
each relation based on the training examples (relative poses) demonstrated
by the teacher. This figure shows four such relations for the task in Fig-
ure 5.1. We associate each relation with a weight that reflects its relevance
(importance) for the task, which we estimate based on the entropy of the
corresponding distributions. For example, the two relations in the upper
row are more relevant for reproducing the task than those in the lower row
since they exhibit a higher consistency across the demonstrations.

the task due to conflicting constraints in the corresponding object poses. Therefore, we
assume the latent intention of the teacher with respect to the relevance of each relation
to be captured by a function Ω : P → R, where P is the set of all object-pairs. We use
w(k,l) = Ω(p(k,l)) to denote the weight associated with pair p(k,l) = {ok, ol}. Given such
a function, we define the intention likelihood Ψ(sT ) of a state sT as a weighted sum of
the relation likelihoods over all pairs P(sT ) in sT :

Ψ(sT ) = η
∑

p(k,l)∈P(sT )
w(k,l) p

(
lTk(T )

)

= η
∑

ok∈O(sT )

∑
ol∈O(sT )
ol 6=ok

w(k,l)
1
N

N∑
n=1

k
(
lT(n)

k (T ),l Tk(T )
)
,

(5.5)

where η is a normalizer such that 1/η is equal to the sum of all weights w(k,l). This
formulation provides a flexible, multi-modal model of task goals. To maximize Ψ(sT ),
we seek goal states sT that correspond to peaks of the individual pairwise relation
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distributions while considering their relative importance for the task. Moreover, by
restricting the computation of Ψ(sT ) to consider only the objects O(sT ) in state sT , we
are flexible in interpreting the goal of the task based on the objects in the scene. For
example, if a subset of the objects are missing, we adapt by imitating as many aspects
of the demonstrations as possible.
In general, we do not assume prior knowledge about Ω. Therefore, we propose to

estimate the weights w(k,l) to reflect the consistency in the demonstrations for the
corresponding relation. We assume that relations that are more relevant for the task are
associated with a lower dispersion in the demonstrated poses compared to less relevant
ones. We use the differential entropy H(k,l) of the distribution in Eq. (5.4) as a measure
of this dispersion, which we compute numerically as follows:

H(k,l) = − 1
NH

NH∑
h=1

log
(
p(lT(h)

k )
)
, (5.6)

where lT(h)
k are samples we draw from the N modes (Gaussians) in Eq. (5.4), and NH is

the total number of samples. This is an estimate of the Shannon entropy for continuous
distributions that are modeled using a non-parametric, kernel density estimate, as
proposed by Ahmad and Lin (1976). Moreover, we assume that the pose of the end-
effector oee is irrelevant for Ψ(sT ), i.e., the goal only depends on the objects that the
robot can manipulate. Accordingly, we estimate relation weights as follows:

w(k,l) =

0 if ok = oee or ol = oee
1

εH+H(k,l)
otherwise,

(5.7)

where εH = 0.01 −min(0, Hmin) ensures that all weights w(k,l) are finite and positive,
and Hmin is the minimum entropy over all pairwise distributions.

Finally, we note that this model estimates the intention of the teacher given a small
number of demonstrations and without prior knowledge of the task. However, the
method we present in this chapter is generic with respect to the intention likelihood
model used. For example, given additional semantic knowledge about the objects, one
could infer relation weights w(k,l) according to the predicted preferences of the teacher
as in Chapter 3. Similarly, one could leverage previous knowledge about typical spatial
relations when modeling Eq. (5.4). This, however, is outside the scope of this chapter.

5.3. Modeling Actions
To solve the task T from a starting state s0, we seek a sequence of actions a∗0:T−1, along
with the corresponding intermediate states s∗1:T , see Section 5.1.3. Whereas the teacher
demonstrations enable us to learn a model Ψ of desirable task goal states, they also
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encode useful “moves” or actions that the robot can use to achieve these states. In this
section, we describe how we learn a model of each action from the demonstrations such
that the robot can leverage this knowledge when solving the task in new situations.

The main challenge in learning an action model from a small number of demonstrations
is the inherent ambiguity with respect to the intention of the teacher. We assume to
have no prior or expert knowledge about which features or spatial relations between
the objects are more relevant for each action. Therefore, we rely on the approach we
described in Section 4.3, which formulates an implicit model of the action goals based on
a mixture of possible interpretations of the demonstrations. This enables us to reason
about multiple modes in the intention of the teacher for each action.
However, this multi-modality also means that the corresponding distributions are

characterized by local minima. This makes it challenging to solve the optimization
problem in Eq. (5.1) without a good initial guess. Therefore, we adopt the discretized
goal distributions we introduced in Section 4.3.4. This makes it feasible to leverage
state-of-the-art decision-making techniques such as Monte Carlo Tree Search (MCTS)
to sample useful intermediate goal states in order to compute a sequence of actions that
solves the problem.

We first describe how we divide the task demonstrations into segments that correspond
to each of the actions to learn. We then briefly recap our implicit model of action goals
presented in Section 4.3 and discuss how we use it in this chapter to solve a task. Finally,
we present an approximation that guarantees a lower bound on the state affordability
in Eq. (4.14), allowing us to efficiently check the constraint in Eq. (5.2) and determine
the set of applicable actions at each time step.

5.3.1. Action Demonstrations
As discussed in Section 5.1.2, we assume that each task demonstration d(n) ∈ D(T ) is
segmented into a sequence of states d(n) = (s(n)

t0 , s
(n)
t1 , . . . , s

(n)
Tn ), either by the teacher

or using an existing segmentation technique (Niekum et al., 2012; Meier et al., 2012;
Ureche et al., 2015). We consider point-to-point actions that can be modeled in terms
of the poses of the objects before and after applying an action. Our approach does
not require the teacher to manually label each segment with a specific action name
(e.g., “move-cup-to-plate”). Instead, we adopt a heuristic that specifies the endpoints
of segments and labels them based on which objects were perceived to move during
each part of the demonstrations. We adopt the action models introduced in Section 4.3
and assume that the intention of each action is to move a subset Oa

M of the objects to
desired goal poses relative to the remaining, stationary objects Oa

S.
Based on this, we assign a unique label to all segments (s(n)

t , s(n)
t+1) that share the same

set of moving objects, Oa
M , thus forming the set of actions A, see Figure 5.2. Finally,

we collect all segments with the same label a to construct a set of demonstrations
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D(a) for learning the action, where D(a) = {(sts , ste)(1), . . . , (sts , ste)(Na)}, Na is the
number of action demonstrations, and ts and te are the start and end time of a segment,
respectively.

5.3.2. Modeling Action Goals

Given the demonstrations D(a) of an action a, we seek a model p(st+1 | st, a) describing
the likelihood of state st+1 being an intended goal of the action when applying it in state
st. We adopt a discretized model of this distribution as described in Section 4.3.4, as
this allows us to efficiently sample likely goal states when solving the task. Specifically,
given st, we seek a finite set of goal states Ŝt+1 = {ŝ(1)

t+1, . . . , ŝ
(S)
t+1}, and their probabilities,

P (st+1 = ŝ(s)
t+1 | st, a) for s = 1, . . . , S. We briefly recap this model before describing

how we use it in the context of solving a task.

5.3.2.1. Action Templates

We address the ambiguity related to an action a using a finite set of action templates Γa.
Each template γs ∈ Γa represents one interpretation of the action based on a specific
stationary object os ∈ Oa

S. We combine these interpretations in one goal distribution
for the action p(st+1 | st, a) given a starting state st, i.e.,

p(st+1 | st, a) =
∑
γs∈Γa

p(st+1 | st, a, γs) p(γs | st, a), (5.8)

where p(γs | st, a) is the template-relevance of γs, which captures the importance of os
for the action. Note that an object os does not contribute to the goal distribution if
it is not in the scene, i.e., p(γs | st, a) = 0 if os /∈ Oa

S(st). Otherwise, we assume equal
relevance for all templates, i.e., p(γs | st, a) = 1/|Oa

S|, see Section 4.3.3.2 for details.

5.3.2.2. Pairwise Voting Distributions

Given a template γs, the idea of our model is to have the corresponding object os vote for
the likely goal poses of the moving objects. We associate each stationary object os ∈ Oa

S

with a discrete voting distribution p̂s over poses sT∗ of the representative moving object
o∗ ∈ Oa

M relative to os. These votes can take one of N̂s values. We learn these votes
sV̂∗ = {sT̂(1)

∗ , . . . , sT̂(N̂s)
∗ } by clustering the set of poses sV∗ = {sT(1)

∗ (te), . . . , sT(Ns)
∗ (te)}

of o∗ relative to os as observed at the end of each action demonstration. We compute the
probability ŵ(n)

s of sampling the n-th vote sT̂(n)
∗ based on the density of demonstrated

poses in the corresponding cluster, see Eq. (4.20).
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5.3.2.3. Discrete Goal States

To construct the distribution of goal states, we draw I samples sT̃(i)
∗ from each voting

distribution p̂s. We transform each sample to the world frame based on the pose Ts(t)
of the voting object os, i.e., T̃(i)

∗ = Ts(t) sT̃(i)
∗ . Each transformed vote T̃(i)

∗ defines a
potential goal state s̃(i)

t+1 by assuming that all moving objects other than o∗ maintain
their poses relative to o∗ when applying the action. We use these states resulting
from the votes of os to construct the distribution p(st+1 | st, a, γs) of goals given γs,
see Eq. (4.21).
Accordingly, we combine the potential goal states S̃t+1 = {s̃(1)

t+1, . . . , s̃
(j)
t+1} resulting

from all stationary objects in the scene to construct the overall goal distribution
p(st+1 | st, a), see Eq. (4.22). This model takes into account the weight w̃(j)

γs of each state
s̃(j)
t+1 ∈ S̃t+1, which is equal to the relevance p(γs | st, a) of the template γs responsible
for the corresponding vote.
Finally, we discretize this distribution by clustering the set of states S̃t+1 using

agglomerative hierarchical clustering with a distance threshold of δmax, see Section 4.3.4.2.
By doing so, we identify the regions in state space with high goal density. The result
is a set of goal states Ŝt+1 = {ŝ(1)

t+1, . . . , ŝ
(S)
t+1}, where each ŝ(s)

t+1 is the mean state of a
cluster. We compute the probability P (st+1 = ŝ(s)

t+1 | st, a) of each state based on the
density of the (weighted) votes that belong to it, see Eq. (4.23).

5.3.2.4. Sampling Action Goals

In Chapter 4, we used the above model to select the best goal state s∗t+1 ∈ Ŝt+1 when
applying an action. For this, we chose the feasible state with the highest probability,
as this represents the best way to apply the action given the starting state, see Sec-
tion 4.3.4.3. In this chapter, we are not only interested in the best way to apply an
action, but in the best sequence of actions leading to a goal state s∗T of the whole task.
In this context, we identify two challenges that were not relevant when learning an

action individually in Chapter 4. Firstly, the teacher may demonstrate how to solve
the task by applying the actions in different orders. This results in more ambiguity
(noise) in the learned action models compared to when learning an action individually.
For example the relevance of a stationary object os when applying an action may vary
based on whether the teacher had already moved os (using another action) to a desirable
location. Secondly, when applying an action in state st to reach st+1, we should consider
which other actions can be subsequently applied in st+1 based on the state affordability
constraint in Eq. (5.2).
In this chapter, we tackle these issues as follows:

1. When computing a plan to solve the task, we reduce the dimensionality of the
problem by considering one template (i.e., stationary object) at a time for applying
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an action. This allows us to select the best way of applying the action at a
specific step of the plan without committing to a particular template beforehand,
see Sections 5.4.4 and 5.5.2.

2. Rather than selecting a specific goal state when applying an action, our approach
explores goals leading to different solutions by sampling them according to their
probabilities, see Section 5.5.1.3.

3. We present a method that enables the robot to use its experience from solving
the task to relearn both the template relevance and the voting distribution
of each stationary object. In this way, the robot overcomes the ambiguity in
the demonstrations by practicing the task in simulation, and without requiring
additional teacher demonstrations, see Section 5.6.

5.3.3. A Lower Bound on the State Affordability
Besides learning a model of action goals, we use the demonstrations D(a) of an action
a to learn a model of the state affordability p(st | a). For this, we use the approach
we presented in Section 4.3.2, which models the affordability based on the poses of the
moving objects in st. Accordingly, the constraint p(st | at) ≥ εs in Eq. (5.2) ensures
that we only select an action at to apply at time step t if state st sufficiently resembles
the starting states of the action demonstrations.

However, specifying the threshold εs can be challenging as this depends on the number
of training examples Na and the bandwidth σ of the Gaussian kernel, see Eq. (4.14).
Therefore, in this section, we present an approximation of this constraint that allows us
to efficiently check the state affordability in a way that considers the discretization of
action goal states discussed in Section 5.3.2 above.
Since we define the state affordability as the product of independent distributions

over the pose of the representative object o∗ ∈ Oa
M relative to all other moving objects

ok ∈ Oa
M in st, we express the constraint p(st | at) ≥ εs using an equivalent one specifying

a threshold ε′s for the likelihood with respect to each pair of objects, i.e.,

p(st | a) =
∏

ok∈OaM
ok 6=o∗

Na∑
i=1

1
Na

k
(
kT(i)
∗ (ts), kT∗(t)

)
≥ εs

⇒
Na∑
i=1

1
Na

k
(
kT(i)
∗ (ts), kT∗(t)

)
≥ ε′s, ∀ok∈OaM

ok 6=o∗
.

(5.9)

Moreover, considering that

Na∑
i=1

1
Na

k (·, ·) > max
i

( 1
Na

k (·, ·)
)
, (5.10)
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we satisfy Eq. (5.9) if we guarantee that

max
i

( 1
Na

k
(
kT(i)
∗ (ts), kT∗(t)

))
≥ ε′s, ∀ok∈OaM

ok 6=o∗
. (5.11)

By taking the logarithm and considering that it is a monotonically increasing function,
we formulate Eq. (5.11) in terms of a distance threshold between relative poses as follows

max
i

(
log

( 1
Na

k
(
kT(i)
∗ (ts), kT∗(t)

)))
≥ log(ε′s), ∀ok∈OaM

ok 6=o∗

⇒ max
i

(
− dist

(
kT(i)
∗ (ts), kT∗(t)

)2
)
≥ ε̃s, ∀ok∈OaM

ok 6=o∗

⇒ min
i

(
dist

(
kT(i)
∗ (ts), kT∗(t)

))
≤ dmax, ∀ok∈OaM

ok 6=o∗
.

(5.12)

In other words, we check the state affordability constraint for a state st by requiring
that the minimum distance between the relative pose kT∗(t) in the state and the
corresponding poses kT(i)

∗ (ts) demonstrated by the teacher is at most dmax for all objects
ok ∈ Oa

M , ok 6= o∗. In this work, we set dmax to the clustering threshold δmax we use
when discretizing the goal states of the action, see Section 5.3.2.

Finally, note that this model is based on pairs of moving objects, and is therefore not
defined in the special case of Oa

M consisting of the end-effector object only. In that case,
we consider the affordability constraint to be satisfied by default, i.e., p(st | a) = εs.

5.3.4. The Special No-Op Action
One of the challenges in solving a task is that the number of steps T , and thus the
number of optimization variables, is unknown beforehand (see C3 in Section 5.1.4). As
we are not given a specific goal state to reach, it is generally unclear if the robot can
achieve a better goal state by exploring longer sequences of actions, e.g., by continuing
to re-arrange the objects in the scene.
This is closely related to the optimal stopping problem in decision theory (Dynkin,

1963; Keller and Geißer, 2015), and has been extensively addressed in the context of
Markov Decision Processes (MDPs). Different approaches have proposed a number of
strategies for an agent to determine the best time to stop exploring new states that
could lead to higher rewards and to return the current solution instead.

Analogously, we introduce a special (virtual) no-op action a(0), which does not change
the state when applied. This action allows us to reason about reaching a final goal state
s∗T with which we are satisfied, as this is equivalent to repeatedly applying the a(0) action
from that time step on. By design, we assume this action to be applicable from any state,
i.e., the state affordability constraint (Eq. (5.2)) is satisfied by default. Moreover, this
action considers one (dummy) template γ(0) and is deterministic with respect to its goal
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state distribution, i.e., P (st+1 = st | st, a(0), γ(0)) = 1, and P (st+1 6= st | st, a(0), γ(0)) = 0.
Finally, applying this action incurs no cost for the objective function in Eq. (5.1), i.e.,
cost(a(0)) = 0. In Section 5.4, we show how we use Monte Carlo Tree Search, along with
this action, to address the stopping problem.

5.4. Search-Based Optimization
In this section, we first recap the models presented so far and how they address some of
the challenges highlighted in Section 5.1.4. We then revisit the optimization problem
in Section 5.1.3 and reformulate it to incorporate the action models in Section 5.3.
Accordingly, we show how we leverage Monte Carlo Tree Search, a powerful sequential
decision-making paradigm, to address the remaining challenges and solve the problem.

5.4.1. The Optimization Problem Revisited

Thus far, we have addressed the first challenge C1 in our problem by proposing a model
for the task intention likelihood Ψ(sT ) (Section 5.2), which captures desirable goal states
of the task based on a small number of teacher demonstrations. Moreover, we presented
our approach for modeling action goals p(st+1 | st, a) in terms of discrete distributions
over the goal state st+1 conditioned on the starting state st, see Section 5.3.2.3. We
construct p(st+1 | st, a) by combining different ways of applying a based on its templates
Γa. As discussed in C2 and Section 5.3.2.3, these distributions are generally noisy due
to the ambiguity in the demonstrations. Our method alleviates this issue by reducing
the dimensionality of the problem and using each template γ ∈ Γa to compute a goal
distribution p(st+1 | st, a, γ) by considering one stationary object os in the scene at
a time. We now incorporate this model in the optimization problem in Eq. (5.1) by
considering additional variables γt that determine the best interpretation of action at at
time t. Accordingly, we reformulate the constrained optimization in Eqs. (5.1)-(5.3) as
follows:

maximize
T∈N≥0

a0:T−1∈A′
γ0:T−1

s1:T

Ψ(sT )−
T−1∑
t=0

cost(at), (5.13)

subject to p(st | at) ≥ εs, ∀t, (5.14)
st ∈ Sf , ∀t, (5.15)

where each γt variable can take a value from the set of templates Γat of the corresponding
action at at each step of the solution. Finally, A′ = A∪{a(0)} denotes the set of actions
consisting of both the actions A learned from the teacher demonstrations and the special
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no-op action a(0) (Section 5.3.4). Our approach uses this action to decide when a final
goal state sT has been reached, thereby addressing the stopping problem in C3.

5.4.2. Relation to Markov Decision Processes
We note that our problem resembles that of computing an optimal policy in the context
of MDPs (Bellman, 1957a,b; Sutton and Barto, 1998). There, the goal is to compute
a sequence of actions to maximize the expected reward of an agent equipped with a
library of deterministic or stochastic actions defined by their transition functions. By
applying actions and interacting with the environment, the agent observes the outcomes
and receives corresponding rewards. It then uses this information to guide its behavior
until a certain horizon is met or a terminal state is reached. Analogously, we aim
to compute a sequence of actions that maximizes the intention likelihood of the final
state. Our action goal distributions correspond to the transition functions in an MDP.
However, it is important to note that the stochasticity in our case is not the result
of non-deterministic behavior when interacting with the environment as in the case
of MDPs. Rather, it stems from the ambiguity with respect to the intention of the
teacher for the action. In other words P (st+1 = ŝ(s)

t+1 | st, a) reflects the probability
that the teacher intended ŝ(s)

t+1 to be a goal of the action when applied from st. After
selecting ŝ(s)

t+1 as the action goal, we assume that the robot is able to achieve this state
deterministically, e.g., using a motion planner.
Similarly, our problem shares aspects with other decision-theoretic domains such as

games and multi-armed bandit problems (Auer et al., 2002; Gelly and Silver, 2011).
There, an agent computes a sequence of moves or actions to maximize its (expected)
reward or its chances of winning a game, for example by trading off exploiting known
strategies with exploring new ones. This is analogous to the robot reasoning about
different sequences and interpretations of the learned actions in order to achieve desirable
goal states for the task.
Based on this insight, we propose to view our problem from a decision-theoretic

perspective, and present an approach based on Monte Carlo Tree Search (MCTS) for
solving it (Coulom, 2006). Recently, MCTS has been shown to be a powerful tool
for addressing a large spectrum of problems including MDPs, probabilistic planning,
games, and combined task and motion planning (Kocsis and Szepesvári, 2006; Keller
and Eyerich, 2012; Toussaint, 2015; Silver et al., 2016). The main idea of MCTS is to
iteratively grow a search tree to explore applying different sequences of actions while
using the resulting “scores” to inform the search.
Our idea is to use this search-based approach to maximize the objective function

in Eq. (5.13). By using the intention likelihood as a heuristic, we guide the search to favor
sequences of actions leading to more promising goal states. Moreover, by incorporating
randomness in our strategies of selecting promising tree paths to expand, we trade
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this off with exploring less promising solutions. This alleviates the non-convexity of
the problem (C4) by providing an informed method for navigating the large space
of actions and states while considering different locally-optimal solutions of the task.
Additionally, by preventing states that result from applying the no-op action a(0) from
being expanded further, we tackle the stopping problem (C3) while still considering
solutions of different lengths T during the search.
Furthermore, by using search nodes of different types, MCTS allows us to perform

decision making on multiple levels, thus answering the following questions: Which action
should we apply next? Given the action, which template should we use for generating
goals? Which goal state should we select as the result of applying the action? This allows
us to maximize our objective function with respect to both continuous and discrete
variables, i.e., addressing C5.

Finally, by continuously checking the affordability (Eq. (5.14)) and feasibility (Eq. (5.15))
of states resulting from different search paths, we interleave optimizing the objective
function with satisfying those constraints, thereby addressing the final challenge C6.
In the next section, we briefly summarize the steps of the basic MCTS algorithm.

We then present our version of MCTS, which involves decision making on three levels:
actions, templates, and goal states.

5.4.3. Monte Carlo Tree Search

There exist several variations of the Monte Carlo Tree Search algorithm. In this section,
we present the common steps of the basic version of MCTS, before presenting our
algorithm in Section 5.5. For an overview of different MCTS-based algorithms and
applications, we refer the reader to the survey by Browne et al. (2012).
The MCTS algorithm iteratively grows a search tree to approximate the values

(returns) of states and actions using Monte Carlo simulations. A root node is first
created using the initial state. Each iteration grows the tree by adding one or more
children to one promising node as a result of applying actions from its corresponding
state. This goes on until a specified budget of iterations has been used up. Each
iteration consists of four steps, which we summarize bellow.

Selection The aim of this step is to find a node from which the tree can be grown
further. This is done by traversing the tree, starting from the root, until the most
promising, expandable node is reached. This is typically done using a so-called tree
policy for deciding which child to select next from any given node. For example, a
greedy policy would always select the child with the largest value, whereas other policies
trade off exploration with exploitation based on children statistics such as their values
or visit counts.
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node selection node expansion and simulation backpropagation

Figure 5.4.: The main steps of Monte Carlo tree search. Left: during the node selection
stage, we traverse the tree, guided by the node values, in order to select a
promising node to expand next (red path). Middle: we expand the selected
node by applying actions in its state. This results in adding new successor
nodes to the tree (blue). To estimate the values of the new nodes, we either
simulate rollouts from their states using a default policy (blue arrows), or
rely on a heuristic to initialize those values. Right: we propagate the new
values back to the root node and update the values of all nodes on that
path (red). This informs the node selection in the next iteration.

Expansion The selected node is then expanded by applying one or more actions,
resulting in adding one or more nodes as children of this node.

Simulation To evaluate each new node, a simulation step is performed to compute
the outcomes (e.g., rewards) as a result of performing the corresponding actions. This is
typically done using a so-called default policy that simulates the domain and estimates
the received values or rewards.

Backpropagation The result of the simulation step is used to update the statistics
of the nodes on the path from the new nodes back to the root node. This typically
involves updating the value estimates and visit counts of the nodes.

We illustrate these steps in Figure 5.4. Note that MCTS is an anytime algorithm that
updates the value estimates after each iteration. We therefore specify the budget of
MCTS iterations to trade-off the time available for solving the task with the quality of
the found solution. After stopping the algorithm, we use the latest estimates to compute
the next best action (or sequence of actions) to perform from the initial state. A typical
strategy to do so is to traverse the tree from the root and greedily select actions leading
to goals with the largest values.
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5.4.4. Tree Structure

Our approach builds on the MCTS algorithm above. Starting with the initial state s0 as
a root node, we construct a search tree by applying actions, modeled through different
templates, to explore the different resulting goal states. In this section, we present the
tree structure that we propose to accomplish this.
Typically, MCTS distinguishes two types of nodes: decision (or choice) nodes, and

chance nodes. These nodes alternate such that decision nodes have chance nodes as
children and vice versa. Decision nodes are responsible for selecting which action to
apply from the state associated with the node. For each action, a child consisting
of a chance node is used to reason about the potential outcomes of the action. This
reflects the stochasticity of the environment typically associated with MDPs or games.
Each state resulting from applying the action is then associated with a decision node
successor, from which we can apply new actions again.

Analogously, we also incorporate nodes to decide which actions to apply from a given
state. However, we assume that the only source of stochasticity when applying an action
is the ambiguity in the intended model of the action, and is not due to unexpected
events such as an object slipping from the end-effector. As we model actions using
different templates, we propose a tree structure that alternates between three types of
nodes: action-selection, template-selection, and goal-selection nodes. By incorporating
template-selection nodes, we reduce the dimensionality of the problem when applying
an action by considering one action interpretation at a time. This allows us to tackle
the ambiguity in the teacher demonstrations and to consider several ways of applying
the same action based on the initial state.

Action-Selection Nodes Action-selection nodes model the decision of selecting an
action to apply from a given state. We define an action-selection node na as a tuple
na = 〈s, P, V 〉, where s is the state associated with the node, and V (s) ∈ R is the
state-value estimate, which is analogous to the value of a state in the context of MDPs.
In our context, V (s) approximates the best objective function value (Eq. (5.13)) that
can be achieved when solving the task starting from s as an initial state. With the
exception of the root node, action-selection nodes are added to the tree as a result of
applying actions using their parent nodes. Therefore, P is the probability of the state s
of na being the intended goal of an action, i.e., P (st+1 = s | st, a, γ), where st, a, and γ,
are the state, action, and action template of the parent of na, respectively. After adding
na to the tree, new nodes can in turn be added by applying actions from its state s.
Each action choice is represented by an edge connecting na with a template-selection
child node, defined next.
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Template-Selection Nodes We use template-selection nodes to model the selection
of a template γ to interpret an action a when applying it from state s. We define a
template-selection node nγ as a tuple nγ = 〈s, a,Q〉. Here, a is the action associated
with the node, which is the action of the edge between it and the parent action-selection
node. Moreover, the state s of the node is the state of the parent action-selection node.
The function Q(s, a) ∈ R is the corresponding state-action value, which reflects how
beneficial it is to apply action a in state s when solving the task. To model the choice
between different interpretations of a, we use an edge representing each template γ ∈ Γa
to connect nγ to a so-called goal-selection child node, which we define next.

Goal-Selection Nodes Given a state s, an action a to apply from it, and a template
γ ∈ Γa for interpreting the action, a goal-selection node ng models the sampling of a
resulting goal state from the correspond action goal distribution. Accordingly, ng is a
tuple ng = 〈s, a, γ, U〉, where U(s, a, γ) ∈ R is the value of applying a using template
γ in s. The state s and action a are those of the parent template-selection node nγ,
whereas γ is the template representing the edge with nγ. Each goal-selection node has
action-selection nodes as children, where each child is associated with one goal state
s′ ∼ p(st+1 | st = s, a, γ). In other words, with the exception of the root node, each
action-selection node has a state that represents one potential goal state of applying an
action starting in the state of its great-grandparent action-selection node.

Node Statistics and Attributes Additionally, for all node types, we use variables
E to keep track of the number of times the node has been visited during the search.
We use E(n) ∈ N+ to denote the visit count of node n. These statistics enable us to
use strategies for trading-off exploration and exploitation based on how many times a
node has been previously considered. Furthermore, each node n is associated with a
binary label ρ ∈ {true, false} reflecting whether the node is solved or not, where ρ(n)
denotes the value of this variable for node n. Nodes that are not solved are still “valid”
for different procedures during the search. In contrast to that, nodes that are solved
should not be selected again as their values have already converged. For example, an
action-selection node na whose state is physically infeasible will have ρ(na) = true, in
which case we do not select this node for expansion. Moreover, we use succ(n) to denote
the set of successors (children) of a node n, where succ(n) = ∅ for leaf nodes. We denote
the parent of n by parent(n), which is null only for the root node. Finally, with a
slight abuse of notation, we use s(n), V (na), P (na), a(n), Q(nγ), γ(ng), and U(ng) to
respectively denote the state s, value V , probability P , action a, value Q, template γ,
and value U associated with the corresponding nodes. Figure 5.5 depicts our proposed
hierarchical tree structure using an example subtree.
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Figure 5.5.: Our proposed tree structure for solving a task based on Monte Carlo tree
search. We use action-selection nodes na (red circles) to reason about which
action to apply in the corresponding state s. A template-selection node
nγ (blue squares) is then responsible for selecting a template γ ∈ Γa for
applying the corresponding action a. Finally, we use goal-selection nodes
ng (green hexagons) to select between the resulting goals based on their
probabilities. We show example states next to the corresponding action-
selection nodes based on the actions in Figure 5.2. Moreover, we use the
special no-op action a(0) to address the stopping problem. Applying a(0)

does not change the state (i.e., s(3)
1 = s0) and results in a solved node

(ρ(na) = true) that cannot be expanded, as indicated by the dotted border.
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5.4.5. Heuristic-based MCTS

The basic algorithm in Section 5.4.3 iteratively grows a search tree in order to estimate
the state- and state-action values using simulations. Specifically, once a promising node
has been selected for expansion, an initial estimate of its value is computed using the
simulation procedure, see Figure 5.4. This relies on a default policy (e.g., applying
actions randomly until a terminal state is reached) and some model of the environment
such as a reward function. At the end of this stage, the observed rewards are used to
update the value estimates of all visited nodes in that iteration, thus informing node
selection in the next iteration. This assumes a model or an oracle that provides the result
of interacting with the environment. For example, this can be a (black box) simulator
that models the reward function of an MDP, or a set of game rules to determine the
winner at the end of the simulation.

However, we do not assume to have access to such an oracle for specifying feedback
as a result of the robot interacting with the environment. At the same time, we assume
the teacher does not provide the robot with a formula describing desirable goal states,
which can be used to model terminal states with high immediate rewards, or as goals
provided to a planner. Therefore, we propose to replace the simulation procedure of
MCTS with a heuristic for initializing the values of newly-created nodes. As we aim for
task solutions that align with the intention of the teacher with respect to the spatial
relations between the objects, we rely on the intention likelihood Ψ(s) of a goal state s
as an initialization of the value V (s) of the corresponding action-selection node na. This
allows our approach to reason about how good s is as a final goal of the task.

The use of heuristics in conjunction with MCTS has been previously shown to result in
performance improvements. Although MCTS is suited for solving domains where prior
knowledge about good policies or heuristics is unavailable, complex domains usually
suffer from the large dimensionality of the state space. This means that most states are
typically visited a small number of times during search. Therefore, a large number of
simulations is typically needed before reliable value estimates are computed in order to
steer the search in the right direction. Instead, heuristics (that could rely on domain
knowledge) can be used to bootstrap MCTS by initializing values in an informed manner.
This heuristic initialization emulates performing a number of simulations that would
result in the same value estimates. This circumvents the need for visiting each node
at least once before an informed node selection can be made. This concept has been
successfully applied to improve the performance of MCTS as in the cases of Gelly and
Silver (2007); Winands and Björnsson (2009); Keller and Eyerich (2012); Lanctot et al.
(2014). In the context of planning, some approaches argued for completely replacing
simulations with heuristics that leverage domain knowledge to improve the efficiency of
exploring the state space, e.g., Pellier et al. (2010).
Recently, Keller and Helmert (2013) proposed Trial-based Heuristic Tree Search
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(THTS), a framework that subsumes Dynamic Programming, MCTS, and Heuristic
Search algorithms for finite-horizon MDPs. This framework allows for generating a
large number of algorithms by specifying a few ingredients (e.g., heuristic function,
action-selection criterion, etc.), thereby allowing for the combination of both heuristic-
based and Monte Carlo-based aspects of tree search. The basic MCTS algorithm can
be derived from THTS by replacing the heuristic initialization of new nodes with the
simulation stage of MCTS. Since we base our solution on MCTS but rely on the intention
likelihood heuristic to initialize values, our algorithm can be seen as a variant of THTS.
However, we modify the main THTS ingredients to account for the custom tree structure
in Section 5.4.4. In the next section, we detail our heuristic-based MCTS algorithm for
solving the optimization problem in Section 5.4.1.

5.5. Our Teach-and-Improvise Algorithm

In this section, we present our algorithm for solving a task from an initial state s0.
As described in Section 5.1, our method relies on an initial teaching stage in which
the teacher provides a set of task demonstrations. Accordingly, the robot constructs
a model of the intention likelihood Ψ of the task as well as models of the actions A.
Since the robot is not provided with an explicit goal state when solving the task, it
has to reproduce the intention of the teacher by improvising a feasible goal state and
a plan to achieve it using the learned models. We refer to this concept as Teach and
Improvise (TI). We build our TI algorithm on heuristic-based MCTS using the tree
structure proposed in Section 5.4.4.
We summarize the main structure of TI in SolveTask, see Algorithm 1. As this

is an anytime approach, we specify a time budget of K iterations as input. We start
by using the initial state s0 to construct a root (action-selection) node na of the search
tree, i.e., s(na) = s0. We then execute the main loop of TI, which iteratively grows the
tree until either the number K of iterations has been performed, or the root node na
becomes solved (ρ(na) = true), indicating that no more node expansions are possible.
Each iteration of TI consists of three main steps that are analogous to those of MCTS.
The first step (line 8) selects a promising leaf node n∗a in the tree to expand. This is done
using the SelectLeafNode procedure (Algorithm 2), which we explain in Section 5.5.1.
The second step (ExpandNode, line 9) expands n∗a by applying actions from A′ in
its state s(n∗a). If this succeeds, additional nodes are added to the tree, as we explain
in Algorithm 3 and Section 5.5.2. The third step (UpdateValues, line 10) updates
the values and statistics of all nodes on the path from n∗a back to the root node based
on the result of the node expansion.
After the main process of constructing the tree is completed, we traverse the tree

in order to retrieve the solution of the task, i.e., the best plan leading to the desired
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Algorithm 1 Overview of our teach-and-improvise algorithm for solving a task from an
initial state s0 given a budget of K iterations. We assume that the intention likelihood
Ψ and action models A′ have been learned from the teacher demonstrations.
1: procedure SolveTask(Ψ, A′, s0, K)
2: // Create root node
3: prob ← 1 // initial state probability
4: na ← CreateActionSelectionNode(s0, Ψ, prob)
5: // Run until time is up or the root node is solved
6: k ← 0
7: while k < K and ρ(na) = false do
8: n∗a ← SelectLeafNode(na) // select leaf node to expand
9: ExpandNode(n∗a, Ψ, A′) // expand node by applying actions
10: UpdateValues(n∗a) // backup results to the root
11: k ← k + 1
12: // Return the best solution by traversing the tree
13: return RecommendBestPlan(na)

state s∗T . We achieve this using the RecommendBestPlan method, which we explain
in Algorithm 6 and Section 5.5.4.

Note that in line 4, we use the method CreateActionSelectionNode for creating
and initializing the root node na. As shown in Algorithm 4, this uses the intention
likelihood Ψ to initialize the value V (na) of the root node as the intention likelihood
evaluated at s0, i.e., V (na) = Ψ(s0). This corresponds to our proposed heuristic-based
initialization, and we use this criterion for all subsequently-created action-selection
nodes, see Section 5.5.2. For the special case of the root node, we set the probability
P (s0) of the initial state to 1, (Alg. 1, line 3). In the following sections, we present the
details of the procedures in Algorithm 1.

5.5.1. Selecting a Promising Leaf to Expand
In this section, we explain the SelectLeafNode procedure (Alg. 1, line 8) responsible
for selecting a leaf node in the tree to expand. We summarize this in Algorithm 2.
Starting at the root node na, we descend the tree by repeatedly selecting actions
(SampleAction), templates (SampleTemplate), and goals (SampleGoalState),
until a leaf node is reached.

5.5.1.1. Action Selection

Given an action-selection node na, the SampleAction function selects a template-
selection child nγ representing an action a(nγ). We restrict the selection to children
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Algorithm 2 Traversing the tree from the root node na to select a leaf node to expand.
1: procedure SelectLeafNode(na)
2: n∗a ← na // initialize
3: // Sample children until a leaf node is reached
4: while succ(n∗a) 6= ∅ do
5: nγ ∼ SampleAction(n∗a) // select template-selection child
6: ng ∼ SampleTemplate(nγ) // select goal-selection child
7: n∗a ∼ SampleGoalState(ng) // select action-selection child

8: return n∗a

that are not solved, since solved nodes lead to leaves that cannot be expanded further.
We denote the set of selectable children of na by Nγ(na), i.e.,

Nγ(na) = {nγ | nγ ∈ succ(na), ρ(nγ) = false}. (5.16)

We base action selection on the current value estimates Q(nγ) of children in Nγ(na).
A child nγ with a large Q(nγ) value means that the corresponding action a(nγ) led to
promising states with respect to the intention likelihood in previous iterations. However,
adopting a purely-greedy strategy for action selection might prevent us from considering
actions with currently sub-optimal value estimates, but that might lead to better
solutions if pursued further. Therefore, we seek strategies to balance exploitation and
exploration. We briefly present two strategies that we considered in our work.

εεε-Greedy This strategy selects the best child (i.e., with the highest Q value) with a
certain exploitation probability, and distributes the probability of exploring less optimal
actions among the other children equally. We specify this exploitation-exploration
trade-off based on the parameter ε as follows:

P
(
nγ ∈ Nγ(na) | na

)
=


1− ε+ ε

|Nγ(na)| if nγ = arg max
n′γ∈Nγ(na)

Q(n′γ)

ε
|Nγ(na)| otherwise,

(5.17)

where na = parent(nγ) and 0 ≤ ε ≤ 1. As ε → 0, this converges to a greedy strategy
that always selects the best action. On the other hand, as ε→ 1, we approach a uniform
selection strategy and consider all actions equally.

Boltzmann Exploration This is a common variant of softmax-based strategies (Sutton
and Barto, 1998). We select nγ given its parent na with a probability P (nγ | na):

P
(
nγ ∈ Nγ(na) | na

)
=

exp
(
Q(nγ)/τ(na)

)
∑

n′γ∈Nγ(na)
exp

(
Q(n′γ)/τ(na)

) . (5.18)
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Here, τ(na) is the temperature that controls the degree of exploration. As τ(na)→ 0,
we approach a greedy strategy favoring the child with the largest Q(nγ) value. As
τ(na) → ∞, we approach a uniform strategy that selects all children with equal
probability. Rather than fixing this parameter, we adopt a strategy based on Singh
et al. (2000) and gradually decrease τ(na) the more na is visited during the search:

τ(na) = 1
ln
(
E(na) + 2

) , (5.19)

where E(na) is the visit count of na. This encourages more exploration for nodes
with low visit counts, as their value estimates are unlikely to have converged yet. For
frequently-selected nodes, we encourage exploiting actions with larger value.

5.5.1.2. Action Template Selection

Analogous to action selection, SampleTemplate selects between the (unsolved) chil-
dren ng of a template-selection node nγ , thereby choosing a template γ(ng) of its action
a(nγ). We denote the set of selectable children of nγ by Ng(nγ), i.e.,

Ng(nγ) = {ng | ng ∈ succ(nγ), ρ(ng) = false}. (5.20)

As for action selection, we rely on the ε-greedy and Boltzmann exploration strategies
to compute the probabilities P (ng ∈ Ng(nγ) | nγ = parent(ng)) of selecting a template
based on the U(ng) values of the corresponding children ng ∈ Ng(nγ).

5.5.1.3. Action Goal Selection

Finally, given a goal-selection node ng, we use SampleGoalState to choose an action-
selection node whose state represents the result of applying the action a(ng) using the
template γ(ng). Let Na(ng) be the set of unsolved children of ng, i.e.,

Na(ng) = {na | na ∈ succ(ng), ρ(na) = false}. (5.21)

We select a node na ∈ Na(ng) with a probability P (na | ng) proportional to the
probability P (na) of its state being an intended goal of the action, i.e.,

P (na | ng = parent(na)) = P (na)∑
n′a∈Na(ng)

P (n′a)
, (5.22)

where,
P (na) = P

(
ŝt+1 = s(na) | ŝt = s(ng), a = a(ng), γ = γ(ng)

)
. (5.23)
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5.5.2. Node Expansion
The SelectLeafNode procedure above traverses the tree to find a promising leaf node
n∗a to expand. In this section, we describe the ExpandNode procedure (Alg. 1, line 9),
which expands n∗a by applying actions in its state st = s(n∗a), thereby adding new nodes
to the tree. We summarize this procedure in Algorithm 3.

5.5.2.1. Lazy Feasibility Checks

Recall that our problem requires satisfying a feasibility constraint Eq. (5.15) for all states
in the solution. This involves performing collision and stability checking computations
that might be costly, see Section 2.2. To avoid performing this check for each newly-
created node, we adopt a lazy strategy and check this constraint only for nodes that
have been selected for expansion. If st is infeasible, we do not expand n∗a. Instead, we
set its value V (n∗a) to −∞, consequently updating the value of its predecessors, see
Section 5.5.3. Additionally, we label n∗a as solved to prevent it from being considered
for expansion again, Alg. 3, lines 4–8.

5.5.2.2. Determining Applicable Actions

If st is feasible, we expand n∗a with actions from A′. For this, we consider the subset
of actions A∗ that satisfy two criteria (GetApplicableActions in Alg. 3, line 9).
The first is the state affordability constraint in Eq. (5.14), which we check as described
in Section 5.3.3. The second is based on a heuristic that prevents applying the same
action in two consecutive time steps. Our motivation for this is based on our point-to-
point action models. In this context, there typically is no need for manipulating the
same object(s) twice in a row. We use this insight to reduce the branching factor when
expanding a node. This can be seen as a form of a history heuristic typically used to
prioritize actions based on their performance in the past (Schaeffer (1989); Gelly and
Silver (2011)). Accordingly, we define the set of applicable actions A∗ as follows:

A∗ = {a | a ∈ A, p(s(n∗a) | a) ≥ εs, a 6= a(parent(n∗a))}. (5.24)

If A∗ is nonempty, we augment it with the no-op action as well, i.e., A∗ = A∗ ∪{a(0)}.
Otherwise, GetApplicableActions returns the empty set (i.e., no node expansion
takes place) and we label n∗a as solved, see Alg. 3, lines 10–12.

5.5.2.3. Sampling Templates to Apply an Action

Given a non-empty set of actions A∗, we expand n∗a as described in Alg. 3, lines 14–35.
For each action a ∈ A∗, we add a new template-selection node nγ as a child node of
n∗a, i.e., s(nγ) = st, a(nγ) = a (Alg. 3, lines 14–18). Each nγ is responsible for applying
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Algorithm 3 Expanding a leaf node n∗a by applying actions in its state.
1: procedure ExpandNode(n∗a, Ψ, A′)
2: st ← s(n∗a) // the state in which to apply actions
3: // Check state feasibility before applying actions
4: if not Feasible(st) then
5: // The leaf node should not be selected again
6: V (n∗a)← −∞
7: ρ(n∗a)← true
8: return
9: A∗ ←GetApplicableActions(n∗a,A′) // the subset of applicable actions
10: if A∗ = ∅ then // no expansion possible
11: ρ(n∗a)← true // label leaf node as solved
12: return
13: // Apply actions and add the corresponding node successors:
14: for all a ∈ A∗ do
15: // Add nγ child for action a
16: nγ ← CreateTemplateSelectionNode(st, a)
17: parent(nγ)← n∗a
18: succ(n∗a)← succ(n∗a) ∪ {nγ}
19: // Choose a subset Γ∗ of the templates for action a
20: Γ∗ ∼ SampleSubsetOfTemplates(Γa)
21: for all γ ∈ Γ∗ do
22: // Add the corresponding goal-selection child
23: ng ← CreateGoalSelectionNode(st, a, γ)
24: parent(ng)← nγ
25: succ(nγ)← succ(nγ) ∪ {ng}
26: // Compute discrete action goal states and their probabilities
27: [Ŝt+1, P̂ ]← ComputeDiscreteActionGoals(st, a, γ)
28: // Create new action-selection children from the goal states
29: for all ŝt+1 ∈ Ŝt+1 do
30: prob = P (st+1 = ŝt+1 | st, a, γ) // goal state probability in P̂
31: n′a ← CreateActionSelectionNode(ŝt+1, Ψ, prob)
32: if a = a(0) then // case of special no-op action
33: ρ(n′a)← true // label new leaf node as solved

34: parent(n′a)← ng
35: succ(ng)← succ(ng) ∪ {n′a} // add new leaf node

its action using its templates Γa. We consider multiple templates when applying a and
rely on their resulting U values to guide the search in subsequent iterations as discussed
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in Section 5.5.1.2.
One way to do this is to consider all action templates, i.e., adding a child ng of nγ for

each γ ∈ Γa. In practice, however, the corresponding branching factor could render the
search intractable, as the size of Γa increases with the number of stationary objects Oa

S.
Therefore, we propose to approximate the action goal distribution (Eq. (5.8)) using a
subset Γ∗ ⊆ Γa of templates (SampleSubsetOfTemplates in Alg. 3, line 20). We
specify the size of Γ∗ based on the ratio ζ ∈ (0, 1] of templates to use, i.e., |Γ∗| = dζ|Γa|e.
We construct Γ∗ by sampling templates from Γa based on their relevance p(γ | st, a),
see Section 5.3.2.1. In Section 5.6, we discuss how the robot can learn the relevance of
each action template from experience based on a template’s usefulness for solving the
task. This allows us to favor sampling more promising templates for node expansion.

5.5.2.4. Computing Goal States

We use the sampled templates Γ∗ to apply the corresponding action a and add the
resulting nodes to the tree. As motivated in Section 5.3.2.4, we tackle the dimensionality
of the problem and the noise in the learned action models by considering each template
individually. We add a new goal-selection node ng as a child of nγ for each template
γ ∈ Γ∗ to model applying a using γ, i.e., s(ng) = st, a(ng) = a, γ(ng) = γ, see Alg. 3,
lines 21–25. For this, we compute the distribution of goal states p(st+1 | st, a, γ) based
on the votes of the stationary object associated with γ as described in Section 5.3.
We discretize this distribution by clustering the sampled goal states as described

in Section 5.3.2.3. The result is a finite set of goal states Ŝt+1 = {ŝ(1)
t+1, . . . } and their

probabilities P̂ = {P (st+1 = ŝ(1)
t+1 | st, a, γ), . . . } (Alg. 3, line 27). To avoid expanding

a node more than once, we add all resulting goals to the tree. We use each goal
state ŝ(s)

t+1 ∈ Ŝt+1 to construct a new leaf node n′a as a child of ng, i.e., s(n′a) = ŝ(s)
t+1,

P (n′a) = P (st+1 = ŝ(1)
t+1 | st, a, γ), see Alg. 3, lines 27–35. In the special case of the

no-op action a(0), we label the new leaf node as solved (Alg. 3, lines 32–33). This
is equivalent to considering its state as a potential final goal sT for solving the task,
thereby addressing the stopping problem.
Note that by varying the clustering threshold δmax, we control the branching factor

at goal-selection nodes. Increasing δmax results in fewer new leaves, but with a coarser
imitation of action goals. As δmax → 0, we achieve a fine reproduction of the teacher
demonstrations at the price of a larger space of goal states to consider during the search.

5.5.2.5. Value Initialization

In this section, we describe how we initialize new nodes that we add to the tree as a result
of the node expansion process in Algorithm 3. This includes new template-selection nodes
for the applied actions (CreateTemplateSelectionNode, line 16), goal-selection
nodes for their templates (CreateGoalSelectionNode, line 23), and action-selection
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Algorithm 4 Initialization of new nodes.
1: procedure CreateActionSelectionNode(s, Ψ, prob)
2: na ← create new action-selection node
3: s(na)← s // node state
4: V (na)← Ψ(s) // heuristic state-value initialization
5: P (na)← prob // node state probability
6: E(na)← 1 // visit count
7: ρ(na)← false // solved label
8: return na

9: procedure CreateTemplateSelectionNode(s, a)
10: nγ ← create new template-selection node
11: s(nγ)← s // node state
12: a(nγ)← a // node action
13: Q(nγ)← 0 // state-action value
14: E(nγ)← 1 // visit count
15: ρ(nγ)← false // solved label
16: return nγ

17: procedure CreateGoalSelectionNode(s, a, γ)
18: ng ← create new goal-selection node
19: s(ng)← s // node state
20: a(ng)← a // node action
21: γ(ng)← γ // node action template
22: U(ng)← 0 // state-action-template value
23: E(ng)← 1 // visit count
24: ρ(nγ)← false // solved label
25: return ng

nodes (leaves) for their goals (CreateActionSelectionNode, line 31). We present
the procedures for creating and initializing these nodes in Algorithm 4. For all nodes,
we initialize the visit count E to 1 and solved label ρ to false. Additionally, we set the
probability P (na) of each new leaf node na to the probability of s(na) being an intended
goal of the action used to create na (Alg. 4, line 5).

Our approach relies on the value estimates of all nodes to steer the search to promising
solutions (Section 5.5.1) and to compute the final plan for solving the task (Section 5.5.4).
For template-selection and goal-selection nodes, we respectively initialize the Q and U
values to zero (Alg. 4, lines 13 and 22), as we rely on the value-update procedure in
Section 5.5.3 below to continuously update these estimates.

Moreover, we rely on the intention likelihood of the task as a heuristic for initializing
the state-values V of new leaf nodes (Alg. 4, line 4) as motivated in Section 5.4.5.
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Note that the value V (na) of any action-selection node na estimates the best objective
function value (Eq. (5.13)) that can be achieved if we solve the task starting in s(na).
Therefore, the initialization V (na) = Ψ(s(na)) intuitively answers the question: How
good is the state s(na) as a final goal state sT of the task?

5.5.3. Updating Node Values
In this section, we describe the UpdateValues procedure (Alg. 1, line 10). After each
node expansion, this procedure recursively updates the value estimates, visit counts,
and solved labels of all nodes on the path from an expanded node back to the root node
of the tree. By doing so, we keep track of the best solutions found so far and inform the
search in the next iteration.

Traditionally, MCTS-based algorithms for solving MDPs are used to compute optimal
policies with respect to the Bellman equation. In such domains, there exist different
strategies for updating state and state-action values (Sutton and Barto (1998)). For
example, full Bellman updates are used when a declarative model of the MDP is
available, (i.e., transition probabilities and rewards of all successor states are known).
In other cases, one only has access to samples of outcomes and rewards. There, a partial
or sample-based strategy is typically used to update values based on sampled outcomes
(e.g., the UCT algorithm, Kocsis and Szepesvári (2006)).

As described in Section 5.5.2, our methods expands a node fully by considering
all actions and templates, and subsequently adds all potential goal states to the tree.
Therefore, we adopt full value-updating techniques that enable us to update estimates
in a dynamic programming fashion that we apply bottom-up, i.e., from the leaves
to the root. We explore two such strategies in this work: max-value, and Bellman
updates. Algorithm 5 shows our approach with the max-value and Bellman update
alternatives highlighted in red and blue for the relevant steps, respectively.

Max-Value Updates This strategy optimizes the objective function in Eq. (5.13) by
greedily keeping track of the solution with the largest intention likelihood (minus the
plan cost). Note that this does not consider action goal probabilities when computing
values, and is therefore more robust to noise in the action models, i.e., if action goal
probabilities do not accurately reflect the intention of the teacher. Recall that we
initialize the state-value of a leaf node n′a as the intention likelihood Ψ(s(n′a)) of its state
(Section 5.5.2.5). This reflects the objective function value achieved by solving the task
using T = 0 steps starting in s(n′a). Consequently, we update the state-action-template
value U(ng) of a goal-selection node ng as the maximum value of its children minus
the cost of applying the corresponding action a(ng), see Alg. 5, line 6. Similarly, we
update the state-action value Q(nγ) of a template-selection node nγ and the state-value
V (na) of a non-leaf action-selection node na as the maximum value of their children,
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Algorithm 5 Updating node values and statistics after expanding a node n∗a. We
highlight the max-value and Bellman update alternatives in red and blue for the relevant
steps, respectively.
1: procedure UpdateValues(n∗a)
2: if succ(n∗a) 6= ∅ then // if actions were applied from n∗a
3: // Update values and labels of direct successors of n∗a
4: for all nγ ∈ succ(n∗a) do
5: for all ng ∈ succ(nγ) do
6: U(ng)← −cost

(
a(ng)

)
+ max
n′a∈succ(ng)

V (n′a) // max-value update

7: U(ng)← −cost
(
a(ng)

)
+ ∑
n′a∈succ(ng)

P (n′a) V (n′a) // Bellman update

8: ρ(ng)←

true if ρ(n′a) = true, ∀n′a∈succ(ng)

false otherwise

9: Q(nγ)← max
ng∈succ(nγ)

U(ng) // max-value update

10: Q(nγ)← ηγ
∑

ng∈succ(nγ)
p
(
γ(ng) | s(ng), a(ng)

)
U(ng) // Bellman update

11: ρ(nγ)←

true if ρ(ng) = true, ∀ng∈succ(nγ)

false otherwise

12: // Update value and label of n∗a
13: V (n∗a)← max

nγ∈succ(n∗a)
Q(nγ)

14: ρ(n∗a)←

true if ρ(nγ) = true, ∀nγ∈succ(n∗a)

false otherwise

15: E(n∗a)← E(n∗a) + 1 // increment visit count
16: if parent(n∗a) = null then // base case: reached the root node
17: return
18: ng ← parent(n∗a)
19: E(ng)← E(ng) + 1 // increment parent visit count
20: nγ ← parent(ng)
21: E(nγ)← E(nγ) + 1 // increment grandparent visit count
22: // Go up to the direct action-selection predecessor and run UpdateValues again
23: n∗a ← parent(nγ)
24: UpdateValues(n∗a)

see Alg. 5, line 9 and Alg. 5, line 13, respectively.

Bellman Updates We build this strategy on classical Bellman updates. Rather than
maximizing the intention likelihood of the goal state s∗T (Eq. (5.13)), this strategy
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results in maximizing the expected intention likelihood of s∗T . This results in plans
that not only achieve a final goal state with a high intention likelihood, but that also
align with the intention of the teacher for the goal of each action. For this, we assume
to have action goal distributions that reflect the intention of the teacher accurately.
In Section 5.6, we discuss how to learn such models from experience. The only difference
between this strategy and max-value updates lies in computing the U and Q values
of goal-selection and template-selection nodes, respectively. We compute the values of
these nodes as weighted means of their children values based on the corresponding goal
and template-relevance probabilities, see Alg. 5, line 7 and Alg. 5, line 10, respectively.
In Alg. 5, line 10, ηγ = 1/∑ng p(γ(ng) | s(ng), a(ng)) is a normalizer based on the
children ng of nγ . Moreover, we do not incorporate infeasible children with −∞ values,
i.e., we consider their probabilities to be zero. If this is the case for all children of a
node, we set the node’s value to −∞.
Algorithm 5 additionally updates the solved label ρ(n) of a node n to true if all

children of n are also solved. This prevents n and its successors from being considered
for subsequent node selection or expansion. We repeat this recursively by moving one
level up to the direct action-selection ancestor of n∗a and performing the same updates
from there while incrementing the visit counts of the encountered nodes, see Alg. 5,
lines 18–24. We terminate this procedure after updating the value of the root node
(Alg. 5, lines 16–17).

5.5.4. Computing the Best Solution Plan
So far, we presented the main components of TI (Algorithm 1). This explores solutions
by repeatedly selecting nodes, expanding them, and updating value estimates until a
budget of K iterations is used up or the root node is solved. At this point, we use
RecommendBestPlan to traverse the resulting tree and retrieve a plan Π for solving
the task (Alg. 1, line 13).

For this, we recall that our approach is an anytime algorithm in which we continuously
update value estimates of nodes. Therefore, after any iteration, all node values represent
the best estimates for the corresponding tree paths (plans). Specifically, the value V (na)
of the root node na is that of the plan with the maximum objective function value.
Accordingly, we adopt a greedy policy and traverse the tree from the root by repeatedly
selecting the node child with the largest value until we reach a leaf node n∗a whose state
is the desired task goal s∗T . We present this method in Alg. 6, lines 2–11.

Note that due to our lazy feasibility-checking strategy (Section 5.5.2.1), we can only
guarantee the feasibility of the intermediate states along this path, but not for the state
s∗T of the leaf node. Therefore, we interleave the process of greedily traversing the tree
to retrieve the best plan (GetPlanGreedy in Alg. 6, line 4) with a feasibility check of
the final state. If s∗T is infeasible, we set the leaf’s value to −∞ and update the values of
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Algorithm 6 Traversing a search tree starting from the root node na in order to retrieve
the best solution for the task
1: procedure RecommendBestPlan(na)
2: while true do
3: // Get max-value plan and leaf node of corresponding path
4: [Π, n∗a]← GetPlanGreedy(na)
5: s∗T ← s(n∗a) // last state of plan
6: if Feasible(s∗T ) then
7: return Π // found a feasible solution
8: else
9: // Set leaf node value to −∞ (infeasible), update node values, and try again
10: V (n∗a)← −∞
11: UpdateValues(n∗a)

12: procedure GetPlanGreedy(na)
13: // Initialize values
14: n∗a ← na
15: Π← ()
16: t← 0
17: while succ(n∗a) 6= ∅ do // traverse tree until a leaf is reached
18: // Descend one level by selecting the max-value child of each node
19: nγ ← arg max

nγ∈succ(n∗a)
Q(nγ)

20: ng ← arg max
ng∈succ(nγ)

U(ng)

21: n∗a ← arg max
n∗a∈succ(ng)

V (n∗a)

22: // The corresponding action and goal state for this step
23: at ← a(ng)
24: st+1 ← s(n∗a)
25: Π← Π_

(
〈at, st+1〉

)
// append step to plan

26: t← t+ 1 // increment time step
27: return [Π, n∗a]

all nodes on the path to the root using UpdateValues as before (Alg. 6, lines 10–11).
We present GetPlanGreedy in Alg. 6, lines 12–27. Starting at the root node na, we

descend the tree by selecting the child with the largest value. For each action-template-
goal sequence of nodes we visit (Alg. 6, lines 19–21), we append the corresponding step
〈at, st+1〉 to the plan Π and increment the time step index t (Alg. 6, lines 23–26). Note
that the _ operator (Alg. 6, line 25) denotes the concatenation of two sequences.
We repeat this until we find a feasible plan Π representing the solution we seek,
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i.e., Π =
(
〈a∗0, s∗1〉, . . . , 〈a∗T−1, s∗T 〉

)
. Note that by assuming that the initial state s0 is

feasible and by incorporating the no-op action a(0), our approach computes solution
plans that are at least one step long. As a special case, we compute the trivial plan
that corresponds to applying the no-op action, i.e., Π =

(
〈a∗0 = a(0), s∗1 = s0〉

)
. In other

words, there are no actions to be executed by the robot to solve the task. This can
happen if applying any action a ∈ A results in infeasible successor states, or if the value
V (s0) = Ψ(s0) of the initial state represents a local optimum such that we do not gain
value by moving any object in s0.

5.5.5. Plan Execution
We briefly address practical considerations that enable a real robot to execute a plan
computed using our approach. One way to solve our problem is to first compute a plan
without performing feasibility checks, and then rely on a motion planner to check if each
step of the plan is feasible during execution. However, this will likely require repeatedly
re-planning until a feasible solution is found. On the other hand, computing plans that
are feasible on the trajectory level is expensive.
We adopt a compromise based on our point-to-point action models. Our method

ensures the feasibility of states before and after applying each action. Therefore, we
execute the plan step by step by relying on an existing motion planner to compute a
collision-free trajectory for the corresponding action a, and a controller for executing it.
In each step, we provide the motion planner with the current object poses, as well as
the target poses of the end-effector and other moving objects Oa

M .
By imposing the state affordability constraint in Eq. (5.14), we apply actions in states

that resemble the demonstrations with respect to relations between objects in Oa
M .

Therefore, we assume that all objects will move as expected when executing the action,
as our state affordability model (Eq. (4.14)) does not consider the joint configuration of
the end-effector. However, in practice, we additionally have to control the end-effector
to grasp and release objects as needed. One way to address this is to rely on expensive
physics simulations during planning to verify the grasps necessary for moving objects.
Other approaches incorporate the end-effector state (e.g., gripper opening, contact
forces, etc.) when learning action models (Niekum et al., 2012; Kalakrishnan et al.,
2012; Herzog et al., 2014). This, however, is outside the scope of our work.

We address this issue using a meta-label that specifies whether the end-effector
should be open or closed at the end-points of an action. This can either be provided
by the teacher or based on the observed gripper opening oee during the kinesthetic
demonstrations. In our experiments, we set this information using a heuristic based on
Oa
M , which requires opening the robot’s gripper for actions in which only the end-effector

is expected to move. Otherwise, we close the gripper before executing the action and
open it afterwards.
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Finally, the robot could encounter unexpected situations when executing a plan. For
instance, an object might slip from the gripper, or there might be no feasible trajectory
for a specific plan step. In such failure cases, one could re-plan starting from the current
state. This, however, is outside the scope of this work.

5.6. Updating Action Models from Experience
Our method relies on the learned action models A to guide planning by sampling
promising intermediate goal states. When expanding a node with an action a, we sample
a subset of templates Γ∗ ⊆ Γa based on the relevance of each γ ∈ Γa. Without prior
knowledge about a, we assumed this relevance p(γ | s, a) to be uniformly distributed
over all templates, see Eq. (4.18) in Section 4.3.3.2. For each template γ ∈ Γ∗, we
compute the distribution of goals p(st+1 | st, a, γ) using votes we sample from the voting
distribution p̂s of the corresponding stationary object, see Section 4.3.4.1.
In practice, however, not all templates (i.e., stationary objects) are equally relevant

for applying an action. Moreover, as noted in Section 5.3.2.4, the voting distributions
are typically noisy due to the small number of demonstrations in which the teacher
might solve the task using different action sequences. These issues result in action goal
distributions that do not accurately capture the intention of the teacher, thereby driving
the search towards irrelevant regions of the state space.
In this section we address these issues by improving action models in two ways:

• We relearn the relevance p(γ | s, a) of each template γ ∈ Γa to reflect its usefulness
for solving the task. For instance, in a table-setting task, it is typically more
useful to move a cup relative to a plate or a fork compared to a chair.

• Similarly, for each voting distribution p̂s we aim to update the probability ŵ(n)
s of

each vote sT̂(n)
∗ to reflect its relevance for solving the task.

We propose a method to update these models without requiring additional teacher
demonstrations. Instead, we enable the robot to autonomously acquire new experiences
by generating additional training data in simulation.

5.6.1. Generating New Training Data
We propose to have the robot “practice” the task in simulation in order to generate
new demonstrations. This is analogous to data augmentation methods used in machine
learning techniques to complement existing training data with synthesized data (e.g.,
through adding noise) and achieve better generalization. Similarly, we propose to
solve the task in simulation starting from random initial states that the teacher has
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not demonstrated before. We treat the resulting plans as additional demonstrations
provided by a virtual teacher.
Concretely, we sample a set S0 = {s(1)

0 , s(2)
0 , . . . , s(S)

0 } of random and feasible initial
states using the objects of the task. For each initial state s(s)

0 ∈ S0, we compute a
plan Π̃(s) to solve the task using our method given the intention likelihood Ψ and noisy
action models A learned from the teacher. We use the max-value update strategy
(Section 5.5.3), as this does not rely on action goal probabilities for computing node
values, and is therefore more robust to noisy action models.

When solving each case, we extend the typical plan structure (Section 2.2) to include
the template γt that was used to apply the corresponding action at in each step,
i.e., Π̃ =

(
〈a0, γ0, s1〉, . . . , 〈aT−1, γT−1, sT 〉

)
. This is a straightforward modification

of Algorithm 6 as γt is simply the template γ(ng) of the goal-selection node ng of the
corresponding level of the tree (see Alg. 6, line 20). We therefore modify Alg. 6, line 25
to append 〈at, γt, st+1〉 to the plan, where γt ← γ(ng). We denote the set of all plans we
compute as Π̃ = {Π̃(1), . . . , Π̃(S)}. We use this data to disambiguate the original teacher
demonstrations by revealing which action templates and goals are typically associated
with the best solution plan when solving the task, as described next.

5.6.2. Updating Action Template Relevance
Our method computes plans by traversing the search tree along the path of largest
node values. Accordingly, all templates included in Π̃ maximize the U value of the
corresponding goal-selection node ng over all other templates considered for applying
the action (see Alg. 6, line 20). For each action a ∈ A, we compute the number of times
each of its templates γs ∈ Γa was selected as part of the solution, and use this as a
measure of its relevance.
Let Ai be the total number of times the i-th action a(i) ∈ A was applied across all

plans in Π̃. Moreover, let Bs be the total number of times template γs was selected for
applying this action over all its occurrences in Π̃, i.e., Ai = ∑

sBs, where s = 1, . . . , |Oa
S|.

We use these statistics to compute the weight w̃γs of γs as follows:

w̃γs ←
Bs + 1

Ai + |Oa
S|
. (5.25)

Accordingly, we update the relevance distribution over templates as follows:

p(γs | st, a) =

w̃γs if os ∈ Oa
S(st)

0 if os /∈ Oa
S(st),

(5.26)

see Eq. (4.18) for comparison. Note that this is equivalent to assuming a multinomial
distribution over the templates, such that Eq. (5.25) approximates the maximum a-
posteriori estimate of each template’s probability given a Dirichlet prior defined by the
initial weights 1/|Oa

S|.
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5.6.3. Updating the Voting Distributions

Similarly, we use the generated plans Π̃ to update the voting distribution p̂s of each
stationary object of an action a(i). Recall that p̂s is a distribution over goal poses sT∗ of
the representative moving object o∗ relative to a stationary object os, see Section 4.3.4.1.
We update our estimate for the probability ŵ(n)

s = p̂s(sT∗ = sT̂(n)
∗ ) of each potential

vote sT̂(n)
∗ ∈ sV̂∗ = {sT̂(1)

∗ , . . . , sT̂(N̂s)
∗ }. Analogous to our initial estimates of these

probabilities (Eq. (4.20)), we do this by analyzing how often each vote contributed to
goal states for solving the task.
Let sṼ∗ = {sT̃(1)

∗ , . . . , sT̃(Ai)
∗ } be the set of poses of o∗ relative to os after applying

action a(i) across all plans Π̃, where Ai is the total number of times a(i) was used in
Π̃. Based on our discretization, let C̃(n)

s be the set of poses from sṼ∗ that are within a
distance of δmax from sT̂(n)

∗ , i.e., C̃(n)
s = {sT̃∗ | sT̃∗ ∈ sṼ∗, dist(sT̃∗, sT̂(n)

∗ ) ≤ δmax}. In
other words, the size of C̃(n)

s indicates the contribution of the corresponding vote sT̂(n)
∗

to the plans Π̃. Accordingly, we update the probability ŵ(n)
s of vote sT̂(n)

∗ as follows:

ŵ(n)
s ←

|C̃(n)
s |+ ŵ(n)

s |sV∗|
(∑N̂s

n=1 |C̃
(n)
s |) + |sV∗|

, (5.27)

where sV∗ is the set of goal poses demonstrated by the teacher, which we used to
compute the initial estimate for ŵ(n)

s , see Eq. (4.20). In this way, we treat the teacher
demonstrations as a prior and update p̂s based on how much the task solutions Π̃ reflect
the usefulness of each vote. Accordingly, votes that are irrelevant for the action (i.e., for
which C̃(n)

s = ∅) will be associated with lower probabilities after this procedure.

5.7. Experimental Evaluation

In this section, we present the experimental evaluation of our teach-and-improvise ap-
proach. We report the results of an extensive quantitative evaluation in simulation
for a variety of tasks, and additionally present experiments with a real PR2 robot.
Specifically, we demonstrate that: i) our model of the task intention likelihood captures
the relevance of pairwise relations to the task, ii) our approach enables the robot to
compute plans to solve the task by generalizing the demonstrations of the teacher and
overcoming the ambiguities in the intended action goals, iii) our approach enables the
robot to improve its learned action models by practicing the task in simulation, iv)
our approach enables the robot to adapt the solution of the task based on the starting
state, and v) our method is applicable on a real robot and is able to compute physically
feasible plans that adapt to the starting state.
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Table 5.1.: A summary of the notation we adopt for presenting our experimental results.
We tested different variants of our algorithm based on the value update
technique (max-value or Bellman), exploration-exploitation trade-off criterion
(ε-greedy or Boltzmann exploration), and the ratio ζ of action templates
sampled during node expansion.

Before updating
action models After updating action models

ε-greedy Boltzmann ε-greedy Boltzmann
ζ = 1 ζ = 1 ζ = 0.5 ζ = 1 ζ = 0.5

Max-Value
updates

MaxVal-ε MaxVal-B MaxVal-ε* MaxVal-ε*
(0.5)

MaxVal-B* MaxVal-B*
(0.5)

Bellman
updates

Bellman-ε Bellman-B Bellman-ε* Bellman-ε*
(0.5)

Bellman-B* Bellman-B*
(0.5)

Table 5.2.: The color scheme we adopt when presenting the results of our algorithm
based on the number of teacher demonstrations D(T ). We illustrate this for
the MaxVal-B* variant in Table 5.1.

|D(T )| = 2
demos

|D(T )| = 4
demos

|D(T )| = 6
demos

|D(T )| = 8
demos

|D(T )| = 10
demos

5.7.1. Notation and Parameters

In this section, we describe the parameter values we used in our experiments and briefly
summarize the notation we adopt when reporting our results. We tested variants of our
algorithm based on the value update technique (max-value or Bellman, see Section 5.5.3),
exploration-exploitation trade-off criterion for node selection (ε-greedy or Boltzmann
exploration, see Section 5.5.1), and the ratio ζ of action templates sampled during
node expansion, which we set to either 0.5 or 1 (see Section 5.5.2.3). Additionally,
we evaluated the ability of our approach to compute task solutions before and after
updating the learned action models by practicing the task in simulation as described
in Section 5.6. We summarize the variants resulting from the combinations of these
factors and parameters in Table 5.1. The table also shows the notation and symbols we
adopt when plotting the corresponding results. Moreover, we evaluated our approach
when learning using two, four, six, eight, or ten demonstrations of a task. Accordingly,
Table 5.2 shows the color scheme we adopt for each case. Finally, unless otherwise
stated, we set all other parameters of our algorithm as in Table 5.3.
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Table 5.3.: The default parameter values we used in our experiments.
Gaussian kernel bandwidth σ (Eq. (4.11)) 0.05

Clustering compactness threshold δmax (Section 5.3.2.3) 0.05
Number I of samples drawn per voting distribution

(Section 5.3.2.3) 5

ε-greedy parameter ε (Section 5.5.1.1) 0.2
The cost c0 of applying an action from A 0.001

Figure 5.6.: Examples of demonstrated goal states for the breakfast setting task T1. The
teacher placed the bowl at the front edge of the table and the other two
objects on opposite sides relative to the bowl.

5.7.2. Tasks

We evaluated our approach extensively using four tasks, T1-T4, which we briefly describe
below. Moreover, we present experiments with a real PR2 robot using additional tasks
in Section 5.7.11.

5.7.2.1. Breakfast Setting (T1)

In this task, the teacher demonstrated how to set a breakfast table using a bowl, a box
of cereals, and a carton of milk. The teacher always placed the bowl at a random spot
near the front edge of the table, and placed the box of cereals and milk at opposite
sides of the bowl. This corresponds to two different modes of solving the task as shown
in Figure 5.6. Note that the exact poses of the objects in each mode varied randomly.
As ground truth, we considered all six pairwise relations between the objects (including
the table) to be relevant for solving the task. In total, this task involved four actions.
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Figure 5.7.: Examples of demonstrated goal states for the aligning blocks task T2 in
which the teacher constructed a row of blocks in a specific order.

5.7.2.2. Aligning Blocks (T2)

In this task, the teacher demonstrated how to construct a row of six blocks by aligning
them in a specific order on the table as shown in Figure 5.7. The desired position of
each block varied randomly with a tolerance of 2 cm such that neighboring blocks are
15 cm apart on average. Moreover, due to the symmetrical shape of the blocks, the
teacher placed them at random orientations (0 or 180 deg) around the z-axis in each
demonstration. As ground truth, we considered all 21 pairwise relations between the
objects (including the table) to be relevant for solving the task. In total, this task
involved seven actions.

5.7.2.3. Tower Building (T3)

In this task, the teacher demonstrated how to construct a tower of six blocks by stacking
them in a specific order as shown in Figure 5.8. The teacher varied the position and
orientation of the tower relative to the table across the demonstrations. When placing
a block on top of another, the teacher varied the displacement between the two blocks
along their main axis within a range of ±2 cm. The teacher also randomly changed the
relative orientation between the blocks to be either 0 or 180 deg around the z-axis. As
ground truth, we considered only the 15 pairwise relations between the six blocks to
be relevant for solving the task (i.e., all relations involving the table are irrelevant). In
total, this task involved seven actions.

5.7.2.4. Tidy-Up (T4)

In this task, the teacher demonstrated a tidy-up task using six objects: three toy boxes,
a bowl, a cup, and a pack of sugar. The goal of the task is to tidy up the boxes by
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Figure 5.8.: Examples of demonstrated goal states for the tower building task T3. The
teacher stacked six blocks in a specific order such that the position of the
tower on the table is irrelevant.

moving them to the back of the table while arranging the kitchen-related objects on the
opposite end of the table similar to the breakfast task T1 above. The teacher showed
different modes for solving the task based on the arrangement of the boxes and those of
the kitchen-related objects, see Figure 5.9. The teacher varied the object poses randomly
around their desired values. As ground truth, we considered only 12 pairwise relations
to be relevant for solving the task: those involving the kitchen-related objects with each
other and the table, and those involving the boxes with each other and the table. We
considered relations between the boxes and the kitchen-related objects to be irrelevant
for the task. In total, this task involved seven actions.
We summarize the above tasks in Table 5.4.

5.7.3. Task Demonstrations

In this section, we briefly describe how we acquired demonstrations for learning and
evaluating the tasks above. For an extensive evaluation, we aimed to generate a large
number of demonstrations for each task. This enables us to sample small subsets
of demonstrations to use for learning each task and evaluating our approach. For
recording demonstrations, we constructed 3D models of the involved objects and relied
on SimTrack (Pauwels and Kragic, 2015) to recognize them and compute their poses
using a depth camera, see Figure 5.10. Additionally, we relied on fiducial markers to
emulate the end-effector of the robot and estimate the table surface as in Figure 4.2.
We used the ar_pose library for detecting the fiducial markers (Dryanovsk et al.). Note
that for tasks T2 and T3 above we relied on virtual blocks in simulation.
Using this setup, we first recorded ground truth point-to-point action models by
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Figure 5.9.: Examples of demonstrated goal states for the tidy-up task T4. The teacher
arranged the toy boxes on one side of the table and the kitchen-related
objects on the opposite end. The demonstrations involved different modes
of solving the task with respect to the object arrangements.

Table 5.4.: Summary of the tasks we considered in our evaluation along. The number
of objects includes the table.

Task # objects # relevant
relations # actions

Breakfast setting (T1) 4 6 4
Aligning blocks (T2) 7 21 7
Tower building (T3) 7 15 7

Tidy-up (T4) 7 12 7
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Figure 5.10.: To record demonstrations, we relied on an existing pose detector and
tracker (Pauwels and Kragic, 2015) based on 3D models of the objects.
Additionally, we used fiducial markers to facilitate recognizing the table
and to emulate the end-effector of the robot. Left: the camera image of a
scene with the object detections (green masks) superimposed. Right: the
corresponding recorded scene in the rviz visualization environment.

demonstrating the spatial relations between the objects before and after applying an
action. We provided several variations for each action with respect to the starting and
goal states. Moreover, we recorded 100 ground truth goal states for each task. Using
these models, we used our MCTS-based planner to compute plans for solving each task
(i.e., achieving a ground truth goal state) using the ground truth action models. In this
way, we generated 100 plans to solve each task starting from random initial states with
all objects on the table. Finally, we used the resulting plans as demonstrations provided
by a virtual teacher for learning each task, which we segmented using our approach. It
is important to note that we only used the ground truth action and task goal models
for the purpose of generating this pool of demonstrations. Beyond this, we do not use
these models in our evaluation, and rely solely on the resulting demonstrations to learn
each task using our approach. Figure 5.11 shows an example of such a demonstration
for the tidy-up task T4.

5.7.4. Estimating the Relevance of Relations for Task Goals

As a first evaluation, we investigated the weights estimated by our method for the
relevance of pairwise relations for the intention likelihood of each task. We computed
the weight of each relation based on the entropy in the demonstrations as in Eq. (5.7).
To measure how closely these weights reflect the intention of the teacher, we computed
the cosine similarity between the vector of estimated weights using our method and
that consisting of the ground truth weights (with zeros for irrelevant relations and ones
for relevant ones). We performed this for each task given two, four, six, eight, and
ten demonstrations. The results are shown in Figure 5.12 averaged over 25 runs with
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st3 st4

st1 st2

st5 st6

st7 st8

st9 st10

st11 st12

Figure 5.11.: Example demonstration for the tidy-up task T4. We omit the initial state at
t0 before moving the end-effect from a default starting pose. We generated
such demonstrations in simulation for all tasks in our experiments. All
demonstrations start with the objects placed randomly on the table. The
demonstrations varied with respect to the order of applying actions.
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Figure 5.12.: The cosine similarity between the weights of pairwise relations estimated
by our approach and the ground truth weights for tasks T1-T4. We compute
the weights based on the entropy in the demonstrations as in Eq. (5.7). For
T1 and T2, we achieve a similarity between 0.97 and 0.99. For T3 and T4,
the similarity improves from 0.87 to 0.92 and from 0.77 to 0.81, respectively,
as the number of demonstrations increases from two to ten. For those
tasks, only a subset of the relations are relevant (15 and 12 out of 21,
respectively). This makes it challenging to estimate the relevance of each
relation from a few demonstrations.

randomly-selected demonstrations for each task.
For tasks T1 and T2, we achieve a similarity between 0.97 and 0.99 for all numbers of

demonstrations. Note for those two tasks, all pairwise relations are relevant. On the
other hand, tasks T3 and T4 involve 15 and 12 relevant relations out of all 21 possible
pairwise relations, respectively. It is therefore more challenging to estimate which
relations are more relevant than the others given a small number of demonstrations.
This is particularly the case for T4 since the teacher demonstrates multiple ways of
solving the task as shown in Figure 5.9. Additionally, some objects in those tasks
have symmetries in their shapes, which adds to the ambiguity with respect to the
geometric relations involving them. This, however, is an aspect we do not account for
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Figure 5.13.: Two examples of relations in the tidy-up task, T4. The left side shows the
relation between the blue box and the cup, and the right side shows the
relation between the blue and green boxes. We illustrate the distributions
of these relations given two (top) and ten (bottom) demonstrations. With
more demonstrations, we estimate a higher weight for the relation between
the boxes due to more consistency in the corresponding relative poses.

in our work. Overall, for T3, the cosine similarity increases from 0.87 to 0.92 as the
number of demonstrations increases from two to ten. Similarly, the cosine similarity for
T4 changes from 0.77 to 0.81 as the number of demonstrations increases from two to
ten. See Figure 5.13 for examples of two relations for task T4.

In the next experiments, we demonstrate that, despite the ambiguity in the intention
of the teacher with respect to the task goals, our approach is able to leverage the
noisy action models learned from the demonstrations in order to compute goal states
corresponding to peaks of those relations.

5.7.5. Solving Tasks Starting in Arbitrary States

The purpose of this experiment is to evaluate the ability of our approach to generalize
the demonstrations of the teacher and to solve tasks from arbitrary initial states that
have not been demonstrated before. For this, we conducted an extensive evaluation
using tasks T1-T4 in simulation.
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5.7.5.1. Training and Testing Data

For training, we used N demonstrations for each task, which we generated as described
in Section 5.7.3 above. We varied the number of demonstrations between two and ten
in increments of two. In each case, we used our approach to learn action models from
the segmented demonstrations, and to learn a model of the intention likelihood based
on the final state. For each task, we then sampled 100 random initial states with all
objects placed at an arbitrary pose on the table.
We used our teach-and-improvise algorithm (TI) described in Section 5.5 to solve

each task starting in each of the 100 random initial states using a budget K of 50,000
iterations, and without providing an explicit goal state to be achieved. In this experiment,
we relied on a 3D model of the robot’s end-effector and used feasibility constraints
that consider collisions between the objects as well as state stability as described
in Section 2.2, i.e., we did not consider inverse-kinematic constraints.
We repeated this experiment 25 times, each time using a different random set of

N demonstrations. In total, we evaluated each task on 2,500 cases using different
combinations of demonstrations and novel initial states. Note that here, we used the
action models learned directly from the teacher demonstrations, i.e., without updating
the action distributions by practicing the task. Since TI is an any-time algorithm, we
analyzed the computed solutions every 500 iterations.

5.7.5.2. Analyzing Satisfied Relations

We investigated the task solutions in the experiment above with respect to the pairwise
relations achieved in the final goal state sT of each computed plan. Specifically, we
computed the percentage of relevant relations that were successfully reproduced for
each task (see Table 5.4 for an overview of how many relevant relations are involved in
each task). We considered a relation to be satisfied or successfully reproduced if the
relative pose between the two corresponding objects in sT is not further than a distance
of δmax = 0.05 from one of the relation poses demonstrated by the teacher for that task,
where δmax is the compactness threshold used for discretizing the action distributions.
For all tasks T1-T4, we first performed this experiment using max-value updates and
Boltzmann exploration (MaxVal-B). Figure 5.14 shows the results for all numbers of
demonstrations considered. Note that all figures show results evaluated at 100 points
in each run (every 500 iterations). However, we visualize the markers and standard
deviations in the plots at sparser intervals for readability.
For the breakfast setting task (T1), we achieved success rates of 76.7%-85.6% on

average after only 500 iterations, reaching 98.1% and 95.3% for two demonstrations
and ten demonstrations, respectively. For all numbers of demonstrations, we achieved
between 96.5% and 98.3% on average after 50,000 iterations, see Figure 5.14-top left.
Despite the fact that all tested cases started in initial states not demonstrated by the
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Figure 5.14.: The results of our approach using max-value updates when solving tasks
T1-T4 starting in 100 random initial states. Despite not providing our
approach with an explicit goal state to achieve in each case, we are able to
generalize the demonstrations of the teacher and compute plans to satisfy
the relevant relations between the objects. Our approach is anytime in
nature and improves the computed arrangements based on the specified
budget of iterations. See Figures 5.15 and 5.16 for examples of solutions
computed by our approach for tasks T3 and T4.

teacher beforehand, we are able to generalize the demonstrations by sequencing actions
in order to maximize the intention likelihood of the goal state and satisfy the desired
spatial relations between the objects. Using MaxVal-B, our approach computed plans
consisting of 8.2 actions on average for T1.

Analogously, we show the results for the aligning blocks task (T2) in Figure 5.14-top
right. After 50,000 iterations, our approach (using MaxVal-B) achieves 94.0% of the
(21) relevant relations on average when learning from two demonstrations, and 81.6% of
the relations when learning from ten demonstrations. Our approach is able to generalize
the teacher demonstrations and compute plans in novel initial states to maximize the
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Figure 5.15.: Examples of solutions computed using our approach for the tower build-
ing task T3. The left side shows random initial states (previously not
demonstrated by the teacher), and the right side shows the corresponding
goal states achieved using our method. In each example, our approach
generalizes the demonstrations of the teacher to compute solutions that
satisfy 46.7% (top), 66.7% (middle), and 100% of the desired relations
between all six blocks.

number of desired relations between the blocks on the table. Note that since we adopt
a non-parametric model for the action distributions based on the demonstrated poses,
more demonstrations result in an increased branching factor when expanding nodes
during planning. This results in a slower convergence when using more demonstrations,
leading to less satisfied relations for the same number of iterations. In Section 5.7.7, we
show how this effect diminishes when allowing the robot to update the action models
by practicing the task in simulation.

Additionally, we show the results for the tower building task (T3) in Figure 5.14-bottom
left. Here, our approach with MaxVal-B is able to compute plans that result in satisfying
between 45.0% and 52.2% of the desired relations between all blocks on average. As an
example, given six demonstrations, MaxVal-B computed plans consisting of 10.4 actions
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Figure 5.16.: Examples of solutions computed using our approach for the tidy-up task.
The left side shows random initial states (previously not demonstrated
by the teacher). The right side shows the corresponding goal states
achieved using our method. In each example, our approach generalizes
the demonstrations of the teacher to compute solutions that satisfy 58.3%
(top), 75% (middle), and 100% of the desired relations between the objects.

on average. These resulted in satisfying between 40% and 50% of the relations in 47.0%
of the solved cases, and 100% of the relations in 15.2% of the cases. Note that in this
task (as opposed to the aligning blocks task), the order of applying actions to stack the
blocks is crucial for the quality of the final solution due to the stability constraints (a
block can only be moved to be placed on top of another). Therefore, constructing a
tower of six blocks requires manipulating the blocks in the correct order. This makes it
challenging to recover from locally-optimal solutions during the tree search since the
teacher did not demonstrate how to unstack blocks, for example by placing them on the
table. Nonetheless, our approach improvises solutions that correspond to locally-optimal
stacks of blocks with respect to the intention likelihood. Figure 5.15 shows examples of
such solutions computed by our approach.
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Figure 5.17.: Left: the distribution of modes demonstrated by the teacher for the tidy-
up task (T4). Modes 1-6 correspond to different ways of solving this task
as shown in Figure 5.9. We provided our approach with random sets
of six demonstrations for learning the task, which contained examples
from all modes according to this distribution. Right: the percentage of
relevant relations demonstrated in each mode that were satisfied by our
approach when solving the task starting in random initial states. Our
approach is able to combine aspects from all modes when solving the task.
We improvised goal states that satisfy the different modes to different
degrees that reflect how often they appeared in the demonstrations. When
considering relevant relations taken from any of these modes, we are able
to satisfy 78.2% of the relations on average using MaxVal-B.

Moreover, we present the results for the tidy-up task (T4) using MaxVal-B in Fig-
ure 5.14-bottom right. Our approach is able to solve the task starting in the previously-
unseen initial states to satisfy between 62.2% (10 demonstrations) and 86.6% (2 demon-
strations) of the relevant spatial relations between the objects. Figure 5.16 shows
examples of solutions computed by our method for T4 in this experiment. On average,
we computed plans that range in length between 10.1 and 16.1 actions using ten and
two demonstrations, respectively. Note that, as in the previous tasks, increasing the
number of task (and hence action) demonstrations results in a larger branching factor
during node expansion. This results in a slower convergence rate when using more
demonstrations, and thus in satisfying less relations given the same number of iterations.
In Section 5.7.7, we show how updating the action models by practicing the task results
in mitigating this effect.

Since the teacher demonstrated six modes of solving the tidy-up task (see Figure 5.9),
we additionally investigated how this is reflected in the computed task solutions using our
approach. Figure 5.17-left shows the distribution of the different modes demonstrated
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Figure 5.18.: Left: the percentage of satisfied relations for the tidy-up task T4 when
using Bellman updates and an ε-greedy exploration criterion. Right: a
comparison of max-value and Bellman value update strategies for this
task when learning using six demonstrations. In this experiment, we
used the action models learned from the teacher demonstrations and
without allowing our approach to update those models by practicing the
task. Max-value updates are more robust to noise (ambiguity) in the
action goal distributions, allowing our approach to satisfy 78.2% of the
relevant relations on average. On the other hand, Bellman updates result
in satisfying not more than 31.6% of the relevant relations on average since
this strategy assumes accurate action goal distributions.

by the teacher, and which were used to train the action and intention likelihood models.
Accordingly, Figure 5.17-right shows the percentage of spatial relations specific to each
mode that were satisfied in the goal states computed by our approach when learning
from six demonstrations. Since we sampled demonstrations according to the distribution
in Figure 5.17-left, our solutions satisfied on average 42.7% and 39.6% of the relations
in modes 5 and 4, respectively, which were demonstrated more often by the teacher.
Moreover, since our approach learned from a mixture of all modes, we improvised
solutions that combine aspects from all of them, resulting in satisfying 78.2% of the
relations considered relevant for the task on average.

Finally, we repeated the above experiment for the tidy-up task using Bellman updates
and an ε-greedy selection criterion. The results are shown in Figure 5.18-left. In this
case, our approach is able to satisfy only 38.4% of the relevant relations for the task using
two demonstrations. Our approach computed plans that range between 4.3 actions (ten
demonstrations) and 6.7 actions (two demonstrations) on average. Recall that in this
experiment, we used the action models that have been learned from the demonstrations
and without allowing our approach to practice the task in order to update these models.
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Since Bellman updates aim to maximize the expected value of the intention likelihood,
this assumes action models whose goal distributions accurately reflect the intention of
the teacher when applying an action. Therefore, max-value updates are more robust
to noise in the action models as they use the action distributions to guide the tree
search but not for estimating the achieved values. To illustrate this, Figure 5.18-right
shows the results for the tidy-up task using both max-value and Bellman updates for
the case of six demonstrations. In Section 5.7.7, we investigate how the performance of
our approach using Bellman updates significantly improves when allowing the robot to
update the action goal distributions from its experience of solving the task.

5.7.6. Updating Action Models from New Experiences
In this experiment, we qualitatively investigate our approach for updating the learned
action models using the robot’s experience in solving the task. In the previous experiment,
we used our approach with max-value updates to compute plans that generalize the
teacher demonstrations to solve the learned tasks starting in arbitrary initial states. In
each case, our method computed plans driven by maximizing the intention likelihood of
the task. Using the approach we propose in Section 5.6, we used these plans as virtual
demonstrations to disambiguate the intention of each action and update the action goal
distributions learned from the teacher. Specifically, we updated the relevance of each
action template and the corresponding voting distribution to reflect the usefulness of
each template and vote for solving the task, respectively.

Figure 5.19 shows template selection rates for two actions from the tidy-up task (T4):
moving the red box (top) and moving the pack of sugar (bottom). In each case, our
approach is able to leverage different templates to achieve desirable relations between
the objects. When moving the red box, our approach relied mostly on the templates
representing the table (38.7% of the time), the blue box (30.7% of the time), and
the green box (15.7% of the time). When moving the pack of sugar, our approach
relied on the template representing the table in 49.5% of the cases since the pairwise
relation between those objects is relevant for the goal of this task. Additionally, our
approach used templates corresponding to the other stationary objects between 7.9%
and 13.5% of the time for the cup and bowl, respectively. This highlights the importance
of considering multiple interpretations of each action based on all stationary objects.
Depending on the order of manipulating the objects, different templates can be useful
when voting for the goal poses of the moving objects.

Finally, Figure 5.20 shows an example for updating the action of moving the green
block in the aligning blocks task (T2). Here, our approach learns a distribution that
corresponds to high probabilities for aligning the green block with the other blocks
in the scene as demonstrated by the teacher. Thus, our approach disambiguated the
demonstrations by revealing the intention of the teacher for this action. We refer
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Figure 5.19.: Average action template selection rates for two actions in the tidy-up task
(T4). We extracted these statistics by solving the task using our approach
starting in 2,500 random initial states. Rather than adopting a fixed
model for each action, our method enables leveraging multiple templates
when applying an action based on the current state. When moving the
red box (top), our method relied on the templates corresponding to the
table and other boxes most of the time. Similarly, for moving the pack
of sugar (bottom), our method relied on the table in 49.5% of the time,
since this is conducive to satisfying desirable relations with the table and
other kitchen-related objects (see Figure 5.9). Our approach uses these
results to update the relevance of each template and hence the action goal
distributions without requiring additional teacher demonstrations.
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Figure 5.20.: An example of the action for moving the end-effector and the green block
in the aligning blocks task (T2). Top left: a random initial state. Top right:
the corresponding distribution of goal states. The teacher demonstrations
result in ambiguity with respect to the likely goal poses of the green
block relative to the other objects. Bottom: after practicing the task
in simulation, we update this distribution to reflect the intention of the
teacher more accurately, i.e., we are more likely to sample goal states that
align the green block with other blocks or that place it in a desirable pose
relative to the table, see Figure 5.7.

the reader to Appendix A.1 for additional examples of updating action models in the
breakfast setting and tower building tasks (T1 and T3).

5.7.7. Solving Tasks Using the Updated Action Models
The purpose of this experiment is to evaluate our approach for solving the learned tasks
when using the action models that the robot updated using its experience. For this,
we repeated the experiment in Section 5.7.5 but used the action models we updated
as in Section 5.7.6 above. As before, we did not provide our algorithm with a specific
goal state to achieve in each case. For all tasks, we provided our algorithm with a
budget of 50,000 iterations and analyzed the solutions extensively every 500 iterations.
We demonstrate the improved performance of our approach for both max-value and
Bellman criteria when using the updated action goal distributions compared to using
the noisy models before practicing the task.
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5.7.7.1. Results for the Breakfast Setting Task (T1)

We evaluated our approach for solving the breakfast setting task (T1) starting in 100
random initial states using the updated action models. We repeated this 25 times using
different sets of demonstrations in each case. We show the results using max-value
updates with a Boltzmann exploration strategy (MaxVal-B*) and using Bellman value
updates with an ε-greedy exploration strategy (Bellman-ε*) in Figure 5.21-top left
and Figure 5.21-top right, respectively. For both variants, our approach is able to satisfy
between 98.5% and 100% of the relevant relations on average. Figure 5.21-bottom left
also compares our approach using these two variants (for the case of six demonstrations)
to the corresponding results in Section 5.7.5 for MaxVal-B, i.e., before updating the
action models. Using the updated models, MaxVal-B* and Bellman-ε* are able to
satisfy 99.5% and 95.5% of the relations after only 500 iterations, respectively. The
updated action goal distributions more accurately reflect the intention of each action in
the task, which results in sampling more promising goal states during the tree search.
In contrast, MaxVal-B requires 3000 iterations before satisfying 90.6% of the relations.
Finally, Figure 5.21-bottom right shows the corresponding plan lengths computed

by those three variants of our approach. MaxVal-B requires 8.14 actions to satisfy
96.8% of the relations on average. On the other hand, using the updated action models,
MaxVal-B* and Bellman-ε* computed plans consisting of only 6.52 and 6.15 actions,
and satisfying 100% and 99.2% of the relations, respectively. This demonstrates the
ability of our approach to leverage the experience from solving the task to improve its
performance with respect to both achieving desired object arrangements and the cost of
the solution.

5.7.7.2. Results for the Aligning Blocks and Tower Building Tasks (T2-T3)

As for T1, we evaluated our approach when solving tasks T2 and T3 using the updated
action models. We refer the reader to Appendix A.2 for the detailed results. After
practicing those tasks, our approach improved with respect to the percentage of relevant
relations satisfied in the final state and the efficiency of the solutions. In the following,
we present a detailed evaluation of our approach for T4 as an interesting complex task
involving both relevant and irrelevant relations as well as multiple solution modes.

5.7.7.3. Results for the Tidy-Up Task (T4)

We evaluated our approach for solving the tidy-up task (T4) starting in 100 random initial
states using the updated action models. We repeated this 25 times using different sets of
demonstrations in each case. Figure 5.22 shows the results when using MaxVal-B* (top-
left), MaxVal-B* (0.5) (top-right), and Bellman-ε* (bottom-left). Using MaxVal-B*,
our approach achieved between 79.1%-88.4% of the relevant relations on average over all
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Figure 5.21.: Results of our approach for solving the breakfast setting task (T1) us-
ing the updated action models learned after practicing the task. Top:
MaxVal-B* (left) and Bellman-ε* (right) are able to satisfy 99.5%-100%
and 98.5%-99.2% of the relevant relations on average. Bottom left: Using
the updated action models, MaxVal-B* and Bellman-ε* are able to satisfy
99.5% and 95.5% of the relations after only 500 iterations, respectively,
when learning from six task demonstrations. In contrast, MaxVal-B re-
quires 3000 iterations before satisfying 90.6% of the relations. Bottom
right: MaxVal-B requires 8.14 actions to satisfy 96.8% of the relations on
average. Using the updated action models, MaxVal-B* and Bellman-ε* re-
quired only 6.52 and 6.15 actions on average to satisfying 100% and 99.2%
of the relations, respectively. Our approach leverages the experience from
solving the task to improve its performance with respect to both achieving
desired object arrangements and the cost of the solution.
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Figure 5.22.: Results for solving the tidy-up task (T4) after practicing the task and
updating the action goal distributions. Top left: MaxVal-B* achieved
79.1%-88.4% of the relevant relations on average over all numbers of demon-
strations, compared to 62.2%-86.6% for MaxVal-B before practicing the
task (see Figure 5.14-bottom right for comparison). Top right: even when
sampling only half the templates for each action, MaxVal-B* (0.5) achieved
87.1%-91.9%. The flexibility of our approach enables MaxVal-B* (0.5) to
rely on a subset of the interpretations for each action to solve the task. Bot-
tom left: Bellman-ε* achieved a significantly better performance compared
to Bellman-ε before practicing the task (see Figure 5.18-left). Bottom
right: results for ten demonstrations when using the noisy action models
from the demonstrations (Bellman-ε), the updated models after practicing
on 100 cases (Bellman-ε*), and the updated models after practicing further
on 100 cases (Bellman-ε**). These variants satisfied 27.4%, 69.1%, and
74.1% of the relevant relations on average, respectively. Updating the
action models is particularly beneficial when using Bellman updates, as
this strategy incorporates action goal probabilities in the value estimates.
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Figure 5.23.: Results for MaxVal-B and MaxVal-B* when solving the tidy-up task (T4)
using six demonstrations and a discretization threshold of δmax = 0.05
for the action models. We compared these variants with respect to how
close the computed configurations are to the demonstrated ones. We
incrementally increased the threshold for the maximum allowed distance
between computed and demonstrated poses to consider a relation to be
satisfied. Practicing the task resulted in satisfying more relations by
MaxVal-B* compared to MaxVal-B for the same distance threshold, i.e.,
MaxVal-B* achieves a finer reproduction of the demonstrations.

numbers of demonstrations, compared to 62.2%-86.6% for MaxVal-B before practicing
the task (see Figure 5.14-bottom right for comparison). The updated action models
guided the search to more promising regions of the state space, achieving better solutions
using less iterations. Practicing the task also resulted in a similar performance for
MaxVal-B* for all numbers of demonstrations. On the other hand, the performance
of MaxVal-B deteriorates with more demonstrations due to the increased branching
factor. Figure 5.23 highlights the difference between MaxVal-B and MaxVal-B* (given
six demonstrations) with respect to how close the computed configurations are to the
demonstrated ones. For both variants, we used a discretization threshold of δmax = 0.05
for the action goal distributions. When evaluating the solutions, we incrementally
increased the threshold for the maximum allowed distance between computed and
demonstrated poses to consider a relation to be satisfied. MaxVal-B* achieved a
finer reproduction of the demonstrations for the same distance threshold. With a
strict threshold of 0.05, MaxVal-B* satisfied 86.8% of the relevant relations on average
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compared to 78.2% for MaxVal-B. When relaxing this threshold to 0.10, MaxVal-
B* achieved a mean score of 90.2%. On the other hand, MaxVal-B achieves 91.0% only
when considering a looser threshold of 0.20.

Furthermore, even when relying on only half the templates for each action, MaxVal-B*
(0.5) achieved 87.1%-91.9% of the relevant relations (Figure 5.22-top right). Due to
the reduced branching factor, it achieves this at a faster convergence rate than that
of MaxVal-B*. This highlights the flexibility of our approach in leveraging different
interpretations of each action when solving the task. This also demonstrates the
advantage of practicing the task to update the relevance of action templates, as our
approach is able to sample a subset of the templates based on how relevant they are for
solving the task (Figure 5.19).

Moreover, our approach using Bellman-ε* achieved 68.9%-79.7% of the relevant rela-
tions on average (Figure 5.22-bottom left). Using the updated action goal distributions,
Bellman-ε* achieved a significantly better performance compared to Bellman-ε before
practicing the task, which only satisfied 27.4%-38.4% of the relevant relations (see Fig-
ure 5.18-left). Figure 5.22-bottom right highlights this for the case of ten demonstrations
for three variants: using the noisy action models from the demonstrations (Bellman-ε),
using the updated models after practicing on 100 cases (Bellman-ε*), and using the
updated models after practicing further on 100 cases (Bellman-ε**). These variants
are respectively able to achieve 27.4%, 69.1%, and 74.1% of the relevant relations on
average. Practicing the task results in disambiguating the demonstrations by revealing
the intended goals of each action. This is particularly beneficial when using Bellman
updates, as this strategy incorporates action goal probabilities in the value estimates.

Additionally, we investigated the solution costs corresponding to the above variants,
which we report in Figure 5.24. Before practicing the task, MaxVal-B computed plans
that are between 10.1 (ten demonstrations) and 16.1 (two demonstrations) actions long on
average (Figure 5.24-top left). After updating the action models, MaxVal-B* computed
more efficient solutions that are between 10.9 (ten demonstrations) 12.8 actions long
(two demonstrations) on average (Figure 5.24-top right). Whereas sampling only half the
templates enabled MaxVal-B* (0.5) to achieve faster convergence rates, this also resulted
in having to explore longer plans that are between 12.3 (ten demonstrations) and 13.3
(two demonstrations) actions long on average to solve the task (Figure 5.24-bottom
left). Finally, by considering the goal probability of each action, Bellman-ε* computed
more efficient plans consisting of 10.0 (ten demonstrations) to 11.3 (two demonstrations)
actions on average (Figure 5.24-bottom right).

5.7.7.4. A Closer Look at Max-Value vs. Bellman Updates

In this section, we highlight the differences between the max-value and Bellman value
update strategies of our approach. In addition to the percentage of relevant relations
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Figure 5.24.: Plan lengths computed by different variants of our approach for the tidy-
up task (T4). Top left: before practicing the task, MaxVal-B computed
plans consisting of 10.1-16.1 actions on average. Top right: after practic-
ing, MaxVal-B* computed more efficient solutions consisting of 10.9-12.8
actions on average. Bottom left: by sampling only half the templates
for each action, MaxVal-B* (0.5) achieved a faster convergence rate but
at the expense of having to explore longer sequences of 12.3-13.3 actions
on average. Bottom right: a Bellman-based strategy jointly considers
the probability of each intermediate state and the intention likelihood of
the final state, resulting in more efficient plans by Bellman-ε* (10.0-11.3
actions) compared to the max-value strategies.

satisfied and the costs of the computed plans, we shed light on the ability of those
strategies to generalize the demonstrations by inspecting their tendency to satisfy
irrelevant relations.
For this, we evaluated all variants of our algorithm (Table 5.1) when solving the
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tidy-up task (T4) after learning from six demonstrations. As in the previous experiments,
we report the results for solving the task starting in 100 random initial states, which we
repeated 25 times using different sets of demonstrations in each case. Figure 5.25 shows
the percentage of relevant relations satisfied in the final goal states. We report results
for the max-value and Bellman strategies in the top and bottom row, respectively. We
tested these strategies in combination with the Boltzmann (left) and ε-greedy (right)
exploration strategies.

When relying on the noisy action models, i.e., before practicing the task, we observe a
clear advantage of using max-value updates (MaxVal-B, MaxVal-ε) over Bellman updates
(Bellman-B, Bellman-ε). With a budget of 50,000 iterations, max-value variants satisfied
up to 79.0% of the relevant relations (MaxVal-ε) as opposed to 31.6% using Bellman
updates (Bellman-ε). This highlights the degree of ambiguity in the demonstrations,
resulting in action goal distributions that do not accurately reflect the intention of the
teacher. Whereas max-value variants rely on these models to sample successor states
during the search, they do not consider the probabilities of these states in the node
value estimates. Accordingly, they are more robust to noise in the action models and
are able to greedily optimize with respect to the intention likelihood of the final state.
In contrast to this, the goal of the Bellman-based strategies is to maximize the expected
value of the intention likelihood, and are therefore greatly affected by the noise in the
action goal distributions.
After practicing the task on 100 cases and updating the action models accordingly,

we observed an improvement for both value update strategies. The new action goal
distributions capture the relevance of each template and vote more accurately compared
to the prior models. This enables our algorithm to sample more useful states during the
search, i.e., those that contribute to desirable final object arrangements. Accordingly,
MaxVal-ε* achieved 93.4% of the relevant relations. More importantly, the updated
goal state probabilities resulted in a clear improvement when using Bellman updates as
Bellman-ε* satisfied 73.0% of the relevant relations (compared to 31.6% for Bellman-ε).

Additionally, relying on only half the action templates resulted in a slight advantage
for MaxVal-B* (0.5), MaxVal-ε* (0.5), Bellman-B* (0.5), and Bellman-ε* (0.5) over their
counterparts (MaxVal-B*, MaxVal-ε*, Bellman-B*, and Bellman-ε*, respectively) that
consider all templates. This is due to the reduced branching factor when sampling less
action templates resulting in satisfying more relations in less iterations. Furthermore,
with respect to the exploration strategies, we observed on average a better performance
for all variants when using ε-greedy exploration compared to Boltzmann exploration.

Overall, when inspecting the percentage of relevant relations satisfied in the final goal
state only, we observed a better performance for max-value variants compared to using
Bellman updates. This makes sense when considering the objective functions that these
variants optimize. Intuitively, having selected a node to expand, a max-value approach
asks the following question: “How can I apply actions to satisfy more relations between
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Figure 5.25.: Results of different variants of our algorithm for solving the tidy-
up task (T4) after learning from six demonstrations. Before practicing the
task, we observe a clear advantage of using max-value updates (MaxVal-B,
MaxVal-ε) over Bellman updates (Bellman-B, Bellman-ε) since max-value
variants greedily maximize the intention likelihood of the final state. In
contrast, Bellman variants consider the probability of each action goal
state and are thus more sensitive to noise in the action models. For both
value update strategies, we observe an improvement in performance after
practicing the task to update the action models. Whereas Bellman variants
achieve less relevant relations in the final states, they tackle the harder
problem of inferring the intention of the teacher for each step of the plan.
Accordingly, they compute more efficient plans that satisfy less irrelevant
relations compared to max-value strategies, see Figures 5.26 and 5.27.
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Figure 5.26.: Average plan lengths for the solutions computed by different variants of
our algorithm for solving the tidy-up task (T4) after learning from six
demonstrations. Before practicing the task, Bellman variants (bottom) are
affected by noise in the action models and are unable to compute plans that
are longer than 4.2-5.3 actions on average (i.e., reaching for and moving
2-3 objects). After practicing the task, Bellman-ε* required 10.5 actions on
average to satisfy 73.0% of the relevant relations. Practicing the task also
enabled max-value variants to satisfy more relevant relations (Figure 5.25-
top) using less actions given the same number of iterations. By considering
the probability of each intermediate state, Bellman variants compute more
efficient solutions on average than their max-value counterparts, which
only consider the intention likelihood of the final state, and are hence likely
to apply more actions to satisfy even irrelevant relations, see Figure 5.27.
Finally, sampling only 50% of the templates during search leads to a faster
convergence rate but at the expense of computing longer plans.
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the objects?” On the other hand, a Bellman strategy intuitively asks: “Given the current
arrangement, which moves would the teacher be more likely to make to satisfy more
relations between the objects?” Clearly, the latter problem is harder as it considers the
intention of the teacher for each step of the solution, and not only for the final state.

This difference between the strategies is also reflected in the costs of their respective
solutions as shown in Figure 5.26. Max-value variants computed longer sequences of
actions on average with the same number of iterations. For example, MaxVal-ε* required
13.3 actions on average to satisfy 93.4% of the relevant relations. On the other hand,
Bellman-ε* required 10.5 actions on average to satisfy 73.0% of the relevant relations.
This translates to approximately three unsatisfied relations out of the 12 relevant ones
for this task, i.e., the robot would need to reach for and move one more object to satisfy
all relevant relations. In general, by considering the probability of each intermediate
state, Bellman-based variants compute more efficient solutions than their max-value
counterparts, which only consider the intention likelihood of the final state, and are
hence likely to apply more actions.
This becomes more evident when we shed light on these variants with respect to

their tendency to satisfy irrelevant relations. Our approach does not leverage negative
training data, e.g., configurations (relations) that are labeled wrong (irrelevant) by the
teacher. However, this information is implicitly encoded in the demonstrated actions
in the sense that the teacher typically moves objects such that they achieve desirable
relations with (a subset of) the stationary objects in the scene.

We illustrate this in Figure 5.27-top, which shows the frequency of satisfying relevant
(blue) and irrelevant (red) relations by MaxVal-ε* and Bellman-ε* in this experiment.
This task involves twelve relevant and nine irrelevant relations in total. As MaxVal-
ε* does not consider goal probabilities in its value estimates, it greedily tends to satisfy
both relevant and irrelevant relations to maximize the intention likelihood of the final
state. Thus, it satisfied six irrelevant relations in 80%-90% of the cases and the other
three in 90%-100% of the cases. In contrast to that, Bellman-ε* satisfied irrelevant
relations in 40%-70% of the cases only. In other words, it is better at capturing the
intention of the teacher with respect to the actions and hence at generalizing the
demonstrations to improvise arrangements in which irrelevant relations are unsatisfied.
In contrast to this, MaxVal-ε* tends to “copy” the demonstrated arrangements.
Finally, we repeated this experiment using action models we manually designed to

reflect the ground truth intention of the teacher with respect to the template relevance
weights and the voting distributions based on six task demonstrations. We refined these
models by practicing the task using a ground truth intention likelihood model as well,
i.e., with a weight of zero for irrelevant relations. Using the resulting action models, we
solved the task using MaxVal-ε* and Bellman-ε* starting in 100 random states (given
75,000 iterations), but this time using the intention likelihood model learned using
our approach, i.e., with the relation weights estimated from the six demonstrations
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Figure 5.27.: Top: the frequency of satisfying relevant and irrelevant relations when
solving 2,500 cases of the tidy-up task (T4) using MaxVal-ε* (left) and
Bellman-ε* (right). This task involves twelve relevant and nine irrelevant
relations in total. By greedily optimizing the intention likelihood of the
final state, max-value variants tend to satisfy irrelevant relations in addition
to relevant ones. In contrast, Bellman variants capture the intention of
the teacher for each applied action and thus focus on satisfying relevant
relations. Bottom: results for 100 cases after solving the task (given
75,000 iterations) using action models that we designed to satisfy relevant
relations only. Even then, MaxVal-ε* applied 12.7 actions on average to
satisfy most irrelevant relations in 20%-30% of the cases (as well as all
relevant ones in 90%-100% of the cases). On the other hand, by considering
the action goal probabilities, Bellman-ε* applied 10.8 actions on average
and focused on reproducing the relevant relations (81% on average) while
satisfying most irrelevant ones in only 0%-20% of the cases.
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only. We show the resulting distribution of satisfied relations in Figure 5.27-bottom.
Even with action models that have been designed to reproduce relevant relations only,
MaxVal-ε* satisfied most irrelevant relations in 20%-30% of the cases. On the other
hand, by considering the action goal probabilities, Bellman-ε* focused on reproducing
the relevant relations (81% on average) and satisfied most irrelevant relations in only
0%-20% of the cases.

5.7.8. Planning Time
In this section, we briefly comment on the planning time of our approach when solving
tasks in the experiments in Sections 5.7.5 and 5.7.7 above. Although we did not
focus on optimizing our implementation of the TI algorithm in this work, we shed
some light on how the planning time varied in our experiments for the different tasks
and algorithm variants. We report the planning times after 50,000 iterations for the
breakfast setting and the tidy-up tasks (T1 and T4) in this section and refer the reader
to Appendix A.3 for the results for tasks T2 and T3. We averaged all results over 2,500
test cases. We performed all experiments on a machine with an Intel i7-2700K CPU at
3.50GHz.

As expected, we observed an increase in planning time as the number of demonstrations
increased. This is mainly due to our data-driven models, which result in larger branching
factors when expanding nodes and more time to evaluate the intention likelihood given
more teacher demonstrations. For example, as shown in Figure 5.28, MaxVal-B required
13.95 sec and 18.98 sec to run 50,000 iterations for the breakfast setting task given two
and ten demonstrations, respectively. As expected, the planning time also increased
with the number of objects (and hence actions and action templates) in a task. For
example, MaxVal-B required 32.58-42.39 sec (two-ten demonstrations) to run 50,000
iterations for the tidy-up (T4).
Moreover, Figure 5.29 shows the planning times for the tidy-up (T4) when learning

from six demonstrations. In general, updating the action models after practicing the
task led to an increase in planning time. For example, Bellman-ε required 36.97 sec on
average to run 50,000 iterations, which increased to 51.41 sec for Bellman-ε*. As we
learn more accurate action goal distributions, we are able to focus the search on more
relevant regions of the state space, which results in constructing deeper search trees.
Accordingly, our approach is able to sequence more actions and satisfy more relations
given the same number of iterations compared to using the noisy action models.
Finally, Figure 5.29 also shows how to reduce the planning time by relying on a

subset (50%) of the action templates. For example, MaxVal-B* (0.5) required 38.07 sec
on average compared to 48.97 sec for MaxVal-B*. As explained in Section 5.7.7, this
enables our approach to achieve faster convergence rates (i.e., more relations satisfied in
less iterations) but at the expense of computing longer plans.
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Figure 5.28.: The planning times of our approach after 50,000 iterations when solving the
breakfast setting task (T1) given two (left) and ten (right) demonstrations
(averaged over 2,500 cases). See Section 5.7.8.
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Figure 5.29.: The planning times of our approach after 50,000 iterations when solving
the tidy-up task (T4) given six demonstrations (averaged over 2,500 cases).
See Section 5.7.8.

5.7.9. The Advantage of Using Multiple Action Templates

The purpose of this experiment is to demonstrate the advantage of leveraging multiple
interpretations for each action to tackle the ambiguity in the demonstrations. We
demonstrate the following: i) by incorporating template-selection nodes, our proposed
tree structure reduces the dimensionality of the problem by considering one action model
at a time during planning, and ii) adopting multiple interpretations of an action tackles
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Figure 5.30.: We compared our approach (multiple templates) to using a single implicit
model for each action based on one template that considers votes from
all stationary objects. We show results when using six demonstrations to
solve the tidy-up task (T4) in 100 random initial states. By considering
several, simple action interpretations individually, our approach tackles the
ambiguity in the action demonstrations while reducing the dimensionality
of the problem, and thus achieves faster convergence rates compared to
using a single, implicit model per action.

the ambiguity in the demonstrations by providing our algorithm with the flexibility to
rely on different stationary objects when applying an action based on the current state.

Using six demonstrations for the tidy-up task (T4), we first used our approach (using
MaxVal-ε) to solve the task in 100 random initial states. We compared this to a baseline
that models each action based on one template that combines votes from all stationary
objects in a single mixture distribution. This results in adding one (goal-selection)
child per template-selection node to consider possible successor states of applying the
corresponding action. We show the results in Figure 5.30 when using 50,000 iterations
for both approaches. By relying on multiple, simple interpretations of each action, our
approach (multiple templates) reduces the dimensionality of the problem and is able
to satisfy 86.4% of the relevant relations by applying 13.8 actions after 39.66 sec on
average. In contrast, sampling from a single mixture model based on all stationary
objects increases the branching factor and enabled this baseline to sequence only up
to 7.1 actions to satisfy 43.8% of the relevant relations after 30.97 sec on average. By
considering several, simple action interpretations individually, our approach tackles
the ambiguity in the action demonstrations while achieving faster convergence rates
compared to a single, implicit action model.

Furthermore, we conducted the same experiment using the Bellman-ε variant of our
algorithm but with the following baselines with respect to the action (A) and intention
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Figure 5.31.: Results for solving the tidy-up task (T4) in 100 random initial states
using both learned and hand-designed models (see details in Section 5.7.9).
Using learned action models (that consider all templates) after practicing
is on par with using hand-designed models (that consider only relevant
templates) before practicing. Our approach learns to use all stationary
objects (even seemingly irrelevant ones) as needed, e.g., based on the
sequence of applying actions or physical constraints.

likelihood models (Ψ):

• Learned Ψ, learned A: all models learned from the demonstrations.

• Learned Ψ, learned A w/ practice: using the learned models after practicing the
task to update the action models.

• GT Ψ, GT A: using a ground truth (hand designed) intention likelihood model
(irrelevant relations have a weight of zero) and ground truth action models (irrele-
vant templates/votes have a weight/probability of zero). We considered relevant
templates as those that represent stationary objects with which moving objects
have relations that are relevant for the task.

• GT Ψ, GT A w/ practice: using the ground truth models after updating the
action models by practicing the task.

• GT Ψ, learned A w/ practice: using the ground truth intention likelihood model
with the action models learned from the demonstrations, updated after practicing
the task.

We report the percentage of satisfied relevant relations in Figure 5.31. As expected,
we achieved the worst performance of 33.8% using the learned (noisy) models before
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practicing the task (learned Ψ, learned A) and the best performance of 91.5% using the
designed models after practicing the task (GT Ψ, learned A w/ practice). However, it
is interesting that using the learned action models after practicing the task (learned
Ψ, learned A w/ practice achieved 75.3% and GT Ψ, learned A w/ practice achieved
76.9%) is on par with using the designed models before practicing the task (GT Ψ, GT
A achieved 71.6%). In other words, our approach learns to use all stationary objects of
an action by updating the models to reflect the usefulness of all objects and their votes
for solving the task. This enables our algorithm to leverage all objects (even seemingly
irrelevant ones) as needed, e.g., based on the sequence of applying actions or physical
constraints. This results in a better generalization to states not demonstrated by the
teacher compared to hand-designed action models.

5.7.10. Improvising Task Solutions Based on the Initial State
The purpose of this experiment is to demonstrate the ability of our approach to improvise
task solutions based on the initial state without requiring the user to specify a goal.

5.7.10.1. Adapting to Clutter in the Scene

Figure 5.32 shows qualitative examples of solving the aligning blocks task (T2) in initial
states including clutter caused by objects unrelated to the task. Whereas it is physically
infeasible to achieve all relevant relations demonstrated by the teacher (e.g., satisfying
object positions relative to the table), our approach improvised goal configurations
that satisfy as many relations between the objects as possible. By formulating an
optimization problem, we are able to adapt task solutions to new situations without
requiring an explicit goal state. We refer the reader to Appendix A.4.1 for similar
examples for T4.

5.7.10.2. Solving the Task with Some Objects Missing

In this experiment, we tested the ability of our approach to solve the tower building task
(T3) given a subset of the task objects. We sampled 100 initial states and randomly
removed two of the six blocks needed for constructing the tower in each of them. We
solved these cases using our approach (Bellman-ε*) given models learned from two
to ten demonstrations after practicing the task (see Section 5.7.6). We repeated this
experiment 25 times using different subsets of demonstrations in each case.
Due to the missing blocks, it is not possible to satisfy all relevant relations demon-

strated by the teacher. Depending on which blocks exist in the scene, it is possible
to construct towers consisting of two to four blocks, which corresponds to two to six
relations, respectively. We show the results in Figure 5.33 in which we report the
percentage of relevant relations satisfied out of six theoretically possible ones. Our
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Figure 5.32.: Examples of solutions by our approach for the aligning blocks task (T2).
Despite clutter caused by task-irrelevant objects, our approach improvised
feasible solutions that satisfy as many pairwise relations as possible, e.g.,
by constructing two rows of blocks (top) or adapting the position and
orientation of the row of blocks relative to the table (bottom).

approach is able to adapt to the missing objects in the scene to satisfy as many relations
as possible in each case, achieving scores of 46.6%-48.2% by applying 4.6-4.8 actions on
average. Figure 5.34 shows examples of cases from this experiment. We refer the reader
to Appendix A.4.2 for examples of solving T2 in partially-solved initial states.

5.7.11. Real Robot Experiments

In the experiments above, we focused on evaluating our approach with respect to
generalizing the teacher demonstrations to satisfy task-relevant relations. For this, we
considered feasibility constraints in terms of stability and collisions (Section 2.2). In this
section, we demonstrate the applicability of our approach on a real robot by additionally
considering inverse-kinematic constraints of the robot’s manipulator. Figure 5.35 shows
qualitative examples in simulation in which the PR2 robot uses our approach to solve
tasks T2-T4. Our approach enables the robot to satisfy physical constraints (e.g.,
some objects being unreachable) by improvising solutions that maximize the intention
likelihood as much as possible.
Additionally, we implemented our approach on a real PR2 robot and performed

experiments using four additional tasks. We show example runs of two tasks in Fig-
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Figure 5.33.: Results for solving the tower building task (T3) in initial states with two
(random) blocks missing. Our approach adapts by constructing feasible
towers that satisfy a subset (46.6%-48.2%) of the possible pairwise relations
without requiring explicit goal states to handle the new conditions.

Figure 5.34.: Our approach adapts to missing blocks in the tower building task (T3) to
compute feasible solutions that satisfy 33.3% (top) and 100% (bottom) of
the relations between the four blocks in the scene, see Figure 5.33.

ures 5.36 and 5.37 and refer the reader to Appendix A.5 for additional examples. For
perception, we relied on SimTrack (Pauwels and Kragic, 2015) to recognize the objects
and compute their poses using a depth camera attached to the robot’s head. We also
used the camera to estimate the dimensions and pose of the table using a point cloud of
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Figure 5.35.: Examples for solving T2 (first row), T3 (second row), and T4 (third and forth
rows). Our approach enables a robot to generalize the demonstrations of
the teacher to improvise feasible solutions that satisfy physical constraints
(e.g., which objects are reachable). In the last example, the robot moved
the blue box in order to arrange the kitchen-related objects.
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Figure 5.36.: Top: examples of demonstrated goals we provided to the robot. Bottom:
using our approach, the robot was able to compute and execute a feasible
plan to reproduce the demonstrated task by placing the box of cereals
close to the bowl and arranging the toy boxes.

the scene. To execute the plans computed by our approach, we relied on the MoveIt!
motion planning library (Sucan and Chitta, 2013).

We performed around 100 experimental runs over all tasks. In each run, we requested
the robot to compute and execute a plan to reproduce one of the demonstrated tasks
starting in an arbitrary initial state. We relied on max-value updates in these experiments.
Note that plan monitoring and failure detection are outside the scope of our work. The
only sources of failure we encountered in our experiments were due to errors in estimating
the object poses (e.g., due to lighting conditions or occlusions), which may lead to
an object slipping from the end-effector, or cause the motion planner to abort plan
execution due to a false-positive collision detection.

Using our approach, the robot was able to improvise feasible solutions that reproduce
demonstrated spatial relations between the objects based on the initial state. By
considering feasibility constraints in planning, our algorithm enables the robot to
compute sequences of actions leading to desirable object configurations, which the robot
can execute in practice.
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Figure 5.37.: Top: examples of demonstrated goals we provided to the robot. Bottom:
using our approach, the robot was able to compute and execute a feasible
plan to reproduce the demonstrated task by opening the big box in order
to place the smaller one inside it.

5.7.12. Summary and Discussion of Results
In this section, we present a brief summary of our results, highlighting the characteristics
of our approach. Our extensive evaluation on several tasks demonstrated the potential
and flexibility of our approach and supported the claims we made at the beginning
of Section 5.7, which we recap below.

• Our intention likelihood model captures the relevance of pairwise rela-
tions to the task. We do not assume to have semantic information about the
objects or the goal of the task. Therefore, we adopt a data-driven model of the
intention likelihood and express spatial relations as distributions over relative
poses between pairs of objects. This allows us to reason about multiple modes for
each relation (e.g., Figure 5.13). As demonstrated in Section 5.7.4, we are able to
estimate the relevance of each relation for the task based on the consistency in the
demonstrations. This is particularly challenging for tasks in which some relations
are irrelevant as we do not rely on negative training examples for learning.

• Our approach is able to generalize and sequence demonstrated actions.
The small number of demonstrations results in ambiguity with respect to the inten-
tion of the teacher for each action. Nonetheless, we demonstrated in Section 5.7.5
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how our algorithm relies on the implicit action models to explore different inter-
pretations for each action driven by the intention likelihood as a search heuristic.
Accordingly, we were able to reproduce tasks from initial states not demonstrated
by the teacher and to satisfy as many relations as possible in an anytime manner.

• Our approach enables the robot to improve its performance by practic-
ing the task in simulation. In Section 5.7.6, we demonstrated how we use the
plans computed by our algorithm to extract statistics that capture the usefulness
of action templates and votes for solving the task. This allowed us to update the
action goal distributions to more accurately reflect the intention of the teacher
without requiring additional demonstrations. Using the updated action models, we
showed in Section 5.7.7 a substantial improvement of our approach. Specifically,
we were able to compute more efficient plans to satisfy more relevant relations
using less iterations compared to before practicing the task.

• Different variants of our algorithm have different characteristics. The
two value update strategies we explored in this work optimize different objec-
tive functions as explained in Section 5.5.3. In Sections 5.7.5 and 5.7.7.4, we
demonstrated how max-value updates are more robust to noise in the action
models compared to Bellman updates since max-value variants greedily maximize
the intention likelihood of the final state. Therefore, they outperform Bellman
variants when considering the final object configuration only. On the other hand,
Bellman variants consider action goal probabilities and therefore optimize for the
expected value of the intention likelihood. Therefore, their performance signifi-
cantly improves after practicing the task and updating the action models as we
demonstrated in Sections 5.7.7 and 5.7.7.4. Bellman variants also result in more
efficient plans compared to max-value variants since they consider the intention of
the teacher for each step of the plan and not only the final state. Accordingly, they
tend to better generalize the demonstrations and satisfy less irrelevant relations
compared to max-value updates. Finally, in Section 5.7.7 we demonstrated how
we achieve more relations using less iterations when relying on only a subset of
the action templates as this reduces the branching factor during search. However,
this typically results in computing more expensive (longer) plans.

• Our proposed tree structure results in efficiently tackling the ambiguity
in the demonstrated actions. By incorporating template-selection nodes,
we demonstrated in Section 5.7.9 the ability of our algorithm to reduce the
dimensionality of the problem by considering one action interpretation at a time
during node expansion. We also demonstrated the flexibility of our approach in
leveraging all stationary objects to apply actions as needed based on the current
state rather than committing to a specific action model beforehand. Our proposed
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tree structure also enabled us to gather statistics about action template selection
rates to update action models from experience as shown in Section 5.7.6.

• Our approach enables the robot to improvise solutions without requir-
ing an explicit goal state. Through our experiments in Sections 5.7.5 and 5.7.7,
we demonstrated the ability of our approach to generalize teacher demonstrations
and satisfy desirable relations between objects starting in arbitrary states. In Sec-
tion 5.7.10, we additionally demonstrated how our algorithm enables a robot to
adapt its behavior to varying conditions such as clutter or missing objects by
improvising solutions that align with the intention of the teacher.

• Our approach is applicable on a real robot. By relying on out-of-the-box
perception and motion planning solutions, we demonstrated in Section 5.7.11 that
a real robot can use our approach to compute and execute physically feasible
plans based on a small number of teacher demonstrations. Without requiring an
explicit goal state, the robot was able to sequence several point-to-point actions
to move objects relative to each other and achieve desirable arrangements based
on the perceived initial state in each case.

5.8. Related Work
The approach we present in this chapter addresses learning action and task models from
ambiguous demonstrations to enable a robot to reproduce the intention of a teacher
without requiring an explicit goal state. Our approach overlaps with a large spectrum
of prior work in the areas of learning from demonstrations, reinforcement learning, and
planning. In this section, we present a thorough review of the most related works in
this context in order to highlight our contributions.

Learning Tasks from Demonstrations There exists a plethora of works that address
learning manipulation tasks which typically require executing sequences of actions.
Here, we discuss approaches that tackle skill learning on the trajectory level based on
demonstrated motions. In this context, the work of Calinon et al. (2007, 2009) provides a
statistical framework for extracting spatial and temporal constraints and their relevance
to each part of the task. For example, the robot learns to satisfy constraints relative
to a ball while executing a reaching motion to grasp it, and subsequently switches to
satisfying constraints relative to a basket during a placing motion. They encode actions
probabilistically and generate motions using Gaussian mixture regression to robustly
generalize the demonstrated trajectories. Analogously, Mühlig et al. (2009b) presented
an approach that automatically selects task spaces (subsets of spatial constraints) for
modeling demonstrated motions. In addition to statistical measures based on variances
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in the demonstrated motions, they consider criteria such as attention to salient objects
to select and blend different task spaces when reproducing that task.
Furthermore, several approaches addressed the problem of sequencing movement

primitives when solving tasks. For example, Manschitz et al. (2014) use kinesthetic
demonstrations to construct a representation of a task in terms of a sequence graph
in which each node corresponds to a primitive. Accordingly, they train classifiers
to map the current state modeled using sensory features to the next primitive to
execute. In their later work, Manschitz et al. (2015) additionally address sequencing and
synchronizing concurrent movement primitives, for example in the case of bi-manual
manipulation. Related to that, Niekum et al. (2015) recently presented an approach that
leverages a Bayesian nonparametric model to identify repeated structure in trajectories
to segment teacher demonstrations. Accordingly, they construct a finite-state machine
that captures the high-level structure of the task, and train classifiers to determine
state transitions. They encode each learned skill using dynamic movement primitives
transformed relative to the reference frame (e.g., one of the objects) with the highest
consistency (density of end-points) across the demonstrations. Whereas the work
of Niekum et al. enables a robot to learn a sequential task such as furniture assembling,
Ewerton et al. (2015) recently presented an approach that models demonstrated skills
as probabilistic movement primitives and learns multi-modal patterns of interaction
between a teacher and a robot. Accordingly, their work enables a robot to collaborate
with a human to solve an assembly task, e.g., by handing over or holding objects.

Moreover, the work of Figueroa et al. (2016) addresses segmenting demonstrations of
complex sequential tasks to learn individual actions and extract the relevant constraints
for each learned primitive. Additionally, they learn relevant object features to model
the effects of primitives in the context of deformable objects, e.g., the shape and size of
dough as a result of applying a rolling primitive. Related to that, Ureche et al. (2015)
recently presented an approach to segment sequential tasks by detecting changes in task
constraints (e.g., end-effector position, force, and stiffness), and to identify the relevant
constraint for each stage of the task accordingly. Their method identifies the relevant
reference frame for each step as the one in which the task variables are more consistent.
By assuming that the flow of actions in the task is implicit in the demonstrations, their
approach enables the robot to reproduce the demonstrated sequence of skills while
transitioning between relevant task constraints. For example, the robot learns to satisfy
position constraints relative to a target object while reaching for it, and to consider force
and stiffness constraints while executing a grating motion. Moreover, Saveriano et al.
(2015) recently presented an incremental learning approach that is able to prioritize
and transition between end-effector and null-space task constraints. This enables the
refinement of already-learned primitives through kinesthetic teaching, for example to
adapt the position of the elbow to avoid an unforeseen obstacle.
In the context of human-robot interaction, Lee et al. (2009) presented an approach
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that leverages the observed saliency of objects during the demonstrations to reason
about the relevance of an object for a task. Furthermore, the approaches of Akgun et al.
(2012) and Akgun and Thomaz (2016) rely on a non-expert user to intuitively specify
keyframes for the robot to follow when reproducing sequential skills such as gestures
or pouring. They enable the robot to smoothly execute the learned skills by modeling
trajectories using splines. Recently, Alexandrova et al. (2015) proposed a flow-based
visual programming language that enables a user to intuitively program a robot with
the knowledge needed to solve a task. For instance, the user may specify a precondition
for a manipulation skill (e.g., whether an object exists).
The above works focused on learning skills on the motion level, i.e., in cases where

the dynamics of an action are relevant for successfully reproducing the demonstrations.
Accordingly, they focus on extracting constraints to model trajectories that generalize
the training data. In contrast to that, our work addresses learning point-to-point actions
that are modeled only based on their endpoints. Therefore, our approach cannot account
for trajectory-relevant constraints such as force and velocity profiles. On the other
hand, the above works rely on simple heuristics, statistical measures, or a teacher to
determine relevant frames of reference for learning and executing motion primitives. In
contrast to that, our method encodes multiple interpretations of each action in terms of
target reference frames based on the stationary objects in the scene. We leverage this
flexibility while planning by selecting different models of the same action based on the
situation rather than committing to a single model.
Moreover, as the above works focus on reproducing skills on the motion level, they

enable a robot to achieve a specific task goal while generalizing to perturbations or
changes in the initial state. On the other hand, we adopt a flexible, multi-modal
intention likelihood model, and are thus able to achieve varying goal configurations by
imitating spatial relations learned from the teacher. Finally, we rely on existing motion
planners and controllers to execute each step of a plan. Accordingly, the above works
can also be leveraged in our framework to reproduce demonstrated trajectories for each
action, e.g., in the form of dynamic movement primitives as in our previous work (Abdo
et al., 2013). This, however, is outside the scope of this work.

Leveraging Symbolic State Representations A common approach to solving complex
manipulation tasks is to leverage symbolic representations of actions that allow efficient
planning by abstracting continuous state spaces. In this context, there exist several
techniques for integrated task and motion planning, which compute plans satisfying both
symbolic conditions and geometric constraints (Dornhege et al., 2009; Plaku and Hager,
2010; Kaelbling and Lozano-Pérez, 2011, 2013; Srivastava et al., 2014; Gharbi et al.,
2015; Lagriffoul and Andres, 2016). Whereas such approaches enable solving complex
tasks, they place a large burden on experts to design the corresponding domains and
specify the required mappings between useful logical predicates and continuous states.
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Several researchers have addressed this by proposing methods for learning symbolic
action models from teacher demonstrations to use for planning. In this context, a
commonly used representation is based on the approach by Pasula et al. (2007), which
learns probabilistic rules from training data consisting of state-action-outcome tuples.
For this, they leverage a dictionary of basic symbolic predicates that they combine to
construct action models maximizing the likelihood of the demonstrated action effects
subject to a penalty on model complexity. Such rules have been successfully leveraged
in planning to solve complex tasks or to learn models of articulated objects (Lang
and Toussaint, 2010; Höfer et al., 2014). Alternatively, Wachter et al. (2013) segment
demonstrations by detecting contacts between objects. They then match each segment to
a manually-designed symbolic action from an existing library of object-action complexes
that specifies the preconditions and effects of actions. Prior to that, Pardowitz et al.
(2007) addressed the problem of decomposing a task such as setting a table into sequences
of elementary skills with pre- and postconditions extracted from demonstrations and
vocal comments by a teacher. Whereas their method focuses on learning hierarchical
graphical representations of tasks, they do not address the problem of manipulating
objects to reproduce the demonstrations. Related to that, Ekvall and Kragic (2006)
presented an approach to decompose a task into different subtasks and extract constraints
that determine the order of achieving each subtask. Their approach enables the robot to
determine relevant features for each part of the task (e.g., relative vs. absolute positions)
by analyzing the variance in the demonstrations. They represent the learned constraints
in XML and leverage a high-level planner to reproduce the task based on the current
state while relying on a low-level path planner for feasibility checks.

Recently, Paxton et al. (2016) presented a novel method for combined task and motion
planning based on skill models grounded from expert teacher demonstrations. The
approach assumes prior knowledge of the task in terms of a symbolic planning domain
description and grounds actions from this domain based on the expert demonstrations.
On the geometric level, the approach encodes actions probabilistically as dynamic
movement primitives. Accordingly, the authors present a planning algorithm similar to
Monte Carlo tree search to optimize sequences of actions that reproduce the task using
trajectory simulations. The main idea is to iteratively update each action distribution to
remain as close as possible to the prior based on the demonstrations while also satisfying
constraints such as different obstacles and object shapes. The approach leverages a
symbolic planner to translate the task description into a graph of possible actions and
models transitions from symbolic states to actions as discrete probability distributions.
Related to that, Savarimuthu et al. (2017) recently presented a system for teaching

robots the semantics of assembly tasks from teacher demonstrations. The proposed
system enables learning assembly tasks on both a low, sensory-motor level and a
high, semantic level based on object interactions. A mid-level representation encodes
continuous, low-level signals as sequences of symbolic states that capture the task
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topology and facilitates high-level planning and execution monitoring. Other approaches
have focused on learning the mapping between symbolic predicates and geometric object
configurations. For example, the approach by Dearden and Burbridge (2014) uses
positive and negative training examples of predicates (e.g., above, touching) to learn
classifiers for forward and backward mapping between symbolic states and geometric
ones based on object poses. Accordingly, they present a planning algorithm that first
computes a symbolic plan to achieve a given goal, which they then convert to a sequence
of geometric states for the robot to achieve using the learned mappings.
Rather than relying on predefined predicates, other researchers proposed methods

for learning symbolic action models by abstracting continuous demonstrations. For
example, Ogawara et al. (2003) extract essential interactions between objects that
appear consistently across all demonstrations and use them to model a task symbolically.
On the motion level, they learn the demonstrated trajectories relative to those extracted
interactions, thereby enabling them to generalize and reproduce the demonstrations.
Moreover, other approaches extract relevant preconditions and effects of actions from
continuous teacher demonstrations (Abdo et al., 2013; Cubek et al., 2015) or from
experience in a reinforcement learning domain (Konidaris et al., 2014, 2015). By
representing these conditions in the (probabilistic) planning and domain definition
language, these methods are able to leverage existing high-level planners to sequence
learned actions and solve tasks. Our previous work additionally enables the robot
to model the motions associated with each symbolic action using dynamic movement
primitives learned from the demonstrated trajectories (Abdo et al., 2013). Accordingly,
the robot is able to select the best way to imitate each action on a low geometric level
while executing symbolic plans.

The above works leverage existing or learned symbolic states that abstract continuous
domains to achieve efficient, high-level planning. Symbolic domains additionally enable
solving complex tasks while generalizing to changes in object instances and quantities.
However, the corresponding planning paradigms assume that the user provides the goal
of the task to the robot in the form of an explicit continuous or symbolic state. In
contrast to that, a key contribution of our work is formulating task imitation as an
optimization problem with respect to the intention likelihood. This enables the robot to
improvise solutions based on the initial state and without constantly querying the user
each time it has to solve the task. Additionally, our approach enables feasible planning
by relying on clustering to discretize action goals, which is analogous to leveraging
symbolic state abstractions in classical planning. From this perspective, our implicit
action models are analogous to the noisy probabilistic rules proposed by Pasula et al.
(2007). However, rather than learning these rules based on existing high-level relations,
we target learning in contexts where such knowledge is unavailable a-priori, and are
thus able to model arbitrary, multi-modal spatial relations in a continuous space.
Recently, Toussaint (2015) presented a novel approach for formulating sequential

185



5. Teach and Improvise: Simultaneously Inferring Task and Action Goals

manipulation tasks as an optimization problem in which the goal can be expressed as
an objective function over desirable geometric states rather than an explicit symbolic
state. Their method represents a first-order logic extension of a non-linear mathematical
program subject to symbolic, kinematic, and geometric constraints. They rely on
Monte Carlo tree search to first compute sequences of symbolic actions and states,
which are then further-optimized subject to kinematic constraints. Analogous to our
work, Toussaint (2015) tackles sequential manipulation tasks by optimizing a cost
function without requiring the user to provide an explicit goal state. However, our work
addresses learning models of the task and its actions from teacher demonstrations and
focuses on inferring the intention of the teacher with respect to those models.

Segmenting Teacher Demonstrations For learning tasks, our approach assumes that
the demonstrations are segmented either by the teacher or automatically using existing
techniques. In our work, we adopted a heuristic that segments demonstrations based on
which objects are observed to move in each part, and used the resulting segments to
learn point-to-point action models. Whereas we do not consider trajectory segmentation
in our work, we briefly discuss previous works that address segmenting demonstrations
for learning skills. For example, several approaches leverage detected contacts between
objects or the co-motion between the teacher’s hands and salient objects in the scene
to segment demonstrations (Gienger et al., 2010; Wachter et al., 2013; Wachter and
Asfour, 2015). Recently, Baisero et al. (2015) presented a method based on linear-chain
conditional random fields to decompose demonstrations into atomic actions by detecting
concurrent interaction phases between pairs of objects.
Moreover, the work by Meier et al. (2012) segments demonstrations by identifying

previously-learned movement primitives in observed trajectories. Related to that, Kulic
et al. (2009) proposed an online approach for segmenting demonstrations by assuming
that data generated from the same motion primitive originates from the same underlying
distribution. Accordingly, their approach groups learned motions in a hierarchical
fashion based on their similarities. Finally, other approaches addressed segmenting
unstructured demonstrations to extract skills by relying on Bayesian nonparametric
techniques (Niekum et al., 2015; Figueroa et al., 2016) or based on statistical changepoint
detection (Konidaris et al., 2012; Ureche et al., 2015).

Reinforcement Learning As discussed in Section 5.4.2, the problem we address in
this chapter shares similarities with Markov decision processes. This allowed us to
formulate solving a task as an optimization problem and to leverage MCTS for planning.
Additionally, our approach enables the robot to practice the task in simulation, thereby
improving the action models it learned from ambiguous demonstrations. Therefore, we
briefly discuss previous works that leveraged reinforcement learning techniques to learn,
improve, and sequence skills.
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In this context, Bentivegna et al. (2004) presented an approach to learn primitives
corresponding to simple behaviors from teacher demonstrations. Rather than sequencing
these primitives in a planning framework, their approach enables an agent to handle
dynamic environments (e.g., playing an air hockey game) by selecting a primitive from
its library to execute based on the current state. Their work enables the agent to
improve with respect to selecting primitives and generating the corresponding sub-goals
and motions by performing trials on its own.
In the context of learning manipulation skills, as discussed in Section 4.4, there

exists a large body of work that leverages both imitation and reinforcement learning to
learn policies initialized from teacher demonstrations (Kober and Peters, 2009, 2010;
Stulp et al., 2011; Kalakrishnan et al., 2011; Da Silva et al., 2012; Finn et al., 2016).
Reinforcement learning has also been leveraged to sequence simple primitives to acquire
complex manipulation skills such as pendulum swinging and balancing or bi-manual
manipulation (Neumann et al., 2009; Kroemer et al., 2015).
Moreover, Konidaris et al. (2012) presented an approach for constructing skill trees

from demonstrations in the context of hierarchical reinforcement learning. Their work
enables a robot to segment demonstrations into skills via changepoint detection, and to
assign each skill an abstraction from a library of predefined abstractions. Accordingly,
the approach merges skill chains from multiple demonstrations into a skill tree and
determines which trajectory segments are instances of the same policy. Using a policy
learning technique, the robot is also able to improve the learned skills. Related to
that, Grave and Behnke (2013) leveraged interactive learning from demonstration and
reinforcement learning to acquire manipulation primitives and sequence them for solving
tasks. Grave and Behnke (2014) additionally decompose tasks into several levels of
abstraction in a hierarchical reinforcement learning framework and define rewards for
each task level. Accordingly, they propose a Bayesian exploration strategy to balance
the optimization of expected values and the risk from exploring unknown actions.
The above works address imitation learning of skills by allowing a robot to improve

policies based on observed rewards, which are typically manually designed by an
expert as cost functions that encourage desirable behaviors. However, engineering
such functions is not always feasible or straightforward in complex, stochastic domains.
Inverse reinforcement learning addresses this problem by recovering reward functions
based on teacher demonstrations (Ng et al., 2000; Abbeel and Ng, 2004; Ziebart et al.,
2008; Herman et al., 2016). Moreover, other approaches proposed methods to learn
distributions of manipulation trajectories that match teacher demonstrations (Englert
et al., 2013) or that model joint trajectories of multiple agents in the context of socially-
compliant navigation (Kuderer et al., 2012). Recently, Duan et al. (2017) presented
a novel imitation learning approach that does not assume knowledge of task rewards.
They aim to accelerate learning new tasks based on demonstrations of related tasks.
By observing pairs of demonstrations sampled from different tasks, they train a neural
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network that predicts an action based on the current state. Accordingly, the network is
able to imitate a new task at test time based on a single demonstration.
Whereas the above works considered reinforcement learning in purely continuous

domains, other researchers leveraged relational knowledge about tasks in the framework
of relational reinforcement learning (Džeroski et al., 2001; Kersting et al., 2004). In
this context, techniques for solving relational MDPs have enabled solving manipulation
tasks in stochastic domains using noisy rules learned from demonstrations (Lang and
Toussaint, 2010) and computing high-level plans for assembly tasks in the context of
interactive learning from demonstrations (Mollard et al., 2015).

Indeed, leveraging teacher demonstrations in the context of reinforcement learning has
enabled robots to learn complex manipulation skills and to improve their performance
by trial and error. A robot can accordingly learn to act to maximize its expected
rewards while applying actions in stochastic environments. By drawing inspiration
from MDPs, our approach enables a robot to solve sequential manipulation tasks based
on ambiguous teacher demonstrations. Rather than optimizing policies with respect
to rewards received when interacting with the environment, we focus on inferring the
intention of the teacher, and therefore aim to maximize the (expected) value of the
intention likelihood for the task. At the same time, our work enables the robot to adapt
its behavior based on physical constraints while computing plans that align with the
demonstrations. As in MDPs, our work models actions probabilistically. However, a
major difference to MDPs is our assumption that stochasticity stems from the latent
intention of the teacher, and is not due to the dynamics of the environment.
Furthermore, our work assumes task goals to be modeled in terms of the spatial

relations between objects. From this perspective, our proposed intention likelihood
function can be seen as a reward received for achieving a particular goal state. We
adopt a data-driven model of this function by modeling spatial relations as mixture
distributions and computing state likelihoods using kernel density estimation. Previous
works have also leveraged mixtures of Gaussian to model spatial relations in the context
of reasoning about typical object placements in indoor environments (Welke et al.,
2013; Kunze et al., 2014; Toris et al., 2015). The approach of Joho et al. (2012) adopts
a hierarchical nonparametric Bayesian model for scenes consisting of different object
constellations. Their method can be used to sample missing objects and their poses to
complete partial scenes based on previously seen constellations. Note that in general,
our framework is agnostic to the specific intention likelihood model used, making it
possible to leverage richer models of object configurations such as the one proposed
by Joho et al. (2012). However, our work focuses on enabling a robot to reproduce and
adapt demonstrated configurations based on noisy action models learned from a teacher
and without prior knowledge about the task. In the spirit of reinforcement learning, by
practicing the task in simulation, we use plans leading to states with large values to
update the action models and disambiguate the teacher demonstrations.
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Finally, leveraging relational reinforcement learning based on logical descriptions
of objects and relations allows scaling to large domains and generalizing to different
instances and numbers of objects. However, our work targets scenarios in which non-
experts teach tasks for which we have no prior semantic knowledge about the objects
or their relations. Accordingly, our work enables learning and planning solely based
on geometric relations in a continuous space. Whereas our approach does not consider
the rich state descriptions and abstractions of relational domains, our flexible intention
likelihood model allows for solving the task even if some of the objects are missing.

Monte Carlo Tree Search We model the problem of solving sequential tasks as an
optimization problem that involves decision-making on multiple levels. This enables
us to leverage MCTS to compute plans while reasoning about the intention of the
teacher in a probabilistic framework (Coulom, 2006). MCTS is a powerful framework
that has been successfully used to address a large spectrum of problems including
MDPs, probabilistic planning, interplanetary trajectory planning, and games (Kocsis
and Szepesvári, 2006; Keller and Eyerich, 2012; Hennes and Izzo, 2015; Silver et al.,
2016). For a comprehensive overview of MCTS-based algorithms and applications, we
refer the reader to the survey by Browne et al. (2012).

In the context of finite-horizon MDPs, Keller and Helmert (2013) recently proposed
Trial-based Heuristic Tree Search (THTS), a framework for generating a large number
of algorithms by specifying a few ingredients, thereby allowing for the combination
of both heuristic-based and Monte Carlo-based search. As we base our algorithm on
MCTS and rely on the intention likelihood heuristic to initialize values, our algorithm
can be seen as a variant of THTS. However, our goal is to enable robots to solve
manipulation tasks in a way that is robust to ambiguity in teacher demonstrations.
Therefore, our approach extends the classical MCTS tree structure of decision and
chance nodes to allow decision making on three levels: actions, action templates, and
goals. This allows us to efficiently explore the space of action interpretations and goal
states while improvising solutions that satisfy physical constraints. Other approaches
proposed hierarchical MCTS structures that incorporate state abstractions or macro
actions in the context of solving partially-observable MDPs (Vien and Toussaint, 2015;
Bai et al., 2016).
Furthermore, in this work, we focused on developing a practical solution for the

problem of solving tasks learned from demonstrations. We explored the use of max-
value and Bellman update criteria in order to maximize the intention likelihood or the
expectation thereof, respectively. In our experiments, we highlighted the differences
between those variants with respect to the computed solutions and their robustness to the
noise in the action goal distributions. To trade off exploration and exploitation during
search, we considered the Boltzmann exploration and ε-greedy criteria. A thorough
investigation of other value-update and selection strategies is outside the scope of this
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work. For examples of other strategies, see Keller and Helmert (2013); Schulte and
Keller (2014); Khandelwal et al. (2016).
Finally, in the context of robotics, MCTS has recently been used for improving

robot soccer policies (Riccio et al., 2016), active object recognition through tactile
sensing (Zhang et al., 2017), and multi-robot task allocation (Kartal et al., 2016). In
the context of manipulation planning, Toussaint (2015) recently presented an approach
that uses MCTS to compute symbolic plans that are then optimized with respect to
geometric and kinematic constraints. Additionally, Toussaint et al. (2016) proposed a
novel approach for modeling concurrent activities in relational domains, e.g., for human-
robot collaboration when solving assembly tasks. They leverage Monte Carlo planing to
estimate optimal decisions and reason about future decisions such as anticipating the
activities of other agents.

5.9. Conclusion
In this chapter, we presented teach and improvise, a novel approach to learning sequential
manipulation tasks from demonstrations. Our work leverages Monte Carlo tree search
and formulates solving the task as an optimization problem. In this way, we go beyond
existing solutions that require the user or an expert to provide an explicit goal state to
solve the task. Instead, our algorithm enables the robot to improvise feasible solutions
that depend on the initial state by maximizing the intention of the teacher with respect
to relevant spatial relations in an anytime fashion. Moreover, our work does not assume
prior semantic knowledge about the objects or the task and thus models spatial relations
as distributions over relative poses in a data-driven manner. To address the ambiguity
in the demonstrations and reduce the dimensionality of the problem, we leveraged the
implicit action models we proposed in Chapter 4 and extended the standard MCTS
tree structure to allow reasoning about multiple interpretations of each action while
searching for promising solutions.
Through extensive experimental evaluation, we demonstrated the ability of our

approach to generalize a small number of demonstrations to solve the task starting
in arbitrary initial states. Additionally, we demonstrated how our approach enables
the robot to improve its performance based on its own experience in solving the task
and without requiring additional teacher demonstrations. This allows the robot to
update the learned action models and disambiguate the original teacher demonstrations.
Accordingly, by relying on Bellman value updates, our approach enables the robot to
consider the intention of the teacher with respect to both action and task goals in a
probabilistic framework. Finally, we demonstrated the applicability of our approach on
a real robot that leveraged our algorithm to compute and execute feasible sequences of
actions to achieve goal states that align with the intention of the teacher.
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6. Distance Metric Learning for
Generalizing Pairwise Spatial
Relations to New Objects

So far in this thesis, the techniques we presented either relied
on predefined spatial relations for solving a task (e.g., an object
being on a shelf as in Chapter 3), or modeled relations as distri-
butions over relative poses between objects (Chapters 4 and 5).
Whereas these models enable a robot to solve tasks using the
objects accounted for in its prior knowledge or those used by
the teacher in the demonstrations, they limit the robot’s abil-
ity to generalize relations to new objects of varying shapes and
sizes. For an autonomous robot to operate effectively in human-
centered environments, it should be able to learn arbitrary spa-
tial relations in a lifelong manner and generalize them to new
objects. For example, having learned to place a toy inside a bas-
ket, the robot should be able to generalize this concept using a
spoon and a cup. However, the wide spectrum of everyday ob-
jects and arbitrary spatial relations renders it challenging for an
expert to pre-program the robot with this knowledge. In this
chapter, we address this problem by introducing a novel method
from the perspective of distance metric learning. Our approach
enables a robot to reason about the similarity between pairwise
spatial relations, thereby enabling it to use its previous knowl-
edge when presented with a new relation to imitate. We show
how this makes it possible to learn arbitrary spatial relations
from non-expert users using a small number of examples and in
an interactive manner. Our extensive evaluation with real-world
data demonstrates the effectiveness of our method in reasoning
about a continuous spectrum of spatial relations and generalizing
them to new objects.

Understanding spatial relations is a crucial faculty of autonomous robots operating
in human-centered environments. We expect future service robots to undertake a
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Figure 6.1.: We present a novel method based on distance metric learning to reason
about the similarity between pairwise spatial relations. Our approach uses
demonstrations of a relation given by non-expert teachers (left) to generalize
this relation to new objects of different shapes and sizes (right).

variety of everyday tasks such as setting the table, tidying up, or assembling furniture.
In this context, a robot should be able to reason about the best way to reproduce
a spatial relation between two objects, e.g., by placing an item inside a drawer, or
aligning two boxes side by side. So far in this thesis, we leveraged spatial relations to
enable a robot to learn models of actions and tasks that align with the intention or
preferences of its users. In Chapter 3, we relied on existing models of spatial relations
(e.g., on(box, shelf )) to learn preferred object arrangements. However, this requires
an expert to provide the robot with knowledge of how to satisfy such relations for
each object. Alternatively, without prior semantic knowledge of objects, we modeled
relations as distributions over relative poses between pairs of objects based on teacher
demonstrations (Chapters 4 and 5). However, this model limits the robot’s ability to
reproduce demonstrated actions and tasks to the objects used by the teacher.

Therefore, our goal in this chapter is to enable a robot to learn new spatial relations
from its users and generalize them to new objects of different shapes and sizes, see Fig-
ure 6.1. This is a crucial requirement for a service robot to handle the rich spectrum
of objects in our everyday environments and reason about desirable spatial relations
between them in order to solve tasks according to the preferences of its users. In this
context, it is highly impractical for an expert to pre-program a robot with the knowledge
it needs to handle all potential objects and relations in the real world, e.g., in the form
of a library of predicates. Instead, we aim for a lifelong learning approach that enables

192



6.1. Problem Formulation

non-expert users to teach new spatial relations to robots in an intuitive manner.
One way to do this is to provide a robot with several examples using different objects

in order to learn a model for a new relation such as inside. On the one hand, this may
require generating large amounts of data to learn the new relation, which is impractical
in setups in which a robot learns from a non-expert teacher. On the other hand, this
requires learning a new model for each relation individually, making it hard for the
robot to reuse its knowledge from previous relations.
In this chapter, we address this problem from the perspective of distance metric

learning and focus on learning relations between pairs of objects. We present a novel
method that allows the robot to reason about how similar two relations are to each other.
For training, our approach relies only on partially labeled data describing how similar
pairs of relations are to each other, and which the robot accumulates from non-expert
users over time and in an interactive manner. Accordingly, we formulate the problem
of reproducing a relation using two new objects as one of minimizing the distance
between the reproduced relation and the teacher demonstrations. More importantly, our
approach enables the robot to use a few teacher demonstrations as queries for retrieving
similar relations it has seen before, thereby leveraging prior knowledge to bootstrap
imitating the new relation. Therefore, rather than learning a finite set of individual
relation models, our method enables reasoning on a continuous spectrum of relations.

Concretely, we make the following contributions: i) we present a novel approach from
the perspective of distance metric learning to address the problem of learning pairwise
spatial relations and generalizing them to new objects, ii) we introduce a novel descriptor
that encodes pairwise spatial relations based only on the object geometries and their
relative pose, iii) we demonstrate how our method enables bootstrapping the learning
of a new relation by relating it to similar, previously-learned relations, iv) we present
an interactive learning method that enables non-expert users to teach arbitrary spatial
relations from a small number of examples, and v) we present an extensive evaluation of
our method based on real-world data we gathered from different user demonstrations.

6.1. Problem Formulation
In this section, we formalize the problem we address in this chapter: learning pairwise
spatial relations from non-expert teachers and generalizing them to new objects.

6.1.1. Object and State Representation
We consider the problem of learning spatial relations between pairs of objects. We
denote the pair consisting of objects ok and ol by p(k,l) = {ok, ol}. In this chapter,
we assume to have no semantic knowledge about objects such as their type, e.g., box.
Instead, we aim to learn relations based on object geometries and assume to have a 3D
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model of each object ok in the form of a point cloud Pk. Additionally, we model the
state using the 3D poses of objects in SE(3) where Tk denotes the pose of ok relative to
the world frame and kTl denotes the pose of ol relative to ok. We assume the world
frame to be specified such that the −z-axis aligns with the gravity vector g. Accordingly,
we define the state s in terms of the poses and point cloud models of all objects O in the
environment. In this work, we rely on existing perception and segmentation techniques
to compute the object poses based on their point clouds.

6.1.2. Pairwise Relations
We consider learning pairwise spatial relations between objects. Accordingly, we rely on
scenes that consider only two objects in the state. We express a scene consisting of ok
and ol as a tuple d := 〈p(k,l), s 〉. This enables us to model the spatial relation between
the pair of objects based on their 3D models (Pk and Pl) and their relative pose kTl

in the state s. Furthermore, we assume that one of the objects (ok) is labeled as the
reference object, and therefore express the scene using the pose of ol relative to ok.

Given a scene d, we rely on a descriptor function fR to express the relation between the
two objects in it as a K-dimensional feature vector r, i.e., fR(d) = r ∈ RK . Moreover,
our goal is to enable the robot to reason about how similar two scenes are with respect
to the pairwise relations in them. We capture the similarity between d1 and d2 using
a distance function dist that computes the distance dist(r1, r2) ≥ 0 between the two
scenes with respect to their feature vectors r1 and r2.

6.1.3. The Problem
The problem we address in this chapter is threefold as follows.

6.1.3.1. Representing Relations

First, we seek a descriptor fR that enables us to capture the underlying spatial relation
in a scene based only on the geometries (point clouds) of the objects, their relative
poses, and the direction of gravity g.

6.1.3.2. Learning the Distance between Relations

Given fR, we aim to learn a distance metric dist for computing the distance between
two scenes. For this, we rely on training data D = {d(1), . . . ,d(N)} consisting of N
demonstrated scenes. Each scene can involve different objects and relations. Additionally,
we assume to have a symmetric similarity matrix Y of size N ×N with unit diagonal
values. The value yi,j in the i-th row and j-th column of Y captures the degree of
similarity between scenes d(i) and d(j) in D. In this work, we consider binary similarities
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y ∈ {0, 1}, such that 0 represents dissimilar relations and 1 means that the relations in
both scenes are identical. Note that we do not assume Y to be completely specified,
i.e., some entries may be missing. Therefore, we aim for a method that can learn with
partially-labeled data with respect to scene similarities. Given D and Y, our goal
is to learn a distance metric dist that captures the distance between scenes d1 and
d2 based on their features r1 = fR(d1) and r2 = fR(d2). We learn this metric such
that dist(r1, r2) is “small” if d1 and d2 represent similar relations, and “large” if they
represent dissimilar relations.

6.1.3.3. Generalizing a Relation to New Objects

Given fR and a distance metric dist, our goal is to learn a new, arbitrary relation
from a teacher. We assume the teacher provides a small set of demonstrations D′ =
{d(1), . . . ,d(N ′)} of the new relation, where 1 ≤ N ′ � N . Given two new objects ok
and ol, the robot has to “imitate” the demonstrated relation in D′ by computing the
pose kTl of ok relative to ol such that the resulting scene d∗ = 〈p(k,l), s〉 is close to the
demonstrations with respect to the corresponding features.
Concretely, we seek the pose kT∗l to solve a problem of the form:

minimize L(R′, r∗)
subject to s∗ ∈ Sf ,

(6.1)

where R′ = {r(1), . . . , r(N ′)} is the set of features for the demonstrated scenes D′,
r∗ = fR(d∗) is the feature vector of the test scene d∗, and L is a loss function describing
the distance between the demonstrations and the test scene based on dist. Additionally,
s∗ is the state in which the pose of ol relative to ok is kT∗l , and Sf is the set of physically
feasible states. In this work, we focus on computing the desired pose between the two
objects and do not consider the problem of manipulating the objects to achieve this
pose. Therefore, we consider Sf as the set of scenes in which there is no penetration
between ok and ol (see Section 2.2).

6.2. Proposed Feature Representation
In this section, we present our model for fR and propose a descriptor for modeling
pairwise spatial relations, thereby addressing Section 6.1.3.1. We model relations based
only on the spatial interaction between their point clouds Pk and Pl given the direction
of the gravity vector g. In this work, we do not address the correspondence problem
between scenes and assume the teacher specifies the reference object.

We rely on the directions of the vectors between the points of the objects as a signature
of the underlying relation between them. Defining these directions purely based on
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Figure 6.2.: Visualization of the descriptor computation for the spatial relation between
objects ok and ol. We consider the gravity vector g at the centroid ck of the
reference object ok. We compute angles θ and ϕ based on direction vectors
involving all points pk and pl on ok and ol, respectively.

a fixed (world) reference frame is sub-optimal as this results in a descriptor that is
affected by translations and rotations of the scene. At the same time, computing a local
reference frame using one of the objects (e.g., using PCA) introduces the challenge of
ensuring consistency and reproducibility of the axes across different scenes.
We address this problem by computing angles between direction vectors between

points on both objects and the centroid of the reference object ok, see Figure 6.2. This
is analogous to methods for computing rotationally-invariant descriptors for 2D images
such as RIFT (Lazebnik et al., 2005). Additionally, we aim to encode the distances
between the objects and generalize with respect to their sizes. Accordingly, we propose
a descriptor that is based on three histograms as follows:

f(d) := [hθ hϕ hd]>. (6.2)

With the first histogram hθ, we capture the angular relation between the two objects
regardless of how the scene is oriented in the global reference frame. We construct hθ
as a distribution over the angle θ between vectors (pk − ck) and (pl − pk) based on all
points pk ∈ Pk and pl ∈ Pl, i.e.,

θ = arccos
(

(pk − ck)>(pl − pk)
‖pk − ck‖2 ‖pl − pk‖2

)
, (6.3)

where ck is the centroid of the reference object ok, see Figure 6.2.
For the same relative pose kTl, hθ provides a unique signature of the scene that is

invariant to its translation or rotation in the global reference frame. However, in the
context of everyday manipulation tasks, it is typically useful to also reason about spatial
constraints with respect to the world frame, e.g., a supporting surface such as a table.
For example, this enables the robot to disambiguate scenes in which the two objects are
on top of each other from those in which they are next to each other for the same kTl.
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We achieve this disambiguation using the second histogram hϕ, which is a distribution
over the angle ϕ around the vector (pk − ck), see Figure 6.2. We take this as the angle
between two planes. The first plane is defined by the two vectors (pk − ck) and g,
whereas the second is defined by the two vectors (pk − ck) and (pl − pk). We compute
ϕ as the angle between the respective normal vectors n1 and n2 of those planes, i.e.,

n1 = (pk − ck)× g
‖(pk − ck)× g‖2

, n2 = (pk − ck)× (pl − pk)
‖(pk − ck)× (pl − pk)‖2

, ϕ = arccos(n>1 n2). (6.4)

We populate hϕ by computing ϕ using all points pk ∈ Pk and pl ∈ Pl. As the
direction of g is fixed, rotating the scene while maintaining kTl results in changes in ϕ,
i.e., the discriminative behavior we seek. On the other hand, hθ and hϕ are invariant to
translations or rotations around g.

Whereas hθ and hϕ encode the relation with respect to the relative rotation between
the two objects, we encode the desired distance between them using the third histogram
hd. We compute hd as a distribution over the Euclidean distance ‖pk − pl‖2 between
points pk ∈ Pk and pl ∈ Pl. Rather than doing so using all |Pk| |Pl| pairs of points
{pk,pl}, we consider the subset of pairs with the smallest 10% distances over all pairs,
as this is indicative of how close the two objects are and is more robust to differences in
object sizes.

Finally, we discretize both hθ and hϕ with a bin resolution of 20 deg, and discretize hd
with a resolution of 6 cm. We normalize all histograms using the number of points used
to compute them such that fR(d) is independent of the object point cloud densities.

6.3. Distance Metric Learning
In this section, we discuss how we learn a metric dist that models the similarities
between relations given the feature representation r = fR(d) above, i.e., the problem
in Section 6.1.3.2. For this, we leverage a popular metric learning technique origi-
nally introduced by Weinberger and Saul (2009) to improve the performance of k-NN
classification: large margin nearest neighbor (LMNN).

We follow the terminology of Weinberger and Saul and define the set of target neighbors
R+
i for an example ri as the k nearest neighbors of ri that are labeled as similar, i.e.

yi,j = 1 for rj ∈ R+
i . We determine the target neighbours based on Euclidean distance

and they define a region around ri. We refer to all examples rk within this region that
are not similar to ri (i.e., yi,k = 0) as impostors R−i . The original LMNN formulation
identifies R+

i and R−i by assuming training data that is labeled with pre-specified classes.
In our context, we achieve this based on the similarity labels y without requiring class
labels to be specified by the teacher.

In the general form, LMNN learns a metric distφ parametrized by φ by minimizing a
loss function with two objectives: i) for each training relation ri, pull target neighbors
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rj ∈ R+
i close, and ii) push impostors rk ∈ R−i away such that they are further than

target neighbors rj by at least a large margin ζ (Weinberger and Saul, 2009), i.e.,

minimize
φ

∑
ri∈D,

rj∈R+
i

pull a similar
neighbor rj close︷ ︸︸ ︷
distφ(ri, rj)2 +λ

∑
rk∈R−i

[
ζ + distφ(ri, rj)2 − distφ(ri, rk)2

]
+︸ ︷︷ ︸

push a dissimilar neighbor rk
further than rj by at least ζ

, (6.5)

where [d]+ = max(0, d) is the hinge loss and λ is a constant that controls the trade-off
between the two objectives. In this work, we consider three LMNN-based methods for
learning a distφ parametrized by φ, which we summarize below.

LMNN The standard LMNN parametrizes distφ using a linear mapping L ∈ RK×K

that transforms points to a space that better captures their distances, i.e., φ(r) = Lr.
This corresponds to learning a Mahalanobis metric such that

distφ(ri, rj) := ‖L(ri − rj)‖2

=
√

(ri − rj)>M (ri − rj),
(6.6)

where M = L> L. Weinberger and Saul proved that, by parametrizing the distance
with a positive semidefinite M, Eq. (6.5) is a convex problem that can be expressed in
semidefinite form, enabling them to efficiently compute the globally-optimal solution
with a custom solver (see Weinberger and Saul (2009) for details).

χ2-LMNN This approach also adopts a linear mapping φ(r) = Lr, but was introduced
by Kedem et al. (2012) specifically for data represented by histograms. Hence, χ2-
LMNN computes distφ using the χ2 distance instead of the Euclidean distance as
follows:

distφ(ri, rj) := χ2(Lri,Lrj)

= 1
2

K∑
k=1

(
[r′i]k − [r′j]k

)2

[r′i]k + [r′j]k
,

(6.7)

where r′ = Lr and [r′]k denotes the k-th dimension of r′.

GB-LMNN Gradient-boosted LMNN (GB-LMNN) goes beyond the linear LMNN ap-
proach as it is able to model arbitrary, non-linear mappings φ(r) of the input space:

distφ(ri, rj) := ‖φ(ri)− φ(rj)‖2. (6.8)

The special case of φ(r) = Lr corresponds to the linear LMNN metric above. To
consider a wide spectrum of possible non-linear mappings, the approach of Kedem
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et al. (2012) uses gradient-boosted regression trees to model φ. The idea is to learn
φ as an ensemble of T simple decision trees h, i.e., φ = φ0 + α

∑T
t=1 ht such that

GB-LMNN minimizes Eq. (6.5) directly in function space. In each iteration, we add
the tree that greedily minimizes the loss by approximating the negative gradient of
the loss with respect to the training data. For this, Kedem et al. use a linear metric
L computed by LMNN as an initialization φ0, and learn the trees using the parallel
boosted regression trees approach (see Kedem et al. (2012) for details).

6.4. Reproducing a New Relation from a Few
Demonstrations

In this section, we present our approach for imitating a new relation from a small
number of teacher demonstrations (Section 6.1.3.3). We assume that the robot is
already equipped with a set of relation scenes D = {d(1), . . . ,d(N)} and a (partially-
filled) N ×N matrix Y consisting of their similarity labels as in Section 6.1.3.2. These
are either provided by an expert beforehand, or are accumulated by the robot when
learning previous relations over time. Using D and Y, we assume the robot has already
learned a prior distance metric distφ0 parametrized by φ0 as described in Section 6.3.
This is done offline and without knowledge of the new relation.

We now consider a teacher providing the robot with a small set of demonstrations D′
of size N ′ for a new, arbitrary relation. The teacher can use different pairs of objects,
such that all scenes in D′ are equally valid ways of achieving this relation, i.e., yi,j = 1
for all d(i),d(j) ∈ D′. Given two objects ok and ol and their respective models Pk and
Pl, our goal is to compute a pose kT∗l such that the resulting scene d∗ corresponds to
the intention of the teacher for the new relation, i.e., minimizing L in Eq. (6.1).
Given a metric distφ* , there are different ways to model L to express the distance

between the features r∗ = fR(d∗) of the test scene and the features R′ of the demon-
strations D′. In general, as |R′| ≥ 1, Eq. (6.1) is a multi-objective optimization problem
seeking to minimize the distance between r∗ and all r′ ∈ R′. In such settings, it is
typically challenging to satisfy all objectives. Minimizing the (mean) distance to D′ can
thus lead to sub-optimal solutions that “average” the demonstrated scenes. Instead, we
consider each demonstration to represent a mode of the target relation and seek the
best solution with respect to any of them as follows:

L(R′, r∗) := min
r′∈R′

distφ*(r′, r∗). (6.9)

6.4.1. Interactive Local Metric Learning
One way to obtain distφ* in Eq. (6.9) is to use the prior metric distφ0 . However, we
learned this metric using a set of previous relations D and their similarities. Therefore,
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it is not directly clear if distφ0 is able to generalize to novel relations.
We answer this question using an interactive approach. For each demonstration in

D′, we use distφ0 to retrieve the Q nearest neighbor examples corresponding to scenes
from the database D. We query the teacher with these examples and ask her to indicate
whether they align with her intention (y = 1) for the new relation or not (y = 0). In our
experiments, we achieved this by means of a graphical user interface visualizing Q = 8
nearest neighbors per query. Let DNN ⊂ D be the set of all nearest neighbor scenes for
D′. We measure the confidence in the ability of distφ0 to generalize to the new relation
as the ratio εNN of scenes in DNN for which the teacher indicated a similarity to the new
relation (i.e., y = 1). εNN values larger than a threshold ε∗ indicate that we are able to
relate the new relation to ones the robot has seen in the past. Therefore, we use distφ0

to compute Eq. (6.9), i.e., φ∗ = φ0. We empirically set ε∗ to 77% in our experiments.
On the other hand, εNN < ε∗ indicates that the new relation is far in the mapped

feature space from (target neighbor) relations in D. We address this by learning a
new local metric distφ* using the set of scenes D∗ = D′ ∪ DNN and labels Y∗ of size
N∗ ×N∗, where N∗ = |D∗|. This is a smaller problem (compared to learning the prior
metric distφ0) in which Y∗ is completely specified. We set the similarity yi,j to 1 for
all d(i),d(j) ∈ D′. For rows i and columns j corresponding to scenes d(i) ∈ D′ and
d(j) ∈ DNN (or vice versa), we set yi,j to the similarity labels obtained from querying the
teacher. We use the transitivity property to set the similarity between d(j),d(k) ∈ DNN .
For example, if the teacher labeled yi,j = 0 and yi,k = 0, we set yj,k = 1.
Finally, we highlight two main advantages of leveraging the previous relations D

and prior metric distφ0 . Firstly, we enable the robot to consider whether its previous
knowledge is sufficient to reproduce the new relation or not. Secondly, even for new
relations that are significantly different from previously-known ones, we are able to
augment the teacher’s demonstrations D′ with additional training data DNN consisting
of target neighbors and impostors retrieved from D without requiring the teacher to
demonstrate them.

6.4.2. Sample-Based Pose Optimization
Given the metric distφ* to model Eq. (6.9), we present our approach for solving Eq. (6.1)
to compute kT∗l for reproducing the new relation using ok and ol. In this work, we simplify
this problem by assuming that the reference object ok is stationary and therefore only
reason about desirable poses of ol relative to it. Due to the discretization in computing
our descriptor fR, we cannot rely on gradient-based methods as our loss function is
piecewise constant.

We address this using a sample-based approach. We discretize the space of poses by
searching over a grid of translations ktl of ol relative to ok. For each translation, we
sample rotations kRl uniformly. We use the resulting kTl to transform Pl and compute

200



6.5. Experimental Evaluation

D,distφo teacher feedback

local
metric learning

test scene
pose optimization

r(1
′)

r(N
′)

kT∗
l

distφ∗

d(1)

d(N ′)

d∗

Figure 6.3.: Overview of our interactive approach for learning to reproduce a new relation.
Given a small number of demonstrations d(1), . . . ,d(N ′) by a teacher and two
objects in the test scene d∗, we aim to compute a pose kT∗l transforming d∗

in order to imitate the demonstrated relation and generalize the intention of
the teacher. Our approach enables the robot to leverage its prior knowledge
of scenes D representing other relations and the distances between them
based on a metric distφ0 . Accordingly, we retrieve examples from D to
complement the training examples given by the teacher. We use this to
learn a local metric distφ* in order to reproduce the new relation.

L based on the corresponding feature value r∗ of the scene. Whenever we find a new
local minima during optimization, we check for collisions between the two objects and
reject infeasible solutions. Finally, we take kT∗l as the feasible pose minimizing L over
all sampled poses. We implemented this process efficiently by parallelizing the grid
search over translations. Figure 6.3 shows an overview of our method for reproducing a
new relation.

6.5. Experimental Evaluation

In this section, we present the experimental evaluation of our approach. Through
our experiments, we demonstrate the following: i) our proposed descriptor is able to
capture different spatial relations and to generalize to the shapes and sizes of the objects,
ii) using distance metric learning, we are able to capture the similarities between scenes
even for relations not encountered before, iii) our interactive learning method enables
non-expert users to teach new relations based on a small number of examples, and
iv) we outperform several baselines that do not learn a metric based on the similarities
between scenes.
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Figure 6.4.: Examples of the scenes we used for evaluation. We recorded a set of 546
scenes and manually provided ground truth labels for their similarities.

6.5.1. Baselines
In our experiments, we used three variants of LMNN-based metrics: vanilla (linear)
LMNN, χ2-LMNN, and GB-LMNN, which we learned as in Section 6.3. We compared
those learned metrics to a variety of standard distance metrics. This includes the
Euclidean, χ2, Bhattacharyya, and the correlation distances, as well as the Kullback-
Leibler divergence (KL) and the Jensen-Shannon divergence (JS).

6.5.2. Dataset
We recorded 3D models of 26 household objects and used SimTrack (Pauwels and Kragic,
2015) to detect them and compute their poses in a scene using a Kinect camera. Using
this setup, we recorded a set of demonstrations D consisting of 546 scenes, see Figure 6.4
for examples. For the purpose of evaluation, we manually labeled the similarities Y
between all scenes.

6.5.3. Nearest Neighbor Classification
In this experiment, we evaluated the ability of distance metric learning to relate scenes
based on the similarities of their relations. We formulated this as a k-NN classification
problem with k = 5 and used 15 random splits for evaluation. For each split, we used
75% of the data for training and 25% for testing. We considered a success if at least
three out of five of the retrieved nearest neighbors were similar to the test example.
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The results are shown in Table 6.1. LMNN-based metrics outperform the baselines,
i.e., the learned metrics can better capture the distances between scenes. We achieved
the highest success rate of 87.6% using GB-LMNN. Additionally, by directly computing
the Euclidean distance in the original feature space, we are able to achieve a success
rate of 82.32%. This demonstrates that our proposed feature descriptor is suitable
for encoding arbitrary spatial relations. Figure 6.5 shows a qualitative example of the
nearest neighbors of a test scene using both the Euclidean distance and LMNN.

Table 6.1.: Performance of different methods for retrieving at least three out of five
target neighbors of scenes (see Section 6.5.3). We achieved a success rate of
82.32% by directly computing the Euclidean distance in the original feature
space based on our proposed descriptor. GB-LMNN resulted in the highest
success rate by learning a non-linear metric capturing relation similarities.

Method Accuracy(%)

Euclidean 82.32± 2.56
KL 82.61± 3.10

Correlation 82.66± 2.43
χ2 82.81± 3.20

Bhattacharyya 83.26± 3.15
JS 83.30± 3.14

χ2-LMNN 86.46± 2.84
LMNN 86.52± 1.98

GB-LMNN 87.60± 1.94

query scene
nearest neighbors using LMNN

nearest neighbors using Euclidean

Figure 6.5.: Example of the five nearest neighbors of a query scene using Euclidean
distance (top) and LMNN (bottom). LMNN better captures the distances
between relations.
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Figure 6.6.: The t-SNE visualization of six relations mapped using LMNN. We trained
this metric using three of the six relations only (upper row of Figure 6.4),
which we depict as circles. The metric is able to capture the semantic simi-
larity between those relations and the test relations (lower row of Figure 6.4),
which we depict as triangles.

6.5.4. Distance to New Relations
In this qualitative experiment, we investigated the ability of a learned metric to capture
the similarities between relations that were not used for training. We trained LMNN with
data from three relations (upper row of Figure 6.4), which can be semantically described
as “on top”, “inside”, and “next to”. We used the learned metric to map all six relations
in Figure 6.4 to the new space and visualized the data using t-SNE, a popular non-linear
embedding technique for visualizing high dimensional data (Maaten and Hinton, 2008).
We show this in Figure 6.6. This qualitatively illustrates the separation between the
three relations used for training the metric. Moreover, the metric is able to capture the
semantic similarity between the relations used for training and the new ones, which we
denote by “on top corner”, “inclined inside”, and “inclined” (bottom row of Figure 6.4).

6.5.5. Generalizing a Relation to New Objects
In this experiment, we evaluated our approach for reproducing a demonstrated relation
using two new objects, see Section 6.1.3.3. We recorded 30 demonstrations for each of five
new relations. We then selected two new objects that were not used in the demonstrations
and evaluated our method’s ability to generalize each of the five relations to the new
objects. In each case, we provided our method with |D′| = 5 examples. Using those
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Figure 6.7.: Results for generalizing a relation to two new objects (see Section 6.5.5).
GB-LMNN and LMNN outperform the other metrics in identifying the
correct ways of reproducing a relation with two new objects. In each case, we
evaluated the generalization given five new demonstrations, which we then
added to the set of prior demonstrations D before relearning the prior metric.
Our approach enables reusing previous demonstrations when querying the
teacher to learn a new relation. Accordingly, GB-LMNN achieves a mean
average precision of 0.82 after having seen five demonstrations in the past.
This demonstrates the ability of our approach to use previous demonstrations
when generalizing a new relation in a lifelong learning manner. Note that
the x-axis shows the cumulative number of demonstrations over time.

examples, we retrieved nearest neighbor queries DNN from D as described in Section 6.4.
As we aimed for a quantitative evaluation in this experiment, we implemented an “oracle”
that provides the binary labels for the queries automatically, and used this to learn a
local metric as in Section 6.4.1.
To facilitate evaluation and comparison between the baselines, we provided our

method with a set of 75 poses kTl between the new objects rather than sampling poses
randomly. In each case, only 15 of the 75 poses were correct ways of imitating the
relation in question using the new objects, whereas the rest corresponded to other
relations. To evaluate the ability of our approach to recognize the correct poses, we
computed the features r∗ of the test scene for each pose and the corresponding loss L,
i.e., the minimum distance between r∗ and the features R′ of the five demonstrations,
see Eq. (6.9). Accordingly, we sorted the poses according to L. Ideally, the correct poses
should be in the top 15 positions as they result in minimizing the distance between the
test scene and the demonstrations. Therefore, we used the mean average precision of
the computed ranking of poses as an evaluation measure.
After each such test, we added the five demonstrations D′ to the database D and
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extended Y with the new labels from the nearest neighbor queries. We used this to
re-learn the prior metric distφ0 . We did this six times, each with five new demonstrations,
until the 30 demonstrations have been used. We repeated the whole experiment 50
times using different random orders of providing five demonstrations. We report the
results in Figure 6.7 averaged over all runs and five relations.

The metrics we learned with GB-LMNN and LMNN outperformed the other metrics
in their ability to identify the correct ways of reproducing a relation with two new
objects. Although in each case we computed Eq. (6.9) based on five new demonstrations
only, our approach enables those metrics to reuse demonstrations added to D from
the previous tests to learn the local metric. Accordingly, GB-LMNN achieved a mean
average precision of 0.82 after having seen at least five demonstrations in the past.
This demonstrates the ability of our approach to use previous demonstrations when
generalizing a new relation in a lifelong learning manner.

6.5.6. Interactive Learning of a New Relation
We conducted a small survey to evaluate our approach for learning a new relation
interactively. We asked nine different teachers to provide demonstrations of 50 relations.
Each teacher provided five demonstrations per relation using different objects they
chose, resulting in 250 recorded scenes in total. We used only three demonstrations
D′ to learn each relation. In each case, we queried the teacher with nearest neighbor
examples from D (based on a prior LMNN metric we trained on D) and used the result
to generalize the three demonstrations D′ and reproduce one of the test scenes we left
out as in Section 6.4. We computed the best pose for reproducing the relation using the
sample-based approach in Section 6.4.2.

We showed the reproduced relations to their corresponding teachers in a 3D visualiza-
tion environment and asked them to score the quality of the result with 0, 0.5, or 1,
where 0 represents unsuccessful and 1 represents successful. The teachers scored results
from different baselines shown in random order and without knowing which baselines
they were scoring.

We show the mean scores in Table 6.2. The reproduced scenes using both LMNN and
GB-LMNN metrics were judged to be the best by the teachers, achieving an average
score of 0.72 and 0.71 respectively. Figure 6.8 illustrates one such generalization from
our experiments. The results confirm that our approach enables non-expert users to
teach arbitrary spatial relations to a robot from a small number of examples.
As a final qualitative evaluation, we carried out a small survey in which we asked

six participants to judge the quality of scenes generated by our sample-based approach
in Section 6.4.2. For this, we selected 30 scenes computed by LMNN, and which were
scored with either 0.5 or 1 in the experiment above. We asked the six participants to
judge whether the relations in those scenes were demonstrated by a human or generated
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Table 6.2.: Mean scores for reproducing 50 relations from nine different teachers. For
each relation, the teacher scored the result with 0 (unsuccessful), 0.5, or 1
(successful), see Section 6.5.6.

Method Score

Euclidean 0.49
Bhattacharyya 0.54

KL 0.56
JS 0.56
χ2 0.60

χ2-LMNN 0.63
LMNN 0.72

GB-LMNN 0.71

Figure 6.8.: Top: three demonstrations of a relation by a teacher in our survey, see Sec-
tion 6.5.6. Bottom: the result of reproducing the relation with two new
objects using our approach.

by a computer, whereas in fact they were all computed using our approach. Despite the
fact that we do not consider physics checks (e.g., scene stability) or optimize computed
scenes to make them more realistic, the participants judged 63.05% of the scenes to be
produced by a human. This highlights the ability of our approach to reproduce relations
using different objects and compute high-quality scenes.
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6.6. Related Work
In this chapter, we presented a novel method to tackle the problem of learning and
generalizing pairwise spatial relations. In this section, we review the most related works
in the literature in the context of learning and leveraging spatial relations for robotic
tasks and in the field of distance metric learning.

Learning and Using Spatial Relations Spatial relations have played a large role in
the context of robot manipulation. A large body of works has focused on leveraging
predefined relations in the form of symbolic predicates for solving tasks, as in the case of
combined task and motion planning (Dornhege et al., 2012; Kaelbling and Lozano-Pérez,
2013). Such works rely on an expert to provide relations as high-level state abstractions,
as well as the mapping between these relations and low-level (geometric) states, to
reason about the feasibility of plans.

On the other hand other approaches have focused on learning the mapping between
existing symbolic predicates and low-level state representations in terms of geometric
object configurations. In this context, Dearden and Burbridge (2014) proposed an
approach to learn classifiers for forward and backward mapping between symbolic states
and geometric ones based on object poses. For training, they rely on positive and
negative examples of predicates (e.g., above, touching), and are thus able to leverage
the learned mappings for high-level planning to satisfy both symbolic and geometric
constraints. Related to that, Guadarrama et al. (2013) learn models of predefined
prepositions by training a multi-class logistic regression model using data gathered
from crowdsourcing. As opposed to those works, we do not address grounding existing
symbols that represent spatial relations. Instead, we propose an approach to lifelong
learning of relations and their similarities on a continuous spectrum without requiring
an expert to specify explicit concepts or classes.

Instead of leveraging existing relations, other works have addressed learning symbols
or preconditions and effects of actions to abstract continuous states for the purpose
of high-level planning (Abdo et al., 2013; Jetchev et al., 2013; Konidaris et al., 2014;
Ahmadzadeh et al., 2015). Moreover, Welke et al. (2013) presented an approach to infer
and ground spatial symbols based on a robot’s experience in exploring an environment
or using human knowledge extracted via natural language processing of text. This
enables the robot to learn distributions that model typical locations (e.g., fridge) and
associated spatial relations in an environment that can be used for high-level task
planning. By learning such symbolic representations, the above works are able to scale
to large domains, for example by grounding a relation using all applicable objects of the
same type in the environment. In contrast to these works, we do not address learning
state abstractions that can be used to achieve desired goals using high-level planning.
Instead, our approach encodes relations on a geometric level and without relying on
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semantic information about objects, and is thus able to imitate a relation using new
objects by minimizing the distance between scenes in feature space.

Moreover, related to our work is the interactive approach by Kulick et al. (2013) for
learning relational symbols from a teacher. They use Gaussian Process classifiers to
model symbols based on properties such object poses and dimensions, and enable a robot
to query the teacher with examples to increase its confidence in the learned models.
They demonstrate the applicability of such learned symbols in the domain of relational
reinforcement learning. Similarly, our method enables a robot to learn a relation by
interacting with a teacher. However, we address this problem from the perspective of
metric learning, thereby allowing the robot to re-use previous demonstrations of other
relations in a lifelong manner. Moreover, using our proposed descriptor for pairwise
relations, we achieve a great flexibility by generalizing the same relation to objects of
varying shapes and sizes.

Similar to our work, other approaches addressed learning and recognizing relations
using low-level features such as object geometries. For example, Rosman and Ramamoor-
thy (2011) proposed encoding a scene topologically by constructing a contact point
network based on regions of contact between objects. They leverage these networks to
obtain a feature representation of a scene based on the displacement between contact
points, and accordingly rely on labeled training data to train (SVM) classifiers to
identify relations (e.g., adjacent) in new scenes. Related to that, Fichtl et al. (2014)
presented an approach that extracts surface patches of objects in segmented images and
thus constructs several histograms that encode the relative distances and orientations
between those patches. This representation is then used to train random forest-based
classifiers to recognize relations and affordance concepts in images. In contrast to
these works, our approach does not require training data that is labeled according to
predefined relation categories. Instead, we learn a metric that applies to a variety of
relations. This allows us to learn a new, arbitrary relation based on a small number of
interactions with a non-expert teacher and the subjective similarity labels she provides.
Furthermore, rather than learning relations, other works leveraged existing spatial

relations and 3D object models to tackle a variety of manipulation and perception
problems. In the context of scene interpretation, the work of Ersen et al. (2014) relies
on predefined relation predicates for failure detection during task execution, e.g., by
recognizing a failed stacking of blocks based on the observed value of the on predicate.
Similar to our work, the approach of Zampogiannis et al. (2015) models spatial relations
based on the geometries of objects given their point cloud models. However, they
manually define a variety of common relations and focus on extracting the semantics
of manipulation actions through temporal analysis of spatial relations between objects.
Other works have used predefined spatial relations to learn models of typical object
configurations or placements that can be leveraged for object search (Kunze et al., 2014;
Lorbach et al., 2014) or to reason about user preferences when organizing objects (Abdo
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et al., 2016). Related to that, other researchers relied on the geometries of objects and
scenes to reason about preferred object placements (Jiang et al., 2012b) or likely places
to find an object (Aydemir and Jensfelt, 2012). Finally, Kroemer and Peters (2014)
presented an approach that uses 3D object models to extract contact point distributions
for predicting object interactions e.g., when stacking or grasping objects.

Distance Metric Learning Our approach leverages distance metric learning in order
to reason about the similarity between relations. Specifically, we built our work on
the paradigm of large margin nearest neighbor (LMNN), a widely-used metric learning
approach originally introduced by Weinberger and Saul (2009) to improve the perfor-
mance of k-NN classification. Metric learning is a popular paradigm in the machine
learning and computer vision communities, and has been successfully used to tackle
problems related to face recognition (Guillaumin et al., 2009) as well as image retrieval
and segmentation (Hoi et al., 2008; Xiang et al., 2008). We refer the reader to the
surveys by Bellet et al. (2013) and Kulis et al. (2013) for a more comprehensive overview.
Furthermore, metric learning is closely related to the problems of embedding learning
and dimensionality reduction for mapping high-dimensional points to low-dimensional
spaces that preserve point similarities and distances (Roweis and Saul, 2000; Hadsell
et al., 2006; Maaten and Hinton, 2008).

To encode relations, we proposed a novel descriptor based on object point cloud
models and used both linear (Weinberger and Saul, 2009) and non-linear (Kedem et al.,
2012) metric learning approaches to map scenes from the original feature space to one
that reflect the similarities between the corresponding spatial relations. Rather than
relying on designed features, several researchers have leveraged recent advances in deep
learning to train neural networks that are able to learn the similarities between images
in an end-to-end fashion (Chopra et al., 2005; Yi et al., 2014; Hoffer and Ailon, 2015).

Finally, our approach represents a novel solution to the problem of imitating a desired
spatial relation by using a learned metric to retrieve previously-learned relations that are
similar to it. In the context of robotics, metric learning has also been used to address
object instance recognition (Lai et al., 2011b) and to retrieve best-match images of
places for loop closure detection (Shahid et al., 2016). To address the problem of grasp
selection, Herzog et al. (2014) recently proposed a local shape descriptor to encode
grasp regions of object parts. Accordingly, they introduce distance metrics that enable
a robot to retrieve promising grasp hypothesis by matching perceived point clouds to a
library of learned grasp templates.
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6.7. Conclusion
In this chapter, we presented a novel approach to tackle the problem of learning pairwise
spatial relations and generalizing them to different objects. Our work is based on
distance metric learning and enables a robot to reason about the similarity between
pairwise spatial relations. In this work, we assumed to have no semantic knowledge
about objects. Therefore, we introduced a novel descriptor to encode relations based on
the geometries and poses of the involved objects. By learning a distance metric using
this representation, our method is able to bootstrap learning a new relation from a
small number of teacher demonstrations by reasoning about its similarity to previously-
encountered ones. The learned metric also enables us to formulate the problem of
generalizing a relation to new objects as one of computing object poses to minimize
the distance between two scenes. Accordingly, our approach allows for reasoning about
a continuous spectrum of relations in a lifelong learning scenario. This goes beyond
existing approaches that learn a model (e.g., a classifier) for each relation individually,
and that are therefore limited to reasoning about a finite number of relations. Finally,
our evaluation with real-world data demonstrates the effectiveness of our approach in
reasoning about the similarity between relations and its ability to reproduce arbitrary
relations to new objects by learning interactively from non-expert teachers.
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7. Conclusion

In this thesis, we presented several contributions to the fields of service robotics and
learning from demonstrations. Our contributions revolved around the challenge of
enabling robots to solve manipulation tasks in human-centered environments. Specifi-
cally, we considered learning goal-oriented actions and tasks that are modeled based on
desirable spatial relations between objects. The novel approaches we presented in this
thesis all share the same underlying philosophy: i) to act effectively and intelligently,
service robots should consider the preferences of their users, ii) to handle the wide
spectrum of everyday objects and tasks in domestic environments, service robots should
rely less on expert design as a source of knowledge, and more on lifelong learning through
interacting with their users and environments, and iii) when faced with new situations,
service robots should be able to adapt their behavior and improvise solutions rather
than constantly querying their users.
We first tackled the challenge of learning user-preferred task goals in the context

of organizing or sorting objects. Typically, each user has her own preferred way of
solving such tasks, making it challenging for an expert to pre-program a robot with
the knowledge needed to attend to all users. We proposed a novel solution to this
problem by leveraging the paradigm of collaborative filtering to enable a robot to tailor
its behavior to the preferences of a specific user when organizing objects in containers.
Our contribution is the first to bridge the gap between the worlds of personalized
recommendations and service robotics and enables robots to learn patterns of user
preferences with respect to grouping pairs of objects when tidying up. We learn these
preferences in a lifelong manner from a corpus of data gathered from different users and
environments. Using the learned preference models, a robot is able to autonomously
predict the preferred way to solve the task for its user based on partial knowledge of
her preferences or a small number of observations of the environment. Accordingly, the
robot is able to organize the objects by maximally satisfying the preferences of the user
without constantly querying her, and to adapt to the number of containers available for
tidying up. Additionally, we addressed the challenge of handling objects for which there
is no data in the system by presenting a novel method that complements collaborative
filtering with expert knowledge mined from the Web. We extensively evaluated our
approach on two tidy-up scenarios using data we gathered from over 1,200 users. Our
results demonstrate the effectiveness of our approach in predicting user preferences and
its ability to improve its performance over time given more user data in the system.
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The above contribution enables a robot to infer preferred task goals in the form of
object arrangements and to subsequently achieve those goals by relying on existing
task and motion planners for manipulating the objects. However, this limits the
robot to handling objects for which an expert has preprogrammed action models, for
example in the form of pick-and-place planning operators. Therefore, we additionally
tackled the challenge of enabling a robot to acquire new action models by learning from
demonstrations provided by non-expert teachers. Specifically, we addressed learning
point-to-point actions that are modeled based on spatial constraints between the objects
before and after applying an action. As we aim to learn these actions using a small
number of demonstrations, a key challenge in this context is inferring the intention of
the teacher with respect to which features (spatial constraints) are relevant for modeling
a new action. This knowledge is crucial to successfully generalize the action and to
sequence several actions when planning. We tackled this issue from two perspectives.
Firstly, we proposed a model-selection approach by which the robot leverages prior
expert knowledge about manipulation actions to bootstrap learning the new action.
Accordingly, the robot is able to maintain several valid interpretations, or templates, of
the teacher demonstrations and to apply the best template based on the current state.
Secondly, we proposed a novel approach that does not require the availability of such
prior expert knowledge and instead learns implicit action models in a data-driven manner
based on a mixture of interpretations. This allows the robot to construct a multi-modal
distribution over likely goal states when reproducing the intention of the teacher in new
states. Using our techniques, the robot avoids the need to commit to a single model of the
action beforehand, thereby achieving flexibility and generalization. Equally important,
in contrast to the majority of existing solutions for learning actions, our contributions
eliminate the need for an expert to specify the relevant spatial constraints for modeling
each new action. Through experiments with real-world data, we demonstrated the
effectiveness of our method and its ability to successfully reproduce an action in arbitrary
initial states.
Furthermore, a key contribution of this thesis is the teach-and-improvise framework

(TI), a novel approach to the problem of simultaneously inferring action and task models
from a small number of teacher demonstrations. Whereas the above contributions
focused on either learning semantically preferred task goals or new action models
individually, TI enables a robot to acquire models of both in order to reproduce
sequential manipulation tasks without assuming prior semantic knowledge about the
task or the involved objects. By drawing similarities between inferring the intention of
the teacher and solving Markov decision processes, we formulated solving a task as an
optimization problem and accordingly presented a novel algorithm that builds on Monte
Carlo tree search to generalize and sequence learned actions and achieve desirable goals
in an anytime manner. Our algorithm leverages implicit action models learned from
the teacher and tackles the ambiguity in the demonstrations through decision making
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on three levels: which action to apply in the current state, which action model to use,
and which goal state to achieve. Our work eliminates the need for the user or an expert
to provide an explicit goal state to solve a task. Instead, TI reasons about multiple
modes in desirable spatial relations to improvise feasible solutions that align with the
intention of the teacher with respect to each applied action and the final goal state in a
probabilistic framework. This enables the robot to autonomously adapt the solution of
the task based on the initial state and physical constraints without querying the user in
each new situation. Moreover, we proposed a novel approach that allows the robot to
update the learned action models and improve its performance with time by practicing
the task in simulation. We evaluated our approach extensively in simulation and with a
real robot and demonstrated its ability to generalize a small number of demonstrations
to achieve desirable goals starting in arbitrary states.

At the heart of the above approaches are spatial relations between everyday objects.
Specifically, we adopted pairwise spatial relations as the building blocks for modeling
preferred task goals or relevant constraints for applying actions. For this, we either
relied on existing expert models, e.g., in the form of high-level predicates for planning,
or, when lacking prior semantic knowledge, constructed multi-modal distributions of
relations based on relative poses between objects. However, this limits the robot to
solving tasks using the objects that are supported by its prior knowledge as programmed
by an expert or demonstrated by a teacher. In other words, this renders the robot
unable to reproduce learned tasks and actions using new objects of different shapes and
sizes. The standard solutions to this problem require the user or an expert to provide
the robot with large amounts of labeled training data to learn a model for each new
relation. This restricts the robot to reasoning about a limited number of relations. We
addressed this problem by presenting a novel approach to learning and generalizing
pairwise spatial relations from the perspective of distance metric learning. We proposed
a novel descriptor that encodes a spatial relation geometrically based on 3D models of
the objects and their relative poses. Using this representation, we leveraged a popular
distance metric learning technique to learn a metric capturing the similarities between
spatial relations. For this, we relied on training data describing how similar relations
are to each other, which the robot accumulates by interacting with non-expert users
over time. Accordingly, the learned metric allows the robot to bootstrap learning a
new relation by relying on a small number of examples to retrieve similar ones from its
database. The metric also enables the robot to imitate the relation using new objects by
minimizing the distance between the resulting relation and the desired one. Therefore,
our contribution goes beyond existing approaches by allowing the robot to reason about
a continuous spectrum of spatial relations. We demonstrated the effectiveness of our
approach in generalizing arbitrary relations to new objects through extensive evaluation
with real-world data acquired from different users.

In summary, we proposed in this thesis several contributions that enable robots to
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continuously acquire models of spatial relations, actions, and tasks by interacting with
non-expert users and their environments. Our solutions provided, for the first time, a
principled way of reasoning about and attending to the preferences of end-users with
respect to everyday manipulation tasks. Moreover, our work extends the state of the art
by allowing robots to reason about different valid ways of applying actions or solving
tasks and to adapt their behavior as needed without requiring users to constantly provide
explicit goals for planning. This flexibility is crucial in the context of dynamic, domestic
environments. By placing the user at the center of our solutions, the contributions of
this thesis relieve experts from the tremendous burden of pre-programming robots with
the knowledge to handle all possible situations, thereby bringing us closer to deploying
intelligent service robots in human-centered environments.

Outlook

There are several ways by which future research can extend the scope and capabilities
of the approaches we proposed in this thesis. In general, our collaborative filtering
approach for learning user preferences is agnostic to the specific relations or goals being
considered. Whereas we focused on organizing objects in containers in this work, it would
be straightforward to extend our system to other everyday tasks such as cleaning, setting
a table, or elderly care. By leveraging expert-defined relations or goals based on prior
knowledge of these tasks, our approach can be used to extract patterns of preferences
for these domains by interacting with users over time. Moreover, we considered learning
user preferences on a semantic level that does not require defining features to model
objects. However, it would be beneficial to extend our recommender system to consider
low-level geometric or visual features to achieve a more fine-grained prediction of user
preferences. By observing different environments over time, this would allow a robot to
extract patterns such as placing large objects at the back of a shelf or grouping objects
based on color. This results in a hybrid recommender system combining aspects of
collaborative filtering with content-based information.

Moreover, in this thesis we addressed learning point-to-point actions from segmented
teacher demonstrations and focused on inferring the relevant features or spatial con-
straints for modeling the action before and after applying it. To execute the action in
the learned feature space, we relied on existing motion planning and control solutions.
However, it would also be possible to use the teacher demonstrations to learn preferred
motions to reproduce the action on the trajectory level. This could be achieved using
existing techniques for encoding trajectories as dynamic movement primitives. Having
inferred the suitable template or reference frames for applying an action using our
work, one would then transform the learned motion model to the corresponding frame
to reproduce the intention of the teacher with respect to both the goal state and the
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trajectory to achieve it. This would extend the scope of our work to tasks in which
the dynamics of an action are relevant for its success such as when opening a door or
moving a glass of water.
Furthermore, our TI approach is currently able to reproduce a task using the same

objects demonstrated by the teacher or a subset thereof. This is due to our model of
pairwise spatial relations in the form of distributions over relative poses between two
objects. On the other hand, our distance metric learning approach enables a robot to
generalize a pairwise spatial relation to objects of different shapes and sizes. Therefore,
incorporating the learned metric in the TI framework would allow the robot to solve a
task using objects that were not demonstrated by the teacher. This could be achieved
by modifying the action goal distributions and the intention likelihood model of the task
to consider the distances between (current and desirable) relations under the learned
metric rather than the distances between poses.
Finally, our proposed teach-and-improvise approach assumes to have no expert or

semantic knowledge of the task and thus aims to maximize the intention of the teacher
with respect to spatial relations on a geometric level. On the other hand, our collaborative
filtering approach leverages known object types and existing high-level relations to scale
to several objects of the same type and abstract away from object poses when reasoning
about user preferences. Combining both worlds would allow our TI approach to scale to
larger domains by leveraging high-level state abstractions when maximizing the intention
of a teacher. In this context, it would be interesting to investigate techniques for learning
symbolic abstractions from non-expert users in a lifelong manner and without requiring
experts to design or provide such knowledge beforehand. This would allow the robot
to bootstrap inferring the relevant relations for a new task based on preference models
learned from previous users on a high level and at the same time to acquire new relations
and geometric models from the teacher demonstrations. To solve tasks using compact
relational representations, a promising domain of research is relational reinforcement
learning, which combines aspects of reinforcement and relational learning.
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A. Additional Teach-and-Improvise
Experiments

In this appendix, we present additional experimental results and visualizations related
to our teach-and-improvise approach in Chapter 5.

A.1. Updating Action Models from New Experiences
We qualitatively investigate our approach for updating action models using the robot’s
experience in solving the task (see experiment in Section 5.7.6). For this, we used
the plans we computed in the experiment in Section 5.7.5 (using the noisy action
models learned from the teacher). Using our approach in Section 5.6, we updated the
relevance of each action template and the corresponding voting distribution to reflect
the usefulness of each template and vote for solving the task, respectively.

Figure A.1 shows an example of the average template selection rates for two actions in
the tower building task (T3) based on all computed plans in Section 5.7.5 when learning
from six task demonstrations. Despite ambiguity in the teacher demonstrations and
initializing all template relevance likelihoods uniformly, our approach was able to select
the action templates (stationary objects) that are most useful for applying those actions
more frequently. Specifically, our method selected the stationary blocks that typically
appear beneath the moving block of each action since the corresponding votes result in
stacking the blocks and constructing the tower. For example, for the action of moving
the dark blue block (second block from the bottom in the tower), our approach selected
template γ2

1 in 93.9% of the cases. This corresponds to the red block (bottom of the
tower), since its votes result in stacking the two blocks (Figure A.1-top). Similarly, for
the action of moving the top-most block, our approach relied on the blocks that typically
appear beneath it in the goal states (Figure A.1-bottom). Moreover, we selected the
template corresponding to the table in 0% of the cases, which is consistent with the
irrelevance of the poses of the blocks relative to the table in this task.
Figure A.2 shows an example of updating the goal distribution for the action of

moving the end-effector in the breakfast setting task (T1) using our approach and after
solving the task 100 times starting in random initial states. The resulting distribution
(Figure A.2-bottom) is more peaked around goal states in which the end-effector achieves
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Figure A.1.: Average action template selection rates for two actions in the tower build-
ing task (T3). We extracted these statistics from plans computed using
our approach when solving the task starting in 2,500 random initial states.
Despite initializing the template relevance likelihoods uniformly for all
actions, our approach is able to leverage templates that are more useful for
solving the task. The votes corresponding to these templates encourage
stacking the moving block in each case by placing it relative to blocks
that typically appear beneath it in the tower (see Figure 5.8). Using these
selection rates, our approach updates the learned action goal distributions
to reflect the usefulness of each action template and associated votes for
solving the task and without requiring additional teacher demonstrations.
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Figure A.2.: An example of the action for moving the end-effector in the breakfast set-
ting task (T1). Top left: a random initial state. Top right: the corresponding
distribution of goal poses for the end-effector. The teacher moved the end-
effector to reach for different objects and at different time steps of the task
demonstrations. This introduces ambiguity in the intention of the teacher
for this action. Bottom: after solving the task 100 times in simulation,
we update this distribution to reflect the intention of the teacher more
accurately. The result is a higher likelihood of moving the end-effector to
reach for the relevant objects in the scene.

grasping poses relative to the other objects. This captures the intention for the action
more accurately compared to the noisy distribution learned directly from the ambiguous
demonstrations (Figure A.2-top right).

A.2. Solving Tasks Using the Updated Action Models
In this section, we present detailed experimental results for solving the aligning blocks and
tower building Tasks (T2-T3) after allowing our approach to practice those tasks in
simulation and to update the action models accordingly, see Section 5.7.7.

A.2.1. Results for the Aligning Blocks Task (T2)
We evaluated our approach for solving the aligning blocks task (T2) starting in 100
random initial states using the updated action models. We repeated this 25 times using
different sets of demonstrations in each case. Using MaxVal-B*, our approach is able to
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satisfy between 93.6% and 99.1% of the relevant relations for this task, see Figure A.3-top
left. The updated action goal distributions result in high success rates for all numbers
of demonstrations. In contrast, MaxVal-B (before updating the action models) was only
able to satisfy 94% of the relations on average when learning from two demonstrations,
and its performance decreased with more demonstrations due to the increased branching
factor when sampling from noisy action models (see Figure 5.14-top right).
Moreover, Figure A.4-top right shows the results of our approach using MaxVal-B*

(0.5), i.e., using the updated action models with a max-value strategy but relying on
only 50% of the templates of each action during node expansion. Despite sampling only
half of the possible templates for each action based on their relevance likelihoods, our
approach is able to satisfy between 98% and 99.6% of the relevant relations for this
task. By selecting between the sampled templates based on the resulting values, our
algorithm leverages different interpretations of each action based on the current state
when applying it.

When using a Bellman update strategy, our approach (Bellman-ε*) was able to
satisfy between 88.1% and 92.3% of the relations on average, see Figure A.3-bottom left.
Compared to a max-value strategy, Bellman-ε* seeks to maximize the expected value of
the solution, thereby applying actions based on the probability of their goal states, and
not only based on the intention likelihood of the final goal state. Therefore, MaxVal-B* is
more robust to the (remaining) noise in the action models, and is able to satisfy more
relations than Bellman-ε* given the same number of iterations.

Additionally, Figure A.3-bottom right highlights the differences between those variants
of our approach when learning from six demonstrations of this task. When using the
updated action models (MaxVal-B*, MaxVal-B* (0.5), and Bellman-ε*), the performance
of our approach improves compared to that before practicing the task (MaxVal-B).
By considering only the intention likelihood of the final goal state, MaxVal-B* is less
sensitive to noise in the action goal distributions, and therefore outperforms Bellman-
ε* with respect to the relations satisfied in the final state given the same number
of iterations. When sampling only half the available action templates during node
expansion, MaxVal-B* (0.5) is still able to solve the task and satisfy 99.6% of the
relations. Due to the decreased branching factor at template-selection nodes, it also
exhibits a faster convergence rate compared to MaxVal-B*.
Figure A.4 shows the corresponding plan lengths computed by our approach for

this task. Before practicing the task MaxVal-B (Figure A.4-top left) computed plans
consisting of 17.5 actions on average when learning from two demonstrations and satisfied
94% of the relevant relations. With more demonstrations, this strategy suffers from an
increasing branching factor when sampling from the noisy action models and was able
to sequence up to 13.3 actions to satisfy only 81.6% of the relations. On the other hand,
using the updated action models, MaxVal-B* required between 13.7 and 14.3 actions to
satisfy 93.6% and 99.1% of the relations using two and ten demonstrations, respectively.
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Figure A.3.: Results of our approach for solving the aligning blocks task (T2) after
practicing the task and updating the action goal distributions (compare
to Figure 5.14-top right). Top left: using MaxVal-B*, our approach is
able to satisfy between 93.6% and 99.1% of the relevant relations for this
task. Top right: despite sampling only half of the possible templates for
each action based on their relevance likelihoods, MaxVal-B* (0.5) is able
to satisfy between 98% and 99.6% of the relevant relations by leveraging
different interpretations of each action. Bottom left: Bellman-ε* was able to
satisfy between 88.1% and 92.3% of the relations on average. Bottom right:
performance of different variants when learning from six demonstrations.
When using the updated action models (MaxVal-B*, MaxVal-B* (0.5), and
Bellman-ε*), the performance improves compared to that before practicing
the task (MaxVal-B). By considering only the intention likelihood of the
final goal state, MaxVal-B* outperforms Bellman-ε* with respect to the
relations satisfied in the final state but at the expense of computing more
expensive plans, see Figure A.4. When sampling only half the available
action templates during node expansion, MaxVal-B* (0.5) is still able to
solve the task and satisfy 99.6% of the relations.
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Figure A.4.: The average plan lengths when solving the aligning blocks task (T2). Top
left: before practicing the task MaxVal-B required 17.5 actions on average
when learning from two demonstrations and satisfied 94% of the relevant
relations. With more demonstrations, this strategy suffers from an in-
creasing branching factor when sampling from the noisy action models
and was able to sequence up to 13.3 actions to satisfy only 81.6% of the
relations (see Figure 5.14-top right). Top right: using the updated action
models, MaxVal-B* required between 13.7 and 14.3 actions to satisfy 93.6%
and 99.1% of the relations using two and ten demonstrations, respectively.
Bottom left: since MaxVal-B* (0.5) considers only half the templates for
each action during node expansion, this method requires applying more
actions (between 14.1 and 14.8) to solve the task compared to MaxVal-B*.
Bottom right: as Bellman-ε* maximizes the expected likelihood of the
solution, this strategy computed more efficient plans (11.5 - 11.7 actions)
compared to a max-value strategy.

226



A.2. Solving Tasks Using the Updated Action Models

Moreover, since MaxVal-B* (0.5) considers only half the templates for each action during
node expansion, this method requires applying more actions to solve the task compared
to MaxVal-B*, and computed plans ranging between 14.1 and 14.8 actions on average,
see Figure A.4-bottom left. Finally, as Bellman-ε* maximizes the expected likelihood of
the solution, this strategy computed more efficient plans of 11.5 - 11.7 actions on average
(Figure A.4-bottom right). In other words, a Bellman-based approach is less likely to
apply actions that result in goal states with low probabilities.

A.2.2. Results for the Tower Building Task (T3)
We evaluated our approach for solving the tower building task (T3) starting in 100
random initial states using the updated action models. We repeated this 25 times using
different sets of demonstrations in each case. We show the results in Figure A.5. Using
MaxVal-B*, our approach was able to compute plans to stack the blocks and achieve
between 60% and 65.7% of the desired relations for this task (Figure A.5-top left). In
comparison, before practicing the task, MaxVal-B satisfied between 48% and 52.2% of
the relations on average (Figure 5.14-bottom left).
When allowing our algorithm to sample only 50% of the templates for each action

during node expansion, MaxVal-B* (0.5) was also able to solve the task to satisfy
between 56.2% and 63.5% of the relevant relations (Figure A.5-top right). Despite
approximating each action’s goal distributions using only half the stationary objects in
the scene, MaxVal-B* (0.5) achieves a similar performance to that of MaxVal-B*. This
demonstrates that the learned action template relevance distributions after practicing
the task (Figure A.1) do in fact reflect the useful ways of applying each action. Our
approach is thus able to adapt and sample a subset of the templates in each iteration
based on their relevance.
Additionally, when using a Bellman criterion, Bellman-ε* was able to compute

solutions that satisfy between 59.2%-64.7% of the relations (Figure A.5-middle left).
When learning from ten task demonstrations, MaxVal-B*, MaxVal-B* (0.5), and Bellman-
ε* achieved a similar success rate of 65.6%, 62.8%, and 64.7%, respectively. For this,
MaxVal-B* and MaxVal-B* (0.5) required 10 and 10.3 actions on average, respectively.
On the other hand, Bellman-ε* computed more efficient plans consisting of only 9.12
actions on average. By optimizing the expected intention likelihood, the Bellman-based
approach is less likely to satisfy irrelevant relations, and therefore tends to favor actions
with a high goal probability. For instance, 5.5% of the actions applied by MaxVal-B* in
the solution plans corresponded to the action of moving the lower-most block in the
tower before stacking blocks on it. On the other hand, this action constituted only 2%
of the plans computed by Bellman-ε* on average since the exact position of the tower
on the table is irrelevant for the task.

Furthermore, we highlight the fact that the teacher demonstrations for this task did
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Figure A.5.: Results for the tower building task (T3) after practicing the task and
updating the action goal distributions. See Section A.2.2 for details. Bottom
row: the distribution of satisfied relations using MaxVal-ε over 2,500 test
cases when learning from six demonstrations before (left) and after (right)
practicing the task. MaxVal-ε constructed towers satisfying 60%-70% and
90%-100% of the relations in 27.6% and 22.4% of the cases, respectively.
Using the updated action models, MaxVal-ε* achieved 60%-70% and 90%-
100% of the relations in 36.4% and 55.4% of the cases, respectively.
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Figure A.6.: The planning times of our approach after 50,000 iterations when solving the
aligning blocks task (T2) given two (left) and ten (right) demonstrations.

not include actions for unstacking blocks by moving them back to the table for example.
This makes it challenging to recover from suboptimal solutions and explore alternative
solutions during the tree search. Nonetheless, the above three variants of our approach
computed solutions that satisfy between 56.2% and 65.7% of the relevant relations over
all numbers of demonstrations on average. This corresponds to constructing 1-2 towers
of various heights, see Figure 5.15 for examples. For this task, we achieved the best
performance with respect to the number of satisfied relations when using a max-value
strategy and an ε-greedy exploration criterion. We show this in Figure A.5 for the case
of six demonstrations, in which MaxVal-ε* was able to satisfy 83.4% of the relations on
average using the updated action models.
Finally, the bottom row of Figure A.5 shows the distribution of satisfied relations

using MaxVal-ε over the 2,500 cases we tested before (left) and after (right) practicing
the task for the case of six demonstrations. MaxVal-ε constructed towers satisfying
60%-70% and 90%-100% of the relations in 27.6% and 22.4% of the cases, respectively.
Using the updated action models, MaxVal-ε* achieved 60%-70% and 90%-100% of the
relations in 36.4% and 55.4% of the cases, respectively.

A.3. Planning Time
In this section, we report selected planning times (after 50,000 iterations) of our
approach for the aligning blocks and tower building tasks (T2 and T3), which we
show in Figures A.6 and A.7, respectively. These correspond to the experiments in
Sections 5.7.5 and 5.7.7 and are averaged over 2,500 cases for all tasks and approach
variants. See the discussion in Section 5.7.8.
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Figure A.7.: The planning times of our approach after 50,000 iterations when solving
the tower building task (T3) given six (left) and ten (right) demonstrations.

A.4. Improvising Task Solutions Based on the Initial
State

In this section, we demonstrate the ability of our approach to improvise task solutions
based on the initial state without requiring the user to specify a concrete goal to achieve
(see Section 5.7.10).

A.4.1. Adapting to Clutter in the Scene
Figure A.8 shows qualitative examples of solving the tidy-up task (T4) in initial states
including clutter caused by objects unrelated to the task. Here, it physically infeasible
to achieve all relevant relations demonstrated by the teacher (e.g., satisfying object
positions relative to the table). By formulating an optimization problem, our approach
improvised feasible configurations that satisfy as many pairwise relations as possible.

A.4.2. Starting from a Partially-Solved Configuration
We tested our approach for solving the aligning blocks task (T2) in starting states that
represent partially-solved arrangements. We generated 100 initial states in which the
blocks are aligned as in the demonstrations and then randomly changed the poses
of two blocks. We used our approach (Bellman-ε*) to solve the task in these cases
using models learned from two to ten demonstrations after practicing the task. We
repeated this 25 times using different demonstrations in each case. We report the
results in Figure A.9. Our approach was able to achieve 97.2% - 97.5% of the relations
by applying only 7.4 - 7.9 actions on average. As the initial states already represent
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Figure A.8.: Examples of solutions by our approach for the tidy-up task (T4). Despite
clutter caused by task-irrelevant objects, our approach improvised feasible
solutions that satisfy as many relations as possible by achieving partial
object arrangements on different positions on the table.

good solution initializations, our approach was able to quickly converge to desirable
goal configurations, see Figure A.10 for an example. In comparison, when starting
in completely random initial states, Bellman-ε* required 11.5 - 11.7 actions to achieve
88.1% - 92.3% of the relations on average (see Figure A.3-bottom left and Figure A.4-
bottom right).
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Figure A.9.: Results for solving the aligning blocks task (T2) in partially-solved states
in which four of the six blocks are already aligned in a row on the table.
As the initial states represent good solution initializations, our approach
was able to quickly converge to desirable goal configurations to achieve
97.2% - 97.5% of the relations using 7.4 - 7.9 actions on average (compare
to Bellman-ε* in Figures A.3 and A.4 when starting in random states).

Figure A.10.: Example case of solving the aligning blocks task (T2) starting with four
blocks already aligned on the table, see Figure A.9.
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A.5. Real Robot Experiments
We implemented and tested our teach-and-improvise approach on a real PR2 robot
(see Section 5.7.11 for details). We relied on out-of-the-box solutions for perception and
motion planning to estimate the state and execute the plans computed by our algorithm,
respectively. Figures A.11 and A.12 show examples of two tasks we considered. By
incorporating feasibility constraints in planning, our algorithm enables the robot to
compute sequences of actions leading to desirable object configurations, which the robot
can execute in practice.

Figure A.11.: Top: examples of demonstrated goals we provided to the robot. Bottom:
using our approach, the robot was able to compute and execute a feasible
plan to open the box and align the lid next to the box on the table.
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Figure A.12.: First row: examples of demonstrated goals we provided to the robot.
Second and third rows: using our approach, the robot was able to compute
and execute feasible plans to arrange the boxes on the table.
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