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Zusammenfassung

In der Mitte des letzten Jahrhunderts erschienen die ersten Arbeiten iiber monadi-
sche Logiken zweiter Stufe. Das Interesse an diesen Logiken lag zunachst hauptsachlich
an Entscheidbarkeitsfragen von arithmetischen Theorien. Die monadischen Logiken
zweiter Stufe iiber Worter und Baume gehoren zu den ausdrucksstarksten Logi-
ken, die noch entscheidbar sind. Gegenwartig werden monadische Logiken auch in
der Informatik zum Zweck der formalen Systemverifikation verwendet. Entschei-
dungsverfahren fiir diese Logiken wurden in verschiedenen Werkzeugen wie z.B.
MONA, MOSEL und dem STEP System implementiert und teilweise erfolgreich in
unterschiedlichen Anwendungsgebieten, vor allem in der Hardware- und Protokoll-
verifikation, eingesetzt.

Der Erfolg der auf monadischen Logiken basierten Verifikationswerkzeuge wird al-
lerdings durch zwei grofle Nachteile, die diese Logiken mit sich bringen, erheblich
vermindert. Zum einen sind diese Logiken wegen ihres geringen Abstraktionsgrades
als Spezifikationssprachen ungeeignet; die Formalisierung von Systemen und Sy-
stemeigenschaften in diesen Logiken bedarf eines hohen Mafles an Erfahrung und
Detailkenntnissen und ist mit der Programmierung in Assembler vergleichbar. Zum
anderen haben die Entscheidungsverfahren fiir diese Logiken eine sehr hohe Berech-
nungskomplexitit; oft brechen die oben genannten Werkzeuge ihre Berechnung aus
Mangel an Speicherressourcen ab.

Die vorliegende Arbeit stellt mehrere Verfahren vor, die die erwahnten Nachtei-
le iberwinden und machen somit die monadischen Logiken fiir die Praxis besser
nutzbar. Nachfolgend stellen wir die Beitrage in unserer Arbeit dar. Wir entwickeln
zunachst eine neue auf monadische Logik iiber endliche Baume basierende Spezifi-
kationssprache, die intuitiv und benutzerfreundlich ist und Sprachkonstrukte bereit-
stellt, die einen hoheren Abstraktionsgrad ermoglichen. Auflerdem geben wir eine
syntaktische Charakterisierung von Klassen von Formeln der neu entwickelten Spe-
zifikationssprache an, die eine akzeptable Berechungskomplexitat haben.

Desweiteren untersuchen wir das Problem der sogenannten Zustandsraumexplosion:
Bei der Verifikation von groflen Systemen in monadischen Logiken kann der Zu-
standsraum nicht-elementar grof§ werden. Um dieses Problem zu vermeiden, geben
wir ein Verfahren an, das fiir die Generierung von Gegenbeispielen eine effektive und
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nicht-elementare Verbesserung gegeniiber den herkommlichen Entscheidungsverfah-
ren bietet.

Schlieflich beschaftigen wir uns auch mit der Frage, wie man, ausgehend von der
Kernidee dieser Methode zur Generierung von Gegenbeispielen, monadische Logi-
ken tber endlichen Wortern zum Nachweis von Eigenschaften nicht-terminierender
Systeme benutzen kann. Unsere Resultate ergeben, dal man sowohl Sicherheits- als
auch Lebendigkeitseigenschaften in monadischen Logiken tuber endlichen Wortern
formalisieren und dadurch automatisch beweisen kann.

Die Praxistauglichkeit unserer theoretischen Resultate stellen wir durch die Im-
plementierung von verschiedenen Verifikationswerkzeugen (LISA, MONACO und
QUBOS) unter Beweis. Anwendbarkeit und Skalierbarkeit dieser Werkzeuge wer-
den anhand nicht-trivialer Fallbeispiele evaluiert.



Preface

Fundamental work on monadic second-order logics began about forty years ago.
These logics are amongst the most expressive logics that are known to be decid-
able. Their first application domain was mathematics, where they were for example
used to decide theories of arithmetics. Recently, they have also been applied to
formally reason about a number of problems in computer science: despite their non-
elementary complexity, decision procedures for monadic logics over finite words and
finite trees have been implemented in numerous tools (e.g. MONA, MOSEL, and
STEP) and have been successfully applied to problems such as the verification of
hardware and software systems. These logics suffer, however, from two drawbacks
that strongly limit their application, namely the low-level language they provide
to specify systems and properties, and the demanding computational complexity of
their decision procedures.

To make system verification based on monadic logics more viable in practice, in
this thesis we systematically address both these problems at once. To this end, we
first improve the existing approaches (i) by formalizing a new specification language
which is expressive, intuitive and more user-friendly, and (ii) by providing a handle
on the complexity of the logics’ decision procedures. Second, we develop new efficient
algorithms and approaches to cope with the state-space explosion problem. Third,
we investigate how to employ the monadic logic over finite words to reason about
non-terminating systems. Finally, we implement our methods in three tools (LISA,
MONACO, and QUBOS) and show their applicability and scalability.
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Chapter 1

Introduction

In this chapter we provide an overview of the thesis. We begin by motivating our
work and proceed with a presentation of its main goals and results. Finally, we give
an outline of the subsequent chapters.

1.1 Motivation and Scope

In the last two decades, computer systems have become a fundamental component
in almost all fields of everyday life. The use of these systems ranges from mundane
applications like computer games to highly critical applications such as the control
of nuclear power plants. Whereas failures in mundane systems lead to the frus-
tration of users, failures in critical systems may have disastrous consequences. For
instance, failures in medical instruments could lead to the death of patients, failures
in electronic commerce systems could lead to the bankrupt of financial institutes,
and failures in the guidance systems of planes could lead to human casualties.

Hence, for all systems used in critical and life-threatening applications, i.e. for
safety-critical systems, failures are inadmissible. In order to avoid these errors, one
should ensure that all possible behaviors of a system, and in particular of a safety-
critical system, are faultless. This task is called system verification and work in this
area was already initiated in the late 60’s by Floyd [Flo67] and Hoare [Hoa69].

The development of reliable and correct hardware and software systems is still
a main challenge in computer science. Besides for the dangerous consequences of
faulty systems, the costs of correcting errors discovered during the design phase of
systems are much smaller than the costs needed for correcting errors of systems
that are already deployed. These economic reasons have encouraged the industry
to collaborate with research institutes and to sponsor numerous projects with the
objective of developing methodologies that support the construction of correct sys-
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tems.

In the following, we discuss two approaches that are used to tackle the problem of
establishing the correctness of systems. The first approach is simulation and testing.
It has a widespread use in the industry because it is simple and well-understood.
The second approach is formal methods. This approach is presently less used in
the industry than the previous approach because it requires thorough knowledge of
mathematics and logics on the part of engineers and increases significantly the costs
of the system development.

Simulation and Testing

Conventional methods for simulation and testing allow for the validation of some
selected behaviors of a system. Testing is performed on systems before their de-
ployment and it consists of calling systems with selectively generated inputs for
system parameters like buffer sizes, list lengths, etc. Simulation is similar to testing,
however, it is performed on abstract models of actual systems.

In order to increase the chance to uncover errors, benchmarks are built by making
“clever/educated guessing” of concrete input values of the parameters such that a
systematical testing of all parts of the system under consideration is possible. The
programming of benchmarks is, however, for large and unintuitive systems a non-
trivial and time consuming task and thus, to keep the costs of system development
minimal, in practice, the concrete input values for the parameters are generated
randomly. While simpler and faster to set up, random testing is less successful than
testing using clever benchmarks.

For systems with a finite (and small) number of behaviors simulation and testing
can be exhaustive. They are in this case complete, i.e. if an error exists in a system
than it can be uncovered. Since systems generally have a very large (or even infi-
nite) number of possible behaviors, simulation and testing results tend to become
impracticable. As already stated by Dijkstra [Dij72], the classical simulation and
testing methods can only prove the presence not the absence of failures in systems,
and consequently, they fail to establish the correctness of systems.

Formal Methods

Formal methods, in contrast to conventional testing and simulation, offer an appro-
priate framework in which safety critical systems can be investigated for correctness.
Formal methods are mathematical notations and techniques designed to specify sys-
tem properties in an unambiguous way and to carry out mathematical proofs that
the specified properties are satisfied by the system. Depending on the degree of
proof automation, we distinguish three approaches to system verification.
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The first approach is called interactive theorem proving and is usually based
on very expressive undecidable logics such as higher-order logic. In this approach
theorem provers provide specification languages in which system properties, as well
as system descriptions, can be formalized. In addition, they provide a logical de-
duction systems where proofs are constructed under interactive user guidance. The
expressive power of the underlying logic reflects the high-level nature of the provided
specification language. Generally, with such specification languages, problems can
be formalized in a fairly adequate and natural way. In interactive theorem prov-
ing tools, proof automation is usually provided to some extent, e.g. in the form of
proof tactics. However, great skill is required on the part of the software engineer to
guide the proof search process. Examples of successful and widely used interactive
theorem provers are ISABELLE [Pau94|, PVS [ORRS96], and HOL [Gor93].

The second approach is called automatic theorem proving and is based on semi-
decidable logics such as first-order logic. Automatic theorem provers are often re-
ferred to as “push-button” tools, which indicates that they are easy to use and do not
require any special background in proof construction, since no interaction of the user
with the proof system is required at all. Nevertheless, some familiarity with logic is
still needed in order to model systems and formalize properties within the logic un-
der consideration. In these tools, it is not guaranteed that the proof search process
always terminates. Examples of automatic theorem provers are OTTER [MW97]
and SPASS [WAB'99].

The third approach is called complete theorem proving and this is the approach
we are dealing with in this dissertation. Complete theorem proving sacrifices ex-
pressiveness in favor of complete automation, that is, the problem of automatic
verification is tackled by employing less expressive logics than in the previous two
approaches, and for which decision procedures exist. The decision procedures form
the kernel of the deduction mechanism of such provers.

The most beneficial advantage of many complete theorem provers is that it can
often be easily equipped with a counter-example mechanism, i.e. if the system prop-
erty to be checked is not valid, then an example demonstrating how the formula
can be falsified is automatically generated. In terms of system verification, this
means that the provers are able to generate system behaviors that violate the given
specification. Such faulty behaviors are used afterwards to debug the system and
to localize the failure. The main drawback of this approach is its limited scope of
applicability and this of course is not surprising because of the tradeoff between ex-
pressiveness, i.e. what systems and properties can be formalized and analyzed, and
the amount of automation, 7.e. to which extent the verification can be performed
automatically.

In the following, we discuss two kinds of system verification methods based on
automatic theorem proving and illustrate the scope of our dissertation.
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Model Checking

Model checking® is a special kind of automatic verification method. While the
verification problem in theorem proving consists of proving the validity of a given
formula, i.e. proving the satisfiability of the formula in all interpretation domains,
the verification problem in model checking consists of proving the satisfiability of
a given formula for a specific interpretation domain. Moreover, the interpretation
domains in model checking correspond to finite models of systems. Typical systems
here are concurrent finite systems, digital circuits and communication protocols;
more generally, systems whose intricacy resides in control rather than in data. Model
checking can also be applied to systems with infinite number of states and in this
case preprocessing techniques like abstraction [CGL94| are used to extract systems
with finite numbers of states.

In practice, we generally distinguish two approaches to model checking. The
first approach is called temporal logic model checking [EE81, QS82]. In this ap-
proach systems are modeled as finite transition systems and system properties are
expressed using temporal logics which are kinds of decidable modal logics such as
the Linear Temporal Logic (LTL [Pnu77]) and the Branching Time Temporal Logic
(CTL [BAMP81, EE81]). The verification algorithms in this approach differ mainly
in the state representation of the transition graphs. The model checkers of the early
80’s [HK91, BCDM86, CES86| used an explicit state representation of the transition
graphs in their implementations. The verification task is carried out by an exhaus-
tive traversal search through the reachable state-space and by the validation of the
specification in each state. The use of these model checkers allowed for the automatic
discovery of nontrivial errors in circuits and protocols of small size. Later, in the
early 90’s, work on Binary Decision Diagrams (BDDs) [BRB90] laid the foundation
for a new generation of model checkers that use an implicit (symbolical) represen-
tation of the transition graphs. The transition graph is represented by Boolean
formula using BDDs and the verification task is then a fixed-point computation of
predicate transforms that are extracted from the specification to be checked and
the transition graph [McM92]. The use of BDDs has increased the scope of verifica-
tion capabilities of model checkers, as it is demonstrated, using the SMV [McM92]
model checker, by the verification of the cache consistency protocols for the Encore
Gigamax [MS91] and the IEEE Futurebus+ standard [CGH193].

The second approach to model checking is based on automata theory. The
system to be modeled is converted into a finite automaton that exactly accepts
the behaviors of the system, and the system property to be checked, expressed often
in LTL, is negated and then translated into finite automaton that accepts exactly
the forbidden behaviors of the system. The verification task is then reduced to the

!Tn this thesis, we focus only on model checking of finite-state systems.



§ 1.1 MOTIVATION AND SCOPE 3

automata-theoretic problem of checking the emptiness of the intersection automaton
of the two automata [HK90, Kur94]. There are also two different ways to accomplish
the verification task: one way consists of constructing the intersection automaton
and checking thereafter its emptiness using graph search algorithms. Another way,
called on-the-fly model checking, consists of building the intersection automaton
incrementally: a new portion of state-space is constructed only if no counter-example
to the property is detected. So, the construction of the intersection is stopped when
a counter-example is found. The on-the-fly tactic is adopt by the SPIN model
checker [Hol97] which was used in many successful applications.

Despite several success stories of model checking in practice, there are limitations
on the use of this verification method in terms of the size of the system. It is often
the case that model checkers are faced with the necessity to construct far too many
states, a problem referred to as the state-space explosion problem. In recent years,
many researchers have been developing promising techniques to cope with the state-
space explosion problem, e.g. abstraction [CGL94], symmetry [CJEF96, ES93, ID93|,
partial-order reduction [GP93, Pel94], and bounded model checking [BCCZ99].

System Verification Based on Monadic Second-order Logics

Monadic second-order logic has an extremely simple syntax: formulae are con-
structed from first-order and second-order variables (monadic predicates), successor
relations and are closed under Boolean connectives and quantification over first-
order and second-order variables. There are several interpretation domains for the
monadic second-order logic and we will only focus on those logics that are inter-
preted over words and trees. More precisely, we consider the monadic second-order
logics.

e over words (also called monadic second-order logics of one successor)

— M2L-STR and WS1S over finite words, and

— S1S over infinite words,
e over trees (also called monadic second-order logics of two successors)

— M2L-TrREE and WS2S over finite trees, and

— S28S over infinite trees.

Historically, research on monadic second-order logics over words has been triggered
by work on decision problems for weak systems of arithmetic and by work on the de-
scription of the dynamic behavior of non-terminating circuits [Chu62, TB73]. About
forty years ago, Biichi [Biic60], Elgot [Elg61], and Trakhtenbrot [TB73] already for-
malized the connection between finite automata on finite words and monadic logics
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over finite words. They proved that the expressive power of these logics and that
of regular languages coincide, and they gave an effective procedure to build finite
automata on finite words from formulae and vice versa. Biichi [Biic62] and Mc-
Naughton [McN66] have shown that the same connection holds between w-regular
languages and the monadic logics over infinite words, and described how Biichi au-
tomata can be built from monadic formulae and vice versa.

The monadic logics over trees are a generalization of the monadic logics over
words. Doner [Don70] and Thatcher and Wright [TW68] showed that these logics
have the same expressive power as regular tree languages. For this purpose, they
used finite automata on trees. Rabin [Rab69] showed the same equivalence between
the monadic logics over infinite trees and the w-regular tree languages.

The finite automaton for a formula of these logics is constructed inductively
over the structure of the formula. The logical connectives for negation, disjunction,
and conjunction correspond to the automata-theoretic operations complementation,
union, and product. The quantification over monadic predicates (the other kinds of
quantification are inessential, as they can be converted into monadic quantifications)
corresponds to the automata-theoretic projection operation. A formula is valid if
and only if the associated automaton accepts all the words? over a given alphabet.
If the formula is not valid, then the associated automaton can be analyzed for
satisfying examples as well as counter-examples. Meyer [Mey75| showed that the
transformation of a formula into an automaton requires, in the worst case, non-
elementary space and time. That is, the minimal automaton representing a formula
of size n may require space whose lower bound is an iterated stack of exponentials
whose height is proportional to n.

Despite their atrocious complexity, the decision procedures for monadic logics
over finite words and finite trees have been implemented in numerous tools, e.g.
MONA [KMO01], Mosel MC97], MOSEL? [KMMG97], and the STEP system [MBBC95],
and have been successfully applied to problems in diverse domains, including hard-
ware [BK98] and protocol [HJJ96] verification. The MONA system is one of the
best-known and widely used tools. MONA follows the automata construction de-
scribed above: it translates formulae into minimal deterministic finite automata
whereby it uses BDDs [Bry86, Bry92] for a compressed representation of the tran-
sition function of automata.

The verification of a system Sys with respect to a property Spec is typically
performed as follows: first, the system Sys and the property Spec are encoded as
monadic second-order formulae ®g,, and ® gy, ,respectively. Second, the determinis-

2Models in monadic second-order logics over words are identified with words.

3This tool and the previously mentioned one have up to lowercase/uppercase the same names.
They were, however, independently developed at the university of Tiibingen and the university of
Dortmund, respectively.
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tic finite automaton corresponding to the implication ®gy; — ® gy Over the alphabet
B", where n is the number of the free variables occurring in ®g,, and ® gy, is con-
structed. Finally, the automaton is analyzed: if it accepts all words then the above
implication is valid which means that the system behaves correctly with respect to
the specification. If the automaton does not accept all words over B", then there is
some word representing a possible behavior of the system that does not satisfy the
specification. In this case, two words (examples) of minimal length can be generated:
one of them satisfies the specification* and the other one violates the specification.

From a theoretical point of view, the system verification approach based on
monadic logics is superior to the temporal logic model checking approach at least in
two aspects. First, the above presented monadic logics are more expressive than the
temporal logics LTL and CTL. This means that the class of systems and system
properties that can be formulated and analyzed using monadic logics is larger than
the class of systems and properties that can be analyzed by LTL and CTL model
checking. Moreover, the monadic logics are non-elementary more succinct, that
is, some system descriptions and properties can be expressed as monadic formulae
that are non-elementary shorter than their equivalent temporal formulae. Second,
in contrast to temporal logics, in monadic logics we have a parameter that can be
used to explicitly reason about points and intervals of time, data paths in circuits,
or numbers of agents in protocols. This allows for the analysis of parameterized
systems like n-bit adders and counters.

From the practical side, model checking is less resource intensive than system ver-
ification based on monadic logics. The LTL model checking problem for example is
PSPACE-complete [SC85] and the CTL model checking problem is in deterministic
polynomial time [Wol86], whereas the monadic logics are non-elementary decidable.
In this thesis, we address this practical deficiency of monadic logics.

1.2 Goals

The overall goal of this thesis is to make system verification based on monadic logics
more usable in practice. This includes:

(1) The improvement of existing approaches in two respects: (i) to extend specifi-
cation languages with high-level features that make these languages more user-
friendly, and (ii) to provide a handle on the computational complexity of the
decision procedures.

(2) The development of new efficient algorithms and new approaches to cope with
the state-space explosion problem.

“We assume that the specification ® Spec i8 satisfiable, which can be separately checked.
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(3) The investigation of reasoning about non-terminating finite systems using monadic
logics over finite words.

(4) We show the applicability of system verification based on monadic logics on
non-trivial examples.

In the following, we illustrate these objectives in more detail.

A High-Level Specification Language with a Complexity Es-
timation Mechanism

In the verification approach based on monadic logics, system descriptions and system
properties are both formulated directly within the language of the underlying logic.
These “specification languages” usually do not provide any high-level programming
concepts that help the user to model application problems in a structured and
comprehensible way. From our experience, we can best compare these languages
with assembly languages, where users often struggle with painful encoding tasks.

On the other hand, it is a fact of life that the step from informal towards for-
mal requirements (this step is also called requirements definition in the software
development process) cannot be formally checked: it is not possible to prove in a
mathematical way that the informal requirements that one may have in mind are
captured by some formal specification formulated in some logic. In this phase of
the software development process, one traditionally trusts the developer’s familiar-
ity with formal specifications as well as the abstraction power that a specification
language offers to model requirements in an adequate way. If the specification lan-
guage lacks high-level programming notations, the gap between the informal and
formal sides is even larger. The bigger the systems to be modeled are, the more
dramatic the situation becomes. We think that in such situations the confidence
in formal, but incomprehensible, specification is low and thus, proving correctness
of systems is of arguable value. Another problem which appears with unstructured
specification is that the user has no control over the computational complexity of
the verification task. This means that the user cannot estimate the size of the au-
tomaton that has to be constructed and therefore the running time of the decision
procedure is unpredictable. More importantly, the user often has no support to or-
ganize the specification in such a way that the computation costs is still admissible
and realistic.

Experience indicates that, although tools like MONA, Mosel, and the others
mentioned above, are powerful aids to verification, their usefulness is limited by the
two aforementioned problems [BK98]. Our aim is therefore to develop a specification
language on top of WS2S, which, similar to high-level programming languages,
provides high-level programming primitives that allow a structured specification in
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a natural and comprehensible way. Additionally, the specification language should
offer means that can be used to control the complexity of the verification problem
under consideration.

The State-Space Explosion Problem

Although verification tools based on monadic logics have been successfully applied
to an interesting class of problems, there is still a large class of problems for which
most tools abort the automata construction due to limited space and therefore fail to
achieve the verification task. This is not surprising since for example for concurrent
systems with large number of components we have to construct automata with
very large number of states. In other words, we have to deal with the state-space
explosion problem. This is analogous to state-space explosion in model checking
where the state-space is exponential in the number of Boolean state variables, except
that for monadic logics the number of states in the constructed automaton can be
non-elementary in the size of the input formula! Besides the state-space explosion
problem, there is an additional problem stemming from the internal representation
of the automata. Like the system MONA, most other tools represent the transition
function of automata using BDDs, which become too big and unmanageable when
the variable ordering is unfavorable.

In order to cope with the state-space explosion problem, we aim to develop new
techniques and algorithms, not necessarily based on BDDs, that allow the practical
verification of large systems. We investigate the question of whether it is possible
to develop efficient (elementary instead of non-elementary) verification methods by
weakening the properties to be checked. We restrict ourselves to monadic logics over
words as well as to the case where for a given formula and a natural number n, there
are (counter-)models of length n for the formula.

Expressing Liveness Properties in M2L-Str and WS1S

For non-terminating concurrent systems, one usually distinguishes between two
kinds of properties: safety and liveness [AS85]. Safety formulae are properties of
infinite system computations (behaviors) that state that some “bad thing” does not
happen in the computation. A safety property does not hold for a computation if
a finite prefix of the computation contains a position where some “bad thing” hap-
pens, and thus safety properties can be formalized and analyzed using the monadic
logics over finite words, M2L-STR and WS1S. Liveness formulae are properties
of infinite computations that state that a “good thing” happens in the computa-
tion. A liveness property cannot be checked using finite prefixes of computations,
as the required “good things” can still occur in the rest of the computations. Thus,
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the formulation of liveness properties in monadic logics over finite words appears
a priori impossible. The S1S logic on the one hand, permits the formulation of
liveness properties, but on the other hand is intractable. Indeed, there is no efficient
implementation of the decision procedure for this logic.

Our aim here is to investigate if monadic logics over finite words can be used to
express liveness properties.

Applicability and Scalability of our Approaches

Our work does not only focus on the theoretical side, but also highlights some
aspects of the practical side. We find it important to evaluate our ideas and contri-
butions by implementing our approaches in concrete tools and then showing their
usability, applicability, and scalability. Our goal is to provide tools that can be ef-
fectively employed in different phases of the system development process to ensure
the correctness of software and hardware systems.

1.3 Main Results

The main results that we have established can be summarized as follows.

LisaA

We developed a new specification language, LISA, built on top of the weak monadic
second-order logic over finite trees and based on feature trees. LISA provides a
means for abstractly formalizing data using type declarations. Types structure
the specification and interact with defined predicates by restricting the scope of
quantification to elements of the defined types. Through the use of types, LISA
provides a new way for specifiers to estimate the complexity of their specifications.

Bounded Model Construction

In order to tackle the state-space explosion problem, we have explored the possibility
of providing more efficient alternatives for counter-example generation than using
standard automata-theoretic decision procedures for monadic logics over words. The
problem is, given a monadic formula ¢ and a natural number k, to determine if ¢
has a word model of length k. Since we are concerned with constructing bounded
models for formulae we call our problem bounded model construction, or BMC for
short.
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For M2L-STR, we have obtained a positive result: we can generate a formula in
quantified Boolean logic (QBL) that is satisfiable if and only if ¢ has a word model
of length k. The formula generated is polynomial in the size of ¢ and k, and can be
tested for satisfiability in polynomial space.

We also have investigated bounded model construction for other monadic log-
ics and established negative results. For WS1S we show that BMC is as hard as
checking validity, which is non-elementary. This result is somewhat surprising since
WS1S has the same expressive power and complexity as M2L-STR and their de-
cision procedures differ only slightly. Our investigations showed that at least for
counter-example generation, M2L-STR is the superior choice. Moreover, based on
all these results we solved the open question whether the logic WS1S can be en-
coded in a validity-preserving way in the logic M2L-STR in elementary space and
time. We proved that there is no such elementary encoding.

Reasoning about Non-terminating Systems

Using M2L-STR, we also showed how systems with infinite behaviors can be verified.
This seems a priori impossible since this logic handles finite behaviors (words). We
succeeded to embed LTL model checking in M2L-STR and demonstrated that we
can use finite automata on finite words instead of Biichi automata. This embedding
sets the basis for a comparison of LTL bounded model checking and bounded model
construction for M2L-STR.

The Lisa, MoNACo, and QuBos Tools

Motivated by our positive theoretical results, we have evaluated our ideas by imple-
menting them and carrying out empirical tests.

The specification language LISA is implemented in a prototypical system that
we also call LISA. It is currently coupled with the MONA system. The LISA system
takes as input a program written in the LISA syntax and produces code in WS2S
or in WS1S, which is then processed by MONA. We evaluated the LISA system by
considering several case studies and the first results are very promising.

We have implemented the bounded model construction for M2L-STR in a system
that we call MONACO. This system takes an M2L-STR formula and a bound
(natural number) k£ and produces a quantified Boolean formula whose validity is
then decided using a QBL solver. We have compared MONACO with the MONA
system and our results document in most applications the superiority of MONACO.
With this new tool, we are able to analyze very large systems expressed in the
monadic logic M2L-STR.

We have developed QUBOS, a satisfiability solver for quantified Boolean Logic.
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This work arose from our work on bounded model construction. First, we have de-
fined a useful structural property of quantified Boolean formulae based on a notion
of quantifier scope and have identified domains such as bounded model construction
where formulae exhibit this natural class. Second, we have described how standard
techniques like simplification and miniscoping can be combined to exploit the struc-
ture present in these formulae. Third, we have demonstrated empirically that our
tool outperforms other state-of-the-art QBL solvers.

1.4 Dissertation OQutline
The rest of this thesis is structured as follows:

Chapter 2 presents the formal background needed in the following chapters.
Most of the terminology we use is standard, nevertheless, in order to keep this
work as self-contained as possible, we have tried to provide all the definitions
using mostly our own notation. In this chapter, we describe the relationship
between regular languages (Section 2.2.1), finite automata (Sections 2.2.2-
2.2.4), and monadic second-order logics (Sections 2.4-2.5). We discuss their
expressive power and computational complexity. We also introduce the MONA
system (Section 2.6) and show by means of examples how system verification
is performed using MONA (Section 2.7).

Chapter 3 introduces the LISA specification language. We define the kernel lan-
guage (Section 3.2) and the type system (Section 3.4) and we provide a com-
pilation of the LISA kernel into WS2S (Section 3.3) as well as a compilation
of the LISA types into bottom-up deterministic tree automata (Section 3.4.2).
We illustrate the use of LISA by an example (Section 3.4.4). We treat the
special case of LISA where the trees resemble words (Section 3.6) and report
on related work (Section 3.7).

Chapter 4 formulates the bounded model construction for several monadic second-
order logics on finite words (Section 4.2) as well as on infinite words (Section
4.3). For the case of finite words, a positive result is established for the logic
M2L-STR (Section 4.2.1) and a negative complexity result is established for
the logic WS1S (Section 4.2.2). For the case of infinite words, a negative result
is established for the logic S1S (Section 4.3.1). Further results are established
for first-order fragments of S1S (Section 4.3.2 and Section 4.3.3).

Chapter 5 deals with the embedding of the LTL model checking problem in
M2L-STR. We show how Biichi automata, finite-state systems, and LTL can
be encoded in M2L-STR (Section 5.3). We prove then that both the validity
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problem and the model checking problem for LTL can be decided using the
MONA system. Based on these results, we show that the bounded model
constructor for M2L-STR can be used without loss of efficiency as a bounded
model checker for LTL (Section 5.4).

Chapter 6 describes the MONACO system which implements the bounded model
construction approach for M2L-STR (Section 6.2). We report on several ap-
plications from various domains (Section 6.3).

Chapter 7 introduces the quantified Boolean solver QUBOS. This solver is used
by the MONACO system. Although many solvers for quantified Boolean logic
already exist, in this chapter we motivate the need for providing a new solver
for this logic. We describe the problems that we intend to solve with QUBOS
and we explain which certain kinds of structure are present in these problems
(Sections 7.2-7.3). We formalize a notion of structure based on relative quan-
tifier scope and define how the structure in a problem can be measured. We
describe (Section 7.4) the QUBOS system and present the techniques used in
it. Finally, we compare our system with other state-of-the-art solvers (Sec-
tion 7.5).

Chapter 8 is the concluding chapter which summarizes our work and in which
we discuss some goals for further research.






Chapter 2

Foundations

The subjects of this chapter are the mathematical concepts and notation used through-
out this thesis. These concepts essentially include the theory of regular languages,
finite automata, and monadic second-order logics. We will generally follow standard
text books [Str94, UAH7,] and the article [Tho90]. However, in some parts of our
exposition we will deviate from the standards and we use our own terminology.

2.1 Organization

The chapter is organized as follows. In Section 2.2, we introduce regular languages
and finite automata and briefly review the definitions of regular expressions, au-
tomata on finite words, Biichi automata, and automata on finite trees. In Sec-
tion 2.4, we introduce several monadic second-order logics of one successor and
their straightforward generalizations to logics of multiple successors. We explain in
Section 2.4.5 (respectively Section 2.5.3) in which sense the logics of one successor
(respectively multiple successors) are logics on words (respectively trees). In Sec-
tion 2.6, we describe the MONA system, which implements the decision procedures
of some of the aforementioned monadic second-order logics and demonstrate by an
example how system verification is performed using monadic logics. Finally, Sec-
tion 2.8 summarizes this chapter, and addresses drawbacks of system verification
using MONA.

2.2 Regular Languages and Finite Automata

Let X be a finite nonempty set of symbols and N be the natural numbers. For n € N,
we write [n] for the set {0,...,n — 1}. For a set S, we denote by Pow(S) the set of
all subsets of S.
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Words A finite word over ¥ of length n is a function w from [n] to X. We
use the notation |w| to denote the length of w and w;, instead of w(i), to denote
the symbol occurring in w at position ¢ and we write the sequence wy,...,w,_1
conventionally for w. The empty word, i.e. the function from () to X, is denoted
by e. The concatenation of two words ag,...,a,, 1 and by,...,b, 1 is the word
gy -y Qm_1,b0,...,bp_1. With X" we identify the set of all words of length n, the
Kleene-star operator * is defined by ¥* = J, .y X", and E* is defined as the set
Y*\{e}. A language L over X is a subset of X*. The concatenation of two languages
Ly and Ly is LiLy = {uv | u € Ly, v € Ly}. For L C X*, L* is the set {u € ¥* | u =
Zoy ... Ty, With z; € L for 0 < ¢ < n}. The right-quotient of a language L with a
language L' is defined by L/L' = {w | there is u € L' such that wu € L}.

An infinite word over ¥ is a function w from N to ¥. We write the infinite
sequence wy, ..., W,_1,... for w. With ¥ we denote the set of all infinite words
over ¥. Subsets of ¥¢ are called w-languages. For L C ¥* L“ is the set {a €
Y| a=wmoxy... with z; € L for i > 0}.

For the (w-)languages L1 and Lo, the set operations L; N Lg, L1 ULy, and Ly \ Lo,
stand for intersection, union, and set difference respectively. The language L stands
for the complement of L, which is ¥*\ L, if L C ¥* and ¥¥ \ L, if L C 3¢

2.2.1 Regular Languages

Regular expressions and the languages they describe are defined inductively as fol-
lows:

- 0, ¢, and a are regular expressions and describe respectively the empty language
(), the language containing the empty word {e}, and the singletons {a} for each
a €.

- If e; and e, regular expressions describing respectively the languages L, and Lo,
then e; + e, ere2, €7, and e; are regular expressions that describe respectively
the languages Ly U Lo, L1 Ly, L}, and L.

A regular language is a language described by a regular expression. Regular ex-
pressions built without the star operation * are called star-free reqular expressions
and they describe star-free reqular languages, which form a proper subclass of the
regular languages.

We extend regular expressions to w-regular expressions.

- If e; and ey are regular expressions describing respectively the languages L,
and Ly, then eje§ is an w-regular expression that describes the w-language
L.L§.
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- If r; and ry are w-regular expressions that describe respectively the w-languages
L, and Ls, then r; + 79 and 77 are w—_regular expressions that describe respec-
tively the w-languages Ly U Ly and L;.

An w-reqular language is a language described by an w-regular expression. w-regular
expressions built using star-free regular expressions are called star-free w-reqular
expressions. These expressions define the so called star-free w-regular languages,
which form a proper subclass of w-regular languages.

2.2.2 Finite Automata on Finite Words

Definition 2.2.1 (Finite Automata on Finite Words) A finite automaton A
over ¥ is a tuple (S, so,0, F') where S is a nonempty finite set of states, so € S is
the initial state, 6:S x ¥ — Pow(S) is the transition function, and F C S is a
set of final states. A run of A on a finite word wy,. .., w,_1 1S a finite sequence of
states Sq, . .., Sp With s;11 € 6(s;,a;), for 0 < i < n. A finite word is accepted by an
automaton if it has a run whose last state is final. The language L(A) denotes the
set of the words accepted by A. The size of A is defined as |S|. If §(s,a) is either
a singleton or empty for all s € S and a € X, then A is called deterministic finite
automaton (DFA) otherwise it is called nondeterministic finite automaton (NFA).

Regular expressions, deterministic and nondeterministic finite automata on finite
words are equiexpressive. That means any regular language can be accepted by a
DFA and a NFA and, conversely, any language accepted by a DFA or an NFA can
be defined by a regular expression. Like regular expressions, DFAs and NFAs are
both closed under Boolean operations. In Table 2.1 we summarize some known
complexity results for finite automata on finite words. The languages L; and L,
are regular and the size of their DFAs are m and n respectively. The language L is
arbitrary. In Table 2.2 we display the complexity of some problems for DFAs and
NFAs. The automaton A has n states.

2.2.3 Finite Automata on Infinite Words

Definition 2.2.2 (Biichi Automata) A Biichi automaton is a finite automaton
on infinite words equipped with a so called Biichi acceptance condition, which says
that an wnfinite word is accepted, if it has a run in which some final state occurs
infinitely often. That s, for an infinite word w = wyg,...,Wn_1,..., there is an
infinite sequence of states s = So, ..., Sn,... with s;11 € 0(si,a;), for all i € N and
where some final state s; € F occurs infinitely often in s. Analogously to finite
automata on finite words, if (s, a) is either a singleton or empty for all s € S and



18 § 2. FOUNDATIONS

operation | size of accepting automaton
LiU Ly m-n

LiNLs m-n

L/L m

Table 2.1: Closure operations and their complexity

problem complexity

DFA
emptiness L(A) = () NLOGSPACE-complete
equivalence L(A;) = L(As) | PSPACE-complete
minimization of A O(nlogn)

NFA
emptiness L(A) = () NLOGSPACE-complete
equivalence L(A;) = L(A3) | PSPACE-complete
minimization of A O(nlogn)

Table 2.2: DFA and NFA problems

a € X, then A is called a deterministic Biichi automaton (DBA) otherwise it is
called a nondeterministic Biichi automaton (NBA ).

NBAs and w-regular expressions are equiexpressive. The NBAs are closed under
all Boolean operations, whereas the DBAs are closed under the Boolean operations
except the negation. Thus, DBAs are strictly less expressive than NBAs.

2.2.4 Finite Automata on Finite Trees

Trees A (X-labeled-)tree t with branching factor £ € N over ¥ is a function from
D to ¥, where D is a prefix closed subset of [k]|*, i.e. (i) if ué € D, then u € D,
and (ii) if ui € D then uj € D, for all j < i. The elements of D are called nodes
and the empty word € € D is called the root. The node ui € D is a successor of u.
A node is an inner node if it has successors and is a leaf otherwise. If D is finite
then t is called finite tree otherwise it is infinite. If D is empty then ¢ is the empty
tree that we denote with A. We call ¢ k-ary if every inner node u € D has exactly
k successors. For k = 2, t is conventionally called a binary tree. We denote by T&
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(Bsg, for k = 2) the set of all finite X-labeled k-ary trees.
For convenience and to simplify the technical parts of some proofs, we represent

trees as terms. We write f(to,...,tx_1) for the tree whose root is labeled with f
and that has the subtrees %,..., tx_1 at the positions 0, ..., k — 1, respectively. In
a tree with branching factor k, we will identify a leaf labeled with a with the tree
a(to,...,tg_1), where t; is A for i < k. We will suppress A when writing trees as

terms, for example, writing f(a,b) for f(a(\, A),b(\, A))

Definition 2.2.3 (Bottom-up k-ary Tree Automata) A bottom-up k-ary tree
automaton A over X is tuple (S, Sy, 0, F'), where S is a finite set of states, So C S
18 a set of initial states, F' C S is a set of final states and § is a transition function
§:5% x ¥ — Pow(S).

A run r of a finite k-ary tree t is a finite k-ary S-labeled tree that is constructed
in accordance to the transition function § and the tree ¢ in the usual way. Instead
of formalizing the acceptance of trees using the notion of accepted runs, we use
our definition which is more appropriate for our needs. We extend the transition
function to trees ¢:S* x T& — Pow(S), such that 6(so,-- ., sk 1,t) yields all states
that can label the roots of all runs of A on ¢ starting from the states s, ..., sg_1.
The function ¢ is given by: for s € S, 0(s,...,s,A) = {s} and for t = a(ty, ..., tx_1),

6(80, .. .,Sk_l,t) = {8 S 5((]0, .. .,qk_l,a) | q; € 6(50, .. -,Sk—l,ti); 1< k} .

Now, we say that a tree t is accepted by the automaton A, if there is a s € F
with 3\(30, oy Sk_1,t) N F # (), where s; € Sy for # < k. The language accepted by
A, denoted by L(.A), consists of all accepted trees. The class of languages accepted
by bottom-up tree automata is called the regular tree languages.

If 6(so, ..., Sk 1,a)is either a singleton or empty for all (sg,...,s; 1) € Sanda €
Y, then A is called deterministic bottom-up k-ary tree automata (DBTA) otherwise
it is called nondeterministic k-ary tree automata (NBTA). Both DBTAs and NBTAs

are closed under the Boolean operations and have the same expressiveness.

Example 2.2.1 Let ¥ = {f,a,b}, k = 2, and the DBTA A = ([4],0, 6, {3}), where
the transition function J is defined by

6(1,2, f) ={3}, 6(2,1,f)={3},
5(0,0,a) = {1}, 4(0,0,b) = {2}

We have L(A) = {f(a,b), f(b,a)}. m

The bottom-up tree automata processes a tree from the leaves to the root. There
is another kind of tree automata that process the trees in the opposite way, namely
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form the root to the leaves. This kind of automata is called top-down tree automata
(cf, [GS84, ThaT73]) and has the property that its deterministic version is less pow-
erful as its nondeterministic version. It is known, for example, that the above
language L(.A) is not acceptable by deterministic top-down binary tree automata.
In the following we define a generalization of top-down tree automata.

Alternating Top-down Tree Automata

Alternating tree automata on words were introduced firstly in [BL80, CKS81] and on
trees in [Slu85]. We use the definition of alternating automata on (infinite) words
from [Var96] and adapt it to (finite) k-ary trees. For this purpose we need the
following notions.

For a set X, let B(X) be the set of Boolean formulae (including the truth values
false and true) over X, built using the connectives A, V and —. We use & as a
symbol that stands for either A or V. For S C X and e € B(X), we write S = e,
if S satisfies e, that is, if the truth assignment that assigns true to the variables in
S and false to the variables in X \ S satisfies e, we say that S is a model of e. We
define Mod(e) as the set of all models of e. Below we will instantiate X with both
the set S of states and the set S x [k], with & € N. We call the elements of B(.S)
unary state expressions and the elements of B(S x [k]), with & > 1, k-ary state
expressions. We write ¢ for (¢,i) € S x [k].

Let = be the function Z: B(S x [k]) — B(S) defined by
q, if b =¢*
() = { ~E(by), if b = by
E(b) @ E(by), ifb=0b Dby
Intuitively, the function = converts a k-ary state expression into an unary state

expression by deleting i (the successor position) form any k-ary state ¢'. For Z the
following fact holds.

Fact 2.2.4 For each k-ary state expression b € B(S x [k]) and each E C S,
E =E(0) of (Ex[k]) =0
Fact 2.2.4 follows by induction over the structure of k-ary state expressions.

Definition 2.2.5 (Alternating Top-down Tree Automata (ATTA)) An alter-
nating top-down tree automaton A over ¥ is a tuple (S, I,6, F), where S is a set of
states, I € B(S) is an initial Boolean formula, F C S is set of final states and ¢ is
a transition function 6:S x ¥ — B(S x [k]).
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In the same way as for bottom-up tree automata, we extend the transition func-
tion  to unary state expressions and trees: ¢ : B(S) x T¥ — B(S). The function §
uses a help function é: B(S x [k]) x (T¥)* — B(S). The two functions are defined
as follows:

u, if u € {true, false} or t = A
g(u § = :g(ul,t), R ifu=—-u
’ d(u1,t) @ 0(ug,t), if u=1u; ®uy
6(6(g,a),to,...,tk—1), ifu=gqandq€ S andt=alty,... tx1).

and

b if u € {true, false}
§(u,to, ... thr) = jg(u',to, o tge1), ) ifu= —a

6(u17t0; e 7tk—1) ) 5(”2,1&0, e 7tk—1) if u = Uy fast Us

et itu=q €S x[i

The function & applied to a state g and a tree ¢t computes a state expression
whose disjunctive normalform is a formula u; V...V u,, where the states occurring
in a conjunction u; constitute the leaves of a run of ¢ starting from the state q. For
example, if a tree ¢t has in A starting from a state g only two runs r with leaves

~

{¢1, 92} and s with leaves {s1, s, s3}, then 6(q,t) = (g1 A q2) V (81 A s2 A s3).

We say that an automaton A = (S, 1,6, F') accepts a tree t, if F' |=6(I,t) holds.

~

The language accepted by A is defined by L(A) ={t | F = 46(I,t)}.

Example 2.2.2 We give an alternating top-down binary tree automaton that ac-
cepts the same language as the bottom-up binary tree automaton given in Example
2.2.1. The automaton is A = ({qo, ¢1, 42,43}, G0, 0, {g3}), where the transition func-
tion ¢ is defined by:

r .
@AAG NV @Ag, ifg=gandz=Ff
quQ§, ifg=q¢ and z =a

6(qx) =
a5 N gz, ifg=qgandz="»5

\ false, otherwise.
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We show that f(a,b) € L(A).

5(0, f(a,b)) = 8(8(0, f), )
= d((@ A g3) vV (43N al) a,b)
(¢, a,0) A (g3, a,b) Vv 6(g3,a,b)) A d(ql, a,b)
= 3(q1,a) A 3(g2,b) V 3(g2, @) A (g1, )
= 5(g9, M N) Ad(gh, A, A) AS(g9, A A) Ad(gh, A, A) V false A false
= @3 ANq3/Aq3Aqs V false A false
= g3

Since {g3} = g3 thus f(a,b) € L(A). Similarly, we can show that f(b,a) € L(A).
Now, we show for instance that f(a,a) ¢ L(A).

3(6(g0, 1), f(a, a))

(@ Ag Va3 Aa,a,a)

6(¢%,a,a) Aok, a,a) V 6(q,a,a) Ad(qh, a,a)
= 5(q1,a) A d(ge,a) V 8(ga, a) A d(qu,a)

= q3 A\ q3 N\ false V false A g3 A g3

3(g0, f(a,a)) =

|
¢

= false

The claim holds, because {g3} [~ false. m

Specialization of Alternating Top-down Tree Automata

We notice that in Definition 2.2.5 we used a Boolean formula I to encode the initial
states instead of using a state or set of states as it is the case in the definition
given in [Var96]. Our choice to use an initial Boolean formula is useful for some
constructions and helps keeping proofs simple.

If we take k£ to be the natural number 1 in Definition 2.2.5, we obtain a definition
of alternating word automata (AWA), which slight differs from the definition given in
[Var96] on acceptance condition. In our definition, the acceptance of words is defined
using an extension of the transition function §, whereas in [Var96] it is defined in
terms of accepted runs. We can easily prove that our definition of AWA and the one
in [Var96] are equivalent.

Now, if we take k to be the natural number 2, require that the transition function
4 from Definition 2.2.5 has the general form §(q,a) = (I9Ar{) V...V (I8, AT}), where
li,m; € S for i < m, and interpret the conjunction Y A 70 by the pair (I;, 7;), then
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we obtain an equivalent definition of the conventional nondeterministic top-down
binary tree automata.

We show that alternation does not increase the expressiveness of word and tree
automata but, as we will see, it does enhance their ability to model problems.
For the sake of simplicity, we will consider only binary trees. The results can be
straightforwardly generalized for k-ary trees for £ > 1. In the following, we will use
the pair (/,7) and the formula [° A 7! interchangeably.

Theorem 2.2.6 For every ATTA A = (S,1,6,F) with n states there is a DBTA
B with at most 2" states, such that L(A) = L(B). The automaton B is given by
B = (Pow(S),{F},, Mod(I)), where v :Pow(S) x Pow(S) x X — Pow(S),

v(Eo, Er,a) = {q | M = 8(q,a)}, where M ={¢° | ¢ € Es}U{q" | g € E1}.
We extend «y to trees as follows: 7 :Pow(S) x Pow(S) x By, — Pow(S)
Ey, if Bg = FE; andt = )\
YV (Eo, Ev, t0), ¥(Eo, B, 1), @),  if t = a(to, 1)

In order to prove Theorem 2.2.6, we first establish the following properties.

¥(Eo, Eq,t) = {

Lemma 2.2.7 Let A and B be automata as described in Theorem 2.2.6. Forty, ty €
Bs, b€ B(S x [2]) and E C S, it holds:

E =(b,ti,ta) iff {¢° | ¢ € (B, B, t)}U{¢" | ¢ € J(E,E,t;)} = b.

Proof By simultaneous induction over the structure of the trees ¢; and t,. If t; = A
and t, = ), then we can show that 4(b,\,\) = E(b) and F(E, E,\) = E. In this
case the goal can be reduced to E = =(b) iff F x [2] = b, which holds by Fact 2.2.4.
The cases where one of the trees t; or ¢, is empty are analogous to the case where
both trees aren’t empty. So, suppose t; = a*(t},t}) and t, = a?(¢2,#2). Our goal is
to prove that for each b € B(S x [2]) and E C S, it holds:

E (bt t) iff {¢" | €7(B, B,t1)} U{d" | ¢ € 7(E, B, t)} = b.

and the induction hypothesis is: for each b € B(S x [2]), EC S,and i = 1,2
EE30b,6,t) if {¢" | ¢ €7(B,E,H)}u{d" | ¢ €F(E,E )} Eb. (2.1)

We proceed by induction over b. The cases where b = true, b = false, b = b; & b, and
b = —b; are trivial. Let us consider the case where b = q¢', with ¢ = 0,1. By using
the definitions of §, 0, and 7, the goal can be transformed into

E ): 5(5(Q1’ai)’ti:t3) iff {qo ‘ qc :V\(E’E’tzi)} U {ql ‘ qe ﬁ(E’Ea tzz} |: 5(Q1’ai)’

which follows immediately from the induction hypothesis (2.1). [ |
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Lemma 2.2.8 Given A and B automata as in Theorem 2.2.6. Fort € By, ¢ € S
and the final set F' of A (the single initial state of B), it holds: F' = §(q,t) iff ¢ €
~(F, F,t).

Proof By induction over ¢t. If ¢ = A, then by definition g(q, A) =qand ¥(F,F,\) =
F. In this case our goal can be reduced to the trivial fact F' |= ¢ iff ¢ € F. Next,
suppose t = a(t1,t2). We instantiate b and F in Lemma 2.2.7 with 6(¢,a) and F

respectively:
F IZ 5(5((]’ a)’t1’t2) iff {qo | qc :?(F’ F’ tl)} U {ql ‘ qc /'?(F, Fa t2} ): 5(Qa a)

By unfolding the definitions of § and 7, we can simplify our goal to

~

F ): 6(Qaa(t1at2)) lﬁq € V(W(Fa F7 tl)afy\(Fa Fa t2)’a’)

and this by the definition of v establishes our main goal. |

Using the above lemmata we can prove Theorem 2.2.6.
Proof (of Theorem 2.2.6) By definition, ¢t € L(A) iff F | 6(I,t) and t € L(B) iff

-~

~(F,F,t) = I. Further, by Lemma 2.2.8, F' | §(I,t) iff ¥(F, F,t) = I holds and
thus t € L(A) iff t € L(B). [ |

Example 2.2.3 Following Theorem 2.2.6, the automaton B over ¥ = {f, a,b}
constructed from A of Example 2.2.2 is given by B = (Pow(S), So,~, F'), where
S = {q0,01,0,q}, So = {{as}}, F = Mod(q0) = {Q € S | @ € Q}), the tran-
sition function 7 is defined as follows: y({g1},{¢2}, f) = Y{e&},{ar}, f) = {a},

v({as3}, {as},a) = {a1} and v({gs},{a3},b) = {g2}. The automaton B is, up to state
renaming, isomorphic to the automaton A of Example 2.2.1. O

We can easily prove that ATTA are closed under the Boolean operations. For
k =1, Theorem 2.2.6 needs some explanation. So for £ = 1, ATTA are just AWA
and the constructed automaton B is a DFA that accepts the reverse language that
is accepted by A. Note that in this case B can be further transformed into a DFA,
say C, that accepts the same language as A. In the worst case the number of states
of C is exponential in the number of states of B and thus double exponential in
the number of states of A. It is shown in [BL80, CKS81, Lei81b] that this double
exponential blow-up is unavoidable.

We extend now the transition rules of ATTAs with a new type of rule, e-rule (e-
transition), that allows the move from a state to a successor state without reading
any input symbol.
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Definition 2.2.9 (Alternating Top-down Tree Automata with e-transitions)
An ATTA with e-transitions over ¥ is a tuple A = (S, qo, 0, ¢, F'), where (S, qo, 6, F)
is an ATTA and 0, is a function (also called e-transition function) §.: S — B(S).

Let A C B(S) x TX x B(S) be the graph of the function 8, which extends 6 as
described above. Define the e-closure of A, as the relation A*, to be the smallest
relation which includes A and satisfies the following rule: If (u,t,v) € A* and
w € B(S) is constructed from v by replacing some occurrences of a state ¢ in v
with d(g), then (u,t,w) € A*. We say that A accepts a tree ¢, if there is an unary
Boolean state u € B(S) such that (qo,t,u) € A* and F = w.

As it is known for word automata, e-transitions may be useful but really add
no more power. In the subsequent sections we describe how we eliminate the e-
transitions and report on the required computation overhead.

Let S={q,...,q.}, and C, be the endomorphism on B(S), which associates u
with

Ce(u) = ul(q1 V 0e(q1)) /a1, -5 (@n V 6c(@n))/ ] -

Intuitively, C. computes from u a new state expression where all states ¢ are simul-
taneously replaced with the disjunction g V 6.(q). The expressions u and C,(u) are
logically equivalent, if we assume that ¢ and J.(g) are logically equivalent.

We extend C, homomorphically to k-ary state expressions.

(C@ar/d, - an/d], ifb=¢q €S x[k]
Ce(b) = Ce(bl) @ Cf(bg), lf b - bl @ b2
~Ce(by), if b= b,

Furthermore, we define the iteration of the function C, in the usual way:

C%(u) u
Cotl(u) = C(CF(w))

In order to eliminate the e-transition of a state ¢, we have to compute all state
expressions reachable by successively iterating C. on gq. Because there are at most
22" Boolean functions over S, the number of iterations needed for C. is then at most
22" With this at hand, define the e-closure C* to be the function C*(u) = CZ ().

Theorem 2.2.10 For every ATTA A with e-transitions there is an ATTA (without
e-transitions) B such that L(A) = L(B). Furthermore, A and B have the same
number of states.
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Proof Let A = (S, qo, 9,6, F'). The automaton B is constructed as follows: B =
(S, qo,0', F'), where

[ {FU {w}, if FE=C(q)

F, otherwise.

and the transition function §' : SxX — B(Sx[k]) is given by ¢§'(¢, a) = C*(6(C*(q), a)).
By the construction of B, it follows that L(.A) = L(B). [

In the rest of this chapter, we introduce the logics used in this thesis. We start
with quantified Boolean logic.

2.3 Quantified Boolean Logic

Boolean formulae are built from the constants true and false, variables € V, and are
closed under the standard connectives. The formulae are interpreted in B = {0, 1}.
A (Boolean) substitution 0:V — B is a mapping from variables to truth values that
is extended homomorphically to formulae. We say o satisfies ¢ if o(¢) = 1.

Quantified Boolean logic (QBL) extends Boolean logic (BL) by allowing quan-
tification over Boolean variables, i.e. Vz.¢ and dz.¢. A substitution o satisfies
Vz. ¢ if o satisfies @[true/z] A ¢[false/z] and dually for 3z.¢. In the remainder of
the thesis, we write 0 FEqpr, ¢ to denote that o satisfies ¢ in QBL.

QBL is not more expressive than BL, but it is more succinct. The satisfiability
problem for Boolean logic is NP-complete [CooT71], whereas it is PSPACE-complete
for QBL [MS73].

2.4 Monadic Second-Order Logics on Words

The monadic logics M2L-STRrR, WS1S, and S1S are among the most expressive de-
cidable logics known. The logic M2L-STR [HJJ*96] is a logic on finite words and also
appears in the literature (with slight variations) under the names MSOIS] [Tho90]
and SOM[+1] [Str94]. WS1S stands for the Weak Second-order Logic of One Suc-
cessor and S1S stands for the Second-order Logic of One Successor.

In the early 1960’s, Biichi and Elgot gave decision procedures for these logics
by exploiting the fact that models can be encoded as words and that the language
of models satisfying a formula can be represented by an automaton [Biic60, Biic62,
Elg61]. These decision procedures provide non-elementary upper-bounds for these
logics, which are also the lower-bounds [Mey75].
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In this section we provide background material on M2L-STrR, WS1S and S1S.
These logics have the same syntax but slightly different semantics. We also explain
their relationship to regular languages.

Let V1 = {x; | i € N} be a set of first-order variables and V, = {X; | i € N} be a
set of second-order variables. We will use n, p, q, ...as meta-variables ranging over
V1 and we use X, Y, ...as meta-variables ranging over V,. We will often use the
alphabet B", with n € N. Note that B stands for the singleton set {()}, i.e. the set
whose only member is the degenerate tuple “()”.

2.4.1 Language

Monadic second-order (MSO) formulae are formulae in a language of second-order
arithmetic specified by the grammar:

t:=0]p, pEV
du=s(tt) | X@t)| o |dVe|Ipo|IX.0, peV,and X € V,

Hence terms are built from the constant 0 and first-order variables. Formulae are
built from predicates s(¢,t') and X (¢) and are closed under disjunction, negation,

and quantification over first-order and second-order variables. Other connectives

and quantifiers can be defined using standard classical equivalences, e.g. VX. ¢ =i

—3X.—¢. In other presentations, s is usually a function. We have specified it as a
relation for reasons that will become apparent when we give the semantics. In the
remainder of this section, formula means MSO-formula.

2.4.2 Semantics

A (MSO) substitution o is a pair of mappings o = (o1, 09), with 01:V; — N and
09:Vy — Pow(N) and for z € Vi, o(z) = o1(x) and for X € Vs, 0(X) = 09(X).
With this at hand, we can now define satisfiability for M2L-STR and WS18S.

2.4.3 The Logic M2L-Str

Formulae in M2L-STR are interpreted relative to a natural number k. We call the
elements of [k| positions. First-order variables are interpreted as positions. The
constant 0 denotes the natural number 0 and the symbol s is interpreted as the
relation {(7,7) | j =4+ 1 and 4, j € [k]}. Note that £ — 1 has no successor. Second-
order variables denote subsets of [k] and the formula X (¢) is true when the position
denoted by t is in the set denoted by X.

More formally, the semantics of a formula ¢ is defined inductively relative to a
substitution o and a k € N. In the following, we write o* for the pair (o, k).
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Definition 2.4.1 Satisfiability for M2L-STR

of = s(t,t), if o(t)=1+0(t) and o(t') € [k]

O'k ’:MEL X(t)’ 'Lf (t) € ( )

of ):M:ZL -9, if ok l?é ¢

o* ):M:ZL ¢1 vV ¢2) Zf ):M:ZL ¢1 or ¥ |:M2L ¢2

o* ’:MQL dp. ¢, if ( [Z/p]) ):MeL ¢, for some i € [k]

o* ’:MQL 1X. ¢, of (U[M/X]) ):MQL ¢, for some M C [k]

If o =y @, we say that o® satisfies, or is a model of, ¢. We call a formula ¢
valid, and we write =y, ¢, if for every natural number k and substitution o, o*
satisfies ¢.

2.4.4 The Logic WS1S

Whereas M2L-STR can be seen as a logic on bounded sets of positions or, as we
shall see, finite words, WS1S is best viewed as a logic based on arithmetic. First-
order variables range over N and are not a priori bounded by any natural number.
Second-order variables range over finite subsets of the natural numbers, Pow(N),
and are not restricted to subsets of some [k]. Finally, the symbol s is interpreted as
the successor relation over N. Formally, we define satisfiability in WS1S, 0 Ewsis 0,
as follows:

Definition 2.4.2 Satisfiability for WS1S

o Ewsiss(t,t), if o')=1+0(t)

o Ewee X(0), i olt) € 0(X)

0 FEwsis 70, if o béwghg ¢

o ):WSIS $1V g2, if o |:W51s ¢, or o ):WSJS 03

o FEws:is 0 9, if oli/p] Ewsis ¢, for somei €N

0 Ewsis 3X. ¢, if o[M/X] Ewss @, for some finite subset M € Pow(N)

A formula ¢ is valid in WS1S (we write |=wss ¢) if it is satisfied by every substi-
tution o.

Additional Syntax

As we mentioned before the standard connectives and quantifiers that are not part of
the syntax of MSO formulae can be defined as expected. We define here additional
syntax. We will write ¢ + 1 for ¢’ for which s(¢,¢') holds and write ¢t — 1 for ¢' for
which s(#',¢) holds. Note that in M2L-STR the terms ¢ + 1 and ¢ — 1 do not always
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exists because the relation s is partial. The equality relation between positions and
sets can be defined as follows:

t=¢ ¥ vX.X(t) e X(t), and
X=Y¥v.X(p) Y.

We use the constant () to denote the empty set, the set X that satisfies Vp. =X (p).
The set operations X UY, XNY, and X can be also defined in the appropriate way.
For example, X UY can be defined as the set Z that satisfies Vp. (X (p) VY (p)) &
Z(p). The less-than relation < is definable in M2L-STR and WS1S as follows.

t <t EVX (XE)A(Vp. X(p) = X(p—1))) = X(t+1)

We will use also the above definitions in S1S (see Section 2.4.6). In M2L-STR, we
use the constant $! to denote the natural number k of Definition 2.4.1. Intuitively,
if we identify substitutions and words (as we will do later), then $ denotes the last

position in a word. For instance, the formula $ < 10 describes all words of length
less than 10.

Finally, Boolean connectives and Booleans as well as quantification over Booleans
are not part of MSO syntax, but can be straightforwardly encoded. For a Boolean b,
we associate a second-order Variable B and we encode occurrences of b in a formula
by the (MSO) formula B(0). In this way, Boolean quantification is encoded using
second-order quantification. For example, the Boolean formula Va, b. a Ab is encoded
by the (MSO) formula VA, B. A(0) A B(0).

Now, we have three types of variables in MSO: first-order, second-order, and
Boolean variables. For the sake of clarity and to help disambiguation, we will use
capital letters for second-order variables, lower-case letters like p, q, 7, j, ¢ for first-
order variables, and also lower-case letters like a, b, ¢ for Boolean variables. Gener-
ally, the order of a variable can be inferred from the context where it appears.

‘Word Models

Models in both M2L-STR and WS1S can be encoded as finite words. Let ¢(X) be
a formula, where X is the tuple of second-order variables X7, ..., X, occurring free
in ¢.2 We encode a M2L-STR model o* for ¢ by the word w,« € (B")*, such that
the length of w,+ is k and for every position i € [k]|, wyx (i) = (b1,...,b,) and for
1<j<n,b;=1iff i € 0(X;). We call w,x a word model for ¢ and define Ly, (¢)
as the set of all M2L-STR word models for ¢. We shall also write w .y ¢ for
o* =y @, if w encodes o*.

1 As a syntactic sugar
2First-order variables can be encoded using second-order variables as we will show later.
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Similarly, a WS1S model ¢ for ¢ can be encoded as a finite word w, such that
Wy (1) = (b1,...,b,) where b; = 1 iff i € o(X;). We also call w, a word model for
¢ in WS1S. We define Ly5(¢p) as the set of WS1S word models for ¢. Note that
the encoding of M2L-STR models as words is a bijection, whereas this is not the
case for WS1S. In particular, if o is a WS1S model and w, encodes it, then any
finite word of the form wyaa - --a, where a is (0,...,0) € B", also encodes 0. We
shall also write w FEwsis ¢ for 0 Ewsis ¢, where w encodes o.

Example

Consider the formula ¢ “x (0) AVp. X(p) > Y(p+1) and the substitution o with
o(X) = {0,2} and o(Y) = {0,1,3}. o* is a model for ¢ in M2L-STR and ¢ is a
model for ¢ in WS1S. The words w and w’ below encode o and o, respectively.

w 01 2 3 w 012 3 45
X [1]0|1]0 X |1{0(1]0|0]0
Y |1(1]0]|1 Y |1{1(0]1|0]0

As a second example, the formula 3X. Vp. X (p) is valid in M2L-STR, whereas it is
unsatisfiable in WS1S.

Decidability

We have seen that monadic formulae define sets of word models. Biichi and El-
got in [Biic60, Elg61] and independently Trakhtenbrot in [TB73| proved that the
languages formalized by formulae in WS1S and M2L-STR are regular and, con-
versely, that every regular language is both WS1S and M2L-STR-definable. To
show regularity, they proved constructively that, given a formula ¢, there exists an
automaton A, that accepts all WS1S (respectively M2L-STR) word models for ¢.
This construction yields a decision procedure: a closed formula is valid in WS1S
(respectively in M2L-STR) iff its corresponding automaton accepts the language
()*. This decision procedure (and indeed any decision procedure for these logics) is
non-elementary [Mey75, Tho97]: the minimal automaton representing a formula of
size n may require space whose lower bound is a stack of exponentials of height n.

The compilations of monadic formulae into finite automata are known and can
be found in many text books about finite automata and monadic logics. We want,
however, to sketch the compilation of M2L-STrR and WS1S formulae into finite
automata on finite words to essentially emphasis the difference between M2L-STR
and WS1S and to anticipate a comparison of these logics in Chapter 4.

To simplify matters, we reduce MSO to a minimal kernel, called MSQOg, which
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is as expressive as MSO. The language MSOgq has the grammar:
¢ =Succ(X,Y) | X CY |-od|oVe|IX. o, X, YeV,.

Succ(X,Y) means that X and Y are singletons {p} and {q}, where ¢ = p+ 1. The
symbol C denotes the subset relation. Note that first-order variables are omitted as
they can be encoded as singletons. There is a simple polynomial time translation
[.] from MSO formulae into MSOq [Tho90]. We omit here a formal definition of
the semantics of MSQy.

In the following, we use the shorthand P = @ for P C Q A Q C P. Now, we
define the predicates Empty(P) and Singleton(P) where the first states that the set
P is empty and the second states that the set P is a singleton.

Empty(P) =VY.PCY
Singleton(P) =VY. Y C PA—-Empty(Y)=PCY
The translation [.| is given by the following rules.

[s(z,y)] = Succ(X,Y)

[Y(z)] = Singleton(X)AX CY

[¢(0)] = T P.Singleton(P) A (-3 Q.Succ(P,Q)) A [¢(P)], P and Q are fresh
[3p.¢| = T P.Singleton(P) A [¢]
3X.6] = IX.[6]

As mentioned before, due to Biichi, Elgot, and Trakhtenbrot we have the follow-
ing result.

Theorem 2.4.3 Let ¢ be an MSQq formula with n free variables. Then it holds

(i) There is an automaton Ays;s(¢) over B" such that Lys;5(¢) = L(Awsis(9))

(i1) There is an automaton Ay, (@) over B"™ such that Ly.(¢) = L(Aysr(9))

Proof We proceed by induction over the structure of the formula ¢. As we have
seen the semantics of M2L-STR and WS1S are slightly different, also the automata
Awsis(¢) and Ay, (¢) are slightly different. Thus, we describe the construction of
Awsis(¢) and to describe the construction of Ay, (¢) we mention only the differ-
ences.

The automata for the atomic formulae Succ(X,Y’) and X C Y are depicted in
Figure 2.1 and Figure 2.2 respectively. The first (respectively second) component
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Figure 2.1: Awss(Succ(X,Y))

Figure 2.2: Ayss(X CY)
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of the vectors labeling the transitions of the automata interpret the variable X
(respectively Y). The symbol “-” stands for 0 and 1. For the induction step the
negation — and disjunction V are straightforward. If ¢ = —), then Aygs(9) is
Awsis(¥) the complement automaton of Aws,s(¢). If ¢ = @1 V ¢, then Aywss(d)
is Awsis(91) U Awsis(42) the union automaton of Aws;s(é1) and Awsis(d2). These
two cases are clear by the closure of the regular languages under complement and
union. Consider now the case where ¢ = 4X.1. By induction hypothesis there is
an automaton Aws,s(t) over B"™ with L(Aws:is(¥)) = L(¥). The construction of
Awsis(¢) is done in two steps.

e First, we do a projection operation. That is, each label (ay,...,an+1) € Bt
occurring in a transition of Awgs(%) is replaced with (aq,...,an11) € B™.
Here we suppose that the first component a; corresponds to variable X. We
call the obtained automaton 4;. Intuitively, A; behaves similar to Ays,s(?)
expect that it guesses the valuation of X.

e Second, each state in .4; from which we can reach a final state by reading words
of the form (0,...,0)* is marked as additional final state. This is necessary
because the valuation of X may be longer than the valuations of the rest
of the free variables. We call the obtained automaton A; and we call this
operation right-quotient. More generally, the right-quotient of a language L
with a language L’ is defined by

L/L" = {w | there is u € L' such that wu € L}.

The automaton Aws;s(¢) is now the deterministic and minimal version of As.

Let II! be the projection function from (B"*!)* to (B")* defined by IT*(w) =
w', where w' is obtained from w by replacing each vector (ai,...,a,41) in w by
(ag, ..., an41). With L! we denote the regular language {(0,0,...,0), (1,0,...,0)}*
over B". We observe the following facts

L(Awsis(¢)) = IT'(L(Aws:s(¥))) /L' and L(¢) = IT"(L(y)) /L’

Now, by L(Aws:s(¢)) = L(%) it follows that L(Awsis(¢)) = L(¢).

For Aw..(¢), the second step is simply omitted. This is because in M2L-STR all
valuations have the same length (the natural number & in Definition 2.4.1).

To illustrate the construction of Aws;s(¢) we consider the following example. Let
¢ be the formula Y. Succ(X,Y). The automaton of the subformula Succ(X,Y) is
displayed in Figure 2.1. The projection operation on Y applied to this automaton
yields the automaton depicted in Figure 2.3(a). Note that the obtained automa-
ton is nondeterministic. By the right-quotient operation we obtain the automaton
depicted in Figure 2.3(b), in which a new final state 3 is introduced. Finally, the
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(c) The automaton
AWSlS (El Y. SUCC(X, Y))

Figure 2.3: Several automata needed to construct Aws;s(3Y. Succ(X,Y))

automaton of Figure 2.3(b) can be determinized and minimized to the automa-
ton of Figure 2.3(c). In Figure 2.4, we displayed the automaton corresponding to
Y. Succ(X,Y) in M2L-STR. We can see that it is just a determinization of the
automaton of Figure 2.3(a). [

Remark 2.4.4 The right-quotient operation needed to build Aws,;s(¢) can be car-
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Figure 2.4: The automaton A, (3Y. Succ(X,Y))

ried out in linear time by a breadth-first backwards search from the final states.
By the above proof and from the implementation point of view, it follows that the
implementation of the decision procedure for M2L-STR is simpler than the imple-
mentation of the decision procedure for WS18S.

2.4.5 Connection to Regular Word Languages

As noted previously, in WS18S any word model over B" can be suffixed by arbitrarily
many (0,...,0) € B" and the result is again a word model. Hence we explain
in which sense regular languages are definable in both monadic logics, as this is
not completely straightforward. Let ¥ = {ay,...,a,} and let 8:B" — X be the
function defined by 6(bi,...,b,) = a;, where b; = 1 iff j = ¢, and let ~ be the
congruence relation over (B")* defined by u ~ v iff there are 7, j € N and z € (B")*
with v = 2.(0,...,0)* and v = z.(0,...,0)7.We can straightforwardly extend 6 to
words over (B")*, sets of words, ~-classes, and sets of ~-classes. Now, for a regular
language L C ¥*, we can construct formulae ¢(Xi,...,X,) and ¥(Xq,...,X,)
such that for M2L-STR we have L = 6(Ly,.(6(X))) and for WS1S we have L =

0(Lwsis(P(X))/ ~).

Example 2.4.1 Consider the automaton .4 depicted in Figure 2.5(a) that accepts
the language 1(01)* = {1, 101, 10101, ...}. This language is defined by the formula

alternatess(X) < X(0) A X($)A (2.2)

Vp.p<$ = (X(p+1) < =X(p) (2.3)

interpreted in M2L-STR. (2.2) states that the first and last positions are in X, and,
by (2.3), the positions in X alternate. Observe that if we existentially quantify the
variable X in alternate,,(X), then we obtain a closed formula that is neither valid
nor unsatisfiable; its corresponding automaton, given in Figure 2.5(b), is the same
as A except its transitions are labeled with () € B°.
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(o oo

0 0
(

(a) Automaton for 1(01)* (b) 3X. alternateysar (X)

0

(c) 3X. alternatews;s(X)
Figure 2.5: Automata for Example

For WS18S we can define the same language by the formula

alternatews;s(X) “ o, (Vp.n <p— —-X(p))
X(0) A X(n)
Vp.p<n— (X(p+1) < -X(p).

The only difference is that to state that n is the last position we require that X con-
tains no positions greater than n. The language Lys;s(alternateywss(X)) is 1(01)*0*
and Lys,s(¥(X))/ ~ is 1(01)*. In contrast to M2L-STR, if we existentially quantify
the variable X in alternatews;s(X), then we obtain a valid formula and its automaton
is depicted in Figure 2.5(c). m

2.4.6 The Logic S1S

The logic S1S is interpreted over infinite words. It is closely related to WS1S
and differs only by allowing infinite subsets of N as interpretations for second-order
variables. Formally, we define satisfiability in S18, o =¢,5 ¢, as follows:

Definition 2.4.5 Satisfiability for S1S

o Esss(t,t), if o')=1+0(t)

0 Eaus X(t), if oft) € o(X)

2 ):.915 _‘Qsa Zf g %515 ¢

o ):.915 ¢1 \ ¢2, Zf 2 |:s1s d)l or o ):.915 ¢2

0 Esis - b, if oli/p| Esis ¢, for somei € N

0 Ess3X. ¢, if o[M/X] s ¢, for some M € Pow(N)
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A formula ¢ is walid in S1S (we write =g ¢) if it is satisfied by every substitution
o.

A substitution in S1S can be encoded as an infinite word and Biichi showed in
[Biic62] that S1S exactly captures the w-regular languages. In doing so, he provided
an effective non-elementary transformation of S1S formulae into Biichi automata.

2.5 Monadic Second-Order Logics on Trees

Let k be a natural number. We provide here background material on WSKS. This
logic is a simple generalization of WS1S from one successor to multiple (k) succes-
sors.

2.5.1 Language

The syntax of terms and formulae are given below.

t:=c¢€lp, pEV
du=s1(t,t) | ... |sk(t,t) | X(@) | b | oV o |Tp.gp|IX. @, z,y€e V) and X €V,

Terms are built from the constant € and first-order variables. Formulae are built
from predicates s;(t,t'), where 1 < ¢ < k and X (¢) and are closed under disjunction,
negation, and quantification over first-order and second-order variables. Of course,
other connectives and quantifiers can be added, as is standard in classical logic.

2.5.2 Semantics

The model of WSKS has the domain D = [k]* of words (or paths) w over [k], where
k is the number of successors. Substitutions ¢ assign words w € D to first-order
variables p and finite sets P C D of words to second-order variables. The constant
¢ denotes the empty word. The denotation of s; (called the i-th successor relation
and written S;) is concatenation with the letter ¢; i.e. for w € D, (w,w.7) € S;, for
i < k. The formula X (¢) is true when the position denoted by ¢ is in the set denoted
by X. We write D =y ¢ to say that the WSKS formula ¢ is valid: D, 0 Ewes ¢
holds for all substitutions ¢ under the given interpretation.
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Definition 2.5.1 Satisfiability for WSKS

D,o Ewsis si(t,t"), if o(t) =o(t).d, forie k]

D,0 FEwas X(t), if o(t) € o(X)

D,o ):w.svcs -0, if D,o I#WSkS ¢

D,o ):w.svcs ¢V g2, if D,o }:WSkS ¢1 0orD,o ):w.svcs o2

D,o ):WSkS dp. ¢, if D, U[i/p] ):WSkS ¢, for some i € D

D,o Ewss 3X. ¢, if D,0[M/X| Ewss ¢, for some finite M € Pow(D)

In order to clarify the terminology of “logic over trees” for WSKS, we mention
that the pair (D, o) can be encoded by a k-ary tree t. Let ¢ be a formula with the
free second-order variables Xy, ..., X,. If o(X;) is empty for all 4 < n, then ¢ is
the empty tree. Otherwise, let m be the maximal length in o, i.e. max{|w| | w €
o(X;) for : < n} < m. The set of nodes of ¢t is {w € D | |w| < m|}. The nodes are
labeled by elements of B". The i-th component of the label of the node w is 1 iff w
is equal to or contained in the value of the i-th variable, i.e. w = o(p) or w € o(X),
respectively. One sometimes then writes ¢ = ¢ instead of D, 0 Ewes ¢. We define
Lysis(¢) as the set {t |t Fwsas ¢} € Tgr. If L = Lysis(¢) for some ¢, then L is
called definable in WSKS.

Example 2.5.1 The following is a simple example of a specification in WS28S.
X(e) N Vp. X(p.0) & X(p.1) A Vp. Y (p.0)V-Y(p.1).

This states that X contains the root position € and that a position p is in X iff its
brother is also in X. Moreover, for any p, Y contains at most one of p’s successors.
The interpretation {¢,0,1,00,01} for X and {0,01,11} for Y satisfies this formula
and is encoded by the following tree where the upper component of each pair encodes
the interpretation of X and the lower encodes Y.
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Decidability

Doner [Don65] and Thatcher and Wright [TW68| proved that the set of definable
languages in WSKS coincides with the set of regular k-ary tree languages. Biichi
[Biic60] and Doner [Don65] have applied concepts of generalized finite tree automata
to decide WSKS. These used concepts parallel to those developed by Biichi and
Elgot for the one-successor case.

2.5.3 Connection to Regular Tree languages

Similarly to what we have already noticed for WS1S in Section 2.4.5, if a tree t is a
model of a formula ¢ in WSKS then any tree ¢’ obtained from ¢ by adding new nodes
that are labeled with (0, ...,0) € B" is also a model of ¢. If we adapt the congruence
relation ~ to k-ary trees, then we can also prove that a regular tree language L over
Y is definable in WSKS iff there is formula ¢ such that L = 0(Lyss(¢)/ ~), where
6 is the substitution defined in Section 2.4.5. We can also generalize M2L-STR to
M2L-k-TREE and analogously obtain the result that a regular tree language L over
¥ is definable in M2L-k-TREE iff there is formula 9 such that L = 0( L1 e (V))-

2.6 Proof Tools for some Monadic Logics

Despite the high complexity of WS1S, several research groups have implemented
proof tools for this logic [KM01, MBBC95, MC97| that work surprisingly well on
many non-trivial problems. The MONA system is one of the most well known and
most widely used tool. Besides the decision procedure of WS18S, it also implements
the decision procedures of M2L-STR, WS2S, and M2L-TREE]. MONA follows
the automata construction described in the proof of Theorem 2.4.3: it translates
formulae of monadic second-order logic to deterministic minimal finite automata.
A valid formula is particularly simple to recognize: its corresponding automaton
is the so called trivial automaton which consists only of one state that is both the
initial state and the single final state and it has a self loop as transition for every
alphabet symbol. Invalid formulae have non-trivial automata. MONA is able to
extract from a non-trivial automaton of a formula ¢ a minimal length word that
defines a counter-example for ¢.

MONA uses BDDs [Bry92, Bry86] in order to compress the representation of the
transition function of automata. This representation of automata is minimal in two
ways: BDDs are reduced to their canonical form and the transition function and the
state space represented are those of the minimal automaton. Minimality of BDDs

3M2L-TREE stands for M2L-2-TREE (see Section 2.5.3)
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is preserved automatically by the algorithms that calculate them. Minimization of
the automaton is enforced using an algorithm that is quadratic in the size of the
automaton. For a more detailed treatment of this issue see [HJJ96].

MONA syntax is essentially that of Section 2.4.1 in the word case and of Sec-
tion 2.5.1 in the tree case, augmented with syntactic sugar. A MONA specification
consists of a mode declaration, that is the specification of the logic to be used, fol-
lowed by a sequence of predicates. At the end of the program a formula which has
to be decided is specified.

To illustrate how MONA works, we consider the following simple example. We
define predicates Odd and Even as follows in order to prove that every set can be
partitioned in a set containing only even numbers and a set containing only odd
numbers.

wsls;

pred Odd(var2 S) = 30.5 Sub O A =O(0) A O(1) AVp.O(p + 2) = O(p);
pred Even(var2 S) = 3E.S Sub E A E(0) A —=E(1) AVp. E(p + 2) = E(p);
VS.3U, V.0dd(U) A Even(V) AVp. S(p) & (U(p) & ~V(p));

The keyword wsls indicates that we use the logic WS1S. The predicate Sub stands
for the subset relation. The keyword pred starts a predicate definition. In our
example two new predicates Odd and Even are defined. They both take a second-
order term S as an argument, which is indicated by the parameter declaration var2
S. When invoking MONA with the above declarations, we obtain the following
answer which states the validity of the submitted formula.

ANALYSIS: Formula is valid

2.7 Applications

So far we have introduced regular languages, finite automata, and monadic logics
and showed their relationship to each other. In this section we want to address
the practical use of these mathematical concepts. The monadic logics offer the
possibility of modeling and reasoning about hardware and software systems. The use
of monadic logics on words (M2L-STR and WS18) in modeling combinational and
sequential systems as well as in modeling protocols has already been demonstrated
(see [BF98, BK98|). In our exposition here, we use WS1S and WS2S to reason
about linear-structured and tree-structured systems.
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a —— wy
b >> ?)D— sum
cin W.

cout
Wo
(a) 1-bit full adder
A B A By
R e N
full_adder H full_adder ]7
‘ ‘ cin
S S

(b) An n-bit adder instance, for n = 3
Figure 2.6: Ripple-Carry Adder Circuit

2.7.1 Example: Parameterized Ripple-Carry Adder

In this section, we show how WS1S can be used to specify and verify a family of
ripple-carry adders. Let us start with modeling the adder circuit and show first how
to model a 1-bit full adder. In WS1S, we can formalize circuits as relations over
their external ports. Circuits are built from relations representing primitives, such as
transistors or gates, and are combined with conjunction and “wired together” using
existential quantification. This style of representation is standard in the theorem
proving community and scales well to complex systems [CGMS86].

For example, to model the 1-bit full adder given in Figure 2.6(a) we begin by
defining the following gates.

and(a,b,0) = o+ (aAb)
or(a,b,0) = o<+ (aVb)
0+ ((aA=b)V (—aAb))

xor(a, b, 0)

We then compose these to model the adder circuit. The top half of the adder consists
of two xor-gates, connected by an internal wire w;, which compute the sum bit out.
The bottom half uses the internal wire wy, as well as the two inputs a and b, to
compute the carry-out bit cout. Our definition conjoins the gate descriptions and
projects away the internal wires:
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full_adder(a, b, out, cin, cout) = Jwy, wa, ws.
xor(a, b, wy) A xor(wy, cin, out) A
and(a, b, w2) A and(cin, wy,ws) A or(ws, wa, cout)

Figure 2.6(b) suggests how an adder can be iterated, in a “ripple-carry” way,
to construct an n-bit adder, for n = 3. In general, we can model an n-bit adder
by wiring together n 1-bit full adders where the carry-out of the ¢th adder is the
carry-in of the ¢+1st. The first carry has the value of the carry-in and the last has
the value of the carry-out.

It is easy to formalize a ripple-carry architecture by a WS1S formula. If we
use C to represent the sequence of carries, we can formalize the general case by the
following formula, which relates three strings (the inputs A and B and the output
S) and two Booleans (the carry-in cin and carry-out cout); the number of bits added
is given by the parameter n.

adder(n, A, B, S, cin, cout) =
3C. (C(0) <> cin) A (C(n) <> cout) A
Vp.p<n—
full_adder(A(p), B(p), S(p),C(p),C(p + 1))

This is a direct formalization of our natural language description where quantifica-
tion over positions p formalizes iteration (generalized conjunction) over the n 1-bit
full adders.

Let us now turn our attention to the specification of the adder in which we state
how strings, representing n-bit binary numbers, are added. We model addition by
formalizing the standard algorithm for adding base-two numbers: The ith output
bit is set if the sum of the ith inputs and carry-in is 1 mod 2, and the ith carry bit
is set if at least two of the previous inputs and carry-in are set. Since we specify the
behavior of an n-bit adder, we must restrict the addition modulo 2" and compute
the carry values as special cases.

at_least two(a,b,c,d) = d+ (aAb)V(aAc)V(bAc)

mod_two(a, b, ¢, d) abecod

spec(n, A, B, S, cin, cout) =
3C. (C(0) + cin) A (C(n) + cout)
Vp.p<n—
at_least_two(A(p), B(p),C(p),C(p + 1))
mod_two(A(p), B(p), S(p), C(p))



§ 2.7 APPLICATIONS 43

This specifies a language over B®, which encodes interpretations for n, 4, B, S,
cin and cout. For example, one string in this language is:

01 2 3 4

n 0(0|0f0]|1
A 1{1({0]0(0
B 1{0(0]1(0
S 1/10{1]110
cinm |[1|/0(0]0]0
cout |0]0(0|0|O0

Recall that in the interpreting string for first-order variables like n, exactly the nth
bit is 1. Moreover, cin and cout are true iff the Oth bit of their interpreting string
is 1. Hence the above encodes that the bit-width n = 4. Reading Boolean strings
as binary numbers from left to right (up to the nth position) the next three lines
encode A =3, B =9, and S = 13. Since the carry-in is set and the carry-out is
not, this string is indeed in the addition relation modeled.

Verification

Now having both the circuit and the specification of the ripple-carry adder, we can
then formalize its correctness as follows.

Vn.VA, B, S.Vcin, cout.
adder(n, A, B, S, cin, cout) >
spec(n, A, B, S, cin, cout)

This formula is proven valid by MONA in under a second.

2.7.2 Example: Parameterized Carry-Lookahead Adder

In this section, we consider a family of carry-lookahead adders, which are tree-like
structured circuits. We begin by describing a family of n-bit carry-lookahead adders
(or Clas) whose overall structure is given (for n = 4) in Figure 2.7. We do not
describe the adder in detail (see [CLR92]) and restrict ourselves to a few comments.
The adder operates in two phases: an upward phase and downward phase. In the
upward phase, a carry status is computed for each internal node. This indicates
whether an incoming carry is killed, propagated, or a new carry is generated. The
carry status is given by the wires F; and F,. At the leafs of the tree, the carry
status for each digit is computed using the circuit depicted in Figure 2.8(a). At
inner nodes, an operator ® is used to combine the carry statuses of the successor
nodes (see Figures 2.8(b) and 2.8(d)).
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NodeCell
NodeCell NodeCell
LeafCell LeafCell LeafCell LeafCell

AHB S AB S AB S AB; S

Figure 2.7: An n-bit Cla instance, for n = 4

In the downward phase, an inner node passes the incoming carry bits F; and F;

unchanged as signals F and FY to its left successor; the carry

bits F}, Fy for the

right successor are computed using the operator ® from the carry statuses and the
incoming carry bits (see Figure 2.8(d)). As indicated in Figure 2.8(c), the incoming

carry at the root is given by cin and the outgoing carry by cout

. At the leaf nodes,

the incoming carry bits F; and F5 are used to compute the sum bit as depicted in

Figure 2.8(a).

Modeling the Circuits of the CLAs

We translate the circuits in Figures 2.8(a)-2.8(d) directly into the following WS2S
formulae. Note that LeafCell and NodeCell take an extra argument p that indicates

which leaf or node values are used.

pred LeafCell(var2 A, B, S, Fy, F», By, Es,varl p) =
and(A(p), B(p), Er(p)) A or(A(p), B(p), E2(p)) A
Jwy, we. and(F1(p), Fa(p), w1)) A
xor(A(p), B(p), w2) A xor(w1,ws, S(p))

pred NodeCell(var2 Fy, F», E1, E3,varl p) =
(Fi(p.0) & Fi(p)) A (Fa(p-0) & Fa(p)) A
op(Fi(p), Fa(p), E1(p-0), E2(p.0), F1(p-1), F2(p.0)) A
op(E1(p.0), E2(p.0), E1(p.1), Ex(p-1), E1(p), Ea(p))
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R R E; E>
p [ | | N
N\ ‘ 1 J
S A B
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(d) NodeCell Circuit (op)

Figure 2.8: Components of the Cla Circuit
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pred RootCell(var2 Fy, F5, By, Eo, var0 cin, cout) =
(cin & Fi(€)) A (cin < Fa(e)) A
(Ja, b. op(Fi(e), Fa(e), E1(€), E2(e), a,b) A
and(a, b, cout))

pred op(var0 z1, z2, y1, Y2, 21, 22) = Jwi, Wa, W3, W4, Ws.
not(z1,wi) A and(yi,y2,w2) A and(za,y2,ws) A
and(wy, wa,ws) A and(z1,ws,ws) A

Or(’UJ4, Ws, Zl) A Or(lU4, ws, 22)
The overall circuit, given in Figure 2.7, is modeled by the predicate

pred cla(var2 A, B, S,var0 cin, cout) = 3T, E1, Es, F1, F5.

RootCell(Fy, Fs, E1, Es, cin, cout) A

(Vp. (leaf (p, T') = LeafCell(A, B, S, F1, F5, E1, E2,p)) A
(node(p, T') = NodeCell(Fy, Fy, By, Es,p))) A

shape_cond(4, B, S,T).

RootCell initializes the carry-in bit and computes the carry-out bit. The next two
lines correspond to a for-loop with discrimination (pattern matching) for each posi-
tion p. The first implication gives the base case: each leaf of the circuit is LeafCell.
The second gives the step case: each inner node of the circuit is NodeCell. The
predicate shape_cond fixes the shape of the inputs; we explain this in the following
section.

Specification

In WS1S we encoded numbers as bit-words. In WS2S we have binary trees and
encode numbers using the labels on a tree’s frontier. For example, the following
trees represent the bit-words 10011 and 11001.

0 0
N\ N\
0/\0 1/\0 0/\1
/N SN /\
1 0 0 1 1 0

An important requirement in specifying tree structured adders, is that, once we
fix the format of the adder to be a particular shape, both inputs and the output
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must also be of that shape; that is, numbers must be encoded at leaf nodes in the
same positions in these three trees. This kind of requirement, which corresponds
roughly to a kind of “type-correctness” for the inputs, is easy to specify in a high-
level programming or specification language where recursive data-types can formalize
this type (or “shape”) constraint. In our setting, we define a predicate (shape_cond,
which we used in the specification of cla above) that enforces this requirement.

We proceed in several steps. First, we characterize those trees with a particular
shape as those T" where:

(i) T is not empty.

(ii) T is closed under the parent relation: if a position p is in T then its parent,
denoted by pT, is also in 7.

(iii) If an inner node p is in T then both its successors p.0 and p.1 are in T too.

This “type” is formalized by

pred shape(var2 T') = (3p.T'(p)) A
Vp.(T(p) = T(p1)) AN(T(p) A T(p.0) = T(p.1)) A
(T(p) A T(p.1) = T(p.0)).

Second, we say that a tree X has shape T (X is of type T) if all its positions
constitute a subset of the leafs of 7.

pred is_of shape(var2 X, T') = Vp. X (p) = leaf(p, T).

Finally, we combine these to formalize shape_cond that holds when the trees A,
B, and S, which represent base-two numbers, have the same shape 7.

pred shape_cond(var2 A, B, S,T) = shape(T') A is_of_shape(A,T) A
is_of _shape(B,T) A is_of_shape(S,T).

To complete our specification, we define several auxiliary predicates in Figure 2.9
that allow us to traverse the leaves of a valid input tree from left to right. For a
tree T satisfying the shape predicate and a position p, first(p, T') checks if p is the
left-most leaf in 7" and last(p, T') checks if p is the right-most leaf in 7. The predicate
next(p, q,T) checks if p and ¢ are leaves in T and ¢ is the next leaf to the right of q.
Using these, our specification can be defined as follows.
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pred leaf (varl p,var2 T) = T(p) A =T (p.0) A -T(p.1)

pred node(varl p,var2 T') = T'(p) A T(p.0) A T(p.1)

pred path(varl p,var2 X) = leaf(p, X) A
Ve (X(z) = X(z1)) N (X(2.0) = X (z.1))

pred next(varl p,q,var2 T) =p # q A leaf(p,T) A leaf(q,T) A
AP, Q. path(p, P) A path(q,Q) A
Jds.3S.P(s) A Q(s) N P(s.0)

Q(s.1) A path(s,S)
Vu. (P(u.0) A u # s = S(u.0))
(Q(u.1) A u # s= S(u.l))

A
A
A

pred first(varl p,var2 T') = leaf(p,T") A 3X.path(p,X) A

Vu. X (u.1) = (Vv.u.0 < v = -T(v))

pred last(varl p,var2 T') = leaf(p, T) A 3X.path(p, X) A
Vu. X (u.0) = (W.u.l <v=-T(v))

Figure 2.9: Auxiliary predicates for the Cla

pred spec(var2 A, B, S, var0 cin, cout) = 3T, C.
shape_cond(A4, B, S,T) A
Vp. leaf(p, T') = mod_two(A(p), B(p), C(p), S(p)) A
Jp.first(p, T) A (cin & C(p)) A
Jp.last(p, T) A at_least_two(A(p), B(p), C(p),cout) A
Vp, q.leaf(p, T) A next(p,q,T) =
at_least_two(A(p), B(p), C(p),C(q)) -

Verification

We can now verify that the circuits of the Clas satisfy the specification, i.e. that a
Cla of any size actually adds its inputs. We formalize this as

VA, B, S.Vcin, cout.
cla(4, B, S, cin, cout) < spec(A, B, S, cin, cout) .

This formula is proved by MONA in one second.
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2.8 Chapter Summary

More than forty years ago the monadic logics were introduced. They are based
on finite automata theory and are proved to be decidable. Because of their high
complexity, they appeared for long time to be impracticable. Lastly, through the
implementation of their decision procedures in the proof tools MONA, STEP, and
Mosel, which have been successfully applied to several problems, the monadic logics
have attracted a considerable importance in practice.

As illustrated through our carry-lookahead adder example, problems must be
modeled at too low a level of abstraction: in WS2S everything must be mapped
onto binary branching Boolean trees. This can make models difficult to design and
understand (a witness is the concern with “shape constraints” in Section 2.7.2) and
lead to modeling errors. We work on building a high-level specification language
that eliminates this drawback. We develop a language that allows users to specify
tree languages in WS2S using data-types like those found in modern programming
languages. Our new specification language is the subject of the next chapter.






Chapter 3

Lisa: A Specification Language
Based on WS2S

In the previous chapter we have demonstrated how monadic logics (M2L-STR,
WS1S and WS2S) can be used for system verification. We have argued that the
languages provided by these logics can not be easily used as specification languages as
they lack of high-level programming concepts like types. The objective of this chapter
1s to introduce a new specification language without this deficiency.

We now integrate two concepts from programming languages into a specification
language based on WS2S, namely high-level data structures such as records and
recursively defined datatypes. Our integration is based on a new logic whose vari-
ables range over record-like trees and an algorithm for translating datatypes into tree
automata. We have implemented LISA, a prototype system based on these ideas,
which, when coupled with a decision procedure for WS2S like the MONA system,
results in a verification tool that supports both high-level specifications and complexity
estimations for the running time of the decision procedure.

3.1 Introduction

There is a large number of research groups [HJJK95, KMMG97, KMMP97, MBBC95,
MC97] that have implemented verification tools based on a decision procedure for
WS1S and WS2S successors. Experience, cf. [BK95], indicates that although such
tools are powerful aids to verification, their usefulness is limited by two major prob-
lems. First, the specification language is low-level; writing specifications in WS2S
is an experience akin to programming in assembly language. Second, the complexity
of verification is very high; WS2S and related monadic logics are amongst the most
expressive decidable logics known, but one pays the price that the decision problem
requires non-elementary time, which is a strong practical limitation.
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In this chapter, we propose an approach that addresses both problems. Our
contributions are both theoretical and conceptual. Our theoretical contributions
are

(1) to define a logic whose formulae define relations between record-like trees (“fea-
ture trees”). These relations are encoded by WS2S formulae and, thus, recog-
nized by tree automata. This logic forms the kernel of a specification language
whose decision procedure is based on that of WS2S. Our logic comes with its
own interpretation domain (i.e. the trees) and interpretation function. This dis-
tinguishes it from notation (or macros) whose semantics is defined by syntactic
translation (or unfolding).

(2) We describe explicitly the direct translation of the part of the logic in which one
defines datatypes to deterministic tree automata via alternating tree automata.
We show that in many practical cases this is polynomial time computable, and
exponential in the worst case.

Our conceptual contribution is to propose an approach that simultaneously ad-
dresses the two main limitations of WS2S. The base logic of feature trees, combined
with recursive types, provides a formalism for high-level abstract specification. In
particular, there is direct support for formalizing record-like data-structures, e.g.
accessing subtrees via symbolic keywords, which are supported in most modern pro-
gramming languages. Moreover, types provide a handle on the complexity of the
decision procedure. Types are directly translated to tree automata (as opposed to
indirectly via an initial translation to WS2S formulae) and, as noted above, we
bound the complexity of this process.

We have motivated our combination by arguing that it alleviates many of the
problems of specification and verification with WS2S. An alternative way to ap-
proach and understand our proposal is by comparison with standard programming
languages. Early programming languages, like assembly languages, Lisp, and For-
tran, provided little or no support for datatypes. The user encoded data explicitly
in memory. This is analogous to WS2S where the only primitive “type” supported
is sets of positions in the binary tree. Hence, the user must laboriously encode
other kinds of data, say k-ary trees whose nodes are labeled from some finite set, in
terms of unlabeled binary trees. As with programming in assembler, this is possible,
but not recommended, and the result falls far short of constituting a comprehensi-
ble specification. More advanced programming languages, like ML, provide means
of abstractly formalizing data using type declarations. This is important also for
structuring the program: these declarations are part of the program and integrate
a specification language into a programming language (which is also a specifica-
tion language) in a controlled and natural way. This is analogous to types in our
proposal; types structure the specification and interact with defined predicates by
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restricting the scope of quantification to elements of the defined types (relativized
quantification).

One important way in which the programming analogy breaks down is that
datatypes in our specification language (compared to datatypes in, say, ML) have
the same expressiveness as the full language. Both define tree automata and hence
both are “WS2S complete” in the sense that they can define any WS2S definable
relation. However, they do differ from formulae in the full logic in succinctness by
a non-elementary factor. Said the other way round, a specification using types may
trade verbosity for a gain in efficiency. Since we have found that one uses types often
in a specification, it is important to give the user a means to control the cost of the
usage of types, at least to some degree. Therefore we give the translation procedure
of types explicitly. Translation procedures have been proposed for various kinds of
regular systems of equations over words and trees [Ard61, BL80, GS84|, but none
of these is applicable to type systems as rich as ours. The principal distinction
is that our type definitions support conjunctions of types, which is natural in our
logic where subtree positions (record-fields) are accessed by atomic formulae. We
establish a relationship between such type definitions and alternating top-down tree
automata.

Although we see the contributions in this chapter as theoretical and conceptual,
their ultimate validation must be empirical. We have implemented and tested our
ideas. The base logic and type system are implemented in a prototype system called
LI1SA, which is coupled with the MONA system. We have used LISA to carry out
several case studies, one of which we report on here.

The chapter is organized as follows: in Section 3.1.1 we motivate the LISA ap-
proach and in Section 3.1.2 we introduce LISA informally. Section 3.2 introduces
the kernel language of LISA and Section 3.4 gives its compilation into WS2S. In
Section 3.4 we describe the LISA type system: the syntax and semantics, the rela-
tionship to systems of language equations, and the compilation into tree automata.
In Section 3.5 we show an extension of the LISA type system that has only a linear
blow-up in the size of the resulting tree automata. In Section 3.6 we study the case
where the LISA feature trees can be encoded as words. We will call this fragment
LLISA and report on an example done in LLISA. We report on related work in
Section 3.7 and, finally, we draw conclusion in Section 3.8.

3.1.1 Starting Point

Our work is directly inspired by the work of Klarlund and Schwartzbach on a system
called FIDO [KNS96]; FIDO is based on the idea that one can encode the values of
any fixed finite set and write finite-domain constraints in WS2S. FIDO deserves the
credit of being the first approach to integrating programming language concepts with
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Figure 3.1: A feature tree

MONA. Our work started with the study of FIDO; we observed that the only data
of interest are record-modeling trees and that, under this view, the expressiveness of
FIDO’s datatypes is the full expressiveness of FIDO. Moreover, FIDO was conceived
and explicitly described as a “programming notation”; its semantics was defined by
compilation into MONA, the assembly language. We felt that this did not take the
programming-language point of view all the way. There, one abstracts away from
the underlying machine model (be it jumps or sets of positions) and defines a new
calculus/logic with its own semantics; then one can prove the compilation correct.
The new logic should be small and simple; it forms the kernel of the language,
which itself may be rich in notation. Regarding trees and datatypes in FIDO: These
were used mainly to define “domains” for position variables. The type declarations
for finite-domain values in FIDO are expressed in LISA by non-recursive datatype
definitions (denoting finite sets of trees); this is yet another example indicating the
advantage (in conceptual simplicity) of having trees as the interpretation domain.

The idea of using feature trees to model records stems from [AKPS94]|. The
first-order logic over feature trees is decidable in non-elementary time [BS93, Vor96]
and to our knowledge, no decision procedure has been implemented yet. The basic
relation in that logic, besides the unary label relation that corresponds to I(¢,¢€), is
the direct-subtree relation f(¢,t). The addition of that relation to our logic would
make the validity test undecidable. It is possible to add the relation f(¢,t') to our
logic, where t and ¢’ are members of non-recursive types, although we do not give
any details here.

3.1.2 An Informal View of LisaA

We now provide intuition for how one formalizes relations over records in our spec-
ification language. An example of a record (later modeled as a feature tree) might
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be:

step (status: initial,
process; : noncritical,
next: step(process;: critical,
processs: critical,
next: stop))

The record consists of identifiers (here: step, stop, initial, critical, noncritical) called
labels and of field selectors (here: status, process;, processs, next) called features. It
is a nested record: the value in each record field is itself again a record (possibly
without further record fields, i.e. a label only). A label does not fix the record fields
below it. Records can be graphically represented as trees whose nodes are labeled
by labels and whose arcs are labeled by features (see Figure 3.1).

The record above is a solution of the LISA formula
o(t) = Vp.critical(t, p.process;) A critical(t, p.processs) = stop(t, p.next) (3.1)

which expresses: every (sub-) record, where both process; and process, are critical,
has the value stop in its record field nezt'. The record also satisfies a LISA de-
scription of a second kind: it belongs to the defined type Computation of all those
records that have a record of the same type Computation in their record field next, or
their label is stop. The type could be declared by the following LISA type definition.

Computation = next : Computation | stop

In Section 3.4.4, we will see an example of a LISA formula that combines the two
kinds of description; it is precisely this combination of a base logic of feature trees
with types that provides us with both a high-level specification language and com-
plexity guarantees.

3.2 The Logic of Lisa

We now introduce the base logic of LISA. We assume a fixed signature (F, L) of
binary symbols f € F called features and of binary symbols ! € L called labels. LISA
is a two-sorted first-order logic; we assume an infinite set of feature tree variables V,
and an infinite set of position variables V;. We will use X, t, s, ... as meta-variables
ranging over Vs and we will use p, ¢, ...as meta-variables ranging over V;. The

1Syntax will be described below.
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formulae of LISA are generated following the grammar below.

¢:=f(p,q) | U(t,p)| ¢ |dVe|Ip.o|IX. 0, (3.2)
with feF,leLl, peV;, and X € V.

Other connectives and quantifiers are of course defined in the standard way.

We reserve the term LISA formula to formulae of the LISA logic without free
position variables; thus, a LISA formula always defines a relation over feature trees.
The atomic formulae have the intuitive meaning.

I(t, p) “the tree t has label [ at position p”
f(p1,p2) “the position p, is the feature f down from the position p;”

The interpretation domain D r, 1y = (D7, Dp) consists of the domain of feature trees
Dy ={t|t:Dp — L} and the domain of positions Dp = F*. A feature tree t € Dy
consists of nodes in Dp with labels in £; we will write (p,!) € ¢ instead of t(p) = .
We also require that the domain of a feature tree ¢ is prefix-closed, i.e. (p.f,l) € ¢
implies (p,l') € t, which amounts to giving a dummy label to “non-labeled” nodes.
We may picture a feature tree as a tree with nodes labeled in £ and edges labeled
in F; no node has two outgoing edges with the same label.

Feature symbols f are interpreted as binary relations R; over Dp X Dp, namely
(p1,p2) € Ry iff p1.f = po. Labels [ are interpreted as binary relations R; over
Dy x Dp, namely (¢,p) € R iff (p,1) € t, i.e.the node with the path p is labeled
with the symbol [ in ¢t. We use, as in (3.1), the following abbreviation: for 1 < n,

It,p-frfor e . fn) £ Jqi. - Fgn- fr(o, @) A A fr(@ne1, @) AR, gn).

A LISA substitution o is a pair of mappings o = (01,02), with o1:V; — Dp
and oy:V, — D7, and for p € Vi, o(p) = 01(p) and for t € Vs, o(t) = 02(t). The
satisfiability of a formula ¢ relative to a substitution ¢ and a domain, denoted by
D(F,r), 0 Fisa ¢, is defined inductively as follows.

Definition 3.2.1 Satisfiability for LISA

Dir 0,0 Fua f(2,9), if (0(p),o(q)) € Ry

Dir 0,0 Eua lt,p),  if (0(p),o(t)) € Ry

D7, 1), 0 Fiwa "0, if D)0 Fu @

DiF,£),0 Fuwa D1V b2, if D ), 0 Fuwa 81 07 DiF, 1), 0 Friva G2

Dir,r),0 Fuwa - 0, if Dir r),0li/p] Fiw ¢, for some i € Dp

Dir,r),0 Fisa 3X. ¢,  if Dir r), 0t/ X]| Fua ¢, for some feature tree t € Dy
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If D ry, 0 FEua ¢, We say that o satisfies, or is a model of, ¢. We call a formula
¢ valid, and we write =y, ¢, if for every substitution o, o satisfies ¢.

Note that in Section 2.5.2 we explained that the logic WS2S is not a logic over
trees in the direct sense. In contrast, the LISA logic is a logic over trees in the same
direct sense that arithmetic is a logic over numbers.

3.3 Compiling the Lisa Logic into WS2S

We next describe the compilation of LISA formulae over feature trees into WS2S
formulae. Together with the decision procedure for WS2S, this yields, in some
sense, the operational semantics of LISA specifications. The idea is very simple:
feature trees are encoded by tuples of position sets, one set for each label, with the
restriction that each position p € Dp occurs in at most one of these sets.

We next define the (effective) bijection [-] between formulae of LISA and WSkS
(defined in Section 2.5.1). Let the set of labels be £ = {l,...,l,} and the set of
features be F = {fo,..., fe_1}.- Let ¢ a LISA formula. We assign to each tree
variable t of ¢ the n-tuple? of the WSKS second-order variables Pf,...,P!. The
variable P! will be used to store the positions in ¢ that are labeled with the label [;.
We assign to each position variable p of ¢ the WSKS first-order variable p. We set

[filp, )] = si(p, @) for j=0,...k—1,
[Li(t,p)] = Pip)ANNju—Fj(p) fori=1,...,n
[V d2] = [¢1]V 2]

[—¢] = —[¢]

[3p.¢] = 3Fp.[4]

[3t.¢] = 3P!...PL[4]

Note that we associated to each feature f; the successor s;, for 0 < i < k. The
following theorem expresses the correctness of the compilation of the LISA logic
that we have defined above.

Theorem 3.3.1 The LISA formula ¢ is valid over the domain of feature trees if
and only if the WSKS formula [¢] is valid over the domain of paths (words in [k]*).

Formally,

Fisa @ U FEwsis [9]-

2In practice, we encode labels using bit patterns over [logz(k)] second-order variables.
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Proof Given a LISA substitution o, we assign it the WSKS substitution [o| where

[o1(P}) = {peDp|(plL)e€a(t)}
[o](p) = o).

We can prove by structural induction over LISA formulae ¢ that for all substitutions
0-’

D(}", £y 0 ):lisa ¢ iff [k]*a [U—I ):WSkS [Qﬂ

and, moreover, if [k]*, @ Ewss [¢], i.e. the WSKS substitution « is a solution of
[#], then « is of the form a = [o].

The statement follows directly from the definitions of the mappings [-] for each
atomic LISA formula. The induction steps for V and — are evident; the one for -
follows from the bijectivity of the mapping between solutions of formulae ¢ of LISA
logic and solutions of the corresponding WSKS formulae [¢]. [ |

In order to show that LISA is as expressive as WSKS, we need to give the
translation from WSKS formulae into LISA formulae. This is a simple embedding.
Let the set of labels be £ = {d} and the set of features be F = {fo,..., fx—1}. We
assign to each second-order value X C [k]* the feature tree tx with tx(p) = d for
all p € X. The WSKS formulae s;(p, qg) become f;(p,q), and the formulae X (p)
become d(tx, p).

Corollary 3.3.2 The LISA logic and WSKS are equiexpressive.

3.4 Lisa Types

We now build upon the kernel LISA logic by adding a language of types. Let us
begin by considering a simple example: binary trees whose labels come from the set
{a,b,c,d}. In a programming language like ML, we might formalize this as:

datatype Tag =al|bl|c]|d;
datatype BinTree = bin of (Tag x BinTree x BinTree) | leaf;

Types specify constraints on the store of the computer; the types above constrain
the contents of members Tag to have values among the given labels, and members
of BinTree are trees with a given shape and labeling.

Our type system for LISA formalizes types as systems of recursively defined
constraints over feature trees. We formalize the above types as:

Tag = aVbVvcvd

BinTree = bin(data: Tag, left: BinTree, right: BinTree) V leaf (3.3)
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Types T denote regular sets of trees; hence, they are integrated into the kernel
LISA logic as unary predicates over trees. The intended use of types is with rela-
tivized quantification. As usual, we write V¢:T. ¢ for V¢. (T'(t) = ¢) and F¢:T. ¢
for t. (T'(t) A ¢).

Operationally, types can be integrated in a decision procedure for WSKS as
follows. A type definition 7" is compiled to an equivalent deterministic bottom-
up tree automaton Ar, as we describe below. The standard decision procedure
for WSKS works by processing formulae bottom up, replacing subformulae by tree
automata; the procedure can easily be modified such that when encountering the
predicate application T'(¢) in a formula, the automaton Az is used. This approach
fits, for example, with the already existing library functionality of the MONA system.
There, a user can write libraries of predicates p(t) defined in WS2S, and use p(t) as
atomic subformulae in subsequent definitions or for theorem statements (i.e. WS2S
formulas). Each such definition is compiled into an automaton A, once and for all,
which is used in the decision procedure of the MONA system like a pre-compiled
module. The system can call an automaton A7 stemming from a type definition in
exactly the same way as A,. So, the difference between the two kinds of automata
Ar and A, lies in the ways they are specified, not in their use. If the automaton is
specified by type definitions, then the compilation has a complexity different from
the one of the general WSKS decision procedure. As we will see, it is linear in the
practically interesting subcase where all types defined in one type system, which can
be seen as forming one library module, denote pairwise disjoint sets.

We now explain the details of this integration. We give the syntax and semantics
of types and their translation into tree automata. We analyze the complexity of the
translation and the possible size of the resulting automata.

We introduce here some notation needed to define the semantics of the LISA
types and their compilation to tree automata.

Let k£ be a natural number and Ly, ..., Ly_; be k-ary tree languages. Further-
more, for a € ¥ and L; C Ty, for i € [k] we define the root concatenation by

a (Lo, Li—1) 2 {a(to, ..., tsr) | t: € L; for i € [k]}.
We observe the simple facts.
a-((Loy---,Lg_1)N(Mg,...,My_1))=a-(Lo,...,Lrg_1)Na-(My,...,Mx_1) (3.4)
a-((Lo,--.,Lg_1)U(Myg,...,My_1))=a-(Lg,...,Lg_1)Ua - (My,...,Mx_1) (3.5)

(Lo, Ly—1) = | (Ts, ..., T5, Li, Ty, ..., Ts)  (3.6)
1€[k]

a-(Loy.-.sLy—1) =a- (Loy--., Lg—1) U U b (Ts,...,Ts) (3.7)
bex\{a}
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Let X = {Xop,..., X, 1} be a set of variables ranging over sets of trees in T
and m be a natural number. We define the Boolean algebra RY as the set of all
“language” functions F : (Pow(T%))™ — (Pow(T%))*, defined in terms of the empty
set 0, the set T%;, the variables in X and the set operations union U, intersection N,
and complement ™ For example, the function: F(X,Y,Z) = X UY NZ is an element
from R}. A function F € RF is said complement free, if it does not involve the
complement operation. Let R™ be the set of functions F': (Pow(Ty))™ — Pow(Ty),
defined in terms of subsets of Pow(T%), of functions in R” , the root concatenation,
and the set operations N, U, and~ Analogously, a function in R™ is complement

free, if it does not involve the complement operation and complement free functions
from RE,.

Let x = {zg,...,x; 1} be a set of Boolean variables. We define the set BF, of
the Boolean functions f:B™ — B* defined in terms of the truth values false and
true, the variables in x and the connectives A, V and —. The set B%, together with
the Boolean connectives also forms a Boolean algebra that is obviously isomorphic
to the algebra RF . For the remainder of this chapter, if F is in RY,, then f denotes
its isomorphic image in B%: f is obtained from F' by replacing () by false, Tx by
true, each variable X; by the variable z;, the intersection N by conjunction A, the
union U by disjunction V and the complement ~ by negation —.

Definition 3.4.1 Let Fi,..., F,, be complement free functions from R™. The
function ®: (Pow(Ts))™ — (Pow(Tx))™ defined by ®(Ds,...,Dy) = (Dy,...,DL.),
where D} = Fy(Dy,...,Dy). The function ® is called fixed-point operator.

The domain (Pow(7%))™, ordered pointwise under the subset inclusion, forms a com-
plete partial order (cpo) where (0,...,0) acts as the least element and (T, ..., Tx)
acts as the greatest element. The fixed-point operator ® of Definition 3.4.1 is
monotonous; that is

if (Dy,...,Dp) C (D,,...,D.) then ®(Dy, ..., D) C ®(D,,...,D.).

This can be easily proven taking into consideration that the functions F; are com-
plement free. By the Knastar-Tarski fixed-point theorem, the function ® has a least
fixed-point. We denote with fix(®) the least fixed-point of ® and with fix‘(®) its
i-th component.

3.4.1 Syntax and Semantics

We assume given a finite set £ of labels and a finite set F of k features; we set
F=A{fo, -, fe_1}.- A type system T is a conjunction of type equations,

T = {T]_Zgl,...,TmZOm},
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between pairwise different declared types T; and type bodies 6;. The syntax of the
bodies 6; is given by the grammar

0= a(f():so, ey fk_l:Sk_l) ‘ fS | 01 AN 02 ‘ 91 \ 92, (38)

where a € L and f € F, and S, Sp, ..., Sk_1 are declared types®. In addition,
we assume given a type A whose interpretation will be defined later as the single-
ton set consisting of the empty tree A, and also we assume given a type T whose
interpretation will be defined later as the set T¥,.

The syntax of LISA formulae is extended with quantification relativized to types.
The meaning of type membership “¢ € 77 for a feature tree ¢ is intuitively clear.

(1) If T is A then t is the empty tree, t = .
(2) If T is the type T then ¢ is an arbitrary tree from 7%.

(3) If T is defined by a(fo:So,- -, fr_1:5k 1), then ¢ is labeled with a at the root
and it must have a subtree t; of type S; at subtree position f;, for 0 < 7 < k,
and can have arbitrary trees at the other subtree positions.

(4) If T is defined by f:S, then ¢ is a tree that has at the position f a tree of type
S.

Formally, the meaning of a type T is a set of feature trees that we denote with [T7].
The meaning of A is [A] = {A} and the meaning of T is [T] = T%. Let 7 be the
type system 7 = {11 = 61,...,T, = 0, }. We associate with each type T'in T a
variable X7 and introduce the following mapping ¢ defined on LISA types by:

Xy, ifTeT
o(T)=q{A}, T =A
Ty, HfT=T
Let 7 be the following translation:
ra . (Q(So), ceey Q(Sk—l))7 if 0 = (f()IS(), ceey fk_lz,S’k_l)
Useca-(T,...,T,0(8), T...,T), iff=FfS
7(0) = <

7(91)UT(02), 1f0:91\/02
\7'(91)(17'(92), 1f0:91/\02

3We will use T, S, Sy, So ... as metavariables ranging over the types 71, ..., Tj,, A, and T.
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Let F; be the complement free function defined by F;(Xy, ..., Xn) = 7(6;) for 1 <
1 < m and let &+ be the fixed-point operator defined means the above functions
F;’s. We define the semantics of the type system 7 as the least fixed-point of &+
and we write [T]] = fix(®7). Furthermore, we define the semantics of T; as the i-th
component of this least fixed-point, that is [T;] = fix‘(®).

Example 3.4.1 Consider the example above defining the binary-tree type. We
are given the set of labels £ = {a,b,c,d,bin,leaf} and the set of features F =
{data, left, right}. In order to shorten notation for trees, we write a for the tree
a(A, A\, A), leaf for the tree leaf(A, A, A), etc. We implicitly identified the features
data, left, right with the first, second and third successor respectively. The meaning
of the types Tag and BinTree are as follows.

[ Tag] = {a, b, ¢, d} and
[BinTree] = {leaf, bin(a, leaf, leaf),...}

3.4.2 Compiling the Lisa Types into Tree Automata

Given the type system 7T declaring the types T, ..., T,,, we show how to construct
a family A7 = (Ai)i<i<m of top-down alternating tree automata, such that each
automaton A; accepts exactly the trees in [7;]]. The automata will be defined so
that they only differ in their starting states.

In a preliminary step, we define systems of language equations and show that
they are equivalent to ATTA’s (see Definition 2.2.5). After that, we show how LISA
types can be translated into systems of language equations.

3.4.3 Systems of Language Equations

Systems of language equations of different forms have been studied by a number of
authors [BL80, Lei81a, Sal69]. Brzozowski and Leiss in [BL80], in particular were
interested to connecting systems of language equations for regular word languages
with sequential networks and alternating word automata (Boolean automata in their
terminology).

In the following, we generalize the definition of Brzozowski and Leiss [BL80| from
the word case to the tree case and we illustrate their relationship to alternating top-
down tree automata.

Definition 3.4.2 A system S of language equations is a conjunction of equations,

S = {X1:91,...,Xm:9m},
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between different declared variables X; and bodies 0;. The syntazx of the bodies is
given by following grammar

91’31: UG'F;(Xl,...,Xm)UC,’,

aex

where F! € RE and ¢; is either the empty set O or the singleton {\}*.

To the system S we associate the fixed-point operator
®s: (Pow(Tx))™ — (Pow(Tx))™
defined by means of the functions

F;Z(Xla"'aXm): Ua'Fci(Xla"'va)UCia fOI'].SZSm

acx

as specified in Definition 3.4.1.

The semantics of S, L(S), is an m-tuple of languages. We distinguish two cases.
First, if the functions F! for 1 < 4 < m are complement free, then the semantics
of S is simply the least fixed-point L(S) = fix(®gs) of &5 . In the second case,
the functions F! are arbitrary and we eliminate the complement operation from
the equations of S by computing a new system of language equations &', and then
we define the semantics of S using the semantics of &’ We proceed as follows.
First, we duplicate the equations of S, by introducing for each equation X; = 6;
the new equation X; = 6; for 1 < i < m. Next, we use the equations (3.4),
(3.5), (3.6), and (3.7) to transform each of the expressions #; and 6; into their
negation normalforms and replace after that each negated variable X; with a new
variable Y;. Thus, we obtained a new system S’ of language equations over the
variables Xy, ..., X, Y1, ..., Y,, where the body definitions are complement free.
The semantics of S is defined as the first m sets of the fixed-point of ®s/, namely
L(S) = (fix}(®s),...,fix"(®s)). In the following we will use Ls(X;) for the i-th
component of L(S).

The fixed-point approach defines the semantics of the system of language equa-
tions, but does not specify a practical algorithm to compute the solution. Below, we
show how the solution of such systems can be represented by a family of automata.
For completeness, we describe how for the word case the fixed-point is traditionally
calculated.

For the word case (k = 1) it has been shown (cf. [Lei81a, BL80]) that the solution
L(S) is unique and regular. The key idea for this fact is based on the following so
called Arden’s Lemma [Ard61]: The equation

X=UXUV, with U,V C* and e ¢ U,

“In the case where k = 1, we have {¢} instead of {)\}.
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has the unique solution X = U*V, which is regular, if both U and V' also are regular.
The idea behind solving a system of language equations S is to apply Arden’s lemma
using the following rules:

For X = e a- My U {x,and Y = J,c5a- N, U (y, where M,, N, C ¥*,
(1) XUX =, ega-(MaUN,) U ((x UCy)
(2) XNX =U,exa- (M0 N,) U (Cx NEy)
(3) X =Uesa - Ma U ({e} \ Cx)

Example 3.4.2 Let S be a language system defined as follows:

X1 = a'X2U{/\}
X2 = a(X1UX2)UbX1

X3 = le

We can apply Arden’s lemma to the second equation and we obtain the new equation
X, = a*(a+b) - X;. With this in hand, we apply again Arden’s lemma to the first
equation and obtain the solution (a*(a + b))* of X;. The solutions of X, and X3
are calculated similarly. We thus obtain

X, = (a*(a+b))"*
X> = a*(a+b)(a*(a+b))
X3 = blat(a+ b))

O

Now, let us turn our attention to the automata representation of solutions of
systems of language equations.

Lemma 3.4.3 For every system S of language equations over the variables X4, ..., X,
there is a family of alternating top-down tree automata (A;)i<m such that Ls(X;) =

L(A,).

Proof We define the family of alternating automata A; = (@, z;, 6, F),for1 <i <m
as follows: for each variable X; we associate a state z;, Q = {z1,...,%n}, the initial
Boolean state of the automaton A; is the state x;, and the final states set F' contains
all states z; for which {; = {A}. The transition function 6:Q x ¥ — B(Q x [k]) is
defined by: 6(z;,a) = fi, where X; = 5 a-FZ(X1,..., Xn)U¢; and fI € BE is the
isomorphic image of FJ, for 1 < j < m. Following this construction, L(A;) = Ls(X;)
holds. |
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Example 3.4.3 The family of automata associated to the system S from Exam-
ple 3.4.2 is given by:

Ai = ({$1,$2,$3},.’L‘i,(5, {xl})v for 1 S 1 S 3

The transition function ¢ is given by:

d(z1,a) = g, §(z1,b) = false,
0(z2,a) = o1 V 29, 0(z2,b) = w1,
d(z3,a) = false, §(z3,b) = —zy .

O

Now, we show that an alternating top-down automaton can be represented by a
system of language equations.

Lemma 3.4.4 For every ATTA A= (Q,1,0,F) with Q = {x1,...,Tn} there is a
system S of language equations over the variables Xy, ..., Xp such that L(A;) =
Ls(X;), where A; = (Q, x;, 6, F).

Proof S is defined by the equations X; = J,cx a - Fi(X1,..., Xm) U, where ; is
0 if A € L(A;) and {\} otherwise. The function F! is the isomorphic image of the
Boolean function §(z;, a). [

Example 3.4.4 Consider the alternating top-tree automaton of Example 2.2.2. By
applying the construction of the previous proof we obtain the following system S of
language equations

Xo= f-((X1,X2) U (X2, X1))

X1 = a (X3,X3)
X2 == b . (Xg, X3)
X3 = {)\}

where the solution L(S) is as expected. Recall that we suppress the empty subtrees.

Ls(Xo) = {f(a,b), f(b,a)}, Ls(X1)={a}
Ls(X,) = {b}, and Ls(X3) ={\}

O

Lemma 3.4.5 Every LISA type system T can be transformed into a system of lan-
guage equations S such that for each type T, [T] = Ls(T') holds.
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Proof For the types A and T, we introduce the equations

X\ = Uaeca'(m""a@) U {7}
XT = Uaeﬁa-(X—r,...,X—r) U {)\}
For each type T € T U {A, T} we associate the variable X7. For a type declaration

T = 60 in T, we have the equation Xt = 7(f) in S and where the translation 7 is
given below.

(0 (Xs,,..., Xs,_,)UD, if 0 = (£0:50, - -, fr_1:Sk_1)
) - Useca (X0, X1, Xe, X7y, XT)UD  if 6= f:5
7(6,) Or 7(65), if 0 =6,V 0,
| 7(6:) And 7(62), if 0 =6, A6y

The operators Or and And are defined by

(Useg @~ (55 -+, 85 1) UG) Or (Uges a- (BG,---, BE 1) UG) =
Uses @ ((S§,---, Si) U (RS, ... Ri_1)) UG UG)

(Uses @~ (555, Sk1) UG) And (Uges a - (RS, -+ RE) UG) =
Uses @ ((S5,-- -, Si—1) N (R, -, Ri_1)) UG N G)

Theorem 3.4.6 Fvery LISA types system T, ..., T, can be transformed into a
family of bottom-up tree automata (A;), such that each automaton A; has at most
20(m) states and L(A;) = [T;].

Proof It follows from Theorem 2.2.6, Lemma 3.4.3, and Lemma 3.4.5. |

Corollary 3.4.7 The LISA type system is as expressive as alternating top-down
tree automata and therefore also as expressive as the LISA kernel logic itself.

The Size of the Automaton

For a type system 7 with n equations our construction yields a deterministic bottom-
up tree automaton of size 90() | This is the upper bound for the general case of LISA
types. One can now look for natural semantic restrictions on type definitions with
better bounds. We will define a semantic property that is sufficient to guarantee that
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there exists a tree automaton recognizing the declared types in which the number
of states is linear in the number of types. This property encompasses a large and
natural class of types, including those given in this chapter and those typically
encountered in type declarations.

Let T be a system of nonempty types and k = |F|. We say T is disjoint if all
its types are pairwise disjoint, i.e. [T] N [T'] = 0, for all distinct 7" and T" in T.
For any such type system the following holds:

Lemma 3.4.8 If T is disjoint, then each type T € T has a body that can be trans-
formed into a finite disjunction of formulae 6 of the form a(fo:S1, - -, fr—1:Sk_1),
where S; is A, T, or a type in T for 1 <i<n.

We omit the straightforward but tedious proof of this lemma. A consequence of
Lemma 3.4.8, is the following:

Lemma 3.4.9 If T is disjoint, then there is a deterministic bottom-up k-ary tree
automaton Ay that recognizes T and it has at most |T | states.

A deterministic bottom-up k-ary tree automaton A can be transformed into a de-
terministic bottom-up binary tree automaton A’ whose number of states is linear
in the number of the states of A. Hence, for a disjoint type system 7 we can build
a deterministic bottom-up binary tree automaton A that recognizes 7 and whose
number of states is linear in the size of 7.

Although disjointness is semantically defined, we define below a sufficient syn-
tactic characterization for disjointness that can be checked in linear time.

Definition 3.4.10 Let T be a type with body 6. We define root(T') as the set of all
labels that can label the root of an element of T. For T = 0, root(T) = root(#) and
root () is defined by:

{a}a Zfe = a(fO:Sla AR fk—lZSk—l)

L, if 0= f:S

root(61) U root(6y), if 6 = 61 V 6,

root(01) N root(Bs), if @ = 61 A O

root(0) =

Lemma 3.4.11 If the types in T have disjoint roots then T is disjoint.

Example 3.4.5 (continued) Consider the type system 7 containing the types
BinTree and Tag of Example 3.4.1. The root of Tag is the set root( Tag) = {a, b, c,d}
and the root of the type BinTree is the set root(BinTree) = {bin,leaf}. The
roots of both types are disjoint, it follows that 7 is disjoint (this fact is obvi-
ous for this example). In 7 we have three features tag, left and right that we
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associate with the projections on the first, second and third component respec-
tively. The deterministic 3-ary bottom-up tree automaton A = (Aq)qe{ BinTree, Tag}
over the signature ¥ = {a,b,c,d,bin, leaf} that recognizes 7 is defined by A, =
({A, BinTree, Tag}, A, 6, {q}) with

d(z, A, A, A) = Tag, for z € {a,b,c,d}
leaf, A, A, A) = BinTree

o
d(bin, Tag, BinTree, BinTree) = BinTree.

3.4.4 An Example

We now illustrate some of the features of LISA with an example taken from [BA9O]
and which is also considered by Klarlund and Schwartzbach [KNS96]: the correct-
ness of the following toy mutual exclusion algorithm.

Turn: Integer range 1..2 := 1; Proc(i)) =
loop
a: Non_critical_section_i
b: Loop exit when Turn = i; end loop;
c: Critical_section_ij;
d: Turn := i + 1 mod 2
end Loop;

Proc(0) || Proc(1)

This algorithm consists of two processes that execute the program, whose lines
are numbered a through d. The variable Turn resides in shared memory. We begin
our specification by declaring the following datatypes®.

Turn =1 | 2;

Pc =a | bl c | d;

State = state(pcl:Pc, pc2:Pc, turn:Turn);
Comp = node(val: State, next:Comp) | done;

The type Comp formalizes trees that represent sequences of states. Each state has
features pointing to the program counters (each storing a program line) and the
value of the Turn variable.

Not all elements of Comp represent valid executions. Hence, we define LISA pred-
icates® that further constrain the members of Comp.

5We use for LISA the following ASCII syntax: | for V, & for A, and => for —.
6 A predicate (defined with pred in LISA) is equivalent to (i.e. is syntactically interchangeable
with) a formula in one or several free variables (tree variables in the case of LISA).
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The predicate Init describes the start state of both processes.

pred Init(X:State) = a(X,pcl) & a(X,pc2) & 1(X,turn);

The state x satisfies Init if (1) it is a tree of type State and (2) its subtrees at the
positions pci and pc2 are labeled with the program line a and the subtree at the
position turn is labeled with the turn value 1.

For the transition function, we first declare how a process can execute. The
predicate Stepi is a large conjunction that describes the possible transitions.

pred Stepl(X:State, Y:State) =
(a(X,pcl) => b(Y,pcl) & X.turn = Y.turn) &
(b(X,pcl) => ((1(X,turn)=>c(Y,pcl))&
(2(X,turn)=>b(Y,pc1))&(X.turn = Y.turn)))&
(c(X,pcl) => d(Y,pcl) & X.turn = Y.turn) &
(d(X,pcl) => a(Y,pcl) & 2(Y,turn)& X.pc2 = Y.pc2);

For example, the first conjunct (a(X,pc1) => b(Y,pcl) & X.turn = Y.turn) states that
the first process can advance from state X where pc1 is at line a, to state Y where pc1
is at line b, and the value of the turn variable remains unchanged. The predicate
Step2 is declared similarly.

pred Step2(X:State, Y:State) =
(a(X,pc2) => b(Y,pc2) & X.turn = Y.turn) &
(b(X,pc2) => ((1(X,turn)=>b(Y,pc2))&
(2(X,turn)=>c(Y,pc2))&(X.turn = Y.turn)))&
(c(X,pc2) => d(Y,pc2) & X.turn = Y.turn) &
(d(X,pc2) => a(Y,pc2) & 1(Y,turn) & X.pcl = Y.pcl);

A transition of the system is a step by either process (i.e. we assume an interleaving
semantics).

pred Trans(X:State, Y:State) = Stepl(X,Y) | Step2(X,Y) ;

Finally, a computation is valid when the first state satisfies Init and all pairs
stand in the transition relation.”

pred Valid(X:Comp) = Init(X.val) &
all p. node(X,p) & node(X,next.p) => Trans(X.p.val,X.p.next.val);

Given these definitions, we now define what mutual exclusion means: no two pro-
cesses are simultaneously in their critical section, line c.

pred Mutex(X:Comp) = all p. ~ (c(X,p.val.pcl) & c(X,p.val.pc2));

With this, we can formalize the question of whether all valid computations have the
mutual exclusion property.

"X.f is the tree such that a(X.f,p) iff a(X,p.£) for all labels a and for all positions p.
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all X:Comp. Valid(X) => Mutex(X);

We have a prototype implementation for LISA which is integrated with MONA.
For this example, LISA translates the defined predicates and types and produces
about 2 pages of formulae in WS2S. These are input to MONA, which takes 2
seconds to process the result, and to report

ANALYSIS: Formula is valid

thereby verifying that the program does indeed enforce mutual exclusion.

This example illustrates how types and LISA formulae interact. There is a
natural decomposition of specifications into types, which express simple properties
about the shapes and values of data, and predicates (e.g. Mutex), which express more
complicated constraints. Again, recall that both are equally expressive; the tradeoff
is one between conciseness and complexity of the translation. We can also express
predicates like valid and Mutex as types, but the results would be rather cumbersome
(a blow-up in size traded in for a better complexity bound with respect to the larger
types) and not very natural.

3.5 Extension of the Lisa Type System

We extend the LISA type system by allowing the use of the complements of types.
The complement of a type 7T is syntactically denoted by T and its meaning [T
is, as expected, the set T% \ [T]. In the grammar (3.8) we now allow that the
metavariables S, Sy, ..., Sg_1 range over the types of 7 including A and T as well
as their complements. For example, we can declare a type T by T = f:S. The type
T intuitively denotes the set of all trees ¢ in 7% such that the subtree of ¢ at position
f does not belong to the set denoting the type S. Generally, a LISA type system
T specified in the new extended syntax can be translated into a system of language
equations S in the same way as we described in Lemma 3.4.5 and the semantics of
T is also defined as the least fixed-point of the operator ®g, fix(Ps).

Our extension of the LISA type system does not increase the expressive power
of the LISA type system, but make the type system more concise. Furthermore,
as we have seen in Section 3.4.3, we can transform a type system 7 involving the
complement operation into a type system without the complement operation in a
time linear in the number of the original types. Thus, the deterministic bottom-up
tree automaton corresponding to a LISA type system with m types has at most 22m
states.
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3.6 The Linear Lisa

The reader may have observed that in many cases a LISA program can be translated
into a WS1S formula instead of a WS2S formula. These cases do not only include
the case where the set of features is a singleton (k = 1), but also other interesting
cases where k > 1. These cases arise always when the feature trees of the declared
types are degenerated trees and can be represented by words. For example, if we
reconsider Example 3.4.4 we will notice that the feature next is the unique feature
that occurs “recursively” and thus the feature trees of the type Comp can be encoded
as words.

It is also worthwhile to notice that, although the decision procedures for both
WS1S and WS2S are non-elementary, practice shows that it is efficient to use
the decision procedure of WS1S rather than the decision procedure for WS2S for
problems that can be encoded in both logics. This is not surprising, because the
algorithms used for deciding WS1S compared to those used for deciding WS2S are
simpler, more widespread and optimized.

We have equipped the prototype implementation of LISA with a mode that we
call Linear Lisa (LLISA). LLISA provides a type system that is more appropriate
for the word case and which is defined on the top of the LISA type system given in
the grammar (3.8) using a lot of syntactic sugar.

LLISA has two primitive types bool and nat and allows the user to define struc-
tured types. Let £ be a set of labels and F be a set of features. A user type in
LLISA can be defined using the following schema:

dataT = 6,

where data is the key word that precedes every type declaration and 6 is the body
of the type and has the form

6 :: = T union T | enumerate | interval | record | array,

where

enumerate 1= ai,...,0n

nterval H= Ng...Mg

record = record {f1:51,..., fu:Sn}

array ::= array S; of Sy
where ny,ns €N, ay,...,an € L, f1, ..., fn € F,and 51, ..., S, are either declared
types or primitive types. In the record type declaration, the types Si, ..., S, are
called component types and the features fi, ..., f, are also called selectors. In the

array declaration, the type S; is called index type and S is called element type.
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In LLISA, we distinguish two kind of types. Finite types which are types that
denote finite sets, and infinite types which denote infinite sets. The type bool
denotes the set of Boolean values and is finite. The type nat stands for the set of
natural numbers and is infinite. The union type constructor is only allowed for two
finite types; so the union of two types is a finite type. An enumeration type is given
by a finite set of labels and thus is finite. An interval is a segment of N starting
from the natural number n; and ending with the natural number n,. Interval types
are finite. A record type is finite if all its component types are finite, and is infinite
only if at least one of its component types is infinite. For an array type the index
type should be either nat or an interval and furthermore it is not allowed that the
index and element types are infinite.

The support of user definable types in LLISA can be seen as one step towards
providing a specification language equipped with high-level notation. Another step
in this direction is to provide high-level language constructors. We describe here the
most interesting constructors incorporated in LLISA.

Field Selection Let r be a term whose type T is a record and f be a fea-
ture/selector occurring in the declaration of 7. We use the notation r.f to access
to the component stored in r under the selector f.

Updates of Fields Let s and s’ be two variables of the same record type. We

write s' = s{p;1 = vy, ..., P = v} to state that the record s’ is obtained from s by
overwriting the components at the positions py, ..., p, with new values vy, ..., v,
respectively.

Conditionals We have three kinds of conditionals. Besides the commonly used
constructors if_then and if then else, we have a straightforward generalization of
these constructors defined by

cond ¢; = ay; ...; ¢, = ay; dnoc,

where ¢y, ..., ¢, and ay, ..., a, are formulae. Intuitively, the ¢;s are conditions and
the a;s are actions. The ordering of the actions does matter; that is, the action a;
takes place only if the condition ¢; holds and the conditions ¢, ..., ¢;_; do not hold.
This construct is syntactic sugar for the formula

\/ =1 A ... A=ci1 Ac; A a;
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Case Analysis The case analysis expression offers a kind of pattern-matching.
case t of t{ = ay; ...; t, = a,; esac

The term t has as type 7" an enumeration or interval. The terms ¢, ..., t, are
constants of type T. The a;’s are formulae. The case analysis is a readable form of
the following formula.

\/ t= ti A a;

1<i<n

Example 3.6.1 (Formalizing an Elevator in Linear Lisa)

Our goal here is to demonstrate the high-level notation available in LLISA. For this
purpose, we consider a simple and well understood example, namely an elevator in
a building with four floors. We have the following type declarations.

data Floor
data Level record {set:bool, reset:bool,req:bool};
data Levels = array Floor of Level;

data Goal = Floor union { nogoal };

0..3;

data Dir = up,down,none;
data Door = open,opening,closed,closing;
data Ppd = nobody, somebody,vip;
data State = record {levels : Levels,
pos : Floor,
goal : Goal,
dir : Dir,
door : Door,
ppd : Ppd};

data Lift = array nat of State;

The type Lift models all possible traces of the elevator and a trace is an array of
states. A state of the elevator contains several informations: the current require-
ments sent from the different floors; the current position, goal and direction; the
state of the door and the kind of person within the elevator.

Initially, the elevator has no request. It resides in the first floor, its target is
nogoal and its direction is none. The door is open and nobody is in the elevator.

pred init(s:State) =
all Floor p: ~ s.levels[p].req &

s.pos =1 &
s.goal = nogoal &
s.dir = none &
s.door = open &
s.ppd = nobody;

Now, let us describe how the elevator makes a move. We have to state how the
different state components (pos, dir, ...) change their values during a move. We
restrict ourselves to describing only how the position changes; the other components
are handled in the same manner.
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pred next_pos(s,t:State) =
if “stop(s)
then
case s.dir of

up => t.pos = s.pos + 1;
down => t.pos = s.pos - 1;
none => t.pos = s.pos;

esac
else t.pos = s.pos;

The variables s and t are of type State and s and ¢t model the current and next state
of the elevator respectively. The predicate stop holds if the elevator is stopped (it is
not moving). The position changes accordingly to the direction of the elevator if it
is moving.

The entire transition relation next of the elevator is the conjunction of the next
relation of the several components. The valid runs of the elevator are described by
the following predicate run.

pred run (L:Lift) = init(L[0]) & all nat i: 0<i -> mnext(L[i-1],L[i]);

We formalize now the property that the elevator never moves with the door open.

pred spec(L:Lift) = all nat i: L[i].dir “=none -> L[i].door =closed;

We can check if the previous specification holds for every run of the elevator.

var Lift L;
run(L) -> speci(L);

The whole formalization of the elevator system takes about 3 pages in LLISA
(Appendix C.1) and its WS1S encoding is about 20 pages (Appendix C.2). i

3.7 Related work

In Section 3.1.1, we already described the FIDO approach and used it as starting
point and motivation for LISA. We now report on other approaches that also are
close to our work.

3.7.1 FwmoNa

FMONA [BF00a, BF0ODb] is a high-level interface for MONA. Similarly to LLISA,
FMONA enriches the linear fragment (WS1S) of MONA with structured types and
high-level programming primitives. Thanks to the higher-order facilities, in FMONA
system of finite states, and even parameterized systems of infinite states, can be
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comfortably specified. For the automatic verification purposes, FMONA allows the
instantiations of the parameterized infinite systems with concrete values and trans-
lates them into systems of finite states that are compiled into WS1S and decided
by MONA.

Another capability of FMONA consists in providing a declarative way to specify
validation techniques that are used to verify the specified system. These techniques
include abstraction [BLO98, CGL94| and iteration (forward and backward search
with acceleration® [BF00b, PS00]). For instance, if the user provides a description
of an infinite system together with an abstraction relation, then FMONA generates
a finite system according to the abstraction relation and forwards it to MONA to
decide it.

FMONA can be seen as macro-preprocessor for MONA and it has not an own
semantics. This permits understanding FMONA specifications only via (as it is
also the case for FIDO) the translation into WS1S. Furthermore, the lack of a
semantics of FMONA makes it impossible to speak about a correct compilation of
FMONA code into any other formalism (such as WS18S).

3.7.2 Guided Tree Automata and WRST

The notion of guided tree automata (GTA) is introduced in [BKR97] as a mathemat-
ical concept that can replace the ordinary bottom-up tree automata in the decision
procedure of WS28S.

A GTA is a bottom-up tree automaton where the set of states (state space) is
partitioned in different disjoint sets and where the transition relation respects this
partitioning. The splitting of the state space in regions allows for an independent
traversal of the subtrees of the input tree. In other words, a GTA is a family of
bottom-up tree automata that together with a guide act as an ordinary bottom-up
tree automata. The guide, which is itself a top-down tree automata, first determines
which automaton has to process which subtree and second defines how the results
of these automata have to be combined to decide the acceptance or rejection of the
input tree. The recent versions of the MONA system make use of the GTA concepts
and generate from a formula in WS2S a GTA, where the guide is supplied by the
user. The guide for a GTA requires knowledge about the application domain.

GTA is a technical concept introduced with the primary efficiently represent the
transition relation of tree automata and thus to alleviate generally the complexity
costs in practice. The implementation of the LISA prototype does not make use of
this concept; this could be the subject of future work. In the following, we describe
some successful applications that use the GTA concept available in MONA.

8 Acceleration is a technique that allows to group a number of (local) transition steps in a
transition system to form a single (accelerated) transition step.
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The paper [EMS00] introduced the type system WRST that is now available
in the MONA system. The logic WRST stands for ”Weak Second-order logic with
Recursive Types”. This logic extends the language of WS2S with recursive types
and some high-level structural primitives. Types in WRST have the grammar

type E = V(CLEL,...,CL :EL),... . Va(C:Ep, ..., C" -EP )

The V;’s are called variants, the C;’s are called components, and the E;’s are declared

types.

Formulae in WRST are built in the same way as in WS28S. First-order variables
range over positions in trees and second-order variables range over sets of positions.
Thus, in contrast to LISA, it is not a logic over trees in the direct sense.

Despite from the fact that in LISA we use the terminology of labels instead of
variants and of features instead of components, the LISA system is more general, it
is WS2S complete whereas the WRST type system is not. Furthermore, the LISA
system provides a more liberal syntax. However, the biggest improvement in this
work compared to LISA is that the translation into WS2S is based on the GTA
and the guides of the GTAs are automatically generated and lead often to efficient
GTAs.

3.7.3 Parsing with Logical Constraints

The next two related works are about formalizing context-free grammars augmented
with side conditions. The basic idea behind these works is that the context-free
grammars can be translated into types a la FIDO, WRST, or also a la LISA and the
side conditions are expressed in a language very close to WS2S. These works have
same similarities with the approach of James Rogers [Rog94] who has designed on
the top of WS2S a language for expressing parse tree constraints.

Design Constraints for Corba Software systems are in general built in system
platforms that are subject to design constraints which should be ensured by the pro-
grammers. Design constraints are often captured informally as guideline documents,
a fact that makes them difficult to be formally check. Klarlund et al. [KKS96] have
showed how a large class of design constraints for Corba can be formalized and au-
tomatically verified. The constraints are expressed in a language called CDL which
is translated into tree automata by means of the FIDO compiler and the MONA
decision procedure. The generated automaton is applied to the program parse tree
to check if the constraints hold.

YakYak, a Preprocessor for Yacc Conventionally, the syntax of programming
languages is described by context-free grammars where the productions are restricted
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by side constraints that are specified as action code (as is the case in yacc or bison).
YakYak [DKS99] is an improvement of yacc in that it extends yacc with a speci-
fication language in which the side constraints can be expressed declaratively in a
concise and simple way. The specification language is the first-order fragment of
WS2S. The input file of YakYak contains the grammar augmented with formulae
stating conditions to the parse tree. YakYak forwards the formulae to MONA to
turn them into bottom-up tree automata. Afterwards, the automata are translated
into C code that are inserted in the productions instead of the formulae. The re-
sulting file contains ordinary yacc code. The generated parser works now as follows:
whenever it makes a reduction step the automata make the corresponding transi-
tions and the truth of the side constraints depends on whether the current states of
the automata are acceptance states.

3.8 Chapter Summary

Our contribution is to provide a new way for users to estimate the complexity of
their specification, namely the size of the resulting compiled tree automaton. Type
compilation has an exponential upper bound that in many practical cases is linear.
Hence, the more a system can be specified with types, the more accurately one
can bound the complexity. Of course, for the part of the system specified in the
kernel logic, non-elementary blow-ups (an exponential blowup with each quantifier
alternation) are, of course, still possible. There are interesting practical tradeoffs
here: as noted in the introduction, all tree automata can be described using types
and hence it follows that there are certain problems that can be more naturally
(and, in particular, with a non-elementary savings of space) described in the kernel
Lisa logic.

LISA may be the first specification language compiled into the logic WS28S.
The language is still primitive, and one can think of extensions that further help
in structuring specifications. For example, one could replace the primitive pred
construct with more powerful means of decomposing specifications into modules
that support abstraction and specification reuse.






Chapter 4

Bounded Model Construction

In this chapter we investigate procedures for bounded model construction for monadic
logics on finite words as well as on infinite words. For monadic second-order logics
on finite words, the problem is, given a formula ¢ and a natural number k, does
there exist a word model for ¢ of length k. We give a bounded model construction
algorithm for M2L-STR that runs in a time exponential in k. For WS1S, we prove
a negative result: bounded model construction is as hard as validity checking, 1.e. it
18 at least non-elementary. From this, negative complexity results for other monadic
logics, such as S1S, follow. We show furthermore that by allowing quantification
over singleton sets in WS1S and S1S, the bounded model construction becomes
elementary.

4.1 Introduction

Despite the numerous success stories of system verification based on monadic logics,
there are limitations on the use of this verification method in terms of the size of the
system. Not surprisingly, many large systems cannot be verified due to state-space
explosion. This is analogous to state-space explosion in model checking where the
state-space is exponential in the number of state variables, except for monadic logics
the number of states in the constructed automaton can be non-elementary in the
size of the input formula! For LTL model checking, a way of finessing this problem
has recently been proposed: bounded model checking [BCCZ99]. The idea is that
one can finitely represent counter-examples (using the idea of a loop, see Definition
4.3.1), and, by bounding the size of these representations, satisfiability checkers can
be used to search for them. This often succeeds in cases where symbolic model
checking fails.

Motivated by the bounded model checking approach and the goal of quick gener-
ation of counter-examples for falsifiable monadic formulae, we investigate an analo-
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gous problem for monadic logics. Namely, given a formula ¢ and a natural number k&,
determine if ¢ has a word model of length k. Since we are concerned with construct-
ing models for formulae, as opposed to checking their satisfiability with respect to
a given model, we call our problem bounded model construction or BMC for short.

The chapter is organized as follows. In Section 4.2 we explore the bounded model
construction problem for several monadic second-order logics on finite words. In
Section 4.3 we explore the bounded model construction problem for several monadic
second-order logics on infinite words. In Section 4.4 we summarize our results.

4.2 BMC for Monadic Logics on Finite Words

We distinguish between the monadic logics on finite words and the monadic logics
on infinite words and treat the bounded model construction for these two kinds of
logics separately. These differentiation appears to be natural, as these two kind of
logics differs on the size of the models. For monadic logics on finite words, models
are finite words and therefore the meaning of the term bounded model seems to be
clear and intuitive. While for monadic logics on infinite words models are infinite
words and therefore the meaning of the above term needs clarification.

In this section we present the bounded model construction approach for the
logics M2L-STR, WS1S and their first-order fragments FO-STR[<], FO-STR[+],
WFO[<], and WFO[+] (see Section 4.2.4). We show that for the logics M2L-STR,
FO-STRr[<], FO-STR[+], and WFO[+] the bounded model construction can gen-
erate counter-examples for non-theorems non-elementary faster than its automata-
theoretic counterpart presented in Section 2.4.4. For the other two logics we show
a negative result; that is we prove that the bounded model construction problem is
as hard as checking validity, which is non-elementary.

The problem we analyze is, how to generate counter-examples of a given size and
do this quickly (elementary!) with respect to the size parameter. We express this
in the format of a parameterized complexity problem (cf., [AEFM89]). For L either
M2L-STR, WS1S, FO-STR[<], FO-STR[+], WFO[<], or WFO[+], we define:

Definition 4.2.1

Bounded Model Construction for L (BMC(L))

INSTANCE: A formula ¢ and a natural number k.

PARAMETER: k.

QUESTION: Does ¢ have a satisfying word model of length k with respect to L? (That
is, is there a word w of length k with w = ¢?)

We want first to point out that we can of course use the automata-based decision
procedures, to solve the bounded model construction for L. Namely, for a given
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formula ¢ and a bound k, we build the automaton A4 corresponding to the formula
¢ and then check for accepting words of the size k. This method, however, fails to
achieve our goal, as the constructed automaton A, or the intermediate automata
needed for its construction could be non-elementary in the size of ¢. Thus, this
method is generally time and space consuming if it ever succeeds. Our intention is
now to look for alternatives to these automata-based techniques.

4.2.1 BMC for M2L-Str

We show that for M2L-STR, given a formula ¢ and a natural number k, we can
generate a formula in quantified Boolean logic that is satisfiable if and only if ¢ has
a word model of length k. The formula generated is polynomial in the size of ¢ and
k and can be tested for satisfiability in polynomial space. For generating counter-
models of length &, this yields a non-elementary improvement over the automata-
based decision procedure for M2L-STR.

We proceed by defining a family of functions ([.|x)ken that transform MSO-
formulae into quantified Boolean formulae such that there is a word model of length
k for ¢ iff [@]y is satisfiable. The size of the resulting formula is polynomial in the
size of ¢ and k.

To simplify matters, we reduce MSO to its minimal kernel MSQj using the
simple polynomial time translation explained in Section 2.4.4. Recall, MSQj has
the following grammar.

¢ =Succ(X,Y) | X CY |~ |0V ¢|IX. 6, X, Y eV, . (4.1)

Translation to Quantified Boolean Logic

Let k € N be fixed. We now describe how to calculate the QBL formula [¢]; for
a MSOy-formula ¢. The idea is simple: a set M C [k] can be represented by k
Boolean variables zg, ..., x—1 such that z; = true iff { € M. Building on this, we
encode relations between finite sets and formulae over these relations.

Let Vy = {:c; |7,j € N} be a set of Boolean variables and let singleton be the
Boolean formula

. def
singleton(zy, ..., Tx_1) = \/ (x; A /\ —z;) .
0<i<k-1 0<j<k—1
J#i

The mapping [.] is inductively defined as follows:
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Definition 4.2.2 (Translation)

[Xm C Xnlk = No<ick (@ = af)
[Succ(Xpm, Xn)]e = singleton(zg, ..., 25 ;) A
singleton(zg, ..., 2} 1) A

V0§i<k—1 CE

[¢1V dalk = [o1]x V [d2]k
[—]k = [k

Definition 4.2.3 For a substitution 0:V, — Pow(N), we define the Boolean substi-
tution 0:Vo — B, by o(2™) =1 iff i € 0(Xpn).

Lemma 4.2.4 Let o be a substitution and k € N. Then oF =y, ¢ iff 0 Eoss [0k

Proof By induction on the construction of ¢.
We first establish the claim for atomic formulae. To begin with,

o By Xm € X, iff for all 4,0 < i < k — 1,4 € 0(X,,) implies that i € o(X,,),

which is equivalent to

=~ m n
0 EapL /\ zlt — xl.

0<i<k—1

Similarly, if 0% Ey.r Succ(Xn, X,), then o(X,,) and o(X,,) are singletons. More-
over, 0(X,,) contains a natural number p, with 0 < p < k—1, whose successor p+1 is
in 0(X,). Hence there is some 7, where 0 < i < k — 1, such that & =qg. " — 7,4,
50 0 Fqer Voeick1 &5F — ©7,1; the converse is argued similarly.

In the inductive step we consider only the case where ¢ is of the form 3X,,. ¢
as the remaining cases are straightforward. By Definition 2.4.1, o |=yon 3X . ¥
iff there is some set M C [k] such that (6[M/X,,])* Eya ¥. From the induction
hypothesis,

(o[M/ X)) Ews ¥ iff 6 Equy [¢]k, where § = o[M/X,,].

Note that 6 = albe/zy, ... bg—1/x |], where b, = 1iff i € M, for 0 <i <k —1.
Further, § FEqpr [¢]k i @ FEqe 32T, ..., 27 1. [¥]k. Thus,

Uk ):M2L Ele'(/J iff o ):QBL Elmz)n; ce - ax;:n—l' [w]k
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Observe that given a Boolean substitution 7, it is trivial to define an MSO
substitution o where ¢ = 7, namely by stipulating that o(X;) = {j|7(z}) = 1}.
Hence, from the above Lemma we can conclude:

Theorem 4.2.5 (Correctness) Let ¢ be a MSO formula. For k € N, there exists
a MSO substitution o where o* E e @ iff there exists a Boolean substitution T where
T Eosr [0k Moreover, ¢ is valid in M2L-STR. iff for all k > 0, the QBL formula
[k is valid.

We can avoid the intermediate translation of MSO into MSQOy in the above
algorithm and give rather a more direct translation that also handles first-order
quantification. This translation that we denote with [.], is defined for first-order
quantification by the following rule

Bp-dle =\ [olp/illk,

0<i<k—1

and it has the same rules as [.|; for the other cases of formulae.

We can prove then that for any MSO formula ¢, [¢]; and [¢]; are semantically
equivalent. The formula [@]; could be in general exponentially larger than [¢@]g.
However, in the translation [.]; first-order quantifications involves Boolean quan-
tifications, because they are first shifted to second-order quantifications, whereas
this is not the case in [.].

Recall that the size of a formula (in any of the logics we consider) is defined as
the number of symbols occurring in its string representation. Exploiting the fact
that satisfiability for QBL is PSPACE-complete, we prove:

Theorem 4.2.6 (Complexity) BMC(M2L-STR) is PSPACE-complete.

Proof Let ¢ and k be a problem instance. The size of [¢]; is O(k?|¢|). It follows
that BMC(M2L-STR) can be reduced in polynomial time to satisfiability in QBL,
which establishes membership in PSPACE.

To prove PSPACE-hardness, we show that satisfiability for QBL can be reduced
in log-space to BMC(M2L-STR). Let E be a fresh second-order variable and empty
be the M2L-STR proposition defined by

empty(X) € vy. X C v

We encode each Boolean variable z with a M2L-STR variable X. For a QBL formula
o, let ¢ be the M2L-STR formula obtained from ¢ as follows: replace occurrences
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of Boolean variables z by X C FE, and replace the Boolean quantifiers as well as
the propositional connectives by the corresponding quantifiers and connectives of
M2L-STR. Now, the encoding of ¢ in M2L-STR is the formula

3E. empty(E) A ¢.
For example, the QBL formula Vz dy. x V y is encoded as
JE.empty(E) AVX.3Y. X CEVY CE.

Under this encoding it is only relevant whether or not a second-order variable is
interpreted by the empty set. We immediately conclude that a QBL formula is
satisfiable iff its encoding has a word model of length 1. |

Example 4.2.1 To illustrate how BMC works for M2L-STR, let us consider two
simple examples. The formula Vz.z € X has exactly the intervals [n], for n € N as
models in M2L-STR. The bounded model constructor for M2L-STR applied to this
formula and & € N produces the Boolean formula /\0<i <p_1 Ti which is satisfiable
for every k. Note that the empty conjunction is by convention true.

The formula 3X.Vp.p € X — p+ 1 € X is valid in M2L-STR and the witness
for X that makes the formula true is uniquely the empty set. The application of
BMC to this formula yields the following quantified Boolean formula

E|.’IZ‘0, R ( /\ T; — $i+1) N (xk,l — false)
0<i<k—2

The subformula false in the last implication of the above formula is due to the fact
that the successor relation in M2L-STR is partial. That is, there is no number in
the interval [k — 1] that builds the successor of k — 1. The above formula can be
simplified into Jxo, ..., k1. Age;cp_y ~Ts Which is valid for every k by assigning
the value false to the variables z;. O

4.2.2 BMC for WS1S

We now investigate bounded model construction for the monadic logic WS1S and
establish a negative result by showing that BMC is as hard as checking validity,
which is non-elementary.

The previously given translation cannot be employed for WS1S. If ¢ is the
formula 9X.VY.Y C X, the translation yields the quantified Boolean formula

Eler"awk—l-vyOw"ayk—l- /\ Yi — Ty,
0<i<k—1
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which is valid for every k, whereas ¢ is unsatisfiable in WS1S. We now prove that
there is no translation that will yield an elementary bounded model construction
procedure.

Theorem 4.2.7 BMC(WS1S) is non-elementary.

Proof For a closed formula @, 0 Ewsis ¢ iff 0 Ewsis ¢ for all substitutions o and
o', i.e. the satisfiability of a closed formula does not depend on the substitution.
Hence, every closed WS1S formula is either valid or unsatisfiable. Equivalently, for
¢ a closed formula, we have either Lys,s(¢) = () or Lysis(¢) = 0. Consequently, if
a closed formula ¢ has a word model, then Lygs(¢) = ()" and therefore ¢ is valid.
In other words, computing a word model of any length for ¢ is equivalent to checking

¢’s validity. [ |

4.2.3 Comparing M2L-Str and WS1S

We continue the discussion that we began in Section 2.4.4 using the insights that we
gained by investigating the BMC problem for both logics M2L-STrR and WS1S.

The result of Theorem 4.2.7 is somewhat surprising since WS1S, as we already
stated in 2.4.4, has the same expressiveness and complexity as M2L-STR and their
decision procedures differ only slightly. The reader may wonder what causes these
differences. We can gain some insight by comparing semantics. From the semantics
of M2L-STR, ¢(X) has a word model of length k iff 3X. ¢(X) has a word model
of length k. This semantic property was employed in the proof of Lemma 4.2.4,
where in order to use the induction hypothesis we require that the witness set M
is a subset of [k]. Unfortunately, this property fails for WS1S. As can be seen
in Figure 2.5, existential quantification can change the size of the minimal word
model in WS1S. An example is the family of formulae (written here with sugared
syntax) ¢, (X) 1 X(n), for n € N. The minimal length word model for ¢,,(X) is n,
whereas it is 0 for 3X. ¢,(X). In general, to determine if a formula has a small, e.g.,
length 0, word model, we must consider word models for their subformulae that are
non-elementary larger in the worst case.

There has been a recent investigation of the differences of these logics by Klarlund
who concluded that WS1S is preferable to M2L-STR due to its simpler semantics
and its wider applicability to arithmetic problems [Kla99]. Our results suggests
that the issue is not so clear cut and depends on whether error detection through
counter-example generation versus full verification is desired, that is, whether one
is interested in finding a single model for a formula or computing a description of
all models.
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In [KMO1] a linear embedding of M2L-STR in WS1S is given. Reciprocally, it is
not known whether an efficient embedding of WS1S in M2L-STR exists. Moreover,
we know that there is an efficient compilation of Presburger arithmetic in WS1S,
whereas a similar efficient compilation in M2L-STR is to date unknown. This obser-
vation may indicate that translations of WS1S into M2L-STR could be not efficient;
in other words WS1S could be non-elementary more concise than M2L-STR. In
the following, we show that there is no elementary translation £ from WS1S into
M2L-STR such that each formula in WS1S has a model of length £ iff its image
&(¢) in M2L-STR has a model of length elementary in k.

Lemma 4.2.8 There are no elementary mapping £ : MSO — MSO and f:N —- N
such that for each formula ¢ and for every natural number k: ¢ has in WS1S a
model of length k iff £(¢) has in M2L-STR a model of length f(k).

Proof By contradiction. Assume that such a mapping £ and a mapping f exist
and let ¢ be a closed MSO formula. Then by the semantics of WS1S, ¢ is valid
in WS1S iff it has a model of length 1. Now, by assumption ¢ is valid in WS1S
iff £(¢) has a model of length f(1). By Lemma 4.2.6, checking if £(¢) has a model
of length f(1) is in PSPACE with respect to the size of {(¢) and thus the validity
check of ¢ in WS1S is elementary in the size of ¢, which contradicts the fact that
validity check in WS1S is non-elementary in the size of the input formula. |

Based on the above Lemma and the fact that WS1S can linearly be embedded
in S1S (cf. Section 4.3.1) we conclude that there is no efficient encoding of S1S into
M2L-STR.

4.2.4 BMC for the First-Order Fragment of MSO

In this section we incrementally decrease the expressive power of M2L-STR and
WS1S and investigate how in relationship to this the results concerning BMC
varies. We consider several first-order logics on finite words. The first-order language
(FOL) is specified by the following grammar:

t::=0]p|s(tt), pEV
pu=t=t|t<t|X(@)|d|oV|Ip o, peV,and X € V,

Observe that FOL can be seen as a sublanguage of MSO, as it can be obtained from
MSO by (i) removing second-order quantification and (ii) adding the new primitive
relation <. The relation < intuitively denotes the less relation over the natural
numbers and it is definable in MSQO, as we have seen in Section 2.4.4. Moreover, it
is known [Str94, Tho90] that < is not definable in MSO, if no use of second-order
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quantification is made. Hence < is explicitly included as a part of the syntax in
FOL.

We call FO-STR[<] and WFO|[<] the logics obtained by restricting M2L-STR
and WS1S respectively to FOL and we call FO-STR[+] and WFO[+] the logics
obtained by restricting M2L-STR and WS1S respectively to FOL without <.

Example 4.2.2 Let us consider some simple examples to emphasize the differences
between these logics.

(1) The formula Vp.p € X is satisfiable in FO-STR[+] and unsatisfiable in WFO[+].

(2) The formulae Vz.3Jy.y = z + 1 and Vz.3Jy.z < y are both valid in WFO[<],
but both unsatisfiable in FO-STR[<].

(3) The formula 0 € X AVp.p € X — p+1 € X is unsatisfiable in both FO-STR[<]
and WFOI[<]

O

As we mentioned before, disallowing second-order quantification in MSO affects
the expressiveness of the logics M2L-STR, and WS1S. Namely, it can be shown
that the expressiveness of FO-STR[<] and WFO|<] coincides with the star-free
regular languages (cf., Section 2.2.1). Here also again, similarly to M2L-STR and
WS1S, we can establish a one-to-one connection between FO-STR[<] and star-
free regular languages, whereas the connection between WFO|[<] and this class of
languages is up to 0-padding. The expressive power of the logics FO-STR[+] and
WFO[+] is even more restrictive. It is shown [Str94, Tho97] that these logics are
as expressive as locally threshold testable sets which forms a proper subclass of the
star-free regular languages.

We now show that although the substantial reduction on the expressive power,
regarding BMC, we have for the fragments FO-STR[<], FO-STR[+] and WFO[<]
similar results as for their super logics M2L-STR and WS18S.

Theorem 4.2.9 BMC(FO-STR[<]) and BMC(FO-STR[+]) are PSPACE-complete.

Proof The membership in PSPACE follows immediately form Theorem 4.2.6, as
FO-STr[<] and FO-STR[+] are sublogics of M2L-STR.

For PSPACE-hardness, we show that the satisfiability of QBL can be reduced
in log-space in BMC(FO-STR[+]). A quantified Boolean formula is ¢ is translated
to the MSO formula (z.xz = 0) A £(¢), where the mapping &: QBF — MSO, is
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defined by
&(x) = =0

£(—9) = —¢(9)
E(d1Vd2) = &(d1)VE(g)
§(3x.¢) = 3x.&(9)

We can prove inductively that a quantified Boolean formula ¢ is satisfiable iff its
encoding has a word model of length 1. |

Meyer showed in [Mey75] that WFO[<] is also non-elementary; based on his result,
we can eagsily adapt the argument given in the proof of Theorem 4.2.7 to show that
bounded model construction for WFO[<] is non-elementary.

Theorem 4.2.10 BMC(WFO|<]) is non-elementary.

The result of BMC for WFO[+] is provided in the next section.

4.3 BMC for Monadic Logics on Infinite Words

In this section we study the bounded model construction for monadic logics over
infinite words. We consider the logic S1S as well as its restriction to FOL, FO[<]
and its restriction to FOL without <. The expressiveness of FO[<] coincides with
the star-free w-languages [Kam68a, LPZ85, Tho89], which is a proper subclass of
w-regular languages. The expressiveness of FO[+] coincides with locally threshold
testable sets of infinite words, which forms a proper subclass of the star-free regular
languages.

Because models in these logics are infinite words (and thus unbounded), we
cannot adopt the definition of bounded model construction from the previous section.
In order to appropriately define the bounded construction here and establish results,
we provide first some background on w-regular languages and show how certain
infinite words can be represented using finite words.

Definition 4.3.1 (Lasso-Words) Let u and v be finite words in X*. We say that
the word uv® is a (|u|, |uv|)-lasso, with prefix u, loop v, and length |uv|.

We recall that w-regular languages are the languages recognizable by Biichi
automata. From the definition of Biichi acceptance condition, follows that every
nonempty w-regular language contains a lasso word.

Proposition 4.3.2 A Biichi automaton A accepts an w-word 7 iff it also accepts
the (1, k)-lasso word my ... m _1(my ... mp_1)“, for some I,k € N with | < k.
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Now, let L be either S1S, FO[<] or FO[+], ¢ be a formulain L, and £, (¢) is the
w-regular language denoted by ¢. By Proposition 4.3.2, the satisfiability of ¢ in L
can be reduced to finding a lasso word 7 in £,(¢#). The bounded model construction
problem for monadic second-order logics over infinite words is defined as follows:

Definition 4.3.3

Bounded Model Construction for L (BMC(L))

INSTANCE: A formula ¢ and a natural number k.
PARAMETER: k.

QUESTION: Does ¢ have a satisfying lasso of length k in L?

4.3.1 BMC for S1S

We prove that no elementary BMC procedure for S1S exists. To do this, we give
first an embedding of WS1S in S1S. Let Finite and finite be the following two
propositions:
finite(X) < 3m.Vp. X(p) — p < m and Finite(¢) £\ finite(X).
X €freevars(p)

Definition 4.3.4 (Embedding of WS1S in S1S)
We define an embedding function [-] from WS1S into S1S by [¢] = Finite(¢) A [#],
where [P] is:

[s(t,#)] =s(t,t)  [X(@)] =X() [3p- ] = 3. [¢]
[~¢] = ~[¢] [0V da] = [¢1] V2]  [3X.¢] = IX. finite(X) A [¢]

Lemma 4.3.5 Let ¢ be a formula and o an S1S-substitution. Then it holds:
o =q1g (8] iff o is an WS1S-substitution and 0 =ywg1g ¢

Proof By structural induction over ¢.

We first establish the claim for atomic formulae. To begin with, by definition of
=gq1g and [], 0 =gq1g [X(t)] is equivalent to o(X) is finite and ¢ =ywg1g X (1),
which is by definition of =yy7q1g equivalent to o =ywg1g X (1)

In the inductive step we consider only the case where ¢ is of the form —¢’ or
JX.¢' the remaining cases are straightforward. We consider the case where ¢ is
of the form —¢'. First, notice that [—¢] is equivalent to Finite(¢') A =[¢']. Now,
o Fq1g [¢'] is equivalent to o =qqg Finite(#) and o ~gyg ¢'. The goal follows
now by the induction hypothesis. We consider now the case where ¢ is of the
form —3X.¢'. Similarly, we notice that [3X. @] is equivalent to 3X. [¢']. It follows
o g1 [3X. 4] is equivalent o[M/X] =q1g [¢'] for some M C N. By induction
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hypothesis, o[M/X] is an WS1S-substitution and o[M/X] =ywg1g ¢', which is
equivalent to o =yg1g ¢- [ |

Theorem 4.3.6 BMC(S1S) is non-elementary.

Proof By Lemma 4.3.5, a formula ¢ has a word model of length & in WS1S iff
[¢] has a satisfying lasso of length k£ in S1S. The function that assigns to each
BMC(WS1S)-instance (¢, k) the BMC(S1S)-instance ([¢], k) reduces, in polyno-
mial time, BMC(WS1S) to BMC(S1S). Using Theorem 4.2.7, the claim follows.

[ |

4.3.2 BMC for FO[<]

We prove also a negative result for FO[<] concerning the BMC problem. We adopt
the same argumentation used for S1S, except a minor change in the mapping |[.|
of Definition 4.3.4 is needed. We extend [.] to handle the predicate < by the rule
[t; < ta] = t; <ty and we obtain an embedding of WFO[<] in FO[<]. From the
fact that BMC(WFO[<]) is non-elementary follows that BMC(FO[<]) is non-
elementary too.

Theorem 4.3.7 BMC(FO|[<]) is non-elementary.

The next section is devoted to prove that BMC for WFO[+] as well as for
FO[+] are PSPACE-complete. The proof is technical and divided in intermediate
lemmas whose proofs are for readability reasons given in Appendix B.

4.3.3 BMC for FO[+]

In Section 4.2.3, we argued that the different treatment of second-order quantifi-
cation in M2L-STrR and WS1S is the direct source for the different behavior of
these logics regarding BMC. The same argument explains why FO-STR[<] and
WFO|[<] also behave differently. Then the use of the relation < in these first-order
logics implicitly induces the use of second-order quantification. Now, we show that
if we disallow the use of the relation < in these logics, the BMC problem for the
obtained logics WFO[+] and FO[+] becomes PSPACE-complete.

We proceed as follows: we adapt the lasso notion defined for infinite words to
substitutions and define then the bounded semantics for S1S. In this semantics, we
use a finite prefix of a substitution o to determine the satisfiability of a formula
¢ over 0. We show that the bounded semantics and the original semantics for
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S1S coincide for lasso substitution. We define a family of functions ([.]x)ken that
transforms formulae in FO[+] into quantified Boolean formulae such that there is
a lasso word of length k that satisfies ¢ if and only if [¢] is satisfiable. Finally, we
put all these ingredients together to prove our desired goal.

In Section 2.4.5 we have established the connection between S1S and the class of
w-regular languages and we have seen that S1S substitutions can be seen as infinite
words. So, an S1S substitution is said to be lasso, if its word encoding is lasso.

Definition 4.3.8 Let | and k be two natural numbers with | < k. We define the
function <>2N — N, by

. {n, ifn <l
(n);, = )
I4+((n—1)mod (k—1)), otherwise.

Definition 4.3.9 (Lasso Set) A set M C N is called (I, k)-lasso, if m € M iff
(m)t € M.

Definition 4.3.10 (Lasso Substitution) A substitution o is called (1, k)-lasso, if
o(X) is a (I, k)-lasso set, for all second-order variable X for which o is defined.

Example 4.3.1 Consider the formula X (0) A Vp. X(p) <> Y(p + 1) with the free
second-order variables X and Y. A substitution satisfying this formula is o defined
by o(X) ={2n | n € N} and ¢(Y) = {0} U{2n + 1 | n € N}. The sets o(X) and
o(Y) are (1, 3)-lasso sets and thus the substitution o is (1, 3)-lasso and it can be

visualized by the (1, 3)-lasso word: ( 01 ) ) o

110

We come now to define the bounded semantics of S1S. This semantics is defined
inductively relative to a substitution ¢ and two natural numbers [ and k£ with [ < k.
Roughly speaking, the rules defining the semantics mimic the evaluation of a formula
over the substitution o, which is assumed to be a (I, k)-lasso.

Definition 4.3.11 (Bounded Semantics of S1S)

ELOX(@), i (o) €o(X)

Ei 9, if moto =L ¢

EL d1Ve, if oL ¢ oro =L ¢

E. dp.¢, if for somen €N, oln/p] =, ¢

E 39X 6, if  there are somel',)k' € N with I' < k' and
o[M/X] EY ¢, for some subset M C N.

Q Q9 9 9 Q9
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Lemma 4.3.12 If o is a (I, k)-lasso substitution, then o = ¢ iff o £ ¢.

Remark 4.3.13 We have already established a bounded model construction for
S1S is non-elementary. Here, we want to give more informal explanation for this
fact. The last rule in Definition 4.3.11 of the bounded semantics of S1S can be read
in the following way: checking for the existence of a lasso word of length k£ that
satisfies the second-order quantified formula 3X. ¢ could result in a more difficult
task, namely to check if the formula ¢ has a lasso word of length possible non-
elementary in k. There are examples in which the minimal length of the lasso words
satisfying ¢ is in fact non-elementary in k. This means that in certain cases to
answer the question if there is a lasso word of length k£ that satisfies a formula ¢,
we are enforced to answer the same question, however, for a subformula of ¢ and a
model length &’ that is non-elementary bigger than k.

Lemma 4.3.14 Let o be a substitution, ¢ be a FO[+]| formula, p a first-order
variable, and t be a FO[+] term containing p. It holds:

(i) oln/pl() = ol(n),/pl(t) (mod (k — 1))
(ii) oln/p] EL ¢ iff o[(n)y/p] = ¢, for alln € N,

Translating FO[+] into M2L-Str Below, we describe a family of functions
([-1x)ken that translate FO[+] formulae into M2L-STR formulae, such that ¢ has
a lasso word model of length k iff [¢]; has a word model of length k. On the top
of this translation we give a linear reduction of the BMC problem for FO[+] into
BMC problem for M2L-STR

To define the translation functions mentioned before, we make use of the follow-
ing two M2L-STR predicate schemata.

el qg< AN

VX.peXANVz.ze XNA<z—>(z—-A)eX)—qeX

modulo(p, ¢, A)

lasso(p, q,1, k) i p < k then p = ¢ else modulo(p,q — 1,k — 1)

where the parameters p and ¢ are first-order variables and A, [, and k are place
holder for natural numbers. Let o be the substitution [n/p,m/q] and A, [, and k
natural numbers with [ < k. It holds:

0 Ewer, modulo(p, ¢, A) iff m =n (mod A), and

0 Ewer lasso(l, k,p, q) iff m = (n)ﬁc
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Definition 4.3.15 Let k be a natural number. We define [¢]r = Vg, [#], where
the mapping [ .|} is defined inductively as follows:

[X(t)], = Hg.lasso(t,q,l,k) Ag€ X
[0V @2l =[]k V [92]}

[-¢1k = —[oli

[Fpoli. = 3p I8k

We state now a property of the help function [.]} from the above definition.

Lemma 4.3.16 If o is a (I, k)-lasso substitution and ¢ a FO[+] formula with no
free first-order variables, then o =4 ¢ iff 0% Eue [6]5.

The translation [.]j is satisfiability preserving.

Lemma 4.3.17 Let ¢ be a FO[+] sentence. Then ¢ is satisfiable iff there is some
k € N such that @]y is satisfiable.

Proof By Proposition 4.3.2, the formula ¢ is satisfiable iff there is a lasso word in
L(¢). Because the one-to-one correspondence between words in L(¢) and substitu-
tions of ¢, the formula ¢ is satisfiable iff there is a (I, k)-lasso substitution o with
o = ¢. Furthermore, by Theorem 4.3.12, o = ¢ iff 0 = ¢. The claim follows now
by Lemma 4.3.16. [ |

Lemma 4.3.18 The bounded model construction for FO[+] can be linearly reduced
to the bounded model construction for M2L-STR.

Proof By Lemma 4.3.17, the function that assigns to each BMC(FO[+])-instance
(¢, k) the BMC(M2L-STR)-instance ([¢], k) reduces, in linear time, BMC(FO[+])
to BMC(WS1S). Using Theorem 4.2.6, the claim follows. [ ]

By the above lemma, the fact that QBL can be encoded in both WFO[+] and
FO[+], and the fact that WFO[+] can be embedded in FO[+], we conclude

Theorem 4.3.19 BMC(FO[+]) and BMC(WFO[+]) are PSPACE-complete.

4.4 Chapter Summary

We have explored the bounded model construction problem for a series of monadic
logics on finite words as well as infinite words and we have obtained theoretical
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and practical contributions. The theoretical contributions are (i) the complexity
results for each of the considered logics and (ii) we have used the insights we have
gained from these results to shed some light on the differences between the logics
M2L-STR and WS1S and to establish a new result. The practical contributions
regard the logic M2L-STR.We have obtained a procedure for generating counter-
examples that is non-elementary faster than the standard automata-based decision
procedures. In Chapter 6 we present an implementation of this procedure and show
how we succeed to verify the correctness of a large class of problems whose treatment
using the automata-based procedures, like MONA, is unsuccessful.



Chapter 5

LTL Model Checking in M2L-Str

Based on the idea of the finite representation of lasso-words introduced in the previ-
ous chapter we show in this chapter how the logic M2L-STR provides a formalism to
reason about finite-state systems with infinite behavior and focus, on the embedding
of LTL model checking in M2L-STR. We prove that the bounded model constructor
for M2L-STR can be used as a bounded model checker for LTL and that it generates
the same (up to variable renaming) Boolean formula as the procedure provided by
Biere et al. in [BCCZ99].

5.1 Background and Motivation

Temporal logic model checking of finite-state systems is the task of verifying if a
finite-state system obeys a specification of its expected behavior. Finite-state sys-
tems are finite-state machines, finite concurrent systems, communication protocols
and digital circuits, just to mention a few. System specifications are expressed in
formalisms such as the linear temporal logic LTL and the branching temporal logic
CTL allowing the reasoning about time events.

A model checking procedure is an algorithm that checks a property of a finite-
state system by associating a transition graph to the system and exploring the
state-space of this graph afterwards. Model checking algorithms differ mainly in
the state representation of the transition graphs. The first model checkers [HK91,
BCDMS86, CES86] in the early 1980’s, used in their implementations an explicit
state representation of the transition graphs and the verification process is then
based on graph-traversing techniques. The use of these model checkers allowed the
automatically discovery of non-trivial errors in circuits and protocols of small size.
Work on BDDs [BRB90] laid the foundation for a new generation of model checkers
with the possibility to handle system with large size. The implementations of these
new model checkers represent the states of the transition graphs by Boolean formulae
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which are symbolically represented by BDDs (cf. [McM92]).

Finite automata theory provides a formal basis for temporal model checking.
From the automata-theoretic point of view, LTL and also CTL model checking
can be translated into showing the inclusion of w-regular languages [Kur89, HK90,
VW86]. In the case of LTL model checking, on which we concentrate in this ex-
position, both the system M as well as the specification formula ¢ are converted
into Biichi automata By and B, respectively. The language L(B)y) contains all
computations of M and the language L(B;) contains only the allowed computations
of M. The formula ¢ is valid over all computations of M iff L(Bj,) is a subset
of L(By) or equivalently the intersection L(Bjys) N L(By) is empty. Because Biichi
automata are closed under intersection and complementation and their emptiness
problem is decidable, the method outlined above represents an approach to LTL
model checking based on automata. A well-known LTL model checker based on
automata theory is the SPIN system [Hol97].

In this chapter we will provide a formal basis for LTL model checking using
the theory of finite automata on finite words. This leads to a new automata-based
model checker in which finite automata are used instead of Biichi automata and this
offers access to the automata constructions for finite words which are simpler and
more efficient as for Buchi automata. Moreover, it allows the use of the automaton
minimization operation which is not available for Biichi automata.

Based on the idea of the finite representation of lasso-words introduced in Chap-
ter 4, we give a translation of finite-state systems into M2L-STR formulae and also
a translation of LTL formulae into M2L-STR formulae such that if Ay and Ay
are the DFAs constructed from the translation of M and ¢ in M2L-STR, then ¢ is
valid over all computations of M iff L(Ax) C L(A,) and thus LTL model checking
is reduced to the inclusion of regular languages. We demonstrate how the MONA
system can be used as an LTL model checker and show that using this approach
we obtain an LTL bounded model checker for free. Namely, we apply the bounded
model constructor for M2L-STR to the formula obtained by embedding the under-
lying model checking problem and a bound k. We will also prove that our LTL
bounded model checker and the procedure provided by Biere et al. in [BCCZ99]
produce the same (up to variable renaming) Boolean formula.

The remaining of the chapter is organized as follows. In Section 5.2 we briefly
introduce finite-state systems, review the linear temporal logic (LTL) and define
the model checking problem. In the Sections 5.3.1-5.3.3 we present the M2L-STR
encoding of Biichi automata, finite-state systems, and LTL formulae. Furthermore,
we show how LTL satisfiability can be decided by using the MONA system and we
show how LTL model checking is encoded as a validity problem in M2L-STR and
demonstrate how the MONA system can be used as a model checker. In Section 5.3.4
we provide some optimizations of the previous encodings and in Section 5.4, we
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briefly review the bounded model checking problem and explain how the bounded
model constructor for M2L-STR can serve as a bounded model checker.

5.2 LTL Model Checking

Finite-State Systems A finite-state system M is given a Kripke structure M =
(S,1,T,L) over a set of atomic propositions P, where S is a finite set of states,
I C S is a set of initial states, ' C S x S is a transition relation, and L is a labeling
function of the states L:S — 27. The size of M, denoted by |M]|, is the number
of its states. A path in M is an infinite sequence of states sgs; ..., where the first
state is initial, i.e. so € I, and for i > 0, (s;, s;11) € T holds. A computation in M is
obtained from a path by replacing each state s with the set of atomic propositions
labeling it, L(s). With L(M) we denote the set of the computations of M.

Without loss of generality, we assume that any finite-state system M = (S,I,T, L)
has a Boolean encoding (S',I',T', L'). This means, there are some m,n € N such
that every state s € S is encoded by an n-bit vector 3 in B" and every subset P of
P is encoded by an m-bit vector P € B™ and

o S =B"

o [':B" — B with I'(3) holds iff s € I,

e T':B" x B" — B with 7"(s1,52) holds iff (s1,s2) € T, and
o L':B" x B™ — B with L'(3, P) holds iff L(s) = P.

Analogously, we assume that any Biichi automaton B = (S, Sy, d, F) over an
alphabet ¥ has a Boolean encoding B = (5, S}, ¢', F'); that is there are m,n € N
such that any state s € S is encoded by an n-bit vector s € B" and any symbol
a € X is encoded by an m-bit vector @ € B™ and

° SI — IBn,

e S):B" — B with S}(5) holds iff s € .Sy,

e §':B" x B™ x B" — B with ¢'(57,@,52) holds iff s5 € 6(s1,a),

e F':B" — B with F'(s) holds iff s € F'.

Unless indicated otherwise, Biichi automata and finite-state systems are for the
rest of this chapter given by their Boolean encodings.

The connection between finite-state systems and Biichi automata is straightfor-
ward. A finite-state system M = (S,I,T, L) can be viewed as a Biichi automaton
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B = (S,1,4,F) over B™, where (i) 6(s1,a, s2) holds iff both T'(s1, s2) and L(s;,a)
hold and (ii) for all s € S, F(s) holds. The automaton B has the entire set of states
S as final states and so any run of B is accepting. Thus, the set of computations of
M, L(M), coincides with the set L(B).

Linear Temporal Logic LTL The formulae of LTL are built from a set P of
atomic propositions and are closed under Boolean connectives, the next-time oper-
ator next and the until operator U. The modality next ¢ means that ¢ holds at the
next time point. The modality ¢Uvy means that there is some time point in the
future where the formula 1 holds and the formula ¢ holds everywhere before that
point. Note that we adopt here the notion of reflexive future; that is, the future
includes the present.

LTL formulae are interpreted over computations. These are sequences m: N — 27
of sets of atomic propositions. We use the notation 7¢ to denote the i-shifted compu-
tation defined by 7*(j) = 7(: + j), for j > 0. We will use 7 and 7 interchangeably.
We define satisfiability of a formula ¢ inductively on its structure as follows:

T Ev D, if pen(0), forpeP

T Evm 0, if notmw Eyp ¢

m ):LTL ¢1 V ¢2, it w ’:LTL (bl or ™ ’:LTL ¢2

T o nextg, if 7wl Epp @ .

T Eum 01U, if there is some i > 0, with 7* =1 ¢2 and for 0 < j < ¢

ml }:LTL (bl

If 7 =i ¢, we say that 7 satisfies a formula ¢ or also ¢ is valid over the com-
putation 7.

Based on the syntax and semantics of LTL described above, we can define other
commonly used time operators. First, the truth constant true (respectively, false)
stands as an abbreviation for p vV —p (respectively p A —p), for some proposition p in

P. The operator < is defined by <¢ “ true U¢ and means that ¢ holds some time

in the future. The operator O is defined by O¢ el —{O—¢ and means that ¢ holds

everywhere in the future. The operator &* is defined by &®¢ el 0S¢ and means

that ¢ holds infinitely often in the future. Finally, the operator 0% is defined by

O%¢ el <&0O¢ and means that ¢ holds almost everywhere in the future.

It is known that LTL, FO[<], and star-free w-regular languages are equiexpres-
sive [Kam68b, Zuc86]. One interesting remark here is that FO[<] is significantly
(non-elementary) more succinct than LTL (c¢f. [Mey75]). The connection between
LTL and Biichi automata is established in several works [GPVW95, LP85]. An
LTL formula ¢ can be translated inductively into a Biichi automaton of size O(2!%l)
that accepts exactly the computations over which ¢ is valid.
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LTL Model Checking For a given finite-state system M and an LTL formula
¢, the model checking problem consists of checking whether all computations of M
satisfy ¢.

Definition 5.2.1

Model Checking for LTL (MC(LTL))

INSTANCE: A finite-state system M and a formula ¢.
QUESTION: Is T |=pp & for all computations m in L(M).

The LTL model checking problem can be reduced to a containment problem of w-
languages as follows. For M and ¢, we construct the Biichi automata By, and By
respectively as we mentioned previously. Then checking whether M is a model of ¢
is equivalent to verifying that all computations of By, are accepted computations of
By, which means L(By;) C L(By).

Now, our aim is to go one step further and reduce the LTL model checking
problem into a containment problem of regular languages. By Proposition A.1.1,
we know that L(Bj) C L(By) holds iff all lasso-words from L(Bj) are also in
L(By). In the following we will show how in general a Biichi automaton B can
be translated into a DFA A such that from any accepted lasso-word of B, we can
extract an accepting word of A and conversely, we can extend any accepted word
of A to an accepted lasso-word of B. Let Ay and A, be the DFAs generated
from the Biichi automata By, and B, respectively. Then L(By) C L(By,) holds iff
L(An) C L(A,) holds too. Our construction of Ay and Ay is indirect. We describe
them declaratively as M2L-STR formulae.

5.3 Translating LTL Model Checking in M2L-Str

The LTL model checking problem is translated into the monadic logic M2L-STR
as follows: For a finite-state system M and a formula ¢ we translate M into an
M2L-STR formula, say [M], and we translate ¢ into an M2L-STR formula, say [¢],
such that M is a model of ¢ iff the implication [M] — [¢] is valid in M2L-STR.

In the following sections we describe how the formulae [M] and [¢] are con-
structed.

5.3.1 Encoding of Biichi Automata into M2L-Str

We first show how Biichi automata are translated into M2L-STR and afterwards
specialize our encoding to finite-state systems.

Let B = (S,1,6,F) be a Biichi automaton over B™. The encoding of B in
M2L-STR is denoted by the formula [B]. [B] involves the predicates I, ¢, and F
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which can be straightforwardly expressed in M2L-STR. Words over B™ that can be
accepted by B are encoded using the variables X;, ..., X,, and the runs of B are
encoded using the variables Sy, ..., S,—1. Words that satisfy [B] are of the form
uv, where u,v € B™. We use the variable [ to encode | u | and the constant $ to
encode |uv|.

Definition 5.3.1 Let B = (S,1,0, F) be a Biichi automaton over B™. We define
the M2L-STR encoding [B| of B as follows:

[B] =31.3S,...,Sn 1
I(Sp(0),...,S,-1(0)) A (5.1)
Vp.p>0—
5(So(p = 1)y s Sp 1(p = 1), X1(D)y - X 1(8), So(D)s -+ S 1)) A (5.2)
5(So($),...,Sn- 1($),X1( )y ey Xm—1($), So(l), ..., Sn—1()) A )
Ip. 1 Sp/\F(So(p), -, Sn-1(p)) - (5.4)

A word w satisfies [ B] iff there is a run which satisfies the following conditions: it
starts with an initial state (5.1), every two consecutive states obey the transition
relation (5.2), its last state has a back loop to some of the previous states (5.3), and
this loop comprises a final state (5.4).

Theorem 5.3.2 Let B be a Biichi automaton over B™ and A be the DFA represent-
ing [B]. The following holds:

(1) If w € L(A) then there are u,v € (B™)* with w = uv and uwv” € L(B).
(2) If uv® € L(B) then there is an n € N such that uv™ € L(A).

Proof (1): follows immediately by the construction of [ B].

(2): Let u and v be in ¥* with uv” € L(B). Let r be an accepting run 7:N — S
of uv*”. Consider the infinite sequence r(|ul), r(|u| + |[v|), ..., 7(|u| + p|v]),
There exist ¢, j, and k with ¢ < j < k and such that r(Ju| + i|v|) = r(Ju| + k|v]|)
and 7(Ju| + j|v|) is a final state. By choosing n = k — i, the run r(0), 7(1), ...,
r(|u] + n|v|) and the word uv™ satisfy the formula [B]| and hence uv™ € L(4). N

Notice that in the above theorem the n repetitions of v is necessary in order to
obtain a loop containing a final state.

Example 5.3.1 To illustrate the encoding of Biichi automata, we give the following
example. Let B be the Biichi automaton accepting the language containing just the
word (01)“. B is visualized as follows.
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0

& ®

1

The DFA A corresponding to the encoding [ B] is depicted as follows.

0
0 1
-a-E_b
1

The language accepted by A is (01)* U 0(10)*. Any accepted word of A can be
extend to the lasso-word (01)“: let n > 0. A word of the form (01)" in L(A)
can be extended to the lasso-word uv” = (01)“, where u is the empty word and
v = (01)"™ and a word of the form 0(10)" in L(A) can be extended to the lasso-word
wv® = (01)¥, where u = 0 and v = (10)". Conversely, for all words u,v € {0, 1}* if
uv® = (01)“, then uv is accepted by A. m

By Theorem 5.3.2, we can easily deduce that the emptiness problem of Biichi
automata can be translated into the emptiness problem of DFAs.

Theorem 5.3.3 Let B be a Bichi automaton and A be a DFA representing [B],
the M2L-STR encoding of B. L(B) is empty iff L(A) is empty.

Note that the encoding [.| of Biichi automata is not closed under the union U,
intersection N, and complementation ~ operations. For example, the encoding of the
complement of a Biichi automaton B, [B], and the negation of the encoding of B,
—[B], are not equivalent M2L-STR formulae. To show this, consider the following
Biichi automaton B which accepts the unique infinite word 0%.

The DFA A representing the encoding of B has the same graph as B and its com-
plement A is the following DFA.

0,1
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We can see that 0 € L(A), but 0 can only be extended to 0¥, which is in L(B) and
not in L(B).

Observe that, since [.] is not closed under the operations U, N, and ~, we can
not use our approach for compositional reasoning. Assume that we are given a
system specified as the intersection of two Biichi automata and we want to check
some property of the system. To achieve this, we encode both the system and its
property in M2L-STR as a validity problem. An improvement of this method would
consists of decomposing the system into its (“simpler”) components and then prove
the property for each of the components separately. This is, however, not correct
because, as we mention above, [.| is not closed under intersection.

Independently from our work, Mddersheim [M6d01] gave an encoding of Biichi
automata into WS1S. He proved that his encoding is closed under union and
intersection, but not under complementation. Furthermore, he showed how his
encoding can be used for verifying non-terminating systems where both models and
the negation of properties to be checked are specified as Biichi automata.

5.3.2 Encoding of Finite-state Systems into M2L-Str

As mentioned before, finite-state systems are Biichi automata where the entire set
of states are final states. This restriction on Biichi automata leads to the essential
property that the encoding of finite-state systems in M2L-STR becomes closed under
union, intersection, and complementation.

Definition 5.3.4 Let M = (S,1,T, L) be a finite-state system. We define [M] as
follows.

(M) =30.35,..., Sn_1. (5.5)
I(S6(0),...,S,_1(0)) A (5.6)
Vp. L(So(p), - - -y Sn-1(p), X1(p), - - ., Xn-1(p)) A (5.7)
Vp.p>0—=T(So(p—1),...,8-1(p — 1), So(p), - - -, Sn-1(p)) A (5.8)
T(So(8),---,Sn1(8),S0(1),---,Sn1(1)) - (5.9)

With [M]; we denote the formula obtained from [M] by removing the 3-quantifier
of the variable | in (5.5).

We can adapt Theorem 5.3.2, for finite-state systems as follows.
Theorem 5.3.5 Let M be a finite-state system and A a DFA representing [M].
(1) If w € L(A) then there are u,v € &* with w = wv and uwv®” € L(M).
(2) If uv® € L(M) then uv € L(A).
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In Theorem 5.3.5(2) the n repetitions of v are in order to obtain a loop containing
a final state are not necessary, because all states in M are final. This observation
is the main reason why the encoding of finite-state systems is closed under union,
intersection, and complementation.

Theorem 5.3.6 Let M, M, and M, be finite-state systems. We have:
[MyU M| = [Myi]V[M;]
[MynMy] = [My] A[M;]
[M] = ~[M]

Proof We only prove the closure property for the complementation; the proof of
the others is straightforward.

Let A; and A, be the DFAs constructed from [M] and [M]. Our goal is to prove
that A, is the complement of A;; that is, for all w € ¥*, w & L(A;) iff w € L(A,).

Assume w € L(A;) and w € L(As). From w € L(A;) follows, by Theorem
5.3.5(1), that there are u,v € * with w = uv and uv¥ € L(M). Because all states
in M are accepting, there is a position in the word w = wv from which no transition
in M is possible. We call this a stuck position. From w € L(A;) follows, by Theorem
5.3.5(1), that there are u',v' € ¥* with w = «'v' and v'(v") € L(M). In particular,
there is no stuck position in w = uv = wv' in M, which contradicts what we just

stated before.

Now, assume that w & L(A;) and w ¢ L(As). From these two assumptions and
by Theorem 5.3.5(2) we deduce the following two contradictory facts respectively.

for all u,v € ¥, if w = wv then uv®” ¢ L(M), and

for all u,v € ©*, if w = wv then wv” ¢ L(M).

Example 5.3.2 The example that we consider here will be used as a running ex-
ample for the rest of this chapter. We specify a finite-state system, sketch its for-
mulation as a Biichi automaton, provide a Boolean encoding of it, and describe the
DFA representing its encoding in M2L-STR.

Let ¥ be the alphabet set Pow({p,q,7}) and M be the finite-state system
(S,1,T,L), where S = {sg, s1, 82, 83} is the set of states, I = {s¢, s1} is the set
of initial states, T = {(so, 51), (81, $2), (52, 83), (83, $1), (82, S0)} is the transition rela-
tion, and the labeling function L is defined as follows: L(so) = {p,r}, L(s1) = {p, ¢},
L(s2) = {q}, and L(s3) = {p}. The Biichi automaton B corresponding to M is de-
picted below:
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{r}

The finite-state system M has the following Boolean encoding (S',I',T',L"): S' =
B?, where the states are encoded as follows: s; = (0,0), s; = (0,1), so = (1,0),
and s3 = (1,1). The initial state predicate is I’ defined by I'(x¢, ;) = Zp, and the
transition relation is given by:

T'(zo, z1,20,2)) = —xop A -z A —xp Az V
Ty A x1 AN oz AN xp V
ro AN —xp A —xy A —xh vV
o AN —~xp AN oz Aoz V
Ty AN x AN —xy Az,

and finally the labeling function is specified by the following predicates:

L(zg,z1,p,q,7) = -y A -1 A p AN —¢ A T Y
rg AN Ty A p A AN —r
xg AN —xy AN —p A N —r V
g AN x1 AN p N g N 7.

The finite automaton A corresponding to [M | is defined as follows:

{q} m{pﬂ‘}, {r}
{r, 4} @ (%)

@ {p,}.{r}

r z9 /2_4\
tnor O {r,q} —/ {a}

5.3.3 Encoding of LTL into M2L-Str

Let us now turn our attention to the encoding of LTL in M2L-STR. We will give
firstly an encoding that is satisfiability preserving and afterwards we slightly modify
this encoding for model checking purposes. As we will see, the key idea behind the
encoding is again the finite representation of lasso computations in M2L-STR. We
want to point out that this encoding maps LTL into the first-order fragment of
M2L-STR, FO-STR[<], whereas independently from our work, Hirsch and Hustadt
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[HHO1] presented an encoding of LTL into WS1S, that involves quantification over
first-order and second-order variables.

Intuitively, the encode [.| formalizes in M2L-STR “what it means, that an LTL
formula ¢ is valid over a lasso computation”. [¢] is satisfiable if there exists a
word, say 7, of length $, which has a back loop from the last position $ to some
previous position ! and such that the formula [¢]5* holds over 7. The mapping [.]**
formalizes the validity of ¢ over a (I, k)-lasso computation starting from an arbitrary
position ¢ of the computation.

Let ¢, [, and k be first-order variables in M2L-STR and ¢ an LTL formula. We
associate to every LTL atomic proposition p occurring in ¢ a second-order variable
Xp.

Definition 5.3.7 We define [¢] = 3l. [¢] f)’$, where the mapping [.]0* is defined as
follows:*

it = 50 (5.10)
(61 V 21" = [du]i*V 2]
[~g1" = ~[ol"

[next ¢]i* = if i <k —1then [¢]7F, else [¢]}"
[6:1U2]i* = Fp.p <k ATga]sk A (5.11)
if i <pthenVr.i<z<p— [¢]L" (5.12)

else I <pA(Vz.(I<z<pVi<z<k)— [0,]5)(5.13)

From the above definition, we can deduce the following facts.

[true]l” = true

[Og]7* = Fjmin(i,1) <j <k A[g]F"

[O617* = Vimin(i,1) <j <k —[6];"

[0®]Y* = Vimin(i,1) <j <k — Ip.min(j,1) < p <k A [¢]4*
[0°¢]%* = Fj.min(i,1) <j <k AVp.min(j,l) <p <k — [$]5

1The formula if A then B else C' is an abbreviation for the formula (4 — B) A (=4 — C).
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Le p be an LTL atomic proposition. The following facts hold.

[Op] = 35 Xp(4)
[Op] = V. Xp(4)
[O®p] = 3.Vi.35. (i <jVI<H)AX(H)
[O%®p] = 3.3.Vj.min(3,1) < § — X,(5)

LTL formulae are interpreted over computations, which are infinite sequences
of sets of atomic propositions. To establish the correctness of the translation of
LTL formulae into M2L-STR, we need to define how computations can be seen as
M2L-STR substitutions.

Definition 5.3.8 Let m be a computation. We define with [n]| the M2L-STR sub-
stitution given by [1](X,) = {i |p € 7(3)}.

Fact 5.3.9 Ifm is a (I, k)-lasso computation, then || is a (I, k)-lasso substitution.

Lemma 5.3.10 Let m be an (I, k)-lasso computation and ¢ be an LTL formula.
Then 1 =0, ¢ holds iff [7]* Eye [0]5° holds, for all i >0 and ' = (z)ic

Proof We proceed by induction over the structure of the formula ¢. We begin by
observing that, by Fact 5.3.9, [7] is a (I, k)-lasso substitution.

Let us consider the case where ¢ is an atomic proposition p. The claim is to

prove that

7 p iff [7]F B Xp((3))), for all i > 0.
By the semantics of LTL, n¢ =11, p is equivalent to p € 7(3). The claim follows now
because p € w(¢) and i € [7](X,) are equivalent and by Lemma B.1.1, ¢ € [7](X},)
is equivalent to (1)L € [7](X,).

In the induction step we consider first the case where ¢ is of the form ¢;U¢p, and
we prove the direction: 7 =ppy ¢y implies [7]* =yay [6]45°, where ' = (i):. By the
semantics of LTL, 7! Fi5p ¢1U¢s holds iff there is some i < j with m/ =0y ¢ and
™ = @1 for i <m < j. Let i’ = (z}i, Jj = (j);, and m' = (m}fk By the induction
hypothesis we obtain

[’”—'k ):MZL [¢2];’Ik, and (514)
[71——|k Fme [Qsl—”’nl? . (5.15)

We distinguish two cases:

e 7/ < j': The situation can be visualized as follows.
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2

i 17 k i J kE+n(k—1)
1
For each z with ¢/ < z < j' there is some m with s < m < j such that (m)} = z.
By (5.15), we conclude that [7]* Eyu Vo7 <z < 5 — [#1]%" holds. Thus

by choosing p = 5 in (5.11) and by (5.14), it follows that [7]* Ey.. [¢1U¢2]é;k
holds.

e j' < ¢': From the fact that j' < ¢ it follows first that [ < j'. The situation is
again visualized in the following picture.

2

I iood ok i Jj k+n(k—1)
b1

For each z with | < 2z < j' V4 < z < k there is some m with i < m < j such
that (m): = z. By (5.15), we conclude that [7]* Ey, Vol <z < j' Vi <z <
k — [¢1]%* holds. Thus by choosing p = j' in (5.11) and by (5.14), it follows that
[7]* B [61Uds]5* holds too.

Conversely, we can similarly establish that for i/ = (3)}, [7]* Eua [¢1Ug2]%F
implies 7 =rr ¢1Udo.

Let us consider the case where ¢ is of the form next¢’. By the semantics of
LTL, 7t = next ¢’ and 77! =1 ¢' are equivalent. By the induction hypothesis,
we conclude that 7! =1 ¢’ and [7]% =y [qﬂjk , for j = (i + 1>5c are equivalent.
Now, (3) and (4) from Lemma B.1.1 conclude the claim.

The remaining cases where ¢ is of the form ¢; V@5 or ¢’ are straightforward. W

We now reformulate Lemma 5.3.10 as follows.

Lemma 5.3.11 Let 7 be an (I, k)-lasso computation and let ¢ be an LTL formula.
Then 7 =i ¢ iff [7]* Fa [@].

Theorem 5.3.12 (LTL Satisfiability in M2L-Str) An LTL formula ¢ is satis-
fiable iff [p] is satisfiable in M2L-STR.

Proof We know by Proposition 4.3.2 that ¢ is satisfiable iff there is an (I, k)-lasso
computation 7 over which ¢ is valid. By Lemma 5.3.11, it follows that [7|* Epr [¢]
holds too. |
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The above Lemma builds the basis of an automata-based decision procedure for
LTL. For example, the MONA system can be utilized for this task. MONA invoked
with the encoding of an LTL formula calculates a deterministic automaton whose
accepted words correspond to the computations over which the given LTL formula
is valid.

Now, we show that also the model checking problem can be formalized in M2L-STR.

Definition 5.3.13 Let M be a finite-state system and ¢ be an LTL formula. We
define the mapping [, ] by [M, ] = VL. [M1, — [¢15.

Theorem 5.3.14 (LTL Model Checking in M2L-Str) Let M be a finite-state
system and ¢ be an LTL formula. M is a model of ¢ iff [ M, @] is valid in M2L-STR.

Proof ” = ”: assume that M is a model of ¢ and let 0 = [X),, /Er, ..., X}, /Em,1/c]
be a substitution that satisfies [M];. We recall that the variables X,,, ..., X, . en-
code the propositions pi, ..., pm respectively. The variable [ encodes the position
where the loop starts and c is a natural number. Let the word uv over B™ corre-
sponding to the substitution [X,, /E1, ..., X, /Em] such that |u| = c. It obviously
follows that uv” € L(M) and by assumption we conclude that ¢ is valid over uv®.
Thus, by Lemma 5.3.10, o satisfies [¢] f)’$.

” <7 assume VI. [M]; — [¢]4" is satisfied in M2L-STR and uv” € L(M). By
Theorem 5.3.5, the substitution o obtained from uv* satisfies [M];, if we addition-
ally interpret the variable [ by |u|. By assumption, we obtain that o[l/ |u|] satisfies
[¢]4%. Now, by Lemma 5.3.10, we conclude that ¢ is valid over uv®. [ |

The M2L-STR decision procedure implemented in the MONA system can be
used as an LTL model checker. Given an instance (M, @), we first compute the
formula [[M, ¢]] and then call MONA. When MONA succeeds to calculate the DFA
corresponding to [M, ¢]), it responds either with ”valid” indicating that M is effec-
tively a model of ¢ or it produces a counter-example that can be used for debugging
purposes.

Example 5.3.3 (continued) We checked three properties of the finite-state sys-
tem M using MONA. The first property is ¢Op and means that the atomic proposi-
tion p occurs in every computation of M. MONA invoked with the formula [M, <p]
responds with:

Formula is valid

Total time: 00:00:00.05
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The second property is ¢r and MONA invoked with the formula [M, Or] pro-
duces a counter-example in this case.
A counter-example of least length (3) is:
P 101
Q 110
R 000
Total time: 00:00:00.05

The decoding of the counter-example yields the finite computation {p, ¢}{q}{p}.

The third property is Or — &*°r and means that whenever r occurs in a compu-
tation of M then r occurs infinitely often in that computation. MONA also produces
a counter-example for [M, Or — O%r].

A counter-example of least length (4) is:
P 1101

Q 0110

R 1000

Total time: 00:00:00.08

The decoding of the counter-example yields the finite computation {p, 7 }{p, ¢}{q}{p}

The verification of the two last properties points to a weakness of using MONA as
an LTL model checker. When MONA calculates a counter-example, we have still to
determine how this counter-example should be extended into a lasso computation
of the finite-state system under consideration. The obtained computation serves
to debug the system for the errors causing the counter-example. If we reconsider
the above example where we checked whether M = <r holds, we will notice that
there are three possibilities to extend the counter-example {p, ¢}{q}{p} to a lasso
computation; for example, ({p, ¢}{qg}{p})*, {p, ¢} ({g}{p})* and {p, ¢}{g}{p}* all
are possible extensions and only the first extension is a computation of M. The
missing information that we need here to correctly and uniquely determine the lasso
computation is the position where the loop should start. This position is interpreted
with the variable [ in the definition of [.,.] (Definition 5.3.13). Thus, one way to
overcome this problem consists of dropping the V-quantification over the variable [
there; this minor modification has no effect on the results proved so far.

If we change the MONA script as proposed above, MONA provides us with more
information: a finite portion of a computation and the position, the value of the
variable 1, where the loop starts.

A counter-example of least length (3) is:
1=0
P 101
Q 110
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R 000
Total time: 00:00:00.08

Knowing the value 0 of 1 makes the extension of the counter-example {p, ¢}{q}{p}
to the lasso computation ({p,¢}{q}{p})* unique. m

5.3.4 Optimization

In the example before, we demonstrated how LTL model checking can be achieved
by the MONA system. Here, we show how we can modify the encodings of finite-
state systems as well as of LTL formulae in order to improve the amount of time
and space needed by MONA to perform LTL model checking.

By considering the encodings of finite-state systems and LTL formulae, we notice
that both encodings are M2L-STR formulae describing regular sets of computations
(words over subsets of P). The formula [M] characterizes the set of finite compu-
tations that can be extended to lasso computations in M and the formula [¢], for
an LTL formula ¢, characterizes finite computations that can be extended to lasso
computations over which ¢ is valid. We can slightly modify our two encodings such
that they describe paths (sequences of states of M) instead of computations.

The encoding of a finite-state system M becomes the following M2L-STR for-
mula.

[M] = 3. 1(So(0), ..., Sn_1(0)) A
Vp.p>0—=T(So(p—1),...,Sn1(p—1),S(p),---,Sn1(p)) A
T(SO($)’ R Snfl($)a SO(Z)’ R Snfl(l)) .

With [M]; we denote the formula obtained from [M] by dropping the 3-quantifier
of the variable [.

Compared to the previous definition of [M] given in Definition 5.3.4, here we
have discarded the formula given in line (5.7) in Definition 5.3.4 that states the
relationship between paths and computations in M. We also have dropped the
J-quantifier of the state variables Sy, ..., S,_1.

The DFA A’ representing the encoding [M], where M is the finite-state system
of Example 5.3.2 is given below.

51 o \>)

()
50 22 /3_4\ 52
O S1 U ED)




§ 5.3 TRANSLATING LTL MoDEL CHECKING IN M2L-STR 111

The automaton A’ differs from the automaton A from Example 5.3.2 in the labeling
of the transitions. In A, the transitions are labeled with subsets of P, whereas in
A’ they are labeled with states in M. Later, we will explain why it is more efficient
to compute A’ than A. Now, we want to establish the relation between the regular
languages defined by [M| and [M].

Let m and n be two natural numbers and M be a finite-state system with the
Boolean encoding (S,I,T, L) and 7:B" — Pow(B™) be the function defined by

7'(807 .- -,Sn—1) = {(pm .- apm—l) | L(So, «++y8n—1,D0,- - ,pm—1)}

We extend the mapping 7 to words over B" as expected. For the finite-state system
M from the Example 5.3.2, we have for example,

T(s1s283) = 7((0 1) (1 0)(1 1))
= {(1 1 0)}{( 1 0)}(1 0 0)}
= {{p,aH{a}{r}}

The relationship between [M| and [M] is stated below.
Lemma 5.3.15 L([M]) = 7(L([M])).

Now, let us compare the effort spent by MONA to build the DFA, say A;, from the
formula [M| and the DFA, say A,, from the formula [M]. In the first case, MONA
generates four intermediate automata: automaton for every formula in the lines
(5.6-5.9); then it builds the product of these four automaton and finally performs a
projection of the variables Sy, ...,S, 1. In the second case (for A;), MONA generates
only three of the four automata and it spares the projection of the variables Sy,
...,9_1. Note that if we additionally remove the 3-quantification over the variable
lin [M], MONA additionally spares the projection of the variable .

After having modified the encoding of finite-state systems, we must also modify
the encoding of LTL in M2L-STR such that it also characterizes paths instead of
computations. This is necessary in order to obtain ”comparable” formulae; that is,
from the semantics point of view, formulae that define regular languages over the
same alphabet and, and from the syntax point of view, formulae that involve the
same free variables S, ..., Sy_1. In Definition 5.3.7, we modify the rule [p]"*
X, (i) in the following way.

[p]é,k = LP(SO(i)a (A Sn—l(i))’

where L,(So(%), - .., Sn—1(7)) is a predicate defined in M2L-STR and holds iff p labels
the state encoded by the vector (Sy(7),...,S,—1(i)). We denote by [¢] the new
encoding of ¢. The relationship between [¢] and [¢] is state as follows.
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Lemma 5.3.16 w € L([¢]) iff for all z with 7(z) = w, z € L([¢]).

By Lemma 5.3.15 and Lemma 5.3.16, we conclude

Theorem 5.3.17 [M]| — [¢]| and [M] — |[¢] define in M2L-STR, up to 7, the
same regular language. That is, for all words w € B™, w € L([M| — [@]) iff there
is a word x such that 7(z) = w and x € L([M] — [¢]).

Based on the previous theorem, we redefine the encoding of LTL model checking
as follows: [M,¢] = VI. [M]; — [¢]5* and we refer to this definition when we use
[M, #]] in the rest of this chapter.

5.4 Bounded Model Checking for LTL

The highly automation of model checking and the multiple success stories where
model checking was used contribute to a wide and increased acceptance of this push-
button verification approach in the industry. Not surprisingly though, many large
systems cannot be verified due to state-space explosion; that is, the number of states
of the transition graph grows exponentially by the number of the components build-
ing the finite-state system. Several works, like may be abstraction [CGL94|, symme-
try [CJEF96, ES93, ID93], and partial-order reduction [GP93, Pel94] addressed this
problem with respectable success. Lately, a new model checking technique, bounded
model checking, was proposed [BCCZ99] and it has shown promising results.

The bounded model checking problem for LTL is defined similarly to BMC and
consists of examining if all computations bounded by a fixed length of a given finite-
state system, instead of all (unbounded) computations as it is the case in model
checking, satisfy a given LTL property.

Definition 5.4.1

Bounded Model Checking for LTL (BMCH(LTL))

INSTANCE: A finite-state system M, a formula ¢ and a natural number k.
PARAMETER: k.

QUESTION: Does ¢ have a satisfying lasso computation in M of length k?

Biere et al. showed in [BCCZ99] that BMCH(LTL) is NP-complete. They pro-
vide a procedure which translates an BMCH(LTL)-instance (M, ¢, k) into a con-
junction of two Boolean formulae f A g that is satisfiable iff there is a computation
of M of length k over which ¢ is not valid. The formula f makes use of a sequence of
vectors of state variables so = (sJ,...,s0 '), ... ,sx_1 to characterize lasso paths of
M of length k. f is simply generated by unfolding the transition of M k times and
imposing that the first vector state sy satisfies the initial state predicate of M. The
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second formula g constrains the paths described by f to those that do not satisfy ¢.
Here we restrict ourself to this brief description and refer to [BCCZ99] for the full
story.

In the previous sections, we showed that the LTL model checking can be specified
as an M2L-STR formula. Now, we show that the bounded model construction
procedure for M2L-STR can be used as an LTL bounded model checking procedure
and furthermore, it produces a Boolean formula that is up to variable renaming
syntactically equivalent to the formula resulting from applying the procedure of
Biere et al.

Let M be a finite-state system, ¢ an LTL formula, and £ a natural number.
We designate with [M, @, k] the Boolean formula produced by the bounded model
constructor of M2L-STR applied to the encoding [[M, ¢] and k.

For d and k natural numbers we define the mapping [[.]¢ by
(Mg = I(s0) A /\ T(si,8i41) N T(8x1,8a)-
0<i<k—1

The Boolean formula [[M]{ is obtained from [M]; (see Section 5.3.4) by instantiating
$ with £ and instantiating the free variable [ by the natural number d.

For the natural numbers 4, [ and k we inductively define the mapping [[.J* by:

Pl = Ly(ss)
[1V $ali* = [l V [ga]*
[-6l" = -[eli*
[next Y% = if i < k — 1 then [[¢]}F, else [4]}*
[$:Ueali® = Vi([e2Df* A NZilal¥) v
Visi([8205" A N [0]5 A N [61]55)

The Boolean formula [¢]"* is obtained from [¢]“* (see Section 5.3.4) by instan-
tiating the variable ¢, [, and k& by the natural numbers ¢, [, and k, by recursively
applying the mapping ([[.] ) to the subformulae of ¢, and applying standard Boolean
simplification. We can derive the following rules for the time operators < and O.

[[ng)]]i’k = V?:min(i71)[[¢]]?k
[[E]g[)]]i’k = A?:min(i71)[[¢]];7k

We can prove inductively over the structure of the formula ¢ that the following
theorem holds.
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Theorem 5.4.2 [M, ¢, k] = \goj<s [M]}, = [¢]s"
Example 5.4.1 (continued)
[MI3= (s§A8} A shAst A sgAst)V(sfAS) A sgAst A sgAs)
[Oplo” = (s§V i)V (s§Vsi)V(s§VsD)
[Orle® = (s§A8])V (s5As1)V(s5As7)
The Boolean formula [M]3 — [< p]l? is valid, whereas the Boolean formula [ M]

[© 7]y has the following counter-example {s} = 0,5 = 1,s§ = 1,5} = 0,s
1,s? = 1}, which encodes the path s;s5s3 of M.

0
3_>
2 _
0=
O

The formula [[M, ¢, k] is, up to variable renaming, the result of applying the
bounded model checker of Biere et al. to the problem instance (M, ¢, k).

5.5 Chapter Summary

We investigated how we can reason about non-terminating systems in M2L-STR.
We gave an embedding of LTL model checking in M2L-STR demonstrating:

e We can use finite automata on finite words instead of Biichi automata to decide
the LTL model checking.

e In M2L-STR we can express safety as well as liveness properties.

e The bounded model constructor can be used as a bounded model checker
without loss of efficiency.

In the practical side, the positive experimental results of the encoding of LTL
satisfiability in MONA reported in [HHO1] give us hope that similar positive results
for our encoding of LTL model checking into MONA can be obtained. In the
theoretical side, we still have to provide an analysis of the computational complexity.
For the encoding of finite-state systems, we can prove that the size of the obtained
finite automata is polynomial in the size of the finite-state systems provided as input.
For the encoding of LTL formulae in M2L-STR, the picture is rather different. Here,
we have to consider the syntactical fragment of M2L-STR, to which LTL is mapped,
and explore the size of the finite automata that can be constructed from formulae
of that fragment. This is, however, not so obvious.



Chapter 6

MonaCo

In this chapter we describe MONACO, an implementation of the bounded model
construction approach for M2L-STR and we report on numerous applications from
diverse domains. QOur aim s to evaluate the practical use and the scalability of
MONACO.

6.1 Introduction

In Chapter 4 we have investigated the bounded model construction problem for
M2L-STR from the theoretical point of view. We proved that, given a M2L-STR
formula ¢ and a natural number &, we can generate a formula in QBL that is sat-
isfiable if and only if ¢ has a word model of length k. The generated formula is
polynomial in the size of ¢ and k£ and can be tested for satisfiability in polyno-
mial space. For generating length k£ counter-models, this yields a non-elementary
improvement over the automata-based decision procedure for M2L-STR.

The aim of this chapter is to evaluate the bounded model construction for
the logic M2L-STR in practice. To achieve this goal, we have implemented the
tool MONACO, which supports the use of multiple quantified Boolean satisfiability
solvers, QSAT-solvers, as a backend. We evaluated our system on several exam-
ples coming from different domains. Our experiments will show that MONACO
compared to MONA usually finds counter-examples substantially faster.

The MONA system has two sources to abort the automata construction. The
first source consists in the state-space explosion problem. Often, MONA fails to
build the automaton for the corresponding formula and therefore it is not able
to find errors, although, in most cases errors have small path lengths and require
only a few number of states to be explored. Moreover, MONA uses a canonical
form (deterministic and minimal automaton) to represent formulae. This design
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feature sometimes appears as an obstacle for successful verification with MONA,
because deterministic automata can be exponentially larger than nondeterministic
ones and thus, the construction of a deterministic automaton may fail, whereas the
construction of its corresponding nondeterministic one may be possible. MONACO
avoids the state-space explosion problem by only considering a fixed number of
states. In MONACO, we can imagine the situation as follows. We can think about
the formula as a nondeterministic automaton. First, MONACO removes all the
states in the automaton that are reachable from the initial states in more than &
steps. Second, it explores the resulting automaton, which is considerably smaller
than the original one, for counter-examples.

The second source of divergence in MONA consists in the use of BDDs for rep-
resenting the transition function of automata. BDDs often allow a compact repre-
sentation of Boolean functions, but they strongly depend on the variable ordering.
Consequently, MONA fails in many cases to build the transition function for au-
tomata of relatively small size. MONACO uses QSAT-solvers, which do not suffer
from variable ordering and are capable to handle very large numbers of variables.
Some of these solvers come with advanced search heuristics and have very good
performance in practice as we will see in our experiments later.

The rest of this chapter is structured as follows. In Section 6.2 we describe
MONACO system. In Section 6.3 we report on several applications. In Section 6.4
we draw conclusion.

The MONACO system is implemented in C++ and supports the use of different
QSAT-solvers for QBL. The overall structure of the MONACO system is depicted
in Figure 6.1. As input, it takes a file that contains the M2L-STR formula to be
checked, a natural number as a model length (bound), a flag indicating whether we
are looking for examples or counter-examples, and a QSAT-solver. The input file,
also called (M2L-STR) program, is written in the MONA input syntax (cf. [KMO1]).
It consists of a list of declarations of variables and predicates followed by a formula,
called main formula (see Example 6.2.1).

MONACO translates the main formula of the input M2L-STR program into a
quantified Boolean formula that is subsequently passed to the specified QSAT-solver
to be decided. The computation steps of MONACO can be grouped into five phases.

(1) This phase consists of parsing the input program and producing from the main
formula a new (M2L-STR) formula in which the predicate calls are unfolded
using their definitions.

(2) In this phase, MONACO eliminates the first-order and second-order quanti-
fiers from the formula obtained in the first phase. Let k be the bound. The
elimination of the first-order quantifications is performed as already described
in Section 4.2.1. A formula of the form Jz.¢ (respectively Vz. ) is unfolded
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[Flagj [QSAT—solver}

\

Elim 1st vars

Parse & & = Format e Decide a—s| Decode

(4)

(3)

Elim 2nd vars

Figure 6.1: Structure of the MONACO System

into the formula \/,_, #[i/x] (respectively Ay, #i/x]). The elimination of
the second-order variables introduces a block of Boolean quantifiers for every
second-order variable. A formula of the form 3X. ¢ (respectively VX. ¢) is trans-
lated into 3z, . .., Zp_1. @ (respectively Vo, ..., Tp_1. gg), where ¢ is obtained by
recursively eliminating the second-order variables from ¢ and replacing subfor-
mulae of the form X (i), where 7 is a natural number, by the Boolean variable
x; if ¢ is smaller than k£ and by false otherwise. This phase produces with a
quantified Boolean formula.

In this phase, MONACO translates the QBL formula obtained in the previ-
ous phase into the appropriate format. The format depends on the specified
QSAT-solver. The system QUBOS (described in the next Chapter) for exam-
ple works directly on fully-quantified Boolean formulae. Other QSAT-solvers,
like SEMPROP [Let01] and QBF [Rin01], require the input format suggested by
Rintanen in [Rin99b] which is an extension of the DIMACS format [JTI94].

In this phase, MONACO invokes the QSAT-solver with the previously computed
formula.

In the last phase, MONACO decodes the assignment computed by the QSAT-
solver into a model (respectively counter-model) of the input program.
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6.2 Structural Description

Example 6.2.1 We consider a toy example to illustrate the usage of MONACO.
The program under consideration is called even.mona and it is listed below.

m2l-str;
pred even(varl p) =
ex2 Q: p in Q
& (alll q:
(0 <q&gq<=p) =
(q in Q => q - 1 notin Q)
& (q notin Q => q - 1 in Q))
& 0 in Q;

# main Formula
var2 A;
alll p : even(p) <=> p in A ;

The predicate even states that the natural number (first-order variable) p is even.
The main formula states that the set A contains all the even natural numbers up to
the implicit bound. We can call MONACO to obtain a set containing all the even
numbers less than 10. This is done by invoking MONACO as follows

monaco even.mona 10 -s -qubos

and in this case MONACO responds with 4={0,2,4,6,8}. The flag -s means that we
are interested in a satisfying example and -qubos indicates that we are using QUBOS
as QSAT-solver. We can also call MONACO to obtain a counter-example of length
10. We type

monaco even.mona 10 -c -qubos

responds with A={1,3,5,7,9}. The flag -c indicates that we are interested in a
counter-example. Note that we can for example replace -qubos with -semprop (re-
spectively -qbf) to use SEMPROP (respectively QBF) instead of the QUBOS. o

In the remainder of this chapter we will report on several applications that we
have carried out using the MONACO system. In most of our examples we have used
the MONA system for comparison. As we already mentioned in Chapter 1, MONA
is an automata-based implementation of decision procedures for the monadic logics
M2L-STRr, WS1S and their generalizations to trees. MONA compiles a formula
into a minimal deterministic automaton, which it represents and manipulates using
BDDs. Over the last few years MONA has been continually improved and is now
highly optimized (we use version 1.4).

For our tests, we used a 750 Mhz Sun Ultra Sparc workstation with 2 gigabytes
RAM. The runtimes depicted in the tables below are user time (in seconds) reported
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by the operating system for all computations required. Times greater than one hour
are indicated by the symbol abort. The space requirements depicted in the tables
are in megabytes.

We used the QSAT-solvers QUBOS, SEMPROP, and QBF as backends for MONACO.
Here, we will focus on comparing the bounded model checking approach versus the
automata-based decision procedures for M2L-STR. A comparison of the impact of
the use of these solvers is the subject of Chapter 7.

6.3 Applications

6.3.1 Small Examples

For completeness, we tested examples ranging from those that are easy for MONA
to those that are difficult. Table 6.1 presents tests on several easy examples most of
them distributed with MONA [KMO01]. For all of these, we find counter-examples (of
the same length as MONA’s) when they exist. However, for these examples, MONA
is much faster.

The first example is a parameterized n-bit ripple-carry adder, taken from [BK98].
The input formula states the equivalence between a structural description of the pa-
rameterized adder family (described at the gate level) with a behavioral description,
describing how bit-strings are added. We checked this equivalence for 1 < k£ < 10.
The second example involves a structural specification of a sequential D-type flip-
flop circuit, and its behavioral model. The circuit is built from 6 nand-gates, each of
which has a (unit) time-delay. We tested the correctness of this circuit with respect
to a behavioral description proposed by Gordon in [Gor86]. As has been discovered
by [BK98, WP89], the specification has a subtle bug. Both MONA and our system
find a (different) counter-example of length 8. The third example is a buggy version
of the Dekker mutual exclusion protocol taken from [BA90]; both systems success-
fully find a trace showing that the critical sections can be simultaneously accessed.

Next we consider some examples that are difficult for MONA. First, we consider
reasoning about two concurrent processes that increment a shared integer variable
N by each executing the program: Load Reg N, Add Reg 1, Store Reg N. If we assume
an interleaving semantics, it is possible that N is incremented by either 1 or 2. We
model the two parallel processes in M2L-STR and assert (incorrectly) that after
execution NV is incremented by 1. Table 6.2 gives the results, where we scale the
problem by considering registers of different bit-width. For more than 4 bits, MONA
runs out of memory as the automata accepting the computations (traces) of the two
systems grows exponentially.
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Examples MONA MONACO
k QUBOS QBF SEMPROP
time space time space | time space | time space

1 0 0 0 0 0 0

2 0 0 53 5 0 0

3 0 0 abort 463 6
Invalid ripple-carry 4 0 0 abort abort
adder 0 0 5 0 0 abort abort

6 2 5 abort abort

7 18 10 abort abort

8 48 15 abort abort

9 | 385 83 abort abort

10 | 1612 200 abort abort

1 0 0 0 0 0 0

2 0 0 25 6 0 0

3 0 0 abort 39 6
Valid ripple-carry 4 0 0 abort abort
adder 0 0 5 0 0 abort abort

6 1 5 abort abort

7 3 7 abort abort

8 13 13 abort abort

9 55 28 abort abort

10 | 286 71 abort abort

FlipFlop 0 0 8 0 0 0 0 0 0
Mutual exclusion 0 0 15 0 0 821 6 20 22

Table 6.1: Small Examples
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N <2 MONA MoNACO (k=7)
QUBOS QBF SEMPROP
time space | time space | time space | time space
2 4 60 0 0 0 0 1 0
3 49 585 0 0 1 0 2 6
4 abort 0 0 3 0 34 7
5 abort 0 0 10 5 36 8
6 abort 1 0 34 8 108 11
7 abort 2 14 148 14 1219 23
8 abort 10 27 680 27 abort
9 abort 39 55 abort abort
10 abort 197 118 abort abort
11 abort 1013 250 abort abort
Table 6.2: Parallel Instruction
width MONA MONACO (k =28)
QUBOS QBF SEMPROP
time space | time space | time space | time space
2 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
8 0 0 0 0 20 15 3 7
16 abort 1 5 abort 146 9
32 abort 2 13 abort abort
64 abort 19 43 abort abort
128 abort 63 163 abort abort
256 abort 401 647 abort abort

Table 6.3: Barrel Shifter
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width MONA MONACO (k =15)
QUBOS QBF SEMPROP
time space | time space | time space | time space
2 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
8 6 6 0 0 2 0 1 0
11 614 35 0 0 5 5 1 7
12 abort 0 0 7 5 1 5
16 abort 0 0 18 6 2 9
24 abort 1 5 73 9 6 13
32 abort 2 14 207 14 13 22
38 abort 5 18 387 19 21 28
40 abort 6 19 470 20 24 30
48 abort 11 26 932 27 41 40
50 abort 12 28 | 1082 29 47 43
54 abort 16 32 | 1496 34 63 49
60 abort 26 39 | 2612 40 86 99
64 abort 31 44 abort 107 63

Table 6.4: Counter

Finally, we consider two sequential circuits: a counter and a barrel shifter, which
we parameterize in the width of the data-path. Tables 6.3 and 6.4 give the results
of these experiments for data-paths of various widths. In the first example, the
n-bit counter has two selection lines and n data lines. At each point in time the
value of the data lines is incremented, reset, or unchanged depending on the value of
the selection lines. We verify this with respect to an incorrect specification, which
asserts that, after fifteen time units, the data line is always incremented. In our
experiments, MONA quickly runs into state-space explosion problems, whereas even
for large data-paths, MONACO can still generate counter-examples quickly. Our
procedure finds that, for data-paths between 4 and 64, the short counter-examples
have length £ = 15. The results for the barrel shifter are similar.

6.3.2 Alternating Bit Protocol

In this section we report on experiments with the alternating bit protocol (ABP)
[BSW69] which has already received considerable attention in other approaches.
Here, we first show how this protocol can be formalized using M2L-STR and sec-
ond, we demonstrate how the MONACO system can help to debug and establish
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Figure 6.2: Alternating Bit Protocol

correctness of some safety properties of the protocol.

The ABP is designed to enable two entities, a producer and a consumer, to
communicate in a reliable manner over an unreliable communication medium. The
protocol constitutes of a sender, Sender, and a receiver, Receiver, which exchange
messages over two logical channels Msgs and Acks which act as FIFO queues of
unbounded capacity. Figure 6.2 displays the overall structure of the ABP. The
sender reads the producer’s messages and transmits them to the receiver which
forwards them to the consumer. The sender sends the messages via the channel Msgs
and waits for acknowledgments arriving via the channel Acks. If the sender does
not receive the acknowledgment of a sent message then it resends the lost message
so often until it receives an acknowledgment. To make two consecutive messages
distinguishable, the sender marks each message with a bit. The receiver also marks
each acknowledgment with a bit. When the sender receives an acknowledgment
accompanied with a bit then it compares its own bit and the received bit. In the
case that both bits do not coincide (which means that the previously sent data is
lost) then it resends the data without changing the value of its own bit. In the
case that both bits coincide (which means that the previously sent data is not lost)
then the sender alternates its own bit and proceeds to send a new producer’s data.
Analogously, when the receiver receives a message accompanied with a bit that does
not coincide with its own bit then it simply sends an acknowledgment accompanied
with the negation of its own bit. In the other case, the receiver delivers the message
to the consumer, updates its own bit, and sends an acknowledgment accompanied
by the negation of its own bit.

Embedding the ABP in M2L-Str The alternating bit protocol represents an
infinite-state system with the following two sources of infinity. First, the messages
can be taken from an infinite data domain. Second, the used channels are of un-
bounded size. In [ACWO0] it is shown that it is sufficient to consider only three
different message values to establish the correctness of the ABP. It is also shown (cf.
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[MN95]) that channels with a maximal size of two messages can be used instead of
unbounded channels.

We have encoded ABP in M2L-STR and the complete protocol code is given in
Appendix C.3. In our encoding, we model three different kinds of messages and the
channels have size two. Here, we summarize the main ideas behind our model.

e The sender has a local variable, SBit, used to store the alternating bit, and
three local states: get, send, and wait. The sender is initially in the state get
where it gets data from the producer. Then it changes to the state send_data
where it sends the producer’s data, and finally moves to the state wait to wait
for acknowledgment from the receiver and moves again to the state get.

e Analogously, the receiver has a local variable, RBit, and three local states: re-
ceive, deliver, and send_ack. The receiver is initially in the state receive, where
it waits for data. When it reads data it moves to the state deliver, where it
delivers data to the consumer. When the transmission of the data to the con-
sumer is performed it moves to the state send_ack to send an acknowledgment
and goes again to the state receive.

e The channel Msgs has an input and output interface. The data sent from
the sender is collected at the input and is afterwards transfered to the output
interface where it can be accessed by the receiver. Note that while transferring
the data from the input to the output of the channel the data can be lost.

e Analogously, the channel Acks has also an input and output interface. The
acknowledgments sent by the receiver are collected at the input and then
transfered to the output where they are consumed from the sender. Note also
that while transferring the acknowledgments from the input to the output of
the channel the acknowledgments can also be lost.

Each of the processes Sender, Receiver, Msgs, Acks is defined by an M2L-STR
predicate and the protocol which is a parallel composition of these four processes is
specified by the disjunction

System = Sender() V Receiver() V Msgs() V Acks() .
We have formalized and verified the following safety properties:

» = Vs,t.s<t A get(s) A get(t) A Vg.s < q<t— —get(q)
— Vq. s < ¢ <t— SBit(s+ 1) < SBit(q)

¢a = Vs,t.s<t A ~SBit(s) N SBit(t) A Vq.s < g <t— ~SBit(q)
— Jg. s < ¢ <t — ack0(q)

¢s = Vs,t.s<t A SBit(s) N =SBit(t) A Vq.s < g <t — SBit(q)
— dg. s < g <t— ackl(q)
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Properties || MONA MONACO
QUBOS QBF SEMPROP
time k | time space | time space | time space
10 0 0 8 0 76 8
20 1 0 83 10 abort
01 abort | 30 7 0 2734 78 abort
40 89 40 abort abort
50 | 439 187 abort abort
60 | 2249 398 abort abort
10 0 0 7 0 0 0
20 0 0 48 20 6 0
30 2 0 195 32 24 5
40 4 10 629 51 81 10
50 9 15 abort abort
oo abort | 60 17 23 abort abort
70 31 50 abort abort
80 51 84 abort abort
90 89 157 abort abort
100 | 339 201 abort abort
110 | 779 246 abort abort
120 | 791 298 abort abort
10 0 0 7 0 0 0
20 0 0 48 30 4 8
30 2 8 192 54 20 17
40 4 13 607 84 76 43
50 9 56 abort abort
o3 abort 60 16 74 abort abort
70 48 93 abort abort
80 | 184 105 abort abort
90 | 708 163 abort abort
100 | 1330 197 abort abort

Table 6.5: Experimental Results of the Alternating Bit Protocol

Formula ¢, describes that the alternating bit of a sender does not change during
the transition from a get state to the next following get state. The formulae ¢5 and
¢3 formalize that if the alternating bit of the sender changes once during a time
interval between s and ¢ (the bit changes from false to true in ¢ and from true to
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false in ¢3) then the sender received an acknowledgment within that interval of time
and this asserts that the consumer has indeed received the data.

The results of our experiments are depicted in Table 6.5. The MONA system
was not able to build even the DFA corresponding to the protocol, and consequently
to check the properties given above. Using MONACO we were able to debug our
encoding and to remove a lot of errors of several length. The results displayed
in Table 6.5 show the timings and space requirements taken by MONACO after
removing the bugs.

6.3.3 The Bus Arbiter Protocol

In this section we use the bus arbiter circuit [Mar85, Dil88] to demonstrate the
scalability of the MONACO system.

The bus arbiter is an arbitration protocol designed to grant access to only one
client among a number, N, of clients that contend for the use of a bus. The clients
send requests to the arbiter which responds with acknowledgments. To assert that
every request is eventually acknowledged, the protocol uses a ring of cells, one cell
per client!, and circulates a token in the ring. A client is granted immediate access
to the bus, when its request persists for the time it takes for the token to make a
complete circuit.

A cell of the arbiter is depicted in Figure 6.3. The inputs token_in, grant_in,
and override_in are directly connected to the outputs token_out, grant_out, and
override_out respectively of the previous cell in the ring and the outputs token_out,
grant_out, and override_out form the inputs of the next cell in the ring. The cell
contains of two registers; register 7' to store the token and register W to store
information if the cell is waiting for acknowledgment since the last pass of the
token. The signal grant_out of a cell is set (high) exactly when all the previous cells
in the ring are not requesting the bus. The signal override_out is used to prevent
the other cells from being acknowledged at the same time. A cell is acknowledged
when it is requesting the bus and no other cell is requesting the bus or it is the first
one requesting the bus since one token loop.

Embedding the Bus Arbiter in M2L-Str The code of the bus arbiter protocol
for three cells is given in Appendix C.4 The circuit cell is modeled in M2L-STR
straightforwardly using the following predicate.

1'We will use the word cell and client interchangeably.
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pred Cell(var0 request, token,n_token, wait, n_wait, token_in,
token_out, grant_in, grant_out, override_in, override_out, ack) =

(n_token < token_in) A
(n_wait < (wait V token) A request) A
(ack < (wait A token V grant_in) A request) N\
(token_out < token) A
(grant_out < —request A grant_in) A
(override_out < wait A token V override_in)
The Boolean variables n_token and n_wait are used to model the content of the
registers T' and W respectively at the next time unit.

The bus arbiter circuit for 3 clients is displayed in Figure 6.4. Initially, only
one register T is set and all W registers are reset. We have implemented the bus
arbiter for N < 12 clients. Below, we display the M2L-STR predicate formalizing
the arbiter for 3 clients.

pred Arbiter(var2 Ry, Ry, Rs, Ao, A1, As, T, Th, To, Wo, W1, W,
Ting, Tiny, T'ing, Touty, Touty, Touty, Oing, Oing, Oing,
Oouty, Oouty, Oouts, Ging, Ging, Ging, Gouty, Gout,, Gouty) =

Init_cellO(Ty, Wo) A
Init_cell(Ty, W1) A
Imit_cell(To, Ws) A
Vt. First_last wiring(t,...) A
Cell(t € Ry,...) N
Cell(t € Ry,...) N
Cell(t € Rz, .. )

The second-order variables Ry, ..., Gouts model the input and output signals of
the cells. The predicate Init_cell0 states the initial values of the registers of the first
cell. The two other predicates Init_cell state the initial values of the registers of the
second and third cell. The predicate First_last_wiring describes how the inputs of
the first cell and the outputs of the last cell are connected.

We have formalized the following three properties in M2L-STR:

1. At each time point the token is exactly at one cell.
2. Only a single client is allowed to use the bus.

3. There is no assertion without a request.
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#clients MONA MONACO
k QUBOS QBF SEMPROP
time space time space | time space | time space
2 0 0 12 0 0 0 0 0 0
3 3 62 28 2 11 125 12 9 11
4 8 1080 | 68 | 188 157 abort abort
abort 50 63 7 abort abort
5 abort 75 | 257 556 abort abort
abort 100 | 2682 604 abort abort
abort 25 5 14 abort abort
6 abort 50 | 128 92 abort abort
abort 75 | 1040 250 abort abort
abort 25 7 17 abort abort
7 abort 50 | 193 104 abort abort
abort 75 | 1582 343 abort abort
abort 25 8 19 abort abort
8 abort 50 | 277 119 abort abort
abort 75 | 2198 385 abort abort
abort 25 13 21 abort abort
9 abort 50 | 341 133 abort abort
abort 75 | 2786 440 abort abort
abort 25 18 23 abort abort
10 abort 50 | 415 148 abort abort
abort 60 | 1154 249 abort abort
abort 25 20 25 abort abort
11 abort 50 | 590 159 abort abort
abort 60 | 1503 272 abort abort
abort 25 21 27 abort abort
12 abort 50 | 755 175 abort abort
abort 60 | 1928 299 abort abort

Table 6.6: Experiment Results for the Bus Arbiter
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class Test { Method int fac(int)
>> max_stack=4, max_locals=2 <<
iload_1
ifne 4
iconst_1
ireturn
iload_1
aload_0
iload_1
iconst_1
isub
invokevirtual <Test.fac(int) :int>
10 imul
11 ireturn

int fac (int i) {
if (i ==0)
return 1;
else
return i*fac(i-1);

L
CONOYODdWNRFLO

Figure 6.5: Java code and bytecode of method fac

We have used MONA and MONACO to determine whether the arbiter circuits
for up to 12 clients have the above properties. The results are depicted in Table 6.6.
Neither MONA nor MONACO detected errors for all these problems. For N < 4,
the time requirements for both systems are slightly different, however, the MONA
system needs considerably more space than MONACO. The chosen bounds for the
three first circuits coincide with the number of the states of the minimal DFA of the
corresponding circuit. Note that in this case we can also deduce from the results of
MONACO that the three circuits are correct with respect to the specified properties.
That is, no errors can be detected for any bound k£ € N. By increasing the number
of clients MONA quickly runs out of memory.

6.3.4 Bytecode Verification

In this section we will demonstrate the usability of MONACO in a very interesting
domain, namely bytecode verification. We briefly overview the bytecode verifica-
tion approach and describe a new backend for MONACO to the bytecode verifier
BYCOMOCHE developed by Basin et al. [BFGP02]. We will show that the new
backend somehow “completes” BYCOMOCHE and report on experimental results.
We refer to [Ler01] for an overview on bytecode verification.

Given a Java source file, the Java compiler produces a class file containing byte-
code (see Figure 6.5), which is executed thereafter by the Java virtual machine
(JVM). In today’s mobile applications, it is widespread that untrusted bytecode is
downloaded and locally executed which introduces major security risks such as de-
stroying and modifying sensible data or even distributing private information in the
network. Bytecode verification is the task of statically checking that the bytecode
satisfies certain safety properties that ensure that no bad things can happen prior
to executing the code.
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The Java virtual machine is a stack-based abstract machine. It has a stack to
store the operands of instructions and registers to hold intermediate results as well as
local variables. One safety property that bytecode should meet is type correctness:
When the JVM executes a bytecode instruction, it checks that the operands of that
instruction stored at the top of the stack are of the appropriate types. For example,
when the JVM executes the instruction isub (integer subtraction, see Figure 6.5), it
should check that the two top elements of the stack are of type int. Another safety
property is that there is no stack-overflow when a bytecode instruction is executed.

As mentioned before, the widespread use of Java and the increased demand
on secure Java have motivated a large number of researchers to work on bytecode
verification. There is a considerable number of approaches proposed for bytecode
verification. Almost all these approaches are based on a type-level abstract inter-
pretation of the JVM. By this abstract interpretation, a bytecode instruction does
not operate on values but on types. For instance, the abstract interpretation of the
instruction isub is an operation which applied to the pair (int, int) produces the
type int. So, in the abstract JVM, the stack and registers store types instead of
values. Verifying the type correctness property for the instruction isub results in
checking that by executing this instruction the two top elements of the stack are
type int and that the type of the top element of stack after the execution is also int.
Following the abstract interpretation, a bytecode method can be translated into a
finite-state transition system where the contents of the stack and the registers build
the finite state-space and the abstract instructions define the transition function.

New Backend to ByCOMOCHE and Experimental Results

There exist diverse approaches to bytecode verification [Sch98, Coh96, NvO98], here
we concentrate on BYCOMOCHE. The BYCOMOCHE tool uses an intermediate rep-
resentation of the abstract transition system and comes with a backend for SPIN
and a backend for SMV. In the SPIN backend, the transition system is described
as a PROMELA process and the properties are expressed in the linear temporal
logic (LTL) as an observer process. In the SMV backend, the transition system
is described as a process in the input language of SMV and the safety properties
are expressed in the computational temporal logic (CTL). The experimental results
performed using ByCOMOCHE and reported in [BFGP02] showed that bytecode ver-
ification based on model checking is as competitive as bytecode verification based on
data-flow analysis for correct bytecode. The reason for this positive result, although
model checkers have in the worst case exponential time complexity, is due to the fact
that for correct bytecode only linearly many states in the number of instructions
are reachable. Moreover, the experiments in [BFGP02] showed that in the case of
correct bytecode SPIN has a better performance than SMV that demonstrates that
explicit model checking using the “on-the-fly” technique is more appropriate for this
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Figure 6.6: Extension of ByYCOMOCHE

kind of task than symbolic BDD-based model checking.

For incorrect bytecode the picture is rather different. Both SPIN and SMV are
of limited success. SPIN often fails to terminate and SMV runs out of memory. The
analysis of this problem given in [BFGP02] indicates that for incorrect bytecode the
number of reachable states could be exponentially larger than in the case of correct
bytecode which makes the verification task very resource intensive and thus aggra-
vates detecting errors, even with small paths. For detecting errors, we alternatively
use the approach of bounded model construction. We have added a new backend for
MONACO to the bytecode verifier BYCOMOCHE. The overall structure of the new
obtained system is depicted in Figure 6.6. The backend for MONACO generates
from the abstract transition system an M2L-STR formula in two steps. First, it
produces a linear LISA code (cf. Section 3.6). Second, it uses the LISA compiler
to generate an M2L-STR formula that is subsequently processed by MONACO. In
LISA, the types of the abstract transition system are modeled as integers, the stack
and registers are modeled as arrays of fixed length. In Figure 6.5 we have displayed
the bytecode of the function fac and in Figure 6.7 the generated LISA code.

We carried out two different kinds of experiments. First, we have applied the
MONA system to a large number of examples of both correct and incorrect bytecode.
The results confirm the thesis claimed above, namely the “on-the-fly” technique is
better than the symbolic BDD-based model checking in bytecode verification. In
our experiments, MONA, which uses BDDs in its implementation, was able to only
verify a few examples with small numbers (up to 10) of instructions.

Second, we performed experiments with bytecode and compared the three back-
ends. The results are displayed in Figure 6.8 and show that for faulty bytecode the
use of the MONACO backend is the best choice. Note that the bytecode methods
used in these experiment are originally correct, we produced defective bytecode.
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# type declarations

data
data
data
data
data
data
data
data

typesT = 0..3;

pcT = 0..11;

locindexT = 0..1;

locT = array locindexT of typesT;

stack_indexT = 0..4;

stackT = array stack_indexT of typesT;

stateT = record {pc:pcT, stack_ptr:stack_indexT, stack_:stack_T, loc:locT};
runT = array nat of stateT;

# transition system

pred
pred

Init(S:stateT) = S.loc[0] = 3 & S.1loc[1] = 1 & S.stack_ptr = 0 & S.pc = 0;
Trans(S, S’:stateT) =

case (S.pc) of

O:

> S’ = S{stack[S.stack_ptr] := S.loc[1], stack_ptr := S.stack_ptr+ 1,
pc := 1};

1 => (8’ = S{stack_ptr := S.stack_ptr-1, pc := 2}) |

(S’ = S{stack_ptr := S.stack_ptr-1, pc := 4});

2 => 8’ = S{stack[S.stack_ptr] := 1, stack__ptr := S.stack_ptr + 1,

pc := 3};

3 =>8"=8;

4 => S’ = S{stack[S.stack_ptr] := S.loc[1], stack_ptr :=(S.stack_ptr) + 1,
pc := 5};

5 => S’ = S{stack[S.stack_ptr] := S.loc[0], stack_ptr :=(S.stack_ptr) + 1,
pc := 63};

6 => S’ = S{stack[S.stack_ptr] := S.loc[1], stack_ptr :=(S.stack_ptr) + 1,
pc = T};

7 => 8’ = S{stack[S.stack_ptr] := 1, stack__ptr := S.stack_ptr + 1,
pc := 8};

8 => S’ = S{stack[S.stack_ptr-2] := 1, stack__ptr := S.stack_ptr-1i,
pc := 9%};

9 => 8’ = S{stack[S.stack_ptr-2] := 1, stack__ptr := S.stack_ptr-1,
pc := 10};

10 => S’ = S{stack[S.stack_ptr-2] := 1, stack__ptr := S.stack_ptr-1i,
pc := 11};

11 => §? = §;

esac;

# properties

pred

Invariants(S:stateT) =

case (S.pc) of

0 => S.loc[1] = 1;

1 => S.stack[S.stack_ptr-1] = 1;

2 => true;

3 => S.stack[(S.stack_ptr)-1] = 1;

4 => S.loc[1] = 1;

5 => S.1loc[0] = 2 | S.1loc[0] = 3;

6 => S.loc[1] = 1;

7 => true;

8 => S.stack[S.stack_ptr-2] = 1) & S.stack[S.stack_ptr-1] = 1);
9 => S.stack[S.stack_ptr-1] = 1) & S.stack[S.stack_ptr-2] = 3);
10 =>S.stack[S.stack_ptr-2] = 1) & S.stack[S.stack_ptr-1] = 1);
11 =>S.stack[S.stack_ptr-1] = 1;

esac;

#main Formula

var runT R;
Init(R[0]) & all nat i: (0 < i) -> Trams(R[i-1], R[i]) —>
all nat i: Invariants(R[i]);

Figure 6.7: Abstract transition system for the fac bytecode in LISA
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Methods SPIN | SMV | MONACO

time | time | time k

Character_S_clinit___V abort | abort | 44 19
FDBiglnt_longValue__J abort | 5 65 40
FDBiglnt_IshiftMe 1.V abort | abort | 267 15
FDBigInt_multaddMe_II_V abort | abort | 71 21
FDBiglnt_S_init__J[CTLV abort | abort | 15 40
FDBigInt_mult_I_Ljava lang_FDBigInt abort | abort | 30 9
FDBigInt_quoRemlIteration_Ljava_lang_ FDBigInt_I abort | abort | 576 30
FDBiglnt_add_Ljava_ lang_FDBigInt_Ljava_lang_ FDBigInt | abort | abort | 47 15
FDBigInt_mult_Ljava_lang_FDBigInt_Ljava_lang FDBigInt | abort | abort | 93 20
FDBiglnt_sub_Ljava_lang_FDBigInt_Ljava_lang FDBigIlnt | abort | abort | 179 40
StringBuffer_append_C_Ljava_lang_StringBuffer abort | abort | 1034 50
StringBuffer_insert_I[C_Ljava_lang_StringBuffer abort | 45 564 37
StringBuffer_insert_I[CII_Ljava lang_StringBuffer abort | 12 1618 50
String_getBytes_Lsun_io_CharToByteConverter_[B abort | abort | 1368 50
String_regionMatches_ILjava_lang_StringII_Z abort | abort | 3694 50
String_S_init__[BIILsun_io_ByteToCharConverter_V abort | 23 98 17
String_toLowerCase_Ljava_util_Locale_Ljava_lang_String 0 abort | 134 50
String_toUpperCase_Ljava._util_Locale_Ljava_lang_String 0 abort | 344 50
Short_decode_Ljava_lang_String_Ljava_lang_Short abort | 33 53 10
Integer_toString_II_Ljava_lang_String abort | 0 7 5
Integer_toString_I_Ljava_lang_String abort | abort | 70 35
Integer_S_clinit___V abort | abort | 86 18
Integer_decode_Ljava_lang_String_Ljava_lang_Integer abort | abort | 812 20
Integer_parseInt_Ljava_lang_StringI I abort | abort | 83 35
Long_decode_Ljava_lang_String_Ljava_lang_Long abort | abort | 62 23
Long_toString_JI_Ljava_lang_String abort | 32 10 5
Long_parseLong_Ljava_lang_StringI_J abort | abort | 118 10
Object_toString__Ljava_lang_String abort | 0 2 10
Object_wait_JI.V 0 abort | 50 11

Figure 6.8: Bytecode Verification (buggy code)
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6.4 Chapter Summary

Our exhibition of the experimental results in this chapter give evidence on the prac-
ticality of the bounded model construction for M2L-STR. We demonstrated for
a large suite of examples, taken form divers domains, that MONACO, the system
implementing M2L-STR bounded model checking, provides a more efficient alterna-
tive to counter-example generation than using standard automata-theoretic decision
procedures like MONA.

The application of MONACO to bytecode verification successfully shows that the
bounded model construction for M2L-STR can be used in a complementary way to
other approaches like the LTL on-the-fly model checking, implemented in SPIN,
and like the symbolic model checking for CTL, implementend in SMV. Using the
MONACO system we were able to discover errors in buggy bytecode which was not
possible to achieve using SPIN and SMV.

MONACO supports the use of multiple QSAT-solvers. The choice of the solver
to be used as backend has an enormous impact on the performance of MONACO.
A detailed comparison of the best QSAT-solvers is postponed to Chapter 7. Here,
we restrict ourselves to mentioning that the capability of MONACO to use more
than one backend has the advantage that any optimization and improvement of a
backend necessarily leads to an improvement of the performance of MONACO.






Chapter 7

Qubos: Deciding Quantified
Boolean Logic using Propositional
Satisfiability Solvers

We describe QUBOS (QUantified BOolean Solver), a decision procedure for quan-
tified Boolean logic. The procedure is based on nonclausal simplification techniques
that reduce formulae to a propositional clausal form after which off-the-shelf satisfi-
ability solvers can be employed. We show that there are domains exhibiting structure
for which this procedure is very effective and we report on experimental results.

7.1 Introduction

In recent years there has been considerable work on developing and applying sat-
isfiability (SAT) solvers for quantified Boolean logic (QBL). Applications include
program verification using bounded model checking [BCCZ99] and bounded model
construction (see Chapter 4), hardware applications including testing and equiva-
lence checking [SBO01], and artificial intelligence tasks like planning [Rin99a).

Solvers for (unquantified) Boolean logic have reached a state of maturity; there
are many success stories where SAT-solvers such as [MMZ101, Sta89, Zha97| have
been successfully applied to industrial scale problems. However, the picture for QBL
is rather different. Despite the growing body of research on this topic, the current
generation of Q(uantified)SAT-solvers [GNTO1b, Let01, Rin99b] are still in their
infancy. These tools work by translating QBL formulae to formulae in a quantified
clausal normalform and applying extensions of the Davis-Putnam method to the
result. The extensions concern generalizing Davis-Putnam heuristics such as unit-
propagation and backjumping. These tools have not yet achieved the successes that
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SAT tools have and our understanding of which classes of formulae these procedures
work well on, and why, is also poor.

In this thesis, we present a different approach to the QSAT problem. It arose from
our work in bounded model construction for monadic second-order logics (see Chap-
ter 4) where we reduce the problem of finding small models for monadic formulae
to QBL satisfiability. Our experience with available QBL solvers was disappoint-
ing. Their application to formulae involving more than a couple quantifier iterations
would often fail, even for fairly simple formulae. In particular, our model construc-
tion procedure generates formulae where the scope of quantification is generally
small in proportion to the overall formula size and in many cases quantifiers can be
eliminated, without blowing up the formulae, by combining quantifier elimination
with simplification. This motivated our work on a procedure based on combining
miniscoping (pushing quantifiers in, in contrast to out, which is used in clause based
procedures), quantifier expansion, and eager simplification using a generalization of
Boolean constraint propagation. The transformation process is carried out until the
result has only one kind of quantifier remaining, at which point the result can be
converted to clausal form and given to an off-the-shelf (Boolean) SAT-solver.

Our thesis in this chapter is that our decision procedure works well (it is superior
to other state-of-the-art approaches) when certain kinds of structure are present in
the problems to be solved. Our contribution is to identify a notion of structure
based on relative quantifiers scope, to show that certain classes of problems will
naturally have this structure (i.e., that the ideas presented in this chapter have
general applicability), and to validate our thesis experimentally. Our experimental
comparison is on two sets of problems, those arising in bounded model construction,
which always exhibit significant structure, and those arising in conditional planning,
which have varying degrees of structure.

Organization. The rest of the chapter is organized as follows. In Section 7.2, we
introduce notation. In Section 7.3, we explain what kind of structure we will exploit
and why certain classes of problems are naturally structured. In Section 7.4, we
introduce our procedure and in Section 7.5, we present experimental results. We
report on related work in Section 7.6 and finally, we draw conclusions in Section 7.7.

7.2 Background

The logics BL and QBL are introduced in Section 2.3. There, we have described
the syntax of their formulae and explained in which sense QBL is an extension of
BL. Here, we introduce some additional notion.

As notational shorthand, we allow quantification over sets of variables and we
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write Qz1, ..., Z,. ¢ for the formula Qz;. - - - Qz,. ¢, where Q € {V,3}. We denote
by free(¢) the set of free variables in ¢. Unless indicated otherwise, by “formulae”
we mean quantified Boolean formulae instead of (unquantified) Boolean formulae.

A formula z or -z, where x is a variable, is called a literal. A formula ¢ is in
negation normalform (nnf), if, besides the quantifiers, it contains only the connec-
tives V, A and —, and — appears only before variables. A formula ¢ is in prenex
normalform (pnf) if it has the form Q1 X - - - Q Xi. ¥ where Q; € {3,V}, each X;
is a finite set of variables, and v is a Boolean formula called the matriz of ¢. A
formula ¢ is in quantified clausal normal form (genf) if it is in pnf and its matrix
is a conjunction of disjunctions of literals. We define the prefiz-type of a formula
in pnf inductively as follows. A Boolean formula has the prefix-type ¥q = 5. A
formula Vz. ¢ has the prefix-type II, 1 (respectively II,) if ¢ has the prefix-type %,
(respectively II,,). A formula Jz. ¢ has the prefix-type ¥,,1 (respectively ¥,) if ¢
has the prefix-type II, (respectively ¥,). Finally, the size of a formula ¢, denoted
by | ¢/, is the number of variable occurrences, connectives and (maximal) quantifier
blocks in ¢, i.e., the size of the abstract syntax tree for ¢, where like quantifiers are
grouped in blocks and only counted once.

7.3 Structured Problems

Our thesis is that our decision procedure works well (in particular, it is superior
to other state-of-the-art approaches) when certain kinds of structure are present in
the problems to be solved. In this section we explain what structure is, how one
measures it, and why certain classes of problems will naturally have this structure.

The structure we exploit is based on a notion of quantifier scope, in particular
the size of quantified subterms relative to the size of the entire term. When the
average quantifier scope is small, our transformations can often successfully eliminate
quantifiers in manageable time and space.

In our experiments, it is important to be able to measure structure to assess
its effects on the decision procedure’s performance. Our measure is based on the
average quantifier weight, defined as follows:

Definition 7.3.1 Let ¢ be a quantified Boolean formula, @ € {V,3}, Mg be the
multiset of all Q-quantified subformulae of ¢, and 1 € Mg. The relative QQ-weight
of ¢ with respect to ¢ is

wh(¥) = ——

The average Q-weight of ¢ is awg (@) = @E¢EMQ w ().

ASS
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Now, well-structured formulae are those with either a small average V-weight or small
average 3-weight (typically under 5%, as we will see for the first problem domain we
consider), i.e., those in which, for at least one of the quantifiers, quantified variables
have small scopes on average. In contrast, poorly structured formulae with large
average weight have many quantifiers with large scopes.

The two domains we consider are system verification using bounded model con-
struction [ABO00], and conditional planning [Rin99a]. For the first domain, we show
that problems are always well-structured. In the second domain, the degree of struc-
ture varies considerably. The corresponding effectiveness of our decision procedure
also varies in relationship to this structure.

7.3.1 Bounded Model Construction

Bounded model construction (BMC), as we have seen in Chapter 4, is a method for
generating models for a monadic formula by reducing its satisfiability problem to
a QBL satisfiability problem. Here, we will present a small example to show how
structured problems arise in BMC and then explain why this is generally the case.
We reconsider Example 2.7.1 where we specified and verified a parameterized family
of ripple-carry adder. We recall that the equivalence between the specification and
the implementation of the adder is stated by the formula

® =Vn.VA, B, S.Vcin, cout. adder(n, A, B, S, cin, cout) <>
spec(n, 4, B, S, cin, out) .

In this example, MONACO, the implementation of BMC, takes as input —®
and a natural number k and produces a quantified Boolean formula as we described
in Section 6.1 (phase 2). In this transformation, MONACO essentially unfolds the
first-order quantifications k-times and replace the second-order quantifications with
Boolean quantifications. This kind of transformation produces a quantified Boolean
formula whose size is O(k? | ¢ |) in the bound %k and original formula ¢ (see The-
orem 4.2.6). In general, applications to practical verification problems give rise to
large quantified Boolean formulae often on the order of 20 megabytes for larger ex-
amples, that we have tackled. Central to our approach here is the fact that the
transformation always produces formula with a large amount of structure, as we
explain below.

In the above transformation, large formulae (due to the k? factor in the expan-
sion) result from expanding first-order quantification. In this example, we quantify
outermost over n in stating our correctness theorem and this is always the case
when verifying theorems about parameterized systems. Similarly, when reasoning
about time dependent systems, like sequential circuits or protocols, one also always
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quantifies outermost over n, which represents time or the number of steps. The un-
folding of this outermost quantifier alone explains the main reason why MONACO
results in a quantified Boolean formula of small average quantifier weight since, after
the unfolding, the remaining quantified subformulae have a relative weight at most
1/k of the original formula. The unfolding of additional first-order quantifiers only
serves to further reduce the average weight. Hence we have:

Lemma 7.3.2 Let ® = On. ¢ be a first-order quantified monadic formula where
Q € {V,3} and let D' (respectively ¢') be the result of the MONACO expansion of ®
(respectively ¢ ) with bound k € N. It holds that awg(®') = +awg(¢'), for Q € {V,3}.

Of course, MONACO also eliminates second-order quantification, where a second-
order quantifier is replaced with a block of Boolean quantifiers. In general, this has
a negligible effect on the amount of structure since, after the outermost unfolding,
these quantifiers have small relative scope. It follows then that MONACO produces
well-structured problems. Moreover, there is a positive correlation between problem
size (resulting from large values of k) and structure, which helps to explain the good
performance of our decision procedure on problems in this class.

7.3.2 Conditional Planning in Artificial Intelligence

The second problem domain that we use for experiments is conditional planning in
QBL. A conditional planning problem is the task of finding a finite sequence of ac-
tions (which comprise a plan) whose successive application, starting from an initial
state, leads to a goal state. Applications of conditional planning include robotics,
scheduling, and building controllers. The main difference between conditional and
classical planning is that the initial states as well as the moves from one state to
another state depend on different circumstances that can be tested. This leads to
interesting QBL problems. As shown in [Rin99al, finding a solution for a condi-
tional planning problem can be expressed as a satisfiability problem for a quantified
Boolean formula of the form:

PEElPl,...,Pm.VCl,...,C’n.HOl,...,Op.<I>.

The validity of the formula P means that there is a plan (represented by the
variables Py,..., Py,) such that for any contingencies (represented by the variables
Ci,...,Cy) that could arise, there is a finite sequence of operations (Oy,...,0,)
whose applications allow one to reach the goal state starting from an initial state.
The body @ is a conjunct of formulae stating the initial states, goal states, and the
next-state relation.

If n = 0 then P encodes a classical (non-conditional) planning problem. In
this case, the validity of P can be checked using a SAT-solver. In the n # 0
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proc QUBOS(¢, SAT) =
let @ € {V, 3} be the quantifier kind with smallest awg
while (¢ contains Q’s) do
miniscope the quantifiers in ¢;
eliminate the innermost @ block;
simplify ¢;
od;
compute input o for SAT from ¢;
invoke SAT with the input «;

end

Figure 7.1: The QUBOS Main Loop

case, in general miniscoping can only partially succeed in pushing the quantifier

301, ...,0p down in ®; this in turn limits the miniscoping of the other quantifiers,
e.g.,VCy,...,C,. As a result, even after miniscoping, the average V-weight is
n+p+|@] m
n+m+p+| @ | m+n+p+| @ |

which is high, up to 90%, for large n, m, p, and | ®|. The average 3-weight tends
to be better since by pushing down, even partially, the 304, ...,0,, we increase
the amount of (3-)structure in P and we obtain better average weight, typically
between 50% and 70%. Furthermore, the average 3-weight generally becomes larger
(respectively smaller) when we decrease (respectively increase) one of the factors p
and |®|. Hence conditional planning gives us a potentially large spectrum of prob-
lems with differing amounts of structure. Moreover, there are standard databases of
such planning problems that exhibit such variations, which we can use for testing.

7.4 Qusos

We present in this section the decision procedure implemented by our system QUBOS.
The main idea is to iterate normalization using miniscoping with selective quantifier
expansion and simplification. For well-structured problems, the combination often
does not require significant additional space; we will provide experimental evidence
for this thesis in Section 7.5.
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The structure of the main routine of our decision procedure is given in Figure 7.1.
It takes as arguments a quantified Boolean formula ¢ and a SAT-solver SAT. The
initial step determines whether the average quantifier weight is smaller for V or 4.
Afterwards QUBOS iterates three transformations to reduce ¢ to a Boolean formula.
As each iteration results in fewer ()-quantifiers, the procedure always terminates
(given sufficient memory). At the end of this step, the formula ¢ contains only
one kind of quantifier. Afterwards, QUBOS computes the input formula of the
SAT-solver SAT depending on the quantifier kind ) and whether SAT operates
on Boolean formulae or on formulae in clausal form. If ) is the quantifier 4 then
QUBOS deletes all the occurrences of () and generates the input of SAT. If @ is the
quantifier V then QUBOS also deletes all the occurrences of (), negates the resulting
formula, generates the input of SAT, and finally it complements the result returned
by the SAT solver.

Below, we describe the transformations used in the main loop in more details.

Miniscoping. Miniscoping is the process of pushing quantifiers down inside a for-
mula to their minimal possible scope. By reducing the scope of quantifiers, miniscop-
ing reduces the size of the formula resulting from subsequent quantifier expansion.
The following rules for miniscoping are standard.

Ve.o ANy = (V. o) AVz. ¢

Ve.oVy = (Vz.d) VvV, if x & free(v)
Vx. ¢ = ¢, if x & free(¢)
dr.oVvy = (Fz.¢)VIr. ¢

dr. oAy = (Jz.¢) AP, if x & free(v))
dz. ¢ = ¢, if x & free(¢)

Note that similar kinds of simplification are performed in first-order theorem
proving, where quantifiers are pushed down to reduce dependencies and generate
Skolem functions with minimal arities (see [NWO01]). Although simple and intu-
itively desirable, other QSAT solvers work by maziscoping, i.e., moving quantifiers
outwards when transforming formulae to quantified clausal normalform.

Elimination of Quantified Variables. We explain only the elimination of uni-
versally quantified variables as the elimination of existentially quantified variables
is similar. In an expansion phase, we eliminate blocks of universally quantified vari-
ables by replacing subformulae of the form Vz.¢ with the conjunction ¢[true/z| A
¢[false/z]. In special cases (when eliminating universally quantified variables), we
can avoid duplication altogether, e.g., when ¢ does not contain existential quan-
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tifiers (cf., [BL94]). In this case, we proceed as follows: we transform ¢ into the
clausal normalform %, remove all tautologies from 1/, and then replace each literal
from {y | y is universally quantified in ¢} U {—y | vy is universally quantified in ¢}
with false in 9.

Simplification. The application of simplification after each expansion step is im-
portant in keeping the size of formulae manageable. We distinguish between four
kinds of simplification rules. The first kind consists of the standard simplification
rules for Boolean logic that are used to remove tautologies, or perform direct sim-
plification using the idempotence of the connectives V and A and the fact that false
and true are their (respective) identities.

The second kind of simplification rule is based on a generalization of the unit
clause rule (also called Boolean constraint propagation [ZM88]). These rules are as
follows (where [ is a literal):

IvV¢ = LV ¢[false/]
ING = LA ¢[true/l]

These rules are especially useful in combination with miniscoping as they often
lead to new opportunities for miniscoping to be applied. For example, using the
above rules, the formula

Ve, Jy,z.zV (y A—z) V (-y A z A —z)
can be simplified to
Ve.Jy,z.xV (yA—z) V (-y A z),
which can be further transformed using the miniscoping rules to
(Vz. z) V ((Fy.y) A (3z.—2) V (Fy. —y) A (3z.2)) . (7.1)
This example also motivates why miniscoping is in the QUBOS main loop, as op-
posed to being applied only once initially.
The third kind of simplification rule consists of the following quantifier specific

rules.

dz. ¢ = ¢, if x & free(¢)
dz. 1 = true, for | € {z, ~z}
dz.x Ao = Q[true/z]

dz.(—z)AN¢p = @lfalse/z]

V. ¢ = ¢, if z ¢ free(¢)
V.l = false, for | € {z, -z}
Ve.z V¢ = ¢lfalse/z]

Ve.(-z) Vo = ¢ltrue/z]
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These rules are often effective in eliminating both kinds of quantifiers and there-
fore avoiding expansion steps. The application of these rules to the formula (7.1)
above simplifies it to true.

The fourth kind of simplification rule is based on a technique commonly used by
solvers based on clausal normalform and consists of dropping variables that occur
only positively or only negatively in the clauses set. This technique can be also
applied to quantified Boolean formulae that are in nnf. Let ¢ be a quantified
Boolean formula in nnf and x a variable occurring in ¢; we say that x is monotone
in ¢ if it occurs only positively or only negatively in ¢. It is easy to show that
formulae with monotone variables have the following property.

Proposition 7.4.1 Let ¢ be a quantified Boolean formula in nnf and let Qz.3p (for
Q € {V,3}) be a subformula in ¢ where x is monotone in ¢. Then the formulae ¢
and ¢' are equivalent, where:

(i) If Q is the quantifier 3 then ¢' is obtained from ¢ by replacing Qx.7p with
WYltrue/z] (respectively [false/z]), if x occurs positively (respectively nega-
tively).

(i) If Q is the quantifier ¥V then ¢' is obtained from ¢ by replacing Qx.7p with
Y[false/z] (respectively [true/z]), if © occurs positively (respectively nega-
tively).

This proposition provides a way of eliminating both universally and existentially
quantified variables without applying the expansion step, provided the variables are
monotone.

Clausal Normalform. Before handing off the normalized formula to a SAT solver
we must transform it into clausal normalform. We do this using the renaming
technique of [Boy92] where subformulae are replaced with new Boolean variables
and definitions of these new Booleans are added to the formula. This technique
allows the generation of the clauses in time linear in the size of the input formula.

7.5 Experimental Results

We have built a system, QUBOS (QUantified BOolean Solver), based on the ideas
presented in Section 7.4. The system is written in C++ and supports the use
of different SAT-solvers including PROVER [Sta89], HEERHUGO [GWO00], SATO
[Zha97] and ZCHAFF [MMZ101]. The times reported below are based on ZCHAFF.
In these timings, typically 60% of the time is consumed by our system and 40% by
ZCHAFF.



146 § 7. QUBOS

We carried out comparisons with the QBF [Rin01] and SEMPROP [Let01] sys-
tems, which are both state-of-the-art systems based on extensions of Davis-Putnam.
The runtimes (on a 750 Mhz Sun Ultra Sparc workstation) depicted in the tables be-
low are user time (in seconds) reported by the operating system for all computation
required. Times greater than one hour are indicated by the symbol abort.

We used two sets of benchmarks for our comparison. The first is obtained by
applying bounded model construction to a library of monadic formulae modeling
several verification tasks. These problems include:

1. Formulae encoding the equivalence of the specification and implementation of
a ripple-carry adder for different bit-widths.

2. Formulae stating safety properties of a lift-controller.

3. Formulae encoding the equivalence of von Neumann adders and ripple-carry
adders with varying bit-width.

4. Formulae stating the stability of a timed flip-flop model.

5. Formulae stating the mutual exclusion property for two protocols.

The second set contains encodings of conditional planning problems generated by
Rintanen [Rin01] as well as their negations.

Tables (7.1-7.6) show the results of the comparison. Each table gives information
on quantificational structure, the size k£ of the model investigated, running times,
QUBOS space requirements in megabytes, the average quantifier width, and the pre-
fix type of the problems. The input formulae are of size 10°, on average, with respect
to | .| defined in Section 7.2. QUBOS has dramatically better performance on all
of these examples. The reason is that these problems all have very high structure
and, as explained previously, the amount of structure improves (the average quan-
tifier weight decreases) as k and the formulae become larger. These examples also
demonstrate that, for well-structured formulae, memory requirements are typically
modest; for example, the adder problems use 2 megabytes on the average. On the
other hand, QBF and SEMPROP translate the problems into quantified clausal form,
which drastically increases the quantifier scope and the time and space required to
find a solution.

The second set of examples contains encodings of block-world planning problems
where there is significantly less structure, although varied. Table 7.7 and Table 7.8
show the time required to solve different block planning problems and their nega-
tions. The instances are called z.iii.y, where x denotes the number of blocks, y
denotes the length of the plan and ¢ stands for the encoding strategy used to gen-
erate the problem (cf., [Rin99b]). The instances are ordered by the number of the
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k | QBF | SEMPROP QUBOS
time time time | space | awy%
invalid, Y3, Q =V
1 0 0 0 0 20
2 54 0 0 0 12
3 abort 661 0 0 7
4 abort abort 0 0 5
5 abort abort 0 0 3
6 abort abort 2 6 2.8
7 abort abort 18 11 2.2
8 abort abort 59 20 1.6
9 abort abort 445 38 1.8
10 abort abort 1945 74 1.3
valid, Iy, @Q =
1 0 0 0 0 32
2 25 0 0 0 17
3 abort 39 0 0 10
4 abort abort 2 7 6
) abort abort 10 27 4
Table 7.1: Ripple-carry Adder
k QBF | SEMPROP QUBOS
time time time | space | awy%
(invalid, II5)

8 abort 20 0 0 11
16 abort abort 0 0 5
32 abort abort 0 0 2
64 abort abort 0 0 1
128 abort abort 1 0 0.7

Table 7.2: Mutual Exclusion Protocol

blocks and their size. Table 7.7 contains the results of the (positive) block planning
problems and Table 7.8 contains the results of the negated block planning prob-
lems. A (positive) block planning problem has the general form 3V3¢, where ¢ is a
Boolean formula, and its negation has the form V3V—¢. Since the negative problems
are just the negation of the positive problems the average 3-weight in the positive
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k | QBF | SEMPROP QUBOS
time time time | space | awg%
invalid, ¥, Q =V
1 0 0 0 0 21
2 0 0 0 0 8
4 2 0 0 0 6
8 20 abort 1 0 4
16 139 abort 6 9 3
32 abort abort 24 16 2.8
64 abort abort 150 29 2.4
128 abort abort 1325 55 2
valid, IT3, @Q =
1 1 0 0 0 21
2 abort 0 0 0 8
3 abort 3 0 0 7
4 abort 238 0 0 6
5 abort abort 0 0 5
6 abort abort 0 0 4
7 abort abort 1 0 3
Table 7.3: Lift Controller
k | QBF | SEMPROP QUBOS
time time time | space | awy%
(invalid, X3)

5 2 1 1 25 1

6 9 3 3 53 0.8

7 36 7 6 107 0.6

8 137 15 13 201 0.5

9 454 29 25 353 0.49
10 1318 54 44 586 0.43
11 abort 97 77 928 0.38
12 abort 167 134 | 1413 | 0.34

Table 7.4: FlipFlop

case and the average V-weight in the negative case are identical and their values are
displayed in the second column of Table 7.7 and Table 7.8 respectively.
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k| QBF | SEMPROP QUBOS

time time time | space | awy%

(invalid, X3)

8 abort 22 13 105 0.06
9 abort 41 24 175 0.04
10 | abort 73 41 280 0.03
11 abort 110 63 430 | 0.028
12 abort 172 98 640 | 0.022
13 abort 239 147 | 922 | 0.018
14 abort 386 218 | 1297 | 0.014
15 abort 558 311 | 1786 | 0.012

Table 7.5: Von Neumann Adders

k | QBF | SEMPROP QUBOS
time time time | space | awy%
(invalid, X3)
4 abort 5 0 0 92
6 abort abort 1 0 31
8 abort abort 6 7 19
10 | abort abort 20 11 13
12 | abort abort 54 18 10
14 | abort abort 128 30 8
16 | abort abort 283 40 7
18 abort abort 592 72 6
20 abort abort 1064 | 107 5.7
22 abort abort 1951 | 154 5
24 | abort abort 3153 | 215 4

Table 7.6: Szymanski Protocol

In the positive case, the system SEMPROP generally either diverges or is very
fast. The system QBF always succeeds with respectable runtime. For QUBOS there
is a close relationship between its success and the average quantifier weight: the
performance of QUBOS decreases as the average quantifier weight rises. QUBOS
succeeds for the small problems, up to size 10® (with respect to |.|), even when the
average quantifier weight is high, but it requires significantly more time than QBF.
When the problems become larger, up to size 105, and the average quantifier weight
is high, then QUBOS exhausts memory. The superior performance of QBF in this
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Positive (3V3)
QBF | SEMPROP QUBOS
instance | aw3% time time time | space
2.1ii.2 69 4 0 0 0
2.111.3 70 12 1 2 14
2.iii.4 71 24 118 4 19
2.111.5 71 41 1512 6 25
2.1ii.6 72 67 abort 9 30
2.1i1.7 72 100 abort 15 35
2.111.8 73 139 abort 19 42
2.1ii.9 74 194 abort 23 47
2.1ii.10 75 255 abort 26 53
3.1ii.2 55 0 0 0 7
3.111.3 58 0 0 1 12
3.111.4 60 1 0 2 17
3.11i.5 61 2 abort 3 21
4.1ii.2 60 6 0 25 157
4.iii.3 64 14 0 67 307
4.iii.4 67 25 abort 124 457
4.iii.5 67 41 abort 204 607
4.iii.6 69 61 abort 299 756
4.1i1.7 70 84 abort 450 907
5.11i.2 54 115 1 579 1591
5.111.3 61 226 2 1845 2034
5.11i.4 65 373 abort abort -
5.11i.5 67 561 abort abort -
5.1ii.6 67 785 abort abort -
5.1i1.7 70 1053 abort abort -
5.111.8 72 1379 abort abort -

Table 7.7: Block-World Planning Problems

domain is not too surprising: it was developed and tuned precisely to solve this class
of planning problems.

In the negative case, the results show that QUBOS is robust with respect to the
quantificational structure and its success depends decisively on the average quantifier
weight. Notice that although the problems in the positive case as well as in the
negative case have the same average quantifier weight QUBOS requires in general
less CPU time for the negative problems. This can be explained by the fact that
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Negative (V3V3)
QBF SEMPROP QUBOS
instance | awy% time time time | space
2.1i1.2 69 abort abort 1 3
2.1i1.3 70 abort abort 3 5
2.111.4 71 abort abort 8 7
2.111.5 71 abort abort 15 8
2.111.6 72 abort abort 25 9
2.111.7 72 abort abort 39 11
2.111.8 73 abort abort 58 12
2.1ii.9 74 abort abort 82 13
2.1ii.10 75 abort abort 115 14
3.111.2 55 abort abort 0 0
3.111.3 58 abort abort 0 0
3.111.4 60 abort abort 0 0
3.11i.5 61 abort abort 0 0
4.1i1.2 60 abort abort 1 0
4.1i1.3 64 abort abort 3 5
4.1i1.4 67 abort abort 8 7
4.1ii.5 67 abort abort 15 8
4.11i.6 69 abort abort 25 10
4.1i1.7 70 abort abort 40 11
5.111.2 54 abort abort 12 12
5.111.3 61 abort abort 47 15
5.11i.4 65 abort abort 90 19
5.11i.5 67 abort abort 180 24
5.111.6 67 abort abort 327 28
5.111.7 70 abort abort 468 32
5.111.8 72 abort abort 749 39

Table 7.8: Block-World Planning Problems

the negation makes these problems easier. When applying QBF and SEMPROP to
the negative problems, the negated formula —¢ is first transformed into clausal form
and thereby a new block of existential quantified variables (due to the renaming
technique describe in Section 7.4) is introduced and so these problems have a V3V3-
structure. As a result these problems no longer have the shape of 3Vd planning
problems, which accounts for the divergence of QBF.

Notice that the MONA system can be also used for these examples. A detailed
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comparison of MONA with the MONACO is given in Chapter 6. On the examples
given here MONA yields comparable results for the ripple-carry adder, flip-flop, and
mutex examples. It yields poorer results for the von Neumann adders, lift-controller,
and planning problems. For example, for the von Neumann adders with bit-width
less than 11 it is up to factor 3 slower than QUBOS and it diverges on the rest the
von Neumann adders, the lift-controller, and all of the planning problems.

7.6 Related Work

The idea of tuning a solver to exploit structure also arises in bounded model check-
ing, where SAT-solvers are tuned to exploit the problem-specific structure arising
there. In [Sht00], such heuristics were embedded within a generic SAT algorithm
that generalizes the Davis-Putnam procedure. Similar techniques to miniscoping
and quantifier expansion are also used in Williams et al. [WBCGO00] to optimize
different computation tasks like the calculation of fixed points.

Most QBL algorithms generalize the Davis-Putnam procedure to operate on for-
mulae transformed into quantified clausal normal form. Cadoli et al. [CGS98] and
Rintanen [Rin01, Rin99b] present different heuristic extensions of the Davis-Putnam
method. Cadoli et al.’s techniques were tuned for randomly generated problems and
Rintanen’s strategies were specially designed for planning problems whose quanti-
fiers have a fixed 3V3-structure. Other work includes that of Letz [Let01] and
Giunchiglia et al. [GNTO0la] who have generalized the backjumping heuristic (also
called dependency-directed backtracking) to QBL. Our approach differs from all of
these in that it is not based on Davis-Putnam, it can operate freely on subformulae of
the input formula (this avoids a major source of inefficiency of Davis-Putnam based
procedures, namely the selection of branching variables is strongly restricted by the
ordering induced by the prefix of the input formula), and for structured problems
(in our sense) it yields significantly better results.

The most closely related work is that of Plaisted et al. [PBZ02] who present
a decision procedure for QBL that also operates directly on quantified Boolean
formulae by iteratively applying equivalence preserving transformation. However,
rather than expanding quantifiers, in their approach a subformula with a set of
free variables X is replaced by a large conjunction of all negated evaluations of
X that make the subformulae unsatisfiable. Plaisted et al. [PBZ02] suggest that
their procedure should work well for hardware systems that have structure in the
sense of being “long and thin”; as indicated by their examples (ripple-carry adders),
these systems form a subclass of well-structured problems in our sense. As no
implementation is currently available, we were unable to compare our approaches
experimentally.
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7.7 Chapter Summary

We presented an approach to deciding quantified Boolean logic that works directly on
fully-quantified Boolean formulae. We gave a characterization of structure, defined
an interesting, natural, class of well-structured problems, and showed experimentally
that our approach works well for problems in this class.

One issue that is not addressed in our implementation of QUBOS is the impact of
the order in which quantified subformulae are expanded. Currently QUBOS selects
the innermost quantified subformula. As future work, we intend to investigate the
effect of different selection strategies, such as ordering the quantified formulae with
respect to their relative structure.






Chapter 8

Conclusions and Further Research

As suggested by the title of the thesis, our primary goal is to investigate system ver-
ification based on monadic second-order logics. In this final chapter, we summarize
the main contributions and results, and discuss future directions of research.

8.1 Summary

As the previous chapters illustrate, the use of formal methods to develop reliable
and correct safety-critical systems is highly advisable and beneficial. In the last few
years, industry has looked at formal methods with a constantly increasing interest.
While powerful and useful, interactive and semi-automatic formal methods require
both advanced knowledge in mathematics from the part of the verification engineer,
and significant increase on the cost of system development, since proofs in these
approaches tend to be intricate and time consuming. For automatic formal methods,
on the other hand, the time costs to assist the verification process are minimal and
there is no strong requirements on the skill of the verification engineer, only some
familiarity with logic is necessary. Hence, from this point of view, industry gives
a considerable importance to automatic verification methods, the “push-button”
technology.

To make automatic formal methods more accessible for industry, we looked
for logics in which verification tasks can be automatically achieved and allow for
the verification of a large class of systems. For this reason, we focused on the
monadic second-order logics, since they are among the most expressive decidable
logics known. In the system verification approach based on monadic second-order
logics, system description and system properties are both formulated directly within
the language of the underlying logic whose decision procedure is used then to tackle
the problem of automatically verifying that the modeled system satisfies the speci-
fied properties.
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The main drawbacks of this approach are the low-level languages that this kind of
logics provide for modeling and specifying and the high computational complexity
of their decision procedures. In this thesis, we proposed several approaches that
address these limitations. Our contributions can be highlighted using the keywords:
L1sA, BMC, MONACO, QUBOS, and embedding LTL model checking in MONA.
In the following, we briefly review these contributions.

LISA is the answer to the questions how to increase the expressive power of the
existing specification languages and provide a handle on their computational com-
plexity. LISA is equipped with a datatype declaration system, which not only allows
for the declaration of types in a high-level way that is close to that of conventional
programming languages but also offers a mechanism that helps users to estimate the
complexity of the verification tasks. The first experimental results of the prototypi-
cal implementation of LISA encourage us to go further in this direction and to add
other high-level constructors that help structuring specifications.

The LISA implementation is coupled with the MONA system in the following
way. LISA specifications are compiled into WS2S formulae whose validity is then
decided using MONA. Because of that the performance of LISA is strongly de-
pendent on the performance of MONA. Since MONA suffers from the state-space
explosion problem, we investigated this weakness and proposed the bounded model
construction (BMC) approach as an alternative. We explored the BMC problem
for a series of monadic logics on finite words as well as infinite words, and have ob-
tained theoretical and practical results. The theoretical contributions are twofold:
(i) we established the BMC complexity results for the logics M2L-STR, WS1S, S18
and their first-order fragments, and (ii) we used the insights we have gained from
these results, to shed some light on the differences between the logics M2L-STR and
WS1S, and to prove that no elementary validity preserving translation of WS1S
into M2L-STR exist, and thereby answered a question that remained open for long
time. The practical contributions regard the logic M2L-STR. We have obtained a
procedure for generating counter-examples that is non-elementary faster than the
standard automata-based decision procedures. We implemented this procedure in
the MONACO system and demonstrated, for a large suite of examples taken from
diverse domains, that MONACO provides a more efficient alternative to MONA.

The application of MONACO to the bytecode verification problem, discussed in
Chapter 6, shows that the bounded model construction for M2L-STR can success-
fully be used in a complementary way to other approaches like on-the-fly model
checking for LTL (implemented in SPIN) and symbolic model checking for CTL
(implemented in SMV). Using the MONACO system we were able to discover errors
in examples of buggy bytecode, which was not possible using SPIN and SMV. The
system MONACO supports the use of multiple state-of-the-art QSAT-solvers: the
choice of the solver to be used as backend has an enormous impact on the perfor-
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mance of MONACO. An advantage of this is that any optimization and improvement
of a backend necessarily leads to an improvement on the performance of MONACO.

The poor practical results obtained by using the existing Davis-Putnam based
QSAT-solvers as backend of MONACO have motivated our work on the QUBOS
procedure, which is based on combining techniques like miniscoping, quantifier ex-
pansion, and eager simplification, and works directly on fully-quantified Boolean
formulae. We gave a characterization of structure, defined an interesting, natu-
ral, class of well-structured problems, and showed that our approach works well for
problems in this class and even outperforms other QBL solvers.

In the investigation of BMC for monadic second-order logics on infinite words,
we faced the problem of using finite words to represent models that consists of infinite
words. We solved this problem by adapting the notion of lasso-words. The notion
of lasso-words is also the central idea behind our encoding of LTL model checking
in M2L-STR. Besides for the practical use of this encoding itself, we obtained
several theoretical results. First, the encoding opens up the possibility to formalize
liveness properties (properties interpreted over infinite words/computations) and
decide them using the decision procedure for M2L-STR, a fact that seemed a priori
impossible since this logic handles finite words. Second, our encoding can be seen as
anew LTL automata-based model checker in which finite automata are used instead
of Biichi automata, and this not only avoids the problem of complementing Biichi
automata but also offers access to the automata constructions for finite words which
are simpler as is the case for Biichi automata. Moreover, it allows for the use of the
automaton minimization operation, which is not available for Biichi automata.

8.2 Future Work

Our results leave room for improvements and extensions. In the following, we discuss
work still to be done on both the practical and on the theoretical side for each of
our contributions.

Lisa

The experiments carried out using the prototypical implementation of LISA showed
that the integrated datatype declaration system has a great impact on the readability
and structuring of specifications. Nevertheless, we can say that LISA is still a
primitive specification language and lacks of more high-level constructors that could
allow, for example, the decomposition of specifications into modules that support
abstraction and specification reuse. On the practical side, the LISA system needs
significant improvement. In Section 3.7.2, we discussed the concept of guided trees
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used by MONA to efficiently construct tree automata. Guided trees are not used
in the current LISA implementation and could be a subject of future investigation.
On the experimental side, there is still work to do. Up to now we focused only on
protocol verification, and in the future, one could tackle problems stemming from
linguistic applications.

BMC

A question arises for what concerns BMC is whether the complexity results for
monadic second-order logics on words can be transfered to monadic second-order
logics on trees. We believe that this question can be answered straightforwardly.
For the logics WS2S and S2S we expect that the same results as for WS1S and
S18S respectively hold, ¢.e. BMC for these logics is non-elementary. This is because
the logics WS1S and S1S can be encoded in WS2S and S2S respectively using
polynomial translations. We also believe that the same results as for M2L-STR
can be established for M2L-TREE. With minor changes, the translation [.]; given
in Section 4.2.1, which maps an M2L-STR formula and a natural number & into
a quantified Boolean formula, can be adapted for M2L-TREE formulae. All these
points have to be carefully explored in detail.

The LTL Embedding in M2L-Str

Here we see a considerable amount of further work. On the practical side, to in-
vestigate the usefulness of our encoding of LTL model checking in M2L-STR, we
have to implement it and carry out experiments. Technically, all that we need for
this purpose is to implement the translation [.] (¢f. Section 5.3.4), which maps LTL
formulae and finite-state systems into M2L-STR formulae, and to couple this with
the MONA system. The positive experimental results of the encoding of LTL satis-
fiability in MONA reported in [HHO1] give us hope that similar positive results for
the encoding of LTL model checking in MONA can be obtained.

On the theoretical side, we still have to provide an analysis of the computational
complexity of [.]. We believe that the automata constructions performed by MONA
to decide the formulae yielded from model checking problems do not require more
amount of time and space as the time and space amount required by other LTL
model checkers.

QuBos

One issue that is not addressed in the implementation of QUBOS is whether its
efficiency depends on the order in which quantified subformulae are expanded. Cur-
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rently QUBOS selects the innermost quantified subformula. To investigate the effect
of different selection strategies, such as ordering the quantified formulae with respect
to their relative structure, would be an interesting research topic of future work.






Appendix A

Background on w-languages

A.1 Proof of Lemma A.1.2

Let M and L be two w-regular languages. Based on Proposition 4.3.2, we reduce
the language containment problem M C L to a lasso containment problem.

Proposition A.1.1 Let M and L be two w-reqular languages, then M C L iff for
all me X%, if m is lasso and m € M, then m € L.

Furthermore, we also reduce the lasso containment problem to a bounded lasso
containment problem. That is, in instead of checking that all lassos 7 € M are in
L, it suffices to check that only lassos 7 € M of bounded length are in L. In order
to do this, we establish the following property.

Lemma A.1.2 Let A be a Biichi automaton. The language L(A) is not empty if
and only if A accepts a lasso word 7 of length k < |A|.

Proof The “if” condition is trivial. We prove the “only if” condition. Assume
L(A) is not empty. By Proposition 4.3.2, L(A) contains a (I, k)-lasso word. Let
Go---qi-1(q---qe_1)* be its accepting run. Without loss of generality, we assume
that the subsequences qg...q—1 and ¢;...¢gk—1 contain no loops. Now, if k < |A]
then we are done. In the other case, let 7 be a minimal natural number with ¢ <[
and such that there is a natural number j with [ < j < k and such that ¢; and g;
are identical.

) ). ‘ ).

Now, we can shorten the above run as follows:
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@ ) ) &

By construction, the run qo...¢—1(¢igj+1---@e—1Gi - .. gj—1)" is accepting and con-
tains no loops and thus its length is smaller than or equal to |A|. [

Y

Using the above lemma, we reformulate Proposition A.1.1 as follows:

Lemma A.1.3 Let M and L be two w-regular languages and A an automaton ac-
cepting the language M N L, then M C L iff for all lasso words m with length smaller
than |A|, if m € M, then m € L.



Appendix B

Additional Proof Details of
Theorem 4.3.19

B.1 Some Properties of (.)}

We establish some useful properties of the function <>2 (Definition 4.3.8) and lasso
substitutions (Definition 4.3.10).

Lemma B.1.1 Let k, | be natural numbers with | < k, o be an (I, k)-lasso substi-
tution, and X be a second-order variable.

(1) m = (m)k (mod k —1), for all m € N.

(2) fm=n (modk—1), then n € o(X) iff m € o(X), for all m,n € N.
(3) (i)t =k—1iff 4 +1), =1, foralli €N,

(4) @ <k—1if G+, =1+ G)!, foralli e N.

(5) If o is a (I, k1)-lasso substitution and M is a (s, ka)-lasso set, then o[M/X] is
a (1, k)-lasso substitution where I = lem(ky, k2) and k =1+ lem(ky — 11, ko — 1o),
where lcm is the least common multiple of m and n.

Proof The facts (1-4) are obvious. For (5), we have to prove that for the set M
and the set o[M/X](Y), for Y in domain of o, are (I, k)-lasso. This means we have
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to show that forall n € N, it holds:

(n)2 e M iff ((n)l); € M
and

(n)ijl eo(Y) iff <(n>§c):1 € o(Y), for Y in domain of 0.

2
ks
(n)l2 hold. We establish only the first equation the second one follows similarly.

k2
: !
Suppose n < I, then it follows that n < [ and thus (n)i:l = ((n>2>k11 = n. Now

suppose n > Iy, then by Definition 4.3.10,

!
To achieve this, it suffices to prove that the equations ((n)i) kll = (n)ill and ((n)})

(L)) = {1+ (n—1) mod (k — 1)) (B.1)

=5+ ((+(n—=1)mod (k—1))—I1) mod (ky — I)

Now from the equation k = I + lem(k; — I3, ko — l3), it follows that there is some
q € Nwith £k — = g(k; — ;) and thus we have

(n=0)mod (k—1)=(n—-1)—q(ky — 1), for some ¢’ € N.

The proof follows by simplifying (B.1) using the above equation and unfolding Def-
inition 4.3.8. |

B.2 Proof of Lemma 4.3.12

Proof We proceed by induction over the structure of the formula ¢. We first
establish the claim for the atomic formula X (¢). The claim can be reduced to prove
that o(t) € o(X) and (a(t))ﬁc € o(X) are equivalent. This holds by combining (1)
and (2) of Lemma B.1.1.

In the induction step we consider only the cases where ¢ is of the form Jp. ¢’ and
3X.¢' as the remaining cases are straightforward. Suppose that ¢ is of the form
dp. ¢'. By the definition of the original semantics of S1S o = Jp. ¢’ is equivalent to
o[n/p| E ¢' for some n € N. Because o is a (I, k)-lasso, it follows by the definition
of lasso substitution that the substitution o[n/p| is also (I, k)-lasso. Now, by the
induction hypothesis it follows that o[n/p] = ¢' is equivalent to o[n/p] EL ¢’ and
this is equivalent to o =% Ip. ¢ by the definition of the bounded semantics.

Consider now the case where ¢ is of the form 3X.¢'. By the definition of the
original semantics of S1S ¢ = 3X. ¢' is equivalent to o[M/X] = ¢’ for some M C N.



§ B.3 PROOF OF LEMMA 4.3.14 165

By (5) of Lemma B.1.1 there is some set M’ such that the substitution o[M'/X]
is a (I, k')-lasso for some ', k' € N with I’ < k' and such that o[M'/X] = ¢'. By
applying the induction hypothesis, we conclude that o[M'/X] = ¢’ is equivalent to
o[M'/X] =L, ¢ and this is again equivalent to o =} 3X. ¢'. [

B.3 Proof of Lemma 4.3.14

Proof (i): We use following abbreviations: & for o[n/p] and & for o[(n)k/p]. We
proceed inductively over the construction of . In the base case t is the variable p. It
follows, 6(t) = n and 6'(t) = (n),. The aim follows by Lemma B.1.1(1). In the step
case t is of the #+1; in this case we have §(¢'+1) = 1+6(¢) and &' (#'+1) = 14+'((n)}).
By induction, 6(t") = 6'(¢') (mod (k — 1)) and thus, 6(¢) = ¢§'(¢) (mod (k — 1)).

(ii): We also proceed by induction over the structure of the formula ¢. The
atomic formula X (¢) follows immediately from (i). The inductive case Jq. ¢’ holds
straightforwardly by applying the induction hypothesis. |

B.4 Proof of Lemma 4.3.16

Proof We proceed by induction over the structure of ¢. In the induction basis we
consider the atomic formula X (¢). By the definition of the bounded semantics, it
holds ¢ =L X (¢) iff

(o(t))} € o(Xy). (B.2)

Observe that [ X (t)] = 3p. lasso(l, k, ¢, p) Ap € X. By the definition of the semantics
of M2L-STR, it holds o* =y, Ip.lasso(l, k,t,p) Ap € X iff

o*[n/p] B lasso(l, k,t,p) Ap € X, for some n < k. (B.3)

By choosing 7 in (B.3) as (o(t))% and using Lemma B.1.1 it follows that (B.2) and
(B.3) are equivalent.

In the induction step we consider only the case where ¢ is of the form dp. ¢’ as
the remaining cases are trivial. By the definition of the bounded semantics, we have
o EL 3p. ¢ iff o[n/p] EL ¢ for some n € N. By Lemma 4.3.14, o[n/p] =} ¢' iff

ol(n),/p] i, &' (B4)
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By applying the induction hypothesis, it follows that (B.4) is equivalent to

(o[(n)i/p)* Ea [6']}- (B.5)

By the semantics of M2L-STR (B.5) is equivalent to o* =y, [Ip. ¢']%. |



Appendix C
Code

C.1 Specificatition of a Lift System in LLisa

data Etage = 0..3;
data Level = record {set:bool, reset:bool,req:bool};
data Levels = array Etage of Level;

data Goal = 0..4;
data Dir = up,down,none;
data Door = open,opening,closed,closing;
data Ppd = nobody, somebody,vip;
data State = record {levels:Levels,
pos:Etage,
goal:Goal,
dir :Dir,
door:Door,
ppd:Ppd};

data Lift = array nat of State;
pred init_level (l:Level) = l.req ;

pred init(s:State) =
(all Etage p: init_level((s.levels)[pl)) &

s.pos =1 &
s.goal =4 &
s.dir = none &
s.door = open &
s.ppd = nobody;

pred stop(s:State) =
(ex Etage p: s.pos = p & (s.levels)[p].req) |
(s.goal = s.pos) |
s.pos = 0 & s.dir = down [
s.pos = 3 & s.dir up;
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extern_up_req(s:State)
ex Etage p: p "=0 & (s.levels)[p]l.req & s.pos < p;

pred

pred extern_down_req(s:State) =
ex Etage p: p "= 3 & (s.levels)[p]l.req & s.pos > p;
pred go_up(s:State)= s.goal "= 4 & s.goal > s.pos ;
pred go_down(s:State) = s.goal "= 4 & s.goal < s.pos ;
pred next_door(s,t:State) =
if stop(s)
then case s.door of
closed => t.door = opening;
opening => t.door = open;
open => t.door = open;
closing => t.door = closing;
esac
else case s.door of
open => t.door = closing;
closing => t.door = closed;
opening => t.door = opening;
closed => t.door = closed;
esac;
pred next_pos(s,t:State) =
if stop(s)
then
case s.dir of
up => t.pos = (s.pos) + 1;
down => t.pos = (s.pos) - 1;
none => t.pos = s.pos;
esac
else t.pos = s.pos;
pred next_ppd(s,t:State) =
cond
s.door = open => (if s.pos = O then (t.ppd = nobody | t.ppd = vip));
=> t.ppd = s.ppd;
dnoc;
pred next_goal(s,t:State) =
cond
s.pos = s.goal& s.door = opening => t.goal = 4;
s.door = open & s.ppd "= nobody => case s.ppd of
somebody => 0 "= t.goal &
t.goal "= 4;
vip => t.goal "= 4;
esac;
=> t.goal = s.goal;
dnoc;
pred right_dir(s:State) = ((extern_up_req(s) | go_up(s)) & (s.dir = up)) |

((extern_down_req(s) | go_down(s)) &
(s.dir = down));
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pred next_dir(s,t:State) =

cond
stop(s) | s.door "= closed => t.dir = none;
right_dir(s) => t.dir = s.dir;

s.dir = none => cond

go_up(s) => t.dir = up;

go_down(s) => t.dir = down;

extern_up_req(s) => t.dir = up;

extern_down_req(s) => t.dir = down;
=> t.dir = none;

dnoc;

=> t.dir = none;
dnoc;

pred next_req_level (a,b:Level) =
cond
a.set => b.req;
a.reset => ~ b.req;
=> a.req <-> b.req;
dnoc;

pred next_req(s,t:State) =
all Etage p: next_req_level((s.levels) [p]l, (t.levels) [p]l);

pred next (s,t:State) =
next_req(s,t)&
next_door(s,t) &
next_ppd(s,t) &
next_goal(s,t) &
next_pos(s,t) &
next_dir(s,t);

pred run (L:Lift) init(L[0]) & all nat i: 0<i -> next(L[i-1]1,L[i]);

pred spec(L:Lift) = all nat i: L[i].dir “=none -> L[i].door =closed;
var Lift L;
run(L) -> spec(L);

C.2 The encoding of the Lift system in Mona

#LLisa v0.1-BETA
#Copyright (C) December 2002 University of Freiburg
#Mona-Code genereted automatically

m2l-str;

pred is_bool(var0 @p0O@) = true;

pred bool_eq(var0 @p0@, @pl@) = @p0@ <=> @plQ;
pred is_nat(varl @p2@) = true;

pred nat_eq(varl Qp2@, @p3Q@) = Q@p2@ = Qp30Q;
pred nat_less(varl @p2@, @p3@) = Q@p2@ < @p30Q;
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pred nat_lesseq(varl @p2@, @p3@) = @p2@ <= @p30Q;

pred is_Etage(varQO @p4@0, Qp4@1) = true;

pred Etage_eq(var0O @p5@$0_1, @p50$1_1, var0 @p5@$0_2, @p50$1_2) =
(@p50$0_1 <=> @p5@$0_2) & (@p5@$1_1 <=> @p50$1_2);

pred is_Etage_O(var0 @p13@0, @p13@1) = ~@p13@0 & ~@pl3e1;
pred is_Etage_1(varO @p14@0, @p14@1) = Q@p14@0 & ~@pil4e1l;
pred is_Etage_2(var0 @p15@0, @p15@1) = “Q@p15@0 & @p15@1;
pred is_Etage_3(var0O @p16@0, @p16@1) = @pl16@0 & @pl16@1;
pred Etage_add(var0O @p6@$0, @p6@$1, varO @p7@$0, @p7@$1, varO @p8@$0, @p8e$l) =
(@p8e$0 <=> ~(@p6Q$0 <=> ~(@p7@$0 <=> false))) &
(ep8a$1 <=>
~(0p6@$1 <=> ~(@p7@$1 <=> (false & ~(Qp6@$0 <=> Q@p7@$0) | @p6Q$0 & @p7@$0))))
&
~“((false & ~(@p6@$0 <=> @p7@$0) | @p6@$0 & @p7@$0) & ~(Q@p6@$1 <=> @p7@$1) |
Q@p60$1 & Qp7@$1);

pred Etage_less(varO @p9@$0, @p9@$1, var0 @p10@$0, @p10@$1) =
("ep9e$1 & epioe$l |
(ep9@e$1 <=> @p10@$1) & (~@p9e$0 & @p100$0 | (@p9e$0 <=> @p10Q$0) & false)) &
(" (ep9e$0 <=> @p10@$0) | ~(@p9e$l <=> @ploe$1i));

pred Etage_lesseq(var0 @p110$0, @p110$1, var0 @p120$0, @p120$1) =
~@p110$1 & @p12e$1 |
(@p11@$1 <=> @p120@$1) & ("@p11@$0 & Q@p120$0 | (@p11@$0 <=> @p12@$0) & false);

pred is_Level(varQO @pl7@$set, var0 @pl7@$reset, var0 @pl7@$req) =
is_bool(@pl17@$set) & is_bool(@pl7@$reset) & is_bool(@pl7@$req);

pred Level_eq(var0O @p18@$set_1,
varQ @p18@$reset_1,
var0 Qp18@$req_1,
varQ Qp18@$set_2,
varQ0 Qp18@$reset_2,
var0 Qp18@$req_2) =
(0p18@$set_1 <=> @pl8@$set_2) &
(@p18@$reset_1 <=> @p18@$reset_2) & (@p18@$req_1 <=> @p18@$req_2);

pred is_Levels(var0O @p19@$0$set,

var0 Qp190@$0$reset,

var0 Qp19@$0$req,

var0 Qp19@$1$set,

var0 Qp19@$1$reset,

var0 Qp19@$1i$req,

var0 Qp190@$2$set,

varQ @p19@$23%reset,

var0 Qp19@$2$req,

varQ0 Qp19@$3$set,

varQ Qp19@$3$reset,

varQ0 Qp190@$3$req) =
is_Level(@p19@$0$set, @p190$0$reset, @p190@$0%req) &
is_Level(@p19@$1$set, @p19@$1$reset, @p19@$1$req) &
is_Level(@p19@$2$set, @p19@$2¢$reset, @p190@$2%req) &
is_Level(@p19@$3$set, @p19@$3$reset, @p190@$3$req);
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pred Levels_eq(var0
varQ
varQ
varQ
varQ
var(Q
varQ
varQ
varQ
varQ
varQ
varQ
var(Q
varQ
varQ
varQ
varQ
varQ
varQ
varQ
var(Q
varQ
varQ
varQ

0p20@$0$set_1,
0@p200@$0$reset_1,
@p20Q$0$req_1,
@p20@$1$set_1,
@p20@$1$reset_1,
@p20@$1$req_1,
0p200$2$set_1,
0p200@$2$reset_1,
@p20@$2$req_1,
Qp20@$3$set_1,
0p200@$3$reset_1,
@p20@$3$req_1,
0p20@$0$set_2,
0p200@$0$reset_2,
@p20Q$0$req_2,
@p20@$1$set_2,
0p200@$1$reset_2,
@p20@$1$req_2,
@p20@$2$set_2,
0p200@$2$reset_2,
@p20@$2$req_2,
Q@p200Q$3$set_2,
0p200@$3$reset_2,
@p200@$38$req_2) =

(0p200$0$set_1 <=> @p20Q$0$set_2) &
(@p200@$0$reset_1 <=> @p20@$0$reset_2) &
(@p200$0$req_1 <=> @p20@$0$req_2) &
(@p200@$1$set_1 <=> @p20@$1$set_2) &
(@p20@$1$reset_1 <=> @p20@$1$reset_2) &
(0p200$1$req_1 <=> @p200$1$req_2) &
(@p20@$2$set_1 <=> @p20@$2$set_2) &
(0p200@$2¢reset_1 <=> @p200@$2$reset_2) &
(@p20@$2$req_1 <=> @p20@$2$req_2) &
(@p20@$3$set_1 <=> @p20@$3$set_2) &

(@p20@$3$reset_1 <=> @p20@$3%reset_2) & (Op200@$3$req_1 <=> 0p20@$3$req_2) ;

pred is_Goal(var0 @p21@0, Q@p21@1, @p2102) =
~(@p21Q0 & ~@p21@1 & @p2102 |
“@p21@0 & @p21@1 & @p2102 | @p21@0 & @p21@1 & @p21@2);

pred Goal_eq(var0 @p22@$0_1, @p220$1_1, @p220$2_1,
var0 @p220$0_2, @p22@$1_2, @p220$2_2) =
(@p22@$0_1 <=> @p22@$0_2) &
(@p220$1_1 <=> @p220$1_2) & (@p22@$2_1 <=> @p220$2_2);

pred is_Goal_O(var0
pred is_Goal_1(var0
pred is_Goal_2(var0
pred is_Goal_3(var0
pred is_Goal_4(var0

@p3000, @p30@1, @p30@2) = ~@p30Q0 & ~@p30@1 & ~Qp30@2;
@p3100, @p31@1, ©p3102) = @p31@0 & ~@p31e1 & ~@p3102;
@p3200, @p3201, ©p3202) = ~@p3200 & @p3201 & ~©p3202;
@p3300, @p33@1, @p3302) = @p33Q0 & ©p33@1 & ~@p3302;

@p3400, 0p34@1, ©p3402) = ~@p34Q0 & ~@p34@1 & @p3402;

pred Goal_add(varQO @p23@$0, @p23@$1, @p230$2,
var0 0p24@$0, @p24@$1, @p240@$2,
varQ @p25@$0, @p25@$1, @p250$2) =
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(@p250$0 <=> ~(@p23@$0 <=> ~(@p24@$0 <=> false))) &
(ep25@$1 <=>
~(@p230$1 <=>
~(@p24@$1 <=> (false & ~(@p23@$0 <=> Q@p24@$0) | ©@p23@$0 & @p240$0)))) &
(@p250$2 <=>
~(0p230$2 <=>
~(@p240%2 <=>
((false & ~(@p230@$0 <=> @p24@$0) | @p23@$0 & @p240$0) &
~(@p23@$1 <=> @p24@$1) | @p23e$1 & @p24e$1)))) &
“(((false & ~(@p23@$0 <=> @p24@$0) | ©p23@$0 & @p24@$0) &
~(@p23@$1 <=> @p240$1) | @p23e$1 & 0p24@$1) & ~(@p23@$2 <=> @p240$2) |
@p230@$2 & 0p240%2);

pred Goal_less(var0 @p26@$0, @p260$1, @p260@$2, var0 @p27@$0, @p27@$1, @p27@$2) =
(~ep26e$2 & @ep27e$2 |
(@p26@$2 <=> @p270$2) &
(~ep260$1 & @p270$1 |
(@p260$1 <=> @p27@$1) &
("@p26Q$0 & @p27@$0 | (@p26Q@$0 <=> @p27@$0) & false))) &
(~(ep260@$0 <=> @p27@$0) | ~(@p26@$1 <=> @p27@$1) | ~(@p26Q$2 <=> @p27@$2));

pred Goal_lesseq(var0 @p28@$0, @p28@$1, @p28@%2, var0 @p29@$0, @p29@$1, @p290$2)

~@p280$2 & ©p290$2 |
(@p28@$2 <=> @p290$2) &
("ep28e$1 & @p290$1 |
(@p28@$1 <=> 0p29@$1) &
(~@p28@$0 & @p29e$0 | (@p28@$0 <=> @p290$0) & false));

pred is_Dir(var0O @p35@0, @p35@1) = ~(@p35@0 & @p35@1);
pred Dir_eq(varQO Q@p36@$0_1, @p36@$1_1, var0 @p36@$0_2, @p36Q$1_2) =
(@p36@$0_1 <=> @p360@$0_2) & (@p36@$1_1 <=> Qp360Q$1_2);

pred is_Dir_up(varO @p37@0, @p37@1) = ~@p37Q0 & ~@p37@1;

pred is_Dir_down(varO @p38@0, @p38@1) = Q@p38@0 & ~@p38e1;

pred is_Dir_none(varQO @p39@0, @p39@1) = ~@p39Q@0 & @p39@1;

pred is_Door(var0 @p40@0, Q@p40@1) = true;

pred Door_eq(var0 @p41@$0_1, @p41@$1_1, var0 Qp41@$0_2, @p41@$1_2) =
(0p41@$0_1 <=> @p410$0_2) & (Qp41@$1_1 <=> @pa1e$1_2);

pred is_Door_open(var0 @p4200, Qp42@1) = ~@p4200 & ~Qp4201;

pred is_Door_opening(varO @p43@0, @p43@1) = @p43@0 & ~@p43e1;

pred is_Door_closed(var0 @p44@0, Qp44@1) = ~@p44@0 & @p44ei;

pred is_Door_closing(varO @p45@0, @p45Q@1) = @p45@0 & @p4501;

pred is_Ppd(varO Qp46@0, @p46@1) = ~(@p4600 & @p46@1);

pred Ppd_eq(varQO Qp47@$0_1, @p47@$1_1, varO @p47@$0_2, @p470$1_2) =
(0p47@$0_1 <=> Qp47@$0_2) & (Qp47e$1_1 <=> Qp47e$1_2);

pred is_Ppd_nobody(var0O Qp48@0, @p48Q1) = ~Q@p48Q@0 & ~@p4801;
pred is_Ppd_somebody(varQO @p49@0, @p49@1) = @p49@0 & ~@p49e1;
pred is_Ppd_vip(varO @p50@0, @p50@1) = ~@p50@0 & @p5001;
pred is_State(varQO Q@p51@$levels$O$set,

var0 Q@p51@$levels$O$reset,

var0 Q0p51@$levels$O$req,
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varQ0 Q@p51@$levels$igset,
var0 Q@p51@$levels$i$reset,
varQ Qp51@$levels$ifreq,
varQ Qp51@$levels$2$set,
var0 Q@p51@$levels$2$reset,
varQ0 Q@p51@$levels$2$req,
var0 Q@p51@$levels$3$set,
var0 Qp51@$levels$3$reset,
var0 Q@p51@$levels$3$req,
var0 Q@p51@$pos$0, @p51@$pos$l,
var0 Qp51@$goal$0, Q@p51@$goal$l, Q@p510@$goal$2,
varQ @p51@$dir$0, @p51@$dir$1,
var0 Q@p51@$door$0, @p51@$door$i,
varO @p51@$ppd$0, @p51@$ppd$l) =
is_Levels(@p51@$levels$0$set, @p51@$levels$O$reset, @p51@$levels$O$req,
Op51@%levels$iPset, @p51@$levels$lPreset, @p51Q@$levels$ifreq,
@p510@%levels$2$set, @pbl@$levels$2$reset, @p51@$levels$2$req,
0p510@$levels$3$set, @p51@$levels$3Preset, @p51Q@$levels$3sreq) &
is_Etage(@p510@$pos$0, @p51Q$pos$l) &
is_Goal (@p51@$goal$0, @p51@$goal$l, @p51@$goal$2) &
is_Dir(@p510$dir$0, @p510$dir$l) &
is_Door(@p51@$door$0, @p51@$door$l) & is_Ppd(@p51@$ppd$0, @p51@$ppd$1l) ;

pred State_eq(var0O @p52@$levels$0$set_1,
var0 Qp52@$levels$O$reset_1,
varQ0 Q0p52@$levels$O$req_1,
var0 0p52@$levels$i$set_1,
var0 Qp52@$levels$i$reset_1,
var0 Qp52@$levels$i$req_1,
var0 Q@p52@$levels$2$set_1,
var0 Q0p52@$levels$2$reset_1,
var0 Qp52@$levels$2$req_1,
varQ0 0p52@$levels$3$set_1,
varQ Q0p52@$levels$3$reset_1,
var0 Q@p52@$levels$3$req_1,
var0 0p52@$pos$0_1, @p520@$pos$1_1,
var0 Q@p52@$goal$0_1, @p520$goal$l_1, @p52@$goal$2_1,
varQ @p520$dir$0_1, Q@p52@$dir$l_1,
var0 0p52@$door$0_1, @p52@$door$i_1,
var0 @p52@$ppd$0_1, @p52@$ppd$1_1,
varQ0 0p52@$levels$0$set_2,
var0 0p52@$levels$O$reset_2,
var0 Q@p52@$levels$O$req_2,
varQ0 0p52@$levels$i$set_2,
var0 Qp52@$levels$i$reset_2,
var0 Q0p52@$levels$i$req_2,
varQ0 0p52@$levels$2$set_2,
varQ0 Q0p52@$levels$2$reset_2,
varQ0 Q0p52@$levels$2$req_2,
var0 0p52@$levels$3$set_2,
varQ0 Q0p52@$levels$3$reset_2,
var0 Qp52@$levels$3$req_2,
var0 Q@p52@$pos$0_2, @p52@$pos$l_2,
var0 0p52@$goal$0_2, @p520$goal$l_2, @p52@$goal$2_2,
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varQ @p520@$dir$0_2, @p520$dir$l_2,

var0 Q@p52@$door$0_2, @p52@$door$i_2,

varQ0 Qp52@$ppd$0_2, @p520@$ppd$1_2) =
(0p520@$levels$0Pset_1 <=> @p520$levels$0Pset_2) &
(@p520@$levels$0$reset_1 <=> Q@p52@$levels$O$reset_2) &
(0p520@$levels$0Preq_1 <=> @p52@$levels$0Preq_2) &
(@p520@$levels$iPset_1 <=> @p52@$levels$i$set_2) &
(@p520@$levels$ifreset_1 <=> Q@p52@$levels$i$reset_2) &
(@p52@$levels$i$req 1 <=> @p52@$levels$i$req _2) &
(@p520@$levels$2$set_1 <=> @p520$levels$2$set_2) &
(@p520@$levels$2$reset_1 <=> Q@p52@$levels$2$reset_2) &
(@p520@$levels$2$req_1 <=> @p52@$levels$2$req_2) &
(@p520@$levels$3$set_1 <=> @p52@$levels$3$set_2) &
(@p52@$levels$3freset_1 <=> @p52@$levels$3$reset_2) &
(@p520@$levels$3dreq_1 <=> @p520@$levels$3$req_2) &
(0p52@$pos$0_1 <=> @p52@$pos$0_2) & (@p52@$pos$l_1 <=> @p520$pos$l_2) &
(@p52@$goal$0_1 <=> @p52@$goal$0_2) &
(@p52@$goal$l_1 <=> @p52@$goal$l_2) & (@p52@$goal$2_1 <=> Q@p52Q$goal$2_2) &
(0p520$dir$0_1 <=> @p52@$dir$0_2) & (@p520%dir$1l_1 <=> @p520$dir$1_2) &
(@p52@$door$0_1 <=> @p52@$door$0_2) & (@p520@$door$l_1 <=> @p52@$door$l_2) &
(@p52@$ppd$0_1 <=> @p520$ppd$0_2) & (@p52@$ppd$1_1 <=> @p52@$ppd$1i_2);

pred is_Lift(var2 @p53Q@$levels$0$set,
var2 @p530@$levels$O$reset,
var2 @p530@$levels$O$req,
var2 Q@p530@$levels$i$set,
var2 @p530@$levels$i$reset,
var2 @p530@$levels$is$req,
var2 @p530@$levels$2$set,
var2 @p530@$levels$2$reset,
var2 Q@p530@$levels$2$req,
var2 @p530@$levels$3$set,
var2 @p530$levels$3$reset,
var2 Q@p530@$levels$3$req,
var2 @p53@$pos$0, @p53@$pos$l,

var2
var2
var2
var2
alll @pb4a@:
is_State(@p540
@p540
@p54@
@p540
@p540
@p54a@
@p540
@p540
@p54a@
@p540

in
in
in
in
in
in
in
in
in
in

@p530$goal$0, @p53@$goal$l, @p53@$goal$2,
@p530@$dir$0, @p53@$dir$1,

@p53@$door$0, @p53@$door$l,

@p530@$ppd$0, @p53@$ppd$l) =

0p530@%levels$0$set, @p54@ in @p53Q$levels$OPreset,
0p530@$levels$0$req, @p54@ in @p530$levels$i$set,
@p530@$levels$i$reset, @p54@ in @p53@$levels$i$req,
0p530@%levels$2$set, @p54@ in @p530Q$levels$2$reset,
0p530@$levels$2$req, @p54@ in @p53Q@$levels$3$set,
0p530@%levels$3$reset, @p54Q@ in @p53Q$levels$3$req,
0p530@$pos$0, @p54@ in @p53@$pos$l, @p54@ in Q@p53@$goal$o,
0p530@$goal$l, Q@p54@ in Op53@$goal$2, Op54@ in Op530$dir$0,
0p530@$dir$l, @p54@ in @p53Q@$door$0, @p54@ in @p53Q@$door$1l,
0p53@$ppd$0, @p54@ in @p53@$ppd$1l);

pred Lift_eq(var2 @p55@$levels$0$set_1,
var2 @p550@$levels$O$reset_1,
var2 @p550$levels$0$req_1,
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var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2

@p55@$levels$i$set_1,
@p55@$levels$i$reset_1,
Q@p55@$levels$i$req_1,
@p55@$levels$2$set_1,
@p55@$levels$2$reset_1,
Q@p55@$levels$2$req_1,
@p55@$levels$3$set_1,
@p55@%levels$3$reset_1,
@p55@$levels$3$req_1,
@p55@$pos$0_1, @p55@$pos$l_1,
Qp550$goal$0_1, Op55@$goal$l_1, Op55@$goal$2_1,
@p55@$dir$0_1, @p55@$dir$1_1,
@p55@$door$0_1, @p55@$door$i_1,
@p550@$ppd$0_1, @p55@$ppd$1_1,
@p55@$levels$0$set_2,
@p55@$levels$O$reset_2,
Q@p55@$levels$0$req_2,
@p55@$levels$i$set_2,
@p55@$levels$ifreset_2,
@p55@$levels$i$req_2,
@p55@$levels$2$set_2,
@p55@$levels$2$reset_2,
Qp55@$levels$2$req_2,
@p55@$levels$3$set_2,
Q@p55@$levels$3$reset_2,
Qp55@$levels$3$req_2,
@p55@$pos$0_2, @p55@$pos$l_2,
@p550$goal$0_2, @p55@$goal$l_2, @p55@$goal$2_2,
@p550$dir$0_2, @p55@$dir$l_2,
@p55@$door$0_2, @p55@$door$l_2,
@p550$ppd$0_2, @p55@$ppd$l_2) =

(@p55@$levels$0$set_1 = @p55@$levels$0$set_2) &
(@p55@$levels$0Preset_1 = @p550$levels$OP$reset_2) &
(@p55Q$levels$0Preq_1 = @p550$levels$0$req_2) &

(@p55@$levels$i$set_1

Q@p550@$levels$i$set_2) &

(@p55@$levels$iPreset_1 = @p550$levels$iPreset_2) &

(@p55@$levels$i$req_1
(0p550@$levels$2$set_1
(@p55@$levels$2$reset
(@p55@$levels$2$req_1

@p550@$levels$i$req_2) &
Qp550@$levels$2$set_2) &
= Qp550@$levels$2freset_2) &
Q@p550@$levels$2$req_2) &

o=

(@p55@$levels$3pset_1 = @p550$levels$3$set_2) &
(@p55@$levels$3Preset_1 = @p550$levels$3$reset_2) &
(@p55@$levels$3$req_1 = @pb5Q$levels$3$req_2) &

(@p55@$pos$0_1 =

@p55@$pos$0_2) & (@p55@$pos$l_1 = @p550$pos$l_2) &

(@p550$g0al$0_1 = @p55@$goal$0_2) &
(@p55@$goal$l_1 = Q@p55Q@$goal$l_2) & (@p55@$goal$2_1 = @pb55@$goal$2_2) &

(ep55@$dir$0_1 =

@p55@$dir$0_2) & (@p55@$dir$l_1 = @p55@$dir$l_2) &

(@p55@$door$0_1 = Q@p55@$door$0_2) & (@p55@$door$l_1 = @p55@$door$i_2) &

(ep550$ppd$0_1 =

@p55@$ppd$0_2) & (@p55@$ppd$1_1 = @p550$ppd$l_2);

pred init_level(varO 1l$set, varO l$reset, var0 1l$req) = l$req;
pred init(varO s$levels$O$set,

varQ s$levels$O$reset,

varQ s$levels$O$req,
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varQ
var(Q
varQ
varQ
varQ
varQ
var(Q
varQ
varQ
varQ
varQ
varQ
varQ
var(Q

s$levels$i$set,
s$levels$ifreset,
s$levels$i$req,
s$levels$2$set,
s$levels$2%reset,
s$levels$2$req,
s$levels$3$set,
s$levels$3freset,
s$levels$3$req,
s$pos$0, s$pos$i,

s$goal$0, s$goal$l,

s$dir$0, s$dir$1,

s$door$0, s$door$i,
s$ppd$0, s$ppd$l) =
init_level(s$levels$0$set, s$levels$O$reset,
init_level(s$levels$i$set, s$levels$i$reset,
init_level (s$levels$2¢$set, s$levels$2$reset,
init_level (s$levels$3$set, s$levels$3$reset,

s$levels$0$req) &
s$levels$i$req) &
s$levels$2$req) &
s$levels$3$req) &

is_Etage_1(s$pos$0, s$pos$l) & is_Goal_4(s$goal$0, s$goal$l, s$goal$2) &

is_Dir_none(s$dir$0, s$dir$1l) & is_Door_open(s$door$0, s$door$l) &
is_Ppd_nobody (s$ppd$0, s$ppd$l);

pred stop(var0O
varQ
varQ
varQ
varQ
varQ
var(Q
varQ
varQ
varQ
varQ
varQ
varQ
varQ
var(Q

s$levels$0$set,
s$levels$Ofreset,
s$levels$O$req,
s$levels$igset,
s$levels$ifreset,
s$levels$is$req,
s$levels$2$set,
s$levels$28reset,
s$levels$2$req,
s$levels$3$set,
s$levels$3$reset,
s$levels$3$req,
s$pos$0, s$pos$i,

s$goal$0, s$goal$l, s$goal$2,

s$dir$0, s$dir$1,

varQ s$door$0, s$door$i,
var0 s$ppd$0, s$ppd$l) =
s$pos$l, false, false) & s$levels$O$req |
s$pos$l, true, false) & s$levels$i$req |
s$pos$l, false, true) & s$levels$2$req |
s$pos$l, true, true) & s$levels$3$req |

Etage_eq(s$pos$0,
Etage_eq(s$pos$0,
Etage_eq(s$pos$0,
Etage_eq(s$pos$0,
Goal_eq(s$goal$o,

s$goal$l, s$goal$2, s$pos$0, s$pos$l, false) |

is_Etage_0(s$pos$0, s$pos$l) & is_Dir_down(s$dir$0, s$dir$1) |
is_Etage_3(s$pos$0, s$pos$l) & is_Dir_up(s$dir$0, s$dir$l);

pred extern_up_req(varQ

varQ
varQ
varQ
var(Q
varQ
varQ

s$levels$O$set,
s$levels$O$reset,
s$levels$O$req,
s$levels$igset,
s$levels$i$reset,
s$levels$i$req,
s$levels$2$set,
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“true & s$levels$0$req & Etage_less(s$pos$0, s$pos$l, false, false)
“false & s$levels$i$req & Etage_less(s$pos$0, s$pos$l, true, false)
“false & s$levels$2$req & Etage_less(s$pos$0, s$pos$l, false, true)
“false & s$levels$3$req & Etage_less(s$pos$0, s$pos$l, true, true);

varQ
var(Q
varQ
varQ
varQ
varQ
var(Q
varQ
varQ
varQ

s$levels$2$reset,
s$levels$2$req,
s$levels$3$set,
s$levels$3$reset,
s$levels$3$req,

s$pos$0, s$pos$l,

s$goal$0, s$goal$l, s$goal$2,
s$dir$0, s$dir$1,

s$door$0, s$door$i,

s$ppd$0, s$ppd$l) =

pred extern_down_req(var0O s$levels$0$set,
var0 s$levels$O$reset,
var0Q s$levels$O$req,
varQ s$levels$i$set,
var0 s$levels$i$reset,
var0 s$levels$ireq,
var0 s$levels$2$set,
varQ s$levels$2$reset,
var0 s$levels$23req,
var0O s$levels$3$set,
varQ s$levels$3$reset,
varQ s$levels$3$req,
var0 s$pos$0, s$pos$il,
var0 s$goal$0, s$goal$l, s$goal$2,
var0 s$dir$0, s$dir$1,
varQ s$door$0, s$doors$i,
var0 s$ppd$0, s$ppd$l) =

“false & s$levels$0$req & Etage_less(false, false, s$pos$0, s$pos$l) |
“false & s$levels$i$req & Etage_less(true, false, s$pos$0, s$pos$l) |
“false & s$levels$2$req & Etage_less(false, true, s$pos$0, s$pos$l) |
“true & s$levels$3$req & Etage_less(true, true, s$pos$0, s$pos$l);

pred go_up(var0
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
var(Q
varQ
varQ

s$levels$0$set,
s$levels$Ofreset,
s$levels$0$req,
s$levels$igset,
s$levels$i$reset,
s$levels$isdreq,
s$levels$2$set,
s$levels$28reset,
s$levels$2$req,
s$levels$3$set,
s$levels$3$reset,
s$levels$33req,

s$pos$0,

s$pos$i,

s$goal$0, s$goal$l, s$goal$2,
s$dir$0, s$dir$i,
s$door$0, s$door$i,

s$ppd$o,

s$ppd$l) =
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“is_Goal_4(s$goal$0, s$goal$l, s$goal$2) &

Goal_less(s$pos$0, s$pos$l, false, s$goal$0, s$goal$l, s$goal$2);

pred go_down(var0
var0
varQ
var(Q
varQ
varQ
var0
varQ
varQ
var0
var(Q
varQ
varQ
var0
varQ
var(Q
var0

s$levels$0$set,
s$levels$O$reset,
s$levels$0$req,
s$levels$isset,
s$levels$ifreset,
s$levels$ifreq,
s$levels$2$set,
s$levels$2$reset,
s$levels$29req,
s$levels$3$set,
s$levels$3$reset,
s$levels$3$req,
s$pos$0, s$pos$l,
s$goal$0, s$goal$l, s$goal$2,
s$dir$0, s$dir$1,
s$door$0, s$door$i,
s$ppd$0, s$ppd$l) =

“is_Goal_4(s$goal$0, s$goal$l, s$goal$2) &

Goal_less(s$goal$0, s$goal$l, s$goal$2, s$pos$0, s$pos$l, false);

pred next_door(var0 s$levels$O$set,
varQO s$levels$O$reset,
var0 s$levels$O$req,
varQ s$levels$i$set,
varQO s$levels$i$reset,
var0 s$levels$i$req,
varQ s$levels$2$set,
varQ s$levels$29%reset,
var0 s$levels$2$req,
varQ s$levels$3$set,
varQ s$levels$3$reset,
var0 s$levels$3f$req,
var0 s$pos$0, s$pos$i,
var0 s$goal$0, s$goal$l, s$goal$2,
varQ s$dir$0, s$dir$i,
varQ s$door$0, s$door$i,
var0 s$ppd$0, s$ppd$i,
varQ t$levels$0$set,
varQ t$levels$O$reset,
var0 t$levels$O$req,
varQ t$levels$i$set,
varQ t$levels$i$reset,
var0 t$levels$i$req,
varQ t$levels$2$set,
varQ t$levels$2$reset,
var0 t$levels$2%req,
varQ t$levels$3$set,
varQ t$levels$3$reset,
var0 t$levels$3$req,
var0 t$pos$0, t$pos$i,
var0 t$goal$0, t$goal$l, t$goal$2,
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varQ t$dir$0, t$dir$1,
varQ t$door$0, t$door$i,
var0 t$ppd$0, t$ppd$l) =

(stop(s$levels$0$set, s$levels$O$reset, s$Plevels$0$req, s$levels$igset,

s$levels$i$reset, s$levels$ifreq, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3freq,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) =>
(is_Door_closed(s$door$0, s$door$l) => is_Door_opening(t$door$0, t$door$l)) &
(is_Door_opening(s$door$0, s$door$l) => is_Door_open(t$door$0, t$door$l)) &
(is_Door_open(s$door$0, s$door$l) => is_Door_open(t$door$0, t$door$l)) &
(is_Door_closing(s$door$0, s$door$l) => is_Door_closing(t$door$0, t$door$1)))

&

(“stop(s$levels$0$set, s$levels$Ofreset, s$levels$0$req, s$levels$i$set,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) =>

(is_Door_open(s$door$0, s$door$l) => is_Door_closing(t$door$0, t$door$l)) &
(is_Door_closing(s$door$0, s$door$l) => is_Door_closed(t$door$0, t$door$l)) &
(is_Door_opening(s$door$0, s$door$l) => is_Door_opening(t$door$0, t$door$1))

&

(is_Door_closed(s$door$0, s$door$l) => is_Door_closed(t$door$0, t$door$1)));

pred next_pos(varO s$levels$0$set,

varQ s$levels$O$reset,
varQ s$levels$O$req,
var0O s$levels$i$set,
varQ s$levels$i$reset,
var0 s$levels$i$req,
varQ s$levels$2$set,
varQO s$levels$2$reset,
var0 s$levels$2%req,
varQ s$levels$3$set,
var0O s$levels$3$reset,
varQ s$levels$3$req,
var0 s$pos$0, s$pos$i,
varQ s$goal$0, s$goal$l, s$goal$2,
varQ s$dir$0, s$dir$i1,
var0O s$door$0, s$door$i,
var0 s$ppd$0, s$ppd$i,
varQ t$levels$0$set,
var0O t$levels$O$reset,
varQ t$levels$O$req,
varQ t$levels$is$set,
varQ t$levels$ifreset,
var0 t$levels$i$req,
varQ t$levels$2$set,
varQ t$levels$2%reset,
var0 t$levels$2$req,
varQ t$levels$3$set,
varQ t$levels$3$reset,
var0Q t$levels$3$req,
var0 t$pos$0, t$pos$i,
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var0 t$goal$0, t$goal$l, t$goal$2,
varQ t$dir$0, t$dir$i1,
varQ t$door$0, t$door$i,
var0 t$ppd$0, t$ppd$1l) =
(stop(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$i$set,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3freq,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, sPgoal$2, s$dir$0, s$dir$l,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) =>
(is_Dir_up(s$dir$0, s$dir$1l) =>
Etage_add(s$pos$0, s$pos$l, true, false, t$pos$0, t$pos$l)) &
(is_Dir_down(s$dir$0, s$dir$1) =>
Etage_add(t$pos$0, t$pos$l, true, false, s$pos$0, s$pos$l)) &
(is_Dir_none(s$dir$0, s$dir$1l) =>
Etage_eq(t$pos$0, t$pos$l, s$pos$0, s$pos$l))) &
("stop(s$levels$0$set, s$levels$0Preset, s$levels$0$req, s$levels$i$set,
s$levels$i$reset, s$levels$ifreq, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, sPgoal$2, s$dir$0, s$dir$l,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) =>
Etage_eq(t$pos$0, tPpos$l, s$pos$0, s$pos$l));

pred next_ppd(var0O s$levels$0$set,
varQ s$levels$O$reset,
var0 s$levels$Ofreq,
varQ s$levels$ifset,
varQ s$levels$i$reset,
var0 s$levels$i$req,
varQ s$levels$2$set,
var0 s$levels$2$reset,
var0 s$levels$2%req,
var0O s$levels$3$set,
varQ s$levels$3$reset,
varQ s$levels$3$req,
var0 s$pos$0, s$pos$i,
var0 s$goal$0, s$goal$l, s$goal$2,
varQ s$dir$0, s$dir$i1,
varQ s$door$0, s$door$i,
var0 s$ppd$0, s$ppd$il,
var0O t$levels$0$set,
varQ t$levels$O$reset,
varQ t$levels$O$req,
var0O t$levels$i$set,
varQ t$levels$i$reset,
var0 t$levels$i$req,
varQ t$levels$2$set,
varQ t$levels$2$reset,
var0 t$levels$2%req,
varQ t$levels$3$set,
varQ t$levels$3$reset,
varQ t$levels$3$req,
var0 t$pos$0, t$pos$i,
var0 t$goal$0, t$goal$l, t$goal$2,
varQ t$dir$0, t$dir$1,
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varQ t$door$0, t$door$i,
var0 t$ppd$0, t$ppd$1l) =
is_Door_open(s$door$0, s$door$l) &
(is_Etage_0(s$pos$0, s$pos$l) =>
(is_Ppd_nobody (t$ppd$0, t$ppd$1) | is_Ppd_vip(t$ppd$0, t$ppd$1))) |
“is_Door_open(s$door$0, s$door$l) &
true & Ppd_eq(t$ppd$0, t$ppd$l, s$ppd$0, s$ppd$1l);

pred next_goal(var0 s$levels$0$set,

varQO s$levels$O$reset,
varQ s$levels$0$req,
varQ s$levels$ig$set,
varQO s$levels$i$reset,
var0 s$levels$i$req,
varQ s$levels$2$set,
varQ s$levels$2%reset,
var0 s$levels$2$req,
varQ s$levels$3$set,
varQ s$levels$3$reset,
var0 s$levels$3f$req,
var0 s$pos$0, s$pos$i,
var0 s$goal$0, s$goal$l, s$goal$2,
varQ s$dir$0, s$dir$i,
varQ s$door$0, s$door$i,
var0 s$ppd$0, s$ppd$i,
varQ t$levels$0$set,
varQ t$levels$O$reset,
var0 t$levels$O$req,
varQ t$levels$i$set,
varQ t$levels$i$reset,
var0 t$levels$i$req,
var0O t$levels$2$set,
varQ t$levels$2$reset,
var0 t$levels$2%req,
var0O t$levels$3$set,
varQ t$levels$3$reset,
var0 t$levels$3$req,
varQ t$pos$0, t$pos$i,
varQ t$goal$0d, t$goal$l, t$goal$2,
var0O t$dir$0, t$dir$i,
varQ t$door$0, t$door$i,
var0 t$ppd$0, t$ppd$1) =
Goal_eq(s$pos$0, s$pos$l, false, s$goal$0, s$goal$l, s$goal$2) &
is_Door_opening(s$door$0, s$door$l) & is_Goal_4(t$goal$0, t$goal$l, t$goal$2)
|
“(Goal_eq(s$pos$0, s$pos$l, false, s$goal$0, s$goal$l, s$goal$2) &
is_Door_opening(s$door$0, s$door$l)) &
is_Door_open(s$door$0, s$door$l) & ~is_Ppd_nobody(s$ppd$0, s$ppd$1l) &
(is_Ppd_somebody (s$ppd$0, s$ppd$l) =>
“is_Goal_0(t$goal$0, t$goal$l, t$goal$2) &
“is_Goal_4(t$goal$0, t$goal$l, t$goal$2)) &
(is_Ppd_vip(s$ppd$0, s$ppd$l) => “is_Goal_4(t$goal$0, t$goal$l, t$goal$2)) |
“(is_Door_open(s$door$0, s$door$l) & ~is_Ppd_nobody(s$ppd$0, s$ppd$1)) &
“(Goal_eq(s$pos$0, s$pos$l, false, s$goal$0, s$goal$l, s$goal$2) &
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is_Door_opening(s$door$0, s$door$l)) &
true & Goal_eq(t$goal$l, t$goal$l, t$goal$2, s$goal$l, s$goal$l, s$goal$2);

pred right_dir(varO s$levels$0$set,
var0O s$levels$O$reset,
varQ s$levels$0$req,
varQ s$levels$i$set,
varQ s$levels$ifreset,
var0 s$levels$i$req,
varQO s$levels$2$set,
varQ s$levels$2%reset,
var0 s$levels$2$req,
var0O s$levels$3$set,
varQ s$levels$3$reset,
varQ s$levels$3$req,
var0 s$pos$0, s$pos$i,
var0 s$goal$0, s$goal$l, s$goal$2,
varQ s$dir$0, s$dir$i,
varQ s$door$0, s$door$i,
var0 s$ppd$0, s$ppd$l) =
(extern_up_req(s$levels$0$set, s$levels$O$reset, s$levels$O$req,
s$levels$i$set, s$levels$ifreset, s$levels$i$req,
s$levels$2$set, s$levels$2Preset, s$levels$2$req,
s$levels$3$set, s$levels$3$reset, s$levels$3$req, s$pos$0,
s$pos$l, s$goal$0, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) |
go_up(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$i$set,
s$levels$i$reset, s$levels$ifreq, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$0, s$goal$l, sPgoal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$1)) & is_Dir_up(s$dir$0, s$dir$l) |
(extern_down_req(s$levels$0$set, s$levels$O$reset, s$levels$O$req,
s$levels$i$set, s$levels$ifreset, s$levels$ifreq,
s$levels$2$set, s$levels$2$reset, s$levels$2$req,
s$levels$3$set, s$levels$3$reset, s$levels$3$req, s$pos$0,
s$pos$l, s$goal$0, s$goal$l, s$goal$2, s$dir$0, s$dir$1,
s$door$0, s$door$l, s$ppd$0, s$ppd$1l) |
go_down(s$levels$O$set, s$levels$0P$reset, s$levels$O$req, s$levels$i$set,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3s$req,
s$pos$0, s$pos$l, s$goal$l, sPgoal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$1l)) &
is_Dir_down(s$dir$0, s$dir$l);

pred next_dir(var0O s$levels$0$set,
varQ s$levels$O%reset,
varQ s$levels$O$req,
varQ s$levels$ifset,
varQ s$levels$ifreset,
var0 s$levels$i$req,
varQ s$levels$2$set,
varQ s$levels$2$reset,
var0 s$levels$2$req,
varQ s$levels$3$set,
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varQ s$levels$3$reset,
var0 s$levels$3f$req,
var0 s$pos$0, s$pos$i,
varQ s$goal$0, s$goal$l, s$goal$2,
var0O s$dir$0, s$dir$i,
varQ s$door$0, s$door$i,
var0 s$ppd$0, s$ppd$1,
varQ t$levels$0$set,
varQ t$levels$O$reset,
var0 t$levels$Ofreq,
varQ t$levels$i$set,
varQ t$levels$i$reset,
var0 t$levels$i$req,
varQ t$levels$2$set,
var0 t$levels$2$reset,
var0 t$levels$2%req,
var0O t$levels$3$set,
varQ t$levels$3$reset,
varQ t$levels$3$req,
var0 t$pos$0, t$pos$i,
var0 t$goal$0, t$goal$l, t$goal$2,
varQ t$dir$0, t$dir$i1,
varQ t$door$0, t$door$i,
var0 t$ppd$0, t$ppd$l) =
(stop(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$ifset,
s$levels$i$reset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3greq,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$1) |

“is_Door_closed(s$door$0, s$door$1)) & is_Dir_none(t$dir$0, t$dir$1l) |

“(stop(s$levels$0$set, s$levels$0$reset, s$levels$0freq, s$levels$i$set,
s$levels$i$reset, s$levels$ifreq, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, sPgoal$2, s$dir$0, s$dir$l,
s$door$0, s$door$l, s$ppd$0, s$ppd$1l) |

~“is_Door_closed(s$door$0, s$door$l)) &
right_dir(s$levels$0$set, s$levels$O$reset, s$levels$O$req, s$levels$i$set,
s$levels$if$reset, sPlevels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

Dir_eq(t$dir$0, t$dir$1l, s$dir$0, s$dir$l) |

“right_dir(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$i$set,

s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3sreq,
s$pos$0, s$pos$l, sPgoal$ld, s$goal$l, sPgoal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

“(stop(s$levels$0$set, s$levels$0$reset, s$levels$0freq, s$levels$i$set,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3sreq,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, sPgoal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$1) |

~“is_Door_closed(s$door$0, s$door$l)) &
is_Dir_none(s$dir$0, s$dir$l) &
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(go_up(s$levels$0$set, s$levels$Ofreset, s$levels$0$req, s$levels$i$set,
s$levels$i$reset, s$levels$ifreq, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$l,
s$door$0, s$door$l, s$ppd$0, s$ppd$1) & is_Dir_up(t$dir$0, t$dir$1l) |

“go_up(s$levels$0$set, s$levels$OPreset, s$levels$0$req, s$levels$iPset,
s$levels$i$reset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3Pset, s$levels$3freset, s$levels$3freq,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

go_down(s$levels$0$set, s$levels$O$reset, s$levels$O$req, s$levels$i$set,

s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,

s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,

s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,

s$door$0, s$door$l, s$ppd$0, s$ppd$1l) & is_Dir_down(t$dir$0, t$dir$1l)
|

“go_down(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$isset,

s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

“go_up(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$iset,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3sreq,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

extern_up_req(s$levels$0$set, s$levels$OPreset, s$levels$O$req,

s$levels$i$set, s$levels$i$reset, s$levels$i$req,
s$levels$2$set, s$levels$2$reset, s$levels$2$req,
s$levels$3$set, s$levels$3$reset, s$levels$3$req, s$pos$0,
s$pos$l, s$goal$0, s$goal$l, s$goal$2, s$dir$0, s$dir$il,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

is_Dir_up(t$dir$0, t$dir$1l) |

“extern_up_req(s$levels$0$set, s$levels$O$reset, s$levels$O$req,

s$levels$i$set, s$levels$i$reset, s$levels$i$req,
s$levels$2$set, s$levels$2$reset, s$levels$2$req,
s$levels$3$set, s$levels$3$reset, s$levels$3$req, s$pos$o,
s$pos$l, s$goal$0, s$goal$l, s$goal$2, s$dir$0, s$dir$il,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

“go_down(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$isset,

s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

“go_up(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$iset,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3freset, s$levels$3sreq,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

extern_down_req(s$levels$0$set, s$levels$O$reset, s$levels$O$req,

s$levels$i$set, s$levels$i$reset, s$levels$ifreq,
s$levels$2$set, s$levels$2$reset, s$levels$2$req,
s$levels$3$set, s$levels$3$reset, s$levels$3$req, s$pos$o,
s$pos$l, s$goal$0, s$goal$l, s$goal$2, s$dir$0, s$dir$1,
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s$door$0, s$door$l, s$ppd$0, s$ppd$l) &
is_Dir_down(t$dir$0, t$dir$1) |

“extern_down_req(s$levels$0$set, s$levels$O$reset, s$levels$O$req,

s$levels$i$set, s$levels$ifreset, s$levels$ifreq,
s$levels$2$set, s$levels$2$reset, s$levels$2$req,
s$levels$3$set, s$levels$3$reset, s$levels$3$req, s$pos$o,
s$pos$l, s$goal$0, s$goal$l, s$goal$2, s$dir$0, s$dir$1,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

“extern_up_req(s$levels$0$set, s$levels$O$reset, s$levels$O$req,

s$levels$i$set, s$levels$i$reset, s$levels$isreq,
s$levels$2$set, s$levels$2¥reset, s$levels$2$req,
s$levels$3$set, s$levels$3$reset, s$levels$3$req, s$pos$0,
s$pos$l, s$goal$0, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

“go_down(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$iset,

s$levels$if$reset, sPlevels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$1l) &

“go_up(s$levels$0$set, s$levels$O$reset, s$levels$O0$req, s$levels$isset,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3dreq,
s$pos$0, s$pos$l, sPgoal$ld, s$goal$l, s$goal$2, s$dir$0, s$dir$l,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

true & is_Dir_none(t$dir$0, t$dir$1)) |

~“is_Dir_none(s$dir$0, s$dir$1l) &

“right_dir(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$i$set,
s$levels$ifreset, s$levels$ifreq, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l) &

“(stop(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$i$set,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3freset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$1l) |

~“is_Door_closed(s$door$0, s$door$1)) & true & is_Dir_none(t$dir$0, t$dir$1);

pred next_req_level(var0Q a$set,

var0O a$reset,
varQ a$req,
varQ b$set,
var0O b$reset,
var0 b$req) =

a$set & b$req |

“a$set & a$reset & “b¥req | “a$reset & “aPset & true & (a$req <=> b$req);

pred next_req(var0O s$levels$0$set,
varQ s$levels$O$reset,
varQ s$levels$O$req,
varQ s$levels$igset,
varQ s$levels$i$reset,
var0 s$levels$i$req,
varQ s$levels$2$set,
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varQ
var(Q
varQ
varQ
varQ
varQ
var(Q
varQ
varQ
varQ
varQ
varQ
varQ
var(Q
varQ
varQ
varQ
varQ
varQ
varQ
varQ
var(Q
varQ
varQ
varQ
varQ
varQ

s$levels$2$reset,
s$levels$2$req,
s$levels$3$set,
s$levels$3$reset,
s$levels$3$req,
s$pos$0, s$pos$i,
s$goal$0, s$goal$l,
s$dir$0, s$dir$i,
s$door$0, s$door$i,
s$ppd$0, s$ppd$i,
t$levels$0$set,
t$levels$O$reset,
t$levels$O$req,
t$levels$i$set,
t$levels$i$reset,
t$levels$ifreq,
t$levels$2$set,
t$levels$2$reset,
t$levels$2$req,
t$levels$3$set,
t$levels$3$reset,
t$levels$3$req,
t$pos$0, tPpos$l,
t$goal$0, t$goal$l,
t$dir$0, t$dir$i1,
t$door$0, t$doors$i,
t$ppd$0, t$ppd$l) =

s$goals$2,

t$goal$2,

next_req_level (s$levels$O$set,

t$levels$0$set,

next_req_level (s$levels$i$set,

t$levels$i$set,

next_req_level (s$levels$2$set,

t$levels$2$set,

next_req_level(s$levels$3$set,

pred next(varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
varQ
var(Q
varQ
varQ

t$levels$3$set,

s$levels$O$reset,
t$levels$O$reset,
s$levels$i$reset,
t$levels$i$reset,
s$levels$2$reset,
t$levels$2$reset,
s$levels$3$reset,
t$levels$3$reset,

s$levels$0$set,
s$levels$Ofreset,
s$levels$O$req,
s$levels$igset,
s$levels$i$reset,
s$levels$i$req,
s$levels$2¢set,
s$levels$2$reset,
s$levels$2$req,
s$levels$3$set,
s$levels$3$reset,
s$levels$3$req,
s$pos$0, s$pos$l,

s$goal$0, s$goal$l, s$goal$2,

s$dir$0, s$dir$1,
s$door$0, s$door$i,
s$ppd$0, s$ppds$1,
t$levels$0$set,

s$levels$0$req,
t$levels$0$req) &
s$levels$i$req,
t$levels$i$req) &
s$levels$2$req,
t$levels$2$req) &
s$levels$33req,
t$levels$3$req) ;
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varQ t$levels$O$reset,
var0 t$levels$O$req,
varQ t$levels$i$set,
varQ t$levels$ifreset,
var0 t$levels$i$req,
varQ t$levels$2$set,
varQ t$levels$2$reset,
var0 t$levels$2$req,
varQ t$levels$3$set,
var0O t$levels$3$reset,
varQ t$levels$3$req,
varQ t$pos$0, t$pos$i,
var0 t$goal$0, t$goal$l, t$goal$2,
varQ t$dir$0, t$dir$i1,
varQ t$door$0, t$doors$i,
varQ t$ppd$0, t$ppd$l) =
next_req(s$levels$0$set, s$levels$Ofreset, s$levels$0$req, s$levels$i$set,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3Pset, s$levels$3Preset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l, t$levels$O$set,
t$levels$O$reset, t$levels$O$req, t$levels$i$set, t$levels$i$reset,
t$levels$l$req, tPlevels$2$set, t$levels$2$reset, t$levels$2$req,
t$levels$3$set, t$levels$3$reset, t$levels$3$req, t$pos$0, t$pos$l,
t$goal$0, t$goal$l, t$goal$2, t$dir$0, t$dir$l, t$door$0, t$door$i,
t$ppd$0, t$ppd$l) &
next_door (s$levels$0$set, s$levels$0$reset, s$levels$0freq, s$levels$isset,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l, t$levels$O$set,
t$levels$O$reset, t$levels$0$req, t$levels$i$set, t$levels$ifreset,
t$levels$i$req, t$levels$2$set, tPlevels$2$reset, t$levels$2$req,
t$levels$3$set, t$levels$3$reset, t$levels$3$req, t$pos$0, t$pos$l,
t$goal$0, t$goal$l, t$goal$2, t$dir$0, t$dir$l, t$door$0, t$door$i,
t$ppd$0, t$ppd$l) &
next_ppd(s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$i$set,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3sreq,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l, t$levels$O$set,
t$levels$O$reset, t$levels$0$req, t$levels$i$set, t$levels$i$reset,
t$levels$i$req, t$levels$2$set, t$levels$2$reset, t$levels$2$req,
t$levels$3$set, t$levels$3$reset, t$levels$3$req, t$pos$0, t$pos$l,
t$goal$0, t$goal$l, tPgoal$2, t$dir$0, t$dir$l, t$door$0, t$door$i,
t$ppd$0, t$ppd$l) &
next_goal (s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$i$set,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l, t$levels$O$set,
t$levels$O$reset, t$levels$0$req, t$levels$i$set, t$levels$ifreset,
t$levels$i$req, t$levels$2$set, t$levels$2$reset, t$levels$2$req,
t$levels$3$set, t$levels$3$reset, t$levels$3$req, t$pos$0, t$pos$i,
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next_pos(

next_dir(

t$goal$0, tPgoal$l, t$goal$2, t$dir$0, t$dir$l, t$door$0, t$door$i,
t$ppd$0, t$ppd$l) &

s$levels$0$set, s$levels$O$reset, s$levels$0Preq, s$levels$i$set,
s$levels$ifreset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3s$req,
s$pos$0, s$pos$l, s$goal$l, s$goal$l, s$goal$2, s$dir$0, s$dir$i,
s$door$0, s$door$l, s$ppd$0, s$ppd$l, t$levels$O$set,
t3levels$0$reset, t$levels$0$req, t$levels$i$set, t$levels$i$reset,
t$levels$i$req, t$levels$2$set, t$levels$2$reset, t$levels$2$req,
t$levels$3$set, t$levels$3$reset, t$levels$3$req, t$pos$0, t$pos$l,
t$goal$0, t$goal$l, t$goal$2, t$dir$0, t$dir$l, t$door$0, t$door$i,
t$ppd$0, t$ppd$l) &

s$levels$0$set, s$levels$O$reset, s$levels$0$req, s$levels$iset,
s$levels$i$reset, s$levels$i$req, s$levels$2$set, s$levels$2$reset,
s$levels$2$req, s$levels$3$set, s$levels$3$reset, s$levels$3sreq,
s$pos$0, sPpos$l, s$goal$d, sPgoal$l, s$goal$2, s$dir$0, s$dir$l,
s$door$0, s$door$l, s$ppd$0, s$ppd$l, t$levels$O$set,
t$levels$O$reset, t$levels$0$req, t$levels$i$set, t$levels$i$reset,
t$levels$i$req, tPlevels$2$set, t$levels$2$reset, t$levels$2$req,
t$levels$3$set, t$levels$3$reset, t$levels$3$req, t$pos$0, t$pos$l,
t$goal$0, t$goal$l, tPgoal$2, t$dir$0, t$dir$l, t$door$0, t$door$i,
t$ppd$0, t$ppd$l);

pred run(var2 L$levels$0$set,

va
va
va
va
va
va
va
va
va
va
va
va
va
va
va

va

init(0 in

0 in

0 in

0 in

0 in

0 in

0 in
(alll i:

is_nat

nat_le

next ((

(
(
(

r2 L$levels$O$reset,

r2 L$levels$0$req,

r2 L$levels$i$set,

r2 L$levels$i$reset,

r2 L$levels$i$req,

r2 L$levels$2$set,

r2 L$levels$2$reset,

r2 L$levels$2$req,

r2 L$levels$3$set,

r2 L$levels$3$reset,

r2 L$levels$3$req,

r2 L$pos$0, L$pos$l,

r2 L$goal$0, L$goal$l, L$goal$2,

r2 L$dir$0, L$dir$1,

r2 L$door$0, L$door$i,

r2 L$ppd$0, Léppd$l) =

L$levels$0$set, O in L$levels$O$reset, 0 in L$levels$O$req,
L$levels$i$set, O in L$levels$i$reset, 0 in L$levels$i$req,
L$levels$2$set, 0 in L$levels$2$reset, 0 in L$levels$2$req,
L$levels$3$set, O in L$levels$3$reset, 0 in L$levels$3$req,
L$pos$0, O in L$pos$l, 0 in L$goal$0, O in L$goal$l, 0 in L$goal$2,
L$dir$0, O in L$dir$l, 0 in L$door$0, 0 in L$door$l, O in L$ppd$0,
L$ppd$1l) &

(1) =>

ss(0, i) =>

i - 1) in L$levels$0$set, (i - 1) in L$levels$O$reset,
i - 1) in L$levels$0$req, (i - 1) in L$levels$i$set,

i - 1) in L$levels$i$reset, (i - 1) in L$levels$i$req,
i - 1) in L$levels$2$set, (i - 1) in L$levels$2$reset,
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i -
(i-
i -
i -
i -
i -
i in
in
in
in
in
in
in

He He He He He He

pred spec( var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2
var2

var2
var2
var2
var2
alll i:
is_nat(i) =

1) in L$levels$2%req, (i - 1) in L$levels$3$set,

1) in L$levels$3$reset, (i - 1) in L$levels$3$req,

1) in L$pos$0, (i - 1) in L$pos$1l, (i - 1) in L$goal$o,
1) in L$goal$l, (i - 1) in L$goal$2, (i - 1) in L$dir$0,
1) in L$dir$1, (i - 1) in L$door$0, (i - 1) in L$door$i,
1) in L$ppd$0, (i - 1) in L$ppd$1l, i in L$levels$O$set,

L$levels$O$reset, i in L$levels$O$req, in L$levels$i$set,
L$levels$i$reset, i in L$levels$i$req, in L$levels$2$set,
L$levels$28$reset, i in L$levels$2$req, in L$levels$3$set,

L$levels$3$reset, i in L$levels$3$req, in L$pos$0,
L$pos$1l, i in L$goal$0, i in L$goal$l, i in L$goal$2,
L$dir$0, i in L$dir$1l, i in L$door$0, i in L$door$1,
L$ppd$0, i in L$ppd$1l);

He He He He e

L$levels$0$set,
L$levels$O$reset,
L$levels$0$req,
L$levels$i$set,
L$levels$i$reset,
L$levels$igreq,
L$levels$2$set,
L$levels$2$reset,
L$levels$2$req,
L$levels$3$set,
L$levels$3$reset,
L$levels$3$req,
L$pos$0, L$pos$l,
L$goal$0, L$goal$l, L$goal$2,
L$dir$0, L$dir$1,
L$door$0, L$doors$l,
L$ppd$0, L$ppd$l) =

>

~“is_Dir_none(i in L$dir$0, i in L$dir$1) =>

is_Door_clo
## Main Goal

var2 L$goal$o,
L$levels$0
L$dir$1, L
L$dir$0, L
L$levels$2
L$levels$3

run(L$levels$0$
L$levels$i$
L$levels$2$
L$pos$0, L$
L$door$0, L
=>

spec(L$levels$
L$levels$i$
L$levels$2$

sed(i in L$door$0, i in L$door$l);

L$ppd$1,

$set, L$levels$Ofreset, L$levels$0$req, L$levels$i$set,
$ppd$0, L$pos$l, L$door$0, L$door$l,L$goal$l, L$goal$2,
$levels$i$reset, L$levels$ifreq, L$levels$2$set,
$reset, L$levels$2$req, L$levels$3$set,

$reset, L$levels$3$req, L$pos$0;

set, L$levels$0$reset, L$levels$0$req, L$levels$i$set,
reset, L$levels$i$req, L$levels$2$set, L$levels$2$reset,
req, L$levels$3$set, L$levels$3$reset, L$levels$3$req,
pos$1l, L$goal$0, L$goal$l, L$goal$2, L$dir$0, L$dir$l,
$door$1l, L$ppd$0, L$ppd$1)

O$set, L$levels$O$reset, L$levels$0$req, Llevels$i$set,
reset, L$levels$i$req, L$levels$2$set, L$levels$2$reset,
req, L$levels$3$set, L$levels$3$reset, L$levels$3sreq,
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L$pos$0, LPpos$l, L$goal$0, L$goal$l, L$goal$2, L$dir$0, L$dir$1,
L$door$0, L$door$l, L$ppd$0, L$ppd$1l);

C.3 Alternating Bit Protocol

The following is the entire M2L-STR formalization of the alternating bit Protocol.

m2l-str;

pred if (varQ a,b,c) = (a=>b) & (Ta=>c);
pred onBit (varl t, var2 X) t in X;
pred offBit (varl t, var2 X) = t notin X;
pred keepBit(varl t ,var2 X) = t in X <=> t+1 in X;
pred alternateBit(varl t, var2 X) = t in X <=> t+1 notin X;
pred getnewData(varl t, var2 D1,D2) = true;
pred keepData(varl t, var2 D1,D2) = keepBit(t,D1) & keepBit(t,D2);
pred keepTag(varl t, var2 T1,T2) = keepBit(t,T1) & keepBit(t,T2);
pred transdata(varl t, var2 SD1,SD2,RD1,RD2) =

(t in SD1 <=> (t+1) in RD1) &

(t in SD2 <=> (t+1) in RD2) ;
pred one (varO a,b) = “a & ~ b;
pred two (varQ a,b) = "a & b;
pred three(varO a,b) a& ~ b;
pred for (varO a,b) a& b;
pred get (varl t, var2 A, B) = t in A & t in B;
pred send(varl t, var2 A, B) t in A & t notin B;
pred wait(varl t, var2 A, B) t notin A ;
pred recieve (varl t, var2 A, B) t in A & t in B;
pred deliver (varl t, var2 A, B) t in A & t notin B;
pred send_ack(varl t, var2 A, B) t notin A ;
pred mt (varl t, var2 A, B) = in A & t in B;
pred dataO(varl t, var2 A, B) = in A & t notin B;
pred datal(varl t, var2 A, B) = notin A & t in B;

t, A,
t, A,

pred error(varil var2 B) = notin A & t notin B;
pred ackO (varl var?2 B) = in A & t notin B;
pred ackl (varl t, var2 A, B) = t notin A & t in B;
pred keeplBit(varl t,var2 X0)= keepBit(t,X0);
pred keep2Bit(varl t,var2 X0,X1)= keepl1Bit(t,X0) & keeplBit(t,X1);
pred keep3Bit(varl t,var2 X0,X1,X2)= keep2Bit(t,X0,X1)& keepiBit(t,X2);
pred keep4Bit(varl t,var2 X0,X1,X2,X3)= keep2Bit(t,X0,X1) & keep2Bit(t,X2,X3);
pred keepbBit(varl t,var2 X0,X1,X2,X3,X4)=
keep2Bit (t,X0,X1) & keep3Bit(t,X2,X3,X4);
pred keep6Bit(varl t,var2 X0,X1,X2,X3,X4,X5)=
keep3Bit (t,X0,X1,X2) & keep3Bit(t,X3,X4,X5);
pred keep7Bit(varl t,var2 X0,X1,X2,X3,X4,X5,X6)=
keep3Bit (t,X0,X1,X2) & keep4Bit(t,X3,X4,X5,X6);
pred keep8Bit(varl t,var2 X0,X1,X2,X3,X4,X5,X6,X7)=
keep4Bit (t,X0,X1,X2,X3) & keep4Bit (t,X4,X5,X6,X7);
pred keep9Bit(varl t,var2 X0,X1,X2,X3,X4,X5,X6,X7,X8)=
keep8Bit (t,X0,X1,X2,X3,X4,X5,X6,X7) & keeplBit(t,X8);
pred keepl12Bit(varl t,var2 X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11)=

o o o o |l
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keep8Bit (t,X0,X1,X2,X3,X4,X5,X6,X7) & keep4Bit(t,X8,X9,X10,X11);
pred unchangedl(varl t,var2 X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10)=
keep8Bit (t,X0,X1,X2,X3,X4,X5,X6,X7) & keep3Bit(t,X8,X9,X10);
pred unchanged2(varl t,var2 X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12,X13)=
keep12Bit (t,X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11) &
keep2Bit (t,X12,X13);
pred unchanged3(varl t,var2 X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,
X12,X13,X14,X15,X16,X17)=
keep12Bit (t,X0,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11) &
keep4Bit (t,X12,X13,X14,X15) &
keep2Bit (t,X16,X17);
pred s_init(var2 S1,52,Bit) = get(0, S1,S2) & offBit(0,Bit);
pred _sender(varl t,var2 SBit,S1,S2,SD1,SD2,S2RinD1,S2RinD2,
S2RinT1,S2RinT2,R2SoutT1,R2SoutT2) =
(get(t,S1,52) &
send(t+1,51,382) &
keep9Bit (t,SBit,SD1,SD2,S2RinD1,S2RinD2,S2RinT1,S2RinT2,R2S0utT1,R2S0utT2)
) |
(send(t,S51,52) & mt(t,S2RinT1,S2RinT2) &
wait (t+1,581,82)&
if (onBit (t,SBit) ,datal(t+1,S2RinT1,S2RinT2) ,data0(t+1,S2RinT1,S2RinT2)) &
transdata(t,SD1,SD2,S2RinD1,S2RinD2) &
keep3Bit (t,SBit,R2SoutT1,R2S0utT2)
)
(send(t,S1,52) & “mt(t,S2RinT1,S2RinT2) &
send(t+1,51,S2) &
keep9Bit (t,SBit,SD1,SD2,S2RinD1,S2RinD2,S2RinT1,S2RinT2,R2S0utT1,R2S0utT2)
)|
(wait(t,S1,52) &
( offBit(t,SBit) & ackO(t,R2SoutT1,R2SoutT2)
onBit(t,SBit) & ackl(t,R2SoutT1,R2SoutT2)
)&
get(t+1,S1,52) &
alternateBit (t,SBit) &
mt (t+1,R2SoutT1,R2SoutT2) &
getnewData(t+1,SD1,SD2) &
keep4Bit (t,S2RinD1,S2RinD2,S2RinT1,S2RinT2)) |
(wait(t,S1,82) &
(onBit (t,SBit) & ackO(t,R2SoutT1,R2SoutT2)
offBit (t,SBit) & ackl(t,R2SoutT1,R2SoutT2)
error (t,R2SoutT1,R2SoutT2)
)&
send(t+1,51,52) &
mt (t+1,R2SoutT1,R2SoutT2) &
keep7Bit(t, SBit,SD1,SD2,S2RinD1,S2RinD2,S2RinT1,S2RinT2)
)
(wait(t,S1,52) & mt(t,R2SoutT1,R2SoutT2)&
wait(t+1,81,82) &
mt (t+1,R2SoutT1,R2SoutT2) &
keep7Bit (t,SBit,SD1,SD2,S2RinD1,S2RinD2,S2RinT1,S2RinT2)
);
pred r_init(var2 R1,R2,RBit)= recieve(0,R1,R2) & offBit(0,RBit);
pred _reciever(varl t,var2 R1,R2,RBit,RD1,RD2,R2SinT1,
R2SinT2,S2RoutT1,S2RoutT2,S2RoutD1,S2RoutD2)=
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((recieve(t,R1,R2) &
(offBit (t,RBit) & dataO(t,S2RoutT1,S2RoutT2) |
onBit (t,RBit) & datal(t,S2RoutT1,S2RoutT2)
))&
keep3Bit (t,RBit,R2SinT1,R2SinT2) &
mt (t+1,S2RoutT1,S2RoutT2) &
deliver(t+1,R1,R2) &
transdata(t,S2RoutD1,S2RoutD2,RD1,RD2)
)
[
(recieve(t,R1,R2) &
(offBit (t,RBit) & datal(t,S2RoutT1,S2RoutT2) |
onBit (t,RBit) & dataO(t,S2RoutT1,S2RoutT2) |
error (t,S2RoutT1,S2RoutT2)
) &
keep7Bit (t,RBit,R2SinT1,R2SinT2,RD1,RD2,S2RoutD1,S2RoutD2) &
mt (t+1,S2RoutT1,S2RoutT2) &
send_ack(t+1,R1,R2))
[
(recieve(t,R1,R2) & mt(t,S2RoutT1,S2RoutT2) &
keep5Bit (t,RBit,R2SinT1,R2SinT2,RD1,RD2) &
mt (t+1,S2RoutT1,S2RoutT2) &
recieve (t+1,R1,R2))
[
(deliver(t,R1,R2) &
keep8Bit (t,R25inT1,R2SinT2,RD1,RD2,S2RoutT1,S2RoutT2,S2RoutD1,S2RoutD2) &
send_ack(t+1,R1,R2) &
alternateBit (t,RBit))
[
(send_ack(t,R1,R2) & mt(t,R2SinT1,R2SinT2) &
keep7Bit (t,RBit,RD1,RD2,S52RoutT1,S2RoutT2,S2RoutD1, S2RoutD2) &
recieve (t+1,R1,R2) &
if (onBit (t,RBit) ,ack0(t+1,R2SinT1,R2SinT2) ,ackl(t+1,R2SinT1,R2SinT2)))
[
(send_ack(t,R1,R2) & “mt(t,R2SinT1,R2SinT2) &
keep9Bit (t,RBit,R2SinT1,R25inT2,RD1,RD2,S2RoutT1,S2RoutT2, S2RoutD1, S2RoutD2) &
send_ack (t+1,R1,R2));
pred r2s_init(var2 R2SinT1,R285inT2,R2SoutT1,R2S0utT2) =
mt (0,R2SinT1,R2SinT2) & mt(0,R2SoutT1,R2SoutT2);
pred _r2s (varl t,var2 R2SinT1,R2SinT2,R2SoutT1,R2SoutT2)=
if (
mt (t,R2So0utT1,R2S0utT2) & ~mt(t,R2SinT1,R2SinT2),
mt (t+1,R25inT1,R2SinT2) & (error(t+1,R2SoutT1,R2SoutT2)
transdata(t,R25inT1,R2SinT2,R2SoutT1,R2S0utT2)),
keepTag(t,R2S0utT1,R2S0utT2) & keepTag(t,R25inT1,R2SinT2)
);
pred s2r_init(var2 S2RinT1,S2RinT2,S2RoutT1,S2RoutT2) =
mt (0,S2RinT1,S2RinT2) & mt(0,S2RoutT1,S2RoutT2);

pred _s2r(varl t,var2 S2RinT1,S2RinT2,S2RoutT1,S2RoutT2,S2RoutD1,S2RinD1,
S2RinD2,S2RoutD2) =
if (
mt (t,S2RoutT1,S2RoutT2) & “mt(t,S2RinT1,S2RinT2),
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(error (t+1,S2RoutT1,S2RoutT2) |
transdata(t,S2RinT1,S2RinT2,S2RoutT1,S2RoutT2)) &

mt (t+1,S2RinT1,S2RinT2) &
transdata(t,S2RinD1,S2RinD2,S2RoutD1,S2RoutD2),

keep6Bit (t,S2RoutT1,S2RoutT2,S2RinT1,S2RinT2, S2RoutD1, S2RoutD2)
)
& keep2Bit (t,S2RinD1,S2RinD2);

var2
P1 , P2,
SBit ,
S1, S2,
SD1, SD2,
RBit ,
R1, R2,
RD1, RD2,
S2RinD1, S2RinD2,
S2RoutD1, S2RoutD2,
S2RinT1, S2RinT2,
S2RoutT1, S2RoutT2,
R2SinT1, R2SinT2,
R2SoutT1, R2SoutT2;

pred init() =

0 notin P1 & O notin P2 &
s_init(S1,S2,SBit) &
r_init(R1,R2,RBit) &

r2s_init (R2SinT1,R2SinT2,R2SoutT1,R2SoutT2) &
s2r_init (S2RinT1,S2RinT2,S2RoutT1,S2RoutT2) ;

pred sender(varl t) =
(t notin P1 & t notin P2) &
_sender(t,SBit,S1,S2,SD1,SD2,S2RinD1,S2RinD2,S2RinT1,S2RinT2,R2S0utT1,R2S0utT2) &
unchanged1(t,RBit,R1,R2,RD1,RD2,S2RoutD1,S2RoutD2,S2RoutT1,S2RoutT2,R2SinT1,
R2SinT2) ;

pred sender_bug(varl t) =
_sender (t,SBit,S1,5S2,8D1,SD2,S2RinD1,S2RinD2,S2RinT1,S2RinT2,R2SoutT1,R2S0utT2) &
unchanged1(t,RBit,R1,R2,RD1,RD2,S2RoutD1,S2RoutD2,S2RoutT1,S2RoutT2,R2SinT1,
R2SinT2) ;

pred reciever(varl t) =
(t notin P1 & t in P2) &
_reciever(t,R1,R2,RBit,RD1,RD2,R2SinT1,R25inT2,S2RoutT1,S2RoutT2,S2RoutD1,
S2RoutD2) &
unchanged1(t,SBit,S1,52,5D1,5D2,S2RinT1,S2RinT2,S2RinD1,S2RinD2,R2SoutT1,
R2SoutT2) ;

pred s2r(varl t)=
(t in P1 & t notin P2) &
_s2r(t,S2RinT1,S2RinT2,S2RoutT1,S2RoutT2,S2RinD1,S2RinD2,S2RoutD1,S2RoutD2) &
unchanged2(t,SBit,S1,52,5D1,SD2,RBit,R1,R2,RD1,RD2,R25inT1,R2SinT2,R2S0utT1,
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R2SoutT2) ;

pred r2s(varl t)=
(t in P1 & t in P2) &
_r2s (t,R28inT1,R2SinT2,R2SoutT1,R2SoutT2)&
unchanged3(t,SBit,S1,52,5D1,SD2,RBit,R1,R2,RD1,RD2,S52RinD1,S2RinD2, S2RoutD1,
S2RoutD2,S2RinT1,S2RinT2,S2RoutT1,S2RoutT2) ;

pred trans () = alll t: t<$ =>sender(t) |reciever(t)|s2r(t) [r2s(t);
pred abp () = init() & trans();

#### Properties
pred phil() =
alll s,t: (s<t & t<$ & get(s,S51,52) & get(t,S1,S2) &
alll q: s< q & g<t => “get(q,S1,52))
=> alll q: s< q & g<t => (onBit(s+1,SBit) <=> onBit(q,SBit));

pred phi2() =
alll s,t: (s<t & t<$ & offBit(s,SBit) & onBit(t,SBit)
& alll q: s<= q & q<t => offBit(q,SBit))
=> exl r: s<=r & r<t & ackO(r,R2SoutT1,R2SoutT2);

pred phi3() =
alll s,t: (s<t & t<$ & onBit(s,SBit) & offBit(t,SBit)
& alll q: s<= q & q<t => onBit(q,SBit))
=> exl r: s<=r1 & r<t & ackl(r,R2SoutT1,R2SoutT2);

C.4 Bus Arbiter Protocol for Three Cells

Below is the M2L-STR formalization of the bus arbiter protocol for three cells.

m2l-str;

(a=>" (b lc)) & (b =>"(alc)) & (c => ~ (alb));
(alblc) & atmost_one(a,b,c);

pred atmost_one (var(Q a,b,c)
pred exactly_one (varO a,b,c)

pred Celle(varQO token, n_token, wait, n_wait, request, token_in,
token_out, garant_in, garant_out, overrid_in, overrid_out, ack)=
(n_token <=> token_in) &
(n_wait <=> ((wait | token) & request)) &
(ack <=> ((wait & token | garant_in)& request)) &
(token_out <=> token) &
(garant_out <=> ((~ request)& garant_in)) &
(overrid_out <=> (wait & token | overrid_in));

0in T & O notin W ;
O notin T & O notin W ;

pred init_celleO(var2 T,W)
pred init_celle(var2 T,W)
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pred first_last_wiring(var2 Tin0O,Tin1,Tin2,ToutO,Toutl,Tout2,

alll t
(t
(t
(t
(t
(t
(t
(t
(t
(t

0
G

in Oout0 <=> t no
in 0in0 <=> t in
in 0inl <=> t in
notin 0in2)

in
in
in
in
in

GoutO
Goutl
ToutO
Toutl
Tout?2

in
in
in
in
in

¢ o o o o

in0,0in1,0in2,00ut0,0ocutl,00ut?2,
in0, Gin1,Gin2,Gout0,Goutl,Gout2) =

tin Gin0) &
Ooutl) &
Oout?2) &
&
&
&

Ginl)
Gin2)
Tinl) &
Tin2) &
TinO) ;

pred arbiter(var2 RO,R1, R2,A0, A1, A2,
TO,T1,T2,W0,W1,W2,Tin0,Tinl,Tin2,Tout0,Tout1,Tout2,0in0,0inl,
0in2,00ut0,0o0ut1,0out2,Gin0, Ginl,Gin2,Gout0,Goutl,Gout2) =

init_celleO(TO,W0) &

init_celle(T1,W1) &
init_celle(T2,W2) &
first_last_wiring(Tin0,Tin1,Tin2,ToutO,Toutl,Tout2,0in0,0in1,0in2,

Oout0,00utl,00ut2,Gin0, Ginl,Gin2,GoutO,Goutl,Gout2) &

alll t: t <$ =>

Celle(t in

t in

& Celle(t in
t in

& Celle(t in
t in

TO,t+1 in TO,t in WO,t+1 in WO,t in RO,t in TinO, t in ToutO,
GinO, t in GoutO, t in 0inO, t in OoutO,t in AOQ)
Ti,t+1 in T1,t in Wi,t+1 in W1l,t in R1,t in Tinl, t in Toutl,
Ginl, t in Goutl, t in O0inl, t in Ooutl,t in A1)
T2,t+1 in T2,t in W2,t+1 in W2,t in R2,t in Tin2, t in Tout2,
Gin2, t in Gout2, t in 0in2, t in Oout2,t in A2);

pred spec(var2 RO,R1,R2,A0,A1,A2,T0,T1,T2) =

&
&

&

(alll t: t<$ =
(alll t: t<$ =
(alll t: t<$ &

alll

(alll t: t<$ &

alll

(alll t: t<$ &

allil

> exactly_one(t in TO, t in T1,t in T2))

> atmost_one (t in AO,t in Al,t in A2))

t in A0 => exl1 p : p<=t & p in RO &

Xx: p<x & x<t => x notin RO & x notin AO)

t in A1 => ex1l p : p<=t & p in R1 &

X: p<x & x<t => x notin R1 & x notin A1)
t in A2 => ex1l p : p<=t & p in R2 &

X: p<x & x<t => x notin R2 & x notin A2);
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