
Approaches to Efficient Visual Homing
of Mobile Robots in Rough Terrain

Annett Stelzer

Technische Fakultät
Albert-Ludwigs-Universität Freiburg im Breisgau

Dissertation zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

Betreuer: Prof. Dr. Wolfram Burgard

Approaches to Efficient Visual Homing
of Mobile Robots in Rough Terrain

Annett Stelzer

Dissertation zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften
Technische Fakultät, Albert-Ludwigs-Universität Freiburg im Breisgau

Dekan: Prof. Dr. Georg Lausen
Erstgutachter: Prof. Dr. Wolfram Burgard

Albert-Ludwigs-Universität Freiburg im Breisgau
Zweitgutachter: Prof. Dr. Alin Albu-Schäffer

Technische Universität München
DLR Institut für Robotik und Mechatronik

Tag der Disputation: 16.12.2016

Zusammenfassung

Mobile Roboter sind in Form von Staubsaugrobotern und Rasenmährobotern längst in un-
seren Haushalten angekommen und erleichtern uns die Arbeit. Doch auch in anderen Bere-
ichen sind mobile robotische Helfer gefragt, vor allem für Aufgaben, die für den Men-
schen zu gefährlich wären. Als Beispiele seien Rettungsaktivitäten nach Großunfällen oder
Naturkatastrophen, die Erkundung von fremden Planeten und das Erforschen von Höhlen
genannt. Roboter für solche Einsatzgebiete müssen in der Lage sein, sich in unbekannten
und unstrukturierten Umgebungen sicher zu bewegen. Dabei ist im ersten Schritt keine volle
Autonomie erforderlich, vielmehr sollten die mobilen Roboter unterstützende Werkzeuge
für Rettungskräfte oder Wissenschaftler sein, um ihnen einen Überblick über die Situa-
tion zu verschaffen, auf deren Basis weitere Aufgaben geplant und ausgeführt werden kön-
nen. Teilautonomie für das Lösen von Aufgaben, für die keine menschliche Interpretations-
fähigkeit nötig ist, reicht aus. Dies beinhaltet zum Beispiel das selbstständige Umfahren von
bzw. Warnen vor Hindernissen, oder das eigenständige Zurückkehren zum Ausgangspunkt,
wenn der Bediener das robotische Werkzeug nicht länger benötigt, oder wenn Objekte zu
einer Basis zurückgebracht werden sollen.

Roboter für solche Einsatzzwecke haben in der Regel nur sehr begrenzte Rechen- und Spe-
icherressourcen, entweder, weil sie klein und agil sein müssen um sich in stark unstruk-
turiertem Gelände bewegen zu können, oder, weil sie in planetaren Explorationsszenar-
ien weltraumqualifizierte Hardware benötigen. Aus diesem Grund sollten die autonomen
Fähigkeiten des Systems ressourcensparend implementiert werden.

In der vorliegenden Arbeit wird eine Navigationsmethode für mobile Roboter in unebenem
Gelände entwickelt, die das autonome Zurückkehren zum Ausgangspunkt entlang eines zu-
vor zurückgelegten Pfades beinhaltet. Der Roboter hat vorab keinerlei Informationen über
die Umgebung, sondern ist allein auf seine Wahrnehmung der Umgebung (exterozeptiv)
und seines eigenen Zustandes (propriozeptiv) beschränkt. Exterozeptive Sensoren sind eine
Stereokamera, welche die Erstellung von dichten Tiefenbildern der nahen Umgebung vor
dem Roboter ermöglicht, und eine omnidirektionale Kamera, die ein 360◦ Panorama der
Umwelt liefert. Propriozeptive Sensoren sind eine inertiale Messeinheit (IMU), die die Rich-
tung des Gravitationsvektors sowie Beschleunigungen und Drehraten in 6 Freiheitsgraden
misst, und Odometriesensoren, welche Rückschlüsse auf die Eigenbewegung des Roboters
erlauben. Im Fall von Laufrobotern sind dies Momenten- und Drehwinkelsensoren in den
Beingelenken, bei fahrenden Robotern kommen hierfür Radencoder zum Einsatz. Auf Ba-
sis dieser Wahrnehmungen soll der Roboter in der Lage sein, aus großer Entfernung (mehr
als das hundertfache der Roboterlänge) entlang des zuvor zurückgelegten Pfades zum Aus-

gangspunkt zurückzukehren, ohne sich dabei selbst in Gefahr zu bringen. Um diese Auf-
gabe recheneffizient zu lösen, wird das Problem in zwei Teilaspekte zerlegt: Die lokale Hin-
dernisvermeidung auf der einen Seite, und die globale Zurückverfolgung des Pfades auf der
anderen Seite.

Für die lokale Navigation nutzt der Roboter seine propriozeptiven Sensoren und eine vi-
suelle Odometrie aus der Stereokamera, um seine momentane Position und Orientierung in
Bezug auf den Ausgangspunkt zu schätzen. Darauf aufbauend wird aus den Tiefenbildern
der Stereokamera eine dichte metrische Höhenkarte der unmittelbaren Umgebung erstellt,
auf deren Basis der Roboter die Passierbarkeit des Geländes ermitteln kann. Somit wird
eine lokale Hindernisvermeidung erzielt, welche unabhängig von der Länge des insgesamt
zurückgelegten Pfades konstante Rechenressourcen benötigt.

Für die globale Navigation speichert der Roboter den zurückgelegten Pfad als eine Se-
quenz von sogenannten Viewframes. Diese beinhalten die Erscheinung der Umgebung an
den jeweiligen Positionen in Form der Landmarkenkonfiguration, die aus den omnidirek-
tionalen Kamerabildern gewonnen wird. Die Erkenntnis, dass sich während der Bewegung
des Roboters der Winkel zu weit entfernten Landmarken und Landmarken in Bewegungsrich-
tung des Roboters nur sehr wenig ändern, wohingegen nahe Landmarken ihre Richtung in
Bezug auf den Roboter stärker ändern, wird genutzt, um die Sequenz der Viewframes nicht-
redundant und hierarchisch in der sogenannten Trail-Map (Translation Invariance Level
Map) zu speichern. Diese Form der Speicherung erlaubt weiterhin die einfache Skalierung
der Karte im Fall von Speichermangel. Die Sequenz der Viewframes erlaubt dem Roboter
die Berechnung von Richtungsvektoren, die die aktuell wahrgenommene Landmarkenkon-
figuration in die abgespeicherte Konfiguration überführt, und so den Roboter von Viewframe
zu Viewframe zurück zum Ausgangspunkt leitet. Dadurch benötigt auch die globale Navi-
gation entlang des zuvor gelernten Pfades konstante Rechenzeit unabhängig von der Länge
des zurückgelegten Weges, was den Betrieb von ressourcenlimitierten Systemen über sehr
lange Strecken ermöglicht.

Abstract

Mobile robots, such as vacuum cleaning robots and robotic lawn mowers, have become part
of our daily lives. While they work fully autonomously in well-defined environments, the de-
mand for mobile robots in unstructured and unforeseeable areas, such as search-and-rescue
scenarios or planetary exploration, is growing. These robots are not required to have full au-
tonomy, but should rather be tools which support researchers or rescue workers by providing
information about a remote environment. For this, they should offer basic autonomy func-
tions, for example obstacle avoidance or autonomous returning. Robots for such tasks often
have to be small and agile, which prevents them from carrying heavy sensors and batteries,
and thus also limits their computational resources. Therefore, the implemented autonomous
capabilities have to work efficiently.

This thesis focusses on the task of robot homing, which is the ability of a robot to return to
its starting position after moving away. Since the method should work in unknown, unstruc-
tured terrain, it is divided into a local navigation task, which aims at detecting and avoiding
obstacles, and a global navigation task, which uses only bearing angles to landmarks to
memorize and retrace a path. The method is applicable to ground-based robots equipped
with an inertial measurement unit (IMU), a stereo camera, an omnidirectional camera and
odometry sensors.

Local obstacle avoidance is accomplished by creating a moving geometric grid map of the
immediate surroundings of the robot. For this, the robot computes disparity images from
the stereo image pairs and combines them to a dense grid map using the robust and accu-
rate pose estimates obtained by fusing IMU data, visual odometry measurements and robot
odometry data. From that, the robot estimates the traversability of the terrain and computes
a cost map, which it uses to plan safe paths in a given direction. In contrast, no metric dis-
tance information is required for the global path learning and homing task. Instead, the robot
only records landmark bearing angle configurations at certain locations along its path. The
landmark observations are stored hierarchically by their degree of translation invariance in
an efficient and scalable, novel data structure called Trail-Map (Translation Invariance Level
Map). For retracing this path back to the home position, the robot computes homing vectors
by comparing the current landmark configuration with the stored reference configuration.
By combining the local and global navigation approach, a visual homing method for un-
structured terrain is achieved, which has very low memory requirements and offers runtimes
constant with respect to the length of the traversed path.

Acknowledgments

This thesis was written during my employment at the Institute of Robotics and Mechatronics
at the German Aerospace Center (DLR) in Oberpfaffenhofen, Germany. I would like to thank
all the people who have supported me throughout the past years and without whom this PhD
thesis would not have been possible.

First, I would like to thank my supervisor Prof. Wolfram Burgard for his advice and for the
opportunity to pursue my PhD project at the Department of Computer Science at Albert-
Ludwigs-University in Freiburg as an external PhD student.

I would like to thank Prof. Gerd Hirzinger and Prof. Alin Albu-Schäffer for giving me the
opportunity to work at the DLR Institute of Robotics and Mechatronics. I have been enjoying
working with all the people who are not only enthusiastic about robots, but also have the
power to bring them into being.

Many thanks to Michael Suppa for being a great head of the Department of Perception and
Cognition and for guiding and encouraging me over the past years. I am very grateful for
his support, which persists even beyond his time at DLR.

I want to say thanks to my colleagues in the Department of Perception and Cognition and
in the mobile robotics group. Many people directly supported my thesis work. First of all, I
am grateful to Heiko Hirschmüller for providing a great stereo and visual odometry library
and for always being ready to listen to problems. Many thanks to Martin Görner for creating
the DLR Crawler and providing it as a test platform for my algorithms, for fruitful discus-
sions, brilliant drawings, as well as for being a great office mate. It has always been fun
to work with him. Thanks are due to Christoph Brand for his help with the Pioneer robots.
Many thanks to Wolfgang Stürzl for providing the omnidirectional cameras and the image
remapping functions that I used. Thanks to Klaus Strobl for supporting me in calibrating the
stereo cameras. I am grateful to Tim Bodenmüller for providing the SensorNet framework
and for supporting my experiments with the ART tracking system and the Pioneer robots.
Furthermore, I would like to thank Thomas Jost and Franz Andert for letting me use their
tachymeters for my outdoor experiments, and Iris Grixa for getting me started on how to use
them. Many thanks are due to Mallikarjuna Vayugundla for supporting me in the outdoor
experiments. I am also thankful to Markus Nowak for sharing his toolchain for bringing
Matlab plots to Latex.

I am grateful to all the people who were ready to discuss topics related to this thesis with
me. I would like to thank Elmar Mair for illuminating discussions and sharing his great idea
which led to the development of the LT-Map, as well as to Marcus Augustine and Bastian

Jäger for advancing this method. I want to thank Martin Schuster for sharing his expertise
about SLAM. Special thanks go to Martin Lingenauber for insightful discussions, for asking
nasty questions and for constantly pushing me. Thanks are due to Korbinian Schmid for
discussions about data fusion. I also want to thank my former office mates Florian Petit and
Jörn Vogel for the fruitful discussions, the motivation and the enjoyable time.

Furthermore, I am very thankful to all the people at the institute who keep things running:
The IT administrators, the people working at the workshops and our service team.

Finally, I want to thank my family and friends for their support and encouragement. Multiple
thanks go to my husband Martin, who is also a wonderful colleague and supported me in the
implementation of the navigation method. Many thanks to my children Hannah and Tim for
their patience and for reminding me from time to time, that there are more important things
in life than a PhD thesis.

Contents

1. Introduction 1
1.1. State of the Art . 2
1.2. Approach . 4
1.3. Contributions . 7
1.4. Publications . 9
1.5. Thesis Overview . 11

2. Local Metric Navigation 13
2.1. Robust Pose Estimation . 15

2.1.1. State of the Art . 15
2.1.2. Approach . 16
2.1.3. State Vector and State Transition Model 18
2.1.4. The Multisensor Data Fusion Process 19
2.1.5. Experimental Evaluation . 28

2.2. Local Mapping . 35
2.2.1. State of the Art . 35
2.2.2. Approach . 36
2.2.3. Creating Single-View Maps from Disparity Images 37
2.2.4. Combining Single-View Maps . 45

2.3. Traversability Estimation . 46
2.4. Path Planning . 48
2.5. Motion Control . 50
2.6. Experimental Evaluation . 51
2.7. Conclusion . 59

3. Global Topological Navigation 61
3.1. State of the Art . 62
3.2. Approach . 64
3.3. Viewframe-Based Navigation . 65

3.3.1. Viewframe Dissimilarity Measures 66
3.3.2. Homing Vector Calculation Methods 68

3.4. The Landmark-Tree Map . 85
3.5. The Trail-Map . 87
3.6. Performance Comparison of the Trail-Map and the LT-Map 94

3.6.1. Memory and Navigation Performance 95

viii

3.6.2. Runtime Performance . 99
3.7. Trail-Map-Based Homing under the Presence of Sensor Noise 101

3.7.1. Pose Estimation Errors . 105
3.7.2. Observation Errors . 108
3.7.3. Combination of all Noise Sources 111

3.8. Trail-Map-Based Homing versus SLAM 112
3.8.1. EKF SLAM . 113
3.8.2. Submap SLAM . 116
3.8.3. FastSLAM . 116
3.8.4. GraphSLAM . 117
3.8.5. RatSLAM . 117
3.8.6. Data Association . 118
3.8.7. Conclusion . 119

3.9. Application of the Trail-Map to Real Data 120
3.9.1. Coordinate Frames . 120
3.9.2. Landmark Detection and Matching 122
3.9.3. Rotational Alignment of the Viewframes 124
3.9.4. Homing Vector Smoothing . 125
3.9.5. Robot Motion Control . 125

3.10. Experimental Evaluation . 126
3.10.1. Indoor Laboratory Experiments 126
3.10.2. Long-Range Outdoor Experiments 134

3.11. Conclusion . 148

4. Hybrid Navigation 151
4.1. Creation of a Moving Local Metric Map 152
4.2. Homing with Obstacle Avoidance . 153

4.2.1. Adjusting the Homing Vector . 153
4.2.2. Robot Motion Control . 154

4.3. Experimental Evaluation . 156
4.3.1. Mapping . 157
4.3.2. Homing with Obstacle Avoidance 158

4.4. Conclusion . 162

5. Conclusion 163

A. Appendix 167
A.1. Rotation Estimation with Unknown Roll and Pitch 167
A.2. Translation Estimation . 168
A.3. Serial RANSAC Pseudocode . 169

Bibliography 171

1. Introduction

In recent years, mobile robots have become part of our daily lives. They vacuum our floors,
mow our lawns and clean our windows. While these robots work in well-defined environ-
ments and perform well-defined, simple tasks fully autonomously, mobile robots are also
demanded to work in unstructured and unpredictable areas. For example, the exploration of
foreign planets, mines or disaster sites poses high risks to humans, which drives the demand
for mobile robots as robust tools to support scientists or rescue workers. These robots must
be able to safely traverse unstructured terrain. Full robot autonomy is neither required nor
desired, because the decision of what places are interesting and what information to record is
better to be made by a human, who can rapidly respond to unforeseeable events [71]. Rather,
the robot should be a tool which supports the human operators by providing an overview of
the situation, which is necessary for further decisions and task planning. For this, the robot
should provide basic autonomy, such as obstacle avoidance, autonomous navigation to a
given goal location, and autonomous homing, i.e. returning to the start location once the
operator has finished its task or in case objects or samples have to be returned to a base.

Planetary surfaces, mines and disaster sites are not only characterized by unstructured ter-
rain, but also by the absence of any external infrastructure such as GPS, artificial landmarks
or beacons. Often there is no usable magnetic field information and only coarse or no a priori
maps of the areas exist. Nevertheless, the robot must be able to move through the environ-
ment without putting itself to any risk. Robots which are applicable to this task usually have
very limited computational resources and limited memory, because they have to be small and
agile for rough terrain locomotion, or they have to use space-qualified hardware for plane-
tary exploration. For this reason, the robot’s autonomous skills have to be implemented in a
very efficient way.

This thesis aims at the development of a method for visual homing in unknown, rough ter-
rain. The term homing is borrowed from biology, where it describes the ability of insects
to return to their nests after foraging. This special navigation task comprises learning and

2 Chapter 1: Introduction

retracing a path. The robot memorizes a path while either being remotely controlled by an
operator, or while autonomously navigating to intermediate waypoints given by the operator.
Once the operator commands the robot to return to its base, it uses the memorized informa-
tion for retracing the path. During homing and autonomous waypoint navigation, the robot
has to detect and avoid obstacles. For this, we assume that the environment is static and free
of deformable obstacles such as high grass or bushes.

The targeted robotic platforms are wheel-driven and multi-legged mobile robots. Each robot
is equipped with lightweight, passive proprioceptive and exteroceptive sensors. Propriocep-
tive sensors are an inertial measurement unit (IMU) and sensors providing a leg or wheel
odometry. Exteroceptive sensors are a stereo camera for visual odometry and for perceiv-
ing the geometrical structure of the terrain, and an omnidirectional camera for observing
the surrounding visual panorama. The robot should efficiently combine the measurements
of the available proprioceptive and exteroceptive sensors to safely navigate to given goal
coordinates, to memorize the traveled path and to perform homing along the learned path,
even over very long distances (more than a hundred times the robot length). Considering the
limited computational resources of the robot, it is important that the computational require-
ments of the navigation method do not increase with respect to the length of the traveled
path.

1.1. State of the Art

For navigation, the robot needs a representation of the environment that allows to plan mo-
tions. For this, often metric maps are used. Their main advantage is that they are human-
readable because they are Cartesian. Metric maps can be divided into dense grid maps and
sparse landmark maps. Dense grid maps represent geometric structure in form of a regu-
lar grid and can be 2D [21], 2.5D [53, 102, 47] or 3D [69, 89]. They usually have a fixed
resolution and need much storage space because they also model uninteresting regions with
the same resolution. Since metric grid maps can represent the geometric structure of the
terrain, they are used for obstacle detection and avoidance. In contrast, sparse metric maps
only store the coordinates of landmarks in the environment, either in 2D or in 3D. Thus,
they consume less memory, but usually do not give information about the geometric struc-
ture of the environment. Therefore, they do not allow for obstacle avoidance, but are well
suited for robot localization. The main problem of metric maps is keeping them consistent

1.1 State of the Art 3

over a large range. The robot always encounters uncertainties in its odometry readings and
environment observations, which must be corrected, especially when the robot comes back
to a previously visited location. Usually, methods for simultaneous localization and map-
ping (SLAM) [20, 3] are used for this task. Examples for computationally tractable SLAM
algorithms are FastSLAM [68], SEIF SLAM [90], iSAM [44] or RatSLAM [67].

In case a representation of the structure of the environment is not needed and the maps do not
have to be human-readable, non-metric maps are a good choice. They resemble a topological
representation of the environment, in which only the appearance of important places and the
order of their visit is stored [106, 7, 25]. The robot never knows exact coordinates of its
location, but it knows which place it is close to and in which direction other locations can
be reached. Hence, for each place different information can be stored, and, by only storing
what is needed, memory is saved. Since non-metric maps only represent the topology, sensor
uncertainties do not lead to inconsistencies and no extra computation is needed. This makes
them very attractive to systems with limited resources operating in large-scale environments.

Hybrid maps combine the best of the two worlds by having a topological map on the top
level connecting local metric maps [28, 5, 49]. The edges usually carry information about
the transformation between the submaps. Since the local maps are small and limited, un-
certainty within the submaps can be ignored or corrected using SLAM in constant runtime.
Furthermore, path planning is efficient, but the map still has a high level of detail. How-
ever, for the whole map to be consistent, also SLAM has to be performed. For the special
case of retracing a previously traveled path, several authors have noted that no consistent
global representation is required when using local metric submaps [80, 27, 56]. The robot
must only be able to subsequently switch to the previously recorded submaps and local-
ize within those. However, even though computational resources can be saved by omitting
global SLAM updates, the overlapping metric submaps used in these state-of-the-art meth-
ods mean a significant memory overhead.

Several works focus on retracing learned paths [93, 81, 27], and some of them also imple-
ment obstacle avoidance methods [51, 72, 12]. Furgale and Barfoot [27] build local metric
submaps of the landmark positions and use those for localization during repeating the path.
Ostafew et al. [72] use this method with obstacle avoidance and apply iterative learning for
improving the homing performance each time the path is repeated. The approach by Krajník
et al. [51] heavily relies on odometry measurements, because the robot learns straight line
sequences, where each segment is associated with a landmark map, the initial orientation
of the robot and the segment length. For homing, the robot uses the landmark map only

4 Chapter 1: Introduction

for correcting its current heading, but then moves straight until it has traversed the segment
according to its odometry measurements. Šegvić et al. [81] propose to organize key-images
acquired during learning in an adjacency graph, where the arcs store the two-view geome-
tries of the connected images, which contain the rotation and translation between the corre-
sponding image positions and a 3D reconstruction of the common features. For homing, a
visual servoing approach is used. Cherubini and Chaumette [12] represent the robot’s path
as a sequence of key images, so that successive images contain common static features. The
robot is then controlled to align the centroids of the matched common features in the current
and the goal image. Obstacle avoidance is achieved by a laser range scanner.

1.2. Approach

In this thesis, the homing problem is divided into a local and a global navigation task, which
have very different requirements. The local navigation task aims at detecting and avoiding
obstacles, which requires accurate metric information about the surrounding terrain. Since
these configurations can change and will be accessible when the place is visited again, the
robot does not have to retain the local terrain properties for later reuse. Rather, in its global
map the robot only needs to store the information necessary for retracing the previously tra-
versed path. This task is solved without metric knowledge of the environment by only mem-
orizing the appearance of the environment along the path. Thus, in contrast to the existing
works mentioned above, our approach decouples the metric information used in the local
navigation task from the global navigation task. Global path learning and homing is only
based on bearing angles to landmarks and does not use any distance information, neither
robot odometry nor landmark range measurements. Therefore, the proposed global naviga-
tion method is computationally very efficient and also applicable to robots which do not
provide pose estimates, but employ a reactive obstacle avoidance strategy. An illustration of
the proposed navigation scheme is presented in Fig. 1.1.

Fig. 1.2 shows an overview of the proposed navigation method. The local navigation layer
serves for detecting and avoiding obstacles in the immediate surroundings of the robot. For
this, the robot builds a grid map from stereo disparity images using local pose estimates to
register the single-view maps. These pose estimates are derived by fusing visual odometry,
IMU and odometry measurements to be robust against slip and visual disturbances. Since
in rough terrain there is no binary distinction between obstacles and free space, the robot

1.2 Approach 5

Figure 1.1.: An artist’s view of path learning for visual homing in unstructured terrain: The
robot is equipped with an omnidirectional camera providing a 360◦ panorama of
the environment. The robot extracts landmarks from the panorama images and
stores their bearing angle configurations at certain locations along the path. Ad-
ditionally, it maintains a moving metric grid map created from its stereo camera
to estimate the terrain traversability and avoid obstacles (red cells). Drawing
courtesy to Martin Görner.

assesses the traversability of the terrain as a continuous cost value. For this, the robot anal-
yses the perceived terrain geometry with respect to its kinematic abilities. The path planner
takes the estimated traversability costs into account for planning short and safe paths in a
given direction. Based on the path, the local navigation method generates appropriate motion
commands and sends them to the robot’s motion layer.

In contrast, the task of the global navigation layer is to provide information for the robot to
know where it came from and how it can find its way back to where it started or to any other
important place it has visited before. For this, the robot extracts landmarks from its omnidi-
rectional camera and stores them in so-called viewframes along its path, which are unique
configurations of landmarks with their bearing angles and descriptors at a certain location in
space1. Since global information can grow unlimited with the length of the traversed path,

1To point out the difference to the term keyframe, which is also commonly used in robot navigation methods,
we should mention that a keyframe usually stands for a full camera image recorded at a certain location. In
contrast, a viewframe represents the configuration of extracted landmarks and is, thus, a more compressed
description of a specific place in the environment.

6 Chapter 1: Introduction

Local Navigation (Chapter 2)

Pose Estimation

Geometric
Mapping

depth
image Traversability

Estimation

Path Planning

visual
odometry

accelerations
angular velocities

current pose

Motion Control

current
pose

geometric
map

cost map

path

motion
commands

motion
capability

Stereo Camera

IMU

terrain
difficulty

odometry

current
pose

Global Navigation (Chapter 3)

Robot Motion Layer Operator

mapping
phase

Omnidirectional
Camera

Feature
Extraction

Homing Vector
Calculation

panorama
image

Viewframe
Creation

image
features

current
viewframe

homing
vector

homing
phase

goal
point

Landmark
Matching

Trail-Map
reference
viewframe

landmarks

mapping
phase homing

phase

homing
phase

roll
pitch

reference
viewframe

Figure 1.2.: Navigation Overview

the representation of the path must be scalable. Hence, the viewframes are stored in a novel
data structure, called Trail-Map (Translation Invariance Level Map), in an efficient way to
avoid redundancies and to allow easy scaling of the map. For homing using the recorded
path, the robot successively compares the current landmark configuration to the viewframes
in the map and computes homing vectors, which give the direction for the robot to reach the
home position.

1.3 Contributions 7

1.3. Contributions

Robust Pose Estimation

We present a method for robust pose estimation by fusing visual odometry, leg odometry and
IMU measurements using an indirect information filter. The method correctly considers the
relative character of odometry measurements, so that the estimated covariance matrix of the
pose estimate shows the correct behavior. Furthermore, the method takes visual odometry
errors into account by differently weighting visual odometry measurements depending on
the visual conditions. The performance of the data fusion process is evaluated in experiments
with the DLR Crawler, a six-legged walking robot. We show that the pose estimate is robust
against strong visual disturbances and against slip on loose terrain.

Dense Mapping from Disparity Images

We adapt of the locus method presented by Kweon and Kanade [53] to work for the creation
of dense local metric maps from stereo disparity images. Using this method, dense elevation
maps of arbitrary resolution can be created, irrespective of the resolution of the disparity
images.

Development and Evaluation of a Complete Local Navigation Method for

Unknown, Unstructured Terrain

The robust pose estimates and the dense elevation maps are used for creating a complete
local navigation method for unknown, unstructured terrain. For this, they are combined with
the terrain traversability estimation method, path planner and motion control method devel-
oped by Chilian [13]. In an experimental evaluation we show that it allows accurate local
metric navigation in unknown, unstructured terrain, even under the presence of visual dis-
turbances.

Development and Evaluation of the Trail-Map for Homing

We develop the Trail-Map, which is a novel data structure for storing landmark configura-
tions for visual homing that allows easy scaling. The Trail-Map is inspired from the LT-Map

8 Chapter 1: Introduction

(Landmark-Tree Map) [2]. We show that the Trail-Map outperforms the LT-Map in terms
of navigation performance, memory requirements and runtime, because the level structure
of the Trail-Map is more appropriate for representing a map consisting of viewframes than
the tree-structure of the LT-Map. The Trail-Map is created, used and scaled in constant time,
independent of the length of the path, which makes it very attractive to mobile robots with
limited computational resources. We present thorough evaluations of the Trail-Map in sim-
ulations with and without sensor noise, as well as in experiments with a wheeled robot in
indoor and outdoor environments. Furthermore, we show that visual homing based on the
Trail-Map requires magnitudes less memory than other state-of-the-art visual homing meth-
ods, while also offering runtimes constant with respect to the length of the path.

Improvement of the Difference Vector Method

We present improvements of the difference vector method for homing vector calculation
presented by Lambrinos et al. [54] for the case of non-isotropic landmark distributions,
which occur in strongly pruned Trail-Maps. The improved difference vector model results
in straighter homing paths, and its normalized variant is additionally robust against false
landmark matches.

Hybrid Navigation Method

We combine the local metric navigation method with the global topological navigation
method based on the Trail-Map data structure and present a suitable obstacle avoidance
method. The hybrid navigation performance is demonstrated in real-world experiments.

Implementation of the Whole Development Chain from Method Design to

Experimental Validation

All methods which are developed in this thesis are experimentally evaluated with real robotic
systems in real-world environments. The Trail-Map is additionally evaluated in different
simulations, starting from perfect noise-free measurements to modelling image and odome-
try noise, before validating the method in real-world indoor and outdoor experiments.

1.4 Publications 9

1.4. Publications

There are several publications of which I am the first author or a co-author2 and which
are related to this thesis. The works are classified into publications that contain the main
contributions of this thesis, and publications that contain related work.

Publications containing the key contributions of this thesis:

• A. Chilian, H. Hirschmüller, and M. Görner. Multisensor data fusion for robust pose
estimation of a six-legged walking robot. In Proceedings of the IEEE International

Conference on Intelligent Robots and Systems (IROS) 2011, pages 2497–2504, 2011
[15]: This paper contains the robust pose estimation method by fusing inertial mea-
surements with visual odometry and leg odometry. Large parts of the text and figures
created by myself are literally reused in this thesis in Section 2.1.

• A. Stelzer, H. Hirschmüller, and M. Görner. Stereo-vision-based navigation of a six-
legged walking robot in unknown rough terrain. The International Journal of Robotics

Research, 31(4):381–402, 2012 [86]: This paper describes the adaption of the locus
method [53] for creating dense maps from disparity images. Furthermore, it shows
the combination of pose estimation, dense metric mapping, traversability estimation
and path planning, and includes the experimental evaluation of the overall navigation
method. Large parts of the text and figures created by myself are literally reused in
this thesis in the sections 2.2-2.6.

• A. Stelzer, E. Mair, and M. Suppa. Trail-Map: A scalable landmark data structure
for biologically inspired range-free navigation. In Proceedings of the IEEE Inter-

national Conference on Robotics and Biomimetics (ROBIO) 2014, Bali, Indonesia,
pages 2138–2145, 2014 [87]: This paper contains the development of the Trail-Map
data structure as improvement of the LT-Map (Landmark-Tree Map) [2, 63] and com-
pares their performances in simulations in a noise-free environment. Large parts of
the text and figures created by myself are literally reused in this thesis in the sections
3.4-3.6.

2Some of the publications appeared 2011 or earlier under my maiden name “Chilian”.

10 Chapter 1: Introduction

• A. Stelzer, M. Suppa, and W. Burgard. Trail-Map-based homing under the presence of
sensor noise. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) 2015, pages 929–936, 2015 [88]: This paper contains
the simulation of Trail-Map-based homing under the presence of sensor noise. Large
parts of the text and figures created by myself are literally reused in this thesis in the
sections 3.7-3.8.

Publications, of which I am an author and which are related to the topic of this thesis, but
are not considered as key contributions of this thesis:

• A. Chilian and H. Hirschmüller. Stereo camera based navigation of mobile robots on
rough terrain. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) 2009, pages 4571–4576, 2009 [14]: This paper contains
the straightforward mapping approach from disparity images, the traversability esti-
mation, path planning and motion control method which is used in this work. Parts of
the text and figures created by myself are literally reused in sections 2.2-2.5. These
methods were developed during my diploma thesis work and are only restated briefly
in this thesis for the sake of completeness.

• M. Görner, A. Chilian, and H. Hirschmüller. Towards an autonomous walking robot
for planetary surfaces. In Proceedings of the 10th International Symposium on Ar-

tificial Intelligence, Robotics and Automation in Space (i-SAIRAS), September 2010
[34]: This paper contains the application of the local metric navigation method to
the DLR Crawler, which could select the appropriate gaits according to the estimated
traversability costs. Minor parts of the text and figures created by myself are literally
reused in this thesis in sections 2.2-2.5.

• M. Augustine, E. Mair, A. Stelzer, F. Ortmeier, D. Burschka, and M. Suppa. Landmark-
Tree Map: A biologically inspired topological map for long-distance robot navigation.
In Proceedings of the IEEE International Conference on Robotics and Biomimetics

(ROBIO) 2012, Guangzhou, China, 2012 [2]: This paper introduces the LT-Map as
scalable data structure for viewframe-based homing.

• M. Görner and A. Stelzer. A leg proprioception based 6 DOF odometry for statically
stable walking robots. Autonomous Robots, 34(4):311–326, 2013 [31]: This paper
describes the calculation of the 6 degrees of freedom (DOF) leg odometry for the
DLR Crawler, which is used for robust pose estimation.

1.5 Thesis Overview 11

• E. Mair, M. Augustine, B. Jäger, A. Stelzer, C. Brand, D. Burschka, and M. Suppa.
A biologically inspired navigation concept based on the Landmark-Tree Map for effi-
cient long-distance robot navigation. Advanced Robotics, 28(5):289–302, 2014 [63]:
This paper describes the LT-Map as scalable data structure for viewframe-based hom-
ing and shows experimental results. Minor parts of the text created by myself are
literally reused in Section 3.3.

1.5. Thesis Overview

This thesis is divided into three main parts. The first part is the description of the local metric
navigation method presented in Chapter 2. It includes the robust pose estimation by fusing
inertial measurements with visual odometry and leg odometry and the creation of dense local
maps for traversability estimation and local path planning. The second part is the global
topological navigation method described in Chapter 3. This chapter explains the viewframe-
based navigation concept, introduces the novel data structure Trail-Map as improvement
of the LT-Map and analyzes its behavior in simulations and real-world experiments. The
third main part (Chapter 4) is the combination of the local metric and the global topological
navigation methods to a complete navigation system for visual homing and analyses its
performance in real-world experiments. Finally, Chapter 5 concludes this thesis and gives
an overview of future perspectives.

2. Local Metric Navigation

The local part of the navigation algorithm is intended to work in a small area around the
current position of the robot. It has the objective to lead the robot along a safe and obstacle-
free path in the direction specified by the global navigation algorithm.

In semi-structured or structured environments, we can assume a flat ground plane. In that
case, obstacles are objects with a certain extent above or below the ground plane. However,
since this assumption does not hold in natural, rough outdoor terrain, we have to revise the
definition of obstacles. In rough terrain a binary distinction between an obstacle and free
space is inappropriate, because there are areas which can be traversed more easily than oth-
ers. Thus, we should rather estimate the traversability of the terrain on a continuous scale
between “most easily traversable” and “untraversable”. For this, we have to geometrically
model the robot’s surroundings using the depth images computed by its stereo camera. Since
a single camera view is often not sufficient to cover a region that is wide enough for the robot
to pass, we combine multiple camera views to a local map. This, in turn, requires a good
estimate of the robot’s pose at the time of stereo image acquisition. We can achieve that by
combining the visual odometry measurements of the stereo camera with inertial measure-
ments and wheel or leg odometry readings. Once the robot has a geometrical representation
of its environment, it can assess the traversability costs of the terrain regarding its kinemat-
ics and use the resulting cost map to plan paths that lead through safe terrain and take the
robot’s current motion abilities into account. The local navigation layer sends motion com-
mands and the estimated terrain difficulty to the robot motion layer so that the robot follows
the path. Fig. 2.1 shows an overview of the local navigation system.

Dense local mapping and traversability estimation can be computationally expensive pro-
cesses which also require a large amount of memory. However, the robot requires metric
information only in its vicinity. Thus, we can limit the size of the local map to a certain
range. This also limits the computational complexity so that it does not grow with the size

14 Chapter 2: LocalMetric Navigation

Local Navigation (Chapter 2)

Pose
Estimation

Geometric
Mapping

depth
image Traversability

Estimation

Path
Planning

visual
odometry

accelerations
angular velocities

current pose

Motion
Control

current
pose

geometric
map

cost map

path

motion
commands

motion
capability

Stereo Camera

IMU

terrain
difficulty

odometry

current
pose

Global Navigation (Chapter 3)

Robot Motion Layer Operator

mapping
phase

homing
vector

homing
phase

goal
point

orientation

(2.1)

(2.2)

(2.5)

(2.4)

(2.3)

Figure 2.1.: Overview of the local navigation method (corresponding section numbers in
brackets)

of the terrain explored by the robot. Hence, we can adjust the map resolution and size to the
computational power available to the robot.

In this chapter, we describe a local navigation system for a six-legged walking robot equipped
with a stereo camera and an inertial measurement unit (IMU). The walking robot provides
a 6 degrees of freedom (DOF) leg odometry and is able to walk with different gait patterns
that can be chosen according to the ground conditions. However, the navigation system is
also applicable to any other ground-based robot which has a stereo camera and an IMU. In
fact, in upcoming chapters we will use it for navigating a wheel-driven Pioneer 3-DX robot.

This chapter is organized as follows: Section 2.1 describes a multisensor data fusion method
for calculating a robust pose estimate from IMU, visual odometry and leg odometry mea-
surements. Section 2.2 gives details about local mapping from disparity images based on
the estimated pose. In Section 2.3, we explain the process of traversability estimation. Path
planning based on the terrain traversability is described in Section 2.4. Section 2.5 gives

2.1 Robust Pose Estimation 15

details about how the robot is commanded to move along the planned path and to explore
its environment. We give the results of the experimental evaluation of the local navigation
method in Section 2.6 and Section 2.7 concludes this chapter.

2.1. Robust Pose Estimation

Knowing the current pose with respect to a map or any other reference is essential in any
navigation task. The robot is equipped with many sensors from whose measurements motion
or other hints about the current pose can be inferred. The stereo camera allows the computa-
tion of a visual odometry by measuring the motion of corresponding features in subsequent
image pairs. The IMU can sense accelerations and turn rates from which velocities, angles
and positions can be derived. Leg joint sensors are able to measure the leg configurations
from which a leg odometry can be calculated. Wheel encoders give information about the
driving speed. All these sensors allow the robot to calculate estimates of its pose or parts of
it, but none is free of shortcomings. Visual odometry can only work in well-textured envi-
ronments and may fail when lighting conditions are bad. Wheel or leg odometry is subject to
slip, which can happen frequently in rough terrain. Inferring poses from an IMU yields good
results over short time periods, but is subject to unbounded drift in the long run. Hence, for
a robust and accurate pose estimate, we have to fuse the information of all available sensors.

2.1.1. State of the Art

Many authors have addressed the problem of sensor data fusion. Often IMU data is com-
bined with GPS readings because of their complementary properties. A multisensor Kalman
filter for fusing IMU and GPS data was presented by Caron et al. [9]. Dissanayake et al.
[19] presented an indirect information filter for fusing GPS, IMU and wheel encoder data.
However, on planetary surfaces or in caves, GPS is not available.

Other authors do not use GPS data but combine inertial measurements with visual odom-
etry and/or odometry information. Konolige et al. [48] showed a data fusion method using
an extended Kalman filter for correcting visual odometry measurements by IMU roll and
pitch angle measurements with respect to the gravity vector, and by IMU angular rate mea-
surements for the yaw angle. Helmick et al. [37] used the indirect extended Kalman filter
formulation to fuse IMU measurements with relative measurements from visual odometry

16 Chapter 2: LocalMetric Navigation

and vehicle odometry. Lamon and Siegwart [55] used an extended information filter for fus-
ing data from an inertial navigation system and a three-dimensional rover odometry. Apart
from Helmick et al. [37], these works neglect that odometry measurements (visual as well as
wheel or leg odometry) are relative measurements and therefore have to be treated carefully
in Kalman filter frameworks. To overcome this problem, relative pose measurements can be
treated as velocities. However, this only yields satisfactory results when the relative pose
measurements have a very high rate and, hence, the velocity is approximated correctly. The
correct solution is to augment the state vector in the Kalman filter framework by the states
that are part of the relative measurements as described by Roumeliotis and Burdick [76] and
termed stochastic cloning. Schmid et al. [79] used stochastic cloning for estimating the state
of a highly-dynamic quadrotor with time-delayed relative sensor measurements in a Kalman
filter framework.

2.1.2. Approach

In our application, we want to compute a pose estimate from the robot’s IMU data, its stereo
visual odometry and, if available, its leg odometry. For this, we chose to use an indirect feed-

back information filter. The information filter has the advantage that we can fuse measure-
ments of multiple sensors at the same time very easily. The indirect or error state form works
on an error state vector which contains the errors of the actual state rather than the state vari-
ables themselves. The advantage is that we do not need to model the usually nonlinear robot
dynamics, but the filter is based on linear equations describing the error propagation in the
inertial system. The feedback formulation means that the estimated error is fed back into the
IMU navigation equations to correct the current position, velocity and orientation estimates.
Hence, the estimated error states remain small and small angle approximations in the filter
equations are possible. This also means that we can predict the error state as zero for each
new filter step. Furthermore, the indirect filter formulation allows the filter to run at a lower
frequency than the inertial navigation equations. Roumeliotis et al. [77] give a more detailed
discussion of the different filter formulations.

The information filter is numerically equivalent to the Kalman filter but has inverse complex-
ity properties. In particular, while the prediction step of the Kalman filter is computationally
simple and the update step is complex, the information filter equations yield a complex pre-
diction step and a computationally cheap update step. A good explanation of the information
filter is given by Dissanayake et al. [19] and can be summarized as follows.

2.1 Robust Pose Estimation 17

For transforming the indirect Kalman filter into the information form, we define the infor-
mation matrix Y and the error information vector ∆y as

Y = P−1 and ∆y = Y · ∆x, (2.1)

where P is the estimation covariance matrix and ∆x is the error state vector. We can trans-
form the Kalman filter equations such that Y and ∆y are estimated, which results in the
prediction step

Y−t = (AtY−1
t−1 AT

t + Qp
t)−1 (2.2)

∆y−t = Y−t (AtY−1
t−1∆yt−1), (2.3)

where At is the state transition matrix and Qp
t is the process noise matrix. In the feedback

form, we can simplify the prediction in Eq. (2.3) to ∆y−t = 0, because we correct the error
after each filter step. The update step of the information filter becomes

Yt = HT
t (Qm

t)−1Ht + Y−t (2.4)

∆yt = HT
t (Qm

t)−1 zt + ∆y−t , (2.5)

where Ht is the measurement matrix and Qm
t is the measurement noise matrix. In the indirect

formulation, the measurement vector zt is the difference between the IMU measurements
and the measurements of an aiding sensor. We can write the update step as

Yt = It + Y−t with It = HT
t (Qm

t)−1Ht, (2.6)

∆yt = it + ∆y−t with it = HT
t (Qm

t)−1 zt. (2.7)

The term It is the amount of information in the measurement and it is the contribution of the
measurement zt to the state vector. If there are several measurements zk,t at a time step t we
get

It =

n∑
k=1

HT
k,t(Q

m
k,t)
−1Hk,t =

n∑
k=1

Ik,t (2.8)

it =

n∑
k=1

HT
k,t(Q

m
k,t)
−1 zk,t =

n∑
k=1

ik,t. (2.9)

18 Chapter 2: LocalMetric Navigation

The simplicity of the update stage of the information filter originates from the fact that the
measurements of the single sensors are conditionally independent. Hence, the information
form of the Kalman filter has computational advantages for multisensor data fusion. The
routines for computing Ik,t and ik,t for each measurement are independent of each other and
independent of Y−t and ∆y−t , which allows them to run in parallel and on distributed systems.
The disadvantage is that we have to perform a matrix inversion to obtain the error state
vector ∆xt from the information vector ∆yt. However, the more external sensors are used,
the higher the benefit of using the information filter.

2.1.3. State Vector and State Transition Model

For implementing the information filter we use a state vector consisting of 15 variables: The
position p (3), the velocity v (3), the orientation Euler angles ϕ (3), the bias of the gyroscopes
bg (3) and the bias of the accelerometers ba (3). In the indirect formulation we use the error
state vector

∆x = (∆p,∆v,∆ϕ,∆bg,∆ba)T . (2.10)

The position p and velocity v variables are given in world coordinates with the origin located
at the IMU origin at the beginning of the data fusion process. The Euler angles ϕ are the
angles of the rotation matrix that turns a point from the IMU coordinate frame to the world
coordinate frame. The bias values bg and ba are given in IMU coordinates.

The use of Euler angles for representing the orientation of the robot is valid in this applica-
tion, because configurations which cause the Euler angle gimbal lock problem (such as 90◦

pitch) will not be reached by a ground-based robot during regular operation. We chose Euler
angles because they provide an intuitive representation of orientation. For applications in
which gimbal lock can occur, representations such as rotation vector or quaternions should
be used. However, in the error state vector, the orientation error ∆ϕ always contains small
Euler angles, which are, thus, equivalent to the components of a rotation vector. This can
easily be shown by applying small angle approximation when computing a rotation matrix
from Euler angles and from a rotation vector.

2.1 Robust Pose Estimation 19

The discrete time error state propagation originates from the inertial error dynamics [95] as

∆x−t = At · ∆xt−1 (2.11)

At = I −



0 −I 0 0 0
0 0 R−t b(at − b−a,t)×c 0 R−t
0 0 0 R−t 0
0 0 0 0 0
0 0 0 0 0


∆t (2.12)

bo×c =


0 −oz oy

oz 0 −ox

−oy ox 0

 , (2.13)

where I is the identity matrix (not to be confused with the information amount It), at =

(atx, aty, atz)T is the acceleration measured by the IMU, b−a,t is the predicted accelerometer
bias, R−t is the propagated rotation from the IMU coordinate frame to the world coordinate
frame and ∆t is the time difference between t − 1 and t.

2.1.4. The Multisensor Data Fusion Process

IMU





































1,

1,

1

1

1

1

ta

tg

t

t

t

t

b

b

v

p

x 

Strapdown

tta ,










































1,,

1,,

tata

tgtg

t

t

t

t

bb

bb

v

p

x 


ttt vp ,,































ta

tg

t

t

t

t

b

b

v

p

x

,

,



Indirect
Information

Filter

Aiding
Sensors

-
+

State

Vector

Predicted

State Vector

Measure-

ments

Estimated Error

State Vector

Corrected

State Vector

























ta

tg

t

t

t

t

b

b

v

p

x

,

,



Figure 2.2.: Overview of the multisensor data fusion process. The measurements from the
aiding sensors are the absolute roll and pitch angles derived from the IMU ac-
celerations, and the visual odometry and/or leg odometry measurements.

20 Chapter 2: LocalMetric Navigation

Fig. 2.2 gives an overview of one time step of the data fusion process. First, we feed the ac-
celerations at and angular velocities ωt measured by the IMU into the strapdown algorithm.
Considering the state vector xt−1 from the previous filter step, this algorithm integrates the
IMU measurements to velocity v−t , position p−t and orientation Euler angles ϕ−t . These val-
ues are the predicted state variables. We chose to predict the bias values b−a,t and b−g,t to be
equal to the bias values of the last filter step, because they change only slowly. Every time
one or more measurements of the aiding sensors are available, the indirect information filter
computes an estimated error state vector ∆xt. We subtract this error state vector from the
predicted state vector x−t to feedback the error. The result is the corrected state vector xt. If
no measurements of the aiding sensors are available, the error state vector is zero and the
corrected state will be the predicted state. The following sections will describe the strapdown
block and the information filter block in more detail.

The Strapdown Algorithm

The accelerations and angular velocities of the IMU are measured in the IMU coordinate
frame. Since the IMU moves, we have to transform the accelerations into the world coordi-
nate system before integrating them. For this, we need the rotation matrix Rt, which turns a
vector from the IMU coordinate frame to the world coordinate frame.

We compute the propagated rotation matrix R−t from the rotation matrix Rt−1 of the last time
step and a differential rotation R∆,t. Assuming a high sampling rate (∆t is small), we get R∆,t

from the gyroscope measurements ωt as follows [8]:

R−t = Rt−1R∆,t (2.14)

R∆,t = I +
sin |φt|

|φt|
bφt×c +

1 − cos |φt|

|φt|
2 bφt×c

2 (2.15)

φt = (ωt − b−g,t)∆t (2.16)

|φt| =

√
φ2

x,t + φ2
y,t + φ2

z,t. (2.17)

The variable φt is the rotation vector.

Knowing the rotation matrix, we can compute the IMU velocity v−t and position p−t . For
this, we first have to compensate the acceleration measurements at for bias b−a,t. After that,

2.1 Robust Pose Estimation 21

we can transform them into the world frame using R−t and compensate the gravity vector1

g = (0, 0,−|g|)T :

v−t = vt−1 + (R−t (at − b−a,t) + g)∆t (2.18)

p−t = pt−1 + vt−1∆t + 1
2 (R−t (at − b−a,t) + g)∆t2. (2.19)

Stochastic Cloning

Within the indirect information filter we use relative and absolute measurements to compute
the estimated error state vector. While absolute measurements only depend on the current
state of the system, relative measurements contain a difference between the current system
state and a previous state. Since Kalman filter theory assumes that a measurement only
depends on the current state of the system, we have to treat relative measurements in a
special way. When we ignore this fact, the data fusion filter might also give good results
at the first glance. However, viewed more closely, the resulting estimated variances are not
feasible: For example, when fusing IMU data only with relative position measurements,
we would expect that the estimated position variance grows over time, because summing
up relative position measurements results in a drifting position estimate. However, if we
ignore the relative character of the position measurements, the resulting position variances
are estimated small and constant over time. This can cause serious problems when using
another position sensor such as GPS, which gives absolute but noisy position measurements.
These measurements will not influence the estimated position to the expected extent because
the position estimate after fusing only the relative measurements is overconfident. Even if
no absolute measurement was available for a longer time and position drift is significant, the
estimated position variance would be small.

To avoid this problem, we have to augment the state vector and covariance matrix to also
contain the previous state which is part of the relative measurement. This approach was
described by Roumeliotis and Burdick [76] and termed stochastic cloning. This method
introduces the correlations between the current and the previous state and hence allows
to estimate a correct covariance matrix, with growing variances over time if only relative
measurements are available.

To keep the augmented covariance matrix small, we only clone the covariances associated
to the states pt and ϕt, because we only use relative position and rotation measurements. At

1The value for |g| should be chosen according to the location.

22 Chapter 2: LocalMetric Navigation

each time t = tStart when at least one relative measurement starts, we augment the covariance
matrix as follows:

x̌t =

pt

ϕt

 P̌t = Cov(x̌t, x̌t) (2.20)

Paug
t =

 P̌tStart Cov(x̌tStart , xt)
Cov(xt, x̌tStart) Pt

 , (2.21)

where Cov(xt, x̌tStart) is the covariance between the states at time t and the cloned states at
tStart. Since the covariance P̌tStart must not change during prediction of the filter, the system
matrix Aaug

t and the process noise matrix Qp,aug
t become

Aaug
t = blkdiag [I, At] (2.22)

Qp,aug
t = blkdiag

[
0,Qp

t
]
, (2.23)

where blkdiag [U,V] stands for a block diagonal matrix with the matrices U,V on its main
diagonal.

Since the information filter uses the inverse covariance, we must ensure that Aaug
t Paug

t (Aaug
t)T +

Qp,aug
t is invertible in the prediction step in Eq. (2.2). For that reason, if two different relative

measurements start at the same time, we apply cloning only once to keep the covariance ma-
trix full rank. If measurements start at different times, we also have to clone the covariances
between the different previous states correctly. After processing a relative measurement, we
delete the corresponding covariances from the augmented covariance matrix because they
are not needed any longer. However, in our application, usually a relative measurement starts
at the same time the previous measurement ends. Thus, after deleting a previous state, we
clone the current state for augmenting the covariance matrix again. In our case, relative
measurements from visual odometry and leg odometry are taken at different rates. Thus, the
augmented state vector usually contains two different previous positions and orientations,
each corresponding to the starting time of a relative measurement.

The Indirect Information Filter

Fig. 2.3 illustrates the data flow within the indirect information filter for multisensor data
fusion. First, we predict the augmented information matrix Yaug-

t . Then, we compute the
values for iaug

k,t and Iaug
k,t for each available sensor measurement k at time step t using the

2.1 Robust Pose Estimation 23

Strapdown

ta IF Absolute

Roll, Pitch
IMU

Prediction





 aug

t

aug

t

y

Ytt

ttp

..

..

0

0



Visual

Odometry

Leg

Odometry

IF Relative

Rot., Transl.

IF Relative

Rot., Transl.

aug

t

aug

t

aug

t

aug

t

aug

t

aug

t

aug

t

aug

t

aug

t

yYx

iyy

IYY













1

Update

aug

tEuler

aug

tEuler

I

i

,

,

aug

tVO

aug

tVO

I

i

,

,

aug

tLO

aug

tLO

I

i

,

,

VOrel

VOrel

T

R

,

,

LOrel

LOrel

T

R

,

,

+

+

+

aug

t

aug

t

I

i

0

)(1,1

1













aug

t

augp

t

Taug

t

aug

t

aug

t

aug

t

y

QAYAY



































ta

tg

t

t

t

t

b

b

v

p

x

,

,



Estimated Error

State Vector

Multisensor Indirect Information Filter

Figure 2.3.: Overview of the multisensor data fusion information filter. IF: Information filter.

differences between the strapdown algorithm results and the sensor measurements. After
that, we sum up all available information amounts Iaug

k,t and information contributions iaug
k,t

and perform the update equations. In the end, we transform the resulting information vector
∆yaug

t into the error state vector ∆xaug
t , from which we delete the cloned states. The following

sections describe these steps in more detail.

Prediction Using the state transition matrix Aaug
t as given in Eq. (2.12) and Eq. (2.22), we

predict the information matrix Yaug−
t as in Eq. (2.2). The prediction of the information vector

simply becomes ∆yaug−
t = 0 because in the indirect feedback information filter the error is

corrected after each filter step.

Absolute Roll and Pitch Angle Measurements Since the accelerometers of the IMU
sense the gravity, which is known in size and direction with respect to the world frame, we
can determine the absolute roll and pitch angles γabs and βabs of the acceleration measurement
a = [ax, ay, az]T as follows:

γabs = atan2(ay, az), (2.24)

βabs = atan2(−ax, ay sin γabs + az cos γabs). (2.25)

24 Chapter 2: LocalMetric Navigation

From the absolute roll and pitch angles, we can compute an absolute rotation matrix Rabs

using

Rabs =


cβcα sγsβcα − cγsα cγsβcα + sγsα
cβsα sγsβsα + cγcα cγsβsα − sγcα
−sβ sγcβ cγcβ

 ,
sϕ = sinϕabs, cϕ = cosϕabs. (2.26)

For this, we set the yaw angle αabs to be equal to the yaw angle of the propagated rotation
matrix R−t because it cannot be determined from the acceleration measurements.

The absolute roll and pitch angles obtained from the acceleration measurements contain a
high level of noise. The noise is caused by additional accelerations that occur when the
robot moves. Hence, we must fuse the absolute noisy angles with low-noise angular mea-
surements. The propagated rotation matrix R−t as computed in Eq. (2.14)-Eq. (2.17) contains
the roll and pitch angles from integrating the gyroscope measurements. These angles do not
suffer from high noise but from a drift caused by integrating the sensor values. By fusing
Rabs and R−t , we can determine the roll and pitch Euler angles quite accurately without drift
and high noise. We compute the difference rotation matrix between the propagated rotation
R−t and the absolute rotation Rabs as

Rdiff = R−t · R
T
abs. (2.27)

Using the equations

α = atan2(R(2,1), R(1,1))

β = atan2(−R(3,1), R(2,1) sinα + R(1,1) cosα)

γ = atan2(R(1,3) sinα − R(2,3) cosα,−R(1,2) sinα + R(2,2) cosα) (2.28)

to extract Euler angles from the elements R(i, j) of a rotation matrix, we calculate the angle
differences γdiff and βdiff from Rdiff, which give the measurement vector

zEuler,t =

γdiff

βdiff

 . (2.29)

2.1 Robust Pose Estimation 25

The measurement matrix HEuler,t which projects the state vector xt onto the measurement
vector zEuler,t is

HEuler,t =
[
02×6 I2×2 02×7.

]
(2.30)

For the augmented state vector, we have to augment the measurement matrix with zeros to

Haug
Euler,t =

[
0 HEuler,t

]
, (2.31)

because the measurement does not depend on any previous states but is absolute. The mea-
surement noise matrix Qm

Euler,t contains the variances of the absolute roll and pitch angle
measurements and can be found by filter tuning.

Knowing zEuler,t,H
aug
Euler,t,Q

m
Euler,t, we compute the information contribution iaug

Euler,t and the in-
formation amount Iaug

Euler,t using Eq. (2.6)-Eq. (2.7).

The use of absolute angles obtained by accelerometer data as measurements for the data fu-
sion filter violates Kalman filter theory, which assumes that measurement noise and process
noise are uncorrelated. Hence, the filter result is suboptimal. However, the suboptimal filter
result is still better than not using absolute roll and pitch angle measurements for limiting
the drift of the orientation estimates.

Relative Translation and Rotation Measurements We fuse the relative motion mea-
surements with the relative rotations and translations computed by the strapdown algorithm
within the same time period. Visual odometry, as well as leg odometry, provide relative
position and orientation measurements between two consecutive images or robot poses, re-
spectively. We fuse visual odometry and leg odometry in the same way as relative translation
and rotation measurements. Thus, we will not distinguish them in the next paragraphs, but
will refer to them as “odometry sensor”.

A relative measurement has two timestamps tstart and tend at the beginning and the end of the
relative measurement. Furthermore, for fusing relative rotations and translations, all values
must be represented in the same coordinate frame. That means, we have to transform the rel-
ative measurements of all sensors into relative measurements in the IMU coordinate frame in
order to fuse them with IMU measurements. That implies that we know the transformations
between the different sensor coordinate frames, either by design or by calibration.

26 Chapter 2: LocalMetric Navigation

The differences between the relative motion given by the strapdown algorithm in the time
interval from tstart to tend and the relative motion measured by the odometry sensor give the
measurement vector zrel,t. In order to compute the difference between two relative rotations
RI

rel measured by the IMU and RS
rel measured by an odometry sensor, we have to compute an

absolute rotation matrix. To preserve the relative character of the measurements, we multiply
both relative rotations with the same absolute rotation matrix Rtstart to get pseudo-absolute
rotation measurements. This absolute rotation matrix Rtstart should be the best estimate of the
rotation from the IMU into the world frame at time step tstart:

RI
tend

= Rtstart R
I
rel, RS

tend
= Rtstart R

S
rel. (2.32)

Now we can calculate the rotational difference matrix as

Rdiff = RI
tend
· (RS

tend
)T . (2.33)

The measurement vector zrel,t contains the differences pdiff between the two relative transla-
tions and the angle differences ϕdiff computed from Rdiff using Eq. (2.28):

zrel,t =
[
pdiff,ϕdiff

]T . (2.34)

The augmented measurement matrix Haug
rel,t which projects the augmented state vector ∆xaug

t

onto the measurement vector zrel,t is

Haug
rel,t =

[
−Hrel,tStart Hrel,t

]
. (2.35)

Hrel,t =

I3×3 03×3 03×3 03×6

03×3 03×3 I3×3 03×6

 . (2.36)

We have to represent the relative character of the measurements in the measurement ma-
trix Haug

rel,t. We achieve that by the matrix Hrel,tStart , which contains an identity matrix in the
columns corresponding to the location of the cloned covariance of time tStart and zeros ev-
erywhere else.

For computing the measurement noise matrix Qm
rel,t, we have to know the standard devia-

tions of the relative position and rotation measurements. The measurement errors of the leg
odometry depend on how much the feet of the robot slip on the ground. On homogeneous
ground we can assume a constant amount of slippage and find the noise values by filter

2.1 Robust Pose Estimation 27

tuning. For visual odometry, assuming constant standard deviations for the relative motion
measurements is not appropriate. The visual odometry errors depend on the number and
on the distribution of feature points in the image, and these parameters are not constant.
Thus, we compute an error estimate for each visual odometry measurement as proposed by
Stelzer et al. [86]. This estimate provides valuable information for fusing the visual odome-
try measurements with the data of other pose sensors. We transform the estimated errors of
the visual odometry measurements into the IMU coordinate frame using error propagation
and feed them into the measurement noise matrix.

Once we know zrel,t,H
aug
rel,t and Qm

rel,t, we can compute the information contribution iaug
rel,t and

the information amount Iaug
rel,t using Eq. (2.6)-Eq. (2.7).

Update At every time step, we calculate iaug
k,t and Iaug

k,t of each available sensor measure-
ment. In the final step of the multisensor information filter, we sum these values and use them
to update the predicted information vector and information matrix using Eq. (2.6)-Eq. (2.7).
Finally, we transform the resulting information vector ∆yaug

t into an error state vector ∆xaug
t .

We extract ∆xt from ∆xaug
t , which contains the estimated errors of the single robot states.

If required, we can extract the covariance matrix Pt from Paug
t after inverting the resulting

information matrix Yaug
t .

Error State Feedback

We subtract the corresponding error estimates from the error state vector ∆xt to correct the
position, velocity and bias values of the predicted state vector x−t . For feeding back the
estimated rotation angle error ∆ϕt, we compute a rotation matrix Rcorr from ∆ϕt using

Rcorr = I + b∆ϕt×c (2.37)

and perform the correction as

Rt = RT
corr · R

−
t . (2.38)

From Rt we can extract the corrected Euler angles via Eq. (2.28).

28 Chapter 2: LocalMetric Navigation

Filter Initialization

In the beginning of the data fusion process the robot is motionless in its starting position.
We use this phase for filter initialization.

We estimate the starting orientation Rt0 with respect to the gravity vector from the very
first IMU acceleration measurements at0 as shown in Eq. (2.24)-Eq. (2.25). Furthermore, we
initialize the bias estimates ba,t0 and bg,t0 using the starting orientation, the known gravity
vector g and the gyroscope measurements ωt0 as

ba,t0 = at0 + RT
t0 · g (2.39)

bg,t0 = ωt0 . (2.40)

From the following IMU measurements, we refine the estimates of the bias values and the
starting orientation by exploiting the fact that the robot does not move. Hence, we feed posi-
tion, velocity and orientation measurements with the value of zero and small noise matrices
into the information filter. As a result the bias value estimation stabilizes. Furthermore, we
fuse the absolute roll and pitch angle measurements from the accelerations with the ori-
entation measurements from the gyroscopes as described above. The initialization phase is
finished when the change in the bias estimates drops below a threshold. This process usually
takes a few seconds. Once the information filter is initialized, the robot can start moving and
visual odometry and leg odometry measurements are used to compute pose estimates.

2.1.5. Experimental Evaluation

For evaluating the performance of the multisensor data fusion filter we used the DLR Crawler
(ref. Fig. 2.4), which is a six-legged, actively compliant walking robot [32, 33] that was de-
veloped as a prototype of an autonomous robot for rough terrain. Its legs are equipped with
joint angle sensors that allow the computation of a leg odometry in 6 DOF [31]. Further-
more, it has a stereo camera head for perceiving its environment and an Xsens MTi-10 IMU.
We used the IMU measurements at a rate of 120Hz, the leg odometry measurements at a
rate of 10Hz and the visual odometry data with error estimates at a rate of about 4.5Hz.
We steered the Crawler manually along a rectangular path through a 2m × 2m testbed filled
with gravel. For this, we used a 6 DOF space mouse generating the commands “walk for-
ward”, “turn left/right” and “walk sideways to the left/right”. The walking speed was approx-

2.1 Robust Pose Estimation 29

Figure 2.4.: The DLR Crawler as test platform for the multisensor data fusion method. It is
equipped with a stereo camera, an IMU, joint angle sensors in the legs and a
reflecting target body for ground truth measurements.

imately 0.04m/sec. We recorded the estimated trajectories measured by visual odometry and
leg odometry, as well as the trajectory estimated by fusing inertial, visual and leg odome-
try data. Additionally, we mounted a reflecting target body on the Crawler and tracked it
by an infrared tracking system. The trajectory of the target body provided a ground truth
measurement.

We performed several runs with different lighting conditions. Fig. 2.5a shows the test setup
with the robot in its starting pose and the approximately steered path. In this setup, the light-
ing conditions and the texture of the gravel were very good. Fig. 2.5b shows the ground
truth trajectory measured by the tracking system, the fusion result and the different odome-
try trajectories which were obtained by summing the relative measurements of the respective
sensors. The trajectory computed using only the IMU measurements is not shown here be-
cause its enormous drift led to an error of more than 100m after 60sec runtime.

The visual odometry trajectory was accurate apart from slightly underestimating the yaw
angle. The leg odometry trajectory shows that yaw angles were overestimated because of
slip in the gravel (ref. Fig. 2.6b). The fusion trajectory was close to the ground truth path.
Fig. 2.6a shows plots of the z-coordinates. While visual odometry and leg odometry drifted
due to roll and pitch angle errors, the estimated z-coordinate of the fusion result remained
close to the ground truth curve because the absolute roll and pitch angle measurements from
the accelerometers stabilized the pose estimate. Fig. 2.6c shows the standard deviations of

30 Chapter 2: LocalMetric Navigation

(a) Test setup and steered trajectory

x [m]

y
[m

]

-0.200.20.40.60.811.21.41.6

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

tracking
leg odometry
visual odometry
fusion

start

(b) Recorded trajectories

Figure 2.5.: Setup and recorded trajectories of a test run with good visual conditions

2.1 Robust Pose Estimation 31

time [sec]

z
[m

]

0 20 40 60 80 100 120 140 160

-0.15

-0.1

-0.05

0

0.05

0.1

tracking

leg odometry
visual odometry

fusion

(a) z-coordinates

time [s]

ya
w

an
gl

e
[◦

]

0 20 40 60 80 100 120 140 160
-400

-300

-200

-100

0

tracking

leg odometry
visual odometry

fusion

(b) Yaw angles

0 20 40 60 80 100 120 140 160
0

0.005

0.01

0.015

0.02

σx

σy

σz

6

6.5

7

visual odometry updates

leg odometry updates

time [sec]

st
an

da
rd

de
vi

at
io

n
[m

]

(c) Standard deviations computed from the estimation covariance matrix

Figure 2.6.: z-coordinates, yaw angles and position standard deviations of a test run with
good visual conditions

32 Chapter 2: LocalMetric Navigation

the position estimates computed from the estimation covariance matrix. As can be seen, the
standard deviations grew with time since no absolute position measurements were available.
The detailed plot in this figure illustrates the influence of the relative odometry measure-
ments on the covariance: Without odometry measurements, the standard deviation of the
position would grow quadratically because of integrating inertial measurements. Every time
an odometry measurement was available, the uncertainty of the robot position decreased.
In this application, visual odometry measurements usually had lower uncertainties than leg
odometry measurements and, thus, had a stronger influence on the estimation covariance.
However, during turning in the corners of the testbed, the estimated errors of the visual
odometry measurements were higher, which led to increasing covariances during these pe-
riods. The reason for that was the texture of the testbed walls, which was worse than the
texture of the gravel. However, since the robot additionally had the leg odometry and yaw
angular velocity measurements, it could fuse all these information to an accurate yaw angle
estimate.

In some of the test runs we simulated poor visual conditions by illuminating one corner of the
testbed by a very bright light source (ref. Fig. 2.7a) and setting the camera to fixed exposure.
As a result, the images taken from the illuminated area were overexposed and nearly white
while all other images were well-exposed. Sample images taken by the Crawler’s camera
are shown in Fig. 2.7b. Fig. 2.7c and Fig. 2.8 show the recorded trajectories. Leg odometry
suffered from a yaw angle error (ref. Fig. 2.8b) and overestimated its forward translation
due to leg slip. Visual odometry was very accurate in areas with good lighting. However,
large visual odometry errors occurred in the illuminated corner. These errors caused the
visual odometry trajectory to continue in a wrong direction because of the summation of
relative measurements. Since the estimated error of the visual odometry measurements was
also higher in this region, the data fusion filter put a lower weight on these measurements.
Thus, the leg odometry and inertial measurements had more influence on the pose estimate,
so that the fusion result was not affected by the large visual odometry errors.

To achieve more general information about the performance of the data fusion filter, we
computed the end point errors of the recorded trajectories as the distances to the ground
truth trajectory end points. The results for 9 runs along a rectangular path in the gravel
testbed with different lighting conditions are shown in Fig. 2.9. As can be seen, the fusion
result was always significantly better than using only visual odometry or leg odometry. The
average endpoint error of the fusion trajectory was 1.1% in relation to the average path
length of 5.6m.

2.1 Robust Pose Estimation 33

(a) Test setup

(b) Sample images

x [m]

y
[m

]

-0.200.20.40.60.811.21.41.6

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

tracking
leg odometry
visual odometry
fusion

bad lighting

start

(c) Recorded trajectories

Figure 2.7.: Setup, sample images and recorded trajectories of a test run with poor lighting
conditions

34 Chapter 2: LocalMetric Navigation

time [sec]

z
[m

]

0 50 100 150 200
-0.1

0

0.1

0.2

0.3

0.4
tracking

leg odometry
visual odometry

fusion bad lighting

(a) z-coordinates

time [sec]

ya
w

an
gl

e
[◦

]

0 50 100 150 200
-400

-300

-200

-100

0

tracking

leg odometry
visual odometry

fusion

(b) Yaw angles

Figure 2.8.: z-coordinates and yaw angles of a test run with poor lighting conditions

run number

er
ro

r[
m

]

1 2 3 4 5 6 7 8 90

0.5

1

1.5

2

2.5

fusion error

leg odometry error
visual odometry error

Figure 2.9.: End point errors of fusion, visual and leg odometry trajectories. Good visual
conditions only in runs 4, 6 and 9.

These experimental results show that the data fusion algorithm improves robustness, as well
as accuracy of the pose estimate compared to using only a single sensor. Based on the gravity
vector, we can derive absolute roll and pitch angle measurements from the IMU data, which
limit the drift in the orientation estimate. The IMU further allows for short-term stable po-

2.2 Local Mapping 35

sition and yaw angle estimates, which are supported and corrected by the aiding odometry
measurements. The visual odometry error estimate reliably detects ill-conditioned measure-
ments as caused by bad visual conditions and the data fusion filter puts a lower weight on
those measurements. Using the leg odometry measurements, the robot is able to overcome
visually poor areas with a high accuracy.

However, it can also be seen that the position estimate still suffers from a drift caused by
summing up translational and yaw angle errors in the relative motion estimates. This error
can only be eliminated by using absolute measurements such as compass or GPS data (where
available) or landmark positions. Nevertheless, since we only require locally accurate pose
estimates, the presented data fusion method is sufficient for our application.

2.2. Local Mapping

The robot requires a local map for obstacle detection and avoidance and for local path plan-
ning. For this, the local map must represent the geometric properties of the terrain, which
the robot can evaluate to find regions that are safe for traversal.

2.2.1. State of the Art

We can find different types of metric maps representing 3D terrain geometry in literature.

Raw point clouds are, for example, used by Cole and Newman [16], Henry et al. [38] and
Howard et al. [40]. Point clouds make the registration of scans from different view points
easy, but they suffer from a high memory consumption.

A Digital Elevation Map (DEM) is a 2D grid with fixed resolution that stores a single height
value in each cell, which results in a 2.5D representation of the terrain surface. They need
only little storage space, but they cannot represent overhangs or multiple height values per
grid cell. The resolution of the DEM has to be chosen appropriately. If the resolution is too
low, highly complex terrain cannot be modeled. If the resolution is too high, much storage
space is required and holes can occur in the map if the sensor for perceiving the environment
does not provide such high-resolution data. Digital elevation maps are widely used in robotic
applications where no full 3D model is required, for example in the works by Kolter et al.

36 Chapter 2: LocalMetric Navigation

[47], Kweon and Kanade [53] and Ye and Borenstein [102]. Triebel et al. [92] proposed an
extension of an elevation map to multiple levels.

A 3D Voxel Occupancy Grid is a full 3D grid with fixed resolution where each grid cell
stores a probability value of that cell being occupied. 3D voxel maps require more storage
space than DEMs, but they can represent the full 3D structure of the terrain. They are used
by Moravec [69] and Suzuki et al. [89]. Their memory consumption can be decreased by
using tree-like structures as shown by Payeur et al. [73] and Wurm et al. [100].

A Triangle Mesh is composed of connected triangles which approximate the surface of the
terrain. The resolution of the mesh can vary and it is possible to represent the full 3D struc-
ture of the environment. Triangle meshes are used by Huber and Hebert [41], Früh et al.
[26], Hähnel et al. [36] and Rusu et al. [78]. Similar to the raw point clouds, they also re-
quire much memory.

Continuous terrain functions can be created using statistical learning processes. Plagemann
et al. [74] treat terrain mapping as a regression problem and recover a continuous elevation
function from noisy range measurements using a Gaussian Process model with different
lengthscales (smaller for densely sampled parts, higher for sparsely sampled regions). This
method provides an explicit model of uncertainty. Hadsell et al. [35] learn continuous terrain
functions using a kernel based approach where the lengthscale is chosen according to the
sensor uncertainty at a specific point.

2.2.2. Approach

In this thesis, we chose to use a Digital Elevation Map (DEM) as local map, since it requires
only little memory and is sufficient for the task of local metric mapping. In case the robot
moves through a multi-level environment, the small size of the local map ensures that not
more than one level is modelled in the same map. We perform mapping in two steps. First,
we create a single-view DEM from a single depth image of the stereo camera, which in our
application is the only sensor that gives dense information about the shape of the terrain. For
small robots with a low point of view (ref. Fig. 2.10) a single camera image pair usually only
covers a small region which is not wide enough to allow for meaningful obstacle detection.
Thus, we have to combine several single-view DEMs to a local DEM using the accurate pose
estimates obtained by the multisensor data fusion process described in the previous section.
We choose the resolution of the DEM according to the robot properties. For a walking robot,

2.2 Local Mapping 37

Figure 2.10.: The DLR Crawler as example of a robot with a low point of view

we chose the resolution to be equal to the size of a foot. For a driving robot, the resolution
was chosen to be equal to the width of a wheel.

2.2.3. Creating Single-View Maps from Disparity Images

This section will present two approaches for creating a DEM from a single stereo image
pair and discuss their performances and computational complexities. Furthermore, we will
discuss the influence of stereo reconstruction errors on the map range and resolution.

Point Cloud Solution

A straightforward method for creating a DEM from a disparity image is to compute a point
cloud from the disparity image and then to fill these points into a height grid. This approach
is visualized in Fig. 2.11 and was presented by Chilian and Hirschmüller [14], where it gave
good results for the chosen camera and map resolution.

For creating the point cloud, we have to reconstruct the 3D coordinates of the image points.
The stereo algorithm finds corresponding image points pl = (plx, ply) in the left and pr =

(prx, pry) in the right rectified image. Due to the epipolar geometry, ply = pry and plx =

prx + pd, where pd is the disparity value. The values plx, ply and pd are stored in the disparity
image (ref. Fig. 2.11b).

38 Chapter 2: LocalMetric Navigation

(a) Left camera image (b) Disparity image

(c) Point cloud (d) DEM

Figure 2.11.: Creating a single-view DEM from a stereo image using a point cloud

We can reconstruct the object point Pc = (xc, yc, zc) in the camera coordinate frame c from
the image points pi

lx, pi
ly, pi

d in the image coordinate frame i using the standard stereo equa-
tions

xc =
t · pi

lx

pi
d

=
t · pi

lx

pi
lx − pi

rx
, (2.41)

yc =
t · pi

ly

pi
d

=
t · (pi

ly + pi
ry)

2 · (pi
lx − pi

rx)
, (2.42)

zc =
t · f
pi

d

=
t · f

pi
lx − pi

rx
, (2.43)

where t is the stereo camera base line and f is the focal length. Then, we can transform
the point Pc into the world coordinate frame using the estimated camera pose at the time of
image acquisition. Fig. 2.11c shows the resulting point cloud. Now, we can store the mean
z-value of all points whose (x, y)-coordinates fall into the same grid as the height value of
that cell (ref. Fig. 2.11d).

2.2 Local Mapping 39

The complexity of this method is linear in the number of pixels in the image and independent
of the map resolution. The size of the local map has little influence on the computation time,
because it only affects the number of cell means but not the number of 3D coordinates to be
computed.

Resolution Issues

The main disadvantage of the point cloud approach is that the maps become sparse at a
certain distance from the camera. The robot takes the stereo images from a low viewpoint
and at a shallow angle, as shown in Fig. 2.10. Hence, the constant resolution of the disparity
image leads to non-uniform sampling of the terrain, which is illustrated in Fig. 2.12. Areas
that are viewed at a very shallow angle or that are far away from the camera will have
a low resolution. Additionally, higher objects, which occlude parts of the terrain behind,
cause range shadows that have to be considered carefully. Thus, we should use a different
mapping approach that pays stronger attention to the resolution of the resulting map.

xw

zw

zc

xc

camera frame

world frame

Figure 2.12.: Non-uniform terrain sampling for a camera with a low point of view (adapted
from Kweon and Kanade [53], c©1990 IEEE)

Different methods have been proposed which address the problems of range shadows and
holes in the maps. In the approach of Kolter et al. [47], gaps occurring due to range shadows
and occlusions are filled using a texture synthesis method. For this, the method considers
geometric constraints such as that the height of the missing terrain points must lie below the
line of sight of the camera connecting the last and the next visible region of the terrain. This
method requires a priori knowledge of height maps of similar terrain types. Other approaches
use interpolation in the world coordinate frame, for example Früh et al. [26] apply horizontal
and vertical interpolation to fill range shadows for urban modelling. Another way to create
dense height maps is to triangulate adjacent pixels in the disparity image [41] if their distance

40 Chapter 2: LocalMetric Navigation

in the camera frame is below a certain threshold. The resulting mesh can be transformed
into the world coordinate system. This method has the advantage that the surface topology
is preserved. The locus method proposed by Kweon and Kanade [53] is an effective way to
create dense height maps from range images and will be described in the following section.

The Locus Method

disparity d

lx

locus li

image frame

intersection
disparity profile

Figure 2.13.: Intersection of locus and disparity profile (adapted from Kweon and Kanade
[53], c©1990 IEEE)

In the original publication [53] the locus method was derived for range data like laser scans,
which give direct range measurements under certain horizontal and vertical scanning angles.
In the next section we will derive how to apply this method to disparity images.

The locus method finds the elevation zw at a point (xw, yw) of a reference plane by computing
the intersection of the terrain with a vertical line at (xw, yw). The projection of the vertical
line on the image is called locus. The method computes the intersection point with the terrain
in image space rather than in Cartesian space (ref. Fig. 2.13). In image space, the terrain is
represented by a depth profile.

For each cell in the DEM we compute a vector representing a vertical line l as

l = (u, v) =

([
xw, yw, zw]T ,

[
vx, vy, vz

]T
)
, (2.44)

where u is a point and v is a unit directional vector. Each point r on the line is then repre-
sented by

r = u + λv. (2.45)

2.2 Local Mapping 41

For a vertical line in world coordinates the values of u and v become

u =
[
xw, yw, 0

]T (2.46)

v = [0, 0, 1]T . (2.47)

We can transform this line into camera coordinates using the rotation matrix Rw
c , which

turns a point from the camera coordinate frame c to the world coordinate frame w, and the
translation tw from the world coordinate frame to the camera coordinate frame:

lc = (u, v) =
(
(Rw

c)T (u − tw), (Rw
c)T v

)
. (2.48)

By projecting lc onto the disparity image, we obtain a generalized locus li. The projections
ri = (ri

lx, r
i
ly, r

i
d)T of all points rc of line lc onto the image also form a line li with

ri
d =

f · t
rc

z
(2.49)

ri
lx =

ri
d · r

c
x

t
=

f · rc
x

rc
z

(2.50)

ri
ly =

ri
d · r

c
y

t
=

f · rc
y

rc
z
. (2.51)

Now, we have to compute the intersection of li with the disparity profile of the image. Due
to the orientation of the camera with respect to the world coordinate frame, it is beneficial
to parameterize the locus line by the image row coordinate ri

ly, because a vertical line in
world coordinates will most likely run through all rows in the image, but will only appear
in few columns. Hence, we can create line equations for the column ri

lx = f (ri
ly) = axri

ly + nx

and disparity ri
d = f (ri

ly) = adri
ly + nd by transforming two distant points rc

1 and rc
2 on lc

into image coordinates (ri
lx1, r

i
ly1, r

i
d1) and (ri

lx2, r
i
ly2, r

i
d2) and determining the line equation

parameters slope a and offset n for disparity (index d) and column (index x).

ax =
ri

lx1 − ri
lx2

ri
ly1 − ri

ly2

nx = ri
lx1 − ax · ri

ly1 (2.52)

ad =
ri

d1 − ri
d2

ri
ly1 − ri

ly2

nd = ri
d1 − ad · ri

ly1 (2.53)

42 Chapter 2: LocalMetric Navigation

The first step for finding the intersection is to search two sample points (ri
lx1, r

i
ly1, r

i
d1) and

(ri
lx2, r

i
ly2, r

i
d2) on the line which fulfil the condition

ri
d1 < pi

d(ri
lx1, r

i
ly1) (2.54)

ri
d2 > pi

d(ri
lx2, r

i
ly2). (2.55)

For doing so, we search for the first sample point by starting at the bottom row of the image,
searching for the second sample point starts at the top row. For each row, we can compute
the disparity and column values using the line equations above.

After finding those two sample points, we apply binary search between these points to find
the intersection ri

ilx, r
i
ily, r

i
id with ri

id = pi
d(ri

ilx, r
i
ily). We should note that there are image pixels

which do not have a valid disparity value. If the search reaches such a pixel, the search termi-
nates and a linear search is performed between the current interval boundaries. If the search
interval cannot be reduced any further and the disparity difference between the boundary
values pi

d(ri
lx1, r

i
ly1) and pi

d(ri
lx2, r

i
ly2) is within a certain threshold, the intersection is found

and calculated as

ri
ilx =

ri
lx1 + ri

lx2

2
(2.56)

ri
ily =

ri
ly1 + ri

ly2

2
(2.57)

ri
id =

ri
d1 + ri

d2

2
. (2.58)

The threshold is necessary to avoid filling holes that are caused by range shadows. If the
linear search finds multiple intersection points, we only consider the intersection with the
highest elevation. We can calculate the elevation value from the intersection point using the
reconstruction equations in Eq. (2.41)-Eq. (2.43).

The complexity of the locus method is linear in the number of cells in the DEM and in the
best case logarithmic in the number of rows of the disparity image (worst case: linear).

Comparison of the Point Cloud Approach and the Locus Method

A comparison of DEMs created by the point cloud approach and by the locus method is
shown in Fig. 2.14. The maps have a resolution of 2cm and a size of 3m×3m. They were

2.2 Local Mapping 43

computed from a stereo image pair of the size 1292 × 964 pixels recorded with wide angle
lenses.

The map resulting from the point cloud approach (ref. Fig. 2.14c) is dense in regions close
to the camera and becomes sparse in the distance, due to the non-uniform sampling of the
terrain. Computation time for creating this map was 0.5sec on a standard CPU with 2.6GHz.

The map computed from the locus method (ref. Fig. 2.14d) is dense everywhere except for
regions where range shadows were caused by larger objects in the foreground. Computation
time for this map was 0.7sec. However, since the computation time of the locus method is
linear in the size of the map, it will decrease for coarser and for smaller maps. For a slightly
lower resolution of 3cm, the computation time of the locus method is already lower than for
the point cloud approach (ref. Fig. 2.15). For smaller maps, the time will decrease further.

Map Range and Stereo Errors

In stereo vision the error of reconstructing the distance of an object point grows quadratically
with the distance of that point from the camera. To prevent erroneous range measurements
from being inserted into the terrain map, the size of the local map should be limited to the
range where the assumed disparity error εd results in distance reconstruction errors that are
still lower than the map resolution r. We can compute this range zc

crit from the focal length f

and the camera baseline t as

zc
crit =

t · f
pi

d1

(2.59)

zc
2 = zc

crit − r =
t · f
pi

d2

=
t · f

εd + pi
d1

(2.60)

→ zc
crit =

r
2

+

√
r2

4
+

r · t · f
εd

. (2.61)

Usually, a disparity error of εd = 1px is assumed. For the cameras with wide angle lenses
(f = 635px) that were used for creating the DEMs in the previous section, Fig. 2.16 visual-
izes the relation between the critical range zc

crit and the map resolution for different baselines.
The plot shows that for the used baseline of t = 9cm, a resolution of r = 4cm is necessary to
reconstruct reliably within a range of zc

crit = 1.5m. Longer baselines, as well as longer focal
lengths, will increase this value.

44 Chapter 2: LocalMetric Navigation

(a) Left camera image (b) Disparity image

20
40

60
80

100
120

140
20

40
60

80
100

120
140

-5
0
5

10

z
[2

cm
]

x [2cm]
y [2cm]

[2cm]

-5

0

5

10

(c) DEM from point cloud approach

20
40

60
80

100
120

140
20

40
60

80
100

120
140

-5
0
5

10

z
[2

cm
]

x [2cm]
y [2cm]

[2cm]

-5

0

5

10

(d) DEM from locus method

Figure 2.14.: Comparison of the point cloud approach and the locus method for creating a
local map with 2cm resolution and a size of 3m×3m

2.2 Local Mapping 45

map resolution [cm]

ru
nt

im
e

[s
ec

]

1 2 3 4 5 6 7 8 9 100

1

2

3
locus method

point cloud method

Figure 2.15.: Runtime comparison for a 3m×3m map at different resolutions

map resolution r [m]

cr
iti

ca
lr

an
ge

zc cr
it
[m

]

0 0.05 0.1 0.15 0.20

1

2

3

4

5
t = 0.13m
t = 0.11m
t = 0.09m
t = 0.07m
t = 0.05m

Figure 2.16.: Relation between the map resolution and the critical range for different base-
lines t (focal length f = 635px)

2.2.4. Combining Single-View Maps

Small robots with a low point of view can usually only cover a narrow region of the terrain
by a single stereo image pair, which is not sufficient for obstacle detection. Thus, we have
to combine terrain measurements from different points of view to a map. We assume that
the camera poses at the time of image acquisition are known with a very high accuracy
from the pose estimation step. Thus, we can use this knowledge to attach each single-view
DEM from a depth image to the local DEM. Existing height values are overwritten by newer
values. This approach is subject to errors from pose estimation, which can cause artifacts in
the DEM. However, these errors remain small for small scale maps and can be considered in

46 Chapter 2: LocalMetric Navigation

the traversability estimation process by taking the time into account when the height value
was inserted into the local map [14]. In other cases, registration methods such as Iterative
Closest Point (ICP) [105] have to be applied.

2.3. Traversability Estimation

The detection of obstacles or untraversable areas is crucial for safe navigation in unknown
terrain. As already mentioned, in rough terrain there is no clear distinction between un-
traversable obstacles and free space. Rather, the robot has to estimate the traversability of
the terrain on a continuous scale between “most easily traversable” and “untraversable” and
write this value to a cost map, which has the same size and resolution as the local geo-
metric DEM, but stores the traversability costs instead of the height values. In some works
a traversability cost map is derived directly from range measurements of the environment,
e.g. from stereo vision [82] or from Kinect data [6]. Other approaches estimate the terrain
traversability based on a geometrical model of the environment, e.g. in form of a 2.5D eleva-
tion map [101]. As explained in the previous section, in our approach the robot geometrically
models its surroundings for traversability estimation, because a single view does not always
capture a region wide enough for reliable obstacle detection.

In this thesis, we use the traversability estimation method described by Chilian [13], which
is based on plane fitting as in the GESTALT system [30]. We will briefly summarize this
method here for completeness.

Each cell of the cost map is assigned a danger value d (d ∈ {[0, 1],∞}) describing the terrain
difficulty. A cell is traversable if the robot is not exposed to critical terrain hazards irrespec-
tive of its orientation given its center is located in that cell. Thus, we can treat the robot
as a point and do not have to consider its orientation in the path planning process, which
simplifies computation. A danger value of d = 0 stands for completely flat, smooth terrain,
which can be traversed by the robot most easily. Higher danger values are assigned to areas
which are harder to pass. A value of d = 1 describes terrain which is just barely traversable
for the robot. Untraversable regions are assigned d = ∞. We assume that unknown areas are
traversable but assign a high danger value of d = 1.

Based on the DEM, we estimate three potential hazards, which are steep slopes, high terrain
roughness and high steps. If one of the criteria exceeds the corresponding critical value, the
cell is marked as untraversable. The critical values are the maximum slope scrit, maximum

2.3 Traversability Estimation 47

roughness rcrit and maximum step height hcrit which the robot can traverse without tipping
over or getting stuck.

Similar to the traversability estimation in GESTALT [30], we calculate the slope s of a cell
by fitting a plane in a circular region around the cell with a diameter corresponding to the
maximum diameter of the robot. The angle between the plane normal and the z-axis of the
global coordinate frame gives the slope inclination s. The terrain roughness r is calculated
as the standard deviation of the terrain height values from the computed plane in the circular
region around the cell.

We compute the step height h in two steps. First, we calculate local height differences within
a square window of several grid cells (corresponding to approximately one third of the robot
diameter) for all cells in the circular region. If the maximum height difference between any
cell in that window and the center cell of the window is greater than the critical step height
hcrit, and the slope between the corresponding two terrain points is higher than the critical
slope scrit, we store the maximum height difference as the temporary step height of the central
cell of the window. Second, we compute the step height of the central cell of the circular
region as

h = min(hmax, hmax ·
nst

ncrit
), (2.62)

where hmax is the maximum temporary step height in the circular region, nst is the number
of cells in the circular region whose temporary step heights are higher than the critical step
height and ncrit is the valid number of cells with a temporary step height higher than the
critical step height. This method for calculating the step height also detects small steep
slopes as steps and is robust against missing terrain information, which distinguishes it from
the step height calculation method in GESTALT [30].

For traversable cells we compute the danger value from the three types of hazards as

d = α1
s

scrit
+ α2

r
rcrit

+ α3
h

hcrit
, (2.63)

where α1, α2 and α3 are weight parameters which sum up to 1.

As Fig. 2.17 shows, the step height is well suited for detecting whether a cell is traversable or
not, but it provides little information about the difficulty of the traversable cells. In contrast,
the slope and roughness criteria can fail to detect untraversable cells but are better suited for
estimating the difficulty of traversable cells.

48 Chapter 2: LocalMetric Navigation

-4

-2

0

2

4

6
[× 20mm]

(a) DEM
0

0.5

1

(b) Cost map

(c) Slope (d) Roughness (e) Step height

Figure 2.17.: Danger value computation from the criteria slope, roughness and step height
(scrit = 20◦, rcrit = 30mm, hcrit = 50mm, α1 = 0.5, α2 = 0.25, α3 = 0.25)

The traversability of a cell is only computed if a sufficient number of height values is present
in the circular robot-sized region around the cell. In addition to the danger value, we calcu-
late a certainty value for each cell as the percentage of available height values in the circular
region. The robot uses this value later to decide whether the active exploration of an area is
necessary. The certainty and danger values are stored in the cost map. For more detailed in-
formation about the traversability estimation method please refer to Chilian [13] or Chilian
and Hirschmüller [14].

2.4. Path Planning

For moving along a safe route in a given direction or towards an intermediate goal point, the
robot has to plan a path based on the traversability cost map. The GESTALT planner [30]
uses arc votes to command steering angles to the rover. From a bunch of driving arcs leading
through safe terrain, GESTALT chooses the one that contributes most to moving towards the
goal point. Selecting steering angles is suitable for wheel-driven robots, but not for walking

2.4 Path Planning 49

robots. Thus, we make use of the more general path planning approach developed by Chilian
[13]. This method uses a D* Lite [46] path planner, because the robot’s knowledge about the
terrain changes over time. Thus, the path planner must be able to adapt the path to changes
in the map in an efficient way.

As for the A* algorithm, we have to implement a cost function and a heuristic distance func-
tion for the D* Lite path planner. The cost function c(N,N′) describes the cost for moving
from vertex N to its neighbor N′. The heuristic distance function h(N, S) is an estimate of
the costs remaining to reach the start vertex from the current vertex N, and must not over-
estimate the true costs. Thus, we use the direct distance between two nodes for the heuristic
distance function. The formulation of the cost function defines the optimality of a path. Of-
ten, a path is optimal if it is the shortest path to the goal. In the present work, not only the
path length but also the traversability of the path cells should be taken into account. Thus,
the cost function for going from vertex N to its neighbor N′ is

c(N,N′) =

√
(Nx − N′x)2 + (Ny − N′y)2 + β · d(N′). (2.64)

The first term describes the distance between the vertexes and the second term denotes the
danger value of the destination vertex weighted by β > 1. The bigger the value of β is chosen
the longer paths are accepted if they go through safer cells (ref. Fig. 2.18). The costs of going
to an untraversable cell are∞.

(a) β = 3 (b) β = 10

Figure 2.18.: Paths planned with different values of β

The path is replanned whenever the robot gets new information about terrain cells that be-
long to the planned path.

50 Chapter 2: LocalMetric Navigation

From the definition of the cost function follows that this method plans paths which are
approximately β times longer than the shortest path, if their average danger value is less
than 1

β
of the danger of the shortest path. That means that only the relation between path

length and path safety is considered but not the absolute danger value of a path. However, if
the robot is carrying a heavy load or if its hardware is damaged, the path planner must adapt
the path to the changed motion abilities of the robot. To avoid reassessing the traversability
of the whole terrain map, a danger value threshold 0 ≤ dmax ≤ 1 can be set in the path
planner [34]. If the danger value of a cell is higher than dmax, we set the costs of moving to
that cell to∞. This increases the safety of the planned path.

2.5. Motion Control

Path following and active exploration are performed as described by Chilian [13]. Path fol-
lowing is achieved by a simple proportional controller which sends the motion commands
“move forward”, “turn left” and “turn right” as well as the maximum danger value of the
upcoming path cells to the robot motion layer. Thus, the robot can adapt its motion strategy
to the estimated terrain traversability.

Depending on the horizontal opening angle of the stereo camera, it might be possible that
the robot is not able to perceive enough information about the upcoming terrain to calculate
the traversability with high certainty. Furthermore, the path could lead into a region that is
currently outside the view of the robot but could be perceived if the robot would turn. In
these cases, actively exploring the environment of the path is necessary. For this, the motion
controller can command exploration turns to the robot. An exploration turn is necessary, if
the certainty value of a path cell which is in range of the cameras is lower than 1. During
an exploration turn the robot turns over an angular range of 2ε so that the cameras cover the
robot-sized circular region around the path cell being explored. Since a certainty value of 1
is hard to reach in practice, a set of rules about when exploration turns are permitted has
been established [13]:

Between two exploration turns

• the distance between the path cell to be explored and the previously explored path cell
must be at least l

and one of the following conditions must hold:

2.6 Experimental Evaluation 51

• The robot must have passed a distance of at least l.

• The path cells to be explored in two subsequent exploration turns must be at an angle
of at least ε given the current robot position is the pivot point.

• The path must have been replanned.

These rules are necessary to avoid that the robot repeats exploration turns when the certainty
value does not reach 1. When the camera is mounted on a pan unit, the exploration turns
can be performed by turning only the camera instead of turning the whole robot. For the
hardware used in the experiments the values were chosen to be ε = π/8 and l = 0.2 m.

2.6. Experimental Evaluation

To evaluate the performance of the local navigation method, we used the DLR Crawler,
which we already described in Section 2.1.5. In this set of experiments, it was equipped
with a wide-angle stereo camera pair, an IMU and it provided 6 DOF leg odometry mea-
surements. We used an external optical tracking system for tracking a target body mounted
on the Crawler, which provided ground truth pose measurements. The DLR-Crawler could
choose between a simple and fast tripod gait for easy and smooth terrain, and a computa-
tionally more expensive adaptive gait with elevator reflexes for overcoming rough terrain
[33]. We chose the traversability estimation parameters such that a cell was traversable, if it
could be passed by the Crawler using the adaptive gait. The Crawler used the tripod gait by
default, but was able to switch the gait pattern according to the estimated traversability of
the upcoming terrain.

We created the indoor test environment shown in Fig. 2.19. A gentle slope led into a testbed
filled with gravel. We used large stones as untraversable obstacles. Most of the gravel area
was easy to pass for the robot. In a smaller region, we increased the terrain difficulty so that
the robot could pass this area only using the adaptive gait with the elevator reflexes. We set
the goal coordinates x = 2.8m and y = 0.3m relative to the starting position of the robot.

52 Chapter 2: LocalMetric Navigation

starting position

goal

difficult
terrain

Figure 2.19.: Test setup and sample images as viewed by the stereo camera of the Crawler

In a first experiment, the robot should reach the goal point autonomously without any ex-
ternal disturbances or limitations in its motion capabilities. The resulting cost map, the
trajectory recorded by the tracking system and the trajectory estimated by the robot are
shown in Fig. 2.20. The map has a resolution of 20mm per grid cell. The colors indicate the
traversability of the cells. Red cells are untraversable, green cells are easily traversable and
from green to orange the difficulty of traversing a cell increases. As the cost map shows, the
robot detected the big stones and the testbed walls as untraversable obstacles. The method
for estimating the terrain traversability labels a cell as traversable only if the robot is safe
when its center is located on that cell. Thus, a region of half of the robot diameter around
each obstacle is also marked as untraversable. This allows the path planner to neglect the
size and orientation of the robot but to only plan a path for the center of the robot. Further-
more, the traversability estimation method assigned higher danger values to the slope and

2.6 Experimental Evaluation 53

the difficult region highlighted in Fig. 2.19 than to the flat gravel areas. These danger values
were also sent to the motion layer of the robot, so that the robot could choose an appropriate
gait according to the estimated danger of the upcoming terrain. Hence, the robot chose the
fast tripod gait for all areas which were estimated to have low danger values and switched
to the computationally more expensive adaptive gait for crossing the slope and the difficult
terrain. The locations where the robot switched its gait pattern are labeled in Fig. 2.20. This
demonstrates the benefits of assessing the terrain traversability at a continuous scale instead
of only distinguishing between obstacles and traversable regions.

goal T

A
T

A

start

cost map
estimated path
true path (tracking)

Figure 2.20.: Cost map for run 1 with full motion capabilities and without disturbances. A:
switch to adaptive gait. T: switch to tripod gait.

Fig. 2.21 compares the trajectories measured by visual odometry and leg odometry with
the true trajectory given by the tracking system and the estimated trajectory obtained by
fusing all motion measurements. The trajectory estimated by sensor data fusion is close to
the visual odometry trajectory because the error of visual odometry was estimated to be very
low. However, both visual odometry and leg odometry suffer from a drift in the z-coordinate
as well as yaw angle errors. Due to absolute roll and pitch angle measurements, the error in
the z-coordinate of the fusion trajectory is small. The yaw angle error cannot be corrected
sufficiently since no absolute yaw angle measurements are available. The yaw angle plot
also shows the exploration turns that were performed to gather more information about the
upcoming terrain. The robot stopped when it had reached the goal location according to its

54 Chapter 2: LocalMetric Navigation

x [m]

y
[m

]

0 0.5 1 1.5 2 2.5

0

0.2

0.4 tracking
leg odometry
visual odometry

fusion
goal point

start

(a) Recorded trajectories

z
[m

]

time [sec]0 20 40 60 80 100 120 140 160 180

0

0.05

0.1

0.15

0.2

0.25 tracking
leg odometry
visual odometry
fusion

Switch to
adaptive gait

Switch to
tripod gait

Switch to
adaptive gait

Switch to
tripod gait

(b) z-coordinates

time [sec]

ya
w

an
gl

es
[◦

]

0 20 40 60 80 100 120 140 160 180
-50

-40

-30

-20

-10

0

10

20

30

40

50

tracking
leg odometry
visual odometry
fusion

(c) Yaw angles

Figure 2.21.: Trajectories for run 1 with full motion capabilities and without disturbances

2.6 Experimental Evaluation 55

estimated pose. The true position of the robot at the goal point was x = 2.75m, y = 0.24m
and z = 0.09m. This gives an endpoint error of 0.11m or 3.6% in relation to a path length of
about 3.1m. This error is mainly caused by the deviation of the yaw angle. An overview of
the experimental results is given in Table 2.1 on page 57.

We used the second test run to demonstrate the robustness of the navigation algorithm
against visual disturbances. While the robot was walking through the test environment, we
covered its cameras several times using a sheet of paper. All other test conditions remained
equal to the previous run. Fig. 2.23 shows the resulting trajectories. The visual odometry tra-
jectory (ref. Fig. 2.23a) had large errors caused by covering the cameras. The leg odometry
trajectory also deviated from the true path due to slip. The path estimated by fusing all mo-
tion measurements was very accurate. The visual disturbances did not affect the fusion result
since visual odometry errors were estimated to be high during these time periods and, thus,
these erroneous measurements were given a very low weight in the data fusion process. This
can also be seen in Fig. 2.24, because the estimated standard deviation of the position esti-
mate increased strongly during these periods. The resulting cost map in Fig. 2.22 does not
show any artifacts or obvious errors. At the goal point, the overall endpoint error was 0.05m.

goal

T

A

start

cost map
estimated path
true path (tracking)T

A

Figure 2.22.: Cost map and trajectories for run 2 after inducing visual odometry errors. A:
switch to adaptive gait. T: switch to tripod gait.

56 Chapter 2: LocalMetric Navigation

x [m]

y
[m

]

0 0.5 1 1.5 2 2.5

-0.4

-0.2

0

0.2

0.4

0.6

tracking
leg odometry
visual odometry
fusion
goal point

start

visual odometry errors

(a) Recorded trajectories

time [sec]

z
[m

]

0 50 100 150 200-0.05

0

0.05

0.1

0.15

0.2

0.25 tracking
leg odometry
visual odometry
fusion

visual odometry
errors

(b) z-coordinates

time [sec]

ya
w

an
gl

es
[◦

]

0 50 100 150 200

-80

-60

-40

-20

0

20

40

tracking
leg odometry
visual odometry
fusion

visual odometry errors

(c) Yaw angles

Figure 2.23.: Trajectories for run 2 with visual odometry errors induced

2.6 Experimental Evaluation 57

time [sec]

es
tim

at
ed

st
an

da
rd

de
vi

at
io

n
[m

]

0 50 100 150 200
0

0.005

0.01

0.015

0.02

σx

σy

σz

visual odometry
errors

Figure 2.24.: Standard deviations computed from the estimation covariance matrix for run 2
with visual odometry errors induced

In a final experiment, we simulated that the Crawler picked up a heavy load at one point
of its path and had to continue to the goal point with limited motion capabilities. Fig. 2.25
shows the resulting cost map and the trajectories. The robot started moving towards the goal
point as in all previous test runs. After passing the slope, we set the danger value threshold
to a low value of dmax = 0.15 to simulate that the robot was not able to traverse difficult
terrain any longer. As a result, the Crawler avoided the difficult area of the testbed and chose
the longer but safer path to the goal point. The endpoint error of the estimated position at
the goal point was 0.06m. Table 2.1 gives an overview of the experimental results.

Table 2.1.: Results of the local navigation experiments
run 1 run 2 run 3

visual disturbances - X -
limited motion capabilities - - X

path length 3.1m 3.1m 4.9m
estimated goal coordinate (x) 2.80m 2.81m 2.81m
estimated goal coordinate (y) 0.33m 0.30m 0.30m
estimated goal coordinate (z) 0.12m 0.08m 0.10m

true goal coordinate (x) 2.75m 2.78m 2.80m
true goal coordinate (y) 0.24m 0.27m 0.24m
true goal coordinate (z) 0.09m 0.09m 0.09m

endpoint pose estimation error 0.11m (3.6%) 0.05m (1.6%) 0.06m (1.2%)

58 Chapter 2: LocalMetric Navigation

goal

T

A

start

cost map
estimated path
true path (tracking)

X

(a) Cost map. A: switch to adaptive gait. T: switch to tripod gait. X: limitation of motion abilities.

x [m]

y
[m

]

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2
tracking
leg odometry
visual odometry
fusion
goal point

start

(b) Recorded trajectories

time [sec]

z
[m

]

0 50 100 150 200 250 300 350

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3 tracking
leg odometry
visual odometry
fusion

(c) z-coordinates

Figure 2.25.: Cost map and trajectories for run 3 with simulated limited motion capabilities

2.7 Conclusion 59

2.7. Conclusion

In this chapter, we proposed a local metric navigation approach for small workspaces. The
purpose of the local navigation method in this thesis is to lead the robot along a safe path
in a given goal direction. The method solely relies on passive, light-weight onboard pro-
prioceptive and exteroceptive sensors, which are a stereo camera for terrain perception and
visual odometry, an IMU for sensing accelerations and turn rates, and sensors providing a
robot odometry. We fuse measurements of all these sensors in an indirect information filter
to obtain robust and accurate pose estimates. We use the estimated visual odometry errors
in the filter framework, so that visual odometry measurements which have a low confidence
also have a lower influence on the filter result. We could show in experiments with the DLR
Crawler, which provided a 6 DOF leg odometry, that this method gives accurate pose es-
timates even in the presence of strong visual disturbances. Based on the pose estimates,
we build a local geometric model of the surrounding terrain in form of a digital elevation
map. For this, we adapted the locus method [53] to create dense elevation maps of arbitrary
resolution from stereo disparity images. Furthermore, we applied a traversability estimation
method for generating cost maps with continuous traversability costs, which are used to plan
short and safe paths through unstructured terrain. We evaluated the complete local naviga-
tion method in experiments with the DLR Crawler. We showed that the method allows the
robot to reach given goal coordinates on a short and safe path in unknown, unstructured
terrain. Even leg slip in loose gravel and visual disturbances did not affect the performance.
Thus, the experiments showed that the method is suitable for short-range metric navigation
in unknown rough terrain.

3. Global Topological Navigation

The global navigation task aims at enabling the robot to follow a previously traveled path
back to its starting position, which is called homing. For this, the robot needs to collect
information about the traveled path and to store it in a global map. The robot will observe
its immediate surroundings again when it reaches a previously visited location, so it does
not need to store information about obstacles, but only information that is useful for moving
in the correct directions. For this, a topological map is the obvious choice. Since the robot
should be able to cover large distances with an onboard map, the global map should be
scalable and the computational costs for building and maintaining the map, as well as for
navigating using the map, should be small and constant with respect to the traveled distance.

The next section will summarize previous work on visual homing methods. Section 3.2
sketches the approach for solving the global navigation task. Section 3.3 explains the basic
principles of viewframe-based navigation, in particular it will introduce and analyze dif-
ferent dissimilarity measures and methods for homing vector calculation. Section 3.4 will
review the LT-Map and Section 3.5 will introduce the Trail-Map, an improved data struc-
ture for scalable viewframe-based homing. In Section 3.6, we compare the performances of
both maps. Section 3.7 will analyze the performance of Trail-Map-based navigation under
the presence of realistic sensor noise. A comparison of Trail-Map-based and SLAM-based
navigation is given in Section 3.8. Section 3.9 describes the necessary steps for adapting
the global navigation method for a real robot. In Section 3.10 we evaluate the performance
of the global navigation method on a wheel-driven mobile robot in indoor and long-range
outdoor experiments. Section 3.11 concludes this chapter.

62 Chapter 3: Global Topological Navigation

3.1. State of the Art

In literature, techniques for retracing learned paths can be divided into appearance based and
feature based navigation approaches. In appearance based navigation methods, the robot
memorizes full images or special image properties in a topological map during a training
phase and then navigates by matching the stored information with the current view. Mat-
sumoto et al. [65] introduced a model for route representation called View-Sequenced Route
Representation (VSRR). It contains an image sequence of a route along with directional in-
formation to the next view. The images are downscaled to meet the memory resources of the
system. For creating the VSRR and for localization along the route, images are compared to
each other using a correlation method. Winters and Santos-Victor [99] proposed a method
for visual indoor navigation. In a training phase, omnidirectional images are recorded and
form a topological representation of the environment. The large image database is com-
pressed by Principal Component Analysis, such that only a few eigenimages corresponding
to the highest eigenvalues of the image covariance matrix are kept. The image recorded at
the current position of the robot is projected into the eigenspace to find the closest recorded
image that gives the topological position of the robot. The robot is controlled by visual
servoing on the corridor guideline extracted from ground-plane dewarped omnidirectional
images. The method presented by Kosecka et al. [50] exploits the properties of man-made
environments and uses gradient orientation histograms to describe different indoor locations.
After learning, new images are classified using the nearest neighbor method. The method de-
veloped by Vardy [93] stores a sequence of snapshot images of the environment along with
the odometry motion vectors and uses a combination of both to perform homing. Zhang
and Kleeman [104] proposed a navigation system that enables a robot to retrace previously
learned routes in the same direction. For this, reference images are captured during a teach-
ing phase. For retracing the path, the current image is compared to the reference image using
image cross-correlation performed in the Fourier domain. From this, the orientation differ-
ence can be computed and route following is performed by compensating the calculated
orientation difference. In their work, a planar ground is assumed.

In contrast to the appearance based methods, feature-based approaches have been proposed,
which only store the configurations of landmarks in the environment at certain places. The
robot then calculates homing vectors to move so that the landmark configuration of its cur-
rent position gets matched with the one in the goal snapshot. Cartwright and Collett [10, 11]
developed the snapshot model based on experiments with honey bees. This model stores the

3.1 State of the Art 63

perceived landmark configuration at a certain location in a so-called snapshot, which con-
tains the bearing angles and the sizes of the landmarks projected on the insect’s retina. For
homing, the robot computes the direction that matches the current landmark configuration
with the stored snapshot. Dai and Lawton [17] introduced the term viewframe, which con-
sists of a set of landmarks and their corresponding bearing angles as they are observed from a
certain location. Kawamura et al. [45] transferred the viewframe concept into 3-dimensional
space by describing distinct places by the projection of landmarks on the surrounding ego-
sphere.

Other works on retracing paths also make use of features, but are not explicitly inspired by
insect navigation models. Argyros et al. [1] proposed robot homing by using only angular
information of visual features in panoramic images. No range information or geometric rep-
resentation is computed. The robot tracks image corners to build up a visual memory con-
taining the life cycle of all features. For homing, the robot selects intermediate milestone
positions that allow tracking of at least three image features in-between. Then, it employs
a local control strategy to subsequently move to the milestone positions until the home po-
sition is reached. Goedemé et al. [29] presented a method for visual path following of an
automatic wheelchair based on sparsely captured omnidirectional images of the environ-
ment. Local 2D maps of image features are created by triangulation and corrected using
a SLAM approach, while the robot performs a homing motion to the location of the goal.
Šegvić et al. [80] introduced a hierarchical environment representation for appearance based
navigation, which contains a graph of key images with extracted 2D features at the top level,
and local 3D reconstructions at the bottom level. The information in the top level enables
robust navigation by visual servoing, while the bottom level is used for predicting feature lo-
cations to support tracking. Using this approach, the robot can cover large distances without
a consistent reconstruction of the environment. Furgale and Barfoot [27] proposed Visual

Teach and Repeat, which enables a robot to follow a taught path over several kilometers. In
this work, overlapping feature submaps are created during the teach pass which are used for
localization in the repeat pass. Global consistency is not enforced, since local consistency is
sufficient for the task. This approach requires about 348MB of data per kilometer on aver-
age. In the method introduced by Krajník et al. [51] the robot learns straight line sequences,
where each segment is associated with a landmark map, the initial orientation of the robot
and the segment length. For homing, the robot uses the landmark map only for correcting
its current heading, but then moves straight until it has traversed the segment according to
its odometry measurements. Krajník et al. [51] reported that this method required 848MB

64 Chapter 3: Global Topological Navigation

for a run of 8km length, which means an average of 106MB per kilometer. Cherubini and
Chaumette [12] proposed a method in which the robot stores a sequence of key images along
its path, such that subsequent images contain common static features. For repeating the path,
the robot extracts and matches common features in the current and the goal image and moves
to align the x-coordinates of the centroids of the feature point clouds.

All works mentioned above fail to give information about how to scale the resulting topolog-
ical maps and how to efficiently organize the information about the snapshots or viewframes
to save memory and computation time. To my knowledge, the first work addressing the
problem of scalability and memory efficiency for feature-based homing is the Landmark

Tree-Map (LT-Map) developed by Augustine et al. [2]. It is based on the snapshot concept
but uses the term viewframe to describe a configuration of landmarks and their respective
angles at a certain location in space. The LT-Map organizes landmark views in a tree so
that slowly changing, translation invariant landmarks are located towards the top of the tree
while translation variant landmarks are located in the leaves. The LT-Map can be scaled by
pruning the tree and, thus, discarding the information about quickly changing landmarks.

3.2. Approach

In this chapter, we develop a global navigation method based on the idea of the LT-Map.
This method is independent of any distance information, but solely relies on bearing angle
measurements to landmarks, which are extracted from an omnidirectional sensor. The robot
memorizes the landmark bearing configurations, so-called viewframes, of certain locations
and stores them in a non-redundant data structure, which can easily be pruned in case of
memory shortage. For homing, the robot retrieves the viewframes and computes homing
vectors which subsequently lead the robot to the previous viewframe until the original home
position is reached. An overview of the global navigation method is shown in Fig. 3.1. Using
this approach the robot can reliably retrace long-range paths without the need to maintain a
metrically correct Cartesian map. Thus, the method runs in constant time independent of the
length of the path and is suitable for robots with limited computational resources.

3.3 Viewframe-Based Navigation 65

Local Navigation (Chapter 2)

motion
commands

motion
capability

terrain
difficulty

Robot Motion Layer Operator

mapping
phase

homing
phase

goal
point

roll
pitch

Global Navigation (Chapter 3)

Omnidirectional
Camera

Feature
Extraction

Homing Vector
Calculation

panorama
image

Viewframe
Creation

image
features

current
viewframe

Landmark
Matching

Trail-Map

landmarks

mapping
phase homing

phase

homing
vector

Trail-Map
reference
viewframe

homing
phase

reference
viewframe

(3.3)

(3.9)

(3.5)

Figure 3.1.: Overview of the global navigation method with section numbers in brackets

3.3. Viewframe-Based Navigation

A viewframe (VF) is defined as the configuration of landmark views which corresponds to a
certain location in two- or three-dimensional Euclidean space (ref. Fig. 3.2). Each landmark
view (LV) contains the landmark’s ID, its descriptor and its bearing angle containing the
azimuth φi,a (and elevation φi,e in the 3D case) under which the landmark Li is observed. The
landmark views are extracted from omnidirectional images. All viewframes are assumed
to be rotationally aligned with each other, either using compass information or an estimated
orientation. The unit vector pointing in the direction of landmark Li is li and can be computed
from

(
φi,a, φi,e

)
as

li =
[
cos φi,e cos φi,a, cos φi,e sin φi,a, sin φi,e

]T . (3.1)

The robot records viewframes during a learning phase while it explores unknown regions
either autonomously or remotely controlled by an operator. A dissimilarity measure is re-
quired to decide when a new viewframe is recorded. At some point, the robot is commanded
to return to its starting position. For this, it has to compute homing vectors that successively

66 Chapter 3: Global Topological Navigation

L1(∞)

L2

L4

L5

L6(∞)

L3

l3
l2 l5

l1
l6

l4

Figure 3.2.: Illustration of a viewframe (adapted from [63]). Li are the landmarks and li are
the unit vectors pointing to them.

give the direction to the previously recorded viewframe until the viewframe corresponding
to the starting position is reached. The robot decides whether a viewframe is reached based
on another dissimilarity measure, which not necessarily needs to be the same measure as for
viewframe recording.

3.3.1. Viewframe Dissimilarity Measures

In the mapping phase the robot has to detect when the current view becomes significantly
different from the viewframe that it previously recorded. Additionally, during homing it
is important for the robot to recognize a known place or to know when the desired goal
viewframe is reached. Thus, a measure of viewframe dissimilarity has to be computed.

There are different ways for computing a dissimilarity measure δdiss. One possible choice
is the root mean square error between the N corresponding landmark unit vectors l′i of the
current view and li of the goal viewframe:

δrmse
diss =

1
N

√√
N∑

i=1

(
l′i − li

)2
. (3.2)

Furthermore, we can compute the mean absolute errors as

δabs
diss =

1
N

N∑
i=1

∣∣∣l′i − li

∣∣∣ . (3.3)

3.3 Viewframe-Based Navigation 67

The average angle between the corresponding unit vectors also gives a dissimilarity measure:

δ
ang
diss =

1
N

N∑
i=1

acos(l′i
T li). (3.4)

Another way for computing a dissimilarity measure is using the maximum value of all dif-
ference angles between corresponding unit vectors. To prevent large errors due to outliers or
strong noise from corrupting the dissimilarity measure, we do not use the maximum value
but the kth maximum value:

δmax
diss = kth-max

{
acos(l′i

T li)
}
, (3.5)

where the value for k can be set according to the number of corresponding landmarks, for
example as a ratio.

Fig. 3.3 shows the different dissimilarity measures in an environment with 20 landmarks
under the presence of noise. As can be seen, the root mean square error measure δrmse

diss and
the kth maximum measure δmax

diss are strongly affected by the measurement errors. The average
angle error measure δang

diss and the mean absolute error measure δabs
diss perform very similar.

The robot records a new viewframe when the dissimilarity measure of the current view
compared to the previously recorded viewframe exceeds the threshold ξδdiss . Thus, the density
of the viewframes depends on the local landmark configuration: In areas with only few close
landmarks, the viewframes will be further apart than in areas with many nearby landmarks.
That leads to an implicit adaption of the map resolution to the local conditions.

The smaller the threshold ξδdiss , the higher the resolution and, hence, the accuracy and the
memory requirements of the resulting map. The threshold should be chosen according to
the measurement accuracy of the bearing sensor and to the required path accuracy. Since
usually no high accuracy is required for the traversal between different workspaces, higher
thresholds should be preferred for the benefit of less memory.

68 Chapter 3: Global Topological Navigation

-50 0 50-50

-40

-30

-20

-10

0

10

20

30

40

50

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) δrmse
diss

-50 0 50-50

-40

-30

-20

-10

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b) δabs
diss

-50 0 50-50

-40

-30

-20

-10

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(c) δang
diss

-50 0 50-50

-40

-30

-20

-10

0

10

20

30

40

50

0

0.5

1

1.5

2

2.5

3

(d) δmax
diss with k = 2

Figure 3.3.: Dissimilarity measures for 20 landmarks (white asterisks) under the presence of
noise (1.0◦), outliers (10%) and occlusions (10%). The black circle at (0, 0) is
the reference location.

3.3.2. Homing Vector Calculation Methods

To move from the current position to a goal viewframe, the robot has to compute the moving
direction from the landmark angle information that it currently perceives compared to the
stored configuration in the viewframe. The resulting direction is usually represented by a
vector, called the homing vector.

In literature, different methods for calculating homing vectors from the current view to a
goal view have been proposed. Apart from image-based methods, where whole images are

3.3 Viewframe-Based Navigation 69

compared for homing vector calculation [24, 103] this section will focus on the landmark-
based methods for homing vector calculation.

Snapshot Model

The original snapshot model developed by Cartwright and Collett [10] assumed that the
projection of landmarks forms dark and bright sectors on the insect’s retina. The method uses
the apparent sizes and bearings of these sectors to infer the homing direction. As Fig. 3.4a
shows, the sectors of the current view are matched with the closest sectors of the same
sign (dark or bright) of the goal snapshot, which can cause mismatches. Then, tangential
unit vectors perpendicular to the bisecting line of each sector of the goal viewframe are
generated, which point in the direction to align the paired sectors. Radial unit vectors are
parallel to the bisecting lines of the sectors of the goal viewframe and act to reduce the
differences in the apparent sizes. The views are assumed to be rotationally aligned by an
external reference, e.g. a compass. The overall homing vector is computed as the sum of all
tangential and radial unit vectors.

Proportional Vector Model

Lambrinos et al. [54] modified the snapshot model by taking the magnitudes of the differ-
ences in bearings and apparent sizes into account as shown in Fig. 3.4b. The resulting model
is called proportional vector model since the lengths of the contributing vectors are propor-
tional to the magnitude of the differences. In the proportional vector model, the landmarks
are also matched by pairing the closest sectors in the snapshots.

Average Landmark Vector Model

As a further step, Lambrinos et al. [54] developed the average landmark vector (ALV)

model [54] (ref. Fig. 3.5a). This model does not require the whole snapshots. Instead, it
calculates only an average vector to all the landmarks in each snapshot and compares these
ALVs. The homing vector simply becomes the difference between the current ALV and the
ALV at the goal snapshot. The vectors to the landmarks can either point to the center of the
landmark or to the edges so that the landmark size does not have to be considered. Hence,
in the ALV model the apparent size of the landmarks is considered implicitly by the bear-

70 Chapter 3: Global Topological Navigation

(a) Snapshot model (b) Proportional vector model

Figure 3.4.: Snapshot model and proportional vector model (images adapted from Lambri-
nos et al. [54]). The cross denotes the goal location. The inner ring shows the
sectors of the goal viewframe, the outer ring shows the sectors of the current
view. Closest sectors of the same sign (bright or dark) are matched. Vectors
originate at the outer ring in the direction of the bisecting line of each dark or
bright sector of the goal viewframe and perpendicular to it. The direction of the
tangential vectors is given by the bearing angle difference of the matched sec-
tors. The direction of the radial vectors is given by the size differences of the
matched sectors. In the snapshot model, all vectors are unit vectors. In the pro-
portional vector model the lengths of the vectors are proportional to the bearing
and size differences, respectively.

ing differences. To increase the influence of the landmark size on the homing vector result,
Lambrinos et al. [54] proposed to add perpendicular vectors to each edge, which artificially
move the edges apart. This results in straighter homing paths when only few landmarks are
present in the environment (ref. Fig. 3.5b). The method assumes that the same landmarks are
visible from both snapshot positions. However, Lambrinos et al. [54] also mentioned that the
ALV model seems to tolerate occlusions of landmarks. Furthermore, the landmark sectors
do not have to be matched, but the ALV model implicitly establishes the matches. The ALV
model works well for artificial landmarks, but not for real image data, since it relies on a
very robust landmark detection [94].

Difference Vector Model

Assuming that landmark sectors can be matched correctly, the result of the ALV method is
equal to the result of the difference vector model [54] (ref. Fig. 3.6). The difference vectors

3.3 Viewframe-Based Navigation 71

are computed as the differences between the unit vectors pointing to the landmarks in the
current view and the unit vectors pointing to the closest landmarks in the goal view. Here,
the lengths of the difference vectors are also a function of the bearing distance as in the
proportional vector model. However, the difference vectors are secant vectors instead of
tangential vectors.

The methods for calculating a homing vector presented so far all assume that a landmark
has a perceivable size that does only change with the distance from the landmark but not
with the bearing the landmark is perceived at. That is only true for cylindrical objects which
can clearly be distinguished from the background. This is not always the case in real world
scenarios. Landmarks that are detected using feature detection algorithms appear as charac-
teristic points in images. They can have a scale but they usually do not have a size which is
clearly perceivable.

(a) ALV model (b) ALV model with and without increased size in-
formation

Figure 3.5.: ALV model (images adapted from [54]). The cross denotes the goal location.
The inner ring shows the sectors of the goal viewframe, the outer ring shows the
sectors of the current view. The dashed arrow is the ALV of the goal snapshot.
The thin solid arrows originating from the center of each view are the current
ALVs, computed as the average of all unit vectors pointing in the direction of a
sector border (small arrows on the outer ring) and perpendicular to it (b). The
difference between the current ALV and the goal ALV is the resulting homing
vector (thick arrow).

72 Chapter 3: Global Topological Navigation

Figure 3.6.: Difference vector model (image adapted from [54]). The cross denotes the goal
location. The inner ring shows the sectors of the goal viewframe, the outer ring
shows the sectors of the current view. Closest sectors of the same sign (bright or
dark) are matched. Difference vectors are secant vectors computed as the differ-
ences between the unit vectors pointing to the matching landmark sectors (only
the vectors originating from the dark sectors are shown for clarity reasons).

Considering landmarks as point image features without a perceivable size, we get the hom-
ing vector h from the difference vector model as

h =
1
N

N∑
i=1

(
l′i − li

)
, (3.6)

where l′i are the unit landmark vectors in the current view and li are the corresponding unit
landmark vectors of the goal view. Here, the sum of the difference vectors is normalized by
the number of corresponding landmarks N. Fig. 3.7 visualizes the resulting streamlines and
the deviations from the direct path to the home position.

Improved Difference Vector Model

When using the difference vector model, the difference vectors are always secants of the
unit circle around the current viewframe. For this method to work well, it is assumed that
the landmarks are distributed isotropically around each viewframe and that a 360◦ panorama
of the scene is taken. Then, errors in the orthogonal direction to the homing vector cancel
each other out. When landmarks are located only in one direction of the viewframe, er-
rors cannot cancel out. Hence, the homing vector is biased, especially when the landmarks
appear only in the homing vector direction. This behavior is shown in Fig. 3.8a, where the
homing vectors near the connecting line between the landmark cluster and the home position

3.3 Viewframe-Based Navigation 73

-50 0 50
-50

0

50

(a) Homing vector streamlines
-50 0 50

-50

0

50

0◦

20◦

40◦

60◦

80◦

(b) Angle deviation from the direct path

Figure 3.7.: Difference vector model (ref. Eq. (3.6)): Homing vector streamlines and de-
viations from the direct path. Green asterisks: Landmarks. Red circle: Home
location. The x and y coordinates are given in units.

are approximately perpendicular to the desired homing direction. This leads to zigzag-like
viewframe approaching behaviors (see Fig. 3.10a).

Creating radial homing vector components using the apparent size of the landmark would
solve this problem. However, when landmarks are assumed to be points, they do not have
an apparent size. In that case, the apparent width of an imaginary landmark between two
landmark observations can be used to achieve more direct homing vectors. We used the
angles between two landmarks and the robot as apex to generate radial homing vector com-
ponents. When moving towards two landmarks, the angle between them increases. Hence,
we add a component xi in the positive direction of the bisecting line of the two landmarks
when the angle between those landmarks in the goal viewframe is greater than in the current
viewframe. Otherwise, we subtract the component:

h =
1
N

N∑
i=1

(
l′i − li

)
+

1
N − 1

N−1∑
i=1

(
l′i + l′i+1

)
2

xi (3.7)

xi =
∣∣∣acos(lT

i li+1)
∣∣∣ − ∣∣∣acos(l′i

T l′i+1)
∣∣∣ = βi,i+1 − β

′
i,i+1.

The construction of a homing vector with and without the angle differences is illustrated in
Fig. 3.9 for an environment with only two landmarks.

74 Chapter 3: Global Topological Navigation

-50 0 50
-50

0

50

-50 0 50
-50

0

50

0◦

20◦

40◦

60◦

80◦

(a) Difference vector model (ref. Eq. (3.6))

-50 0 50
-50

0

50

-50 0 50
-50

0

50

0◦

20◦

40◦

60◦

80◦

(b) Improved difference vector model (ref. Eq. (3.7))

Figure 3.8.: Homing vector streamlines (left) and angle deviations from the direct path
(right) for the difference vector model and improved difference vector model
with a landmark cluster (green asterisks). The x and y coordinates are given in
units.

Fig. 3.8b shows the resulting streamline and angle deviation plot. The homing vectors have
now improved when only landmarks in the direction of movement are available as shown
in Fig. 3.10b. However, the width of the imaginary landmarks not only decreases when the
robot travels away from the landmarks, but also when the imaginary landmarks are perceived
at a flat angle. Hence, in these areas the resulting homing vectors are erroneous.

3.3 Viewframe-Based Navigation 75

l′2

l2

hs = l′1 − l1 + (l′2 − l2)

h = hs + hr

l1

l2

l′1

l1

l′2 − l2

l′1 − l1

L1

L2

VF2

VF1

hr

hsh

β

β′

Figure 3.9.: Homing vector construction: hs: homing vector using difference vector model
with only secant components. hr: radial component from angle differences. h:
homing vector using difference vector method and angle differences

8 10 12 14 16 18 20
62

64

66

68

70

72

74

76
learning path
homing path

(a) Difference vector model
8 10 12 14 16 18 20

62

64

66

68

70

72

74

76
learning path
homing path

(b) Improved difference vector model

Figure 3.10.: Resulting homing paths using the difference vector model and the improved
difference vector model. The x and y coordinates are given in units.

Normalized Difference Vector Models

This section presents another variant of the difference vector model, which is called normal-
ized difference vector model. In contrast to the original difference vector model, this method
calculates the homing vector by summing the normalized difference vectors as

h =
1
N

N∑
i=1

(
l′i − li

)∣∣∣l′i − li

∣∣∣ . (3.8)

76 Chapter 3: Global Topological Navigation

-50 0 50
-50

0

50

-50 0 50
-50

0

50

0◦

20◦

40◦

60◦

80◦

(a) Improved difference vector model (ref. Eq. (3.7))

-50 0 50
-50

0

50

-50 0 50
-50

0

50

0◦

20◦

40◦

60◦

80◦

(b) Normalized improved difference vector model (ref. Eq. (3.9))

Figure 3.11.: Homing vector streamlines (left) and angle deviations from the direct path
(right) for the improved difference vector model and the normalized improved
difference vector model with a landmark cluster (green asterisks) and 10%
outliers. The x and y coordinates are given in units.

We can apply the same kind of normalization to the improved difference vector model:

h =
1
N

N∑
i=1

(
l′i − li

)∣∣∣l′i − li

∣∣∣ +
1

N − 1

N−1∑
i=1

(
l′i + l′i+1

)
|l′i + l′i+1|

sign(xi) (3.9)

xi =
∣∣∣acos(lT

i li+1)
∣∣∣ − ∣∣∣acos(l′i

T l′i+1)
∣∣∣ = βi,i+1 − β

′
i,i+1.

The advantage of the normalization becomes apparent when false landmark matches occur.
Since false landmark matches are likely to yield unit vectors pointing in a very different di-

3.3 Viewframe-Based Navigation 77

rection than the unit vector corresponding to the true match, the resulting difference vectors
are often large. Thus, these false matches have a very strong influence on the homing vector
direction. We can decrease this influence when we use all difference vectors in the normal-
ized form. Fig. 3.11a shows the streamlines and deviations of the homing vectors computed
by the improved difference vector model when 10% landmark outliers are present. In this
case, homing would most probably fail when the robot starts at the lower left corner of the
plot. In contrast, with the normalized version, the homing vectors are more stable in the
presence of outliers (ref. Fig. 3.11b). The normalized improved difference vector model is
related to the original snapshot model [10], which also uses unit vector components accord-
ing to the apparent size of a landmark and according to the bearing changes.

Tangential Correction Vector Method

Weber et al. [98] proposed a method for homing vector calculation based on tangential
correction vectors that are perpendicular to the current landmark bearing φ′i and proportional
to the difference between the current and the goal bearing φi as

h =

N∑
i=1

∣∣∣φi − φ
′
i

∣∣∣ l′i⊥ with l′i⊥ =

 R(90◦)l′i if φi < φ
′
i

R(−90◦)l′i if φi ≥ φ
′
i

(3.10)

and R(α) =

cos(α) − sin(α)
sin(α) cos(α)

 .
The resulting streamlines and path deviation plots shown in Fig. 3.12 reveal that this homing
vector calculation method leads to a landmark avoiding behavior. This is beneficial when the
landmarks are also obstacles, which is not the case when using image features as landmarks,
since image features can also be detected on flat, but textured ground.

Image Based Visual Servoing (IBVS) Methods

Another way for calculating homing vectors originates from the visual servoing background.
In visual servoing, the velocity of an end-effector or a robot is controlled by the visual
deviation of the current scene from a reference scene. Transformed to the navigation task this
means that an error function has to be defined which contains the deviation of the currently
perceived landmark configuration from a goal landmark configuration. The robot’s velocity
is then controlled in a way that the error function decreases.

78 Chapter 3: Global Topological Navigation

-50 0 50
-50

0

50

(a) Homing vector streamlines
-50 0 50

-50

0

50

0◦

20◦

40◦

60◦

80◦

(b) Angle deviation from the direct path

Figure 3.12.: Tangential correction vector method (ref. Eq. (3.10)): Homing vector stream-
lines and angle deviations from the direct path to the home position (red circle).
Green asterisks: Landmarks. The x and y coordinates are given in units.

IBVS Based on Bisecting Homing Vector Components Liu et al. [59] introduced a
method for homing vector calculation based on bearing-only landmark information in 3D. It
uses the angles βi formed between the unit vectors l′i and l′i+1 to the landmarks Li and Li+1 to
generate homing vector components along the bisecting lines of these angles. The homing
vector is then calculated as

h =

N∑
i=1

vPi l
′
i (3.11)

vPi = −2



cos(β
′
1

2) 0 0 ... 0 cos(β
′
N
2)

cos(β
′
1

2) cos(β
′
2

2) 0 ... 0 0

0 cos(β
′
2

2) cos(β
′
3

2) ... 0 0
...

0 0 0 ... cos(β
′
N−1
2) cos(β

′
N
2)





β′1 − β1

β′2 − β2

β′3 − β3

...

β′N − βN


βi = acos(lT

i li+1) and β′i = acos(l′i
T l′i+1) for i < N

β′N = acos(l′N
T l′1).

Fig. 3.13 shows the resulting streamlines and angle deviations.

3.3 Viewframe-Based Navigation 79

-50 0 50
-50

0

50

(a) Homing vector streamlines
-50 0 50

-50

0

50

0◦

20◦

40◦

60◦

80◦

(b) Angle deviation from the direct path

Figure 3.13.: IBVS method using bisecting components (ref. Eq. (3.11)): Homing vector
streamlines and deviations from the direct path to the home location (red cir-
cle). Green asterisks: Landmarks. The x and y coordinates are given in units.

IBVS Based on Landmark Angle Differences In another work Liu et al. [60] devel-
oped a visual homing controller solely based on the scale values of the detected SIFT fea-
tures. In analogy to the derivations in Liu et al. [60], below we will derive a visual homing
controller based on landmark angles and prove its stability.

The bearing of a landmark is defined as φi = atan2(yi − y, xi − x), where x, y are the robot
coordinates in the world frame and xi, yi are the landmark coordinates in the world frame.
The bearing is also given in the world frame, independent of the robot’s current heading.
Furthermore, the distance to a landmark Li is di =

√
(xi − x)2 + (yi − y)2. We can then define

the error function for visual servoing as an error vector e = (φ′ − φ), where φ′ is the bearing
vector in the current view and φ is the bearing vector of the goal view. We can calculate the
derivative of a single element of the error function as

dei

dt
=

d
dt

(
φ′i(x, y) − φi

)
=

dφ′i
dx

dx
dt

+
dφ′i
dy

dy
dt

(3.12)

=
yi − y

d2
i

vx −
xi − x

d2
i

vy =
1
di

[
vx sin φ′i − vy cos φ′i

]︸ ︷︷ ︸
vi⊥

, (3.13)

where vx = dx
dt and vy =

dy
dt .

80 Chapter 3: Global Topological Navigation

In the 1D case the term in square brackets can be interpreted as vi⊥, which is the projection
of the current velocity on a line perpendicular to the ray from the current robot position to
the landmark. Thus, the derivative of the ith element of the error vector becomes

dei

dt
=

1
di

vi⊥. (3.14)

To ensure an exponential decrease of the error, the velocity control law would be

vi⊥ = λiei, with λi < 0. (3.15)

In the 2D case, we can combine the single velocity components of the 1D controllers, so
that the full control law becomesvx

vy

 =

n∑
i=1

λi(φ′i − φi)

 sin(φ′i)
− cos(φ′i)

. (3.16)

We can prove the convergence of this control law using Lyapunov theory as in Liu et al.
[60]. A non-negative energy function can be defined as

E =
1
2

n∑
i=1

(φ′i − φi)2. (3.17)

The stability is proven when

dE(t)
dt

< 0. (3.18)

The derivative of the energy function is

dE
dt

=
dE
dφ′i

dφ′i
dt

(3.19)

=

n∑
i=1

(φ′i − φi)
dφ′i
dt

(3.20)

=

n∑
i=1

(φ′i − φi)
1
di

[
vx sin φ′i − vy cos φ′i

]
(3.21)

= vx

n∑
i=1

φ′i − φi

di
sin φ′i − vy

n∑
i=1

φ′i − φi

di
cos φ′i . (3.22)

3.3 Viewframe-Based Navigation 81

By setting λ = − 1
di

and using Eq. (3.16) we get

dE
dt

= −(v2
x + v2

y) ≤ 0 (3.23)

This term is always smaller than or equal to zero and equality applies for example when
φ′i = φi. Since di cannot be measured, the variable λ is set to a negative constant value.

For the calculation of a homing vector, we can transform the control law in Eq. (3.16):hx

hy

 = λ

n∑
i=1

(φ′i − φi)

 sin(φ′i)
− cos(φ′i)

, (3.24)

where the angle difference (φ′i − φi) always has to be in the range (−π, π]. When we use the
homing vector only in normalized form, the exact value of λ does not have any influence.

It is interesting to note that the homing vector calculation scheme derived by this visual
servoing approach is exactly the same as the tangential correction vector method proposed
by Weber et al. [98] given in Eq. (3.10).

Comparison of Homing Vector Calculation Methods

To compare the performance of different homing vector calculation methods, we defined a
reference scenario consisting of an environment with a general landmark distribution that
is neither isotropic nor totally clustered. We added angular measurement noise with a stan-
dard deviation of 1◦, 10% landmark occlusions and 10% false landmark matches as outliers.
Then, we generated homing vector streamline plots and computed the angular deviations
from the direct path to the home position. We define a homing vector computation method
as robust, if all streamlines from any direction reach the home location. Furthermore, the
angular deviation from the direct path to the home location should be as small as possi-
ble. Table 3.1 gives an overview of the discussed homing vector calculation methods, their
robustness and their angular deviations from the direct path. Fig. 3.14 and 3.15 visualize
the streamlines and angle deviations. As can be seen, only the normalized difference vector
model and the improved normalized difference vector model are robust according to our
definition, which means that all streamlines reach the home location. Furthermore, the nor-
malized improved difference vector method has the lowest angle deviations from the direct
path to the home position. Hence, in a general environment with outliers and noise, the
normalized improved difference vector method should be chosen.

82 Chapter 3: Global Topological Navigation

-50 0 50
-50

0

50

-50 0 50
-50

0

50

0◦

20◦

40◦

60◦

80◦

(a) Difference vector model after Lambrinos et al. [54] (Eq. (3.6))

-50 0 50
-50

0

50

-50 0 50
-50

0

50

0◦

20◦

40◦

60◦

80◦

(b) Normalized difference vector model (Eq. (3.8))

-50 0 50
-50

0

50

-50 0 50
-50

0

50

0◦

20◦

40◦

60◦

80◦

(c) Improved difference vector model (Eq. (3.7))

Figure 3.14.: Homing vector streamlines (left) and deviations from the direct path (right) for
the reference scenario (general landmark configuration (green asterisks), noise
(1.0◦), outliers (10%), occlusions (10%)). Red circle: home location. The x and
y coordinates are given in units.

3.3 Viewframe-Based Navigation 83

-50 0 50
-50

0

50

-50 0 50
-50

0

50

0◦

20◦

40◦

60◦

80◦

(a) Normalized improved difference vector model (Eq. (3.9))

-50 0 50
-50

0

50

-50 0 50
-50

0

50

0◦

20◦

40◦

60◦

80◦

(b) Tangential correction vector method after Weber et al. [98] (Eq. (3.10))

-50 0 50
-50

0

50

-50 0 50
-50

0

50

0◦

20◦

40◦

60◦

80◦

(c) Image based visual servoing after Liu et al. [59] (Eq. (3.11))

Figure 3.15.: Homing vector streamlines (left) and deviations from the direct path (right) for
the reference scenario (general landmark configuration (green asterisks), noise
(1.0◦), outliers (10%), occlusions (10%)). Red circle: home location. The x and
y coordinates are given in units.

84 Chapter 3: Global Topological Navigation

Table 3.1.: Comparison of homing vector calculation methods for reference scenario

robust
mean angle
deviation

standard deviation
of angle deviation

maximum
angle

deviation
Difference vector model

(Fig. 3.14a) [54]
- 14.1◦ 21.2◦ 176.7◦

Normalized difference vector
model (Fig. 3.14b)

X 12.2◦ 10.5◦ 60.7◦

Improved difference vector
model (Fig. 3.14c)

- 11.1◦ 17.8◦ 178.9◦

Normalized improved
difference vector model

(Fig. 3.15a)
X 7.3◦ 5.7◦ 38.6◦

Tangential correction vector
method (Fig. 3.15b) [98]

- 25.9◦ 23.1◦ 177.6◦

IBVS based on bisecting
components (Fig. 3.15c) [59]

- 36.4◦ 31.5◦ 180.0◦

Except for the tangential correction vector method [98], all of the described methods for
calculating homing vectors work in 2D, as well as in 3D. Flying robots can make use of
three-dimensional homing vectors, but wheeled or legged robots are restricted to the ground,
so that they can only change the yaw component of their orientation actively. That means, the
z-component of the homing vector or the homing elevation angle can be ignored, and only
the azimuth component of the homing angles or the x- and y-components of the homing
vector are considered. However, in environments with large height changes, the elevation
angle can help to ensure that the robot is on the correct path, which for example leads uphill.

3.4 The Landmark-Tree Map 85

3.4. The Landmark-Tree Map

A translational motion of the robot results in large bearing changes of close landmarks,
whereas more distant landmarks hardly change their bearings. A straightforward solution
for building a map from the recorded viewframes would store each viewframe as a node of
a topological map. However, that means that landmark views (LVs) of distant landmarks,
which do not change over several viewframes, are stored redundantly. Furthermore, in case
of memory shortage, there is no easy way to downscale the map.

Aiming at a scalable topological representation of the environment, Augustine et al. [2] in-
troduced the LT-Map (Landmark-Tree Map) for navigation based on bearing-only landmark
observations. The main idea behind the LT-Map is to build up a tree structure instead of
storing a list of viewframes containing all LVs. In that tree, LVs which do not change sig-
nificantly between consecutive viewframe positions are shared between these viewframes.
As a result, the LVs are sorted by their degree of translation invariance. LVs which do not
change over many viewframes are on a higher level in the tree and correspond to translation
invariant objects. LVs which change significantly from viewframe to viewframe are in the
leaves and lower nodes of the tree. These LVs correspond to close objects, which are trans-
lation variant. Viewframes can be retrieved from the tree by following the path from a leaf
to the root node and collecting the LVs of all visited nodes.

The LT-Map data structure is claimed to be memory efficient because LVs that stay constant
over several viewframes are only stored once. When the angle towards a landmark changes
more than a given threshold δang, a new LV is stored with the new bearing angle, the same
landmark ID and the new landmark descriptor, which allows stable matching. Furthermore,
the LT-Map data structure is scalable. When the robot runs out of memory, the leaves of
the tree can be pruned. This means that local information is discarded but the translation
invariant, global information is preserved. Hence, the robot will not follow the original path
exactly, but it will still be able to find its way. Only the probability of the robot to get lost
increases with pruning.

Fig. 3.16 shows an example of a landmark tree created by the original LT-Map algorithm
from the simple 2D scenario shown in Fig. 3.17. The angle threshold for creating a new LV
was set to δang = 1◦. When viewing the tree in Fig. 3.16 in more detail, we can see that
some LVs are split to different nodes although their bearing angle difference is smaller than
the assumed threshold of 1◦. For example, the nodes 6 and 7 both contain LVs to L2 with

86 Chapter 3: Global Topological Navigation

∅ 0

L1,140.4◦

L2,28.0◦

L3,51.6◦

L4,73.8◦

L5,59.8◦

16
L3,49.1◦

L4,70.5◦

L5,57.2◦
13

L1,134.8◦

L2,26.0◦ 15
L1,139.2◦

L2,25.0◦ 14

L3,47.5◦

L5,55.7◦ 8

L1,144.7◦

L2,24.0◦

L4,69.8◦
12

L2,22.4◦

L4,68.8◦ 9

L1,152.0◦ 11L1,156.5◦ 10

L5,54.4◦ 1

L1,161.5◦

L2,21.9◦

L3,47.2◦

L4,68.5◦
7

L3,46.2◦

L4,67.4◦ 2

L1,167.3◦

L2,21.3◦ 6L2,20.3◦ 3

L1,173.7◦ 5L1,180.7◦ 4

↑ VF 1 ↑ VF 2

↑ VF 3

↑ VF 4

↑ VF 5 ↑ VF 6

↑ VF 7 ↑ VF 8 ↑ VF 9

↑ VF 10

Figure 3.16.: Example of an LT-Map: The nodes contain the landmarks Li with their angle
when inserting them into the tree. The nodes are numbered for referencing.
VF: viewframe

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

landmarks

path with viewframes (VF)

L1
VF1

VF10

L2

L3L5

L4

Figure 3.17.: Scenario with ten viewframes VF1 to VF10 and five landmarks L1 to L5

angles of 21.3◦ and 21.9◦, respectively. Furthermore, the LVs to L3 are split between nodes
7 and 8, and the LVs to L4 are split between nodes 7 and 9, although their angle differences
are smaller than the threshold. Hence, the intuition that landmarks whose bearings change
slowly (translation invariant) always appear in the upper levels of the tree and landmarks
with quickly changing bearings (translation variant) are located in the lower levels, is not
always correct. This behavior is caused by the structure of the tree. A LV is only shared by
more than one viewframe if the viewframes also share all higher-level LVs. Since the angles
of the LVs to L3 and L4 change from viewframe 3 to 4, the lower LV to L2 is not considered.

3.5 The Trail-Map 87

That means, it is not even checked whether the bearing of L2 has changed at all. Hence, the
height of the LVs in the tree does not give reliable information on the level of translation
invariance. For this reason, the pruning operation is likely to preserve information of volatile
landmarks while discarding information of stable, translation invariant landmarks.

Hence, a tree does not seem to be the optimal data structure for the viewframe map concept,
because it does not reflect the structure of an ideal viewframe map. A tree always represents
a hierarchy of information and does not permit overlaps between neighboring branches. For
the viewframe map, such overlaps are required. For this reason, a data structure different
from a tree is better suited for representing the different levels of translation invariance.

3.5. The Trail-Map

To come up with an alternative data structure for the viewframe map problem, let us have
a look at Fig. 3.18, which shows a path through a simplified environment with three land-
marks. When we assume an angle threshold of δang = 45◦ for mapping, each landmark
spans eight sectors visualized by the colored lines1. Within each sector, the corresponding
landmark is perceived with a bearing difference of at most 45◦. A new viewframe is ac-
quired when the angle of at least one landmark changes more than δang. Hence, every time
the robot leaves a landmark sector, it acquires a new viewframe. In this environment, a
viewframe region is defined by the intersection of three specific landmark sectors. The first
three viewframe regions of the robot path are highlighted in Fig. 3.18. When crossing a sec-
tor border, the robot also observes a new LV. The LVs of the three different landmarks are
visualized by the colored path segments.

When traversing the path, the robot observes several LVs, but only one LV changes with the
acquisition of each new viewframe. Hence, the robot should rather store the observed LVs
instead of the single viewframes which redundantly contain many LVs. This was also the
key idea behind the LT-Map. Fig. 3.19 illustrates the observed LVs and the corresponding
viewframe numbers.

To make the viewframe map scalable in terms of memory, we want to introduce a hierarchy
of how translation invariant each LV is. For this, the LVs are ordered by the number of

1For the sake of simplicity and without loss of generality we set the angle intervals to full 45◦ intervals in this
example instead of letting the angle intervals start individually at the bearing angle at which the landmark
is perceived first.

88 Chapter 3: Global Topological Navigation

L2

L1

L3

VF 1
VF 2

VF 3

Figure 3.18.: Intuitive illustration of viewframe mapping. VF 1-3: highlighted first three
viewframes. Li: Landmarks with sectors

1 2 3 4 5 6 7 8 9 10 11

L1

L2

L3

VF

Figure 3.19.: From the LVs to the Trail-Map representation (step 1)

Level 1

Level 2
Level 3
Level 5
Level 6

1 2 3 4 5 6 7 8 9 10 11VF

Figure 3.20.: From the LVs to the Trail-Map representation (step 2)

viewframes they span. LVs that span many viewframes have a higher level of translation
invariance than LVs that span only a few viewframes. LVs which span the same number of
viewframes should be on the same level in the hierarchy. Fig. 3.20 shows the hierarchically
ordered LVs. The level number gives the number of viewframes that each of the contained
LVs spans. Level 4 does not exist since no LV spans exactly 4 viewframes. The resulting
structure is the key idea of the Trail-Map, which stands for Translation Invariance Level
Map. Now, when the robot runs out of memory, the LVs in the lower levels can be deleted
without discarding stable and important long-term information.

3.5 The Trail-Map 89

Similar to the density of the viewframes, the degree of translation invariance and, hence, the
pruning operation, also adapt to the local landmark distribution. For regions with only far
landmarks, LVs in a specific level might span a much longer metric distance than LVs of
the same level in regions with close landmarks. As a result, after pruning there will still be
more viewframes in regions with a high landmark density than in regions with only distant
landmarks.

To represent the structure of the translation invariance levels without memory overhead, we
chose to use a combination of linked lists. On the top level, there is a list of translation
invariance levels, which is ordered by the level number. Each level contains a linked list of
LVs in the order they were observed by the robot. A landmark view in this list consists of
the landmark’s descriptor, its ID, its bearing as unit vector, and the number of the viewframe
when it was added to the list. The viewframe number is required for the extraction of single
viewframes from the Trail-Map. Fig. 3.21 illustrates the implementation of the Trail-Map
data structure.

LV LV

LV LV LV

LV LV

Level 3

Level 2

Level 1

open list

LV LV LV

pointer to LV

pointer to LV

pointer to LV

pointer to LV

Trail-Map

Figure 3.21.: Implementation of the Trail-Map. LV: Landmark view

Algorithm 1 gives pseudo-code for creating this list of landmark view lists. In the beginning,
the Trail-Map contains only one level: level 1. Furthermore, there is an open list which
always contains references to the landmarks that the robot observed in the previous step.
The open list is also empty initially. When the robot observes the first viewframe, all LVs
to the landmarks in the viewframe are added to level 1 and references to all these LVs are
stored in the open list (lines 19-21). When the robot observes the next viewframe, level 2 is
created (lines 1-2) and all LVs of the open list are compared to the features in the current
viewframe (lines 3-5). If a landmark in the open list is also present in the current viewframe,

90 Chapter 3: Global Topological Navigation

Algorithm 1: Appending a viewframe to the Trail-Map
Input : viewframe VF; trailMap; openList
Output: trailMap; openList

1 if !trailMap.GetHighestLevel.IsEmpty then
2 trailMap.addLevel;

3 foreach l in openList do
4 foreach f in VF.LandmarkViews do
5 if f .descriptor matches l.descriptor then
6 if | f .angle-l.angle| < δang then
7 trailMap[l.getLevel].remove(l);
8 trailMap[l.getLevel+1].append(l);
9 openList.updatePointerTo(l);

10 else
11 openList.removePointerTo(l);
12 trailMap[1].append(f);
13 openList.appendPointerTo(f);

14 VF.remove(f);
15 found:=true;
16 break;

17 if !found then
18 openList.removePointerTo(l);

19 foreach f in VF.LandmarkViews do
20 trailMap[1].append(f);
21 openList.appendPointerTo(f);

and if its angle is within the angle threshold, then the LV is removed from its current level
and appended to the end of the next higher level (lines 7-8). The reference to that LV in
the open list is updated (line 9). If the angle of the landmark has changed more than the
specified threshold, then the new LV is added to level 1, the reference to the old LV in the
open list is deleted and the reference to the new LV is added at the end of the open list (lines
11-13). If a landmark in the open list cannot be found in the current viewframe, then its
reference is deleted from the open list (line 18). All landmarks of the current viewframe that
were observed for the first time are added to level 1 and their references are appended to the
open list (lines 19-21). By repeating this procedure for each newly acquired viewframe, we
achieve the following properties for the Trail-Map:

3.5 The Trail-Map 91

1. The level each LV is stored in corresponds to the number of viewframes for which the
LV did not change its angle by more than the specified threshold δang.

2. The references in the open list are always ordered by the level number of the corre-
sponding landmark view.

3. The LVs in the single levels are ordered by the viewframe number they were first
observed at.

Compared to the LT-Map, the Trail-Map has some advantages:

• Intuitive: The resulting structure of the Trail-Map corresponds to the expected hierar-
chy of the LVs.

• Non-redundant: A landmark view is stored only once as long as the landmark’s bear-
ing does not change significantly.

• Efficient: The Trail-Map operations, especially the map pruning, are faster than for the
LT-Map (ref. Section 3.6.2).

As a disadvantage, the retrieval of the viewframes from the Trail-Map has become more
difficult. While for the LT-Map, only the paths from the leaves to the root node have to be
traversed, full lists must be searched when looking for a specific viewframe number in the
Trail-Map. However, since the lists are sorted, this search can be implemented efficiently.
Furthermore, for general navigation it is not required to extract specific viewframes, but
in most cases the viewframes are retrieved in the same or in reverse order of their visit.
This stepwise retrieval can be solved with minimal costs due to the sorted structure of the
lists that emerges from the construction algorithm. That means, when having retrieved one
viewframe, to get the next or the previous viewframe we only have to consider the direct
neighbors of the LV in each level list and check whether the sum of the level number and
the insertion frame number of that LV fits to the number of the viewframe to be retrieved.
This procedure is repeated until the newly acquired viewframe contains at least one different
LV than the previous one. Furthermore, viewframes with too few LVs are discarded to allow
robust navigation.

When landmarks are occluded or cannot be detected in some images, translation invariant
landmarks would be inserted in lower levels due to Algorithm 1. To prevent this, landmarks
which are not visible in some images and reappear at the same bearing angle should be
inserted such as they were observed all the time. To do this, LVs which disappear in the next
viewframe, are held in the open list and marked as waiting. They are only deleted from the

92 Chapter 3: Global Topological Navigation

open list, when they could not be observed for more than a specified number of viewframes
or when they are observed at a significantly different angle. In case they are detected again
at an angle within the angle threshold, they are moved up to the level where the landmark
would have been if it had been visible all the time.

The same landmark configuration that resulted in the example LT-Map in Fig. 3.16 gives
the Trail-Map structure depicted in Fig. 3.22. The Trail-Map contains 31 LVs as compared
to 33 in the LT-Map. Furthermore, a new LV is only inserted when the angle changes signif-
icantly, irrespective of how the other LVs in the same viewframe behave. Thus, inconsisten-
cies as pointed out for the LT-Map do not occur. When pruning the Trail-Map in Fig. 3.22
by one level, the viewframes 1 and 2, and 5 and 6, respectively, will be regarded as one
viewframe by the viewframe retrieval algorithm, because they contain the same LVs.

∅ 0

L1,140.4◦

L2,28.0◦

L3,51.6◦

L4,73.8◦

L5,59.8◦

16
L3,49.1◦

L4,70.5◦

L5,57.2◦
13

L1,134.8◦

L2,26.0◦ 15
L1,139.2◦

L2,25.0◦ 14

L3,47.5◦

L5,55.7◦ 8

L1,144.7◦

L2,24.0◦

L4,69.8◦
12

L2,22.4◦

L4,68.8◦ 9

L1,152.0◦ 11L1,156.5◦ 10

L5,54.4◦ 1

L1,161.5◦

L2,21.9◦

L3,47.2◦

L4,68.5◦
7

L3,46.2◦

L4,67.4◦ 2

L1,167.3◦

L2,21.3◦ 6L2,20.3◦ 3

L1,173.7◦ 5L1,180.7◦ 4

↑ VF 1 ↑ VF 2

↑ VF 3

↑ VF 4

↑ VF 5 ↑ VF 6

↑ VF 7 ↑ VF 8 ↑ VF 9

↑ VF 10

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

landmarks

path with viewframes (VF)

L1
VF1

VF10

L2

L3L5

L4

VF-Number

Level 4

1 2 3 4

L5 (54.4◦)

Level 3

5 6 7

L3 (46.2◦)

L4 (67.4◦)

L3 (47.2◦)

L4 (68.5◦)

L5 (55.7◦)

Level 2

8 9

L2 (20.3◦) L2 (21.3◦) L2 (22.4◦) L3 (48.5◦)

L4 (69.8◦)

L5 (57.2◦)

Level 1

10

L1
(180.7◦)

L1
(173.7◦)

L1
(167.3◦)

L1
(161.5◦)

L1
(156.5◦)

L1
(152.0◦)

L2
(24.0◦)
L1

(144.7◦)

L2
(25.0◦)
L1

(139.2◦)

L3
(49.8◦)
L4

(71.1◦)
L2

(26.0◦)
L1

(134.8◦)

L5
(59.8◦)
L3

(51.6◦)
L4

(73.8◦)
L2

(28.0◦)
L1

(140.4◦)

Figure 3.22.: Comparison of LT-Map and Trail-Map. Top: LT-Map, Bottom left: Scenario, Bottom right: Trail-Map

94 Chapter 3: Global Topological Navigation

3.6. Performance Comparison of the Trail-Map and the

LT-Map

To compare the performances of the Trail-Map and the LT-Map, we created a MATLAB sim-
ulation environment consisting of uniquely identifiable landmarks spread randomly within
an area of 200×200 units. Fig. 3.23 shows a path starting at (0, 0) with a length of about 130 units.
The simulated robot with an omnidirectional landmark sensor was led along this path and
recorded viewframes. We chose the kth maximum angle dissimilarity measure δmax

diss (ref. Sec-
tion 3.3.1) with k = 1 for learning and for retracing the path, since no noise and outliers were
simulated. The dissimilarity threshold for creating a new viewframe was set to ξmap

δmax
diss

= 5◦.
That means, the robot recorded a new viewframe every time one landmark changed its bear-
ing by more than 5◦ compared to the previously recorded viewframe. We also set the dis-
similarity threshold for homing to ξhom

δmax
diss

= 5◦. The angle thresholds for creating a new LV in
the LT-Map and the Trail-Map were δang = 5◦.

-100 -50 0 50 100
-50

0

50

100

150
landmarks

learning path

goal point

Figure 3.23.: Simulation environment with learning path. The robot should retrace the path
to reach the goal location.

In this simulation, we placed the robot back to the starting position after learning the path
and let the robot compute homing vectors to retrace the path in the same direction as during
learning. Since the robot has a perfect omnidirectional sensor, the direction of retracing the
learned path has no influence on the performance. For calculating the homing vector, we
used the difference vector model in Eq. (3.6) as described in Section 3.3.2, because we did

3.6 Performance Comparison of the Trail-Map and the LT-Map 95

not simulate any noise and had an isotropic landmark distribution. However, we adapted
the length of the navigation vector to the local landmark configurations. When the angle
of a landmark between two navigation steps changed less than δang, the navigation vector
length was increased, and when a landmark bearing changed by more than 2δang between
two navigation steps, the navigation vector length was decreased. Thus, in regions with
nearby landmarks, the single navigation steps were smaller than in regions with landmarks
that were far away. We did not simulate any noise, outliers, or occlusions, because the basic
behavior of the LT-Map and the Trail-Map should be compared. The simulated robot should
navigate along the recorded path using the LT-Map and the Trail-Map at different pruning
levels. To ensure that the robot could always reach the goal position with a good accuracy,
the last viewframe acquired at the goal point was never pruned.

3.6.1. Memory and Navigation Performance

To evaluate the memory and navigation performance, we randomly spread 100 uniquely
identifiable landmarks within the area of 200 × 200 units. We ran the simulation 100 times
with different isotropic landmark configurations for each pruning level and randomly changed
the landmark configuration after each run. We computed the path error as the area between
the learning trajectory and the retraced path.

Fig. 3.24 shows the retraced paths for different pruning levels for one example environ-
ment. The resulting Trail-Map contained 1364 LVs spread over 38 levels in this case, the
lowest being 1 and the highest being 50. The tree of the LT-Map contained 3682 LVs and
had a maximal depth of 26. Fig. 3.24a and Fig. 3.25a show the retraced paths using the full
LT-Map and the full Trail-Map, respectively. The accuracy of the followed trajectories was
approximately similar in this example. However, when the LT-Map was pruned to the num-
ber of landmarks of the full Trail-Map, the retraced path already degraded significantly (see
Fig. 3.24e). As Fig. 3.24f shows, with 600 LVs the resulting path of the LT-Map had only
very few viewframe locations left, hence, the accuracy decreased noticeably. In contrast,
when the Trail-Map was pruned to the same proportion of its original size (see Fig. 3.25d),
viewframes were still spread over the whole path. Even with as few as 153 LVs (which
is 11% of the original number), the path was still followed well.

−20 0 20 40 60

0

20

40

60

80

100

LT−Map (not pruned, 3682 LVs)

landmarks

learning path

retraced path
goal location

viewframe reached

(a) 100% LVs, ε = 54.7
−20 0 20 40 60

0

20

40

60

80

100

LT−Map (pruned by 3 levels, 3621 LVs)

(b) 98% LVs, ε = 52.9
−20 0 20 40 60

0

20

40

60

80

100

LT−Map (pruned by 8 levels, 3034 LVs)

(c) 82% LVs, ε = 72.7
−20 0 20 40 60

0

20

40

60

80

100

LT−Map (pruned by 13 levels, 2110 LVs)

(d) 57% LVs, ε = 156.6

−20 0 20 40 60

0

20

40

60

80

100

LT−Map (pruned by 17 levels, 1392 LVs)

(e) 38% LVs, ε = 174.8
−20 0 20 40 60

0

20

40

60

80

100

LT−Map (pruned by 21 levels, 600 LVs)

(f) 16% LVs, ε = 175.2
−20 0 20 40 60

0

20

40

60

80

100

LT−Map (pruned by 22 levels, 384 LVs)

(g) 10% LVs, ε = 195.9
−20 0 20 40 60

0

20

40

60

80

100

LT−Map (only last viewframe, 100 LVs)

(h) 3% LVs, ε = 1204.2

Figure 3.24.: LT-Map pruning behavior (ε: path error in units2)

−20 0 20 40 60

0

20

40

60

80

100

Trail−Map (not pruned, 1364 LVs)

landmarks
learning path

retraced path

goal location
viewframe reached

(a) 100% LVs, ε = 55.5
−20 0 20 40 60

0

20

40

60

80

100

Trail−Map (pruned by 3 levels, 799 LVs)

(b) 59% LVs, ε = 56.0
−20 0 20 40 60

0

20

40

60

80

100

Trail−Map (pruned by 6 levels, 387 LVs)

(c) 28% LVs, ε = 61.9
−20 0 20 40 60

0

20

40

60

80

100

Trail−Map (pruned by 10 levels, 215 LVs)

(d) 16% LVs, ε = 99.5

−20 0 20 40 60

0

20

40

60

80

100

Trail−Map (pruned by 15 levels, 153 LVs)

(e) 11% LVs, ε = 142.7
−20 0 20 40 60

0

20

40

60

80

100

Trail−Map (pruned by 20 levels, 133 LVs)

(f) 10% LVs, ε = 236.9
−20 0 20 40 60

0

20

40

60

80

100

Trail−Map (pruned by 26 levels, 119 LVs)

(g) 9% LVs, ε = 262.5
−20 0 20 40 60

0

20

40

60

80

100

Trail−Map (only last viewframe, 100 LVs)

(h) 7% LVs, ε = 699.9

Figure 3.25.: Trail-Map pruning behavior (ε: path error in units2)

3.6 Performance Comparison of the Trail-Map and the LT-Map 97

When comparing the followed trajectories of the LT-Map and the Trail-Map using only
the goal viewframe, Fig. 3.24h and Fig. 3.25h show that the trajectory using the LT-Map
was a nearly direct path to the goal location, while the Trail-Map path still went through
intermediate viewframes. The reason for this is that in the Trail-Map the last viewframe
still contains the information about the levels of each LV. LVs of the higher levels produce
intermediate viewframes which are reached first. Later, LVs in the lower levels create refined
viewframes that finally lead to the goal position. This kind of information is lost when
pruning the LT-Map tree.

Fig. 3.26 visualizes the statistics of the simulation results. One of the most noticeable
aspects is that the full LT-Map contained 3315 LVs on average while the Trail-Map re-
quired 1278 LVs, which is only 38.5% of the size of the LT-Map. This shows that the Trail-
Map data structure is much more memory efficient because LVs are not stored redundantly.
When pruning the Trail-Map, the number of LVs reduces quickly. In contrast, when pruning
the LT-Map, in the beginning only a few deep branches are affected. This shows that the
LT-Map is not as well-balanced as the Trail-Map.

As shown in Fig. 3.26, the path error resulting from the full LT-Map was slightly smaller
than the path error of the full Trail-Map. The reason for that is the already mentioned fact
that the LT-Map often inserts LVs again with their current angle, because higher-level LVs
have changed, although the lower LVs have not exceeded the threshold δang yet. Hence, in
the LT-Map the landmark angle resolution is on average higher than δang, which results in a
more accurate navigation path.

What should be noted for interpreting the data in Fig. 3.26, is the fact that for the 100 sim-
ulated landmark configurations, not all resulting LT-Maps had the same depth. That means,
after pruning 20 levels or more, only a fraction of the created LT-Maps could be considered
in the calculation of the mean, because many LT-Maps had no LVs left. The same applied to
the resulting Trail-Maps, because not all Trail-Maps had more than 30 levels. Furthermore,
the standard deviations of the number of LVs in the LT-Map grow very big when pruning
many levels, because the LT-Map contains the most LVs towards the root of the tree. The
standard deviations of the number of LVs in the Trail-Map show opposite behavior because
in the Trail-Map most LVs are located in the lower levels. We are aware of the fact that the
distributions of the path error and the number of LVs are not always Gaussian, but we use
the standard deviations in the error bar plots to give an impression of how much the different
values vary.

98 Chapter 3: Global Topological Navigation

number of pruned levels

nu
m

be
ro

fL
V

s
in

m
ap

0 5 10 15 20 25 30 35 40

0

1000

2000

3000

4000
Trail-Map

LT-Map

number of pruned levels

pa
th

er
ro

r[
un

its
2]

0 5 10 15 20 25 30 35 40 45-500

0

500

1000

1500
LT-Map

Trail-Map

Figure 3.26.: Statistical comparison of retracing a path using the LT-Map and the Trail-Map
depending on the number of pruned levels (means and standard deviations)

The most remarkable plot is Fig. 3.27, which illustrates the average behavior of the path
error depending on the percentage of remaining LVs. The navigation performance of the
LT-Map degraded quickly. The path error of the LT-Map exceeded the minimum path er-
ror of the Trail-Map after pruning about 10% of the LVs. In contrast, the Trail-Map could
be pruned to about 50% of the original number of LVs without significant loss of path ac-
curacy. This advance in performance of the Trail-Map is remarkable, keeping in mind that
the 100% mark corresponds to 3315 LVs for the LT-Map, but only to 1278 LVs for the
Trail-Map. Comparing the number of required LVs to achieve a path error of about ε = 77,
the LT-Map required 2938 LVs, while the Trail-Map only needed 546 LVs on average. That
means a memory saving of more than 80%. Considering path errors of about ε = 160, the
Trail-Map saved about 90% of LVs compared to the LT-Map.

3.6 Performance Comparison of the Trail-Map and the LT-Map 99

remaining landmark views

pa
th

er
ro

r[
un

its
2]

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0

200

400

600
LT-Map
Trail-Map

Figure 3.27.: Comparison of path errors for retracing a path with the LT-Map and the Trail-
Map for different pruning ratios

3.6.2. Runtime Performance

To show that the Trail-Map does not only save memory but is also computationally efficient,
we compared the runtimes of our Trail-Map implementation and the original implemen-
tation of the LT-Map. Both maps were implemented in C++ and compiled with the same
compiler and flags. Runtimes are measured on a 2.67 GHz CPU. We used the simulation en-
vironment and path described in the previous section and created environments with 100 up
to 5000 randomly distributed landmarks spread within the range of 200 × 200 units. The
recorded viewframes along the learning path were imported into the C++ programs to cre-
ate the different maps. We computed the runtimes of creating a full map from all recorded
viewframes, of pruning the map and of retrieving the complete list of viewframes from the
maps in the same order of their first traversal.

According to Algorithm 1, a viewframe is added to the Trail-Map in O(N2) with N being the
number of LVs per viewframe. The quadratic behavior can be seen in Fig. 3.28a. The worst
case complexity of the LT-Map creation is also O(N2), but since the landmark comparison
with the previous viewframe can abort in the LT-Map as soon as a LV changes significantly,
the best case complexity of creating the LT-Map is O(N). Since N stays constant during
the mapping phase, the runtime of the map creation process does not increase with the map
size. As Fig. 3.28a shows, the Trail-Map can be created faster than the LT-Map when the
viewframes do not contain more than about 1000 LVs, which is sufficient for most applica-
tions.

100 Chapter 3: Global Topological Navigation

number of landmarks per viewframe

ru
nt

im
e

[s
ec

]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

0 500 10000

0.02

0.04

0.06

0.08 Trail-Map

LT-Map

(a) Map creation time

number of landmarks per viewframe

ru
nt

im
e

[s
ec

]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2
Trail-Map
LT-Map

(b) Map retrieval time

Figure 3.28.: Runtime comparison of the LT-Map and the Trail-Map

The retrieval of the viewframes from the Trail-Map is faster than from the LT-Map as shown
in Fig. 3.28b. A possible reason could be the fact that, although the number of LVs per
viewframe is the same, the LT-Map contains more LVs than the Trail-Map due to redundan-
cies.

Additionally, the Trail-Map can be pruned magnitudes faster than the LT-Map, as shown in
Fig. 3.29. Especially when pruning only one level, the LT-Map needs to traverse the full tree
to find the leaves which have to be pruned, while only one level list has to be deleted from
the Trail-Map. For 5000 LVs per viewframe, pruning takes up to 350 milliseconds for the
LT-Map, but less than 1 millisecond for the Trail-Map. The runtime for pruning the Trail-
Map increases with the number of pruned levels, because more LVs have to be deleted. In
contrast, the runtime for pruning the LT-Map decreases with the number of pruned levels,
because a smaller part of the tree has to be traversed to find the branches to be trimmed.

3.7 Trail-Map-Based Homing under the Presence of Sensor Noise 101

For 1000 LVs per viewframe, the LT-Map can be pruned by one level in 30 milliseconds, the
Trail-Map in 70 nanoseconds.

tim
e

[s
ec

](
Tr

ai
l-

M
ap

)

number of pruned levels
0 5 10 15 20 25 30 35 40 45 50

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

3.5
3.75

4
×10−3

tim
e

[s
ec

](
LT

-M
ap

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

LT-Map

Trail-Map

Figure 3.29.: Runtimes for pruning the LT-Map and the Trail-Map (for 5000 LVs per
viewframe). Please note, that the curves for the LT-Map and the Trail-Map
have different scales.

To conclude the comparison of the LT-Map and the novel data structure Trail-Map, it was
shown that the Trail-Map outperforms the LT-Map in terms of navigation performance,
memory requirements and runtime, because the level structure of the Trail-Map is more
appropriate for representing a map consisting of viewframes than the tree-structure of the
LT-Map.

3.7. Trail-Map-Based Homing under the Presence of

Sensor Noise

To evaluate the homing performance using the Trail-Map under realistic conditions, we con-
ducted further simulations considering sensor noise.

For these simulations we used the EKF-SLAM Toolbox for Matlab [84]. Although the main
purpose of this toolbox is the simulation of SLAM2, it incorporates different robot and sen-
sor models that we adjusted to viewframe-based homing. We made use of the omnidirec-
tional camera model, simulating a catadioptric camera with a resolution of 896 × 896 pix-

2A comparison of the Trail-Map based homing method and SLAM is shown in Section 3.8

102 Chapter 3: Global Topological Navigation

els, mounted at a height of 0.5m on the simulated robot. We randomly distributed 1000
landmarks within an area of 200 × 200m2, with heights ranging from 0m to 1m, simulating
a bounded desert-like open area. The simulated landmarks are projected into the camera
frame so that a camera image is simulated. To this image, pixel noise can be applied. Fur-
thermore, we added functionality to simulate natural occlusions of landmarks. If more than
one landmark was within a pixel window of dwin × dwin in the image, only the landmark
closest to the robot had been visible. For all simulations we chose a value of dwin = 5, result-
ing in 285 of the 1000 landmarks being visible on average. Each landmark had an ID and
we assumed known data association. A learning path was defined by a sequence of steering
commands and following these directions for a step length of 0.75m each. The resulting
path had a length of about 130m. The setup is shown in Fig. 3.30. Since the robot could only
move on the plane, we only considered translational odometry errors in x and y directions
and rotational errors around the z-axis (yaw), simulating a 2D motion.

-100 -50 0 50 [m]
-50

0

50

100

[m]
learning path

landmarks
home position

(a) Landmarks and learning path
0 200 400 600 800 [pixels]0

200

400

600

800

detected landmarks

[p
ix

el
s]

(b) Camera image at home position

Figure 3.30.: Simulation setup

In the simulations, we again used the kth maximum angle dissimilarity measure δmax
diss (ref.

Section 3.3.1) and set k variable to 1% of the landmark matches between subsequent
viewframes. The dissimilarity threshold for recording a new viewframe was set to ξmap

δmax
diss

= 5◦.
That means, a new viewframe was recorded every time at least 1% of all matching land-
marks changed their bearings by more than ξmap

δmax
diss

= 5◦ compared to the previously recorded
viewframe. The angle threshold for creating the Trail-Map was again set to δang = 5◦. The
homing vectors were computed using the improved difference vector model as given in
Eq. (3.7). The homing dissimilarity threshold was also set to ξhom

δmax
diss

= 5◦. To account for land-

3.7 Trail-Map-Based Homing under the Presence of Sensor Noise 103

mark occlusions, the buffer size for landmarks that were visible in one viewframe but not in
the following one was set to 5 viewframes.

To avoid unnecessary turning motions, the robot assumed to have passed a viewframe when
the calculated homing vector changed by more than 90◦ [43]. Then, the robot discarded the
computed homing vector and switched to the next viewframe.

In case the landmarks of the goal viewframe are not visible from the current position of
the robot, no homing vector can be computed. Thus, we implemented a searching behavior
similar to the searching patterns performed by desert ants [70]. For this, the robot started
driving in a spiral until it could observe enough landmarks of the goal viewframe to compute
a homing vector.

To ensure that important points can be reached with a high accuracy regardless of the prun-
ing level of the Trail-Map, the viewframes of such points should be stored separately, e.g.
on hard disk. In our simulations, we stored the exact viewframe of the home position and
used this viewframe for the final homing steps. In addition, we decreased the dissimilarity
measure to ξhom

δmax
diss

= 1◦ for approaching the final viewframe.

To ensure that the learning paths were identical for all runs, the robot executed the odometry
commands without any errors during the learning phase and only the robot’s prediction of the
performed motion was disturbed by odometry noise. During the homing phase, the robot’s
actual motion was disturbed by the specified odometry errors, but its motion prediction was
identical to the commanded odometry.

During the learning phase, the robot created a Trail-Map by using the dissimilarity measure
to decide when to record a new viewframe. Then, homing was performed by driving in
the calculated homing direction for a step size of 0.5m until the similarity condition for
reaching the next viewframe was met or the viewframe was passed. If no homing vector
could be computed, the robot started a spiral search motion.

For evaluating the homing performance, we introduced different criteria:

• Path error: The path error is the area between the learning path and the homing path.
The smaller the path error is, the more accurate the learning path is followed. Thus,
the robot minimizes the risk of driving into unknown and possibly untraversable areas.

• Endpoint error: The endpoint error is the distance between the robot’s final position
after homing and the original home position where the robot started from.

104 Chapter 3: Global Topological Navigation

• Homing path length: The shorter the homing path is, the less energy the robot has to
consume.

• LVs in Trail-Map: The number of landmark views in the Trail-Map indicates how
much memory is required for the map.

In the perfect noise-free case with δang = 5◦ and ξ
map
δmax

diss
= 5◦, the robot created a Trail-Map

with 106 viewframes and 7867 landmark views and performed homing in 129m with a path
error of 23.6m2 and an endpoint error of 0.69m. When the Trail-Map was pruned by 5 levels,
the path error increased by 23% to 29.1m2, the endpoint error was 0.34m and the homing
path length decreased to 128m. However, after pruning the Trail-Map had 2033 landmark
views, which is only 26% of the original number. Fig. 3.31 shows that both homing trajec-
tories are very similar.

20 25 30 35 40
75

80

85

90

95

100

learning path
homing path (7867 LVs)
homing path (2033 LVs)
landmarks

-20 0 20 40 60
-20

0

20

40

60

80

100

120

Figure 3.31.: Homing paths without noise, not pruned and pruned by 5 levels

The influence of different noise sources is shown in the following sections. First, we will
analyze the influence of single noise sources using the full Trail-Maps. In the end, we will
investigate the homing performance with a combination of all error sources and pruning of
the Trail-Map. For each noise scenario, we compute the mean values and standard deviations
based on 20 simulation runs with different random seeds.

3.7 Trail-Map-Based Homing under the Presence of Sensor Noise 105

3.7.1. Pose Estimation Errors

The robot usually has only access to an estimate of its pose originating from its odome-
try sensors or other position and orientation sensors, possibly fused using a Kalman Filter
framework. Pose estimation errors are caused by noisy sensors, such as odometers, inertial
measurement units or a compass. Slip can also lead to erroneous pose estimates.

Translational Error

We simulated the learning and the homing phases with translational odometry errors equal
in x and y direction with standard deviations between σtrans = 0.01m and σtrans = 0.5m while
all other error sources were set to 0. As shown in Fig. 3.32, the translational error has only
little influence on the accuracy and the length of the resulting homing path. Only for very
large odometry errors of σtrans = 0.5m, which is 100% of the homing step size, the path error
and the path length increase significantly. The endpoint error stays approximately constant
about 0.5m for all simulated odometry errors. Since no translational odometry information is
used to create the Trail-Map, the influence of the translational odometry error is only caused
by the inaccuracy of following the computed homing vector during the homing phase.

σtrans[m]0 0.01 0.05 0.1 0.50
25
50
75

100
125
150
175
200
225
250
275
300

path error [m2]

endpoint distance [cm]
path length [m]

LVs in Trail-Map [100]

Figure 3.32.: Influence of a translational odometry error in x and y direction on the Trail-
Map-based homing performance

Accumulating Rotational Errors

We simulated rotational odometry errors of the yaw angle with standard deviations between
σrot,acc = 0.05◦ and σrot,acc = 1◦. Since the viewframes in the Trail-Map are assumed to be

106 Chapter 3: Global Topological Navigation

perfectly rotationally aligned, errors in the robot’s orientation estimate have a significant
influence on the Trail-Map itself and on the resulting homing path. As Fig. 3.33 shows,
the path error starts to increase for rotational errors of σrot,acc ≥ 0.5◦, as do the path length
and the endpoint error. The path length increases since the calculated homing vectors are
erroneous so that the robot has to correct its heading frequently. As the figure also shows, the
standard deviations of all measures increase strongly for σrot,acc ≥ 0.5◦, because due to the
accumulating behavior of the orientation error, the final orientation estimate varies in a huge
range. The Trail-Map size stays approximately constant for σrot,acc ≤ 0.5◦ but also increases
to 8200 LVs for σrot,acc = 1◦ because the threshold δang = 5◦ for constructing the Trail-Map
is exceeded more quickly when the rotational alignment of the viewframes is not correct.
For longer paths the result will be worse since odometric rotational errors accumulate.

σrot,acc[◦]0 0.05 0.1 0.5 1.00
25
50
75

100
125
150
175
200
225
250
275
300

path error [m2]

endpoint distance [cm]
path length [m]

LVs in Trail-Map [100]

Figure 3.33.: Influence of accumulating rotational errors of the yaw angle on the Trail-Map-
based homing performance

Absolute Rotational Errors

In case the robot has a compass to measure its orientation, the robot can estimate its orien-
tation without any drift, but the estimated orientation will still be noisy. We simulated ab-
solute yaw errors with standard deviations between σrot,abs = 0.5◦ and σrot,abs = 5◦. Fig. 3.34
shows the influence of the yaw errors on the homing accuracy and the map size. The path
error and the path length increase for σrot,abs > 2◦, while the map size already grows for
σrot,abs > 1◦. The endpoint distance stays constant for all simulated values of σrot,abs. The
map size grows extremely, first because many more viewframes are recorded during the
learning phase since the dissimilarity between two viewframes is increased by the rotational
error. Second, the angle threshold δang = 5◦ is exceeded for nearly every landmark view in a

3.7 Trail-Map-Based Homing under the Presence of Sensor Noise 107

σrot,abs[◦]0 0.5 1.0 2.0 5.00
25
50
75

100
125
150
175
200
225
250
275
300

path error [m2]

endpoint distance [cm]
path length [m]

LVs in Trail-Map [100]

Figure 3.34.: Influence of an absolute rotational error of the yaw angle on the Trail-Map-
based homing performance

-20 0 20 40 60

0

20

40

60

80

100

120

learning path
homing path
landmarks

(a) δang = 5◦, ξmap
δmax

diss
= ξhom

δmax
diss

= 5◦
-20 0 20 40 60

0

20

40

60

80

100

120

(b) δang = 10◦, ξmap
δmax

diss
= ξhom

δmax
diss

= 15◦

Figure 3.35.: Homing for a large absolute rotational error of σrot,abs = 5◦

new viewframe. Thus, the resulting Trail-Map has only very few levels and most landmark
views are in the lowest level, which calls for adjusting the parameters δang, ξmap

δmax
diss

and ξhom
δmax

diss
.

An error of σrot,abs = 1◦ is tolerated for the given angle threshold of δang = 5◦ and the dis-
similarity threshold of ξmap

δmax
diss

= ξhom
δmax

diss
= 5◦. For larger absolute rotation errors of σrot,abs = 5◦,

choosing δang = 10◦ and ξmap
δmax

diss
= ξhom

δmax
diss

= 15◦ gives satisfying results (ref. Fig. 3.35). The re-
sulting Trail-Map has 7775 landmark views, the homing path length is 129m and the path
error is 40.9m2.

108 Chapter 3: Global Topological Navigation

3.7.2. Observation Errors

Observation errors are image noise, occlusions of landmarks and landmark outliers. Image
noise is caused by the pixel matrix of the sensor. Apart from the natural occlusions de-
scribed previously, sometimes landmarks cannot be detected by the image feature detector,
although they are visible. We call this kind of error random occlusions. Landmark outliers
can be caused by false positives in the landmark matching process and are simulated as
measurements of known landmarks at random orientations.

Image Noise

σpx [px]0 0.5 1.0 5.0 10.0
0

25
50
75

100
125
150
175
200
225
250
275
300

path error [m2]

endpoint distance [cm]

path length [m]

LVs in Trail-Map [100]

Figure 3.36.: Influence of pixel noise on the Trail-Map-based homing performance

The image noise changes the position of a landmark in the simulated camera image and,
thus, has an influence on the accuracy of measuring the landmark angles. Fig. 3.36 shows
the influence of different pixel standard deviations ranging from σpx = 0.5px to σpx = 10px
on the homing performance. In general, the effect of pixel noise is low. The path length
and the size of the Trail-Map increase for large standard deviations of σpx > 5px. The
path error decreases for higher σpx, because many more viewframes are created during the
learning phase due to the high noise in measuring the landmark angles. Thus, the path can be
followed more accurately. The endpoint error also decreases, because due to the high noise
in measuring the landmark angles, a higher ratio of actual landmark angle differences has to
be below the dissimilarity threshold of ξδmax

diss
= 5◦, before the home viewframe is assumed to

be reached.

3.7 Trail-Map-Based Homing under the Presence of Sensor Noise 109

Random Occlusions

pocc0 25% 50% 75% 90%
0

25
50
75

100
125
150
175
200
225
250
275
300

path error [m2]

endpoint distance [cm]

path length [m]

LVs in Trail-Map [100]

(a) Random landmark occlusions

pocc0 25% 50% 75% 90%
0

50

100

150

200

250

300
landmark views per viewframe

overlap

(b) Detected landmarks and overlap for different occlusion probabilities

Figure 3.37.: Influence of random landmark occlusions on the Trail-Map-based homing per-
formance

We simulated random occlusions by randomly deleting a percentage pocc of all visible (not
naturally occluded) landmarks in each simulated image. Fig. 3.37b shows how the number
of detected landmarks per image and the number of common landmarks between successive
viewframes decrease. As Fig. 3.37a shows, up to an occlusion probability of 50% the homing
performance does not degrade visibly. For pocc ≥ 0.75 the homing path length, the endpoint
error and the path error increase. However, even for pocc = 0.9, where only 28 landmarks are
detected per image and the overlap is only 1 landmark, homing is still successful. Only for
pocc > 0.9 we observed frequent failures in reaching the home position. The size of the Trail-
Map decreases since less landmarks are detected. Here, the importance of the buffer during
the Trail-Map creation becomes obvious: Without buffering unobservable landmark views,
the Trail-Map size would increase by nearly 50% to 10340 landmark views on average for
an occlusion probability of pocc = 0.25.

110 Chapter 3: Global Topological Navigation

Outliers

poutl0.0% 0.1% 0.5% 1.0% 2.5%
0

25
50
75

100
125
150
175
200
225
250
275
300

path error [m2]

endpoint distance [cm]

path length [m]

LVs in Trail-Map [100]

(a) Improved difference vector model

poutl0.0% 1.0% 5.0% 10% 50%
0

25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400

path error [m2]

endpoint distance [cm]

path length [m]

LVs in Trail-Map [100]

(b) Normalized improved difference vector model

Figure 3.38.: Influence of outliers on the Trail-Map-based homing performance for different
homing vector calculation methods

Similar to the occlusions, we simulated the outliers by randomly assigning an orientation to
a certain percentage poutl of all visible landmarks. As Fig. 3.38a shows, the homing behav-
ior using the improved difference vector model for calculating the homing vectors is very
sensitive to outliers. An outlier probability of only 0.5% already leads to significantly larger
path lengths and path errors, because the robot meanders around the learned path. Also the
number of elements in the Trail-Map increases because the outlier landmarks are in most
cases added as new entries in level 1, due to their large angle difference. Since the method
is robust against occlusions but very sensitive to outliers, a strict outlier rejection method
should be implemented, which rather rejects correct matches than allowing for false posi-
tives. Since this is hard to achieve in practice, another way to decrease the effect of false
landmark matches would be the use of a homing vector calculation method which is more

3.7 Trail-Map-Based Homing under the Presence of Sensor Noise 111

robust against outliers. As shown in Section 3.3.2, the normalized improved difference vec-
tor model is a good choice. Using this method, more than 10% of outliers are tolerated and
only the size of the Trail-Map increases (ref. Fig. 3.38b), since the outliers are usually added
as new landmark views in level 1. Even with 50% outliers, homing is still successful. This
shows, how much the homing vector calculation method affects the homing performance
under the presence of false landmark matches. The normalized improved difference vector
model produces higher path errors in the noise-free case than the version without normal-
ization, because information about the magnitude of the change of the bearing angles is
neglected in the normalized version. The path errors decrease for up to 50% outliers, which
can be explained by the fact that the dissimilarity measures increase under the presence of
outliers. Thus, the size of the region where the robot assumes to have reached a viewframe
decreases. This leads to more accurate path following.

3.7.3. Combination of all Noise Sources

To show the homing behavior with a combination of all error sources we use the noise
values as given in Table 3.2. The resulting Trail-Map has 5600 landmark views, the path
error is 29.5m2, the endpoint error is 0.4m and the homing path length is 137m. Fig. 3.39
shows the development of the path error and the path length when the map is pruned. As
already shown in Section 3.6 for the noise-free case, the Trail-Map can be pruned by more
than 50% without a significant loss of path accuracy.

ratio of remaining LVs
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

25
50
75

100
125
150
175
200
225
250

path length [m]

path error [m2]

Figure 3.39.: Path error and path length for different pruning ratios under the presence of
noise and occlusions

112 Chapter 3: Global Topological Navigation

Table 3.2.: Chosen noise parameters for simulating Trail-Map-based homing
parameter σtrans σrot,acc σrot,abs σpx pocc poutl

value 0.1m 0.0◦ 1.0◦ 1px 0.5 0.0

The endpoint distance is omitted in this plot since its average values fluctuate strongly be-
tween 0.3m and 1.2m for different pruning levels. For applications where the home position
must be reached with a very high precision, e.g. for docking to a charging point, artificial
landmarks should be used that are clearly visible to the robot from a distance of about 1.5m.
Furthermore, the step size for reaching the home position should be decreased significantly.

3.8. Trail-Map-Based Homing versus SLAM

The application of SLAM methods is often the first choice when it comes to the navigation of
a mobile robot in real-world environments, where measurement uncertainties arise. SLAM
concurrently optimizes the robot’s estimates of its pose or path and the map, using odometry
measurements and environment observations. Thus, the robot creates a consistent metric
map of its environment and it knows its position with respect to the map.

In general, SLAM methods benefit most from reobserving landmarks when the robot re-
turns to a previously visited location. While the robot is moving through the environment,
the uncertainty of its pose estimate grows, because it is based only on relative odometry mea-
surements. This pose uncertainty also affects the uncertainty of landmark positions which
the robot observes and adds to its map. The robot performs a loop closure when it reob-
serves a landmark that had already been added to the map. Then, the robot can correct its
pose estimate and also the estimated landmark positions in the map. In cases where the robot
does not perform any loop closures, the uncertainty of its pose keeps growing, as does the
uncertainty of the landmark positions in its map.

Considering applications where the mobile robot is only required to retrace a previously
traversed path, a globally consistent metric map is not necessarily required. The robot only
needs knowledge about the traveled path to be able to autonomously find its way back to its
starting position. The Trail-Map implicitly contains all the information required to retrace
the path. When using SLAM for the homing task, the robot has to store its path additionally
to the estimated map3. During homing, the robot localizes within the estimated map and

3Some SLAM methods, for example FastSLAM and GraphSLAM, already contain the full robot trajectory.

3.8 Trail-Map-Based Homing versus SLAM 113

computes control commands to follow the stored path coordinates according to its pose
estimate.

In the robot homing application, we assume that the robot does not visit any places along
its learning trajectory again. During homing, the robot actively moves along the previously
recorded path, so that many loop closures occur. However, if a map of the environment and
the estimated coordinates of the robot path are not required, the robot can omit the loop
closure SLAM updates, and can use the already recorded map for localization. Considering
this special case, SLAM methods might show different properties than in the general case of
possible loop closures.

We should also address the memory requirements of SLAM methods and the Trail-Map.
The Trail-Map stores landmark views, which are a combination of the landmark’s ID, its de-
scriptor and its bearing angle. Thus, the Trail-Map contains many different landmark views
belonging to a single landmark. In contrast, the map in feature-based SLAM stores the land-
mark’s descriptor and the landmark coordinates only once, as long as the descriptor can be
matched. Here, SLAM methods seem to outperform the Trail-Map. However, SLAM meth-
ods do not only require memory for storing the map, but also for additional information that
is necessary to perform map corrections, for example covariance matrices.

In this section we will discuss how different SLAM methods would perform the homing task
and compare them to Trail-Map-based homing.

3.8.1. EKF SLAM

In EKF SLAM, an extended Kalman filter (EKF) is used to estimate a state vector consist-
ing of the robot’s current pose and the landmark positions. The covariances of the robot
pose and the landmark positions are kept in a covariance matrix. When new landmarks are
observed, they are added to the robot’s state vector. Thus, the state vector and the corre-
sponding covariance matrix grow with the number of observed landmarks, which means
that the memory requirements are quadratic in the number of landmarks due to the covari-
ance matrix. Since in a Kalman filter framework, the covariance matrix has to be inverted
in every update step, the computational complexity of EKF SLAM is also quadratic in the
number of state variables, and, hence, in the number of landmarks in the map.

We compared the EKF-SLAM method implemented in the EKF-SLAM Toolbox [84] to the
Trail-Map-based homing method. For this, we implemented the SLAM-based homing using

114 Chapter 3: Global Topological Navigation

the setup described in Section 3.7 and shown in Fig. 3.30 as follows: During the learning
track, the robot performs the SLAM prediction and correction steps every 0.75m and stores
its estimated position as a waypoint. During the homing phase, the robot calculates a homing
vector that leads it to the previously recorded waypoint and drives in that direction for the
size of the homing vector step of 0.5m. It assumes it reached the waypoint when its distance
to the waypoint is smaller than 0.5m, or when the calculated homing vector changes by
more than 90◦. When the robot approaches the last waypoint, i.e. the home position, the
threshold for reaching the waypoint is set to 0.1m. This ensures that the robot tries to reach
the start point with a high precision – comparable to the Trail-Map-based homing to the first
viewframe. After each homing step, the robot performs the SLAM prediction and correction.

To reduce the computational requirements of the EKF SLAM method, the authors of the
EKF-SLAM Toolbox limit the number of updated landmarks per step to the 5 landmarks
with the highest uncertainty [83] and initialize only one new landmark in every step. To save
computation time, we additionally switched off the initialization of new landmarks during
the homing phase. We simulated the SLAM-based homing over a path of about 130m length
using the setup described in Section 3.7 and the noise parameters given in Table 3.2. The
results of averaging 20 runs are shown in Table 3.3. The homing path error is 65.4m2, the
endpoint error is 0.58m, the path length is 143m and the final map contains 419 states. In
addition to the state variables, the robot needs to maintain a symmetric covariance matrix
with 419 × 419 entries. The runtimes for the SLAM-related initialization and correction
steps sum up to 31sec. The development of the computation time is shown in Fig. 3.40a.
The computation time increases during mapping as the number of landmarks in the map
increases. During homing, inconsistent landmarks are deleted from the map [85], which
results in decreasing computation times.

The Trail-Map-based homing computations need only 19sec with the full map, and 17sec
with a map pruned by 5 levels to 920 landmark views, while still producing a smaller path er-
ror of 42.0m2, shorter paths of 136.5m and similar endpoint errors of 0.57m (ref. Fig. 3.40b-
Fig. 3.40c). The benefit of the Trail-Map would increase with the robot’s motion range since
the robot would observe more landmarks and the computational load of the EKF-SLAM
grows with the number of landmarks in the map. Furthermore, we expect that the runtime
differences between the Trail-Map and the SLAM implementation will be more significant
in other programming environments than MATLAB, since C++ is better suited for the list
data structure of the Trail-Map, while EKF-SLAM mainly requires matrix operations.

3.8 Trail-Map-Based Homing versus SLAM 115

steps

ru
nt

im
e

[s
ec

]

0 50 100 150 200 250 300 350 400
0

0.025

0.05

0.075

0.1

0.125

0.15

SLAM

Trail-Map

homing phasemapping phase

(a) Runtimes per step

0 20 40 60

0

20

40

60

80

100

learning path

homing path

landmarks

(b) Pruned Trail-Map
0 20 40 60

0

20

40

60

80

100

(c) EKF SLAM

Figure 3.40.: Comparison of Trail-Map-based and EKF-SLAM-based homing

Table 3.3.: Simulation results of EKF-SLAM from the EKF-SLAM Toolbox [84] and Trail-
Map-based homing using the setup shown in Fig. 3.30 averaged over 20 runs

EKF SLAM Trail-Map
path error 65.4m2 42.0m2

path length 143.0m 136.5m
endpoint error 0.58m 0.57m
map size 419 states 920 LVs
summed computation times 31sec 17sec

116 Chapter 3: Global Topological Navigation

3.8.2. Submap SLAM

An efficient way to apply SLAM to the homing problem would be a submap SLAM ap-
proach [22, 57, 56]. The map of the environment is divided into overlapping submaps, which
are locally optimized using SLAM. The local submaps are bounded in size, which leads to
constant time local SLAM updates relating to the path length. The coordinate frames of the
local submaps are either referenced to a global coordinate frame or relative to the adjacent
submap coordinate frames, and their locations can also be optimized using SLAM. However,
since the submaps do not have to be globally consistent for the homing task, no correction of
the submap relations must be performed. Thus, constant time mapping and homing is pos-
sible. The idea of using submaps is to some extent similar to the viewframe-based mapping
approach, which also stores all visible landmarks at the viewframe positions. However, the
Trail-Map avoids redundancies by only storing landmark views that have changed signifi-
cantly. Submap SLAM does not offer such a method, but since it contains the coordinates
of each landmark in the map only once, instead of storing several landmark views of a land-
mark, the memory requirements for the maps might be comparable. However, to perform
the local SLAM updates, submap SLAM additionally requires the covariance matrices for
the submaps, which are quadratic in the number of landmarks per submap. In case the robot
omits local SLAM updates during homing but only performs localization, the covariance
matrix could also be deleted after leaving the corresponding submap in the mapping phase.

3.8.3. FastSLAM

FastSLAM [68] is based on a Rao-Blackwellized particle filter to solve the SLAM problem.
It uses a particle filter to estimate the full trajectory of the robot and estimates the landmark
locations by EKFs. By doing so, it can exploit the fact that the landmarks observed from
two different robot poses are conditionally independent, given the robot poses. This allows
to factor the map estimation problem into m single estimation problems for each of the
m landmarks in the map. Efficient implementations of FastSLAM have a complexity of
O(n log(m)), where n is the number of particles and m is the number of landmarks in the
map [91]. The main drawback of FastSLAM is that a high number of particles is required
to ensure fast convergence, and that the amount increases exponentially in the number of
dimensions. This not only means high memory requirements, but also leads to an increased
computation time.

3.8 Trail-Map-Based Homing versus SLAM 117

3.8.4. GraphSLAM

In GraphSLAM, all the information the robot collects as it moves through the environment
is stored in a graph [91]. This graph consists of the robot poses and the landmarks as nodes.
Each pose node is linked to the landmark nodes the robot has observed at this location by
edges representing a measurement constraint. Subsequent pose nodes are also connected by
edges which represent the robot odometry estimates as another constraint. The edges in the
graph can be thought of as springs in a spring-mass-model, which automatically relaxes and
yields the optimal distribution of the masses, which are the nodes representing the robot
poses and the landmarks in the map. When this graph is transformed into an information
matrix, this matrix is sparse, because it only has elements between subsequent robot poses,
and between the landmarks and the poses of the robot at the time of observation. This can
also be explained by the conditional independencies between landmarks and poses given all
robot poses and landmarks. The sparse character of the information matrix can be exploited
for fast matrix operations. The optimal map and robot trajectory can be computed by nonlin-
ear least squares optimization, e.g. using g2o [52]. Smoothing and mapping (SAM) [18] or
its incremental version iSAM [44] are also solutions to the GraphSLAM problem. In iSAM
the update is restricted to the part of the state vector that actually changed, thus resulting
in constant-time updates as long as no loop closure is detected. Retrieving the current esti-
mates of the trajectory and the map is linear in the number of variables the trajectory and
map consist of, but can also be decreased to constant time when only the recently changed
variables are extracted, which is sufficient for the homing task. However, since each land-
mark measurement has to be stored for GraphSLAM, the memory consumption is higher
than in the Trail-Map, which avoids storing landmark views redundantly.

3.8.5. RatSLAM

RatSLAM [67] differs from all the above mentioned SLAM methods. Instead of creating
a metrically correct map of the environment it rather computes a topologically consistent
representation. RatSLAM is based on the hippocampal model of rodents. The robot pose
is represented by regions of high activity in a competitive attractor network consisting of
so-called pose cells. Odometry measurements shift the region of activity in a corresponding
direction. The pose cells are associated with local view cells, which are triggered by the
visual appearance at a location. The associations between the pose cells and the local view

118 Chapter 3: Global Topological Navigation

cells are learned. When a local view cell fires, it injects activity in the associated pose cells
and, thus, corrects the pose estimate of the robot. The combination of a pose cell activity
pattern and a local view cell activity pattern is stored as an experience in an experience map.
Each experience is assigned a position in experience space and subsequent experiences are
connected by transitions which contain the position changes between the experiences mea-
sured by odometry. Whenever an experience matches an already stored experience, a loop
closure is detected and all positions assigned to the experiences are corrected accordingly.
The experience map can be used to plan and execute paths [66].

Applied to the homing task, RatSLAM behaves similar to the viewframe-based homing
method presented in this chapter. A topological chain of experiences is stored during the
mapping phase, where each experience contains the visual appearance at the corresponding
location in the environment. This process runs in constant time if the experience map is not
searched for loop closures. For homing, the robot has to execute the transitions between the
experiences in the experience map. Depending on how the appearance of the locations is
encoded in the local view cells, the robot might have to rely on good odometry estimates.
If it cannot generate motion information by comparing the appearance of the environment
with the desired activity pattern of the local view cell, it will be lost when it deviates too
much from its learned path. Since RatSLAM does not extract landmarks but is based on the
appearance of the environment, we cannot estimate its memory consumption compared to
the Trail-Map.

3.8.6. Data Association

All SLAM methods, as well as Trail-Map-based navigation, have to find correspondences
between the landmarks in the map and the current landmark observations. For this, each
currently observed landmark has to be compared to all possibly corresponding landmarks in
the map. This process can be linear in the number of landmarks in the map in a naive im-
plementation. By organizing the landmarks in a tree structure according to their estimated
coordinates, for example in a quadtree, octree or kd-tree, the complexity of data association
is logarithmic in the size of the map. Constant complexity is achieved when the amount of
landmarks in question is limited to a subset of all observed landmarks which does not grow
with the length of the traversed path. This can be realized by storing the landmark obser-
vations in a grid with fixed cell sizes, at the expense of the required memory. Furthermore,
when the map is divided into submaps which are limited in size, also only a constant num-

3.8 Trail-Map-Based Homing versus SLAM 119

ber of landmarks has to be compared to the current observations, provided that the robot
knows which submap to search in. This shows that not only the complexity of the SLAM
method itself has to be considered, but also the implementation of data association has a ma-
jor effect on the runtime. In the Trail-Map-based homing method, the number of landmarks
in question is limited by the number of landmark views in the current reference viewframe,
which is independent of the length of the path. Thus, the Trail-Map implicitly offers constant
complexity for the data association task.

3.8.7. Conclusion

Table 3.4.: Comparison of SLAM methods and the Trail-Map for the robot homing task.
m: number of observed landmarks in the environment. n: number of particles in
FastSLAM. p: number of submaps, viewframes or poses with landmark observa-
tions

computational complexity memory requirements
EKF SLAM O(m2) O(m2)
Submap SLAM O(1) O(p) comparable with Trail-Map
FastSLAM O(n log(m)) O(n · m)
GraphSLAM O(1) O(p) but higher than Trail-Map
RatSLAM O(1) O(p) but unknown factor
Trail-Map O(1) O(p)

Table 3.4 summarizes the computational complexities and memory requirements of the dis-
cussed SLAM methods, when applying them to the task of robot homing. The special prop-
erty of robot homing is the absence of loops in the robot path during mapping. During
homing, the loop closures can be neglected and the estimated map can used for localization.
Thus, when no loop closures occur, some SLAM solutions offer changed properties. Others,
like EKF SLAM and FastSLAM cannot benefit from the absence of loops. The EKF SLAM
solution is intractable due to its quadratic computational complexity. The FastSLAM solu-
tion is logarithmic in the size of the map, but has a high constant factor caused by the large
number of particles that are required. A SLAM solution that can offer constant runtimes is a
submap SLAM approach without updating the relations between the submaps. Its memory
requirements are comparable with those of the full (unpruned) Trail-Map, if the covariance
matrices of the submaps are discarded. RatSLAM also offers constant runtimes if no loop
closures are detected, but must implement a method for encoding the appearance of a loca-
tion which can also be used if the robot deviates from its path. GraphSLAM can be solved in

120 Chapter 3: Global Topological Navigation

constant time for the homing task as well, but suffers from a memory overhead since every
single measurement has to be stored.

In addition, a SLAM method without loop closure detection can no longer be considered
a true SLAM method. Put differently, to the best of my knowledge there is no true SLAM
method which offers runtime behavior constant in the size of the map and the path length.
Constant runtimes are only achieved by a few methods when loop closures are neglected, and
some of these methods suffer from memory overheads. Furthermore, none of the discussed
SLAM solutions offers a scaling method. The Trail-Map representation is memory efficient,
because it avoids storing redundant measurements, and it has a computational complexity
that is constant with respect to the path length. Furthermore, it offers an easy scaling method.
Thus, a Trail-Map based solution is a promising alternative to SLAM methods for robot
homing without loop closures.

3.9. Application of the Trail-Map to Real Data

Bringing the homing method to the real world poses several challenges that were not present
in the simulations. First of all, we have to extract landmarks as natural features in omnidi-
rectional camera images, which are subject to noise and illumination changes. Furthermore,
the landmarks have to be identified by matching the detected image features to their corre-
sponding landmarks in the map. Additionally, the robot has to estimate its orientation for
correctly aligning the viewframes in the Trail-Map. Apart from estimating the yaw angle,
the real robot does not move on a perfect plane anymore but can encounter tilt which also
has to be considered when measuring the directional unit vectors to landmarks.

This section will address these challenges and describe the approaches taken to prepare the
experimental validation of the Trail-Map-based homing method.

3.9.1. Coordinate Frames

In the simulations, the robot always moved on a perfect plane, which allowed to parameterize
its orientation only by the yaw angle. For experiments with a real robot, we also have to
consider roll and pitch angles in the computation of unit vectors to the landmarks. Therefore,
3D coordinate transformations are necessary.

3.9 Application of the Trail-Map to Real Data 121

First, we unwarp the omnidirectional camera images to panorama images. Then, we trans-
form a feature location in the panorama image coordinate system u, v into a unit vector in
the camera coordinate system using

lc
i =


cos φi,e cos φi,a

cos φi,e sin φi,a

sin φi,e


T

(3.25)

φi,a =
2π

ncols
(−ui) (3.26)

φi,e =
2π

ncols
(v0 − vi), (3.27)

where φi,a and φi,e are azimuth and elevation, respectively. The row coordinate corresponding
to the horizon is v0. The value ncols contains the number of image columns.

To transform the vector lc
i to the robot coordinate frame, we have to know the rotation Rr

c

between the robot and the omnidirectional camera. This transformation defines the image
forward direction. The landmark unit vector in the robot coordinate frame is

lr
i = Rr

c lc
i . (3.28)

Finally, to have rotationally aligned viewframes, we transform the landmark vectors to the
world coordinate frame. We define the origin of the world frame to be at the robot’s home
position. The orientation of the world frame is aligned with the gravity vector and is defined
to have zero yaw angle at the home pose. Then, the landmark vector in world coordinates is

lw
i = Rw

r lr
i , (3.29)

where we compute the matrix Rw
r from the robot pose, which is estimated in the multisen-

sor data fusion process as described in Section 2.1. While the roll and pitch angles in this
estimate are stabilized by the gravity vector, the yaw angle results only from relative mea-
surements when no compass is available. Thus, we will perform additional corrections of
the yaw angle using the landmark information. This process is described below.

122 Chapter 3: Global Topological Navigation

3.9.2. Landmark Detection and Matching

The main issue of the real world implementation is the landmark detection and matching
process, which was neglected in the simulations, where we assumed known data associ-
ation. In the simulation sections, we used the term landmark for a characteristic point or
object in the environment that can be observed and identified from several locations. When
cameras are used for observing landmarks, we assume that the projection of the landmark
into the camera image results in a feature. Thus, in this thesis, the term feature refers to a
characteristic point in an image, that corresponds to a landmark in the environment. Mea-
sures for the degree of characteristic are often based on the image gradient for detecting
regions of high or low local contrast. This, in practice, often leads to image features being
detected on object borders due to the high contrast between the object in the foreground
and the background. Although such a feature does not correspond to a certain object in the
environment, it can still be used for navigation purposes. However, it will only be visible
within a relatively small angle and changes or disappears if the viewpoint shifts.

Commonly used state-of-the-art feature extractors are for example SIFT [61], SURF [4]
and BRISK [58]. They are all invariant against rotation and scale changes. A comparison of
SIFT, SURF and BRISK performed by Jäger [42] showed that there was not much difference
between those three, but BRISK is the computationally most efficient feature detection and
matching method. BRISK is based on AGAST [62] and FAST [75] to detect keypoints in
scale space. Then, a binary descriptor is computed from brightness comparisons within a
circular sampling pattern. The descriptors are matched using Hamming distance, which is
only an XOR operation followed by a bit count, and, thus, can be computed very fast.

Fig. 3.41 shows the matches obtained using the original BRISK C++ code provided by
Leutenegger et al. [58] for two sample outdoor images. The panorama images from the
omnidirectional camera were downscaled to 30% i.e. 432 × 84 pixels to reduce the effects
of pixel noise. The BRISK features were detected with a FAST/AGAST detection thresh-
old of 10, an octave number of 4, a pattern scale of 0.75 and a matching distance of 500.
About 580 features were detected in each image and 135 features could be matched. Appar-
ently, there are several false matches that have to be rejected.

Depending on the homing vector calculation method, the Trail-Map navigation behavior is
very sensitive to false landmark matches as the simulations have shown (ref. Section 3.7.2).
Thus, it is important to reject false landmark matches. Therefore, we make use of the method
suggested by Jäger [42]. That method is based on a RANSAC (Random Sample Consensus)

3.9 Application of the Trail-Map to Real Data 123

Figure 3.41.: Detected and matched features using BRISK

algorithm [23], which finds a maximum set of inliers by fitting a model to randomly drawn
samples und checking how many data points are conform to the model. Pseudocode for the
outlier rejection is given in Alg. 3 in Section A.3. First, the RANSAC algorithm is applied to
the feature matches using a translational invariant model for estimating the rotation between
the two image acquisition points (ref. Alg. 7). Details on the computation of the rotation
are given in Section A.1. Then, RANSAC is applied to the remaining feature matches using
a translational variant model to estimate the translation between the images (ref. Alg. 6).
Section A.2 gives details on computing the translation. The resulting valid matches and
outliers for the two sample images are shown in Fig. 3.42. In this example, 14 false matches
have been identified and rejected, using error thresholds of 0.75◦ for the translational and
rotational model. For the RANSAC algorithm, a maximum number of 50 iterations was
found to be sufficient. Furthermore, the algorithms terminate earlier when 90% of the input
landmark matches fit to the model.

The above mentioned rotational model does not make use of the roll and pitch angles from
the pose estimation process. However, since roll and pitch measurements are absolute mea-
surements, their values are known with a constantly low uncertainty, and, thus, should be
considered in the landmark outlier rejection process. For this reason, we propose a differ-
ent model for computing the rotation between two sets of unit vectors to landmarks with
known roll and pitch angles. The model assumes that the landmark unit vectors lw

i and lw′
i

are already aligned using the estimated roll and pitch angles. Then, the yaw angle α that best

124 Chapter 3: Global Topological Navigation

Figure 3.42.: Valid landmark matches (black) and rejected outliers (white)

explains the rotation between the two sets of landmark vectors can be computed as the mean
of the signed yaw angles between the corresponding landmark unit vectors:

α =
1
N

N∑
i=1

(
atan2(lw′

i,y, l
w′
i,x) − atan2(lw

i,y, l
w
i,x)

)
, (3.30)

where lw′
i is the landmark unit vector in the current frame and lw

i is the corresponding land-
mark unit vector in the known reference frame.

3.9.3. Rotational Alignment of the Viewframes

As the simulations in Section 3.7 have shown, the homing algorithm is very sensitive to
rotational misalignments of the viewframes. If no reliable compass is available, the esti-
mated yaw angle by fusing inertial and visual odometry data (ref. Section 2.1) will drift
over time. That does not pose a problem during the mapping phase, because the viewframes
are recorded sequentially and the robot performs only relatively small motions between two
subsequent viewframes. However, during homing the error in the yaw estimate can be large,
especially for homing towards early viewframes close to the home position. For this reason,
we use the rotation that is estimated by the RANSAC algorithm in the outlier rejection step
for aligning the viewframe before dissimilarity measures or homing vectors are computed.
Thus, we can entirely omit a compass or any other yaw estimate.

3.9 Application of the Trail-Map to Real Data 125

3.9.4. Homing Vector Smoothing

time [sec]

an
gl

e
[◦

]

0 20 40 60 80 100 120 140 160 180 200
-150

-100

-50

0

50

smoothed homing angle
raw homing angle

Figure 3.43.: Raw homing angles computed by the improved difference vector model.
Smoothed homing angles computed as the median of the last 7 raw homing
angles.

Since the single homing vectors computed from the current panorama image and the goal
viewframe are noisy, we use the method described by Jäger et al. [43] for smoothing the
homing vectors. In this method, the median out of the last 7 homing vectors to the current
goal viewframe is computed. To avoid waiting times when the robot reaches a viewframe
and starts homing to the next one, the robot computes homing vectors to the current and the
following goal viewframe simultaneously for each panorama image. Thus, a median homing
vector for the next goal viewframe is already available when the robot starts homing to it.
Fig. 3.43 shows the raw homing angles computed by the improved difference vector model,
and the resulting homing angles after smoothing for a sample homing run.

3.9.5. Robot Motion Control

To make the robot follow the computed homing vector, we applied a very simple motion
strategy. A homing vector is calculated continuously as the robot moves through the envi-
ronment. At every time step, the robot computes its forward velocity vx and its turn velocity

126 Chapter 3: Global Topological Navigation

ωz depending on the difference between its current yaw angle α and the current homing
vector direction φh as

vx = vmax max
(
0, 1 −

|φh − α|

φt

)
, (3.31)

ωz = ωmax max
(
−1,min

(
1,
φh − α

φt

))
, (3.32)

where vmax and ωmax are the maximal forward and turn speeds. If the difference between
the current yaw angle and the current homing vector direction is higher than a threshold φt,
the robot performs pure turning. Otherwise, the robot combines forward and turn motions,
while the forward velocity increases and the turning velocity decreases the closer the robot’s
yaw angle gets to the desired homing direction.

3.10. Experimental Evaluation

To experimentally evaluate Trail-Map based homing, we used a Pioneer 3-DX robot
equipped with an omnidirectional camera, a stereo camera and an inertial measurement unit.
The omnidirectional camera was a catadioptric system with a PointGrey USB camera pro-
viding images of 896×896 pixels, which were unwarped to panorama images of 1440×280
pixels and downscaled to 30%, i.e. 432× 84 pixels, for landmark detection. The stereo cam-
era and the IMU are used for pose estimation by fusing visual odometry and inertial data.
However, only the estimated roll and pitch angles are used for computing aligned landmark
unit vectors. The computational hardware is an Intel Core i7-3740QM CPU with 2.70GHz
and a Spartan 6 LX75 FPGA Eval Board to perform dense stereo matching using SGM [39]
at a rate of more than 10Hz. The next section will show the results of experiments con-
ducted in an indoor laboratory environment. After that, in Section 3.10.2 we will analyze
the long-range performance based on experiments in outdoor terrain.

3.10.1. Indoor Laboratory Experiments

The first set of experiments was conducted in an indoor laboratory environment on flat
ground without obstacles. Ground truth for the experiments was provided by an optical
tracking system based on several infrared cameras that track a reflecting target body mounted
on the robot.

3.10 Experimental Evaluation 127

Mapping

home position

goal position

Figure 3.44.: Experimental setup for the indoor laboratory experiment with home position,
path and goal position

We remotely controlled the robot along a trajectory of about 5.1 meters length to a goal
point in the laboratory environment. The setup and the path are shown in Fig. 3.44. During
the traverse the robot recorded a Trail-Map, using an angle threshold of δang = 10◦ and a
dissimilarity threshold of ξmap

δ
ang
diss

= 0.05rad ≈ 2.9◦ for mapping. The viewframe dissimilari-
ties were computed using the average angle error method in Eq. (3.4). The resulting Trail-
Map consisted of 17 viewframes which contained 882 landmark views on average. Thus,
in total 15000 landmark views were recorded for this path. However, the Trail-Map had
only 10992 landmark views, because slowly changing landmark views are not stored redun-
dantly. Thus, the Trail-Map saved more than 26% of memory compared to straightforward
viewframe storage. The trajectory with the recorded viewframes, along with the number of
landmark views in each viewframe and the landmark matches between the viewframes is
shown in Fig. 3.45. It can be seen that the viewframes VF11 to VF15 in the center of the
free area are further apart from each other than the viewframes which are closer to the border
of the free driving area. This shows that the distances between the viewframes are smaller
in regions with close landmarks and grow if only distant landmarks can be observed. The
landmark views were spread over 12 levels (ref. Table 3.5), where nearly 75% of the land-
mark views were located in level 1. The reason for the large amount of landmark views in
level 1 can already be inferred from the number of matches between the viewframes, which
is on average only 261 compared to an average of 882 landmark views per viewframe. That

128 Chapter 3: Global Topological Navigation

means that many landmarks in the viewframes cannot be matched with the landmarks in the
neighboring viewframes, which leaves them in level 1. Table 3.6 summarizes the statistics
of the mapping process.

VF 1
(884)

VF 2
(917)

209

VF 3
(899)

209

VF 4
(893)

239

VF 5
(881)

339

VF 6
(910)

374

VF 7
(858)

283

VF 8
(849)

261
VF 9
(876)

256
VF 10 (822)

366

VF 11 (810)
321

VF 12 (849)

245

VF 13 (880)

171

VF 14 (909)

200

VF 15 (927)

220

VF 16 (938)

326

VF 17 (898)

153

x
[m

]

y [m]

0

0.5

1

1.5

2

2.5

-2.5-2-1.5-1-0.50

mapping trajectory

viewframe recorded

Figure 3.45.: Path with viewframes (VF) for the indoor laboratory experiment. Numbers
in brackets: number of landmark views in the viewframe. Orange numbers:
number of landmark matches between the viewframes

Table 3.5.: Distribution of landmark views (LV) over the levels in the indoor laboratory ex-
periment

level 1 2 3 4 5 6 7 8 9 10 11 12
LVs 8171 1430 634 328 185 108 79 31 16 6 3 1
ratio 74.3% 13.0% 5.8% 3.0% 1.7% 1.0% 0.7% 0.3% 0.1% 0.05% 0.03% 0.01%

3.10 Experimental Evaluation 129

Table 3.6.: Mapping statistics of the indoor laboratory experiment
path length 5.1m

observed LVs 15000
recorded viewframes 17

levels in Trail-Map 12
LVs in in full Trail-Map 10992
avg. LVs per viewframe 882 ± 35.5

avg. matches between viewframes 261 ± 68.1

x
[m

]

y [m]

0

0.5

1

1.5

2

2.5

-2.5-2-1.5-1-0.50

mapping trajectory
viewframe recorded
homing trajectory
viewframe reached
(mean & 2σ covariance)

Figure 3.46.: Mapping and homing trajectories using the full Trail-Map in the indoor labo-
ratory experiment

Validation of Homing

Next, the robot performed homing using the recorded Trail-Map. We placed the robot back
to the goal position after each homing run and recorded 10 homing trajectories. For homing
we used a dissimilarity threshold of ξhom

δ
ang
diss

= 0.03rad ≈ 1.7◦ average angle error for detecting
when a viewframe is reached. The robot computed the homing vectors using the improved

130 Chapter 3: Global Topological Navigation

L1

L2

VF1

L3

VF2

VF1
reached

homing
path

mapping
path

VF2
reached

Figure 3.47.: Shape of the areas in which the dissimilarity measures for the corresponding
viewframes fall below the threshold ξhom

δ
ang
diss

depending on the landmark distribu-
tion

difference vector model using Eq. (3.7) at a rate of about 2.5Hz. Fig. 3.46 shows the result-
ing trajectories with the centers and covariance ellipses of the coordinates where the robot
reached a viewframe. It can be seen that all homing paths were close together and the robot
followed the mapping trajectory. The deviation from the recorded trajectory can be explained
by the area in which the dissimilarity measure for a viewframe falls below the threshold ξhom

δ
ang
diss

.
The shape and size of this area depends on the landmark configuration in the environment.
This relation is illustrated in Fig. 3.47, which shows a mapping path with two viewframes
VF1 and VF2 in an environment with three landmarks L1, L2 and L3. Two landmarks on
one side are close to the mapping path, the other landmark on the opposite side is far away –
that represents the landmark distribution in our experiment for the viewframes VF1 to VF9,
where the robot had close objects to its right and only distant objects to its left hand side (ref.
Fig. 3.44). The areas in which the dissimilarity measures for the corresponding viewframes
fall below the threshold are the shaded polygons that result from the intersections of sectors
originating at the landmarks. The opening angle of the sectors is 2ξhom

δ
ang
diss

and the viewframes

are in the centers of the sectors4. It can be seen that the shape of the shaded area is stretched
in the direction of the far landmark. Now, as soon as the robot enters the shaded area of a
viewframe, it detects the viewframe as reached and switches to the next viewframe. That
explains, why the deviation from the mapping path in Fig. 3.46 had an offset in the direction
of the far landmarks.

4Please note that this is a simplification. The dissimilarity is also lower than the threshold in some border
areas, in which the angle error to one landmark is higher than ξhom

δ
ang
diss

, but which is compensated by the other
landmarks having errors lower than the threshold.

3.10 Experimental Evaluation 131

run number

er
ro

r[
m

]

1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6
mean path deviation
maximal path deviation
endpoint error

Figure 3.48.: Path errors and endpoint errors for the single homing runs in the indoor labo-
ratory experiment

We evaluated the paths by computing the mean path error and the corresponding standard
deviation, the maximal path error and the endpoint error. We computed the path error at a
certain point of the homing trajectory as the shortest distance of this point to the mapping
trajectory. The path error statistics were then computed from the path errors of all points of
the homing trajectory. The statistics of the 10 homing runs are shown in Fig. 3.48. The av-
erage of all mean path errors was 0.14m, the maximal path deviation was 0.27m on average
and the average endpoint error was about 0.48m. These values, especially the endpoint error
seem to be large compared to the path length of 5.1m. However, these values do not depend
on the length of the path, but only on the configuration of landmarks in the environment.
Thus, also for longer paths with the same home position, the endpoint error would be ap-
proximately 0.5m. For this reason, we will not give any errors as percentage of the driven
path length, but will only state the absolute errors.

Landmark Matching

Fig 3.49 shows how the landmark views in a viewframe were distributed among the levels
and how many of the landmark views in each level were matched during the homing process.
It becomes obvious that only 8% of the landmarks in level 1 could be matched, while in
higher levels this ratio was about 20%. This fact is caused by many spurious landmarks being
added to the map. A spurious landmark is a landmark which does not correspond to a specific
object in the environment but appears as characteristic point in the image at object borders
due to the high contrast between the object in the foreground and the background. Thus, it is

132 Chapter 3: Global Topological Navigation

only visible within a relatively small angle and changes or disappears if the viewpoint shifts.
For this reason, the landmarks cannot be matched from other viewpoints, which explains the
low matching ratio in level 1 and also the high number of landmark views in this level.

level

nu
m

be
ro

fl
an

dm
ar

ks

1 2 3 4 5 6 7 8 9 10 11 120

100

200

300

400

500
unmatched
matched

6 7 8 9 10 11 12
0

10

20

30

408%

15%

18%
20% 23%

18%
18%

26%
25%

32% 34% 42%

Figure 3.49.: Average number of matched and unmatched landmarks per viewframe and
their distribution over the levels in the indoor laboratory experiment. The per-
centage corresponds to the ratio of matched landmarks.

Fig. 3.50 shows how the landmark matches of the different levels were distributed in the
panorama image. It can be seen that the landmarks in the higher levels were located in the
direction of motion and on distant objects.

11
9
7
5
3
1

le
ve

l

motion direction

Figure 3.50.: Distribution of the landmark matches of the different levels in the image for
the indoor laboratory experiment

Pruning Behavior

To evaluate the homing performance when pruning the recorded Trail-Map at different lev-
els, we performed 10 homing runs for each pruning level. To ensure that the robot reached
the home position, the home viewframe was never pruned. The resulting statistics are shown
in Fig. 3.51. When pruning one level, already 2/3 of all landmark views were deleted. How-
ever, the homing performance degraded only slightly. When pruning the Trail-Map to less

3.10 Experimental Evaluation 133

than 20% of its original size, also only slightly higher path errors occurred. The endpoint er-
rors were independent from the pruning level since the home viewframe was not pruned. We
stopped pruning after 7 levels, because the robot frequently started the searching behavior
at pruning level 7. However, it still reached the home position in all trials.

number of pruned levels
0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1 ratio of remaining LVs
mean path deviation [m]
maximal path deviation [m]
endpoint error [m]

Figure 3.51.: LVs, path and endpoint errors for different pruning levels in the indoor labora-
tory experiment

To further show how the homing paths change depending on the pruning level, we
recorded another Trail-Map for a meandering path of 17.7m length. The Trail-Map con-
tained 64 viewframes and 29586 landmark views spread over 23 levels. Then, we let the
robot perform single homing runs at different pruning levels and recorded the homing tra-
jectories. The results are shown in Fig. 3.52. It can be observed that the robot took short-
cuts the more the Trail-Map was pruned. However, with only 975 landmark views left
(which are only 3.3% of the full Trail-Map size), the robot still found the home position.
Of these 975 landmark views, 711 corresponded to viewframe 1, which was not pruned to
ensure that the robot reached the home position.

For a better understanding of how much memory is saved, we should note that one land-
mark view needs about 100 bytes of memory. In detail, a landmark view consists of the
landmark’s ID (4 bytes integer), the landmark’s descriptor (64 bytes for BRISK), a 3D unit
vector (24 bytes for 3 double numbers5) and the number of the viewframe when the land-
mark view was added to the Trail-Map (4 bytes integer). Thus, the landmark descriptor is the
main memory consumer. The Trail-Map consists of a list of levels, in which each level con-
tains a list of landmark views and the level number (4 bytes integer). In the list of landmark

5By knowing that it is a unit vector, only 2 elements would also be sufficient.

134 Chapter 3: Global Topological Navigation

y [m]

x
[m

]

0

0.5

1

1.5

2

2.5

3

-3.5-3-2.5-2-1.5-1-0.500.5

not pruned (29586 LVs)
1 level pruned (9787 LVs)
2 levels pruned (5356 LVs)
3 levels pruned (3392 LVs)

6 levels pruned (1441 LVs)
8 levels pruned (975 LVs)
mapping trajectory

home position

Figure 3.52.: Homing paths for different pruning levels in the indoor meandering experiment

views, each node has some additional memory requirements, depending on the program-
ming environment. Thus, the full Trail-Map of the meandering path of 17m length requires
about 3MB, which would extrapolate to about 18MB for 100m. This value is in the region of
the memory consumption reported for Visual Teach and Repeat [27] (35MB for 100m) and
the method introduced by Krajník et al. [51] (10MB per 100m). However, by pruning the
map by 2 levels, the path deviation is still acceptable, but the memory requirements decrease
to about 500kB for 17m, which corresponds to approximately 3MB per 100m. Furthermore,
when pruning 8 levels of the map, only 100kB are sufficient to still reach the home position –
where most of the required memory stems from the first viewframe that has not been pruned.
This corresponds to less than 600kB per 100m. Whether this kind of extrapolation holds for
longer paths will be discussed in the next section on long-range outdoor experiments.

3.10.2. Long-Range Outdoor Experiments

To show the long-range performance of Trail-Map-based homing, we performed outdoor
experiments on untraveled roads on the DLR Oberpfaffenhofen site, using the same Pio-
neer 3-DX robot as in the indoor laboratory experiments. Ground truth was obtained by a

3.10 Experimental Evaluation 135

tachymeter, which automatically tracked a prism mounted on the robot and recorded the x,
y and z coordinates using an infrared laser beam.

Carpark Experiment

IMU

omnidirectional
camera

prism

stereo camera

goal position

home position

tachymeter

home position

goal position

Figure 3.53.: Pioneer robot and experimental setup with path for the outdoor carpark exper-
iment (satellite imagery c©2015, DigitalGlobe, GeoBasis-DE/BKG)

In a first experiment, we remotely controlled the robot along a U-shaped path of 98.7m
length in an empty carpark between two buildings. Fig. 3.53 shows the experimental setup
and visualizes the robot path in a satellite image.

136 Chapter 3: Global Topological Navigation

For mapping, we chose the average angle error dissimilarity measure (ref. Eq. (3.4)) and
a dissimilarity threshold of ξmap

δ
ang
diss

= 0.12rad (approx. 6.9◦) for creating a new viewframe.
The angle threshold for creating the Trail-Map was δang = 10◦. With these parameters, the
robot recorded 49 viewframes and 36024 landmark views in total. The resulting Trail-Map
had 31323 landmark views spread over 17 levels, which means memory savings of 15%
compared to storing all landmark views. Again, the majority of landmark views (88%) was
in level 1 of the Trail-Map. Although each viewframe had 735 landmark views on average,
only a mean of 122 of them could be matched between successive viewframes. Thus, all the
unmatched landmarks remained in level 1 of the map, additionally to the landmark views
that changed their bearing by more than δang compared to the last viewframe. Statistics of the
mapping process are summarized in Table 3.7. The mapping trajectory is shown in Fig. 3.54.

Table 3.7.: Mapping statistics of the carpark experiment
Trail-Map angle threshold δang 10◦

mapping dissimilarity threshold ξmap
δ

ang
diss

0.12rad ≈ 6.9◦

path length 98.7m
observed LVs 36024

recorded viewframes 49
levels in Trail-Map 17

LVs in in full Trail-Map 31323
avg. LVs per viewframe 735 ± 25.5

avg. matches between viewframes 122 ± 24.7
LVs in Level 1 27681 (88.4%)
LVs in Level 2 1967 (6.3%)
LVs in Level 3 720 (2.3%)
LVs in Level 4 383 (1.2%)
LVs in Level 5 253 (0.8%)

For homing, we pruned the Trail-Map – except for the home viewframe – by 2 levels, which
proved to be a good trade-off between memory consumption and path accuracy in the in-
door experiments. As a result 2355 landmark views remained in the Trail-Map, which cor-
responds to approximately 250kB of memory. On average, each viewframe had 155 remain-
ing landmark views after pruning. The dissimilarity measure for detecting a viewframe as
reached was set to ξhom

δ
ang
diss

= 0.05rad average angle error (approx. 2.9◦) and the robot computed
homing vectors using the normalized improved difference vector model in Eq. (3.9), which
proved to be very robust against outliers in the simulations (ref. Section 3.7.2). The hom-

3.10 Experimental Evaluation 137

y
[m

]

x [m]

-10

-5

0

5

10

-5 0 5 10 15 20 25 30 35 40 45 50

mapping trajectory (ground truth)

viewframe recorded
goal
position

home
position

Figure 3.54.: Mapping trajectory for the outdoor carpark experiment

y
[m

]

x [m]

-10

-5

0

5

10

-5 0 5 10 15 20 25 30 35 40 45 50

mapping trajectory

homing trajectory (ground truth)

viewframe reached

viewframe exceededgoal
position

home
position

Figure 3.55.: Homing trajectory for the Trail-Map pruned by 2 levels in the outdoor carpark
experiment

ing process took 14.4 minutes and the robot could drive at a maximal velocity of 0.2m/sec.
The robot’s homing trajectory is shown in Fig. 3.55. This figure shows the locations where
the robot assumed to have reached or exceeded a viewframe. As described above, the robot
assumes to have exceeded a viewframe when the homing vector jumps by more than 90◦.
As the figure shows, the robot performed homing successfully, but took a short-cut near the
curve. That could be caused by the bigger size of the viewframes after pruning two levels
of the map. We observed a similar behavior in our indoor experiments (ref. Section 3.10.1).
During homing, the robot could match 20 landmark views on average, which is only 12.9%
of the available landmark views in each viewframe. The robot’s homing trajectory had an av-
erage path error of 0.88m±0.60m and a maximal deviation from the mapping path of 2.5m.

138 Chapter 3: Global Topological Navigation

The endpoint error when the robot assumed to have reached the home position was 4.33m.
This large deviation from the home position could be caused by the lack of nearby land-
marks. The homing statistics are summarized in Table 3.8.

Table 3.8.: Homing statistics of the carpark experiment
homing dissimilarity threshold ξhom

δ
ang
diss

0.05rad ≈ 2.9◦

pruned levels 2
remaining LVs in Trail-Map 2355

memory requirements ≈ 250kB
average number of LVs per viewframe 155 ± 29.0

average number of matched LVs per viewframe 20 ± 6.4 (12.9%)
average path deviation 0.88m±0.60m

maximal path deviation 2.5m
endpoint error 4.33m

This experiment shows that the robot is able to retrace a path of nearly 100m length with
a Trail-Map size of about 250kB. However, the robot moved through a bounded environ-
ment and was theoretically able to detect the majority of landmarks it observed at the home
position along the whole path.

Urban Experiment

In another experiment, we remotely controlled the robot along a curved path of 87.4m length
on a road between buildings, so that the landmarks which were visible from the home po-
sition could not be observed from the goal position. Fig. 3.56 shows the commanded path
in a satellite image. The robot used the same mapping parameters as in the previous exper-
iment (ξmap

δ
ang
diss

= 0.12rad average angle error and δang = 10◦) and recorded 49 viewframes
with an average of 601 landmark views per viewframe. The resulting Trail-Map had 16 lev-
els and 25130 landmark views. Again, 87% of all landmark views were in level 1 of the
Trail-Map, and only an average of 107 landmarks could be matched between successive
viewframes. Table 3.9 shows the statistics of the urban mapping results. The mapping tra-
jectory with the viewframes is shown in Fig. 3.57. As can be seen, the viewframes were
closer together near the curve in the area where the robot left the carpark, because in this
region the landmarks were closer to the robot trajectory than in the rest of the environment.

3.10 Experimental Evaluation 139

home position

goal position

goal positionhome position

tachymeter

Figure 3.56.: Experimental setup and robot path for the outdoor urban experiments (satellite
imagery c©2015, DigitalGlobe, GeoBasis-DE/BKG)

140 Chapter 3: Global Topological Navigation

y [m]

x
[m

]

-55-50-45-40-35-30-25-20-15-10-505-5

0

5

10

15

20

25

30

35

40

mapping trajectory (ground truth)
mapping trajectory (odometry)
viewframe recorded

missing ground truth data
replaced by robot pose estimate

home position

goal position

Figure 3.57.: Mapping trajectory for the outdoor urban experiment

Table 3.9.: Mapping statistics of the urban experiments
Trail-Map angle threshold δang 10◦

mapping dissimilarity threshold ξmap
δ

ang
diss

0.12rad ≈ 6.9◦

path length 87.4m
observed LVs 29437

recorded viewframes 49
levels in Trail-Map 16

LVs in in full Trail-Map 25130
avg. LVs per viewframe 601 ± 82.2

avg. matches between viewframes 107 ± 29.5
LVs in Level 1 21845 (86.9%)
LVs in Level 2 1780 (7.1%)
LVs in Level 3 725 (2.9%)
LVs in Level 4 301 (1.2%)
LVs in Level 5 189 (0.8%)

3.10 Experimental Evaluation 141

y [m]

x
[m

]

-55-50-45-40-35-30-25-20-15-10-505-5

0

5

10

15

20

25

30

35

40

home position

missing ground truth data
replaced by robot pose estimate

goal position

mapping trajectory
homing trajectory (ground truth)

homing trajectory (estimate)

viewframe reached
viewframe exceeded

(a)

(b)
(c)(d)

(e)

(f)

Figure 3.58.: Homing trajectory for the Trail-Map pruned by 2 levels (2195 LVs) with
marked image locations for Fig. 3.59 in the outdoor urban experiment

(a) (b)

(c) (d)

(e) (f)

Figure 3.59.: Sample panorama images with matched landmarks during homing in the urban
experiment with the Trail-Map pruned by 2 levels for robot positions shown
in Fig. 3.58. Color code: blue-green-yellow-red corresponds to landmarks in
levels 3-16 in this order.

142 Chapter 3: Global Topological Navigation

For homing, we first pruned the Trail-Map by 2 levels but did not prune the home viewframe,
so that the resulting Trail-Map had 2195 landmark views. The homing parameters were also
equal to the carpark experiment (ξhom

δhom
diss

= 0.05rad average angle error). The homing vectors
were computed using the normalized improved difference vector model in Eq. (3.9) at a rate
of about 3.4Hz parallel to the pose estimation process on the Pioneer’s Intel Core i7 CPU
with 2.7GHz. The homing trajectory is shown in Fig. 3.58. We had a tracking drop out of a
few meters, when the tachymeter lost the connection to the prism. We filled the gap in the
plot with the pose estimate that the robot obtained by fusing IMU data and visual odome-
try. The robot successfully retraced the path with an average path error of 0.77 ± 0.51m, a
maximal path error of 2.3m and an endpoint error of 1.74m. On average, the robot could
match 22 landmark views in each image with the landmark views in the corresponding goal
viewframe. Fig. 3.59 presents some sample images of the homing run with color-coded land-
mark matches. It can be seen that after pruning 2 levels mainly landmarks in the direction
of motion were left. Furthermore, the figure shows that the red landmarks, which are in the
highest levels of the Trail-Map, could be observed over a large range of viewframes.

To evaluate if homing is still possible with even less memory, we pruned the same Trail-Map
by 3 levels, resulting in 1484 remaining landmark views. The robot performed homing for
nearly 60 meters but then failed to compute stable homing vectors. On average, the robot
matched only 17 landmarks in each image with the corresponding goal viewframe. The
homing vectors started jumping, so that the robot assumed it had exceeded the viewframes
and started homing to the next one. In the end, the current goal viewframe was too far away
from the robot’s current position, so that not enough landmark matches could be found. We
stopped the homing process at this point. Fig. 3.60 shows the robot trajectory. Table 3.10
summarizes the statistics for the two homing experiments.

Table 3.10.: Homing statistics of the urban experiments
homing dissimilarity threshold ξhom

δ
ang
diss

0.05rad ≈ 2.9◦ 0.05rad ≈ 2.9◦

pruned levels 2 3
remaining LVs in Trail-Map 2195 1484

memory requirements ≈ 220kB ≈ 150kB
avg. number of LVs per viewframe 137 ± 22.7 116 ± 29.7

avg. matched LVs per viewframe 22 ± 7.1 (16.0%) 17 ± 7.2 (14.7%)
avg. path deviation 0.77 ± 0.51m homing failed

maximal path deviation 2.3m homing failed
endpoint error 1.74m homing failed

3.10 Experimental Evaluation 143

y [m]

x
[m

]

-55-50-45-40-35-30-25-20-15-10-505-5

0

5

10

15

20

25

30

35

40

home position

goal position

mapping trajectory
homing trajectory (ground truth)
viewframe reached
viewframe exceeded

Figure 3.60.: Homing trajectory for the Trail-Map pruned by 3 levels (1484 LVs) in the out-
door urban experiment. In this experiment, homing failed because the number
of landmark matches was not sufficient to compute stable homing vectors.

These experiments show that a Trail-Map size of about 220kB for 87m length is sufficient
for the robot to retrace a path through a segmented environment, in which the visibility of
landmarks is restricted to certain parts of the trajectory. Thus, we can assume that these
memory requirements scale approximately linearly with the length of the traversed path,
even for longer traverses of more than a kilometer in length, for example. The memory
requirements in this experiment also correspond to about 250kB for 100m as in the previous
experiment in the bounded carpark environment. However, stronger pruning of the Trail-
Map can lead to a failure of the homing process.

144 Chapter 3: Global Topological Navigation

Open Terrain Experiment

In a final outdoor experiment, we remotely controlled the robot along a path of about 86.3m
length on a road through wide open terrain. The environment and the path are shown in
Fig. 3.61. The robot recorded a Trail-Map using an angle threshold of δang = 10◦ and a
viewframe dissimilarity threshold of ξmap

δ
map
diss

= 0.15rad (approx. 8.6◦) average angle error.

home position

home goal

Figure 3.61.: Open terrain environment and robot path (satellite imagery c©2015, Digital-
Globe, GeoBasis-DE/BKG/GeoContent)

The ground truth robot trajectory is given in Fig. 3.62. The robot recorded 61 viewframes
with a mean of 412 landmark views per viewframe, where 113 landmark views could be
matched between successive viewframes on average. The full Trail-Map had 20953 land-
mark views spread over 12 levels, which saved about 17% compared to storing all landmark
views of all viewframes. Again, the majority of landmark views (more than 83%) was in
level 1 of the map, which can be seen in Table 3.11.

3.10 Experimental Evaluation 145

y [m]

x
[m

]

010203040506070

0

10

20

30

40

mapping trajectory

viewframe recorded home position

Figure 3.62.: Mapping trajectory for the open terrain experiment

Table 3.11.: Mapping statistics of the open terrain experiment
Trail-Map angle threshold δang 10◦

mapping dissimilarity threshold ξmap
δ

ang
diss

0.15rad ≈ 8.6◦

path length 86.3m
observed LVs 25126

recorded viewframes 61
levels in Trail-Map 12

LVs in in full Trail-Map 20953
avg. LVs per viewframe 412 ± 39.0

avg. matches between viewframes 113 ± 28.8
LVs in Level 1 17536 (83.6%)
LVs in Level 2 1316 (6.3%)
LVs in Level 3 839 (4.0%)
LVs in Level 4 656 (3.1%)
LVs in Level 5 287 (1.4%)

146 Chapter 3: Global Topological Navigation

After mapping, we pruned the recorded Trail-Map by 2 levels, which resulted in 2544 re-
maining landmark views. That corresponds to approximately 250kB of memory and 12% of
the full Trail-Map size. The robot was placed near the end of the mapping trajectory and per-
formed homing using the pruned Trail-Map. For this, the robot used a dissimilarity threshold
of ξhom

δhom
diss

= 0.05rad average angle error and calculated homing vectors using the normalized
improved difference vector model in Eq. (3.9). The resulting homing trajectory is visualized
in Fig. 3.63. As the figure shows, the robot exceeded many viewframes in this experiment,
because the environment was short of distinctive landmarks and the lighting conditions were
challenging (ref. Fig. 3.64 for sample panorama images of the homing run). Therefore, there
were many false landmark matches that affected the homing vector. Nevertheless, the robot
was still able to retrace most of the learned path. Since the robot did not perform obstacle
avoidance, we had to intervene twice to bring the robot back on the road when it left the
paved area. These sections are marked in the plot. The robot stopped 13.6m away from the
home position while we were moving it back to the road. During this operation, we occluded
large parts of the camera image, so that only 5 matching landmarks were visible and the re-
sulting dissimilarity measure for reaching the home viewframe dropped below the threshold.

y [m]

x
[m

]

010203040506070

0

10

20

30

40

mapping trajectory

homing trajectory (ground truth)

homing trajectory (estimate)

viewframe reached

viewframe exceeded

manual intervention

missing ground truth data
replaced by robot pose estimate

manual intervention

home position

Figure 3.63.: Homing trajectory using the Trail-Map pruned by 2 levels for the open terrain
experiment

3.10 Experimental Evaluation 147

Figure 3.64.: Sample panorama images during homing in the open terrain experiment

To have a closer look at the landmark matching results, we evaluated the number of matched
landmarks during homing compared to the number of landmark views and their levels in the
corresponding viewframe. Fig. 3.65 shows the average distribution of the landmark views
in a viewframe over the levels of the Trail-Map. As this figure shows, only a small fraction
of the landmark views in each viewframe can be matched during homing, while in general
the matching ratio is higher in higher levels of the Trail-Map. Compared to the landmark
matching ratios of the indoor experiments, even less landmarks could be matched in this
open terrain experiment.

level

nu
m

be
ro

fl
an

dm
ar

ks

3 4 5 6 7 8

8

9

9

10

10

11

11

12

12

0

5

10

15

20

25

30

35

40

45

unmatched landmarks
matched landmarks

15.8%

13.6%
15.3%

16.5%

18.5%

16.1%

27.7% 19.7%
18.0%

5.1%
1

2

3

4

0

Figure 3.65.: Average landmark distribution and matches per viewframe in the open terrain
experiment

148 Chapter 3: Global Topological Navigation

The outdoor experiments have shown that a robust landmark matching method is the key
component for robust homing using the Trail-Map. Nevertheless, we could demonstrate in
different environments that successful homing is possible with less than 300kB of memory
for a path of 100 meters length. Extrapolating the memory requirements for longer tra-
verses results in an average memory requirement of about 3MB per kilometer. Compared
to the Visual Teach and Repeat approach described by Furgale and Barfoot [27], which is
based on overlapping metric submaps and requires about 348MB of data per kilometer, the
Trail-Map-based homing approach requires two orders of magnitude less memory, while
the computational complexity is constant during mapping and homing. The Trail-Map also
significantly outperforms the method proposed by Krajník et al. [51], who reported memory
requirements of 848MB for a path of 8km (ref. Table 3.12).

Table 3.12.: Comparison of memory requirements for different homing methods
method memory requirements memory requirements per 1km

Visual Teach and Repeat [27] 348MB per 1km 348MB
method by Krajník et al. [51] 848MB per 8km 106MB

Trail-Map-based homing 300kB per 100m 3MB

3.11. Conclusion

In this chapter we described a landmark-based navigation method for autonomous hom-
ing, which is solely based on landmark bearing angles and does not use metric distance
information. Landmark observations and their angular configurations are stored in so-called
viewframes at certain locations along the robot’s path. The acquisition of a new viewframe is
triggered when the dissimilarity to the previous recorded viewframe exceeds a threshold. For
this, we analyzed different viewframe dissimilarity measures and discussed their behavior
under the presence of observation errors. The robot can retrace a path by computing homing
vectors, which point in the direction to align the robot’s current landmark configuration with
the one stored in the goal viewframe. In this chapter, we gave an overview of several exist-
ing homing vector computation methods and introduced new methods, which outperform the
existing ones in case of landmark outliers and nonisotropic landmark distributions. Next, we
analyzed the LT-Map, which was the first data structure that provided an efficient and scal-
able storage of viewframe-based paths. After pointing out some weaknesses of the LT-Map,
we developed the Trail-Map, which is a novel data structure for scalable and nonredundant

3.11 Conclusion 149

viewframe storage that also allows constant-time mapping and homing. It is based on the
insight that the bearing angles to distant landmarks and landmarks in the direction of travel
hardly change during motion (translation invariant landmarks), while the bearing angles of
nearby landmarks change significantly as the robot passes them (translation variant land-
marks). Thus, the Trail-Map stores the landmark observations in a hierarchical order of their
level of translation invariance and avoids redundant storage of landmark observations that
do not change significantly between subsequent viewframes. In case of memory shortage,
the Trail-Map can be pruned by deleting the landmark views in the lower levels of the map.
By doing so, only the information of quickly changing and possibly unstable landmarks
is discarded, and the information of stable, translation invariant landmarks is preserved. In
simulations we could show the superior performance of the Trail-Map compared to the LT-
Map. Furthermore, we analyzed the Trail-Map data structure in the presence of noise. We
could validate the approach in indoor and outdoor experiments with a robot using natural
landmarks extracted from omnidirectional camera images, where we could show the scal-
ability and memory efficiency of the method. In particular, we demonstrated in long-range
outdoor experiments that a Trail-Map pruned by 2 levels with less than 300kB is sufficient
to store and retrace a path of 100 meters length, which outperforms state-of-the-art methods
by two orders of magnitude, while still offering constant runtimes for mapping and hom-
ing. Since the method achieved these values also in a segmented environment, in which the
home and at the goal location had no common landmarks, we can assume that the memory
requirements can be approximately linearly extrapolated for longer traverses of more than a
kilometer in length, for example. Due to these properties, we also claim that a Trail-Map-
based method is a promising alternative to state-of-the-art feature-based SLAM approaches
for the task of robot homing without loop closures in the mapping path.

The bottleneck of the whole method is the landmark detection and matching process, be-
cause Trail-Map-based homing heavily depends on correct and reliable landmark matches.
Unstable landmarks unnecessarily inflate the Trail-Map, and false matches affect the cor-
rectness of the homing vector. Furthermore, to make Trail-Map-based homing applicable
to real-world scenarios, it must be combined with a local obstacle detection and avoidance
method. This problem is tackled in the following chapter.

4. Hybrid Navigation

In the previous chapters we developed a method for local metric navigation based on stereo
disparity images, and a method for global topological homing based on landmarks extracted
from an omnidirectional camera. For homing in unstructured environments, the robot needs
a combination of both skills to return to the home position by moving safely through the
environment. Blindly following the homing vector computed from the global navigation
method could lead the robot into obstacles, because the homing path deviates from the
learned path depending on the landmark distribution in the environment and on the prun-
ing level of the Trail-Map. Although the robot most likely observed the obstacles during
the first traversal of the path, there is no benefit in storing this information for the homing
process. First of all, this would require additional memory. Second, the robot would need an
accurate metric localization method to align the currently perceived terrain patch with the
stored obstacle. Furthermore, the robot would have to fuse the old obstacle information and
the new observations to have a consistent obstacle representation. However, metric local-
ization and fusion of environment information would decrease the efficiency of the homing
method. In fact, storing the obstacle positions during the path learning phase is simply not
necessary because the robot would observe and detect the obstacles during homing anyway.
By doing so, the robot can even avoid obstacles which were not present during the path
learning phase, in case these obstacles do not block the learned path completely.

For obstacle avoidance during homing, the robot maintains a geometric representation of its
immediate surroundings, which allows estimating the traversability of the terrain. Using this
local metric map, the robot can choose the homing direction that is close to the computed
homing vector but does not put the robot to any risk.

An overview of the hybrid navigation method is presented in Fig. 4.1. The local and global
navigation components have already been described as separate modules in the previous
chapters. The homing vector calculated by the global navigation method is given as input
for the local path planner, which uses the local traversability cost map to adjust the homing

152 Chapter 4: Hybrid Navigation

direction to only lead through safe cells. This chapter explains what is necessary to combine
the local metric navigation approach with the global homing method and experimentally
demonstrates the performance of the hybrid homing method.

Local Navigation (Chapter 2)

Pose Estimation

Geometric
Mapping

depth
image Traversability

Estimation

Path Planning

visual
odometry

accelerations
angular velocities

current pose

Motion Control

current
pose

geometric
map

cost map

path

motion
commands

motion
capability

Stereo Camera

IMU

terrain
difficulty

odometry

current
pose

Global Navigation (Chapter 3)

Robot Motion Layer Operator

mapping
phase

Omnidirectional
Camera

Feature
Extraction

Homing Vector
Calculation

panorama
image

Viewframe
Creation

image
features

current
viewframe

homing
vector

homing
phase

goal
point

Landmark
Matching

Trail-Map
reference
viewframe

landmarks

mapping
phase homing

phase

homing
phase

roll
pitch

reference
viewframe

Figure 4.1.: Overview of the hybrid navigation method

4.1. Creation of a Moving Local Metric Map

The robot needs detailed information about the structure of the environment only in its
immediate surroundings to find traversable regions and obstacles. Thus, we limit the size

4.2 Homing with Obstacle Avoidance 153

of the local map and let the map move with the robot. For this, the map origin is shifted
every time a new single-view map is attached, so that the robot always stays in the center of
the local map. Terrain information outside the map bounds is deleted. This ensures constant
memory requirements and also constant runtimes for creating and maintaining the local
traversability cost map.

The size of the local map should be chosen according to the available computational power
and according to the pose estimation and environment modeling uncertainties. The map
should be big enough to allow meaningful obstacle detection, but small enough to prevent
pose estimation errors from affecting the map quality.

4.2. Homing with Obstacle Avoidance

The homing vector calculated from the landmark correspondences between the viewframes
should lead the robot along the learned path to its home position. Assuming a static environ-
ment and constant motion capabilities of the robot, this path is known to be safe, because
it has been traversed by the robot earlier. However, small deviations from this trajectory
can already lead into regions which are not safe for the robot. As the simulations and the
indoor and outdoor experiments of Trail-Map-based homing have shown, such deviations
occur depending on the landmark configuration of the environment and on the pruning level
of the Trail-Map. To make sure that the robot performs homing along a safe path, the raw
homing vector has to be adjusted considering the estimated traversability of the terrain in the
local metric map. This could be achieved by using the same D* path planner as described in
Section 2.4 and setting a goal point in the direction of the homing vector. For this, it must
be ensured that the goal point is located in a safe cell. Otherwise the path planning would
fail. The effort of finding a safe goal cell can be high, and since the path planner only has to
work in a very small region, we chose a different and easier approach than D* path planning,
which will be explained in the following paragraphs.

4.2.1. Adjusting the Homing Vector

The idea of realizing obstacle avoidance with homing vectors is to adjust the homing di-
rection as little as possible with minimal robot turning while achieving lower costs for the
intended direction of movement. For this, three measures are evaluated:

154 Chapter 4: Hybrid Navigation

• Homing direction costs: A straight path of a fixed length lvec is projected on the cost
map along a possible homing direction φi and subsampled in equal distances. The
costs of the underlying cells are then summed up and give the homing direction costs
di. The lower the costs, the safer is the corresponding homing direction.

• Path deviation penalty: We introduced a penalty proportional to the angular devia-
tion from the desired homing direction φh, which ensures that the new direction is as
close as possible to the computed homing direction.

• Robot turning penalty: The turning penalty is proportional to the angular deviation
from the current yaw angle of the robot α and ensures that the new direction is close
to the current bearing of the robot.

Summing up these three measures gives the overall costs ci for each possible homing direc-
tion φi:

ci = di + |φi − φh|pdev + |φi − α|pturn, (4.1)

where pdev and pturn are constant parameters for computing the path deviation penalty and
the robot turning penalty, respectively. Algorithm 2 shows how the best homing direction
is found. The robot starts computing the overall costs of the desired homing direction φh.
Then it repeatedly changes the possible homing direction in fixed angular steps ∆φ in either
direction and recomputes the overall costs of these directions. The direction corresponding
to the first local minimum of the overall costs is chosen by the robot. Additional parameters
for finding the best homing direction are the size of the angular steps ∆φ, the length of the
homing vector lvec and the number of steps nsamples for subsampling this vector. The approach
is visualized in Fig. 4.2.

4.2.2. Robot Motion Control

The motion control of the robot is similar to the method described in Section 3.9.5. The robot
chooses a forward and a turn velocity that lead it in the direction of the adjusted homing
vector. However, we enforce the robot to travel a distance of at least lvec before it requests
a new homing direction. This ensures that the robot does not get stuck during homing in
case the computed homing vector alternates between two possible directions. Nevertheless,
it constantly checks whether the intended direction of travel is safe using Algorithm 2.

4.2 Homing with Obstacle Avoidance 155

Algorithm 2: Finding the best homing direction
Input : robot pose px, py, α; desired homing direction φh; cost map C
Output: best homing direction φbest

1 cmin ← 105

2 noMinCount← 1

3 for i = 0 to 180/∆φ do
4 if i mod 2 = 0 then
5 φi ← φh + i∆φ . alternate between left and right direction
6 else
7 φi ← φh − i∆φ

8 ∆l← lvec/nsamples . subsample homing direction
9 ∆x← ∆l cos(φi)

10 ∆y← ∆l sin(φi)
11 di ← 0

12 for j = 1 : nsamples do
13 px, j ← px + j∆x
14 py, j ← py + j∆y
15 c j ← C(px, j, py, j)

16 if c j = UNKNOWN then
17 c j ← 1 . set cost for unknown cells to 1

18 else if c j = UNTRAVERS ABLE then
19 c j ← 10nsamples . set high costs for untraversable cells

20 di ← di + c j

21 ci ← di + |φi − φh|pdev + |φi − α|pturn . compute overall cost with penalties
22 if ci < cmin then
23 cmin ← ci

24 φbest ← φi

25 noMinCount← 0
26 else
27 noMinCount++

28 if noMinCount=5 & cmin < 1 then
29 break . end algorithm if local minimum is found

If the computed homing direction leads through cells with a low certainty, the robot has to
collect more information about the surrounding terrain before moving in this direction. For
this, it performs exploration turns as described in Section 2.5.

156 Chapter 4: Hybrid Navigation

robot pose

desired homing
direction

safe homing
direction

Figure 4.2.: Local adjustment of the homing vector: Cost map with traversability costs be-
tween 0 and 1 for traversable cells (white – green – orange) and > 1 for un-
traversable cells (red). The desired homing vector leads through untraversable
cells and is adjusted for safe homing with minimal robot turning.

4.3. Experimental Evaluation

To demonstrate the combination of local obstacle avoidance and Trail-Map-based homing,
we set up an indoor test environment with obstacles such as stones and slopes as shown
in Fig. 4.3. We used the Pioneer 3-DX robot as mobile test platform, which is equipped
with a wide angle stereo camera, an Xsens MTi10 IMU and an omnidirectional camera.
The computational hardware is an Intel Core i7-3740QM CPU with 2.70GHz and a Spar-
tan 6 LX75 FPGA Eval Board to perform dense stereo matching using SGM [39] at a rate of
more than 10Hz. The stereo camera is a Guppy-Pro grayscale camera pair with a resolution
of 1292 × 964 pixels and a baseline of 9cm. It is equipped with wide angle lenses resulting
in a focal length of 635 pixels, which is equal to a horizontal opening angle of about 90◦.
The omnidirectional camera is a catadioptric system with a Point Grey Chameleon USB 2.0
color camera. It has a vertical opening angle of −30◦ to 40◦. We used an infrared tracking
system which tracked a reflecting target object mounted on the robot for obtaining ground
truth robot poses.

4.3 Experimental Evaluation 157

goal

home position

Figure 4.3.: Experimental setup for demonstrating homing with obstacle avoidance

4.3.1. Mapping

The robot was remotely controlled along a path of about 9.1m length, which is sketched in
Fig. 4.3. During this traverse, the robot estimated its pose with respect to the starting position
and maintained a moving local traversability cost map using the disparity images computed
from the stereo camera data. However, since the robot was remotely controlled, it did not
make use of the metric map, but only displayed it to the operator. Using the omnidirectional
image data, the robot recorded viewframes using a dissimilarity threshold of ξmap

δ
ang
diss

= 0.05rad
average angle error and built a Trail-Map with an angle threshold of δang = 10◦. The resulting
Trail-Map consisted of 39 viewframes and 12919 landmark views spread over 15 levels as
given in Table 4.1. The robot detected on average 474 ± 42.2 landmarks in each image, and
could match 157±34.2 landmarks between subsequent viewframes. The mapping trajectory
is shown in Fig. 4.4.

Table 4.1.: Distribution of landmark views (LVs) over the levels for the obstacle avoidance
experiment

level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
LVs 9213 1548 817 491 349 196 139 80 34 17 20 6 6 1 2

158 Chapter 4: Hybrid Navigation

x [m]

y
[m

]

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7
-2

-1

0

1

mapping trajectory

viewframe recorded

goal position

home
position

obstacle
positions

Figure 4.4.: Mapping trajectory with viewframes and obstacle positions

4.3.2. Homing with Obstacle Avoidance

To demonstrate homing with obstacle avoidance, the robot performed homing using the
recorded Trail-Map as described in Chapter 3. It computed homing vectors using the nor-
malized improved difference vector model and the dissimilarity threshold for detecting a
viewframe as reached was set to ξhom

δ
ang
diss

= 0.03rad average angle error. During homing, par-
allel to computing homing vectors from the observed landmark configurations, the robot
maintained a local moving digital elevation map (DEM) and estimated the traversability of
the terrain as described in Chapter 2. The parameters for the local mapping and traversability
estimation process are given in Table 4.2. The resulting cost map was then used to correct
the current homing direction as described in Section 4.2. The parameters for adjusting the
homing direction are given in Table 4.3.

parameter value
map resolution r 5cm

single view map size 1.2m×1.2m
local map size 2.5m×2.5m
robot diameter 1.0m

critical step height hcrit 5cm
critical slope scrit 15◦

critical roughness rcrit 7cm
slope weight α1 0.25

roughness weight α2 0.25
step height weight α3 0.5

Table 4.2.: Cost map parameters

parameter value
homing vector length lvec 0.5m

homing vector samples nsamples 25
angular step size ∆φ 5◦

path deviation penalty pdev 0.2
robot turning penalty pturn 0.2

Table 4.3.: Obstacle avoidance parameters

4.3 Experimental Evaluation 159

x [m]

y
[m

]

0 1 2 3 4 5 6 7
-2

-1

0

1

map 8

map 7

map 6

map 5 map 4

map 3

map 2

map 1

goal
position

mapping trajectory

homing trajectory

viewframe reached

Figure 4.5.: Homing trajectory with obstacle avoidance using the full Trail-Map. The posi-
tions of selected local maps (ref. Fig. 4.6) are marked in the plot.

The robot performed several homing runs, each with a different pruning level of the Trail-
Map. Fig. 4.5 shows the homing path of the robot when it used the full Trail-Map. As
the figure shows, the robot made a detour after half of the homing trajectory. This detour
was caused by noisy homing vectors in combination with the motion control method we
implemented. Since the robot has to travel at least a distance of lvec before it requests a new
homing direction, a wrong homing vector can cause the robot to significantly deviate from
its path. Some selected local maps of the homing run are shown in Fig. 4.6 along with the
homing vector computed from the landmark configurations and the adjusted homing vector
in case the desired direction was not safe for the robot. The plots show that the homing vector
was always corrected if necessary, so that it led the robot through safe cells. Mapping and
homing ran at a frequency of about 2Hz on the Pioneer’s Intel Core i7 CPU with 2.7GHz.
The computation time did not increase with the length of the path. The robot moved with a
maximum velocity of 0.15m/sec.

The homing trajectories of all homing runs with Trail-Map pruning levels from 0 to 8 are
shown in Fig. 4.7. In all runs up to pruning level 7, the robot reached the home position
without putting itself to any risk. We never had to intervene to prevent the robot from running
into an obstacle. Only in the homing run using the Trail-Map pruned at 8 levels we stopped
the homing process when the robot left the area covered by the tracking system. As the
figure also shows, when the Trail-Map was pruned by 7 levels and only 735 LVs were left,
the robot passed one obstacle on the other side than in the learning run. This shows that the

160 Chapter 4: Hybrid Navigation

(a) map 1 (b) map 2

(c) map 3 (d) map 4

(e) map 5 (f) map 6

(g) map 7 (h) map 8

Figure 4.6.: Local maps of the homing run with the full Trail-Map. Green – orange:
traversable. Red: untraversable. Black arrow: desired homing direction. Blue
arrow: adjusted homing direction.

4.3 Experimental Evaluation 161

robot is able to take a different path during homing, when its intended direction is blocked by
an obstacle. A detailed visualization of the homing vectors in this area is given by Fig. 4.8.

x [m]

y
[m

]

0 1 2 3 4 5 6 7
-2

-1

0

1

goal
position

home
position

0 levels pruned (12919 LVs)
1 level pruned (4188 LVs)
2 levels pruned (2702 LVs)
3 levels pruned (1905 LVs)

4 levels pruned (1423 LVs)
5 level pruned (1084 LVs)
6 levels pruned (890 LVs)
7 levels pruned (753 LVs)
8 levels pruned (673 LVs)

mapping trajectory

Figure 4.7.: Homing paths with the Trail-Map pruned by different levels. The homing path
using the Trail-Map pruned by 7 levels is highlighted, because here the robot
took a different path than during mapping.

x [m]

y
[m

]

4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
-0.8

-0.6

-0.4

-0.2

0

0.2 homing trajectory

adjusted homing direction

desired homing direction

goal position

obstacle

Figure 4.8.: Desired and adjusted homing vectors for passing an obstacle during homing
with the Trail-Map pruned by 7 levels

162 Chapter 4: Hybrid Navigation

4.4. Conclusion

In this chapter we showed how to combine the local metric and the global topological nav-
igation approaches to a hybrid navigation method that enables the robot to retrace learned
paths in rough terrain without putting itself to any risk. The robot creates and maintains a
moving local cost map of its immediate surroundings and uses this data to locally adjust
the homing direction, which is computed from the landmark configuration of the current
position and the stored viewframes. The experimental results have shown that the robot can
retrace learned paths without putting itself to any risk, even if the Trail-Map is pruned very
strongly. However, the homing performance is not optimal yet. The robot makes detours
caused by noisy homing vectors and the applied motion control law. This behavior needs to
be improved. Nevertheless, this chapter could show that the proposed approach is applicable
to visual robot homing in unstructured environments.

5. Conclusion

In this thesis we developed a method for efficient visual homing in rough terrain. Visual
homing describes the ability of a mobile robot to return to its starting position after having
traveled away from it. This is an essential skill in many applications in which robots serve
as tools for researchers or rescue workers. For example, in a sample-return scenario on
a foreign planet the rover is commanded to scientifically interesting places by an operator,
takes samples and then autonomously returns the samples to the lander. Also when robots are
used to distribute sensor instruments, e.g. for seismic surveillance, they will have to return to
a base station after placing each instrument. Furthermore, the stored path information cannot
only be used for homing, but can also be transferred to other robots for retracing the path in
the same direction. As an example, in disaster scenarios, robots could provide medical aids
for trapped people, which were previously found by a scouting robot that provided the path
information for its robotic colleagues.

The presented approach to the visual homing problem is only based on lightweight, pas-
sive proprioceptive and exteroceptive sensors, namely a stereo camera, an IMU, an om-
nidirectional camera and odometry sensors. Furthermore, it does not depend on external
infrastructure such as GPS or artificial landmarks. The method is divided into a local metric
navigation and a global topological navigation method, which have different requirements
and are combined to achieve efficient visual homing in rough terrain.

The task of the local metric navigation method is to guide the robot along a safe path in
the desired direction, which is computed by the global navigation method. For this, we
developed a multisensor data fusion method for robust pose estimation from IMU data,
visual odometry and leg odometry. The measurements are fused in an indirect information
filter framework and the estimated visual odometry errors are taken into account. Thus, the
estimated poses are robust against visual disturbances and leg slip. We demonstrated the
accuracy and robustness of the pose estimation method in experiments with a six-legged
walking robot in a gravel testbed. Furthermore, we adapted a method for generating dense

164 Chapter 5: Conclusion

elevation maps to work with stereo disparity images. Using this method, digital elevation
maps of arbitrary resolution can be built from stereo data. We could show that this method
outperforms the straightforward point cloud approach, especially when wide angle lenses
are used. We used the estimated poses to combine the elevation maps from single disparity
images to a local digital elevation map. To show the overall performance of the local metric
navigation method, we applied traversability estimation to create a traversability cost map
of the environment and implemented a method for planning paths based on the estimated
traversability of the terrain. We demonstrated the functionality of the method in experiments
with a six-legged walking robot and could show that the local navigation method is robust
against visual disturbances and against slip on loose ground. Since metric navigation is only
required in the immediate surroundings of the robot, the size of the local metric map is
limited to a small region around the robot, resulting in runtimes which are constant with
respect to the length of the traveled path.

The global navigation method aims at building an efficient representation of the robot path
and provides a framework for retracing this path. For this, it does not require any metric dis-
tance information, but is only based on viewframes, which contain the bearing angle configu-
rations of natural landmarks at certain locations in the environment. The robot records a new
viewframe along its path whenever the dissimilarity to the previously recorded viewframe
exceeds a threshold. Furthermore, for retracing the path, the robot computes homing vectors
that lead it in the direction to align the currently perceived landmark configuration with the
configuration of a goal viewframe. In this work, we described and discussed a variety of
different methods for calculating dissimilarities and for computing homing vectors between
viewframes. Additionally, we proposed new homing vector calculation methods that outper-
form the existing ones in cases of non-uniform landmark distributions and false landmark
matches. Furthermore, we developed the Trail-Map, a novel scalable data structure for the
efficient storage of a robot path consisting of a sequence of viewframes. It is based on the
insight that the bearing angles to distant landmarks and landmarks in the direction of move-
ment hardly change during the motion of the robot (translation invariant landmarks), while
the bearing angles to close landmarks change quickly (translation variant landmarks). The
Trail-Map avoids redundancies by only inserting new landmark observations, if they have
changed significantly compared to the last viewframe. The Trail-Map stores the landmark
views in their hierarchical order of translation invariance, with long-term stable landmarks in
the higher levels and quickly-changing, volatile landmarks in the lower levels. This structure
not only avoids redundancies, but also allows easy scaling of the map. In case of memory

165

shortage, the Trail-Map can be pruned by deleting landmark observations in the lower levels
of the Trail-Map. This means discarding volatile landmark information and retaining the im-
portant, stable translation invariant landmark observations. We demonstrated in simulations
that the Trail-Map significantly outperforms the LT-Map [2], which is the only existing scal-
able data structure for viewframe-based navigation, in terms of memory requirements, path
accuracy and runtime behavior. We evaluated the homing performance with the Trail-Map
in simulations and in real-world experiments and also analyzed the effect of different prun-
ing levels. In the experiments we used natural landmarks extracted from omnidirectional
camera images. In long-range outdoor experiments we could demonstrate that homing using
the Trail-Map requires less than 300kB of memory per 100m path length, while its runtime
is constant with respect to the path length. Compared to the state-of-the-art methods for
retracing taught paths [27, 51], this means memory savings of more than 97%.

By combining the local and the global navigation methods, we developed a visual homing
approach for rough terrain, which is suitable for mobile robots with limited computational
and memory resources. For this, we proposed a simple obstacle avoidance method that ad-
justs homing vectors so that they point to a safe direction. We showed in experiments that
this method enables the robot to safely retrace previously traveled paths in rough terrain.

The proposed method for visual homing in rough terrain is a powerful alternative to metric
navigation methods in applications in which a global metric representation of the environ-
ment is not required and the robot should only retrace a previously traversed path. Thus,
the method is another step towards more autonomous and efficient mobile robots to support
human operators, for example in search-and-rescue or planetary exploration scenarios.

Future Perspective

There are several possibilities to improve the proposed visual homing method.

In future work, a representation of uncertainty should be added to the local mapping and
traversability estimation process. The pose estimation method already estimates the covari-
ances of the robot pose, but they are not used to create a probabilistic map so far. Addition-
ally, the confidence of the stereo data should be considered for creating the local map. Then,
the traversability estimation process should also be adjusted to work with uncertain geomet-
ric map information. Another extension to the presented work would be a GPU or FPGA

166 Chapter 5: Conclusion

implementation of the mapping and traversability estimation method, as a parallelization of
these processes is possible and is expected to decrease the computation time significantly.

A major improvement of the proposed viewframe-based homing method would be a more
robust landmark detection and matching method. Our experiments showed that the matching
ratios of the BRISK features were very low, so that the majority of landmark observations
in the Trail-Map could not be used for homing. Furthermore, since in its current implemen-
tation the Trail-Map cannot be corrected, every landmark view which is added to the Trail-
Map will remain there, except the corresponding level of the Trail-Map is deleted during
pruning. For retracing a path several times, a method for correcting the Trail-Map might be
beneficial. Then, unstable landmarks could be deleted from the map and angular observation
errors can be corrected.

In the current implementation of Trail-Map-based homing, the robot does not try to find
any shortcuts. Thus, it will also travel along loops in the homing phase. To optimize the
robot’s homing behavior, a topological network of viewframes that corresponds to a kind
of cognitive map would be beneficial. However, since this requires the computation of dis-
similarities between all viewframes, such a method would lead to a higher computational
complexity. A first work on the creation of a topological map of viewframes is presented
by Vayugundla [96]. In this work, dimensionality reduction techniques are used to compute
the 2D distribution of viewframes based on their dissimilarities. This approach is closely re-
lated to another possible extension, which is the development of a Trail-Map-based SLAM
method. In the current implementation, no metric information is used to create the Trail-
Map, although metric pose estimates and covariances are available. These viewframe poses
could potentially be corrected using the dissimilarities between the viewframes as computed
during the creation of the topological network of viewframes mentioned before.

Additionally, the proposed hybrid homing method with local obstacle avoidance can still
be improved. The experiments showed that the robot made unnecessary detours caused by
noisy homing vectors in combination with the motion control law. Here, a better motion
control method could lead to shorter homing paths. Furthermore, the obstacle avoidance
method assumes that the homing vectors computed from the landmark configurations are
sufficiently accurate, and that the environment does not change significantly. In case the
previously traveled path is blocked so that the robot runs into a dead end which is bigger
than the size of the local map, a strategy to find an alternative way must be implemented.

A. Appendix: Serial RANSAC for

Landmark Outlier Rejection

This appendix gives the equations and algorithms for the landmark outlier rejection method
proposed by Jäger [42] [43].

A.1. Rotation Estimation with Unknown Roll and Pitch

Wahba [97] first posed the problem of finding the rotation matrix R that minimizes the cost
function

J(R) =
1
2

n∑
i=1

wi |l′i − R li|
2, (A.1)

where l′i is a landmark observation unit vector in a fixed body frame, li is the corresponding
landmark unit vector in a known reference frame and wi are the weights.

Markley [64] solved this problem by singular value decomposition as follows: First, it can
be shown that

J(R) =
1
2

n∑
i=1

wi |l′i − R li|
2 = 1 −

n∑
i=1

wi l′i
T R li = 1 − tr(R BT) (A.2)

B =

n∑
i=1

wi l′i lT
i , (A.3)

assuming
∑n

i=1 wi = 1. Matrix B can be factorized by singular value decomposition into

B = UB SB VT
B , (A.4)

SB = diag[s1, s2, s3], (A.5)

168 Chapter A: Appendix

where SB is a diagonal matrix with s1 ≥ s2 ≥ s3 ≥ 0 being the singular values of B, and UB

and VB are orthogonal matrices. Then it can be shown that

R = UB diag[1, 1, det(UB) det(VB)] VT
B (A.6)

minimizes the cost function J(R). The weights wi for calculating B were computed as
wi = |l′i − lT

i |. Using these weights, landmark vectors with large displacements have higher
influence on the result.

A.2. Translation Estimation

The method for calculating the translation t between two sets of unit vectors li and l′i was
introduced by Jäger et al. [43]. The cost function to be minimized is

E(t) =

n∑
i=1

wi ((l′i × li)T t)2 − λ (|t|2 − 1), (A.7)

where wi are weights and λ is a Lagrange multiplier ensuring |t| = 1. With mi = l′i × li we
get

E(t) =

n∑
i=1

wi (mT
i t)2 − λ (| t |2 − 1) (A.8)

= tT
n∑

i=1

(wi mimT
i) t − λ (| t |2 − 1). (A.9)

By setting M =
∑n

i=1 (wi mimT
i) we get

E(t) = tT M t − λ (| t |2 − 1). (A.10)

For minimizing E(t) we set the derivative of E(t) with respect to t to 0 and get

∂E(t)
∂t

= 2M t − 2λt = 0 → λt = Mt, (A.11)

A.3 Serial RANSAC Pseudocode 169

which is an eigenvalue equation. Since M is symmetric, the singular values are equal to
the eigenvalues. Thus, the sign-free vector t̃ that solves this equation can be determined by
singular value decomposition of M:

M = UMSMVT
M and t̃ = VM;:,3, (A.12)

where VM;:,3 denotes the third column of the matrix VM corresponding to the smallest eigen-
value. To determine the sign for t̃, we use

t =

 − t̃ if
∑n

i=1 (l′i − lT
i) t̃ < 0

t̃ else.
(A.13)

The weights for calculating M are also computed as wi = |l′i − lT
i |.

A.3. Serial RANSAC Pseudocode

Algorithm 3: Reject Outliers
Input : set of initial matches V = {< li, l′i > | i = 1 . . . n}
Output: outlier-free set of matches V ′

1 [V rot
best, Rbest] = Reject_Rotational_Outliers (V)

2 V = V \ V rot
best

3 foreach < li, l′i > in V do
4 li = Rbest li

5 [V trans
best , tbest] = Reject_Translational_Outliers (V)

6 V ′ = V rot
best ∪ V trans

best

Algorithm 4: Update_Inliers_Translation
Input : initial matches V = {< li, l′i > | i = 1 . . . n}, initial inlying matches Vin

Output: refined inlying matches Vin

1 t = Compute_Translation(Vin)

2 foreach < li, l′i > in V \ Vin do
3 εi = |(li × l′i)

T t| . Compute error
4 if εi < εthresh and (li − l′i)

T t < 0 then
5 Vin = Vin∪ < li, l′i >

170 Chapter A: Appendix

Algorithm 5: Update_Inliers_Rotation
Input : initial matches V = {< li, l′i > | i = 1 . . . n}, initial inlying matches Vin

Output: refined inlying matches Vin

1 R = Compute_Rotation(Vin)

2 foreach < li, l′i > in V \ Vin do
3 εi = |Rli − l′i | . Compute error
4 if εi < εthresh then
5 Vin = Vin∪ < li, l′i >

Algorithm 6: Reject_Translational_Outliers
Input : initial matches V = {< li, l′i > | i = 1 . . . n}
Output: inlying matches Vbest, estimated translation tbest

1 Vbest = ∅

2 for i=1:maxIterations do
3 Vin = randomly sample 3 elements from V
4 Vin = Update_Inliers_Translation(Vin, V)

5 if size(Vin) > size(Vbest) then
6 Vin = Update_Inliers_Translation(Vin, V)
7 tbest = Compute_Translation(Vin)
8 Vbest = Vin

9 if size(Vbest) > 0.9·size(V) then
10 break for

Algorithm 7: Reject_Rotational_Outliers
Input : initial matches V = {< li, l′i > | i = 1 . . . n}
Output: inlying matches Vbest, estimated rotation Rbest

1 Vbest = ∅

2 for i=1:maxIterations do
3 Vin = randomly sample 3 elements from V
4 Vin = Update_Inliers_Rotation(Vin, V)

5 if size(Vin) > size(Vbest) then
6 Vin = Update_Inliers_Rotation(Vin, V)
7 Rbest = Compute_Rotation(Vin)
8 Vbest = Vin

9 if size(Vbest > 0.9 size(V) then
10 break for

Bibliography

[1] A. A. Argyros, K. E. Bekris, S. C. Orphanoudakis, and L. E. Kavraki. Robot homing
by exploiting panoramic vision. Autonomous Robots, 19(1):7–25, 2005. Cited on
page 63.

[2] M. Augustine, E. Mair, A. Stelzer, F. Ortmeier, D. Burschka, and M. Suppa.
Landmark-Tree Map: A biologically inspired topological map for long-distance robot
navigation. In Proceedings of the IEEE International Conference on Robotics and

Biomimetics (ROBIO) 2012, Guangzhou, China, 2012. Cited on pages 8, 9, 10, 64,
85, and 165.

[3] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (SLAM):
Part II. IEEE Robotics & Automation Magazine, 13(3):108–117, 2006. Cited on
page 3.

[4] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. In
Computer vision–ECCV 2006, pages 404–417. Springer, 2006. Cited on page 122.

[5] J. L. Blanco, J. A. Fernandez-Madrigal, and J. Gonzalez. Toward a unified Bayesian
approach to hybrid metric-topological SLAM. IEEE Transactions on Robotics, 24
(2):259–270, 2008. Cited on page 3.

[6] I. Bogoslavskyi, O. Vysotska, J. Serafin, G. Grisetti, and C. Stachniss. Efficient
traversability analysis for mobile robots using the kinect sensor. In European Con-

ference on Mobile Robots (ECMR) 2013, pages 158–163. IEEE, 2013. Cited on
page 46.

[7] O. Booij, B. Terwijn, Z. Zivkovic, and B. Kröse. Navigation using an appearance
based topological map. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA) 2007, pages 3927–3932, 2007. Cited on page 3.

172 BIBLIOGRAPHY

[8] J. Bortz. A new mathematical formulation for strapdown inertial navigation. IEEE

Transactions on Aerospace Electronic Systems, 7:61–66, 1971. Cited on page 20.

[9] F. Caron, E. Duflos, D. Pomorski, and P. Vanheeghe. GPS/IMU data fusion using
multisensor Kalman filtering: Introduction of contextual aspects. Information Fusion,
7(2):221–230, 2006. Cited on page 15.

[10] B. A. Cartwright and T. S. Collett. Landmark learning in bees: Experiments and mod-
els. Journal of Comparative Physiology, 151(4):521–543, 1983. Cited on pages 62,
69, and 77.

[11] B. A. Cartwright and T. S. Collett. Landmark maps for honeybees. Biological Cyber-

netics, 57(1-2):85–93, 1987. Cited on page 62.

[12] A. Cherubini and F. Chaumette. Visual navigation of a mobile robot with laser-based
collision avoidance. The International Journal of Robotics Research, 32(2):189–205,
2013. Cited on pages 3, 4, and 64.

[13] A. Chilian. Stereokamerabasierte Navigation eines Krabbelroboters auf unebenem
Gelände. Diplomarbeit, Technische Universität Ilmenau, Fakultät für Maschinenbau,
2008. Cited on pages 7, 46, 48, 49, and 50.

[14] A. Chilian and H. Hirschmüller. Stereo camera based navigation of mobile robots on
rough terrain. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) 2009, pages 4571–4576, 2009. Cited on pages 10, 37,
46, and 48.

[15] A. Chilian, H. Hirschmüller, and M. Görner. Multisensor data fusion for robust pose
estimation of a six-legged walking robot. In Proceedings of the IEEE International

Conference on Intelligent Robots and Systems (IROS) 2011, pages 2497–2504, 2011.
Cited on page 9.

[16] D. M. Cole and P. M. Newman. Using laser range data for 3D SLAM in outdoor
environments. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA) 2006, pages 1556–1563, 2006. Cited on page 35.

[17] D. Dai and D. T. Lawton. Range-free qualitative navigation. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA) 1993, pages
783–790, 1993. Cited on page 63.

BIBLIOGRAPHY 173

[18] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous localization and map-
ping via square root information smoothing. The International Journal of Robotics

Research, 25(12):1181–1203, 2006. Cited on page 117.

[19] G. Dissanayake, S. Sukkarieh, E. Nebot, and H. Durrant-Whyte. The aiding of a low-
cost strapdown inertial measurement unit using vehicle model constraints for land
vehicle applications. IEEE Transactions on Robotics and Automation, 17(5):731–
747, 2002. Cited on pages 15 and 16.

[20] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping (SLAM):
Part I. IEEE Robotics & Automation Magazine, 13(2):99–110, 2006. Cited on page 3.

[21] A. Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of Robotics

and Automation, 3(3):249–265, 1987. Cited on page 2.

[22] C. Estrada, J. Neira, and J. D. Tardós. Hierarchical SLAM: Real-time accurate map-
ping of large environments. IEEE Transactions on Robotics, 21(4):588–596, 2005.
Cited on page 116.

[23] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communica-

tions of the ACM, 24(6):381–395, 1981. Cited on page 123.

[24] M. O. Franz, B. Schölkopf, H. A. Mallot, and H. H. Bülthoff. Where did I take that
snapshot? Scene-based homing by image matching. Biological Cybernetics, 79(3):
191–202, 1998. Cited on page 69.

[25] F. Fraundorfer, C. Engels, and D. Nistér. Topological mapping, localization and navi-
gation using image collections. In Proceedings of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS) 2007, pages 3872–3877, 2007. Cited
on page 3.

[26] C. Früh, S. Jain, and A. Zakhor. Data processing algorithms for generating textured
3D building facade meshes from laser scans and camera images. International Jour-

nal of Computer Vision, 61(2):159–184, 2005. Cited on pages 36 and 39.

[27] P. Furgale and T. D. Barfoot. Visual teach and repeat for long-range rover autonomy.
Journal of Field Robotics, 27(5):534–560, 2010. Cited on pages 3, 63, 134, 148,
and 165.

174 BIBLIOGRAPHY

[28] J. Gasós and A. Saffiotti. Integrating Fuzzy Geometric Maps and Topological Maps
for Robot Navigation. In Proceedings of the 3rd International Symposium on Soft

Computing, 1999. Cited on page 3.

[29] T. Goedemé, T. Tuytelaars, L. Van Gool, G. Vanacker, and M. Nuttin. Feature based
omnidirectional sparse visual path following. In Proceedings of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS) 2005, pages 1806–
1811, 2005. Cited on page 63.

[30] S. B. Goldberg, M. W. Maimone, and L. Matthies. Stereo vision and rover navigation
software for planetary exploration. In IEEE Aerospace Conference Proceedings 2002,
pages 2025–2036, March 2002. Cited on pages 46, 47, and 48.

[31] M. Görner and A. Stelzer. A leg proprioception based 6 DOF odometry for statically
stable walking robots. Autonomous Robots, 34(4):311–326, 2013. Cited on pages 10
and 28.

[32] M. Görner, T. Wimböck, A. Baumann, M. Fuchs, T. Bahls, M. Grebenstein, C. Borst,
J. Butterfass, and G. Hirzinger. The DLR-Crawler: A testbed for actively compli-
ant hexapod walking based on the fingers of DLR-Hand II. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2008,
pages 1525 – 1531, September 2008. Cited on page 28.

[33] M. Görner, T. Wimböck, and G. Hirzinger. The DLR Crawler: Evaluation of gaits
and control of an actively compliant six-legged walking robot. Industrial Robot: An

International Journal, 36(4):344–351, 2009. Cited on pages 28 and 51.

[34] M. Görner, A. Chilian, and H. Hirschmüller. Towards an autonomous walking robot
for planetary surfaces. In Proceedings of the 10th International Symposium on Ar-

tificial Intelligence, Robotics and Automation in Space (i-SAIRAS), September 2010.
Cited on pages 10 and 50.

[35] R. Hadsell, J. A. Bagnell, D. Huber, and M. Hebert. Space-carving kernels for accu-
rate rough terrain estimation. The International Journal of Robotics Research, 2010.
Cited on page 36.

[36] D. Hähnel, W. Burgard, and S. Thrun. Learning compact 3D models of indoor and
outdoor environments with a mobile robot. Robotics and Autonomous Systems, 44
(1):15–27, 2003. Cited on page 36.

BIBLIOGRAPHY 175

[37] D. M. Helmick, Y. Cheng, D. S. Clouse, L. H. Matthies, and S. I. Roumeliotis. Path
following using visual odometry for a mars rover in high-slip environments. In IEEE

Aerospace Conference Proceedings 2004, pages 772–789, 2004. Cited on pages 15
and 16.

[38] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using depth
cameras for dense 3D modeling of indoor environments. In The 12th International

Symposium on Experimental Robotics (ISER), volume 20, pages 22–25, 2010. Cited
on page 35.

[39] H. Hirschmüller. Stereo processing by semi-global matching and mutual information.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2):328–341,
February 2008. Cited on pages 126 and 156.

[40] A. Howard, D. F. Wolf, and G. S. Sukhatme. Towards 3D mapping in large urban en-
vironments. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) 2004, volume 1, pages 419–424, 2004. Cited on page 35.

[41] D. F. Huber and M. Hebert. A new approach to 3-d terrain mapping. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

1999, pages 1121–1127, 1999. Cited on pages 36 and 39.

[42] B. Jäger. Efficient vision-based navigation of mobile robots based on the LT-Map.
Master’s thesis, Technische Universität München, Lehrstuhl für Flugsystemdynamik,
2013. Cited on pages 122 and 167.

[43] B. Jäger, E. Mair, C. Brand, W. Stürzl, and M. Suppa. Efficient navigation based
on the landmark-tree map and the Z∞ algorithm using an omnidirectional camera. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS) 2013, pages 1930–1937, 2013. Cited on pages 103, 125, 167, and 168.

[44] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and map-
ping. IEEE Transactions on Robotics, 24(6):1365–1378, 2008. Cited on pages 3
and 117.

[45] K. Kawamura, A. B. Koku, D. M. Wilkes, R. A. Peters, and A. Sekmen. Toward
egocentric navigation. International Journal of Robotics and Automation, 17(4):135–
145, 2002. Cited on page 63.

176 BIBLIOGRAPHY

[46] S. Koenig and M. Likhachev. Improved fast replanning for robot navigation in un-
known terrain. In Proceedings of the International Conference on Robotics and Au-

tomation (ICRA) 2002, pages 968–975, 2002. Cited on page 49.

[47] J. Z. Kolter, Y. Kim, and A. Y. Ng. Stereo vision and terrain modeling for quadruped
robots. In Proceedings of the IEEE International Conference on Robotics and Au-

tomation (ICRA) 2009, pages 1557–1564, 2009. Cited on pages 2, 36, and 39.

[48] K. Konolige, M. Agrawal, and J. Sola. Large scale visual odometry for rough terrain.
In Proceedings of the International Symposium on Robotics Research, 2007. Cited
on page 15.

[49] K. Konolige, E. Marder-Eppstein, and B. Marthi. Navigation in hybrid metric-
topological maps. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA) 2011, pages 3041–3047, 2011. Cited on page 3.

[50] J. Kosecka, L. Zhou, P. Barber, and Z. Duric. Qualitative image based localization
in indoors environments. In IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, volume 2, pages II–3, 2003. Cited on page 62.

[51] T. Krajník, J. Faigl, V. Vonásek, K. Košnar, M. Kulich, and L. Přeučil. Simple yet sta-
ble bearing-only navigation. Journal of Field Robotics, 27(5):511–533, 2010. Cited
on pages 3, 63, 134, 148, and 165.

[52] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general
framework for graph optimization. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA) 2011, pages 3607–3613, 2011. Cited on
page 117.

[53] I. S. Kweon and T. Kanade. High-resolution terrain map from multiple sensor data.
IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 278–292,
1992. Cited on pages 2, 7, 9, 36, 39, 40, and 59.

[54] D. Lambrinos, T. Labhart, and R. Pfeifer. A mobile robot employing insect strategies
for navigation. Robotics and Autonomous Systems, 30(1-2):39–64, 2000. Cited on
pages 8, 69, 70, 71, 72, 82, and 84.

[55] P. Lamon and R. Siegwart. Inertial and 3d-odometry fusion in rough terrain-towards
real 3d navigation. In Proceedings of the IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS) 2004, volume 2, pages 1716–1721, 2004. Cited

BIBLIOGRAPHY 177

on page 16.

[56] R. C. Leishman, T. W. McLain, and R. W. Beard. Relative navigation approach for
vision-based aerial GPS-denied navigation. Journal of Intelligent & Robotic Systems,
74(1-2):97–111, 2014. Cited on pages 3 and 116.

[57] J. Leonard and P. Newman. Consistent, convergent, and constant-time SLAM. In Pro-

ceedings of the 18th International Joint Conference on Artificial Intelligence, pages
1143–1150. Morgan Kaufmann Publishers Inc., 2003. Cited on page 116.

[58] S. Leutenegger, M. Chli, and R. Y. Siegwart. BRISK: Binary robust invariant scalable
keypoints. In Proceedings of the IEEE International Conference on Computer Vision

(ICCV) 2011, pages 2548–2555, 2011. Cited on page 122.

[59] M. Liu, C. Pradalier, Q. Chen, and R. Siegwart. A bearing-only 2D/3D-homing
method under a visual servoing framework. In Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA) 2010, pages 4062–4067, 2010.
Cited on pages 78, 83, and 84.

[60] M. Liu, C. Pradalier, F. Pomerleau, and R. Siegwart. Scale-only visual homing from
an omnidirectional camera. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA) 2012, 2012. Cited on pages 79 and 80.

[61] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004. Cited on page 122.

[62] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger. Adaptive and generic
corner detection based on the accelerated segment test. In Computer Vision–ECCV

2010, pages 183–196. Springer, 2010. Cited on page 122.

[63] E. Mair, M. Augustine, B. Jäger, A. Stelzer, C. Brand, D. Burschka, and M. Suppa.
A biologically inspired navigation concept based on the Landmark-Tree Map for
efficient long-distance robot navigation. Advanced Robotics, 28(5):289–302, 2014.
Cited on pages 9, 11, and 66.

[64] F. L. Markley. Attitude determination using vector observations and the singular value
decomposition. The Journal of the Astronautical Sciences, 36(3):245–258, 1988.
Cited on page 167.

[65] Y. Matsumoto, M. Inaba, and H. Inoue. Visual navigation using view-sequenced route
representation. In Proceedings of the IEEE International Conference on Robotics and

178 BIBLIOGRAPHY

Automation (ICRA) 1996, pages 83–88, 1996. Cited on page 62.

[66] M. J. Milford and G. F. Wyeth. Mapping a suburb with a single camera using a
biologically inspired SLAM system. IEEE Transactions on Robotics, 24(5):1038–
1053, 2008. Cited on page 118.

[67] M. J. Milford, G. F. Wyeth, and D. F. Rasser. RatSLAM: A hippocampal model for
simultaneous localization and mapping. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA) 2004, pages 403–408, 2004. Cited
on pages 3 and 117.

[68] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored so-
lution to the simultaneous localization and mapping problem. In Proceedings of

the AAAI National Conference on Artificial Intelligence, Edmonton, Canada, 2002.
AAAI. Cited on pages 3 and 116.

[69] H. P. Moravec. Robot spatial perception by stereoscopic vision and 3D evidence
grids. Technical report, CMU Robotics Institute, September 1996. Cited on pages 2
and 36.

[70] M. Müller and R. Wehner. The hidden spiral: Systematic search and path integration
in desert ants, cataglyphis fortis. Journal of Comparative Physiology A, 175(5):525–
530, 1994. Cited on page 103.

[71] R. R. Murphy. Disaster robotics. MIT Press, 2014. Cited on page 1.

[72] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot. Visual teach and repeat, repeat,
repeat: Iterative learning control to improve mobile robot path tracking in challenging
outdoor environments. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) 2013, pages 176–181, 2013. Cited on page 3.

[73] P. Payeur, P. Hébert, D. Laurendeau, and C. M. Gosselin. Probabilistic octree model-
ing of a 3d dynamic environment. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA) 1997, volume 2, pages 1289–1296, 1997.
Cited on page 36.

[74] C. Plagemann, S. Mischke, S. Prentice, K. Kersting, N. Roy, and W. Burgard. A
Bayesian regression approach to terrain mapping and an application to legged robot
locomotion. Journal of Field Robotics, 26(10):789–811, 2009. Cited on page 36.

BIBLIOGRAPHY 179

[75] E. Rosten and T. Drummond. Fusing points and lines for high performance track-
ing. In Proceedings of the Tenth IEEE International Conference on Computer Vision

(ICCV) 2005, volume 2, pages 1508–1515, 2005. Cited on page 122.

[76] S. I. Roumeliotis and J. W. Burdick. Stochastic cloning: A generalized framework
for processing relative state measurements. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA) 2002, volume 2, pages 1788–1795,
2002. Cited on pages 16 and 21.

[77] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey. Circumventing dynamic mod-
eling: Evaluation of the error-state Kalman filter applied to mobile robot localization.
In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA) 1999, volume 2, pages 1656–1663, 1999. Cited on page 16.

[78] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz. Towards 3D point
cloud based object maps for household environments. Robotics and Autonomous

Systems, 56(11):927–941, 2008. Cited on page 36.

[79] K. Schmid, F. Ruess, M. Suppa, and D. Burschka. State estimation for highly dynamic
flying systems using key frame odometry with varying time delays. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

2012, pages 2997–3004, 2012. Cited on page 16.

[80] S. Šegvić, A. Remazeilles, A. Diosi, and F. Chaumette. Large scale vision-based nav-
igation without an accurate global reconstruction. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) 2007, pages 1–8, 2007. Cited on pages 3
and 63.

[81] S. Šegvić, A. Remazeilles, A. Diosi, and F. Chaumette. A mapping and localization
framework for scalable appearance-based navigation. Computer Vision and Image

Understanding, 113(2):172–187, 2009. Cited on pages 3 and 4.

[82] S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma, A. Yahja, and K. Schwehr.
Recent progress in local and global traversability for planetary rovers. In Proceed-

ings of the IEEE International Conference on Robotics and Automation (ICRA) 2000,
volume 2, pages 1194–1200, 2000. Cited on page 46.

[83] J. Sola, A. Monin, M. Devy, and T. Vidal-Calleja. Fusing monocular information in
multicamera SLAM. IEEE Transactions on Robotics, 24(5):958–968, 2008. Cited
on page 114.

180 BIBLIOGRAPHY

[84] J. Sola, D. Marquez, J. Codol, and T. Vidal-Calleja. An EKF-SLAM toolbox for
MATLAB, 2009. URL http://www.iri.upc.edu/people/jsola/JoanSola/
eng/toolbox.html. Cited on pages 101, 113, and 115.

[85] J. Sola, T. Vidal-Calleja, J. Civera, and J. M. M. Montiel. Impact of landmark
parametrization on monocular EKF-SLAM with points and lines. International Jour-

nal of Computer Vision, 97(3):339–368, 2012. Cited on page 114.

[86] A. Stelzer, H. Hirschmüller, and M. Görner. Stereo-vision-based navigation of a
six-legged walking robot in unknown rough terrain. The International Journal of

Robotics Research, 31(4):381–402, 2012. Cited on pages 9 and 27.

[87] A. Stelzer, E. Mair, and M. Suppa. Trail-Map: A scalable landmark data structure
for biologically inspired range-free navigation. In Proceedings of the IEEE Inter-

national Conference on Robotics and Biomimetics (ROBIO) 2014, Bali, Indonesia,
pages 2138–2145, 2014. Cited on page 9.

[88] A. Stelzer, M. Suppa, and W. Burgard. Trail-Map-based homing under the presence of
sensor noise. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) 2015, pages 929–936, 2015. Cited on page 10.

[89] T. Suzuki, M. Kitamura, Y. Amano, and T. Hashizume. 6-DOF localization for a
mobile robot using outdoor 3D voxel maps. In Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS) 2010, pages 5737–5743,
2010. Cited on pages 2 and 36.

[90] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-Whyte. Si-
multaneous localization and mapping with sparse extended information filters. The

International Journal of Robotics Research, 23(7-8):693, 2004. Cited on page 3.

[91] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press, Cam-
bridge, 1. edition, 2005. Cited on pages 116 and 117.

[92] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for outdoor terrain
mapping and loop closing. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) 2006, 2006. Cited on page 36.

[93] A. Vardy. Long-range visual homing. In Proceedings of the IEEE International Con-

ference on Robotics and Biomimetics (ROBIO) 2006, pages 220–226, 2006. Cited
on pages 3 and 62.

http://www.iri.upc.edu/people/jsola/JoanSola/eng/toolbox.html
http://www.iri.upc.edu/people/jsola/JoanSola/eng/toolbox.html

BIBLIOGRAPHY 181

[94] A. Vardy and R. Möller. Biologically plausible visual homing methods based on
optical flow techniques. Connection Science, 17(1-2):47–89, 2005. Cited on page 70.

[95] J. F. Vasconcelos, P. Oliveira, and C. Silvestre. Inertial navigation system aided by
GPS and selective frequency contents of vector measurements. In Proceedings of the

AIAA Guidance, Navigation, and Control Conference (GNC2005), San Francisco,
USA, August 2005. Cited on page 19.

[96] M. Vayugundla. Experimental evaluation and improvement of a viewframe-based
navigation method. Master’s thesis, University of Applied Sciences Bonn-Rhein-
Sieg, Department of Computer Science, 2015. Cited on page 166.

[97] G. Wahba. A least squares estimate of satellite attitude. SIAM review, 7(3):409, 1965.
Cited on page 167.

[98] K. Weber, S. Venkatesh, and M. Srinivasan. Insect-inspired robotic homing. Adaptive

Behavior, 7(1):65–97, 1999. Cited on pages 77, 81, 83, and 84.

[99] N. Winters and J. Santos-Victor. Omni-directional visual navigation. In Proceedings

of the 7th International Symposium on Intelligent Robotic Systems (SIRS) 1999, pages
109–118, 1999. Cited on page 62.

[100] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap:
A probabilistic, flexible, and compact 3D map representation for robotic systems.
In Proceedings of the ICRA 2010 Workshop on Best Practice in 3D Perception and

Modeling for Mobile Manipulation, volume 2, 2010. Cited on page 36.

[101] C. Ye and J. Borenstein. A method for mobile robot navigation on rough terrain.
In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA) 2004, volume 4, pages 3863–3869, 2004. Cited on page 46.

[102] C. Ye and J. Borenstein. A novel filter for terrain mapping with laser rangefinders.
IEEE Transactions on Robotics, 20(5):913–923, 2004. Cited on pages 2 and 36.

[103] J. Zeil, M. I. Hofmann, and J. S. Chahl. Catchment areas of panoramic snapshots in
outdoor scenes. Journal of the Optical Society of America A, 20(3):450–469, 2003.
Cited on page 69.

[104] A. M. Zhang and L. Kleeman. Robust appearance based visual route following
for navigation in large-scale outdoor environments. The International Journal of

Robotics Research, 28(3):331–356, 2009. Cited on page 62.

182 BIBLIOGRAPHY

[105] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces.
International Journal of Computer Vision, 13(2):119–152, 1994. Cited on page 46.

[106] Z. Zivkovic, B. Bakker, and B. Kröse. Hierarchical map building using visual land-
marks and geometric constraints. In Proceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS) 2005, pages 2480–2485, 2005.
Cited on page 3.

	Introduction
	State of the Art
	Approach
	Contributions
	Publications
	Thesis Overview

	Local Metric Navigation
	Robust Pose Estimation
	State of the Art
	Approach
	State Vector and State Transition Model
	The Multisensor Data Fusion Process
	Experimental Evaluation

	Local Mapping
	State of the Art
	Approach
	Creating Single-View Maps from Disparity Images
	Combining Single-View Maps

	Traversability Estimation
	Path Planning
	Motion Control
	Experimental Evaluation
	Conclusion

	Global Topological Navigation
	State of the Art
	Approach
	Viewframe-Based Navigation
	Viewframe Dissimilarity Measures
	Homing Vector Calculation Methods

	The Landmark-Tree Map
	The Trail-Map
	Performance Comparison of the Trail-Map and the LT-Map
	Memory and Navigation Performance
	Runtime Performance

	Trail-Map-Based Homing under the Presence of Sensor Noise
	Pose Estimation Errors
	Observation Errors
	Combination of all Noise Sources

	Trail-Map-Based Homing versus SLAM
	EKF SLAM
	Submap SLAM
	FastSLAM
	GraphSLAM
	RatSLAM
	Data Association
	Conclusion

	Application of the Trail-Map to Real Data
	Coordinate Frames
	Landmark Detection and Matching
	Rotational Alignment of the Viewframes
	Homing Vector Smoothing
	Robot Motion Control

	Experimental Evaluation
	Indoor Laboratory Experiments
	Long-Range Outdoor Experiments

	Conclusion

	Hybrid Navigation
	Creation of a Moving Local Metric Map
	Homing with Obstacle Avoidance
	Adjusting the Homing Vector
	Robot Motion Control

	Experimental Evaluation
	Mapping
	Homing with Obstacle Avoidance

	Conclusion

	Conclusion
	Appendix
	Rotation Estimation with Unknown Roll and Pitch
	Translation Estimation
	Serial RANSAC Pseudocode

	Bibliography

