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Chapter 1
The general inverse problem in magnetic resonance imaging

Tomographic imaging techniques always involve some sort of encoding of the imaged volume,
where the imaged quantity m of an object space X is observed indirectly. These techniques
may be generally expressed using a Fredholm integral of first order. In the measurement, the
observations d of the domain K are modeled by

d(k) =

∫

V
E(k, r)m(r)dr, for k ∈ K, (1.1)

where V denotes the imaging volume. The encoding kernel functionE is assumed to be known.
Data are received by some detector for a number of samples Nsmp. Assuming a linear response
of the detector, this leads to measurement evaluations of

dn =

∫

V
E(kn, r)m(r)dr, for n = 1, . . . , Nsmp, (1.2)

which can be collectively represented by a vector d. Typical for tomographic imaging is that
any individual observation contains information of m over the entire volume. Reconstructing
the information m constitutes an inverse problem.

A general formulation of the inverse problem - beyond tomographic imaging - is presented
in [Bertero et al., 1985], where X is any class of functions. The inverse problem is then ex-
pressed solely based on a set of functionals in X . Assuming X to be a Hilbert space, the Riesz
representation theorem is used to characterize the inverse problem based on a set of functions
as well as the inner product of X .

Definition 1.0.1 (The general inverse problem). Let X be a Hilbert space with inner product 〈.|.〉X .
Given the set of functions {φn }Nsmp

n=1 , where φn ∈ X , and the set of data samples { dn }Nsmp
n=1 , where dn ∈

C, the image reconstruction problem is to find m ∈ X such that 〈m|φn〉X = dn, for n = 1, . . . , Nsmp.

The process of solving the inverse problem has many names, depending on the context
of usage. In the case of magnetic resonance imaging (MRI), solving the inverse problem is
referred to as image reconstruction.

Fourier encoding in MRI

In MRI, the tissue of interest within the imaging volume V , is exposed to a static magnetic
field and the transverse magnetization density m is generated by radio-frequency (RF) pulse
excitation. Spatial encoding is performed with spatially varying magnetic fields, such that
signal is received in Fourier space as spatial frequencies. Therefore, the measured signal data
follows the general form of (1.2), where the encoding kernels are determined by the Fourier
basis. The main mechanisms of signal formation - based on nuclear magnetic resonance (NMR)
- are described in Chapter 2.
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For MRI, r ∈ RD comprises the spatial dimensions to be imaged, where D = 2 or D =
3 in two- or three-dimensional imaging, respectively. Limited spatial extent of the imaged
area/volume justifies the assumption of a compact region Ω ⊂ RD of support for the recon-
structed image function. In accordance with the encoding process, m ∈ L2(Ω,C) is assumed.
In general, the measured signal depends on many further parameters besides spatial origin,
such as temporal variations, diffusivity, signal relaxation and the spin density, which may be
included in the signal model. Restricting considerations to the spatial coordinates, the encod-
ing kernel function of Fourier imaging is given by

E(k, r) = exp(−ik · r) , (1.3)

where k ∈ RD are the coordinates in the encoding domain K, which is referred to as k-space in
MRI. Further, · denotes the inner product of the two real-valued vectors.

The sampling of signal, hence the collection of encoding kernel functions, is chosen in ac-
cordance with the Nyquist-Shannon sampling criterion. A finite amount of discrete signal
samples

{
dn ∈ C, n = 1, . . . , Nsmp

}
, is acquired. Therefore, image reconstruction implies find-

ing an approximation ofmwithin a subspace of finite dimension. It is then evaluated for a set of
pixels to form the digital image. The general inverse problem of Fourier imaging is formulated
analogous to Def. 1.0.1.

Definition 1.0.2 (The general inverse problem in MRI). Consider the Hilbert space L2(Ω,C),
where Ω ⊆ V ⊂ RD, and where 〈.|.〉L2 denotes the inner product. Given the set of encoding functions
{φn }Nsmp

n=1 , where φn := exp(ikn · .) and the set of data samples { dn }Nsmp
n=1 , where dn ∈ C, the image

reconstruction problem is to find m ∈ L2(Ω,C) such that

〈m| exp(ikn · .)〉L2 :=

∫

V
m(r) exp(−ikn · r) dr = dn, for n = 1, . . . , Nsmp.

Whenever the functions φn are linearly independent, the existence of a solution to the
inverse problem is guaranteed. Nevertheless, the solution is not uniquely determined due
to finite sampling. In this case and under the assumption of noiseless samples, the min-
imum norm solution (here denoted by I†) is typically chosen to obtain a unique solution
[Bertero et al., 1985]. Figure 1.1 illustrates the general inverse problem of MRI and its solution
in the case of (noiseless) Fourier imaging.

Fourier encoding and Fourier image reconstruction in MRI is specifically considered in
Chapter 3. It is shown that the compact support allows for unique image reconstruction in
the case of discrete - yet infinite - sampling when serving the Nyquist-Shannon sampling theo-
rem. It is noted here that this could be likewise expressed in a more general picture, where the
compact support is embedded - by periodic extension - in a D-Torus RD/ZD.

Noisy and hybrid encoding in MRI

In the (very likely) case that the functions φn are not linearly independent, the minimum norm
solution for the problem defined in Def. 1.0.2 cannot be derived. In fact, linear independence
can hardly be determined from the experiment itself, since measurement errors influence the
encoding functions. The least-squares method as part of regression analysis is a typical ap-
proach in these cases.

If the functions φn cannot be assumed to be linearly independent and if the data dn are af-
fected by measurement errors, the inner product 〈.|.〉2 of the data space CNsmp is further neces-
sary to characterize the inverse problem for these cases. With the definition of a linear operator
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m ∈ L2(Ω,C)

I† ∈ sp{ exp(ikn · .) } ⊂ L2(Ω,C) d ∈ CNsmp

〈m| exp(ik
n · .)〉L2

image reconstruction

Figure 1.1: Given the finite set of encoding functions { exp(ikn · .) }Nsmp
n=1 and the finite data set, the image function

can only be derived in the subspace spanned by { exp(ikn · .) }Nsmp
n=1. The minimum norm solution I† returns the

projection of m in the object space L2(Ω,C) onto the subspace sp
{

exp(ikn · .) , n = 1, . . . Nsmp
}

. The digital
image is obtained by evaluating the reconstructed image function for a set of pixels.

by the inner product of the object space 〈|〉L2 , the adjoint operator is derived based on the inner
product of the data space 〈|〉2. The sampled data is stacked into a vector d ∈ CNsmp . As pointed
out in [Bertero et al., 1985], if d is contained in the range of the encoding operator, the solution
is again obtained by the minimum norm as in the previous considerations. If d is not contained
in the range of the encoding operator, the solution can be approximated by the least-squares
method.

Definition 1.0.3. Consider the linear operator Ě : L2(Ω,C) → CNsmp for the Hilbert spaces L2(Ω,C)
and CNsmp that is defined such that (Ěm)n = 〈m|φn〉L2 , for m ∈ L2(Ω,C), with respect to the set of
encoding functions {φn }Nsmp

n=1 . Given the data d ∈ CNsmp , the image reconstruction problem is to find
I† ∈ L2(Ω,C) subject to

I† = argmin
I

∥∥ĚI − d
∥∥2

2
. (1.4)

Whenever all the functions φn are linearly independent, the problem reduces to the one of
Def. 1.0.2, otherwise it determines a set of pseudosolutions. The set of pseudosolutions of (1.4)
can be found by solving Ě′ĚI† = Ě′d for the unknown I†. Thereby, Ě′ : CNsmp → sp{φn } ⊂
L2(Ω,C) is the adjoint operator defined by

〈
ĚI|d

〉
2

=
〈
I|Ě′d

〉
L2 . A unique solution is again

found by selecting the pseudosolution with the minimum norm (according to 〈.|.〉L2). Figure 1.2
illustrates the inverse problem and image reconstruction which now involve the inner products
of both object and data space.

On top of the Fourier encoding in MRI, parallel imaging is used to augment the set
of encoding kernels with sensitivity functions of multiple receive coil elements. The en-
coding kernel of parallel Fourier imaging is determined by Ec(k, α, r) = cα(r) exp(−ik · r),
where cα(r) denotes the sensitivity of coil α = 1, . . . , Ncoils at r ∈ V . These imaging sce-
narios are also referred to as hybrid encoding because of the extended set of functions
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m ∈ L2(Ω,C)

I† ∈ sp{φn } ⊂ L2(Ω,C) d ∈ CNsmp

Ě

image reconstruction

I† = argminI

∥∥ĚI − d
∥∥2
2

Figure 1.2: Given the linear operator Ě : L2(Ω,C) → CNsmp for the set of functions {φn } and given
the acquired data d, the image function is approximated based on the inner product of the data space by
I† = argminI

∥∥ĚI − d
∥∥2
2
. The pseudosolution with minimum norm I† is sought that solves the equation

Ě′ĚI† = Ě′d, where Ě′ : CNsmp → sp{φn } ⊂ L2(Ω,C) denotes the adjoint operator. The solution now
depends on the inner product of the data space.

{
φ(n,α) := c?α(r) exp(ik · r) , n = 1, . . . , Nsmp, α = 1, . . . , Ncoils

}
, where ? denotes the complex

conjugate. In the case of pure Fourier encoding, the linear operator is determined by the
sampling operator Š and the Fourier transform, i.e. Ě { . } := Š{FT { . } }. In the case of
parallel imaging, the linear operator further comprises the linear operator Č of multiplication
with coil sensitivities, i.e. Ěc { . } := Š

{
FT

{
Č{ . }

}}
.

So far, the inverse problem has been formulated in an infinite-dimensional space based
on discrete data, following [Bertero et al., 1985]. The problem formulated in (1.4) is often ex-
pressed directly in finite-dimensional spaces, such that I ∈ CNpix is assumed according to the
digital image representation by Npix pixel. Although this is of course reasonable from a nu-
merical and practicability viewpoint, note that the choice of the number of pixels as well as the
mapping between the imaged volume compartments and pixels is restricting generality and
requires additional reasoning. With the discretization, the linear operator Ě can be character-
ized by a matrix and the Moore-Penrose pseudo inverse [Moore, 1920, Penrose, 1955] provides
a general solution. If Ě is injective, it is given by I† := (ĚHĚ)−1ĚHd, where H denotes the
Hermitian transpose. Parallel imaging is considered in this context in Chapter 4.

Dynamic MRI and Echo planar imaging

In dynamic MRI, the overall acquisition is repeated several times to derive a time series of im-
ages, which reflects functional changes. The repeatedly measured k-space signal is binned into
equivalence classes that are numbered consecutively by t = 1, . . . , Ntime. These are referred to
as outer time points or time frames, as opposed to the inner time points that indicate relative
time points within the time interval of excitation and signal reception. The acquisition of mul-
tiple time frames further extends the data domain. Fourier imaging as well as parallel imaging
in dynamic MRI is considered in Chapter 5.
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As successively revealed in Chapters 2-5, the general signal equation of dynamic MRI is
given by

dn,t,α =

∫

V
m(r, t)cα(r) exp(−ikn · r− i∆ω(r)τn) dr + ε(kn, t, α), (1.5)

where the measured data sample is given with respect to

• k-space position kn corresponding to their time of sampling τn (inner time points)

• coil element α with sensitivities cα(r) for each r ∈ V
• outer time points t, at which m(r, t) is observed

Whereas ∆ω(r) describes the undesired local frequency variations referred to as off-resonance
effects, ε(kn, t, α) denotes the Gaussian white noise stochastic process which influences the ac-
quisition. Any confounding effects during signal encoding directly influence image reconstruc-
tion. Whereas off-resonance phenomena lead to systematic artifacts, thermal noise manifests
itself as image noise.

MRI requires the consideration of both ends of the imaging process: encoding of the sig-
nal origin during data acquisition and solving the inverse problem for image reconstruction.
Spatial encoding and the image reconstruction process are therefore strongly tied to each other.
Spatial encoding based on varying the magnetic fields is the most time-consuming part in MRI.
It is implemented as part of the MRI pulse sequences used in the acquisition.

Among MRI pulse sequences, a fast and efficient strategy in the case of dynamic MRI is pro-
vided by the echo planar imaging (EPI) sequence. It is the most commonly applied technique
for dynamic MRI in the clinical routine. However, EPI is sensitive to off-resonance influences
and acquisition noise due to its complex signal behavior. Therefore, the efficiency of EPI comes
at the expense of image artifacts.

In order to save time in any MRI pulse sequence, sub-Nyquist sampling can be performed
in combination with hybrid encoding and parallel imaging reconstruction. For dynamic MRI,
parallel imaging methods that perform k-t-sub-Nyquist sampling and exploit spatio-temporal
correlations in the image reconstruction process are typically termed time-resolved parallel
imaging methods. These implicitly pose certain assumptions on the underlying data. The
analysis of violating these, as well as the quantification of image noise, is of great importance:
On the one hand, the knowledge gained is valuable in the optimization of the imaging scenario.
On the other hand, it is crucial for clinical decisions to recognize artificial image errors in the
clinical application.

Such an analysis reveals limitations of the applicability of these methods, particularly for
EPI acquisitions that are influenced by measurement noise and signal instabilities, since the
signal behavior of EPI is more complex. By the investigation of these limits, an understanding
of the potentials is gained. Moreover, another beneficial aspect arises in the case of parallel
imaging in EPI, its potential to actually mitigate some of the typical EPI artifacts. Due to the
spatial encoding strategy of EPI, prolonged signal readouts are performed that lead to artifacts.
Sub-Nyquist-sampling with parallel imaging reconstruction allows for the shortening of these
readouts to a certain extent.

Core developments of this thesis
A noise quantification in time-resolved parallel imaging methods as well as the investigation of k-t-sub-
Nyquist sampled EPI with time-resolved parallel imaging reconstruction are the main contributions of
this thesis. These are mainly presented in Chapters 6 and 7.
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As a consequence of sub-Nyquist sampled parallel imaging, image noise exhibits spatial
variations and correlations. This leads to a spatially non-uniform signal-to-noise ratio (SNR).
The framework of g-factors allows for the description of image noise and the SNR in these
methods. In dynamic MRI, k-t-sub-Nyquist sampled parallel imaging facilitates higher reduc-
tions of acquisition times with more benign g-factors.

Existing concepts are covered in Chapter 4. The g-factors are then used in developments
towards a unified general framework of non-time-resolved and time-resolved parallel imaging
methods in Chapter 6. The two most prominent representatives of standard parallel imaging
methods are reformulated to express similarities and differences. In order to bridge method-
ologies between static and dynamic MRI, the g-factor framework is extended to time-resolved
parallel imaging of dynamic MRI. The antagonistic behavior of improved image noise and re-
duced temporal accuracy is revealed and embedded in a theoretical framework.

The concept of EPI is introduced as part of Chapter 3 for Nyquist-sampled Fourier imag-
ing. Its previous application in combination with sub-Nyquist sampling and standard parallel
imaging methods is discussed as part of Chapter 4. It is then investigated in combination with
k-t-sub-Nyquist sampling and time-resolved parallel imaging reconstruction in Chapter 7. The
analysis of MRI inherent issues such as image noise and artifacts, as well as temporal fidelity
allows for new insights in error propagation and implicitly posed assumptions in the recon-
struction process.

Confounding influences during the encoding process such as off-resonance effects are par-
ticularly severe in EPI acquisitions that aim at high spatial resolution images. The develop-
ments of k-t-sub-Nyquist sampled parallel EPI provide the potential to enhance MRI in the
clinical context of cerebral perfusion. With the proposed EPI strategy, high spatial resolution
of cerebral blood volume (CBV) maps is achieved, while in-plane susceptibility artifacts are
reduced.

This thesis is structured as follows:

• Chapter 2 describes the signal origin in the context of NMR and within the context of
quantum mechanics, explains how m contributes to the signal.

• Chapter 3 describes Fourier imaging in a mathematical framework. Fourier encoding,
E(kn, r) := exp(−ikn · r), and the corresponding image reconstruction is formulated.
Practical aspects of sequence implementation are explained and EPI is considered in par-
ticular.

• Chapter 4 addresses acquisitions with multiple coil channels, hybrid encoding, where
Ec(kn, α, r) := cα(r) exp(−ikn · r), and the corresponding parallel imaging reconstruc-
tion.

• Chapter 5 extends considerations to the additional outer temporal domain for dynamic
MRI, including time-resolved parallel imaging reconstruction.

• Chapter 6 analyzes the transition between standard parallel imaging methods and
time-resolved parallel imaging scenarios in dynamic MRI. A framework for g-
factor quantification in time-resolved kernel-based parallel imaging methods is
derived, in order to analyze noise propagation. Some of the contents of Chapter 6
were published in [Ramb et al., 2015a] and presented as conference contributions
[Ramb et al., 2013a, Ramb et al., 2013b, Ramb and Schultz, 2013, Ramb et al., 2014a].
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• Chapter 7 describes the development of a k-t-sub-Nyquist sampled echo planar imaging
sequences (k-t-EPI) and image reconstruction schemes derived accordingly. The issues
and implications balancing signal encoding and image reconstruction in these scenar-
ios are discussed. The developed dynamic MR acquisition schemes are applied in dy-
namic susceptibility contrast (DSC) weighted cerebral perfusion imaging. Some of the
contents were published (c.f. [Ramb et al., 2016b]) and presented as conference contribu-
tions [Ramb et al., 2014b, Ramb et al., 2015b, Ramb et al., 2015c, Ramb et al., 2016a].





Chapter 2
Signal origin in nuclear magnetic resonance

When exposed to a magnetic field, atomic nuclei can absorb photons in the radiofrequency range.
When the excitation frequency matches the frequency specific for the nucleus, it is in reso-
nance. This is the fundamental phenomenon underlying nuclear magnetic resonance (NMR).
The system response for different nuclei at different frequencies reveal chemical and struc-
tural information of molecules within the tissue or object under investigation. This chapter
addresses essential physical backgrounds of NMR in the framework of quantum mechan-
ics. The aim is to provide a brief logical pathway how - within biological tissue - magne-
tized spins of nuclei lead to a macroscopic bulk magnetization and finally, the signal mea-
sured in NMR. Only the core information is provided, for more detailed discussions refer to
[Liang and Lauterbur, 2000, Takhtajan, 2008, Haacke et al., 1999, Gustafson and Sigal, 2011].

Postulation of spin

The Stern-Gerlach experiment [Gerlach and Stern, 1922] revealed properties of nuclei beyond
the classical physical description: an inherent property that is postulated as spin. The parti-
cles’ intrinsic spin becomes evident in interaction with an external magnetic field. Spin influ-
ences and determines the macroscopic magnetization as can be measured in NMR experiments
[Rabi et al., 1938, Bloch, 1946, Purcell et al., 1946].

2.1. Quantum mechanical description of spin

Quantum mechanics describes experimental findings in the microscopic range based on al-
gebraic group theories. The property of spin is thereby described similar to an impulse with
representation by basis operations in the spin Hilbert space. Employing the terminology of
[Takhtajan, 2008], a quantum system, i.e. system of finitely many interacting particles, and
its state is represented as follows.

Definition 2.1.1 (State Hilbert space). A quantum system may be represented by an (in)finite-
dimensional separable complex Hilbert space H := (H, 〈.|.〉) with inner product 〈.|.〉. H is called the
state Hilbert space and the state of the quantum system is represented by a vector element |ψ〉 ∈ H.

The set of all possible states of a quantum system is generally infinite. For many quantum
systems, the vector |ψ〉 represents a wave function ψ : R3×R→ C, described with respect to its
values ψ(r, t) in three dimensional space coordinates r ∈ R3 and with respect to time t ∈ R. For
this representation, the norm induced by the inner product is given by ‖ψ‖2 =

∫
|ψ(r, t)|2 dr.

The Riesz representation theorem connects the state Hilbert space with its dual space, which is
the space of all bounded linear functionals onH.
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Definition 2.1.2 (Dual Hilbert space). Let H be the state Hilbert space of a quantum system. Using
the Riesz representation theorem, for each |ψ〉 ∈ H, there exists a unique 〈ψ| ∈ H? defined by

〈ψ| : H → C
x 7→ 〈ψ|x〉 .

The spaceH? := { 〈ψ| 〈ψ| : H → C } is referred to as the dual space ofH.

The wave function ψ can be interpreted as a density function. In order to fulfill the prop-
erties of a density function, the state vectors |ψ〉 are normed by ‖ψ‖2 = 〈ψ|ψ〉 = 1. An ex-
perimental measurement of a physical quantity is described by an observable. In order to get
equivalently defined operators for mappings within both the state Hilbert space and its dual
space, a requirement of observables is to be self-adjoint.

Definition 2.1.3 (Observables). All measurable observables A : H → H of a quantum system are
represented by all self-adjoint operators on the respective state Hilbert space H, i.e.

〈
Ǎφ|ψ

〉
=
〈
φ|Ǎψ

〉

for all |φ〉 , |ψ〉 ∈ H and given an observable Ǎ ∈ A.

As opposed to the theory of classical mechanics, a measurement always interferes with the
state of the quantum system in quantum mechanics, since the measurement of an observable
Ǎ ∈ A forces the system into an eigenstate obtained by the eigenvalue-eigenvector equation of the
operator. Possible outcomes of the observable Ǎ that can be uniquely measured are indicated
by the eigenvalues of this operator. The prediction of the measurement outcome of an observable
Ǎ with respect to a state |ψ〉 of the quantum system is provided in terms of the expectation
value.

Definition 2.1.4 (Measurement). The measurement process of an observable Ǎ ∈ A is described by
the eigenvalue-eigenvector-equation of Ǎ, i.e.

Ǎ |ψ〉 = λ |ψ〉 ,

which determine the measurement outcome of Ǎ applied to an eigenstate |ψ〉 as a scaling of the eigenstate
by λ. A measurement of the observable Ǎ given an arbitrary quantum system’s state |ψ〉 is described
by the expectation value of its probabilistic outcome, i.e.

〈
ψ | Ǎ | ψ

〉
= λ 〈ψ|ψ〉 = λ.

When proceeding with the measurement of another observable, the previous system is
again forced into the operator’s eigenstate, in many cases making the previous measurement
useless. Two observable are simultaneously measurable, hence do not disturb each other, when
they act on the same eigenstates. The observation is mathematical described using the commu-
tator of two observables.

Definition 2.1.5 (commutator). Let Ǎ, B̌ ∈ A be two observables of a quantum system represented
by the Hilbert spaceH. The commutator of Ǎ and B̌ is defined by

[
Ǎ, B̌

]
:= ǍB̌ − B̌Ǎ,

such that ǍB̌ |ψ〉 − B̌Ǎ |ψ〉 = 0, for all |ψ〉 ∈ H.

Theorem 2.1.6. Two observables Ǎ, B̌ ∈ A can be measured simultaneously, if and only if they com-
mute, i.e. [Ǎ, B̌] = ǍB̌ − B̌Ǎ = 0.
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Spin Hilbert space

Postulation of an intrinsic angular momentum, referred to as spin, explained the findings of
the Stern-Gerlach experiment [Uhlenbeck and Goudsmit, 1926]. Mathematically, the additional
degrees of freedom induced by all possible spin setups are expressed by a Hilbert spaceHs.

Definition 2.1.7 (Spin Hilbert space). The spin Hilbert space captures all possible spin configura-
tions of a system and is described by the complex vector space

Hs = C2s+1,

where s indicates the spin quantum number and is of form s = n
2 , n ∈ N0 depending on the type of

particle. The set of finitely many spin configurations are referenced by the magnetic quantum number
ms, which takes values in the set {−s,−s+ 1, . . . , s− 1, s }. The combined representation of configu-
rations of states and spin is the tensor product of the state Hilbert space and the spin Hilbert space, i.e.
Hcomb = H⊗Hs, and yields again a Hilbert space.

Remark 2.1.8. For magnetic resonance imaging (MRI), the most frequently considered nuclei are the
1H hydrogen nuclei. The spin number of the hydrogen atom is s = 1

2 .

Henceforth, only spin-1
2 -systems are considered, which provides two spin configurations

ms = ±1
2 . These are typically denoted by |↑〉 and |↓〉.

The intrinsic angular momentum is formulated by the spin operator Š =
(
Šx, Šy, Šz

)T .
With the definitions τ(1) := x, τ(2) := y and τ(3) := z, the following algebraic relation of
commutation holds:

[Šτ(j), Šτ(k)] = i~
3∑

l=1

εjklŠτ(l), for j, k, l ∈ { 1, 2, 3 } , (2.1)

where εjkl ∈ {−1, 0, 1 } denotes the Levi-Civita symbol and ~ is the Planck’s constant. Since
[Šτ(j), Šτ(k)] 6= 0 for j 6= k, a pair of spin operator components cannot be measured simulta-
neously. However, the spin’s magnitude and the orientation allow for simultaneous measure-
ment.

Theorem 2.1.9. The operator Š2 := Š2
x + Š2

y + Š2
z commutes with each Šτ(i), i.e. [Š2, Šτ(i)] = 0, for

i = 1, . . . , 3.

Hence, it is possible to measure simultaneously the spin’s magnitude
∣∣Š
∣∣ =
√
Š2 and one com-

ponent of the spin operator.

2.2. Spin induced magnetic moments

Spin induces a magnetic moment. When exposed to an external magnetic field, different spin
states correspond to different energy levels (Zeeman effect). The gap between these energy lev-
els is equivalent to the energy of one photon with corresponding frequency (Planck’s energy-
frequency relation). This so-called Larmor frequency of a particle yields the fundamental property
employed in spatial encoding of MRI (Chapter 3).

The magnetic field as part of any MR experiment is described by a mathematical vector
field. Without loss of generality, the magnetic field is assumed to be directed parallel to the
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z-axis throughout this thesis. Let B0 ∈ R denote the field strength (or more precisely the
magnetic flux) such that the magnetic field is described by elements B0 = (0, 0, B0)T at each
spatial position. When material is exposed to a magnetic field, it is magnetized according to its
susceptibility characteristics, effectively changing the magnetic field. Near interfaces between
different types of material, this leads to magnetic field inhomogeneities. State-of-the-art clinical
scanner correct inhomogeneities up to quadratic terms based on a magnetic field shim procedure.

The spin operator Š relates to the magnetic moment operator µ̌ = (µ̌x, µ̌y, µ̌z)
T , of a particle

by
µ̌ = γŠ, (2.2)

where γ is the so-called gyromagnetic ratio, a physical constant depending on the type of particle.
This relation is derived from experimental observation, e.g. [Haacke et al., 1999].

Remark 2.2.1. The gyromagnetic ratio of the 1H atom is γ ≈ 2.675 · 108 rad/(Ts) or γ− = γ
2π ≈ 42.58

MHz/T in frequency units.

Lemma 2.2.2. The component µ̌z of the magnetic moment operator results in the following two
eigenvector-eigenvalue equations

µ̌z |↑〉 = γ~
1

2
|↑〉 and µ̌z |↓〉 = −γ~1

2
|↓〉 .

The magnetic moment induced by spin interacts with the applied magnetic field B0. This
interaction is described by the Hamilton operator Ȟ , which captures the energy E of a particle
in a spin state |ψ〉 according to the Schrödinger Equation, i.e.

Ȟ = −µ̌ ·B0 and Ȟ |ψ〉 = E |ψ〉 , (2.3)

where · indicates the inner product. The different states of spins entail different energy levels:

Ȟ |ψ〉 = −γ~msB0 |ψ〉 , (2.4)

where the magnetic quantum number is ms = 1
2 for states |↑〉 and ms = −1

2 for states |↓〉.
Hence, |↑〉 implies a lower energy state than |↓〉. The energy difference is referred to as Zeeman
effect, i.e.

∆E = γ~B0. (2.5)

According to the Planck’s energy-frequency relation relating energy E and frequency ω0 of
a particle by E = ~ω0, the energy difference due to Zeeman splitting relates to the Larmor
frequency of the spins.

Definition 2.2.3 (Larmor frequency). Exposed to an external magnetic field B0 = (0, 0, B0)T , the
angular frequency ω0 of so-called nuclear precession is given by

ω0 = −γB0, (2.6)

where γ is the gyromagnetic ratio. The frequency ω0 is called the Larmor frequency.

Remark 2.2.4. The negative sign in Def. 2.2.3 enforces a right handed system.

Remark 2.2.5. The Larmor frequency of a 1H nucleus within a magnetic field B0 = (0, 0, B0)T and
field strength B0 = 1T is |ω0| = 42.58 MHz.
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2.3. Macroscopic magnetization

A large number of nuclear spins exposed to a magnetic field sum up to a macroscopic mag-
netic moment. The macroscopic magnetization allows for the description in the framework of
classical mechanics. In MRI, the macroscopic magnetization is used to describe the underlying
physical quantity, measured and manipulated during the experiment.

Definition 2.3.1 (macroscopic magnetization). Consider an ensemble of Ns spins with state vectors
|ψn〉, for each n = 1, . . . , Ns. The macroscopic magnetization or bulk magnetization is given by
the sum of the expectation values of all spins, i.e.

Mi =

Ns∑

n=1

〈ψn | µ̌i | ψn〉 , for i ∈ {x, y, z } .

The macroscopic magnetization is denoted by M := (Mx,My,Mz)
T ∈ R3.

In thermal equilibrium, the population of the energy levels are described by the Boltzmann
relation,

N↑
N↓

= exp

(
∆E

kBTs

)
= exp

(
γ~B0

kBTs

)
, (2.7)

where kB ≈ 1.38 ·10−23 J/K is the Boltzmann constant and Ts is the absolute temperature. Taylor
expansion reveals a surplus of configurations |↑〉 by approximately γ~B0

2kBTs
. The corresponding

magnitude of the generated bulk magnetization vector M0 points along the z-axis and M0
z is

approximated by

M0
z ≈

1

2

(
Ns

γ~B0

2kBTs

)
γ~ =

γ2~2B0Ns

4kBTs
, (2.8)

which is proportional to Ns, the overall number of spins, the field strength, as well as inversely
proportional to the absolute temperature. The Boltzman distributed component M0

z in com-
bination with vanishing components M0

x and M0
y , i.e. M0

z =
∣∣M0

∣∣, is referred to as thermal
equilibrium magnetization.

Remark 2.3.2. Given B0 = (0, 0, B0)T with B0 = 1T and assuming room temperature, the fraction
of surplus of configurations |↑〉 in the 1H nucleus is N↑−N↓

Ns
≈ 3 · 10−6. Hence, only three of one million

protons contribute to the measurable MRI signal.

Decomposition of the macroscopic magnetization vector simplifies further discussions.

Definition 2.3.3 (longitudinal and transverse Magnetization). For a macroscopic magnetization
M = (Mx,My,Mz)

T in a magnetic field with main direction along the z-axis, define M‖ := Mz and
M⊥ := Mx + iMy of the individual components. Then M‖ is called longitudinal magnetization and
M⊥ is referred to as transverse magnetization.

Although the equilibrium magnetization M0 results from quantum mechanical considera-
tion, it allows for a purely classical treatment. This is due to the high number of spins and weak
interactions amongst spins as well as between the spins and the environment.
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2.4. Bloch equation

The temporal evolution of the macroscopic magnetization is well described by the Bloch equa-
tion, when assuming a large ensemble of spins.

Definition 2.4.1 (Bloch equation). Let B denote the applied magnetic field. Consider a large ensemble
of spins, all characterized by the same Larmor frequency ω0. Let M describe the macroscopic magnetiza-
tion. Then the Bloch equation is given by

dM(t)

dt
= γM(t)×B(t)− 1

T1




0
0

Mz(t)−M0
z


− 1

T2



Mx(t)
My(t)

0




where T1 and T2 express the relaxation times.

Remark 2.4.2. The origins of relaxation constants T1 and T2 are briefly described in Sec. 2.6.

Remark 2.4.3. The Bloch equation [Bloch, 1946] was experimentally validated, but can be also derived
from quantum statistics.

The Bloch equation yields an equation of motion and describes the rate of change of the
macroscopic nuclear magnetization.

Theorem 2.4.4. Assuming a constant magnetic field B0 = (0, 0, B0)T and neglecting relaxation, the
Bloch equation is solved by



Mx(t)
My(t)
Mz(t)


 =




cos (−γB0t) − sin (−γB0t) 0
sin (−γB0t) cos (−γB0t) 0

0 0 1





Mx(0)
My(0)
Mz(0)


 . (2.9)

This expresses a rotation of the magnetization around the z-axis. With decomposition into
longitudinal and transverse magnetization, (2.9) simplifies to

M⊥(t) = M⊥(0) exp(−iγB0t) and M‖(t) = M‖(0). (2.10)

The temporal evolution of the transverse component M⊥ demonstrates the nuclear precession
at the Larmor frequency ω0 = −γB0 (Def. 2.2.3) around the directional axis of the external
magnetic field. The change of basis of the next section simplifies the description in many cases.

Rotating Frame of Reference

It is often useful to describe the magnetization with respect to another basis than the canonical
basis

e1 :=




1
0
0


 , e2 :=




0
1
0


 , e3 :=




0
0
1


 , (2.11)

namely, given a rotating basis at a fixed angular frequency ω:

v1(ω, t) :=




cos (ωt)
− sin (ωt)

0


 , v2(ω, t) :=




sin (ωt)
cos (ωt)

0


 , v3(ω, t) :=




0
0
1


 . (2.12)
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Basis transformation between the two basis sets E := { e1, e2, e3 } and V := { v1, v2, v3 } are
given by the following basis transformation matrices:

TVE (ω, t) :=




cos (ωt) sin (ωt) 0
− sin (ωt) cos (ωt) 0

0 0 1


 and

T EV (ω, t) :=




cos (ωt) − sin (ωt) 0
sin (ωt) cos (ωt) 0

0 0 1




(2.13)

Definition 2.4.5 (Larmor-rotating frame of reference). The Larmor-rotating frame of reference
is defined in terms of the basis elements V :={ v1(ω, t), v2(ω, t), v3(ω, t) } as described above and setting
ω = ω0, i.e. to the Larmor frequency of the considered ensemble of spins (of the same Larmor frequency),
exposed to the magnetic field B0 = (0, 0, B0)T .

From (2.9) follows that M(t) = TVE (ω0, t)M
0. Expressing the macroscopic magnetization M

with respect to the Larmor-rotating frame of reference then yields

Mrot(t) := T EV (ω0, t)M(t) = T EV (ω0, t)T
V
E (ω0, t)M

0 = M0. (2.14)

Hence, the precessing magnetization vector appears to be static in the Larmor-rotating frame
of reference and the transversal magnetization with respect to both bases relate by

Mrot,⊥(t) = M⊥(t) exp(−iω0t) , Mrot,⊥(t) := Mrot,x(t) + iMrot,y(t). (2.15)

Generally, any frequency can be selected in the basis V to express the frame of reference
rotating at the chosen frequency.

Theorem 2.4.6 (e.g. [Bernstein et al., 2004]). For an arbitrary frequency ω in the basis V :=
{ v1(ω, t), v2(ω, t), v3(ω, t) }, the rate of change of the magnetization with respect to this basis is
obtained by

(
∂M(t)

∂t

)

V
=

(
∂M(t)

∂t

)
−




0
0
ω0


×M(t) = (ω0 − ω)M× e3,

where e3 denotes again the canonical basis vector according to (2.11).

Again, it is evident that the rate of change of the magnetization is zero when choosing ω = ω0,
the Larmor-rotating frame of reference.

2.5. RF excitation

In order to excite magnetization from thermal equilibrium, an external oscillating force is ap-
plied in form of an additional time-dependent magnetic field B1(t), which is non-zero only
within the finite time interval [tp,0, tp,1] ⊂ R. It is referred to as a radiofrequency (RF) pulse.
Here, a general - however not exclusive - description of an RF pulse used for signal excitation
is stated.
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Definition 2.5.1 (radiofrequency pulse). Let B1(t) be a time-dependent magnetic field, defined for a
given time interval t ∈ [tp,0, tp,1] and of the form

B1(t) =



B1,x(t)
B1,y(t)
B1,z(t)


 =



Be

1(t) cos(ωrft+ φ)

−Be
1(t) sin(ωrft+ φ)

0


 ,

at a specific angular frequency ωrf, i.e. the excitation frequency, and given an initial phase φ. The
time-dependent function Be

1(t) is referred to as pulse envelope function. In MRI, a magnetic field of
this form is called a radiofrequency (RF) pulse.

Remark 2.5.2. Throughout this thesis, the interval of excitation is assumed to be symmetric with re-
spect to the origin. Hence, define tp,0 := −tp,1, such that half of the RF pulse is realized at t = 0.

Analogous to the Larmor-rotating frame of reference, the RF pulse can be expressed in the
RF-rotating frame of reference.

Definition 2.5.3 (RF-rotating frame of reference). The RF-rotating frame of reference for the RF
pulse B1 is defined in terms of the basis elements V := { v1(ω, t), v2(ω, t), v3(ω, t) } and choosing
ω = ωrf.

Without loss of generality, the initial phase is set to zero, i.e. φ = 0, in further considerations.
The RF pulse in the RF-rotating frame of reference is expressed by

B1,rot(t) := T EV (ωrf, t)B1(t) =



Be

1(t)
0
0


 . (2.16)

Thus, the RF pulse is described solely by its pulse envelope function Be
1(t) in the RF-rotating

frame of reference.
The phenomenon of resonance is exploited by matching the excitation frequency to the

Larmor frequency of the spin ensemble of interest, ωrf = ω0. Consider the combined magnetic
field B(t) = B0 + B1(t) during the time interval of non-zero RF pulse contribution. Relaxation
parameters are neglected since the RF pulse time interval is usually much shorter than typical
T2 and T1-times. Incorporating B(t) in the Bloch equation (Def. 2.4.1) and expressing the result
in th RF-rotating frame of reference based on Thm. 2.4.6 demonstrates the effect of RF pulse
excitation.

Theorem 2.5.4 (e.g. [Liang and Lauterbur, 2000, Bernstein et al., 2004]). Let B(t) = B0 + B1(t)
be the combined static and time-dependent magnetic field defined as in previous considerations. Let the
difference between excitation and Larmor frequency be defined by ∆ω := ωrf − ω0. Then the rate of
change of the magnetization M in the RF-rotating frame of reference is given by:

(
dMx(t)

dt

)

RF,rot
= ∆ωMy(t)

(
dMy(t)

dt

)

RF,rot
= γMz(t)B

e
1(t)−∆ωMx(t)

(
dMz(t)

dt

)

RF,rot
= −γMy(t)B

e
1(t).
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Two effects become evident from Thm. 2.5.4: first, whenever excitation frequency and Lar-
mor frequency perfectly match each other - referred to as on-resonance condition -, the expression
is identified with respect to the Larmor-rotating frame of reference. Solely contributions in the
z − y−plane are present. Second, in case of a difference between excitation and Larmor fre-
quency, off-resonance contributions occur.

Under the on-resonance condition, the solution of the differential equations for an initial
magnetization Mrot =

(
0, 0,M0

z

)
is found to be

Mx,rot = 0

My,rot = M0
z sin

(∫ τp

τ0

γBe
1(t)dt

)

Mz,rot = M0
z cos

(∫ τp

τ0

γBe
1(t)dt

)
.

(2.17)

This describes the rotation of the macroscopic magnetization away from the z-axis. After the
RF pulse, the magnetization rotates about the z-axis according to Thm. 2.4.4. The change in
orientation before and after the excitation is characterized by the flip angle.

Definition 2.5.5 (flip angle). Given an initial magnetization M(τ0) and a resulting magnetization
M(τp) after applying an RF pulse, the angle between M(τ0) and M(τp) is called flip angle.

Under the on-resonance condition and in the case of a real-valued pulse envelope func-
tion in (2.17), the flip angle is given by αfa(τp) =

∫ τp
τ0
γBe

1(t)dt. In the case of off-resonance
contributions, the dynamics are more complicated, but can be described by the small-flip-angle
approximation (e.g. [Bernstein et al., 2004]). Assuming the flip angle to approach zero implies
Mz(t) ≈ M0 after the time interval of the RF pulse and sin(αfa) ≈ αfa. With these approximate
results, the spectra of off-resonance influences {∆ω } is approximated by

αfa(∆ω) ≈
∫ τp

τ0

γBe
1(t) exp(i∆ωt) dt. (2.18)

The inverse Fourier transform (see Def. 3.2.5) of the pulse envelope function thereby implicitly
defines the spectrum of frequencies which are excited. The finite time interval of excitation
necessarily implies that only a finite bandwidth of frequencies can be addressed.

2.6. Relaxation

The shown impact of an RF pulse onto the macroscopic magnetization results in a non-zero,
freely precessing transverse magnetization. However, the created transverse magnetization
immediately starts to decay, due to loss of coherence by spin interactions. At the same time,
the thermal equilibrium magnetization recovers. These processes are collectively referred to as
relaxation.

The Bloch equation (Def. 2.4.1) takes into account spin-lattice and spin-spin interactions. The
model includes statistical dependencies within the spin ensemble and with respect to the sur-
rounding matter. As a complete discussion of the relaxation process is beyond the scope of
this thesis, only the main aspects are described below. For more details, refer to Chapter 20 of
[Levitt, 2001].
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Due to thermal motion, the locally induced magnetic dipole moments as well as chemical
interactions between particles fluctuate over time. Hence, random modulations of the mag-
netic field are locally induced as spins interact with the surroundings by exchanging energy,
i.e. spin-lattice interaction. The order of fluctuations is statistically described by the mean square
fluctuations of the field and the autocorrelation of the time variations. Based on this, the prob-
ability of transitioning between spin states can be derived as described in [Levitt, 2001], which
leads to recovery of longitudinal magnetization (Def. 2.3.3).

Definition 2.6.1 (T1 relaxation or spin-lattice relaxation). The T1 relaxation of the recovery of the
longitudinal magnetization is described by the constant T1 leading to the following rate of change for
M‖:

dM‖(t)

dt
=

1

T1

(
M0
‖ −M‖(t)

)
(2.19)

The solution to (2.19) is given by

M‖(t) = M0
‖ −

(
M0
‖ −M‖(t)

)
exp

(
− t

T1

)
. (2.20)

The longitudinal magnetization recovery is described by an exponential function characterized
by T1.

Remark 2.6.2. Values of T1 of typical biological tissues increases with the main magnetic field strength.
This influences also the signal behavior at MR systems with higher field strength.

Further, spin-spin interaction, due to temporal variations of the magnetic dipole moments
occur. Based on the rotational correlation over time, the coherence between spins is described
[Levitt, 2001]. The constant T2 is obtained to expresses the decay of the transverse magnetiza-
tion (Def. 2.3.3).

Definition 2.6.3 (T2 relaxation or spin-spin relaxation). The transverse component is described by
the constant T2 leading to the following rate of change for M⊥:

dM⊥(t)
dt

= − 1

T2
M⊥(t) (2.21)

The solution to (2.21) is given by

M⊥(t) = M⊥(0) exp

(
− t

T2

)
. (2.22)

The transversal magnetization decay is described by an exponential decay characterized by T2.
Both recovery and decay due to relaxation are expressed in the Bloch equation (Def. 2.4.1).

In general, all processes leading to T1-recovery also influence T2-decay. The reverse, however,
is not generally true. Recovering the thermal equilibrium as expressed in the T1-rate requires
the transition into the initial population of the two energy states. The loss of coherence in the
transverse magnetization not necessarily requires a transition between energy states. There-
fore, T2 usually cannot exceed T1, hence T2 ≤ T1.

Remark 2.6.4. Many further effects besides relaxation parameters can be incorporated into the Bloch
equation, as for instance parameters accounting for the diffusion of particles. A more general variant,
incorporating diffusion, is provided by the Bloch-Torrey equation [Torrey, 1956].
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Relaxation is an important property of the magnetized system as it defines its recovery
after having disturbed the system. The time constants T1 and T2 strongly depend on the type
of tissue. Thus, relaxation properties describe a characteristic signature of tissue which can
then be exploited to create a contrast in the MR image.

2.7. The MR signal

After RF excitation, a rotating macroscopic magnetization is present, which evolves according
to the Bloch equation. Due to the rotating magnetization, a voltage is induced in a receive coil
following Faraday’s law of induction.

Since the magnetization within the whole excitation volume creates the induced voltage,
it is useful to address individual contributions in the formulation as well. The magnetization
may vary spatially corresponding to its spatial distribution and usually comprises a spectrum
of resonance frequencies {∆ω }, all of which are additively integrated in the magnetization
magnitude. In MR imaging, distinguishing spatial origins is required. In MR spectroscopy, vari-
ations with respect to resonance frequencies are used to distinguish chemical differences. To
this end, the spatial or spectral magnetization density is defined. Since this work deals with MR
imaging, the spectral magnetization density is introduced only to discuss off-resonance effects.

Definition 2.7.1 (spatial or spectral magnetization density). The spatial magnetization density
m⊥ or spectral magnetization density m∆ω

⊥ within the volume V is defined such as to fulfill the
equations

M⊥(t) =

∫

V
m⊥(r, t) dr or M⊥(t) =

∫ ∞

−∞
m∆ω
⊥ (∆ω, t) d∆ω. (2.23)

Remark 2.7.2. Here, the definition is provided only for the transverse component of the magnetization.
This is valid, since precession of the transverse magnetization determines the voltage induced in a coil.

According to Faraday’s law of induction, the derivative with respect to time of the magnetic
flux describes the voltage induced in the coil. An MR experiment may include a single receive
coil or an array of multiple receive coil elements. The induction additionally depends on the
spatial sensitivity of the respective receiving coil element, since contributions within close prox-
imity are for instance stronger than from remote origins. Given a coil, let c(r), for each r ∈ R3,
describe its spatial sensitivity. Here, the coil sensitivities are defined by the voltage induced by
a spatially constant magnetization.

Definition 2.7.3 (raw MR signal, sensitivity). The raw MR signal is given by the voltage induced
in a coil according to Faraday’s law of induction:

U(t) ∝ Re

{
− ∂

∂t

(∫

V
c(r)m⊥(r, t)dr

)}
,

where { c(r) r ∈ V } denote the sensitivity of the coil.

Corollary 2.7.4. With the same notation follows further for the raw MR signal that

U(t) ∝ Re

{∫

V
(iω(r)− 1/T2(r)) c(r)m⊥(r, 0) exp

(
iω(r))t− t

T2(r)

)
dr

}

≈ Re

{
iω

∫

V
c(r)m⊥(r, 0) exp

(
iω(r)t− t

T2(r)

)
dr

}
.

(2.24)
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Remark 2.7.5. The approximation in (2.24) is justified by the assumption that ω(r) >> 1/T2(r) and
that the spatial variation of ω(r) is small compared to the variation m⊥(r, 0).

Corollary 2.7.4 shows that the detected raw MR signal is rapidly oscillating that decays
exponentially. In order to digitize the signal, it is usually transfered to the rotating frame of
reference using signal demodulation [Bernstein et al., 2004]. It is thereby denoted as a complex
valued signal.

Corollary 2.7.6 (complex MR signal). The complex MR signal, in the rotating frame of reference
with reference frequency ωrf, is expressed by

s(t) ∝
∫

V
c(r)m⊥(r, 0) exp

(
i(ω(r)− ωrf)t−

t

T2(r)

)
dr, (2.25)

where ωrf is the reference frequency and ω(r) denotes the Larmor frequency present at position r ∈ V .

The complex MR signal expresses the induced voltage translated into the rotating frame of
reference.

2.8. Field inhomogeneities and free induction decay

Performing an MR experiment based on the described RF excitation and acquisition of the
complex MR signal reveals the signal decay to be even quicker than predicted by T2-decay. This
occurrence is explained by the influence of spectral deviations from the employed reference
frequency ωrf, i.e. ∆ω := ω − ωrf, for all ω. In this section, field inhomogeneities leading to
so-called T ?2 -decay and a free induction decay (FID) signal are described.

T ?2 -decay

Considerations so far assumed a single Larmor frequency. However, spins from different loca-
tions may have dissimilar Larmor frequencies. The reason for spatial variations are manifold.
On a macroscopic scale [mm], local static magnetic field variations locally alter Larmor fre-
quencies, for instance at air-tissue-interfaces where the magnetic susceptibilities strongly vary.
It also occurs on a microscopic scale [µm] where e.g. blood-enriched vessels exhibit a different
susceptibility compared to surrounding tissue. The presence of different Larmor frequencies
within the measured volume leads to a dephasing of the magnetization which locally dimin-
ishes the bulk transverse magnetization.

Local magnetic field variations impose a large problem in MRI, where the imaged volume
is separated into voxel compartments in [mm]. Therefore T ?2 is not primarily a tissue property,
but also a source of disturbance that becomes more severe with increasing voxel sizes. The
effect depends on the width of the spectral magnetization density m∆ω

⊥ (as in Def. 2.7.1) within
the voxel under consideration. For simplicity, the spectral magnetization density within a vol-
ume is often assumed to be described by a Cauchy distribution. This leads to an exponential
decay rate. The signal decay of the transverse component due to static field inhomogeneities is
typically modeled by the constant T ?2 and describes the rate of change of M⊥ by

dM⊥(t)
dt

= − 1

T ?2
M⊥(t). (2.26)
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The signal decay is thus described by T ?2 , which includes T2 as well as local static field inhomo-
geneities, i.e. 1

T ?2
= 1

T2
+ 1

T ′2
. This translates into an actual exponential signal decay of

M⊥(t) = M⊥(0) exp

(
− 1

T ?2

)
. (2.27)

Even though this approach is a rather coarse approximation considering the manifold possibili-
ties for spectral frequency distributions in living tissue, it turns out to be very useful in practice.
Experimentally derived average T ?2 -values in the human brain measured with an MR system
of field strength 3T [Wansapura et al., 1999] are:

frontal white matter 44.7± 1.2 ms
frontal gray matter 51.8± 3.3 ms
occipital white matter 48.4± 4.5 ms
occipital gray matter 41.6± 2.0 ms

Free induction decay (FID) signal

After the application of a single RF pulse, which tips the macroscopic magnetization by flip an-
gle αfa, the free induction decay (FID) signal can be observed as a consequence of free precession
and relaxation of the system.

Definition 2.8.1 (Free induction decay signal). The free induction decay (FID) signal is the com-
plex MR signal after application of an RF pulse with flip angle αfa to magnetization in thermal equilib-
rium, and subsequent signal reception during free precession of the excited spins, governed by the decay
due to relaxation and dephasing. Expressing the such resulting signal with respect to the magnetization
density yields

s(t) ∝
∫

V
c(r)m⊥(r, 0) exp

(
− t

T2(r)

)
exp(−i∆ω(r)t) dr

∝
∫

V
c(r)m⊥(r, 0) exp

(
− t

T ?2 (r)

)
dr

(2.28)

where ∆ω(r) comprises the spatial-dependent Larmor and reference frequencies.

2.9. Noise in MR measurements

Even without exciting an MR signal, some ’signal’ is received by the MR coil. The induced
voltage arises from thermal motion of electrically charged particles. Hereby, the density and
mobility of particles influence the noise component based on the interaction with the receive
coil and Faraday’s law of induction.

Underpinned by the central limit theorem, assume the ’noise’ voltage induced by motion of
particles with electric charge to be given by a Gaussian distributed random variable Uε : Ωε →
C defined on a probability space (Ωε,A,P), whereA denotes the σ-algebra of subsets of Ωε and
P is the probability measure. Assume Uε to be normalized such that Uε ∼ N (0, 1). Based on
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Nnoise noise measurements {Uε(ω)n }Nnoise
n=1 , the noise in an MR acquisition can be estimated by

calculating the variance σ2 thereof, i.e.

σ2 :=
1

Nnoise

Nnoise∑

n=1

|Uε(ω)n|2. (2.29)

The standard deviation σ :=
√
σ2 characterizes the noise level present in the acquisition. In

practical settings, noise samples can be collected in an MR experiment with a flip angle of zero,
hence, without excitation.

As observed by [Johnson, 1928, Nyquist, 1928], the noise level received in a coil is propor-
tional to the Boltzman constant kB , the frequency bandwidth of the sampling rate of signal
aggregation BWf (see Sec. 3.4.1), as well as the absolute temperature Ts, i.e.

σ2 ∝ 4kBBWfTs. (2.30)

Generally, more complex dependency on coil geometries and the experimental setup exist in
particular for multiple receive coil elements, e.g. [Roemer et al., 1990, Pruessmann et al., 1999].

Remark 2.9.1. The noise contribution of different spatial and spectral origin is independent and uncor-
related. Therefore, additive noise contributions yield the total noise contribution.

Considering (2.30), two simple solutions to reduce the noise level in an acquisition become
apparent: first, reducing the frequency bandwidth, second, reducing the local temperature.
Whereas the first comes at the expense of measurement time, the latter is not practicable in the
case of in vivo measurements.

Noise from multiple receive coils

For a generalization to MR acquisitions with multiple coils, the covariances between the in-
dividual receive coil elements are taken into account. The noise voltage induced in all coil
elements is hereby collectively described by a vector-valued random variable.

Let Uε,α : Ωε → C be a normalized Gaussian distributed random variable describing the
noise voltage induced in coil element α, for each α ∈ { 1, . . . , Ncoils } of the Ncoils coil elements.
Then

Uε :=




Uε,1
...

Uε,Ncoils


 : ΩNcoils

ε → CNcoils , (2.31)

is a vector-valued random variable that captures the noise voltage of the multiple coil system.
Based on a collection of sufficiently many noise samples {Uε(ω)n }Nnoise

n=1 , the noise covariance
matrix Ψcoils ∈ CNcoils×Ncoils can be derived (see also Def. 4.6.2). Its elements consists of the
noise (co-)variances which are estimated for each pair of coils α, β ∈ { 1, . . . , Ncoils } by

(Ψcoils)α,β =
1

Nnoise

Nnoise∑

n=1

Uε,α(ω)nU
?
ε,β(ω)

n
, (2.32)

where ? denotes the complex conjugate. In practical settings, the noise (co-)variances of the set
of coils are likewise obtained from a zero-flip angle acquisition.
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Remark 2.9.2. A non-negative noise covariance between two different receive coil elements represents
the noise correlation due to electromagnetic coupling between receive coils. In an ideal orthogonal setting,
i.e. 〈Uε,α|Uε,β〉 = 0, for each α, β ∈ { 1, . . . , Ncoils }, coil elements are mutually uncorrelated. The noise
covariance matrix then reduces to a diagonal matrix consisting only of the non-negative, real-valued
scalar variances for each coil individually.

Summary

In this chapter, the complex MR signal as the basis of every MR acquisition was derived. The
main elements of the physical foundation of MR were covered, introducing the nuclei specific
property spin within magnetized biological tissue and explaining how it leads to an observable
macroscopic magnetization. Further, signal reception after RF pulse excitation of biological
tissue that is exposed to a magnetic field was described.





Chapter 3

Fourier imaging

The complex MR signal, excited by an RF pulse and received by a coil, is the integral of signal
contributions from all spatial positions within the excited volume. Thus, only a global, super-
imposed signal is measured. Differentiation of signal contributions from distinct spatial origins
requires spatial encoding. Spatial encoding and image reconstruction are closely linked in MRI,
since the encoding schemes applied during image acquisition governs the reconstruction pro-
cess.

In this chapter, encoding in three spatial dimensions in 2D-multi slice imaging scenarios is
described. Slice selective excitation (Sec. 3.1) is used to encode the z-dimension and Fourier
encoding (Sec. 3.2) is applied to encode the x- and y-dimensions. Along with Fourier encod-
ing, Fourier image reconstruction (Sec. 3.3) is introduced. Limitations due to finite and discrete
sampling scenarios are discussed, as well as its implications for spatial resolution and signal-to-
noise ratio (SNR). Practical implementations by MR pulse sequences are covered (Sec. 3.4) and
echo planar imaging (EPI) is in particular presented. A discussion of Partial-Fourier sampling
(Sec. 3.5) or sub-Nyquist sampling (Sec. 3.6) to reduce acquisition times in Fourier imaging
concludes this chapter.

Throughout this chapter, MR acquisitions using a single coil with a homogeneous sensitiv-
ity are assumed. Therefore, the explicit reference to coil sensitivities c(r), for r ∈ V is omitted
without loss of generality. Coil sensitivities are reintroduced in Chapter 4, in which acquisitions
with multiple coils are considered.

3.1. Slice selective excitation

An intuitive way of determining spatial origin of the signal along one of three dimensions is to
selectively excite only protons along a specified plane within a volume, i.e. a slice.

Without loss of generality, consider a slice oriented perpendicular to the main direction of
the static magnetic field. Let ∆z ∈ R define the slice thickness and assume the slice to be shifted
from the origin by a shift factor z0 ∈ R. Then the corresponding slice is defined by the set

V :=

{
(x, y, z)T ∈ R3 |z − z0| <

∆z

2

}
. (3.1)

As covered in Sec. 2.2, particles with spin exposed to an external magnetic field precess at
the nuclei specific Larmor frequency ω0. The excitation frequency ωrf = ω0 needs to match the
Larmor frequency for excitation of non-zero transverse magnetization (Sec. 2.5). Using both
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relations, a spatial-dependent variation of the Larmor frequency is introduced by gradients for
subsequent excitation of spins only within a defined slice volume.

Definition 3.1.1 (gradients). Denote r := (x, y, z)T and let BG(r, t) be a magnetic field along the
main direction of B0, that varies with respect to time and space, i.e.

BG(r, t) :=




0
0

Gx(t)x


+




0
0

Gy(t)y


+




0
0

Gz(t)z


 ,

whereGx(t),Gy(t) andGz(t) are linear functions. The gradient G(t) is defined as the spatial derivative
of BG(r, t) along the z-component, i.e.

G(t) :=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)T
(BG(r, t))z = (Gx(t), Gy(t), Gz(t))

T .

Remark 3.1.2. In Def. 3.1.1, gradients are defined to be linear, since all gradients applied in
this work are linear. Nevertheless, non-linear gradients have also been actively applied in MRI,
e.g. [Hennig et al., 2008, Gallichan et al., 2011, Schultz, 2013].

Consider a magnetic field BGslc(r, t) = (0, 0, Gslc(t)z)
T , where Gslc(t) is linear, applied in

addition to the static magnetic field B0. Assume the gradient to provide a constant value
in a given time interval, i.e. Gslc(t) = Gslc, for each t ∈ [tslc,0, tslc,1]. The overall magnetic
field is within this time interval described by (0, 0, B0 +Gslcz)

T . The linear variation of the
z-component implies the Larmor frequency ω to spatially vary along the z-direction, i.e.

ω(z) = −γ (B0 +Gslcz) = ω0 − γGslcz, (3.2)

where ω0 refers to the Larmor frequency as solely dictated by the static magnetic field. Hence,
designing an RF pulse such as to match only a narrow band of Larmor frequencies correspond-
ing to the range inside the slice yields the desired slice selection excitation. The principle is
only briefly sketched in the following, for more details refer to [Liang and Lauterbur, 2000,
Bernstein et al., 2004].

For slice excitation with small flip angles, a pulse envelope function (Def. 2.5.1) can be
obtained by Fourier transform (see Def. 3.2.4) of the desired slice profile. In the case of (3.1), the
slice profile is a box function. The excitation frequency then has to match the Larmor frequency
of the designated slice center z0. For a constant gradient Gslc, V is selectively excited by an RF
pulse with excitation frequency ωrf and pulse envelope function Be

1(t) of

ωrf = −γ (B0 +Gslcz0) and Be
1(t) =

sin(πγtGslc∆z)

πγtGslc∆z
, respectively. (3.3)

Selecting the pulse envelope function by the Fourier transform approximates the Bloch
equation. However, this is an assumption valid only for small flip angles. The pulse enve-
lope function for a slice described by a box function is a sinc function, sinc(x) = sin(x)

x . Due to a
necessarily finite realization of the pulse in the experiment, the sinc function is truncated. The
truncation leads to ringing artifacts known as the Gibbs phenomenon [Gibbs, 1898] in the slice pro-
files. This is typically mitigated by applying a suitable window function to the pulse envelope,
e.g. a Hann or a Hamming window.

Using slice selective excitation, signal is excited only within a volume of interest. The
thereby applied gradient is referred to as slice selection gradient. The excited signal, however,
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still exhibits superimposed signal contributions from all particles within the slice. In order to
distinguish contributions according to both dimensions within the slice, further spatial encod-
ing is required: frequency encoding and phase encoding.

3.2. Fourier encoding

In Fourier encoding, signal contributions from within the excited volume are weighted by
changes of relative frequency - and consequently the accumulated phase changes - in the com-
plex MR signal. The two main mechanisms to affect these frequency changes are referred to as
frequency encoding and phase encoding. The encoded MR signal data are expressed using the con-
cept of k-space. By the Fourier relation, image reconstruction is directly linked to the encoding
principle and relies on how data is sampled within k-space.

Frequency encoding

Similar as for the slice selection gradient, the linear gradient BGfe(r, t) = (0, 0, Gfe(t)x)T is
defined as non-zero in the time interval

[
tfe,0, tfe,1

]
after the end of the RF pulse, i.e. tp,1 < tfe,0.

Applying gradient Gfe along the x-direction implies modulation of the overall magnetic field
to (0, 0, B0 +Gfe(t)x)T , for t ∈

[
tfe,0, tfe,1

]
. With (2.6), the following frequency dependency on

the x-component and on time results:

ω(x, t) = −γ (B0 +Gfe(t)x) = ω0 − γGfe(t)x. (3.4)

The gradient Gfe(t) is referred to as frequency encoding gradient.
Although slice selection and frequency encoding gradients only vary with respect to their

gradient direction, functional differences arise due to their time of application. Whereas the
slice selection gradient is applied in the time interval of RF pulse excitation [tp,0, tp,1], the fre-
quency encoding gradient is applied during the time window of signal readout by the analog-
digital converter (ADC), e.g. [tADC,0, tADC,1]. Its effect becomes evident when inserting the de-
rived frequency relation (cf. 3.4) into the FID signal equation (cf. 2.28). Due to the time depen-
dency of ω(x, t), the previous multiplication, ω(r)t, here becomes an integration,

∫ t
0 Gfe(τ)x dτ .

With this and neglecting relaxation, the following signal relation results:

s(t) ∝
∫

V
m⊥(r, 0) exp

(
−iγ

∫ t

0
Gfe(τ)x dτ

)

︸ ︷︷ ︸
phase modulation along x-direction

dr. (3.5)

Recall also that t = 0 occurs at the middle of the RF pulse excitation time interval (Rem. 2.5.2),
which also determines the temporal integration interval. Such a signal is said to be frequency
encoded.

Phase encoding

Frequency encoding allows to encode one spatial dimension of the excited slice profile and is
performed during the readout of the excited signal. Encoding of further spatial dimensions re-
quires several repetitions of slice-selective, frequency-encoded signal acquisition, where the
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signal is prepared differently in each sequential step. This makes the phase encoding time-
expensive.

Analogous to the frequency encoding gradient, the linear gradient is defined as
BGpe(r, t) =

(
0, 0, Gpe(t)y

)T , and as non-zero in the time interval
[
tpe,0, tpe,1

]
after the

end of the RF pulse and before the readout acquisition begins, i.e. tslc,1 ≤ tpe,0 < tpe,1 ≤ tfe,0.
Then this gradient again imposes spatially dependent modulations of the overall magnetic
field

(
0, 0, B0 +Gpe(t)y

)T , for t ∈
[
tpe,0, tpe,1

]
, but with respect to the y-component. The

frequency modulations along the y-direction induce the following:

ω(y, t) = −γ
(
B0 +Gpe(t)y

)
= ω0 − γGpe(t)y. (3.6)

The difference in acquiring a frequency encoded signal when previously the gradient Gpe(t)
was applied is given by the following additional phase:

s(t) ∝
∫

V
m⊥(r, 0) exp

(
−iγ

∫ t

0
Gfe(τ)x dτ

)
exp

(
−iγ

∫ tpe,1

tpe,0

Gpe(τ)y dτ

)

︸ ︷︷ ︸
phase modulation along y-direction

dr (3.7)

The gradient Gpe(t) is called phase encoding gradient. Defining the combined gradient G(τ) :=(
Gfe(τ), Gpe(τ), 0

)
, then (3.7) is described by

s(t) ∝
∫

V
m⊥(r, 0) exp

(
−iγ

∫ t

0
G(τ) · r dτ

)
dr. (3.8)

The signal is said to be frequency and phase encoded. In the subsequent section, the concept
of k-space is introduced which substitutes the time-dependency of the encoding functions by
expressing phase modulations in coordinates of k-space.

3.2.1. Concept of k-space

Phase and frequency encoding gradients impose spatially varying phase modifications over
the time course of signal acquisition (cf. 3.8). Hence, the transverse magnetization density
m⊥(r, 0) is projected onto a set of exponential functions modulated by phase variations ac-
cording to the applied gradients. This change of perspective largely simplifies the expression
[Ljunggren, 1983, Twieg, 1983].

Definition 3.2.1 (k-space, k-space coordinates). Define k-space as the set of vectors k ∈ RD that
are spanned by arbitrary gradient modulations after a certain time t, i.e.

K :=

{
k k = γ

∫ t

0
G(τ) dτ

}
(3.9)

The components of k provide the k-space coordinates according to the orthogonal spatial encoding line
dimensions. For D = 2, the k-space coordinates (kx, ky) are given by

kx := γ

∫ t

0
Gfe(τ)dτ and ky := γ

∫ t

0
Gpe(τ)dτ. (3.10)

Remark 3.2.2. The gyromagnetic ratio γ is expressed in units of rad/(Ts), hence, k is given in rad/m.
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Remark 3.2.3. The k-space coordinates demonstrate the spatial rate of change:

k(t) =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)T (
γ
∫ t

0 G(τ)r dτ
)

.

With Def. 3.2.1, the time-dependent frequency and phase encoded signal of (3.8) becomes

s(t) ∝
∫

V
m⊥(r, 0) exp(−ik(t) · r) dr, (3.11)

where k(t) = (kx(t), ky(t))
T indicates the k-space position or k-space coordinates at the time t

of the measurement and according to the gradients Gfe(t) and Gpe(t). Definition of s̃(k) ≡ s(t)
allows for the expression of the time-dependent encoded signal in terms of k-space, i.e.

s̃(k) ∝
∫

V
m⊥(r, 0) exp(−ik · r) dr. (3.12)

This signal equation essentially shows the (two-dimensional) Fourier transform of the trans-
verse magnetization densities {m⊥(r, 0) , r ∈ V }. The general form - as outlined in Chapter 1
- is obtained by defining Fourier encoding kernel functions according to the gradient imposed
Fourier basis, as well as defining the encoding operator as the general Fourier transform.

For the definition of the Fourier transform and its inverse,m⊥(r, 0) is assumed to be rapidly
decreasing in the spatial domain. This assumption is well justified in MRI, since imaged objects
are of limited extent and the MR scanner’s field strength as well as the receive coil’s signal
sensitivities are decaying over spatial distance. It is explicitly assumed thatm⊥(·, 0) ∈ L2 (V,C)
is a square-integrable function, i.e.

∫
V |m⊥(r, 0)|2 dr < ∞, where V ⊆ RD and D = 2 for a 2D-

slice volume.

Definition 3.2.4 (Fourier transform). The Fourier transform of a square-integrable function
m⊥(·, 0) ∈ L2 (V,C), where V ⊆ RD, in terms of angular frequencies is defined by

FT {m⊥(·, 0) } (k) =

∫

V
m⊥(r, 0) exp(−ik · r) dr. (3.13)

The Fourier encoding kernel function is thereby given by

E : K × V → C
E : (k, r) 7→ exp(−ik · r) .

(3.14)

With the definition, the Fourier encoded MR signal can be expressed by

s̃(k) ∝
∫

V
m⊥(r, 0)E(k, r)dr = FT {m⊥(·, 0) } (k). (3.15)

In an ’ideal’ encoding scenario, each location within the object is assigned with a unique
frequency and phase offset. Then, a one-to-one correspondence would exist between spatial
location and acquired frequency/phase information in the signal. This would require the main
static magnetic field B0 and the RF excitation B1(t) to be perfectly constant over the entire
volume, referred to as perfect B0 and B1 homogeneity. Likewise, the exclusion of any signal
disturbances due to unwanted gradient modulation or noise influences would be necessary.
Furthermore, an idealized encoding scenario comprises infinite and continuous k-space data
to be accessible, such that s̃(k) can be acquired for all k ∈ K. Then the encoded content
{m⊥(r, 0) , r ∈ V } could be entirely recovered by taking the inverse Fourier transform as jus-
tified by the Fourier inversion theorem.
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Definition 3.2.5 (inverse Fourier transform). Let F ∈ L2 (K,C), where K ⊆ RD. The inverse
Fourier transform with respect to k in terms of angular frequencies is defined by

FT −1{F } (r) =
1

(2π)D

∫

K
F (k) exp(ik · r) dk.

Theorem 3.2.6 (Fourier inversion theorem). Let m⊥(·, 0) ∈ L2
(
V ⊆ RD,C

)
. Then the following

holds:

m⊥(r, 0) = FT −1{FT {m⊥(·, 0) } } (r) .

Remark 3.2.7. A proof for the Fourier inversion theorem can be found in a more general form in
[Stein and Shakarchi, 2011].

Although in practice, the continuous and infinite collection of all Fourier signals in MRI
experiments is impossible, this theoretical example reflects the underlying Fourier relation be-
tween k-space and image space. Any imperfections in the assignment of frequency and phase
offsets during the encoding process lead to artifacts and demand for either mitigation in the
acquisition or correction during image reconstruction or post-processing. A realistic k-space
sampling scenario is provided in the next section. Subsequent, the influences of finite and
discrete data sampling for the image reconstruction is discussed in Sec. 3.3.

3.2.2. Sampling of k-space

Along the time course of signal acquisition, a series of k-space points are identified. The set of
collected k-space data in the measurement yields a finite time series of k-space positions which
allows for tracing the path in k-space according to the temporal order. This path in k-space is
referred to as k-space trajectory.

Definition 3.2.8 (k-space trajectory). Assume a discrete sampling of Nsmp signal data points, sam-
pled at time points t1 < . . . < tNsmp . The corresponding time series of visited k-space points Ksmp :=

{kn := k(tn) }Nsmp
n=1 is referred to as k-space trajectory.

The definition of the k-space trajectory facilitates a unified description of different data
acquisition techniques with individual gradient encoding procedures. It depicts the temporal
path of discrete samples through the continuously defined k-space as steered by amplitude and
duration of the gradients. Particular k-space trajectories will be discussed in Sec. 3.4, examples
are displayed in Figs. 3.1 and 3.2.

To emphasize the discrete sampling of Fourier signals, the samples are referred to as Fourier
coefficients of the imaged quantity {m⊥(r, 0) , r ∈ V }. A finite series of Fourier coefficients is
collected in an MRI acquisition, i.e.

dn =

∫

V
m⊥(r, 0) exp(−ikn · r) dr, for each kn ∈ Ksmp. (3.16)

Based on this series of data points the image reconstruction problem is posed.
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3.3. Fourier image reconstruction

The image reconstruction problem in MRI is to find a feasible image representation
I ∈ L2(Ω,C), where Ω ⊆ RD, for a D-dimensional imaging scenario, which covers the
area of interest and provides data consistency with the measurement data d. In Fourier
imaging, the data consistency constraint simply implies that a feasible solution I fulfills

Š{FT { I } } = d, where dn = 〈m⊥(., 0)| exp(ikn · .)〉L2 , (3.17)

where Š selects samples according to the k-space trajectory of the acquisition.
Since the signal of Fourier imaging is sampled with a Fourier encoding scheme, the infor-

mation about the signal origin is contained in the different frequency and phase off-sets in the
measured MR signal. Hence, a spectral analysis of the Fourier encoded signal discloses the spa-
tial origin and strength of signal contributions. Infinite continuous signal information would
allow for ’perfect’ image reconstruction. However, there are three fundamental limitations in
practical Fourier encoded MRI:

1. discrete (or frequency band-limited) data sampling

2. finite data sampling

3. negative correlation of signal-to-noise and spatial resolution

These will be individually discussed below. Various sections follow discussions pre-
sented in [Liang and Lauterbur, 2000]. Fourier and time series analysis are based on
[Stein and Shakarchi, 2011, Brockwell and Davis, 2013]. Successively, data availability is re-
stricted from the infinite continuous case to infinite discrete sampling, and to finite and discrete
data accessible for image reconstruction. Subsequently, the interference of signal-to-noise
(SNR) and spatial resolution is discussed. Without loss of generality, only one-dimensional
scenarios (D = 1) are considered, wherefore k and r reduce to scalars k and r.

Discrete sampling

Assume an infinite number of data d = { dn }∞n=−∞, sampled at constant k-space intervals of ∆k

and thus, forming a set of discrete points. Let Š denote the corresponding sampling operator
according to the infinitely many k-space coordinates sampled. An image function I (r) yields
a feasible reconstruction given the measurement data, if

d = Š{FT { I } } ,

where dn =

∫

V
m⊥(r, 0) exp(−in∆kr) dr, for each n ∈ Z.

(3.18)

Such a feasible image function is constructed - in analogy to the inverse Fourier transform -
from the data samples by the Fourier series.

Definition 3.3.1 (Fourier series). The Fourier series in terms of angular frequencies of an infinite
complex sequence { dn }∞n=−∞, such that

∑∞
n=−∞ |dn|2 <∞, is defined by

I(r) =
1

2π

∞∑

n=−∞
dn exp(in∆kr) . (3.19)
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The question of how closely the such derived image function I approximates the underlying
true m⊥(·, 0) is answered by investigation of the effect of discrete sampling at constant inter-
vals.

Theorem 3.3.2 (discrete sampling). Assume Fourier encoded data sampled at k-space intervals of
length ∆k as denoted in (3.18) and define FoV := 2π

∆k . Then the following equality holds:
∞∑

n=−∞
dn exp(in∆kr) = FoV

∞∑

n=−∞
m⊥(r − nFoV, 0) (3.20)

Before proving the theorem, two lemmata are considered.

Lemma 3.3.3. Assume the same notations as in Thm. 3.3.2. Let δ denote the Dirac delta distribution,
which is defined such that ∫ ∞

−∞
φ(x)δ(x)dx = φ(0), (3.21)

for each function φ that is continuous at the origin. Then the following equations hold:

(i) FoV
∑∞

n=−∞ δ (x− nFoV ) =
∑∞

n=−∞ exp(in∆kx).

(ii) FT
{
FoV

∑∞
n=−∞ δ (x− nFoV )

}
=
∑∞

n=−∞ δ(k − n∆k)

Proof. (i): Consider the Dirac comb of equally spaced Dirac delta distributions defined by

combFoV (x) : =

∞∑

n=−∞
δ(x− nFoV ). (3.22)

The Dirac comb is periodic, since combFoV (x+ FoV ) = combFoV (x). Hence, the function
can be expressed as a Fourier series, i.e.

combFoV (x) =
∞∑

n=−∞
cn exp(i2πnx/FoV ) , (3.23)

where the Fourier coefficients cn are given by

cn =
1

FoV

∫ FoV
2

−FoV
2

combFoV (x) exp(−i2πnx/FoV ) dx

=
1

FoV

∫ FoV
2

−FoV
2

∞∑

n=−∞
δ(x− nFoV ) exp(−i2πnx/FoV ) dx

(?)
=

1

FoV

∫ FoV
2

−FoV
2

∞∑

n=−∞
δ(x) exp(−i2πnx/FoV ) dx

=
1

FoV
.

(3.24)

The equality marked with (?) follows from the periodicity of the Dirac comb of FoV
which by the integration over the interval

[
−FoV

2 , FoV2
]

is evaluated only for n = 0. Com-
parison of (3.22) and (3.23) implies

∞∑

n=−∞
δ(x− nFoV ) =

1

FoV

∞∑

n=−∞
exp(i2πnx/FoV ) . (3.25)



3.3. Fourier image reconstruction 33

With the derived assertion and inserting FoV = 2π
∆k , the following holds:

FoV
∞∑

n=−∞
δ (x− nFoV ) =

∞∑

n=−∞
exp(i2πnx/FoV ) =

∞∑

n=−∞
exp(in∆kx) . (3.26)

(ii): Taking the Fourier transform on both sides of the result of part (i) yields

FT
{
FoV

∞∑

n=−∞
δ (x− nFoV )

}
(3.27)

= FT
{ ∞∑

n=−∞
exp(in∆kx)

}
linearity

=
∞∑

n=−∞
FT { exp(in∆kx) } (3.28)

=

∞∑

n=−∞

∫ ∞

−∞
exp(in∆kx) exp(−ikx) dx. (3.29)

=
∞∑

n=−∞

∫ ∞

−∞
exp(−ix(k − n∆k)) dx. (3.30)

The integral on the right side describes the Fourier transform of 1. The equality

∫ ∞

−∞
δ(k −∆k) exp(ix (k − n∆k)) dk = 1, (3.31)

can be proven by approximating the Dirac delta within the integral by the Gaussian
kernel function of infinitesimally small width [Stein and Shakarchi, 2011]. Inserting the
Fourier transform of the left side of (3.30) for the Fourier transform of 1 in (3.30) yields

∞∑

n=−∞

∫ ∞

−∞
exp(in∆kx) exp(−ikx) dx =

∞∑

n=−∞
δ (k − n∆k) . (3.32)

Remark 3.3.4. Lemma 3.3.3 (ii) demonstrates how infinite discrete sampling at intervals of ∆k in k-
space results in infinitely many replica of length FoV in the image domain.

Proof of Thm. 3.3.2. Consider the left side of the equality and substitute dn by its signal expres-
sion, i.e.

∞∑

n=−∞
dn exp(in∆kr) =

∞∑

n=−∞

[∫

V
m⊥(r̂, 0) exp(−in∆kr̂) dr̂

]
exp(in∆kr) . (3.33)

The limits may be interchanged, since both the sum and the integral exist due to the assumption
of a rapidly decreasing m⊥(·, 0), hence,

∞∑

n=−∞
dn exp(in∆kr) =

∫

R
m⊥(r̂, 0)

∞∑

n=−∞
exp(in∆k(r − r̂)) dr̂. (3.34)
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Together with the results of Lemma 3.3.3(i) it further follows that

∞∑

n=−∞
dn exp(in∆kr) =

∫

R
m⊥(r̂, 0)FoV

∞∑

n=−∞
δ ((r − r̂)− nFoV ) dr̂

= FoV
∞∑

n=−∞

∫

R
m⊥(r̂, 0) δ ((r − r̂)− nFoV ) dr̂.

(3.35)

Evaluation of the Dirac delta distribution according to its definition then yields

∞∑

n=−∞
dn exp(in∆kr) = FoV

∞∑

n=−∞
m⊥(r − nFoV, 0) , (3.36)

which concludes the proof of the theorem.

Remark 3.3.5. The result of Thm. 3.3.2 reveals how constructing the Fourier series of discretely sam-
pled Fourier coefficients of the underlyingm⊥(·, 0) leads to a periodic replication ofm⊥(·, 0) in intervals
of FoV , inverse to the sampling intervals ∆k.

The question of how closely the such derived image function I approximates the under-
lying true m⊥(·, 0) is answered by investigation of the effect of discrete sampling at constant
intervals. Therefore, the validness of the Fourier series I (Def. 3.3.1) depends on the extent
of spatial support (Def. 3.3.6) of the underlying m⊥(·, 0) as well as on the incorporated sam-
pling intervals ∆k. A well-known result in linking these is established by the Nyquist-Shannon
sampling theorem.

3.3.1. Nyquist-Shannon sampling theorem

Definition 3.3.6 (support, support-limited). The support of a function m⊥(·, 0) : V ⊆ R → C is
defined by

supp(m⊥(·, 0)) := { r ∈ V m⊥(r, 0) 6= 0 } .

The function m⊥(·, 0) is support-limited, if there exists L ∈ R, L > 0, such that
supp(m⊥(·, 0)) ⊆

[
−L

2 ,
L
2

]
.

Theorem 3.3.7 (Theorem of support-limited functions (Nyquist-Shannon)). Let m⊥(r, 0) : R→
C be a support-limited function. Without loss of generality, assume the support to be centralized (e.g.
by spatial shifts) such that supp(m⊥(·, 0)) = [−L

2 ,
L
2 ], for L > 0. Consider a set { dn }∞n=−∞ of discrete

samples of Fourier coefficients of m⊥(·, 0), acquired at intervals of ∆k. Define the constant FoV := 2π
∆k

and the interval FoV :=
[
−FoV

2 , FoV2
]
. Let I : FoV → C be the Fourier series constructed from the

sampled data as in Def. 3.3.1. Then the following equivalence holds:

m⊥(r, 0) = ∆kI(r), for r ∈ FoV if and only if ∆k ≤ 2π

L
. (3.37)

Proof. Let χFoV be the characteristic function of the set FoV, i.e. χFoV(r) = 1, if r ∈ FoV and
zero otherwise. Let r ∈ [−FoV

2 , FoV2 ]. The definition of the Fourier series (Def. 3.3.1) and the
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result of Thm. 3.3.2 imply:

m⊥(r, 0) = ∆kI(r)χFoV(r)

⇔ m⊥(r, 0) =
∆k

2π

∞∑

n=−∞
dn exp(−in∆kr)χFoV(r)

⇔ m⊥(r, 0) =

∞∑

n=−∞
m⊥(r − n 2π

∆k
, 0)χFoV(r).

(3.38)

The latter expression is valid if and only if the interval of periodicity is larger than the support
of m⊥(r, 0), i.e. FoV = 2π

∆k ≥ L. Hence,

m⊥(r, 0) = ∆kI(r), for r ∈ FoV⇔ 2π

∆k
≥ L. (3.39)

The Theorem of support-limited functions according to Nyquist-Shannon demonstrates
that in MRI, the underlying m⊥(·, 0) can be completely restored given an infinite discrete
data set sampled at sampling rates matching the threshold as dictated by the spatial support
supp(m⊥(·, 0)).

Corollary 3.3.8. Let m⊥(·, 0) be support-limited, i.e. supp(m⊥(·, 0)) ⊆
[
−L

2 ,
L
2

]
, for L > 0. Assume

infinitely many discrete data samples d = { dn }∞n=−∞ to be given at sampling intervals ∆k ≤ 2π
L . Then

the image function

I†(r) :=
∆k

2π

∞∑

n=−∞
dn exp(in∆kr) , r ∈ FoV, (3.40)

provides exact image reconstruction by I†(r) = m⊥(r, 0), for each r ∈ FoV.

Definition 3.3.9 (full- or sub-Nyquist-sampled). An acquired MRI data set is referred as full-
Nyquist-sampled or fully sampled, if ∆k is chosen in the limits of the Thm. 3.3.7. Otherwise, it is
termed sub-Nyquist-sampled or undersampled.

Definition 3.3.10 (field of view). The field of view (FoV) in MRI is defined by
FoV :=

[
−FoV

2 , FoV2
]
, where FoV := 2π

∆k .

Remark 3.3.11. The image function support is chosen to match the field of view, i.e. Ω := FoV.
In the case of Nyquist-sampling, the field of view necessarily covers the imaged object’s support,
i.e. supp(m⊥(·, 0)) ⊆ FoV = Ω.

The field of view designates the image support in image reconstruction. Theorem 3.3.7
assures unique image representation under the condition of a limited object support and for
discrete - yet infinite - sampling of k-space signal. Finite sampling, however, cannot result in
an exact image reconstruction as will be covered in the next section. Nevertheless, with finite
sampling, the signal can be approximated with arbitrary precision.



36 Chapter 3. Fourier imaging

Finite sampling

Without loss of generality, let Nsmp ∈ N denote an even number of data samples. Let

{ dn }
Nsmp

2
−1

n=−Nsmp
2

denote a finite and discrete set of data points that are Nyquist-sampled at in-

tervals ∆k ≤ 2π
L (Def. 3.3.9). Based on the finitely many data samples, the image function can

only be reconstructed in the space spanned by the finitely many data points. Let Š denote the
sampling operator that selects the Nsmp samples according to the k-space trajectory. An image
function I yields a feasible reconstruction given the finite set of equations if

d = Š{FT { I } } ,

where dn =

∫

V
m⊥(r, 0) exp(−in∆kr) dr, for n = −Nsmp

2
, . . . ,

Nsmp

2
− 1.

(3.41)

Assuming data consistency alone, Fourier coefficients for all n with |n| > Nsmp
2 and n 6= −Nsmp

2
can be freely chosen without violating the data consistency. Therefore, the minimum norm
solution is sought as the optimal image function within the set of feasible images defined by:

I† = argmin
I∈L2(Ω,C)

‖I‖2L2 , subject to Š {FT { I } } = d. (3.42)

Theorem 3.3.12. Given the finite set of (discretely) Nyquist-sampled Fourier coefficients { dn }
Nsmp

2
−1

n=−Nsmp
2

,

the optimal, feasible image reconstruction solving (3.42) is obtained by

I†(r) =
∆k

2π

Nsmp
2
−1∑

n=−Nsmp
2

dn exp(in∆kr) . (3.43)

Proof. The Fourier series as in Cor. 3.3.8 constructed from the finitely many data samples and
an arbitrary set of coefficients

{
an ∈ C |n| > Nsmp

2 , n 6= −Nsmp
2

}
, i.e.

I{ an }(r) =
∆k

2π

Nsmp
2
−1∑

n=−Nsmp
2

dn exp(in∆kr) +
∆k

2π

∑

|n|>Nsmp
2

,n 6=−Nsmp
2

an exp(in∆kr) , (3.44)

fulfills data consistency. The chosen set of coefficients leads to an optimal - in terms of (3.42) -
image reconstruction I† if and only if

I† = argmin
I{ an }

∥∥I{ an }
∥∥2

L2 . (3.45)

Parseval’s theorem (e.g. [Stein and Shakarchi, 2011]) implies
∥∥I{ an }

∥∥2

L2 is minimal ⇔ |an|2 is minimal. (3.46)

Hence, the minimum norm solution for the image reconstruction is given by

I†(r) =
∆k

2π

Nsmp
2
−1∑

n=−Nsmp
2

dn exp(in∆kr) . (3.47)
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Finite data sampling essentially yields data truncation in the Fourier domain. Whereas the
Nyquist-Shannon theorem justified discrete data acquisition, the following shows how finite
sampling cannot result in exact representation of the underlying magnetization densities.

3.3.2. Point spread function and spatial resolution

In signal processing, the point spread function (PSF) is used to characterize the response of
an imaging modality to a point source. Its width - usually the full width at half maximum
(FWHM) - reflects the spatial resolution. The PSF therefore characterizes image blurring in the
reconstruction. For Fourier imaging, the PSF relates the measured k-space extent to the achiev-
able spatial resolution.

Definition 3.3.13 (point spread function). Assume an imaging and reconstruction scenario to be de-
scribed by some function F . The point spread function (PSF) is defined for each r0 in the imaging
domain by PSFr0(r) := F{ δ(r − r0) } (r), for all r, where δ(r − r0) denotes the delta distribution.

Theorem 3.3.14. Consider a point source at r0 in the spatial domain V ⊆ R described by the delta
distribution δ(r−r0). Assume k-space values to be known on a compact intervalKfinite := [−kmax, kmax].
Then the continuous point spread function (PSF) for finite Fourier encoding scenarios is derived by

PSFr0(r) =
kmax

π
sinc (kmax(r − r0)) .

Proof. Let χKfinite be the characteristic function for the interval Kfinite := [−kmax, kmax],
i.e. χKfinite(k) = 1, for k ∈ Kfinite and zero otherwise. Let r0 ∈ V and consider the delta
distribution δ(r − r0). With Fourier encoding and the inverse Fourier transform for image
reconstruction follows:

PSFr0(r) :=FT −1

{
χKfinite(k)

∫

V
δ(r̂ − r0) exp(−ikr̂) dr̂

}
(r)

=FT −1
{
χKfinite(k) exp(−ikr0)

}
(r)

=
1

2π

∫ kmax

−kmax

exp(ik(r − r0)) dk

=
1

π(r − r0)

exp(ikmax(r − r0))− exp(−ikmax(r − r0))

2i

=
kmax

π

sin (kmax(r − r0))

kmax(r − r0)
=
kmax

π
sinc (kmax(r − r0)) .

(3.48)

Remark 3.3.15. The PSFr0(r) derived in Thm. 3.3.14 is determined solely by the relative spatial dis-
tance ∆r = r − r0, hence, denote PSFr0(r) ≡ PSF(r − r0) ≡ PSF(∆r).

The PSF of Thm. 3.3.14 describes how the magnetization from single locations within the
object contribute to a range of reconstructed image values within the image, solely due to finite
acquisition. Point sources are blurred in the image according to the main lobe of the sinc func-
tion and leakage occurs according to the smaller side lobes. The PSF of Thm. 3.3.14 is derived
for continuous sampling. The following shows that discrete sampling does not alter the blurring
introduced by the main lobe of the continuous PSF, but further describes periodic replica. The
discrete PSF therefore also reflects artifacts in the case of sub-Nyquist sampling.
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Theorem 3.3.16. Consider a point source at r0 in the spatial domain described by the delta distribution
δ(r−r0). Assume k-space samples to be given for

{
−Nsmp

2 ∆k, . . . ,
Nsmp

2 ∆k
}

, whereNsmp is even. Then
the discrete point spread function (PSF) for this finite and discrete Fourier encoding scenario is derived
by

PSF(∆r) =
∞∑

n=−∞
δ (r̂ − nFoV ) ∗Nsmp sinc

(
Nsmp

2
∆kr̂

)∣∣∣∣∣
r̂=∆r

for ∆r ≤ FoV , where FoV := 2π
∆k .

Proof. Let χKfinite,N denote the characteristic function of the k-space interval identified in the

acquisition, Kfinite,N :=
[
−Nsmp

2 ∆k,
Nsmp

2 ∆k
]
, such that χKfinite,N(k) = 1, for k ∈ Kfinite,N and zero

otherwise. Consider the Dirac comb
∑∞

n=−∞ δ(k− n∆k). Then the finitely many discrete lying
k-space coordinates of the k-space trajectory are identified by

χKfinite,N(k)

∞∑

n=−∞
δ(k − n∆k), for k ∈ K.

Let r0 ∈ V and consider the delta distribution δ(r − r0). With Fourier encoding and Fourier
image reconstruction follows:

PSFr0(r) :=FT −1

{
χKfinite,N(k)

∞∑

n=−∞
δ(k − n∆k)

∫

V
δ(r̂ − r0) exp(−ikr̂) dr̂

}
(r)

=FT −1

{
χKfinite,N(k)

∞∑

n=−∞
δ(k − n∆k) exp(−ikr0)

}
(r)

Convolution
Thm
=

(
FT −1

{ ∞∑

n=−∞
δ(k − n∆k)

}
∗ FT −1

{
χKfinite,N(k) exp(−ikr0)

}
)

(r)

(3.49)

The left part relates to the discrete sampling in intervals of ∆k and results in replica of FoV
in the image space according to Lemma 3.3.3(ii). The right part is known from Thm. 3.3.14.
Hence,

PSFr0(r) = FoV
∞∑

n=−∞
δ (r̂ − nFoV ) ∗Nsmp

∆k

2π
sinc

(
Nsmp

2
∆k(r̂ − r0)

)∣∣∣∣∣
r̂=r

FoV= 2π
∆k=

∞∑

n=−∞
δ (r̂ − nFoV ) ∗Nsmp sinc

(
Nsmp

2
∆k(r̂ − r0)

)∣∣∣∣∣
r̂=r

.

(3.50)

Since the convolution commutes with translations and denoting ∆r := r − r0, this reduces to

PSFr0(r) =

∞∑

n=−∞
δ (r̂ − nFoV ) ∗Nsmp sinc

(
Nsmp

2
∆kr̂

)∣∣∣∣∣
r̂=∆r

=: PSF(∆r). (3.51)

Corollary 3.3.17. The Fourier reconstructed image from finite and discrete data sampling (cf. 3.43)
relates to the underlying transverse magnetization density by

I†(r) =

∫

V
m⊥(r, 0) PSF(r − r̂)dr̂ = (m⊥(·, 0) ∗ PSF) (r). (3.52)
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Definition 3.3.18 (spatial resolution). The spatial resolution is defined with respect to the full
width at half maximum (FWHM) of the PSF.

The PSF of Fourier imaging is described by a sinc function according to Thms. 3.3.14
and 3.3.16. The FWHM of the sinc function thereby depends on the maximum k-space position
sampled in the finite data acquisition. The k-space position sampled is related to the k-space
sampling intervals and the number of samples. The corollary below follows from the definition
of spatial resolution and the derived PSF of Fourier imaging.

Corollary 3.3.19. In Fourier imaging at given sampling intervals ∆k, the spatial resolution increases
if and only if the number of samples increases.

High spatial resolution is desirable for good depiction quality. Likewise, Gibbs ringing
[Gibbs, 1898] at spatial discontinuities and due to the finite acquisition, as well as partial-
volume effects of different tissue within the same voxel, improve at higher spatial resolution.
Unfortunately, a fundamental limitation of Fourier imaging is that as spatial resolution is in-
creased, SNR decreases, which is discussed in Sec. 3.3.3.

Pixel size and image resolution

Spatial resolution in MRI is limited due to finite sampling. The FWHM of the PSF thereby
sets the limits on spatial resolution. Extension to the 2-dimensional (or 3-dimensional) case of
the considerations is straightforward. For a digital image representation, the derived image
function I†(r) is evaluated at a discrete set of finitely many pixels. This is simply performed by
the inverse discrete Fourier transform.

In 2D-slice imaging, the size of the field of view and the number of data samples may vary
in both dimensions. The following notation is commonly applied: FoVx = 2π

∆kx
and FoVy =

2π
∆ky

corresponding to Nfe or Npe acquired samples in frequency and phase encoding direction,
respectively.

Definition 3.3.20 (pixel size). For a field of view indicated byFoVx×FoVy = 2π
∆kx
× 2π

∆ky
andNx×Ny

pixels, the pixel size is given by

∆x :=
FoV

Nx
=

2π

Nx∆kx
and ∆y :=

FoV

Ny
=

2π

Ny∆ky
.

Definition 3.3.21 (image resolution). The image resolution is defined by the ratio of the number of
pixels over the image extent, i.e. Nx

FoVx
and Ny

FoVy
.

Definition 3.3.22 (inverse discrete Fourier series). The two-dimensional inverse discrete Fourier
series DFT −1

xy of the data set { dn,m n = 1, . . . , Nx,m = 1, . . . , Ny } is defined - omitting the scaling
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factor ∆kx
2π and ∆ky

2π - by

I(xp, yq) = I(p∆x, q∆y)

=
1

Nx

1

Ny

Nx
2
−1∑

n=−Nx
2

Ny
2
−1∑

m=−Ny
2

dn,m exp(in∆kxp∆x) exp(im∆kyq∆y)

=
1

Nx

1

Ny

Nx
2
−1∑

n=−Nx
2

Ny
2
−1∑

m=−Ny
2

dn,m exp(i2πnp/Nx) exp(i2πmq/Ny) ,

for p = 1, . . . , Nx and q = 1, . . . , Ny.

Remark 3.3.23. In many cases, Nx > Nfe and Ny > Npe are chosen for smoother image display. This
increases image resolution according to Def. 3.3.21. Nevertheless, the spatial resolution remains the
same, since it is determined by the PSF (Def. 3.3.18).

Remark 3.3.24. The set of pixels { (xp, yq) p = 1, . . . , Nx, q = 1, . . . , Ny } in terms of tuples can be
likewise referred as series of pixel vectors

{
xm = (xm, ym)T

}Npix=NxNy
m=1

.

Thereof, the magnitude image |I| is typically composed to depict signal intensities. In terms
of practical realization, the discrete Fourier transform has the additional advantage of a fast
algorithm for computation according to the Fast Fourier transform [Cooley and Tukey, 1965].

3.3.3. Signal-to-noise-ratio (SNR) in Fourier image reconstruction

Noise is an inevitable contribution in MR measurements. As briefly encountered in Sec. 2.9,
noise variances increase with the sampling bandwidth. In this section, noise influences in the
data acquisition by spatial encoding and implications in image reconstruction by pixel eval-
uation are discussed. The severity of noise corruption is characterized by the variance and a
commonly used measure for evaluating acquisition and image quality is the signal-to-noise
ratio (SNR). Particular characteristics in SNR of Fourier reconstructions are derived. Without
loss of generality, the one-dimensional scenario is considered, as Fourier reconstruction of both
spatial dimensions is separable.

Definition 3.3.25 (stationary stochastic Gaussian white noise process). Let { εd(kn) }kn∈Ksmp
be a

family of Gaussian random variables. It is called a stationary stochastic Gaussian white noise
process, if the following holds:

(i) it is of zero mean, i.e. E[εd(kn)] = 0

(ii) it is of finite standard deviation, i.e. σd(εd(kn)) =
√

E
[
εd(kn)ε?d(kn)

]
=: σd <∞

(iii) it is uncorrelated, i.e. E[εd(ki)ε
?
d(kj)] = 0, for i 6= j,

Remark 3.3.26. Note that all properties are independent of time (kn ≡ kn(t)), which implies station-
arity. In particular properties (ii) and (iii) imply the autocorrelation function to only depend on the
time lag, which is often used as a definition for stationarity. For more details on Gaussian white noise
processes see [Brockwell and Davis, 2013] and related work of the author [Ramb et al., 2013c].
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For MRI acquisitions, noise in data samples acquired according to the k-space trajec-
tory is assumed to be described by a stationary stochastic Gaussian white noise process
{ εd(kn) }kn∈Ksmp

. The Nsmp data samples corrupted by additive noise are represented by

d̂n = dn + εd(kn), , for n = 1, . . . , Nsmp. (3.53)

The image reconstructed from the noise corrupted data exhibits noise corruption as well.
Hence, a noise corrupted image is formulated by

Î(xm) = I(xm) + εI(xm), , for m = 1, . . . , Npix = Nsmp. (3.54)

In order to gain insight about the image noise εI(xm) in each pixel xm, noise characteristics are
derived from the reconstruction of noise-only data (using Def. 3.3.22 omitting ∆k

2π for simplic-
ity), hence,

εI(xm) =
1

Nsmp

Nsmp
2
−1∑

n=−Nsmp
2

εd(kn) exp
(
i2πnm/Nsmp

)
, for m = 1, . . . , Nsmp. (3.55)

Therefore, the following assertion for image noise in Fourier reconstruction scenarios can be
made.

Proposition 3.3.27. The image noise { εI(xm) }Npix=Nsmp
m=1 in MR images based on the Fourier recon-

struction formula applied to Nsmp Nyquist-sampled k-space samples provides

(i) zero mean, i.e. E[εI(xm)] = 0,

(ii) standard deviation of σ(εI) ∝ 1√
Nsmp

σd,

(iii) uncorrelated noise across pixels, i.e. σ2(εI(xk), εI(xl)) = E[εI(xk)ε
?
I(xl)] = 0, for k 6= l.

Proof. [following [Liang and Lauterbur, 2000]] The number of samples/pixels is referred to by
N := Nsmp = Npix in the following.

(i): Linearity of taking the mean and E[εd(kn)] = 0 (property (i) of the Gaussian white noise

process) implies E[εI(xm)] = 1
N

∑N
2
−1

n=−N
2

E[εd(kn)] exp(i2πnm/N) = 0.

(ii)+(iii): Let p, q ∈ { 1, . . . , N }with p 6= q. Then with (i) follows

σ2(εI(xp), εI(xq)) = E[εI(xp)ε
?
I(xq)] (3.56)

= E





 1

N

N
2
−1∑

n=−N
2

εd(kn) exp(i2πnp/N)





 1

N

N
2
−1∑

m=−N
2

εd(km) exp(i2πmq/N)




?
 . (3.57)

Linearity of taking the mean leads to

σ2(εI(xp), εI(xq)) =
1

N2

N
2
−1∑

n=−N
2

N
2
−1∑

m=−N
2

E[εd(kn)ε?d(km)] exp(i2π(np−mq)/N). (3.58)
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Since by property (iii) of the Gaussian white noise process follows for n 6= m that
σ2(εd(kn), εd(km)) = E[εd(kn)ε?d(km)] = 0, one can further conclude

σ2(εI(xp), εI(xq)) =
1

N2

N
2
−1∑

n=−N
2

σ2(εd(kn), εd(kn)) exp(i2π(p− q)n/N) (3.59)

= σ2
d

1

N2

N
2
−1∑

n=−N
2

exp(i2π(p− q)n/N) (3.60)

=

{
1
N σ

2
d for p = q

0 otherwise
(3.61)

Hence, proving the assertions made in (ii) and (iii), respectively.

The ratio between signal strength and noise variance in the reconstructed image yields an im-
portant measure for image quality.

Definition 3.3.28 (SNR). The image signal-to-noise ratio (SNR) is defined by the ratio of the pixel
magnitude over the intensity of the noise variance, i.e.

SNR(xm) =

∣∣∣Î(xm)
∣∣∣

σ(Î(xm))
. (3.62)

An important relation between the number of samples given a fixed field of view and the SNR
in Fourier reconstructions exist.

Proposition 3.3.29. Assume k-space signal to decay to zero in the outer part of k-space. In case of
Fourier reconstructed images, for fixed bandwidth, absolute temperature, k-space sampling intervals
and field of view, the average SNR of the image yields

SNRFourier
avg ∝ 1√

Nsmp
, (3.63)

where Nsmp denotes the number of data samples and is sufficiently large to cover the central k-space of
main signal contributions.

Remark 3.3.30. Note that keeping a fixed bandwidth and a fixed k-space sampling interval ∆k implies
a fixed field-of-view, as it is defined by FoV = 2π

∆k . Therefore, when increasing the number of samples,
the pixel size FoV

Npix
= FoV

Nsmp
necessarily decreases.

Proof. [following [Liang and Lauterbur, 2000]] Let N := Nsmp = Npix denote the number of
samples/pixels. The SNR’s inverse proportionality to the square root of the sample size follows
from calculating the average magnitude value of the image, i.e.

Î2
avg =

1

N

N
2
−1∑

n=−N
2

Î(xn)Î(xn)? =
1

N3

N
2
−1∑

n=−N
2

N
2
−1∑

k=−N
2

N
2
−1∑

l=−N
2

d̂kd̂
?
l exp(i(k − l)n/N)

=
1

N2

N
2
−1∑

n=−N
2

∣∣∣d̂n
∣∣∣
2
.

(3.64)
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The series of partial sums SN :=
∑N

2
−1

n=−N
2

∣∣∣d̂n
∣∣∣
2

is monotonically increasing, since each
∣∣∣d̂n
∣∣∣
2
≥ 0

and
∣∣∣d̂n
∣∣∣
2
∈ R. Signal contributions in k-space are assumed to decay to zero for the outer part

of k-space. Hence, one can assume the existence of a constant d̂2
main such that SN ≈ d̂2

main, for
N >> 0. Then

Î2
avg ≈

1

N2
d̂2

main. (3.65)

Hence, employing the result of Prop. 3.3.27(ii), the average image SNR is approximated by

SNRavg =

∣∣∣Îavg

∣∣∣
σ(εI)

≈

∣∣∣d̂
∣∣∣
main

Nσ(εI)

Prop. 3.3.27(ii)∝
√
N
∣∣∣d̂main

∣∣∣
Nσd

=

∣∣∣d̂main
∣∣∣

√
Nσd

. (3.66)

Thus, increasing the spatial resolution by increasing the number of samples while fixing the
field-of-view results in a decrease of the average SNR for Fourier reconstructions.

Corollary 3.3.31. From Prop. 3.3.29 follows directly for the case of two-dimensional Fourier recon-
struction (Def. 3.3.22)

SNRFourier
avg ∝ 1√

Nx

√
Ny

.

Since noise is pixel-wise uncorrelated (Proposition 3.3.27 (iii)), the average SNR of a Fourier
reconstructed image can be estimated from regions of interest (ROIs) for signal intensities and
noise. Therefore a signal region, RI , is selected incorporating pixels which depict signal inten-
sities of the imaged object. Furthermore, a second ROI from a noise region, RεI , is designated
outside the object’s image support and avoiding artifacts. The average signal strength is then
derived based on the samples within RI and the standard deviation of the noise component is
obtained from RεI .

SNR in magnitude images in Fourier image reconstruction

The SNR estimation based on signal and noise ROIs requires additional considerations when
magnitude images are computed. In this case, the assumption of Gaussian distributed noise
samples is not valid due to the non-linearity of taking absolute values of complex data. Signal
intensities in magnitude images follow a Rician distribution which becomes a Rayleigh dis-
tribution in the special case of pure noise, e.g. [Henkelman, 1985, McGibney and Smith, 1993,
Miller and Joseph, 1993, Gudbjartsson and Patz, 1995].

For SNR estimation of magnitude MR images in case of one receive coil element,
[Henkelman, 1985] theoretically derived and experimentally validated the resulting bias
in in the SNR calculation. The bias depends on the standard deviation σd of the noise
in the acquisition and affects the mean and standard deviation by 1.253σd and 0.655σd,
respectively, in an experimental scenario with zero amplitude. [Henkelman, 1985] suggests
a correction factor of the signal strength based on a lookup table to account for the bias
introduced by deriving the magnitudes. Moreover, several further correction options exist,
e.g. [McGibney and Smith, 1993, Miller and Joseph, 1993, Gudbjartsson and Patz, 1995].



44 Chapter 3. Fourier imaging

3.3.4. Summary of Fourier image reconstruction

In this section, the fundamental limitations of practical MR experiments based on Fourier en-
coding and Fourier image reconstruction were discussed and the following results were de-
rived:

1. Discrete (or frequency band-limited) data sampling requires fulfilling the Nyquist-
Shannon sampling criterion for full recovery of the image function.

2. Finite data sampling comes along with a loss of spatial information, i.e. blurring and
Gibbs ringing occurs. The effect of finite sampling is expressed by a convolution of the
underlying image function with a sinc function.

3. Spatial resolution and SNR are negatively correlated, hence, only a trade-off between
them can be achieved.

The noise in Fourier imaging reconstructions follows a Gaussian distribution and becomes
Rician when composing magnitude images. Fourier reconstruction yields uniform noise vari-
ances over the complete field-of-view, is pixel-wise uncorrelated and depends on the size of
discretization chosen in the spatial encoding. The practical realization of Fourier encoding in
actual data acquisition schemes performed by the MR scanner is covered in the next section.

3.4. Pulse sequences in magnetic resonance imaging

Data sampling according to the designed k-space trajectories is governed by gradient modu-
lations. The gradient’s amplitude and duration of application thereby determine velocity and
distance traveled in k-space (cf. 3.9). The composition of RF pulse excitation and gradient
waveforms is referred to as a pulse sequence. The diversity of combinations provides a whole
range of MRI schemes. Here, only the main concepts relevant for the scope of this thesis are
covered. A good overview over methodologies is given in Chapter 14 of [Bernstein et al., 2004].

The class of MR pulse sequences can be separated into two types of sequences, according
to the formation of a signal echo during which data is recorded: spin echo [Hahn, 1950] or
gradient echo. In spin echo sequences, additional refocusing RF pulses follow the excitation RF
pulse to form a "spin echo". In gradient echo sequences, the imaging process is applied on top of
the FID signal rather than forming a spin echo by quickly dephasing and rephasing the precessing
transverse magnetization with the usage of gradients of alternating polarities.

In echo train sequences, several phase encoded readouts follow a single excitation to accel-
erate image acquisition. Whereas in the RARE (Rapid Acquisition with Relaxation Enhancement)
sequence, invented by [Hennig et al., 1986], several refocused spin echoes are created, a series
of de- and rephasings are performed in the EPI (Echo Planar Imaging) sequence, first described
by [Mansfield, 1977].

The robustness with respect to field inhomogeneities of spin echo sequences provide a be-
nign behavior of these acquisitions, however, the additional RF pulses require higher power
emission and are - in combination with long T1-relaxation times - time-expensive. Gradi-
ent echo sequences exhibit high sensitivity to field inhomogeneities, yet, they are particularly
suited for rapid image acquisition.

A great variety of signal preparation sequence modules exist, which allow to further mod-



3.4. Pulse sequences in magnetic resonance imaging 45

RF pulse

Gslc

Gpe

Gfe

ADC

α
(incl. RF-spoling)

TE
TR

gradient spoiling

k-space

ky

kx

Figure 3.1: Pulse sequence diagram of the basic sequence block of a Gradient Echo (GE) sequence. The block
corresponds to the readout of one k-space line, as illustrated black line in the k-space representation.

ulate the dominant contrast weighting with respect to specific tissue properties. A prominent
example is the FLAIR (fluid attenuated inversion recovery) sequence that incorporates a module
for fluid signal attenuation. FLAIR images are part of various clinical MR routines, as shown
in the measurements of Chapter 7.

The MR pulse sequence developed and implemented within this work comprises Echo Pla-
nar Imaging with gradient echoes (GE-EPI). Therefore, the basic building blocks for - and issues
of - GE sequences are described below. Subsequently, the EPI sequence is introduced and dis-
cussed.

3.4.1. Gradient echo (GE) sequence

Gradient echo (GE) sequences facilitate fast imaging scenarios by RF pulse excitation with a
low flip angle, immediately followed by phase and frequency encoding. The whole setting is
repeated at a high rate, usually TR << T1, until all data has been collected [Haase et al., 1986].
The basic sequence building block consists of the encoding modules as introduced in the pre-
ceding sections:

1. slice selective excitation: an RF pulse is applied during a slice selection gradient

2. phase encoding: phase modulations are imposed by the phase encoding gradient

3. frequency encoding: signal readout is performed in presence of a frequency encoding
gradient

A corresponding GE pulse sequence diagram for a Cartesian readout is depicted in Fig. 3.1,
together with the path traveled in k-space. Frequency encoding is performed such that a sym-
metric interval around the kx origin is acquired in each excitation. Each phase encoding prepa-
ration is used to travel to an individual ky position before the frequency encoded readout is
carried out. The complete set of k-space intervals are acquired in repeated measurements, each
with varying phase encoding preparation. The latter is chosen such that a symmetric interval
is sampled also around the ky origin.
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Steady state or dynamic equilibrium

The FID signal is short-lived due to T ?2 -decay, which restricts data sampling to a certain interval.
Due to the fast repetition of excitation and acquisition in GE sequences, another relaxation
parameter influences the setting: T1-decay. When beginning the next excitation before the
longitudinal magnetization has completely recovered, the initial thermal equilibrium will not
be reached. The series of RF pulse excitations gives rise to a definition of a steady state in this
case.

Definition 3.4.1 (steady state). Consider a series of RF pulse excitations. Then a steady state or
dynamic equilibrium is reached after Nstate measurement repetitions, if in all subsequent readout in-
tervals

[
ti0, t

i
1

]Nrep

i=Nstate
of the in total Nrep repetitions the transverse and longitudinal magnetization ap-

proximately reach the same value,

M‖(t
i
n) ≈M‖(tjn) and M⊥(tin) ≈M⊥(tjn),

for any pair of equivalent relative time points tin ∈
[
ti0, t

i
1

]
and tjn ∈

[
tj0, t

j
1

]
within the readout intervals,

hence for each n = 1, . . . , Nfe and each i, j = Nstate, . . . , Nrep, i 6= j.

As a consequence, several preparation scans are required in the beginning of the MR experi-
ment with GE sequences in order to reach the steady state.

Residual transverse magnetization

It is known that despite T ?2 -decay, residual magnetization influences the imaging process in GE
sequences. How residual magnetization is handled classifies GE sequences into three groups
[Hargreaves, 2012]:

• average transverse magnetization, e.g. gradient spoiled sequences

• recover transverse magnetization, e.g. balanced steady state free precession (bSSFP) se-
quences with zero gradient moments

• suppress transverse magnetization, e.g. RF-spoiled sequences with gradient spoiling and
phase variation of RF pulse excitations

The various techniques differ in signal magnitude, contrast and artifact behavior. Only the
latter facilitates contrast purely influenced by T1. The GE sequence depicted in Fig. 3.1 is re-
ferred to as Fast low-angle shot imaging (FLASH) sequence (initial implementation without RF
spoiling and rephasing of the phase encoding by [Haase et al., 1986]). The nowadays common
incorporation of RF spoiling and spoiler gradients in FLASH is additionally illustrated in the
diagram. The sequence implemented as part of this work incorporates gradient spoiling and
thus belongs to the first type of GE sequence.

Contrast and timing

Contrast is provided in terms of differences between the physical tissue properties. The char-
acteristics that are influential in MRI are: spin density, longitudinal relaxation T1, transversal
relaxation T2 and - due to static magnetic field inhomogeneities and mesoscopic tissue proper-
ties - T ?2 . The signal from different tissues relaxes differently over time. Therefore, the timing of
signal readout has strong impacts on the magnitude intensities of different tissue type. Thus,
timing influences the contrast in the MR image. The most effective sequence timing parameters
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in GE sequences are the time of echo formation and the time of repetition, denoted by TE and TR,
respectively. The flip angle is likewise influential in GE sequences, due to its impact on the
steady state.

Definition 3.4.2 (TE). The echo time (TE), is defined as the length of the time interval that begins at
the center ot the RF pulse excitation interval and ends at the time point of the ADC readout interval, for
which the area under the frequency encoding gradient is zero. At this time point, the maximum in signal
magnitude of the echo is expected. Thus, TE corresponds to the (nominal) time at which data at the kx
origin is sampled.

Definition 3.4.3 (TR). The time of repetition (TR) is defined as the time interval between two suc-
cessive excitation RF pulses of the same volume.

Definition 3.4.4. The time of image acquisition TACQS is referred to as the time interval in which a
set of k-space samples is acquired for one complete MR image.

The actual time interval between two successive phase encoding steps in GE sequences is
given by TR, since a single phase encoding per TR is performed. Let the number of performed
phase encoding steps be Npe, then the time of acquisition TACQS for the GE sequence example
is given by TACQS = NpeTR. Increasing the number of phase encoding steps (hence, spatial
resolution) extends the overall acquisition time in GE sequences.

Choosing for example a long TE relative to T ?2 , favors signal magnitudes of tissues with
slow T ?2 -relaxation. The MR signal becomes T ?2 -weighted. With respect to the steady state (de-
pending on TR and the flip angle αfa), choosing for example a short TR compared to T1, favors
tissues of relatively fast T1-relaxation as magnitude intensities are higher. The MR signal be-
comes T1-weighted. In choosing a short TE together with a long TR, the magnitude intensities
are mainly influenced by the proton densities of the respective tissues. The MR signal thus
becomes proton density (PD) weighted. These are three typcial MR signal weighting examples to
define T ?2 -,T1- and PD-contrast in MR. However, MR is a powerful tool which allows to create
many different contrasts based on various physical properties of the examined tissue.

Dwell time and bandwidth

Further important timing parameters of GE sequences are the dwell time of signal sampling
and its inverse proportional, the frequency bandwidth of the readout. As evident from Sec. 2.9,
increasing the frequency bandwidth increases noise influences. The relevant definitions are
given below and are adjusted to phase encoding in the case of Echo Planar Imaging in the
subsequent section.

Definition 3.4.5 (dwell time and frequency bandwidth). The dwell time, denoted by ∆τ , is the
signal sampling interval performed by the ADC. Its inverse determines the frequency bandwidth:
BWf := 1

∆τ .

In practical experiments, the dwell time is usually determined from the frequency band-
width and the number of readouts along the frequency encoding direction designated in the
protocol.

Definition 3.4.6 (bandwidth per pixel). Let TADC denote the duration of the readout by the ADC,
which is similarly determined by the number of frequency encodings Nfe and the dwell time ∆τ . Then
the bandwidth per pixel BW of an MRI acquisition is defined by the relation

BW =
1

TADC
=

1

Nfe∆τ
[Hz/Pixel]. (3.67)
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Figure 3.2: The pulse sequence diagram of a single-shot Echo Planar Imaging sequence is shown. The sequence
consists of initial fat suppression and subsequent RF pulse excitation with arbitrary flip angle αfa. Thereafter, three
navigator echoes are collected. A preparation gradient is then used to traverse to the k-space position selected as the
starting point for the echo train readout. The readouts of single lines of k-space alternate according to positive and
negative readout gradients. In between, blip gradients are inserted to move to the next k-space line. The traveled
path following a single RF excitation is illustrated on the right.

3.4.2. Echo Planar Imaging (EPI) sequence

Echo Planar Imaging [Mansfield, 1977, Ordidge et al., 1982, Schmitt et al., 1998] provides the
advantage of fast dynamic imaging, since multiple phase encoding steps are performed after
a single RF pulse excitation. In single-shot GE-EPI, the complete designated k-space data set
required for the reconstruction of one MR image is collected within one TR. Thereby, small
gradient moments referred to as blip gradients are used to realize the increments of ∆ky in
phase encoding [Johnson and Hutchison, 1985]. A single-shot GR-EPI is illustrated in Fig. 3.2.

The great advantage of the short time of image acquisition is the fast repetition rate at which
a series of images are acquired as required for dynamic MRI (Chapter 5). Hence, EPI is benefi-
cial by achieving reasonable spatial and temporal resolution. Thereby, EPI exhibits robustness
to effects of physiological motion simply due to the speed of acquisition. High temporal reso-
lution, however, comes at the expense of well-known artifacts of EPI due to the long readout
period and fast switching of high gradient amplitudes. Most notable are image blurring, sus-
ceptibility, chemical shift and eddy current artifacts [Fischer and Ladebeck, 1998]. An overview
over imaging relevant concepts in EPI is given below.

Timing in EPI and ramp sampling

Whereas the phase encoding in GE sequences is performed in intervals of TR, it reduces to the
chosen echo spacing Tes in EPI: ∆τpe = Tes. By covering the k-space plane following one RF
pulse excitation, the overall time of image acquisition for Npe phase encoding steps is given
by TACQS = NpeTes + Tpre, including a time interval Tpre required for the typical acquisition of
navigator echoes, as explained below. Since the repetition time TR comprises the acquisition
of one image in single-shot EPI, TR directly determines the temporal resolution in serial image
acquisitions.

Increasing Npe to enhance spatial resolution serving the Nyquist-Shannon sampling theo-
rem and decreasing TR to improve temporal resolution yields therefore opposite boundaries:
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kmax
x = Nfe∆kx =

2πNfe

FoVx
, where

kmax
y = Npe∆ky =

2πNpe

FoVy
, where

Nfe∆τ ≤ Tes,

NpeTes + Tpre ≤ TR.
(3.68)

In many cases, the realization of the chosen echo spacing, the bandwidth per pixel and
the frequency encoding extent necessarily requires signal to be sampled during ramp up and
ramp down times of the readout gradients. This is referred to as ramp sampling. The sampling
during linearly increasing (ramp up) or decreasing (ramp down) readout gradients results in
not equidistantly spaced k-space positions to be sampled. The therefore higher density at the
beginning and ending of each acquired k-space line needs to be accounted for in the recon-
struction process. To this end, regridding onto the equidistantly spaced Cartesian grid as well as
density compensation to account for the varying densities is usually performed. This is achieved
based on convolution with a convolution kernel and subsequent multiplication with a scaling
factor. For more details refer to [Schmitt et al., 1998].

Contrast in EPI

Due to multiple signal rephasing, the definition of TE requires a slight adjustment.

Definition 3.4.7 (effective TE). The effective echo time TEeff is defined as the time interval begin-
ning at the center of the RF excitation pulse and until the accumulated area under the frequency encoding
gradient as well as the phase encoding gradient is zero. TEeff thus corresponds to the time at which the
(nominal) k-space origin is read out.

In single-shot EPI, the minimal achievable effective TE is limited by the number of phase en-
coding steps Npe as well as the echo spacing Tes:

TEeff ≥
(
Npe

2
+ 0.5

)
Tes + Tpre. (3.69)

Bandwidth in the phase encoding direction

If several phase encoding steps are performed within the same TR, the phase encoding sampling
interval ∆τpe > 0 can be defined in analogy with the dwell time in the frequency encoding
direction. The large bandwidth in the phase encoding direction of EPI has great influences and
describes the outcome of many artifacts.

Definition 3.4.8 (bandwidth in phase encoding direction). If several phase encoding steps are sam-
pled within the same TR, let ∆τpe > 0 denote the time interval between two successive phase encoding
steps. Let Npe be the total number of phase encoding steps. The bandwidth in phase encoding direc-
tion BWpe is defined analogous to the bandwidth per pixel in frequency encoding direction by

BWpe =
1

Npe∆τpe
[Hz/Pixel]. (3.70)

Remark 3.4.9. To emphasize the difference between the bandwidth in frequency and phase encoding
direction, the first is then likewise denoted by BWfe := BW.
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Remark 3.4.10. In the previous GE sequence example, the phase encoding sampling interval appears
to be zero in terms of imaging behavior, since phase encoding steps are acquired at the same time point
within a TR cycle. Therefore, the definition is given solely for multiple phase encoding steps within the
same TR.

Point spread function and spatial resolution

Section 3.3.2 contains the derivation of the PSF of Fourier imaging acquisitions. It characterizes
the limits in spatial resolution from finite data acquisition (Thm 3.3.14). Spatial resolution is
thereby proportional to the measured k-space extent. In EPI, limits of the maximum k-space
sampling are related to the timing parameters, as shown in (3.68). This implicitly limits spatial
resolution.

In EPI, there is another influence compromising spatial resolution that cannot be neglected:
T ?2 -decay. Whereas T ?2 -decay is less severe in the frequency encoding direction, due to the short
time intervals, it becomes apparent along the blipped phase-encoding direction of single-shot
EPI. Here, T ?2 -decay imposes a noticeable difference in signal amplitudes between the ky data
sampled in time intervals of Tes over a total time interval of NpeTes.Therefore, without loss of
generality, only the ky-dimension is considered in the derivation below.

Theorem 3.4.11. Let δ(r − r0) denote a point source at r0 ∈ V . Assume T ?2 -values to be spatially
constant, i.e. T ?2 (r) = T ?2 , for all r ∈ V . Consider finite k-space sampling along the phase encoding
direction ky in an EPI scenario of

(i) a constant gradient Gy = 2π
γFoVyTACQS

over the acquisition interval
[
−TACQS

2 ,
TACQS

2

]

(ii) a trajectory
{
ky(t) := γGyt t ∈

[
−TACQS

2 ,
TACQS

2

]}
, such that the origin is sampled at t = 0 (i.e.

TE at t = 0) and ky(
TACQS

2 ) = 1
2

2π
FoVy

= −ky(−TACQS
2 ).

Then the continuous point spread function of EPI serves the following relation:

PSFr0(r) ∝ TACQS sinc
(
γGyTACQS(r − r0)/2

)
∗Re


 1(

1
γGyT ?2

)
+ ir


 .

Proof. Let χKT be the characteristic function such that χKT (ky(t)) = 1 for

ky(t) ∈
{
ky(t) t ∈

[
−TACQS

2 ,
TACQS

2

]}
and zero otherwise. Let r0 ∈ V and consider the delta

distribution δ(r − r0). With Fourier encoding and the inverse Fourier transform for image
reconstruction follows:

PSFr0(r) = FT −1

{
χKT (ky(t))

∫

V
δ(r̂ − r0) exp

(
− t

T ?2

)
exp(−iky(t)r̂) dr̂

}

= FT −1

{
χKT (ky(t)) exp

(
− t

T ?2

)
exp(−iky(t)r0)

}

Convolution
Thm
= FT −1

{
exp

(
− t

T ?2

)}
∗ FT −1{χKT (ky(t)) exp(−iky(t)r0) } .

(3.71)

For the right part of the convolution follows with generalization of Thm 3.3.14:

FT −1{χKT (ky(t)) exp(−iky(t)r0) } (i)+(ii)
= TACQS sinc (γGyTACQS(r − r0)/2) , (3.72)
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where the gradient momentum of the acquisition γGyTACQS is used instead of kmax. For the left
part of the convolution, it follows

FT −1

{
exp

(
− t

T ?2

)}
(ii)
=

1

2π

∫

KT
exp

(
− k(t)

γGyT ?2

)
exp(ik(t)r) dk(t)

[Farzaneh et al., 1990]∝ Re


 1(

1
γGyT ?2

)
+ ir


 .

(3.73)

Hence, the impact in image space from T ?2 -decay can be described by a Lorentzian. Since the
effect of T ?2 -decay is not symmetric around the k-space center k = 0, the PSF describing its filter
effect possess a non-zero imaginary component. The description by a Lorentzian follows from
symmetric extension of the exponential decay function. The combined influence on spatial
resolution due to finite sampling and T ?2 -decay is specified by two filter functions, i.e. by a sinc
and a Lorentzian.

In order to understand the difference of the effect due to T ?2 -decay on phase versus fre-
quency encoding direction, pixel sizes are often related to the respective pixel bandwidth,
e.g. [Haacke, 1987, Farzaneh et al., 1990]. Accordingly, the bandwidth of the Lorentzian, which
is the inverse of the decay time, is used to describe the effect of T ?2 -decay on spatial resolution
instead of the FWHM. Whenever the bandwidth of the Lorentzian is in the range of the pixel
bandwidth or exceeds it, spatial resolution is decreased. Again, a trade-off between parame-
ters arises: Increasing the echo spacing Tes enhances SNR due to the possibility of decreasing
the bandwidth in readout direction, whereas it decreases spatial resolution along the phase-
encoding direction, since the time of acquisition increases. Consequences are image blurring
and decreased pixel intensities.

Off-resonance effects

Spatial encoding relies entirely on controlling the spatial Larmor frequency variations. The
implicitly assumed premise is the spatially constant relation ω0 = −γB0, such that a unique
mapping between location and Larmor frequencies is provided by the gradients. However,
this premise is violated by varying chemical surroundings of the spins or by susceptibility
differences between different types of tissue. In the following, off-resonance effects are modeled
and chemical shift and susceptibility artifacts are described.

Off-resonance artifacts are exacerbated in EPI due to the low phase encoding bandwidth. In
the case of single-shot EPI, the bandwidth per pixel in frequency and phase-encoding direction
are given by

BWfe =
1

Nfe∆τ
and BWpe =

1

NpeTes
. (3.74)

For instance, in an EPI acquisition with an echo spacing of Tes = 750 µs and Nfe × Npe =
128× 128 data samples, the following bandwidths per pixel result:

BWfe ≥ 1333 Hz and BWpe ≈ 10.42 Hz. (3.75)

Chemical shift artifact and fat suppression

Let ω0 be the Larmor frequency that is incorporated as a reference frequency in the MR acqui-
sition. If the frequency ω deviates from ω0 for some spins, the frequency difference is referred
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to as an off-resonance. The off-resonance ∆ωcs due to different molecular structures is called
chemical shift. It can be described by a scaling of the Larmor equation: ∆ωcs = γσcsB0.

The off-resonances ∆ωcs result in an additional phase factor in signal encoding, which leads
to the following signal equation:

s(t) ∝
∫

V
m⊥(r, 0) exp(−ik(t) · r) exp(−it∆ωcs)︸ ︷︷ ︸

phase modulation
due to chemical shift

dr. (3.76)

According to the Fourier shift theorem, e.g. [Jähne, 2013], the multiplication by the additional
phase leads to a shift in the Fourier reconstructed image. The spatially constant off-resonances
∆ωcs therefore lead to an image shift of the signal contribution, hence, chemical shift artifact.

A prominent example is the difference between water and fat molecules. The relative shift
in Larmor frequencies between hydrogen protons bound in water versus fat molecules is ex-
pressed by the scaling σcs = 3.33 parts per million. At a 3T MR system, this results in a fre-
quency shift of 420 Hz. The additional phase leads to a shift in pixels of

∆xcs =
∆ωcs

BWfe
≤ 420 Hz

1333 Hz/pixel
≈ 0.32 pixel

∆ycs =
∆ωcs

BWpe
=

420 Hz
10.42 Hz/pixel

≈ 40 pixels.
(3.77)

Thus, the image arising from hydrogen protons bounded in fat molecules is shifted by approx-
imately 40 pixels in the y-dimension (according to the phase encoding direction) with respect
to the image derived from water molecules.

In order to avoid a shifted fat image, one usually suppresses the fat signal by spectrally-
selective excitation of only hydrogen atoms bound in fat molecules. This is possible by tuning
a 90◦ excitation pulse to the shifted Larmor frequency in absence of any spatial encoding gra-
dients. The fat signal is then dephased by gradient modulations. Since the longitudinal mag-
netization relaxes comparably slow, an excitation directly after the suppression of the fat signal
yields an approximately fat-free signal in the subsequent acquisition.

The described fat saturation procedure can be incorporated as a preceding module in any
sequence. For EPI, fat suppression for in vivo applications at 3T is mandatory. The diagram of
Fig. 3.2 illustrates also a fat saturation module.

Susceptibility artifacts and the time of image acquisition

Another source for off-resonance effects are spatially dependent field inhomogeneities ∆B0(r).
These differences arise for instance due to the different susceptibilities of tissues. Although a
magnetic field shim procedure is applied for each subject prior to the actual acquisition to es-
tablish best possible homogeneity of the main magnetic field, strong susceptibility differences
induce discontinuities which cannot be sufficiently compensated. Furthermore, susceptibility
differences induced on a mesoscopic scale cannot be assessed by a shimming procedure at all.

Artifacts of local field inhomogeneities that arise due to susceptibility differences at inter-
sections of tissue compartments are referred to as susceptibility artifacts. Among the effects are
geometric distortion, spatially varying intensities as well as complete signal loss. Problematic
regions are for instance air-tissue interfaces such as the frontal sinus next to the orbitofrontal
cortex.
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The off-resonances ∆B0(r) again imply an additional phase factor in the encoding process:

s(t) ∝
∫

V
m⊥(r, 0) exp(−ik(t) · r) exp(−itγ∆B0(r))︸ ︷︷ ︸

phase modulation
due toB0 inhomogeneities

dr. (3.78)

The additional phase again leads to a shift in the Fourier reconstructed image. However, in the
case of spatially varying off-resonances, these shifts depend on their location. Therefore, the
image is locally distorted and intensities are concomitantly altered.

Assume (i) and (ii) as in Thm. 3.4.11. The local distortion ∆rs depends on the local devia-
tion of the field inhomogeneity ∆B0(r) and on the time of acquisition TACQS:

∆rs
(ii)∝ ∆B0(r)

Gy

(i)∝ ∆B0(r)TACQS. (3.79)

The local field inhomogeneities act over the complete time of image acquisition. Hence, the
effect is severe in EPI due to the low bandwidth in phase encoding direction, i.e.

∆rs ∝ ∆B0(r)NpeTes =
∆B0(r)

BWpe
. (3.80)

The field inhomogeneities ∆B0(r) likewise act as unwanted additional gradient moments.
Therefore, different spatial information as intended is acquired. This results in spatial shifts
and signal attenuation. Since field inhomogeneities depend on the spatial position, differ-
ent local displacements sum up to geometric distortions. For a detailed analysis, refer to
[Deichmann et al., 2002].

Geometric distortion, signal losses and also the loss in nominal spatial resolution (described
in context of the PSF) are related to the overall time of image acquisition in EPI. Artifacts im-
prove when the readout time is reduced. Nevertheless, the echo spacing and number of sam-
ples, which effect readout times, are correlated with SNR and spatial resolution.

Nyquist N2 -ghosts

The multiple dephasings and rephasings of the excited signal performed by the frequency
encoding gradient Gfe, imposes strong hardware requirements in quickly switching gradient
fields. Small delays in reversing the readout directions, however, are unavoidable. The delays
translate into small shifts along the readout direction alternating according to the blip proce-
dure, e.g. in all odd phase encoding steps the readout is shifted compared to all even numbers
of phase encoding steps.

Assume a k-space shift of ∆k0 due to temporal delay and field modulations. Then the
phase encoded readout is additionally multiplied by exp(ikn · r±∆k0 · r), for odd numbers of
phase encoding steps. The resulting encoding can be viewed as two separate sets of encodings
which are then superimposed in the reconstruction.

Each such k-space set, however, is sampled at intervals of 2∆ky along the phase encoding
direction. The step size ∆ky was chosen such as to just fulfill the Nyquist sampling criterion
(Def. 3.3.9). Consequently, the step size of 2∆ky does not serve the Nyquist criterion anymore
and results in a halved FoV. Spatial encoding of signal contributions outside the halved FoV
hence folds over. This effect of sub-Nyquist sampling is explained in more detail in Sec. 3.6.
Denoting FoVy = N explains the name of Nyquist N2 -ghosts.

Shifted ghost images, arising from alternating line variation in the EPI acquisition
pattern, are commonly corrected using additional navigator echoes [Bruder et al., 1992,
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Goertler and Schmitt, 1992, Glover et al., 1992, Heid, 1997], after signal excitation and prior to
the actual train of readouts. These are several readout traversals without any phase encoding
to estimate the differences in encoding for a phase correction. In Fig. 3.2, the acquisition of
three navigator echoes are shown, as used in the approach of [Heid, 1997].

3.4.3. Summary of Echo Planar Imaging

EPI allows for rapid image acquisition and repetition of measurements at a high temporal
frame rate. However, the high temporal resolution in EPI comes at the cost of low image res-
olution and entails acquisition specific artifacts. Artifacts arise due to the long readout period
following a single excitation, the fast switching of high gradient amplitudes and the limited
bandwidth in the phase encoding direction. Therefore, the higher the number of phase en-
coding steps, the more severe the spatial blurring becomes or the influence from susceptibility,
chemical shift and eddy current artifacts. Since spatial resolution is related to the highest k-
space information acquired, this limits the spatial fidelity and resolution of EPI.

3.5. Partial-Fourier sampling and image reconstruction

Phase encoding for two-dimensional imaging is time-expensive. One approach to reduce the
number of phase encoding steps without decreasing kmax

y is given by Partial-Fourier sampling,
where k-space is acquired asymmetrically. Considerations are restricted to the one-dimensional
phase encoding direction in the following.

Asymmetric k-space sampling of e.g.
{
dn −M∆k ≤ n ≤ Nsmp

2 ∆k
}

, where M <
Nsmp

2 ,
relies on the assumption of Hermitian symmetry in k-space. With Hermitian symmetry, data
samples dn of e.g. n ≥ 0 (for the case of M = 0) would suffice to construct all samples dn
with n < 0 using the relation

d−n = d?n. (3.81)

This is however only provided for the Fourier transform of a real-valued function. In GE based
MRI, Hermitian symmetry is violated, for instance due to phase variations induced by inho-
mogeneities over the course of signal acquisition.

In order to still reconstruct omitted data points dn with n < M , the assumption is made
that phases in the image domain vary smoothly. Phase variations can then be estimated by the
central part of k-space. Acquiring e.g. 5/8-7/8 of the designated k-space extent, the omitted part
can either be set to zero or more advanced reconstruction algorithms are applied as described
in Sec. 3.5.1.

The savings due to k-space undersampling are captured by the reduction factor R, which is,
e.g. for 5/8-Partial-Fourier, given by

R =
N full

pe

NPF
pe

= 8/5, (3.82)

where NPF
pe and N full

pe refer to the number of phase encoding steps in Partial-Fourier versus the
full acquisition, respectively.

Discrete Fourier transform performed on the data while setting the omitted 3/8-1/8 to zero
yields a Fourier reconstructed image according to (3.42). To distinguish this reconstruction
from the solution presented below, it is referred to as a zero-filled reconstruction.
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Definition 3.5.1 (zero-filling). Assume a k-space region of finite extent to be designated that is sym-
metric around the k-space center and that is discretized into grid positions corresponding to Nyquist-
sampled intervals. If signal is sampled only for some of the grid positions and remaining values are
set to zero, this is referred to as zero-filled data or zero-filling. It is denoted by dzf and dzf,2D, for a
representation in vector or matrix form, respectively. Fourier reconstruction of zero-filled data is termed
zero-filled (Fourier) reconstruction here.

An example of a Partial-Fourier k-space sampling pattern as well as the respective zero-filled
reconstruction is depicted in Fig. 3.3.

3.5.1. Constrained phase reconstruction in Partial-Fourier sampling

As proposed by [Haacke et al., 1990], image reconstruction of Partial-Fourier sampled signal
can be improved by introducing a phase constraint in the optimization problem, based on a
phase estimate φ̂. This extends (3.42) to the following problem:

I† = argmin
I∈L2(Ω,C)

‖I‖2L2 , subject to

Š {FT { I } } = d (data consistency)

arg { I(r) } = φ̂(r) (phase constraint),

(3.83)

where arg denotes the operation of deriving the phase of a complex number.
The phase estimate φ̂ is obtained by zero-filled reconstruction. Typically a filter is addition-

ally applied to avoid Gibbs ringing artifacts [Gibbs, 1898]. The optimization problem can be
solved using the projection onto convex sets (POCS) algorithm [Youla and Webb, 1982] as shown
in [Haacke et al., 1990, Liang and Lauterbur, 2000].

Definition 3.5.2. The set Ω is convex, if and only if λx+ (1− λ)y ∈ Ω for each x, y ∈ Ω and for each
λ with 0 ≤ λ ≤ 1.

The phase constraint is captured by projection P1 onto the convex set Ω1 defined by:

P1 : { I(yq) } → Ω1 :=
{
I(yq) arg(I(yq)) = φ̂(yq)

}

I(yq) 7→ |I(yq)| exp
(
iφ̂(x)

) (3.84)

P1 projects onto Ω1 by definition. Convexity of Ω1 follows directly from calculating λI1(yq) +
(1− λ)I2(yq) for two arbitrary images I1(yq), I2(yq) ∈ Ω1.

The data consistency for an asymmetric sampling pattern, 0 < M < Nsmp/2, is captured by
projection P2 onto the convex set Ω2 defined by:

P2 : { I(yq) } → Ω2 :=

{
I(yq) DFT { I(yq } = dn, n ∈

{
−M, . . . ,

Nsmp

2
− 1

}}

I(yq) 7→
(
DFT −1 ◦ R ◦ DFT

)
(I(x)),

whereR(d̂n) = dn, for n ∈
{
−M, . . . ,

Nsmp

2
− 1

}
,

andR(d̂n) = d̂n otherwise.

(3.85)
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Figure 3.3: A full-Nyquist k-space sampling pattern (a) and a Partial-Fourier sampling pattern (b) are illustrated.
Corresponding (zero-filled) Fourier reconstructions are demonstrated in (c) and (d). Image reconstruction of the
Partial-Fourier k-space sampling using the POCS algorithm with 4 iterations is depicted in (e). A difference map
between the zero-filled Fourier reconstruction of (d) and the POCS reconstruction of (e), both based on the same
Partial-Fourier sampling pattern, is shown in (f).

Convexity of Ω2 follows using the linearity of the discrete Fourier transform. Furthermore, P2

is a projection onto Ω2 by definition ofR and due to discrete Fourier inversion.
The POCS algorithm is applied by iterative projection onto Ω1,2 := Ω1 ∩ Ω2 by P :=

P1 {P2 { . } } such that Ik+1(yq) = P (Ik(yq)). The zero-filled Fourier reconstructed image is
commonly used as an initial image I0(yq). Practical experiences suggest that four iterations
suffice for convergence, e.g. [Liang et al., 1992, McGibney et al., 1993]. Figure 3.3 depicts re-
constructions from 5/8-Partial-Fourier sampled data, with Fourier reconstruction with zero-
filling and using the described POCS algorithm. With Partial-Fourier, a maximum speed-up
of a factor of 2 (Half-Fourier) is possible, realistic values are in the range of 1.14 − 1.6, which
correponds to 7/8-5/8 Partial-Fourier sampling.

3.6. Sub-Nyquist sampling

Another approach to reduce the number of phase encoding steps without decreasing kmax
y is

given by sub-Nyquist sampling, where k-space along ky is acquired in larger steps of R∆ky for a
reduction factor R.

The Theorem 3.3.7 of support-limited functions (Nyquist-Shannon) dictates maximal k-
space sampling intervals ∆kx and ∆ky for artifact-free image reconstruction of the underlying
spatial-support limited image function, e.g. Ωx ≤ FoVx and Ωy ≤ FoVy. Sub-Nyquist sampling
of only every Rth phase encoding increases the k-space interval ∆ky toR∆ky and thus, violates
the Nyquist-Shannon criterion.

Lemma 3.3.3 (ii) reveals how the Fourier transform of the Dirac comb with intervals of
∆ky results in a Dirac comb with intervals FoVy = 2π

∆ky
of periodic replica. Hence, sampling

in intervals of R∆ky leads to a reduced field of view FoVy
R . The spatial interval of uniquely

encoded locations is decreased. If the support is larger than the reduced FOV, signal from both
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ends of the support overlap according to (3.43). These signal overlaps are referred to as fold-over
artifacts. An example of sub-Nyquist sampling with reduction factor R = 3 and corresponding
images are depicted in Fig. 3.4.

Figure 3.4 further shows a sampling pattern which combines Nyquist-sampling (∆ky) in
the central k-space part and sub-Nyquist sampling (R∆ky) in the periphery of k-space. In this
case, fold-over artifacts occur only for the higher spatial frequencies, whereas the contrast is
not affected. More than 1/Rth of k-space is sampled, therefore, the net reduction factor (Rnet) is
lower. The general reduction is computed by the ratio of phase encoding steps in the full- over
the sub-Nyquist-sampling scenario, i.e.

Rnet =
N full

pe

N sub
pe

. (3.86)

The essential ingredient in obtaining images without fold-over artifacts from sub-Nyquist
sampled acquisitions is the usage of sensitivity information from multiple receive coils. The
sensitivities thereby complement the missing information of omitted phase encoding steps.
As multiple coils are an inevitable part of these methods, the term parallel imaging has been
manifested. In the next chapter, parallel imaging reconstruction of sub-Nyquist sampled data
is discussed.
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Figure 3.4: A sub-Nyquist k-space sampling pattern with reduction factor R = 3 is illustrated in (a) and incor-
porating a full-Nyquist-sampled k-space central area in (b). Corresponding zero-filled Fourier reconstructions are
depicted in (c) and (d), respectively. The reconstructions exhibit the typical fold-over artifacts that arise in Fourier
reconstruction of sub-Nyquist sampled k-space data. For comparison, Fourier reconstructions from Nyquist-
sampled data are shown for (e) only the inner part of the dual density pattern and (f) a full-Nyquist-sampled data
set covering the full k-space extent of this scenario. Whereas sub-Nyquist sampling leads to fold-over artifacts
(c,d), the reduction of numbers of phase encoding steps of full-Nyquist sampled data results in reduced spatial
resolution along the phase encoding direction (e).





Chapter 4

Parallel imaging

Phase encoding of Fourier imaging is a step-wise procedure performed with gradient field
variations. Fourier image reconstruction requires Nyquist-sampled phase encoding to allow
for an artifact-free reconstruction. For Cartesian trajectories, the time of acquisition with gradi-
ent encoding is directly proportional to the number of phase encoding steps. In single-shot EPI,
T ?2 sets boundaries on the number of phase encoding steps, which consequently limits spatial
resolution.

This chapter explains the possibilities of parallel imaging to reduce acquisition times
and/or increase spatial resolution. Hybrid spatial encoding is presented, which relies
simultaneously on gradient encoding and sensitivity encoding by multiple receive coils.
Imaging with multiple receive coils is introduced in Sec. 4.1 and a short overview over the
historic evolution of parallel imaging is given in Sec. 4.2. The two most prominent parallel
imaging reconstruction approaches, SENSE [Pruessmann et al., 1999] and SMASH/GRAPPA
[Sodickson and Manning, 1997, Griswold et al., 2002], are outlined in Secs. 4.3 - 4.5. Parallel
imaging reconstruction reveals noise variances non-uniform over the image extent that are
quantified by the coil geometry (g)-factor as is derived in Sec. 4.6. A discussion of previous
research of parallel imaging in the context of EPI in Sec. 4.7 concludes this chapter.

4.1. Multiple receive coils: Imaging in parallel

[Roemer et al., 1990] presented an implementation of receive coil arrays for parallel signal re-
ception in MRI. By imaging in parallel with multiple coils, the close proximity of individual
coils to the imaged object allows for enhanced SNR while covering a large imaging region. In
this section, the three most prominent coil combination methods are briefly stated.

Acquiring coil data in parallel adds another parameter to the data samples that can be used
in the image reconstruction. Denote the coil sensitivity of coil α at location r by cα(r). Then
data samples (cf. 3.16) for a parallel imaging acquisition are modeled by

dn,α =

∫

V
cα(r)m⊥(r, 0) exp(−ikn · r) dr,

for each k-space sample n ∈
{

1, . . . , Nsmp
}
,

for each coil α ∈ { 1, . . . , Ncoils } .

(4.1)

Hence, an individual coil image Îα is obtained for each coil element α = 1, . . . , Ncoils of the
utilized coil array. Individual coil images are combined based on calculated weighting factors
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pα(xm), for each coil α, and each pixel xm,m = 1, . . . , Npix, by

Î(xm) =

Ncoils∑

α=1

pα(xm)Îα(xm). (4.2)

The Roemer combination [Roemer et al., 1990] combines the Ncoils images with optimal SNR
(cf. [Roemer et al., 1990, Hayes and Roemer, 1990, Bernstein et al., 2004]) by

Î(xm) =

∑
α,β c

?
α(xm) (Ψcoils)

−1
α,β Îβ(xm)

∑
α,β c

?
α(xm) (Ψcoils)

−1
α,β cβ(xm)

, (4.3)

where Ψcoils denotes the noise covariance matrix of the coils (Def. 4.6.2). Whereas the noise
covariance matrix can be simply measured from a pre-scan, correct estimates of sensitivity
values are more complex to derive. The Roemer combination, however, relies on the correctness
of the estimated coil sensitivity values.

The root Sum of Squares (rSoS) combination [Roemer et al., 1990] is independent of the esti-
mation of coil sensitivity values. It is derived by

Î(xm) =

√√√√
Ncoils∑

α=1

( |Iα(xm)|
(Ψcoils)αα

)2

. (4.4)

The rSoS combination follows the idea of the Roemer combination, but with estimated coil sen-
sitivity information based on the relative spatial varying signal contribution of each coil image.
This combination is almost optimal for high SNR coil image contributions [Roemer et al., 1990,
Walsh et al., 2000]. In the case of low SNR and assuming spatially Gaussian noise to be un-
correlated between coils, an increase of noise compared to Roemer combination is perceived
[Constantinides et al., 1997, Walsh et al., 2000].

The adaptive combination [Walsh et al., 2000] formulates the combination problem in terms
of matched filter of stochastic processes. The objective is to find the combination vector p
of weightings pα, α = 1, . . . , Ncoils, which maximizes the ratio between expectation values of
signal and noise processes. It is derived by eigen-decomposition of the signal covariance matrix
of the coils multiplied with the inverse noise covariance matrix. The SNR optimal combination
vector is found to be the eigenvector corresponding to the highest eigenvalue. Both matrices
are estimated from a region within the images, hence, explicit knowledge of coil sensitivities is
not required. The SNR is in similar ranges as for Roemer combinations.

Remark 4.1.1. Analogous to the considerations made in [Henkelman, 1985] (see Sec. 3.3.3), an ex-
tension to arrays of receive coils exists to address the bias in SNR estimations of magnitude images
[Constantinides et al., 1997].

Acquisitions with multiple coils are beneficial to improve the SNR of Nyquist-sampled
MRI. Nevertheless, the additional spatial information also allows to complement Fourier en-
coding by gradients in the case of sub-Nyquist sampling. The origin of the idea to partially
substitute gradient encoding with parallel imaging is briefly introduced in the next section.

4.2. Short history of parallel imaging

Theoretical concepts for accelerating the image acquisition by omitting phase-encoding steps
and enhancing the encoding procedure by the information of multiple receive coils can already
be found in the literature of the late 80’s, as outlined in [Schoenberg et al., 2007].
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[Hyde et al., 1986] proposed a very direct usage of coil sensitivity information. In their
method, the spatial support of two coils is separated completely. Therefore, two images are
obtained when projecting image information onto the two distinct supports. This allows for
acquisition with half the field of view, which consequently halves the acquisition time for a
fixed image resolution. The approach is very intuitive in showing how coil sensitivity informa-
tion can complement spatial encoding.

Parallel Imaging with Localized Sensitivities (PILS) [Griswold et al., 2000] illustrates the same
approach in a more general context. It is based on coil sensitivity’s center and widths without
explicit knowledge of coil sensitivity values itself. However, the necessity of strictly localized
coil sensitivity patterns hardly holds in general applications.

The first description of a k-space based parallel imaging proposal can be found in
[Carlson, 1987], and was further consolidated in [Carlson and Minemura, 1993]. The sub-
Nyquist sampling is resolved by linearly combining raw data of two imaging coils: one
homogeneous receive channel and one varying linearly in phase direction. Revisiting the
essential idea of coil combination to estimate higher frequencies in k-space led to simultaneous
acquisition of spatial harmonics (SMASH) [Sodickson and Manning, 1997], which was the first
successful in vivo application of parallel imaging. A series of enhancements of SMASH fol-
lowed [Bydder et al., 2002, Jakob et al., 1998, Heidemann et al., 2001]. Among these, the most
robust method nowadays widely used is generalized autocalibrating partially parallel acquisitions
(GRAPPA) [Griswold et al., 2002].

First algorithms that invert the coil sensitivities in the image space were presented by
[Hutchinson and Raff, 1988, Kwiat et al., 1991, Kwiat and Einav, 1995]. In their approaches,
essentially all phase-encoding steps are omitted and substituted by a similar number of
coils. A concept which was later pursued in [Lin et al., 2006] and led to MR-Encephalography
with one coil per voxel [Hennig et al., 2007]. As counterpart to the k-space algorithms,
image domain based reconstructions were proposed by [Kelton et al., 1989] and enhanced
by [Ra and Rim, 1993], who presented first results in a phantom. With sensitivity encoding
(SENSE), [Pruessmann et al., 1999] presented the first robust implementation of image domain
based parallel imaging reconstruction. In their method, they describe the image domain
procedure of unaliasing the sub-Nyquist sampled Fourier reconstructed image, to resolve the
fold-over artifacts (aliasing).

Parallel imaging is often parted into k-space and image space based methods, of which
GRAPPA [Griswold et al., 2002] and SENSE [Pruessmann et al., 1999] constitute the main rep-
resentatives. Nevertheless, both methods can be performed in both domains as will be dis-
cussed in Sec. 4.5.2 and Sec. 6.1. Both methods are nowadays broadly applied in clinical routine
and both are applicable to accelerate image acquisition of various MRI scenarios. One advan-
tageous aspect of GRAPPA is the robustness due to the data-driven approach which does not
rely on accurate determination of coil sensitivities of the multiple receive coils. Following a
description of the general inverse problem in parallel imaging, both GRAPPA and SENSE will
be briefly described.

4.3. Sensitivity encoding and the inverse problem in parallel imaging

The concepts of hybrid or sensitivity encoding are described more generally below. Original
descriptions of sensitivity encoding are presented in [Pruessmann et al., 1999] and further dis-
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cussions are given in [Pruessmann, 2006, Sodickson and McKenzie, 2001].

Reformatting the signal model of (4.1), parallel imaging data collection can be described
analogously to Def. 3.2.4 by hybrid Fourier encoding kernel functions.

Definition 4.3.1. Denote the set of coils by C := { 1, . . . , Ncoils } and the coil sensitivity of coil α at
spatial position r by cα(r). A general coil sensitivity and Fourier encoding kernel is defined by

Ec : K × C × V → C
Ec : (k, α, r) 7→ cα(r) exp(−ik · r) .

(4.5)

The parallel imaging MR signal is expressed by incorporating the hybrid encoding:

dn,α =

∫

V
m⊥(r, 0)Ec(kn, α, r)dr, for each kn ∈ Ksmp, and each coil α ∈ C. (4.6)

The general inverse problem in parallel imaging is captured based on the - in the least
squares sense - optimal approximation of the data consistency constraint:

I† = argmin
I∈L2(Ω,C)

‖I‖2L2 subject to min
I∈L2(Ω,C)

∥∥d− Ě{ I }
∥∥2

2
,

where dn,α = 〈m⊥(., 0)|c?α(.) exp(ikn · .)〉L2 ,

and
(
ĚI
)

(n,α)
= 〈I|c?α(.) exp(ikn · .)〉L2 .

(4.7)

When a vector is formed from the NsmpNcoils complex values, the linear encoding operator
defines a mapping Ě : L2(Ω,C)→ CNsmpNcoils . Likewise, the sampled dataset along the k-space
trajectory and for all coils is stacked into a vector d ∈ CNsmpNcoils . This justifies the `2-norm.

As for the Fourier encoding kernel, the sensitivity encoding kernel is defined continuously
on K and V . However, finite k-space sampling is performed along discrete points kn of the
trajectory Ksmp of cardinality Nsmp = NfeNpe. With Ncoils, the encoding kernel is therefore
evaluated (NsmpNcoils)-times.

In the reconstruction process, a discrete representation of the underlying object with Npix =
NxNy pixels (for D = 2) is sought. In pure Fourier imaging, the PSF is given by a sinc-function
and the inverse of its FWHM describes the limit on spatial resolution (Sec. 3.3.2). The number
of pixels according to the sampled data, Npix = Nsmp, is the best image resolution (Def. 3.3.21)
for this limit. The inverse discrete Fourier transform (Def. 3.3.22) as a reconstruction at a given
number of pixels determines the spatial response, i.e. how individual pixels reflect local mag-
netization densities. Note that this is different compared to the PSF, as the latter explains how
single point sources propagate into reconstructed pixels.

In sensitivity encoding, however, samples are collected for each coil, wherefore the number
of pixels is not necessarily bounded from above by Nsmp. Likewise, the spatial response exhibits
more degrees of freedom. In fact, it is determined together with the reconstruction process.
Therefore, parallel imaging generally allows for modeling the discretized image reconstruction
according to the number of pixels as well as the desired spatial response. In the original paper,
[Pruessmann et al., 1999] describe two scenarios: the strong and the weak approach.

Let Npix denote the number of reconstructed pixels. In accordance with the linear encoding
operator Ě, consider a linear reconstruction operator that maps the data vector d ∈ CNsmpNcoils

to a vector of reconstructed pixels Î ∈ CNpix . Hence, the reconstruction operator is characterized
by a matrix F̌ ∈ CNpix×NsmpNcoils . Then the concatenation defines a mapping

F̌ Ě : L2(Ω,C)→ CNpix . (4.8)



4.3. Sensitivity encoding and the inverse problem in parallel imaging 63

Considering this mapping for individual pixels defines the spatial response function. Applying
this mapping to a point source describes the point spread function. If the object space is also
discretized into N ′pix voxels, (4.8) can be characterized by a matrix in CNpix×N ′pix .

In the strong approach, F̌ - and thus the reconstructed image - is determined by fitting (4.8) to
the desired voxel shape. The strong approach aims for unbiased but not necessarily efficient re-
construction. Since noise minimization is not an objective in this approach, noise amplification
can be strong.

For the weak approach, assume the object space to be discretized intoNpix voxels correspond-
ing to the number of pixels chosen for the reconstruction. The encoding operator is then de-
scribed by the matrix Ě ∈ C(NsmpNcoils)×Npix with elements

Ě(n,α),m =

∫

V
δ(r− rm)Ec(kn, α, r)dr = cα(rm) exp(−ikn · rm) . (4.9)

In the weak approach, the operation F̌ Ě is solely constrained by matching one reconstructed
pixel with one spatial counterpart. This is described by the orthonormality relation:

F̌ Ě = 1Npix . (4.10)

Throughout this work, the weak approach is assumed, as it complements Fourier reconstruc-
tion as presented in the previous chapter. [Sánchez-González et al., 2006] pointed out that if
Npix approaches infinity, the weak and strong approach become essentially identical.

Since the orthonormality relation is much less restrictive than the constraint of the strong
approach, the gained degrees of freedom are used to additionally minimize noise in the recon-
structed image. Image reconstruction in the weak approach based on sensitivity encoding is
achieved by finding the image reconstruction matrix F̌ † according to

F̌ † = argmin
F̌∈CNpix×NsmpNcoils

F̌ΨF̌H , subject to F̌ Ě − 1Npix = 0, (4.11)

where H indicates the Hermitian transpose and Ψ denotes the sample noise covariance matrix
of the NsmpNcoils data samples (see Def. 4.6.1). Image noise is thereby minimized (see Sec. 4.6,
Prop. 4.6.5).

Assume NsmpNcoils ≥ Npix. If Ě is injective, F̌ † is given by the Moore-Penrose pseudo inverse
[Moore, 1920, Penrose, 1955]

F̌ † =
(
ĚHΨ−1Ě

)−1
ĚHΨ−1 =: Ě+. (4.12)

Therefore, SENSE reconstruction in the weak approach generally comprises the derivation of
the pseudo-inverse of the encoding matrix Ě+ and subsequent application to the sampled data
set:

Ě+d = F̌ †d =: Î†. (4.13)

Remark 4.3.2. The minimization problem of (4.11) leads to the same solution (cf. 4.13) as the general
weighted minimum norm solution as part of regression analysis of (4.7) when assuming the same
discretization.

Direct inversion of the encoding matrix is computationally expensive. In case of Cartesian
undersampling, the problem can be sub-divided into a set of smaller inversion problems as
will be briefly discussed in the next section. In case of Non-Cartesian sampling scenarios,
the inverse problem is commonly solved using iterative methods such as conjugate gradients
[Hestenes and Stiefel, 1952] as described in [Pruessmann et al., 2001].
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4.3.1. Cartesian SENSE: unfolding in image space

SENSE is referred to as image space based, since the algorithm can be viewed as an unfolding
process in the image domain. The algorithm requires the coil sensitivity information to be de-
termined before the inverse problem for image reconstruction is formed. Cartesian SENSE
based on regular undersampling with reduction factor R is briefly discussed below, in order to
discuss parallels with GRAPPA reconstruction in Sec. 6.1.

In Cartesian SENSE, Npix :=RNsmp is typically chosen. The general encoding matrix (4.9)
can be expressed by two consecutive operations: first, the folding matrix Čfold ∈ CNpixNcoils×Npix

that superimposes contributions from regions of the same encoding weighted by the local sen-
sitivity. Second, the discrete Fourier transform matrix F̌ ∈ CRNsmpNcoils×NpixNcoils that performs a
discrete Fourier transform into k-space. Figure 4.1 illustrates the two operations.

In a Cartesian sampling pattern with reduction factor R, spatial encoding is periodically
repeated in intervals of FoV/R. The folding matrix weights local contributions with the local
sensitivity of each coil and adds contributions which are in the distances of FoV/R. The lat-
ter describes how spatial contributions are folded on top of each other due to the non-unique
gradient encoding. Elements of Čfold are defined by

Čfold
(n:=(np,nq),β),(m:=(mp,mq))

= cβ(rm)δ(np,nq),(mp,mqmodNy/R), (4.14)

where δa,b denotes a Kronecker delta, which is equal to 1, if a = b and 0 otherwise. The notation
mod refers to the modulus derivation and Ny/R ∈ Z is assumed for simplicity.

The discrete Fourier transform matrix is a block-diagonal square-matrix, where each block
represents a discrete Fourier transform DFT { } ∈ CNpix×Npix . Its elements are defined by

F̌(n,α),(m,β) = exp(−ikn · rm) δα,β. (4.15)

Due to orthogonality of Fourier kernel based row and column vectors, F̌ is unitary, hence
F̌−1 = F̌H .

With the given encoding operations, the discretization of the object space and the weak
approach, the application of F̌−1 allows one to describe the image reconstruction problem in
the discretized image space. By the definition of F̌ chosen here, this requires to form a data
vector dzf, where unaquired k-space positions on the regular grid of Nyquist-sampled step-
sizes are zero-filled (see Def. 3.5.1) before F̌−1 is applied.

Î† = argmin
I∈CNpix

∥∥∥F̌−1dzf − ČfoldI
∥∥∥

2

2
(4.16)

Remark 4.3.3. Cartesian SENSE is described here for zero-filled data, as it is used as such for the
comparison with standard GRAPPA in Sec. 6.1. Note that with the formulation in terms of zero-filled
data, the folded image F̌−1dzf essentially contains the same information R-times. This is opposed to
practical implementations of Cartesian SENSE, where data is clearly not zero-filled to not increase the
computational burden. The matrix F̌ is described in CNsmpNcoils×NsmpNcoils instead. Besides this difference,
the same argumentation applies.

The image reconstruction in Cartesian SENSE begins with the derivation of Čfold and the
zero-filled reconstruction F̌−1dzf. Then, (4.16) is solved for the image vector Î†. With the pre-
vious arguments, the latter is given by the Moore-Penrose pseudo inverse of Čfold. Due to
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Figure 4.1: Since unique spatial encoding is periodically repeated in intervals of FoV/R (white dashed lines),
the folding matrix Č fold folds the local contributions of the same encoding on top of each other, weighted by the
sensitivity at the respective local contribution. Thus, Č fold forms Npix spatial contributions to Npix/R folded
magnetization values R-times. The discrete Fourier transform matrix F̌ transfers the magnetization values into
its k-space representation. The R-fold replication corresponds with zero-filling k-space.

the structure of Čfold, it allows for subdivision into separately solvable sub-problems, one for
each folded pixel

(
F̌−1dzf)

p
, p = 1, . . . , Npix/R. Assuming Ncoils ≥ R and provided that the

coil geometry facilitates linearly independent coil information, the corresponding sub-matrix
Čfold
p ∈ CNcoils×R is injective and the solution yields

Cunfold
p := (Čfold

p )+ :=

((
Čfold
p

)H
Ψ−1
coilsČ

fold
p

)−1

Čfold
p

H
Ψ−1
coils. (4.17)

In Cartesian SENSE, the problem of deriving Ě+ is thus segmented into several smaller
sub-problems of reduced dimensionality, which allows for efficient calculation of the pseudo-
inverse [Pruessmann et al., 1999].

4.4. Estimation of spatial harmonics: from SMASH to GRAPPA

Original motivation and developments of k-space based parallel imaging methods are briefly
described below. A more detailed discussion of differences between the methods covered is
provided by [Blaimer et al., 2004].

Whereas the sensitivity encoding kernel consists of a combination of gradient encoding and
coil sensitivities, [Sodickson and Manning, 1997] presented - in their earlier method SMASH -
the aim to emulate unacquired gradient encodings by weighted linear combinations of sensi-
tivities of all coils { cβ, β ∈ C }. To this end, weighing factors wβ are estimated such that

∑

β∈C
wβcβ ≈ exp(−in∆kyy) , (4.18)

for each unacquired phase encoding step n∆ky, n = 1, . . . , R − 1 of a reduction factor R.
The fitted spatial harmonics are used to perform k-space shifts of n∆ky, in order to estimate
missing samples based on the nearest acquired k-space samples of all coils. If d(kx,ky),β denotes
the sample acquired for the k-space coordinates (kx, ky) and with the coil β ∈ C, then the
unacquired sample d(kx,ky+n∆ky) of all coils combined is estimated by

∑

β∈C
wβd(kx,ky),β ≈

∫

V
m⊥(r, 0)

∑

β∈C
wβcβ(r) exp(−i(kx, ky) · r) dr

≈
∫

V
m⊥(r, 0) exp(−i (kx, ky + n∆ky) · r) dr = d(kx,ky+n∆ky).

(4.19)
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Unfortunately, this approach is limited by a poor robustness of the fitting procedure and by
very specific requirements on the coil array geometry.

[Jakob et al., 1998] suggested in their method AUTO-SMASH to acquire an additional auto-
calibration signal (ACS) line for each spatial harmonic to recreate. Thus, R − 1 additional lines
at k-space distances of n∆ky, n = 1, . . . R− 1 are acquired. Instead of pure coil sensitivities, the
ACS is then used to estimate weighting factors wβ such that

∑

β∈C
wβd

ACS
(kx,ky),β ≈

∑

β∈C
dACS(kx,ky+n∆ky),β. (4.20)

In VD-AUTO-SMASH [Heidemann et al., 2001], the R − 1 ACS lines were extended to a
range of Nyquist-sampled ACS data to increase the number of equations used in the fitting
procedure, which improves robustness. The name variable density (VD) relates to the different
sampling densities of ∆ky in the central k-space area and R∆ky in the outer k-space part. Un-
fortunately, the additional Nyquist-sampled ACS data increase the acquisition time. However,
it can be directly included in the reconstruction.

Essential robustness was added by extension of the set of k-space sources and the usage
of distinct targets in the fitting procedure, as refined in generalized autocalibrating partially
parallel acquisitions (GRAPPA) [Griswold et al., 2002]. In GRAPPA, weights are determined
individually for each target coil by weighted contributions from several k-space neighbors and
all source coils:

∑

β∈C

∑

(kx,ky)

w(kx,ky),β d
ACS
(kx,ky),β ≈ dACS(kx,ky+n∆ky),α, for each target coil α ∈ C. (4.21)

The neighborhood of k-space samples that are incorporated in the fit and reconstruction is
usually chosen much smaller than the actual acquired number of frequency encodings Nfe and
the ACS phase encoding range. Therefore, multiple neighborhoods can be collected that overall
further increases the robustness. The more general concept of in vivo sensitivities and standard
GRAPPA reconstruction is described in the next section.

4.5. In vivo sensitivities and the inverse problem of weight calibration

In GRAPPA, the coil sensitivity information is used indirectly by deriving weights from the
ACS data of all coils. Therefore, it also relies on coil sensitivities that provide - at best - in-
dependent spatial information each. Analogous to the sensitivity encoding kernels, in vivo
sensitivity kernels are defined.

Definition 4.5.1. Given the set of coils C := { 1, . . . , Ncoils } with sensitivities cα(r) of coil α at spatial
position r, a general in vivo sensitivity and Fourier encoding kernel is defined by

EACS : K × C × V → C
EACS : (k, α, r) 7→ m⊥(r, 0) cα(r) exp(−ik · r) .

(4.22)

The in vivo sensitivities are thereby defined as ĉα(r) = m⊥(r, 0) cα(r). The parallel imaging MR
signal then reduces to

dn,α =

∫

V
EACS(kn, α, r)dr, for each kn ∈ Ksmp, and each coil α ∈ C. (4.23)
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Remark 4.5.2. The term in vivo sensitivities was introduced for instance in [Samsonov et al., 2006].

The in vivo sensitivity encoding allows for a description of the weight derivation of
GRAPPA similar to Sec. 4.3. As typical for standard GRAPPA, a Cartesian sampling pattern is
assumed. Two terms become important in the description of GRAPPA and will be frequently
used: a k-space neighborhood and the kernel geometry.

Definition 4.5.3 (k-space neighborhood). A k-space neighborhood Kεsmp(k0) of a k-space point k0

is an open ball around k0 that contains k-space sampling points in distances of less than or equal to ε.

Definition 4.5.4 (kernel geometry). Within a k-space neighborhood, a kernel geometry designates
source points and target points by relative k-space distances within the neighborhood.

For standard GRAPPA, the k-space neighborhoods of 2D-imaging are determined by a rect-
angular of lengths Bfe∆k and BpeR∆k along the frequency and phase encoding direction.
Hereby, Bfe and Bpe denote the number of acquired samples in the respective direction and
are chosen prior to the reconstruction process. For each spatial harmonic m∆k,m = 1, . . . R−1
to recover, one fixed kernel geometry is typically used in all k-space neighborhoods (for stan-
dard GRAPPA). The R− 1 different kernel geometries in terms of relative k-space distances are
illustrated for R = 2 in Fig. 4.2. Note that for standard GRAPPA, the R − 1 different kernel
geometries comprise the same sources (but different targets) in each k-space neighborhood.

Missing data samples (targets) are restored by linear combination of acquired samples
(sources) as designated by the kernel geometry within the neighborhoods. To this end, the
relative weightings from sources to targets need to be derived. It is assumed in GRAPPA that
relative weightings of the fixed kernel geometry are irrespective of the k-space neighborhood
(shift invariance). In the ACS data, sources as well as targets are given. Assuming the relative
weighting to be shift invariant in k-space, the ACS data allows for the estimation of these
based on a number of example source-to-target relations. Therefore, all possible placements of
the kernel geometry within the range of the Nyquist-sampled ACS are collected and a linear
equation is formed.

For each neighborhood that is fully contained in the ACS data, BfeBpeNcoils sources are
collected according to the kernel geometry. Let NACS

fe and NACS
pe denote the number of fre-

quency and phase encoding steps of the ACS. Then the BfeBpeNcoils sources can be collected
(NACS

pe − R(Bpe−1))(NACS
fe − Bfe− 1)-times within the ACS, according to all possibilities for a

neighborhood to be fully contained in the k-space extent of the ACS.
In analogy to the encoding matrix of (4.9), an in vivo encoding matrix

ĎACS ∈ C(BfeBpeNcoils)×(NACS
pe −R(Bpe−1))(NACS

fe −Bfe−1) is defined with elements given by

ĎACS
(n,β),p =

∫

V
ĉβ(r) exp(−ikn,p · r) dr. (4.24)

The number of columns of ĎACS increases with the number of possible placements of the kernel
geometry within the ACS data. Note that all entries of ĎACS are actual acquired data samples.

For each neighborhood that is fully contained in the ACS data, (R − 1)Ncoils targets are
collected in accordance with the R − 1 fixed kernel geometries. For each target harmonic m =

1, . . . , R − 1 and each target coil α = 1, . . . , Ncoils, let dACS
m,α ∈ C1×(NACS

pe −R(Bpe−1))(NACS
fe −Bfe−1)

denote the row vector of corresponding target samples within the ACS data. A linear relation
between sources and targets is assumed to be given by

ŵm,αĎ
ACS = dACS

m,α , (4.25)
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where the weights ŵm,α ∈ C1×(BfeBpeNcoils) are unknown. The task of finding the reconstruction
weights ŵm,α for each target coil α = 1, . . . , Ncoils and each spatial harmonic indexed by m =
1, . . . , R− 1 establishes the inverse problem of weight calibration.

Definition 4.5.5 (inverse problem of weight calibration). With the notation as above, the inverse
problem of weight calibration in k-space kernel based parallel imaging is given by

ŵ†m,α = argmin
ŵm,α

∥∥∥dACS
m,α − ŵm,αĎ

ACS
∥∥∥

2

2
, (4.26)

for each target relation m = 1, . . . , R − 1 and each target coil α = 1, . . . , Ncoils. The matrix ĎACS

defined as above is referred to as the in vivo encoding matrix.

Under the assumption that ĎACS is surjective, the Moore-Penrose pseudo inverse is given by

ĎACS,+ := ĎACS,H
(
ĎACSĎACS,H

)−1
. (4.27)

The solution of (4.26) is then obtained using the Moore-Penrose pseudo inverse by

ŵ†m,α = dACS
m,αĎ

ACS,+. (4.28)

The derived weights are used as coefficients in the linear combination of acquired data
samples to restore missing data samples in neighborhoods outside the ACS data. The GRAPPA
image reconstruction process is briefly described below.

4.5.1. GRAPPA: estimation in k-space

GRAPPA exploits local correlations in k-space and relies on shift invariance of these. A pre-
defined GRAPPA kernel geometry is chosen according to the incorporated k-space neighbor-
hood, source-to-target relations and the reduction factor R. A k-space undersampling pattern
of R = 3 with incorporated ACS data and respective GRAPPA kernel geometry are displayed
in Fig. 4.2. Based on a Cartesian k-space sampling pattern, Nyquist-sampled datasets are re-
constructed from the undersampled data in two steps:

1. calibration of the reconstruction weights given an ACS dataset

2. estimation of omitted k-space data by weighted linear combination of neighboring ac-
quired data.

Hence, at first, k-space relations between target points and their surrounding neighborhood
are learned. Thereafter, the relations are applied to estimate missing data samples as weighted
linear combination of acquired k-space neighborhood data.

Calibration of the reconstruction weights is achieved using the previously described ACS
dataset, which covers a low-frequency k-space extent in Nyquist-sampled phase encoding
steps. According to the GRAPPA kernel geometry, sources and target data are collected within
the ACS data of each coil and in each neighborhood of k-space samples. The kernel’s extent
thereby governs the number of source-to-target relations that can be extracted. All collected
sources and targets are assembled in the in vivo encoding matrix and a target vector. The
optimal weights in the least-squares sense are obtained by solving the inverse problem as in
(4.26) using the Moore-Penrose pseudo inverse of the in vivo encoding matrix.
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Figure 4.2: The two steps of GRAPPA reconstruction are illustrated in (a) and (b). First, reconstruction weights
are calibrated according to the chosen GRAPPA kernel geometry and based on the full-Nyquist sampled ACS data
(a). Second, learned weights are applied in linear combination of acquired neighborhood samples to reconstruct
omitted k-space data on the Cartesian grid (b). Note that all coils are incorporated in the reconstruction (not
shown). The corresponding GRAPPA reconstruction of the same example as shown in Fig. 5.2 is depicted in (c),
along with full-Nyquist sampled reconstruction for comparison (d).

Estimation of omitted k-space data is performed by linear combination of neighboring ac-
quired k-space data of all coils weighted by the reconstruction weights in accordance with
the GRAPPA kernel geometry. Conventional GRAPPA essentially uses the same BfeBpeNcoils
source samples to reconstruct R− 1 target samples of one coil and repeats the process of linear
combination for all possible kernel placements. This is simplified by forming one convolution
kernel w2D

α,β ∈ CBfe×RBpe for each target coil α and each source coil β that combines the R− 1 rel-
ative kernel geometries. The latter is formed by shifting different geometries to a mutual target
center. The central target point is set to 1 to remain acquired samples. The process of forming
the convolution kernel is explained in more details in [Breuer et al., 2009]. It is furthermore
described for k-t-GRAPPA in Sec. 6.2.2.

Let dzf,2D
β be the zero-filled acquired undersampled data of coil β in matrix representation.

The localized linear combination can be expressed as a convolution of weights and undersam-
pled data in k-space for each coil and adding the contribution of each coil:

d̂sub,2D
α =

∑

β∈C
w2D
α,β ∗ dzf,2D

β . (4.29)

Hence, a Nyquist-sampled Cartesian k-space dataset d̂sub,2D
α is estimated for each coil. Fourier

reconstruction and subsequent coil combination (see Sec. 4.1) yields the final image.

SMASH-like k-space based parallel imaging reconstruction methods rely on the fun-
damental assumption of the k-space locality principle, as it was termed in [Yeh et al., 2005].
Further, the assumption of shift invariance of k-space relations is employed. The validity of
the k-space locality principle and shift invariance is partly discussed in [Yeh et al., 2005,
Kholmovski and Parker, 2006, Samsonov et al., 2006, Liu et al., 2007, Samsonov, 2008,
Zhang et al., 2011, Schultz, 2013].
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4.5.2. GRAPPA in image space

The reconstruction process in GRAPPA consists of a convolution in k-space (cf. 4.29), followed
by coil-wise Fourier reconstruction of the estimated full datasets. Let DFT −1

x,y{ · } denote the
discrete Fourier transform along both spatial dimensions. Then by linearity of the discrete
Fourier transform and the convolution theorem follows

Îsub
α := DFT −1

x,y

{
d̂sub,2D
α

}
=
∑

β∈C
DFT −1

x,y

{
w2D
α,β ∗ dzf,2D

β

}

=
∑

β∈C
DFT −1

x,y

{
w2D
α,β

}
�DFT −1

x,y

{
dzf,2D
β

}

=
∑

β∈C
W 2D
α,β � I fold

β ,

(4.30)

where � refers to element-wise multiplication of the two matrices W 2D
α,β and I fold

β . The latter
denote the discrete Fourier transform of the convolution kernel w2D

α,β and the zero-filled Fourier

reconstruction of dzf,2D
β , respectively. This yields an image space based representation of the

GRAPPA algorithm as developed by [Wang et al., 2005a, Brau et al., 2008, Breuer et al., 2009].
The coil images obtained can be combined according to any of the in Sec. 4.1 described coil
combination methods.

4.6. SNR in parallel imaging

As derived in Sec. 3.3.3, image noise variance in Fourier image reconstructions is pixel-wise
uncorrelated and the average SNR is inversely proportional to the spatial resolution. In parallel
imaging, however, image noise variance exhibits spatial correlations. Moreover, the average
SNR is decreased by the reduced number of data samples, as well as affected by the properties
of the incorporated receive coil array. In the following, differences are highlighted and the coil’s
geometry factor (g-factor) is introduced.

The omission of parts of k-space while keeping spatial resolution parameters (e.g. field of
view and pixel size) fixed generally results in a loss in SNR. This can be understood by consid-
ering the opposite: R-times oversampling instead ofR-times undersampling. For oversampling,
an artifact-free Fourier reconstruction is obtained (if ∆k fulfills the Nyquist-Shannon criterion,
so does ∆k/R). However, R-times the number of measurements - each containing information
about every spatial position to reconstruct - are provided for the Fourier reconstruction. This
improves the image noise variance of each pixel by

√
R for R-times oversampling.

In parallel imaging, another SNR compromising factor arises despite the general SNR loss
due to reduced data acquisition. The image reconstruction process further affects SNR and en-
tails noise correlation between image pixels. In order to investigate the correlations imposed by
the reconstruction process, the sample noise covariance matrix as well as the image noise covariance
matrix are defined. For MRI acquisitions with multiple coils α = 1, . . . , Ncoils, assume the noise
samples acquired in each coil α to be described by a stationary stochastic Gaussian white noise
process { εd(kk, α) }kk∈Ksmp

.
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Definition 4.6.1. The sample noise covariance matrix and the image noise covariance matrix
are defined by Ψ ∈ CNsmpNcoils×NsmpNcoils and Ψ̂ ∈ CNpix×Npix , respectively, such that

Ψ(k,α),(l,β) = σ2(εd(kk, α), εd(kl, β)) and Ψ̂pq = σ2(εI(xp), εI(xq)),

for each k, l = 1, . . . , Nsmp, α, β = 1, . . . , Ncoils, as well as for each pixel position, p, q = 1, . . . Npix,
where xp := (xp, yp)

T refers to the vector of location on the image grid.

Definition 4.6.2. In the same manner as in Def. 4.6.1, the receive coil covariance matrix is defined
by Ψcoils ∈ CNcoils×Ncoils with elements of σ2(εd(0, α), εd(0, β)).

Remark 4.6.3. Entries of the receive coil covariance matrix are practically derived by sampling of pure
receive noise achieved in the absence of any gradient encoding by zero-flip angle acquisitions.

Proposition 4.6.4. The sample noise covariance matrix in parallel imaging yields a block-diagonal ma-
trix of form Ψ = Ψcoils ⊗ 1Nsmp , where ⊗ refers to the Kronecker product and 1Nsmp ∈ CNsmp×Nsmp

denotes the identity matrix.

Proof. Since variances are finite and different k-space locations are uncorrelated (Def. 3.3.25 (i)
and (iii)), it follows that

Ψ(k,α),(l,β)
(iii)
= δklσ

2(εd(kk, α), εd(kl, β))
(ii)
= δklσ

2(εd(0, α), εd(0, β)). (4.31)

Therefore, Ψ can be arranged into a block-diagonal matrix of Nsmp blocks of the receive coil
covariance matrix Ψcoils, hence Ψ = Ψcoils ⊗ 1Nsmp .

For an empirical evaluation of the variation of SNR in parallel imaging, a large number
of measurement repetitions is required to reliably estimate the spatial noise distribution. Ap-
proaches to capture the varying noise level - avoiding the often not feasible measurement repe-
titions - range from: noise statistics based on pseudo replica [Robson et al., 2008] to SNR scaled
reconstruction [Kellman and McVeigh, 2005] to the recently proposed region of interest analy-
sis by [Hansen et al., 2015]. In Cartesian parallel imaging acquisitions, an analytical formula to
determine the non-uniform variation of noise and SNR in SENSE reconstructions is given in
terms of the pixel-wise coil geometry factor (g-factor) [Pruessmann et al., 1999].

4.6.1. The SENSE g-factor

The image reconstruction process governs the transfer of data noise into image noise. In
SENSE, image reconstruction consists of finding the reconstruction matrix F̌ according to the
desired spatial response. In order to investigate image noise, the effect of F̌ onto sample noise is
regarded. The ratio between full- and sub-Nyquist-sampled acquisitions guides the definition
of the coil geometry factor (g-factor) [Pruessmann et al., 1999].

Proposition 4.6.5. For the reconstruction matrix F̌ ∈ CNpix×NsmpNcoils , the image noise covariance ma-
trix is obtained by Ψ̂ = F̌ΨF̌H .

Proof. Let p, q ∈
{

1, . . . , Npix
}

. In an unbiased reconstruction with zero-mean of the image
noise, the respective image noise (co-)variance is given by

σ2 (εI(xp), εI(xq))) = E[εI(xp)ε
?
I(xq)] (4.32)
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- which relates to the data noise (co-)variances by reconstruction matrix F̌ -

= E




∑

α,k

F̌p,(α,k)εd(kk, α)




∑

β,l

F̌q,(β,l)εd(kl, β)



?
 . (4.33)

By linearity of deriving the mean, this is equal to

=
∑

α,k

∑

β,l

F̌p,(α,k)E[εd(kk, α)ε?d(kl, β)]
(
F̌q,(β,l)

)?
, (4.34)

which using Prop. 4.6.4 becomes

=
∑

α,β,k

F̌p,(α,k)σ
2(εd(kk, α), εd(kk, β))

(
F̌q,(β,k)

)? (4.35)

=
∑

α,β,k

F̌p,(α,k) (Ψ)α,β
(
F̌q,(β,k)

)?
. (4.36)

Hence, for the overall image noise covariance matrix follows

Ψ̂ = F̌ΨF̌H , (4.37)

which concludes the proof.

The result of Prop. 4.6.5 justifies the formulation of the inverse problem of sensitivity encod-
ing while minimizing the image noise variances as presented in (4.11). For the weak approach
presented in (4.11), the image noise covariance matrix can be expressed solely based on the
encoding matrix and the sample noise covariance matrix.

Proposition 4.6.6. In the weak approach, where the spatial response is sought to be a delta dis-
tribution, the Moore-Penrose pseudo inverse solution (cf. 4.12) implies Ψ̂ =

(
ĚHΨ−1Ě

)−1

(cf. [Pruessmann et al., 1999]).

Proof. In the weak approach, the solution of the inverse problem of (4.12) is given by

F̌ † =
(
ĚHΨ−1Ě

)−1
ĚHΨ−1. (4.38)

Hence, for the image noise covariance matrix follows

Ψ̂ = F̌ †Ψ(F̌ †)H (4.39)

=
(
ĚHΨ−1Ě

)−1
ĚHΨ−1Ψ

((
ĚHΨ−1Ě

)−1
ĚHΨ−1

)H
. (4.40)

Reducing Ψ−1Ψ = 1NsmpNcoils in the equality and reformatting the Hermitian transpose implies
further that

Ψ̂ =
(
ĚHΨ−1Ě

)−1
((
ĚHΨ−1Ě

)−1
ĚHΨ−1Ě

)H
=
(
ĚHΨ−1Ě

)−1
. (4.41)
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The sensitivity encoding kernel functions presented in Def. 4.3.1, which constitute ele-
ments of the encoding matrix Ě, are not orthogonal. Hence, the inverse problem (cf. 4.11)
is ill-conditioned, leading to noise enhancements imposed by the reconstruction matrix F̌
[Pruessmann et al., 1999, Pruessmann, 2006]. Since the reconstruction matrix F̌ is generally
not unitary, spatially varying image noise with spatial correlations occurs. The ratio between a
full- and sub-Nyquist-sampled acquisition reveals characteristics of parallel imaging.

Proposition 4.6.7. Let Ψ̂full ∈ CNpix×Npix and Ψ̂sub ∈ CNpix×Npix denote the image noise covariance
matrices of the full- and sub-Nyquist-sampled scenario. Then, for each p = 1, . . . , Npix, the following
holds:

√
Ψ̂sub

pp√
Ψ̂full

pp

=
√
R

√[(
Čfold
p

H
Ψ−1
coilsČ

fold
p

)−1
]

pp

[(
Čfold
p

H
Ψ−1
coilsČ

fold
p

)]
pp
.

Proof. Let p ∈
{

1, . . . , Npix
}

. Relevant for the reconstruction of pixel information at pixel posi-
tion p in the sub-Nyquist sampled acquisition is the unfolding process governed by

Cunfold
p Îfold

p =
(
Čfold
p

H
Ψ−1
coilsČ

fold
p

)−1
Čfold
p

H
Ψ−1
coilsÎ

fold
p . (4.42)

An inverse discrete Fourier transform is performed, as outlined for the derivation of (4.16).
Therefore, with the respective scaling according to the zero-filled data and with the result of
Prop. 4.6.6 follows for the image noise covariance matrix:

√
Ψ̂sub
p,p =

1√
Nsmp

√[(
Čfold
p

H
Ψ−1
coilsČ

fold
p

)−1
]

p,p

(4.43)

In a full-Nyquist-sampled acquisition, the matrix corresponding to Cunfold
p is a single vector of

coil sensitivities (∈ CNcoils), projecting the modeled magnetization value onto each coil: hence,
effectively, Cfull,unfold

p = Cunfold
p,· . According to Prop. 4.6.6, the respective image noise covariance

matrix then yields
√

Ψ̂full
p,p =

1√
NsmpR

√[(
Čfold
p

H
Ψ−1
coilsČ

fold
p

)−1
]

p,p

. (4.44)

Therefore, the ratio between both is derived by
√

Ψ̂sub
pp√

Ψ̂full
pp

=
√
R

√[(
Čfold
p

H
Ψ−1
coilsČ

fold
p

)−1
]

p,p

[(
Čfold
p

H
Ψ−1
coilsČ

fold
p

)]
p,p
, (4.45)

which concludes the proof.

Proposition 4.6.7 depicts the general loss of SNR due to undersampling by reduction factor
R, as well as the SENSE reconstruction dependent additional variation for each pixel. The latter
thereby highly depends on the (dis-)similarities between coil sensitivities of different coils and
is thus referred to as the coil’s geometry factor (g-factor).

Definition 4.6.8 (g-factor). The coil geometry factor (g-factor) captures the additional pixel-
dependent image noise standard deviation differences arising in a sub-Nyquist-sampled acquisition
compared to full-Nyquist sampling. The g-factor is defined pixel-wise by

gxp =
SNRfull

xp√
R SNRsub

xp

, for each p = 1, . . . , Npix.
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Corollary 4.6.9 (SENSE g-factor). Assuming artifact-free image reconstruction, the g-factor in Carte-
sian SENSE is given by

gxp =

√[(
Čfold
p

H
Ψ−1
coilsČ

fold
p

)−1
]

p,p

[(
Čfold
p

H
Ψ−1
coilsČ

fold
p

)]
p,p
.

The validity of the SENSE g-factor of Cor. 4.6.9 follows from Prop. 4.6.7. Note that noise
potentially present in the derived sensitivity data is often omitted for two reasons: 1. spatial
variations in sensitivity values are assumed to vary slowly, hence low-resolution acquisitions
suffice for estimation which yields benign SNR characteristics 2. noise variance can be further
reduced by spatial smoothing.

4.6.2. The GRAPPA g-factor

The image reconstruction process in GRAPPA yields an estimation of Nyquist-sampled data
for each coil. The respective coil images are subsequently combined according to the chosen
coil combination method. In order to analyze image noise, the effect of the reconstruction
weights in image space

{
W 2D
α,β, β = 1, . . . , Ncoils

}
for reconstruction of coil image Îα according

to (4.30) is investigated. The coil combination weightings further impact image noise in the
combined image Î . Again, the ratio between a full- and sub-Nyquist-sampled image recon-
structions leads to the derivation of the GRAPPA g-factor for uncombined as well as combined
images [Brau et al., 2008, Breuer et al., 2009].

Assuming additive noise, let Isub
α and εsub

Iα
:= εsub

I (·, α) depict the pure image and noise
part, respectively, of the reconstructed image Îsub

α of coil α. Then the reconstruction in image
space (cf. 4.30) relates the resulting image noise εsub

Iα
to the zero-filled Fourier reconstruction of

data noise εfold
Iβ

:= εfold
I (·, β) by

Îsub
α = Isub

α + εsub
Iα =

∑

β∈C
W 2D
α,β �

(
I fold
β + εfold

Iβ

)
. (4.46)

Definition 4.6.10. Analogous to Def. 4.6.2, define the receive coil covariance matrix in image
space by Ψ̂coils ∈ CNcoils×Ncoils with elements

(
Ψ̂coils

)
βγ

:= σ2(ε
fold
I (xp, β), ε

fold
I (xp, γ)).

Proposition 4.6.11. Let
{
W 2D
α,β ∈ CNx×Ny , β = 1, . . . , Ncoils

}
be the set of GRAPPA weights in im-

age space for target coil α. Let p ∈
{

1, . . . , Npix
}

and let Ψ̂coils ∈ CNcoils×Ncoils be the receive coil covari-
ance matrix in image space. Given the image pixel xp = (xp, yp), define the matrix Wxp ∈ CNcoils×Ncoils

by
(
Wxp

)
αβ

= W 2D
α,β(xp, yp). Then the image noise variance of the image pixel is derived by

σ2(εsub
I (xp, α)) =

∣∣∣WxpΨ̂coilsW
H
xp

∣∣∣
αα
.

Proof. Let p ∈
{

1, . . . , Npix
}

. Assume an unbiased image reconstruction to provide a zero-
mean of image noise. According to (4.46), the image noise variance of the corresponding pixel
xp = (xp, yp) yields

σ2(εsub
I (xp, α)) = E[εI(xp, α)εI(xp, α)?] (4.47)
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- which relates to the data noise variance inroduced by the GRAPPA image space weightsW 2D
α,β

-

= E




∑

β

W 2D
α,β(xp)ε

fold
I (xp, β)



(∑

γ

W 2D
α,γ(xp)ε

fold
I (xp, γ)

)?
 . (4.48)

By linearity of deriving the mean, this is equal to

=
∑

β

∑

γ

W 2D
α,β(xp)E

[
εfold
I (xp, β)εfold

I (xp, γ))?
]
W 2D
α,γ(xp)

?, (4.49)

which using Prop. 3.3.27 and Prop. 4.6.4 becomes

=
∑

β,γ

W 2D
α,β(xp)

(
Ψ̂coils

)
β,γ

W 2D
α,γ(xp)

? (4.50)

=
∣∣∣WxpΨ̂coilsW

H
xp

∣∣∣
αα
. (4.51)

which concludes the proof.

Remark 4.6.12. Please note that in order to provide uniform argumentation for SENSE and GRAPPA,
the proof of Prop. 4.6.11 differs significantly from the reasoning presented in [Breuer et al., 2009]. The
same line of argument is further utilized in Chapter 6.

Proposition 4.6.13. Let σ2
(
ε

full
I (xp, α)

)
and σ2

(
εsub
I (xp, α)

)
denote the image noise variance of pixel

xp and coil α for the full- and sub-Nyquist-sampled scenario. Then

σ
(
εsub
I (xp, α)

)

σ
(
ε

full
I (xp, α)

) =
√
R

√∣∣∣WxpΨ̂coilsWH
xp

∣∣∣
αα√∣∣∣Ψ̂coils

∣∣∣
αα

,

for each p = 1, . . . , Npix and for each α = 1, . . . , Ncoils.

Proof. Let p ∈
{

1, . . . , Npix
}

. Following Prop. 4.6.11, the standard deviation in case of the
undersampled acquisition is given by

√∣∣∣WxpΨ̂coilsWH
xp

∣∣∣
αα
, (4.52)

where Ψ̂coils arises from the undersampling scenario. In case of full Nyquist-sampled acqui-
sition with Fourier reconstruction, the R-times increased sampling and solely incorporating
Fourier reconstruction leads to

σ
(
εfull
I (xp, α)

)
=

1√
R

√∣∣∣Ψ̂coils

∣∣∣
αα
. (4.53)

Therefore, the image noise standard deviation in pixel xp is derived by

σ
(
εsub
I (xp, α)

)

σ
(
εfull
I (xp, α)

) =
√
R

√∣∣∣WxpΨ̂coilsWH
xp

∣∣∣
αα√∣∣∣Ψ̂coils

∣∣∣
αα

. (4.54)
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The uncombined GRAPPA g-factor in accordance with Def. 4.6.8 follows from Prop. 4.6.13.

Corollary 4.6.14 (uncombined GRAPPA g-factor). Assuming artifact-free image reconstruction,
the uncombined g-factor in Cartesian GRAPPA is defined by

gxp,α =

√∣∣∣WxpΨ̂coilsWH
xp

∣∣∣
αα√∣∣∣Ψ̂coils

∣∣∣
αα

.

Coil combination of the individual coil images is performed according to the method of
choice, e.g. Roemer combination, combination by root sum of squares or adaptive combination
(Sec. 4.1). Let

{
p2D
α , α = 1, . . . , Ncoils

}
denote the coil weightings according to the chosen coil

combination method. The combined reconstructed image is then described by

Îsub =
∑

α∈C
p2D
α �


∑

β∈C
W 2D
α,β � Î fold

β


 . (4.55)

Hence, the coil combination weighting simply extends the GRAPPA weighting. Analogous to
Cor. 4.6.14, the combined GRAPPA g-factor is obtained.

Corollary 4.6.15 (GRAPPA g-factor). Assuming artifact-free image reconstruction, the combined g-
factor in Cartesian GRAPPA is defined by

gxp =

√∣∣∣
(
pTxpWxp

)
Ψ̂coils

(
pTxpW

H
xp

)∣∣∣
√∣∣∣
(
pTxp1

)
Ψ̂coils

(
pTxp1

)∣∣∣
,

where pxp is the vector of respective coil weightings and 1 denotes a vector of ones.

Note that the potential of noise arising in the derived reconstruction weights is commonly
omitted, since the weights are derived in a least-squares-optimization based on a sufficiently
high number of training relations. As a result the noise level of the weights is very low and the
noise in the weights can often be ignored.

4.6.3. Summary of g-factors

The g-factor framework facilitates the analytical derivation of image noise variance in standard
parallel imaging scenarios, e.g. SENSE and GRAPPA reconstructions. Whereas image SNR in
Fourier reconstruction depends solely on the k-space extent covered and is mutually uncorre-
lated, the image SNR in parallel imaging depends furthermore on the pixel-wise g-factor. As a
consequence, image SNR in parallel imaging varies spatially and is correlated across pixels.

4.7. Parallel imaging and sub-Nyquist sampled EPI

Echo planar imaging (EPI) suffers from a number of artifacts. Among these are signal cancel-
lations and geometric distortions due to differences in in-plane susceptibilities as well as an
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inherent image blurring due to relaxation effects (cf. Sec. 3.4.2). A main reason for artifacts in
EPI is the long readout period with a low bandwidth in the phase encoding direction. Parallel
imaging offers a reduction of readout times with faster k-space velocity in the phase encoding
direction. Therefore, it has the potential to alleviate in-plane susceptibility artifacts, geometric
distortion and image blurring in EPI.

With sub-Nyquist-sampling along the phase encoding direction at reduction factor R, the
same k-space extent is traversed R-times faster with larger blip gradients. Consequently, the
echo train length is R-times shorter. Figure 4.3 illustrates how the timing of full- and sub-
Nyquist sampling along the blipped phase encoding direction relates to signal magnitudes
governed by T ?2 -decay.
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Figure 4.3: Parallel imaging achieves reduced readout lengths in EPI while maintaining or even increasing spatial
resolution. Compared to a full-Nyquist-sampled scenario (a) with fixed echo spacing, either the same k-space extent
is reached within an Rth part of the readout time (b) or the R-fold range is covered in the same time interval (c).
R is equal to 2 in the example. (A similar illustration is shown in [Griswold et al., 1999]. )

Previous research on sub-Nyquist sampled EPI

Relatively early, the beneficial effects - besides g-factor penalties - of parallel imaging for EPI
acquisitions were studied based on simulations, phantom and in vivo measurements using the
SMASH approach [Griswold et al., 1999]. Increased spatial resolution and decreased geomet-
ric distortion were observed in sub-Nyquist-sampling (R = 2) scenarios with doubled matrix
sizes. Notwithstanding, the decrease in SNR was noted as well. Interestingly, potential implica-
tions of parallel imaging for EPI were also already discussed in [Carlson and Minemura, 1993].

Main principles stated in [Griswold et al., 1999] directly apply for single-shot MRI scenar-
ios incorporating other parallel imaging methods, of which various have been investigated.
Possibilities to enhance EPI using SENSE have been explored in a range of applications,
comprising diffusion-weighted imaging [Bammer et al., 2001, Bammer et al., 2002] and func-
tional MRI (fMRI) measurements [Golay et al., 2000, de Zwart et al., 2002, Preibisch et al., 2003,
Schmidt et al., 2005]. Opportunities for GRAPPA in the context of EPI have been considered for
continuous arterial spin labeling (ASL) [Wang et al., 2005b], in dynamic susceptibility contrast
(DSC) perfusion imaging [Newbould et al., 2006], and in fMRI experiments [Lütcke et al., 2006,
Mintzopoulos et al., 2008, Preibisch et al., 2008]. A comparison between GRAPPA and SENSE
in EPI acquisitions was performed by [Skare et al., 2007, Preibisch et al., 2008], in which
GRAPPA was observed to provide more robustness against effects of motion and off-
resonances. Recently, further developments on increasing motion robustness in EPI with
GRAPPA were presented [Baron and Beaulieu, 2016].
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Limitations reported for sub-Nyquist sampled parallel EPI

With sub-Nycquist-sampled parallel EPI, an improvement of spatial resolution and a reduction
of geometric distortion was noticeable in the various parallel imaging methods. However, the
benign effects of the shortened readout was accompanied by a substantial loss in image SNR,
due to the parallel imaging reconstruction inherent g-factor penalty. This loss of SNR is further
exacerbated at higher reduction factors. The latter are essential to achieve a notable decrease
of inherent EPI artifacts. In previous applications of parallel imaging, reduction factors less or
equal to R = 4 were utilized, in the majority of cases, a reduction factor of R = 2 or R = 3
was used. The SNR loss for R = 3 often already exceeded acceptable limits [Lütcke et al., 2006,
Preibisch et al., 2008]. Furthermore, dependencies of the type of trajectory onto the imaging
performance were observed [Skare et al., 2007], as well as how the parallel imaging method is
employed in the reconstruction scheme [Preibisch et al., 2008, Schmiedeskamp et al., 2012].

Time-resolved parallel imaging methods of dynamic MRI have the potential to resolve the
SNR limitations of standard parallel imaging in EPI. Dynamic MRI is discussed in the subse-
quent chapter and EPI is described for its clinical application of cerebral perfusion. The more
benign g-factors for time-resolved paralell imaging methods are content of Chapter 6. The g-
factor as derived in Sec. 4.6 thereby constitutes the basis for the time-resolved considerations.
Chapter 7 then demonstrates the investigations of time-resolved parallel imaging in k-t-sub-
Nyquist sampled EPI.



Chapter 5

Dynamic magnetic resonance imaging

For spatial encoding, a set of Fourier coefficients is sampled to obtain a single image. In order to
capture dynamic changes of the imaged object, the image acquisition process has to be repeated
to obtain a series of snapshot images. Dynamic MRI comprises monitoring signal evolution
over time by acquisition of a series of images. The purpose is to capture physiological motion,
functional changes or for instance, the dynamics of the arrival and passage of an injection of
contrast agent.

In this chapter, the concepts of (static) image acquisitions are extended to the serial measure-
ments of dynamic MRI. The concept of sampling in k-t-space (Sec. 5.1) and Fourier reconstruc-
tion of time series of images (Sec. 5.2) is described. Sub-Nyquist sampling patterns are extended
to k-t-sub-Nyquist sampling patterns in k-t-space (Sec. 5.3). The time-resolved data acquisi-
tion can be likewise combined with time-resolved parallel imaging, as is described in Sec. 5.4.
Whereas the coil sensitivity domain enhances spatial encoding, the additional dimension of
time frames enriches reconstruction based on exploiting temporal correlations. An overview
of time-resolved parallel imaging approaches is briefly stated and the core method of this thesis,
k-t-GRAPPA [Huang et al., 2005, Jung et al., 2008, Jung et al., 2011], is described. The applica-
tion of EPI for dynamic MRI in the clinical context of dynamic susceptibility contrast (DSC)
weighted cerebral perfusion imaging concludes this chapter (Sec. 5.5).

5.1. Concept and sampling of k-t-space

For dynamic MRI, the concept of k-space is extended by the domain of imaged time frames
and is then referred to as k-t-space [Xiang and Henkelman, 1993].

The time-dependent MR signal s(t) can be described - independent of time - in terms of
k-space locations. In static MRI, a single image is acquired over a certain time interval by
collecting a set of Fourier samples. During this time interval, the object-motion and internal
dynamics are assumed to be approximately static and only relaxation influences are considered
in the contrast mechanism.

In dynamic MRI, k-space data sets for several temporal stages of the object are collected in
a serial order. A beating heart, for instance, is thereby captured in a series of snapshot images.
The repeated acquisition of images is described by outer time frames t = 1, . . . , Ntime of the
tth time interval of image acquisition. This extends data samples from multiple coil elements
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(cf. 3.16/4.1), as follows:

dn,t,α =

∫

V
cα(r)m⊥(r, 0, t) exp(−ikn · r) dr,

for each k-space sample n ∈
{

1, . . . , Nsmp
}
,

for each coil α ∈ { 1, . . . , Ncoils } ,
for each time frame t ∈ { 1, . . . , Ntime } .

(5.1)

Figure 5.1 illustrates how the time-dependent MR signal s̃(k) ≡ s(t) (cf. 3.12) is repeatedly
sampled along the different k-space positions. All samples within one inner temporal acqui-
sition window are assigned to the same k-space data set. The time series of all k-space data
sets reflect the temporal evolution according to outer time frames. Thereby, the set of sampled
k-space coordinates in comparing two time frames do not have to be identical. Following the
concept of k-space, sampling in k-t-space then simply yields a partition of the trajectory into
equivalence classes.

Definition 5.1.1 (sampling in k-t-space). Let {kn := k(tn) }N
total
smp

n=1 be a set of visited k-space points of
N total
smp samples over the time interval [τ1, τNtime+1] of acquisition. Consider a partition τ1 < τ2 < . . . <

τNtime+1 which divides the overall acquisition time into Ntime time intervals. Relating sampled k-space
points within the same time interval accordingly facilitates the following definition

Ksmp × T := { (knt , t) t = 1, . . . , Ntime and nt ∈ [τt, τt+1] } , (5.2)

where T denotes the set of time frames. The set Ksmp × T denotes the sampling in k-t-space.

Remark 5.1.2. The sampling of consecutive time frames is described here as strictly sequential. In
cardiac dynamic MRI, however, k-space acquisitions are often segmented. Thereby, samples of the same
time frame are acquired with intermissions, in which samples of other time frames are collected. Due to
the periodicity of the beating heart, different k-space samples can be binned according to their relative
acquisition time within the cardiac cycle. Definition 5.1.1 maintains meaningful, when time frames
correspond to different heart phases of the cardiac cycle.

Sampling in k-t-space allows to define the temporal resolution as the sampling rate of time
frames.

Definition 5.1.3 (temporal resolution). Consider the partition τ1 < . . . < τNtime+1 of the total acqui-
sition time interval [τ1, τNtime+1] of a dynamic MRI scenario as in Def. 5.1.1. Let ∆t be the minimum
length such that τt+1− τt ≤ ∆t, for all t = 1, . . . , Ntime. Then the temporal resolution is defined with
respect to ∆t.

ky

t

Figure 5.1: In dynamic MRI, the
time-resolved MR signal is divided
into equivalence classes to represent k-
space sets with respect to different time
frames.
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Strictly speaking, the k-t-space concept requires motion to occur only between and not
within time frames. In general this is not true and motion during the acquisition of one time
frame (i.e. intra-frame motion), may lead to motion artifacts. Various approaches to correct for
motion during the measurement exist ranging from simple averaging to cardiac triggering and
prospective motion correction schemes, e.g. [Wood and Henkelman, 1986, Zaitsev et al., 2006,
Maclaren et al., 2013]. A logical approach to better capture the inter-frame motion and to miti-
gate motion artifacts due to intra-frame motion is to increase the temporal resolution.

5.2. Fourier image reconstruction in dynamic MRI

Fourier reconstruction can be performed individually for each time frame. The limitations dis-
cussed in Sec. 3.3 directly apply. Yet, another practical limitation arises in dynamic MRI due
to the idiosyncrasy of the encoding process and spatial resolution: a trade-off between spatial
and temporal resolution. The more Fourier coefficients are acquired (for enhanced spatial res-
olution), the longer the intervals for repetition become, i.e. the lower the temporal resolution
is. This extends the list of practical limitations of Fourier encoding and Fourier reconstruction
in dynamic MRI by:

1. discrete (or frequency band-limited) data sampling

2. finite data sampling

3. negative correlation of signal-to-noise and spatial resolution

4. negative correlation of spatial and temporal resolution

Increasing temporal resolution imposes limitations on the spatial resolution. Increasing
spatial resolution necessitates a longer readout. Hence, increasing spatial resolution without
violating the Nyquist theorem necessarily decreases the temporal resolution.

The time frames acquired in the dynamic MRI measurement form a discrete set. This re-
quires the object’s dynamics to be frequency band-limited (analogous to Thm 3.3.7), as to fulfill
the Nyquist-Shannon criterion in the temporal domain. Therefore, in full-Nyquist-sampled
dynamic Fourier encoding, the object’s spatial extent and the frequency band of motion dic-
tates the sampling scheme. In most applications, one cannot determine the sampling rate of
time frames that is sufficient to obtain unaliased temporal information. Nevertheless, great
similarity between neighboring time frames suggests a high redundancy in full-Nyquist sam-
pling k-t-space data. This potentially allows for reduced data acquisition, when making correct
assumptions in the reconstruction process.

5.3. Sub-Nyquist sampling in k-t-space

In the following, patterns for regular Cartesian sub-Nyquist sampling in k-t-space are dis-
cussed. Assuming k-space undersampling for each time frame by reduction factor R, the pat-
tern can be shifted in consecutive time frames by ∆s· 2π

FoV (Thm. 3.3.7), for ∆s ∈ { 1, . . . , R− 1 },
in order to ensure the sampling of each k-space position on the Cartesian grid once within R
consecutive time frames. Note that the temporal resolution as defined in Def. 5.1.3 of the k-
space data sets is maintained, although the sampling intervals of each single k-space position
is increased by R.
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Examples of resulting k-t-undersampling patterns for different shifts at a reduction factor
of R = 5 are depicted in Fig. 5.2. The third illustration in Fig. 5.2 has been shown to be a
more benign sampling pattern [Tsao et al., 2003a] by solving the Euclidean packing problem.
For better visibility, the frequency encoding direction is omitted and only time frames against
phase encodings are shown. In the presented examples, a variable density acquisition with
Nyquist sampled k-space center is displayed.

The regular k-t-space undersampling presented in Fig. 5.2 corresponds to patterns applied
in this work, leaving open the choice of reduction factor as well as the usage of variable density
sampling. How to exploit the correlations due to the additional time domain in combination
with parallel imaging is discussed in the following section.
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factor R = 5 are depicted. The
kx-dimension - not displayed - lies
perpendicular to the page. The k-space
sampling pattern is shifted by ∆s = 0
(left), ∆s = 1 (middle) and ∆s = 2
(right) for consecutive time frames.

5.4. Time-resolved parallel imaging

The k-t-sub-Nyquist sampled data of multiple receive coils in k-t-space is the basis of various
approaches to solve the image reconstruction problem using sensitivity encoding as well as
temporal correlations. A brief literature overview is given below (Sec. 5.4.1), followed by the
presentation of k-t-GRAPPA (Sec. 5.4.2).

5.4.1. Literature overview: Time-resolved parallel imaging

Early implementations of utilizing correlations along the temporal domain were described
as view sharing techniques [Riederer et al., 1988], or as keyhole methods [Van Vaals et al., 1993,
Jones et al., 1993]. The latter comprises the acquisition of one Nyquist-sampled time frame
followed by only updates in form of low-resolution data. However, the missing updates of
high spatial frequency data constitutes the major drawback of keyhole methods [Hu, 1994].
Ideas to use random sampling patterns or to use block interpolation between time frames were
introduced to address this problem [Parrish and Hu, 1995, Doyle et al., 1995].

Using the extended data information in the overall k-t-space was consolidated by con-
sidering the temporal frequency response of the imaged time series, as for instance in the
UNFOLD method (UNaliasing by Fourier-encoding the Overlaps using the temporaL Dimension) by
[Madore et al., 1999]. UNFOLD exploits the limited temporal bandwidth of many applications
in dynamic MRI which entails a dense support in x-f-space (as the Fourier counterpart of the
k-t-domain) of the spatio-temporal frequencies. Hence, by shifting the undersampling pattern
along the temporal domain, the aliasing in the folded spatial information is spread along the
temporal frequency domain according to the respective temporal frequency of the periodically
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repeated undersampling patterns. The underlying true magnetization representation occurs
around the zeroth temporal frequency component. Assuming the region of support in x-f-space
to be known, the unaliased data can be simply extracted by a filter procedure [Tsao, 2002].
However, the UNFOLD approach depends on precise knowledge of the region of support and
the undersampling induced replica to be strictly distinguishable. This limits the practicability
of UNFOLD, since especially when moving to higher reduction factors, overlapping domains
can hardly be avoided.

Based on the shifted sub-Nyquist-sampled data in the UNFOLD scheme, the view sharing
technique can be applied using a Sliding Window approach as described in [d’Arcy et al., 2002].
Hereby, R consecutive sub-Nyquist-sampled k-space data sets are additively combined into a
single full-Nyquist-sampled data set. The advantage of this procedure is that high spatial fre-
quency information is also updated and that it does not rely on the knowledge of the region of
support. The disadvantages, however, comprise the occurrence of artifacts due to mismatched
k-space acquisitions and a decrease in temporal resolution by R.

All of the methods described so far exploit only temporal correlations. Each k-space data
point is reconstructed independently of other k-space data points, as opposed to e.g. parallel
imaging which also uses spatial correlations. The group of time-resolved parallel imaging ap-
proaches comprise methods which employ in addition to spatial also temporal correlations in
the image reconstruction process.

A first approach of enhancing parallel imaging with temporal information originated in
[Kellman et al., 2001a, Kellman et al., 2001b] and [Madore, 2001, Madore, 2002]. In TSENSE,
[Kellman et al., 2001a] suggested to perform SENSE based on the shifted sub-Nyquist sam-
pling followed by temporal filtering in x-f-space with the UNFOLD approach to reduce residual
aliasing artifacts at reduction factorR = 2. The possibilities of artifact-suppression of UNFOLD
to aid parallel imaging to achieve higher reduction factors was elaborated in UNFOLD-SENSE
[Madore, 2002]. Additionally presented in [Kellman et al., 2001a], is an algorithm for adap-
tive estimations of sensitivities from temporally filtered sub-Nyquist-sampled time frames in
a prior step. This idea was extended by acquisition of ACS data in SHRUG [Madore, 2004],
where the GRAPPA-like autocalibration signal serves as a basis for sensitivity estimation.

The requirement of actual knowledge of the region of support was replaced with learning
the needed temporal frequency information from a set of training data by [Tsao et al., 2003a]. In
k-t-BLAST and k-t-SENSE [Tsao et al., 2003a], reconstruction is enhanced by the signal covari-
ance matrix as estimated from the training data. Thereby, the training data set at low spatial
resolution is assumed to sufficiently represent temporal variations within the time-resolved
imaging scenario. Relative signal magnitudes are estimated and incorporated within the op-
timization problem as to balance data consistency with the estimated relative contribution.
k-t-SENSE extends the idea of k-t-BLAST by incorporating coil sensitivities as well.

Subsequent to SHRUG and in analogy to TSENSE, TGRAPPA [Breuer et al., 2005b] en-
hances GRAPPA based parallel imaging reconstruction by exploiting the additional, temporal
domain. In TGRAPPA, dynamic updates of the estimated GRAPPA reconstruction weights are
obtained by additively combining the - in total - R adjacent time frames to form a Nyquist-
sampled data set serving as temporally filtered ACS data for kernel calibration. Whereas
SHRUG incorporated the acquisition of ACS data as part of every time frame, TGRAPPA solely
works with the shifted sub-Nyquist-sampled data sets. As in TSENSE or UNFOLD-SENSE,
the time domain is utilized to support the actual parallel imaging reconstruction. Further,
the methods KL-TSENSE and KL-TGRAPPA [Ding et al., 2011] introduce an optimal linear
filter employing the Karhunen-Loeve transform for estimating coil sensitivities or ACS data to
improve TSENSE and TGRAPPA, respectively.
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Figure 5.3: Four different reconstruction kernels approaches are illustrated for a reduction factor of R = 5: (a)
non-time-resolved kernels for GRAPPA, (b) the only time-resolved SW kernels, and (c) time-resolved kernels for
k-t-GRAPPA, as well as (d) for PEAK-GRAPPA.

As a further development of TGRAPPA, time-resolved GRAPPA based reconstruc-
tion kernels were proposed in k-t-GRAPPA [Huang et al., 2005]. Analogous to k-t-SENSE,
k-t-GRAPPA is the k-t-space based counterpart which jointly utilizes spatio-temporal cor-
relations in the reconstruction process. A practical analysis on the optimality of kernel
geometries led to parallel MRI with extended and averaged GRAPPA kernels (PEAK-GRAPPA)
[Jung et al., 2008, Jung et al., 2011].

A completely different methodological approach to consider the temporal domain in the
image reconstruction is given by the concept of partial separability (PS) in the context of MRI,
introduced by [Liang, 2007, Haldar and Liang, 2010]. Thereby, k-t-space data is mapped onto
a data space of reduced dimensionality, in order to remove low variance information to en-
hance signal information. The mapping is based on the Karhunen-Loeve transform. Similarly
in k-t-PCA [Pedersen et al., 2009], the principal components of the variation based on train-
ing data are derived and the estimated signal covariances based on the principal components
are incorporated in the reconstruction process, as a further development of k-t-SENSE. These
methods build a transition and directly merge into iterative approaches based on regularization
using assumptions about the spatial and temporal correlations.

Central to the present work is the time-resolved GRAPPA based approach of k-t-GRAPPA
and its optimization PEAK-GRAPPA. As both k-t-GRAPPA and PEAK-GRAPPA follow the
same methodological idea, both methods are jointly referred to as k-t-GRAPPA. At higher re-
duction factors, an optimized PEAK-GRAPPA sampling pattern and reconstruction kernel is
used, unless the original k-t-GRAPPA approach and PEAK-GRAPPA are explicitly compared
with each other. k-t-GRAPPA is described in further detail in the subsequent section.

Time-resolved GRAPPA based parallel imaging facilitates reduced data acquisition while
providing a robustness and a benign SNR behavior. Note that time-resolved parallel imaging
methods were developed in the context of cardiac dynamic MRI which still constitutes its main
application.
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5.4.2. k-t-GRAPPA

k-t-GRAPPA exploits correlations in k-space as well as in the temporal domain. A time-resolved
GRAPPA kernel geometry is defined comprising k-space neighbors as well as temporal
adjacent data points. The number of targets and the kernel geometry depend on the
k-t-undersampling pattern with respect to reduction factor R. Figure 5.3 depicts different
undersampling patterns in k-t-space with defined kernel structures illustrated for k-t-GRAPPA
as well as for the PEAK-GRAPPA kernels. A kernel geometry is defined for each of the R − 1
relative target spatial harmonics, as further drafted in Fig. 5.3. As for conventional GRAPPA,
k-t-GRAPPA reconstruction consists of two steps:

1. calibration of the reconstruction weights given the Nyquist-sampled ACS data set

2. estimation of unaquired k-space data in each time frame by weighted linear combination
of data at neighboring k-space locations and time points.

Calibration of the reconstruction weights is performed using the ACS data set. The ACS data
is also time-resolved in k-t-GRAPPA, as opposed to conventional GRAPPA (Sec. 4.5.1). The
ACS data is usually acquired by fully sampling the k-space center for each time frame, but can
also be derived by adding R adjacent time frames as described in [Huang et al., 2005]. Source
and target data points are collected in accordance with the chosen time-resolved GRAPPA
kernel geometry. The GRAPPA kernel thereby incorporates Bfe, Bpe and Bt acquired sam-
ples as sources, along the two encoding dimensions and the temporal domain. The optimal
weights in the least-squares sense to relate sources and targets in k-t-space are derived us-
ing the Moore-Penrose pseudo inverse. This solves the inverse problem of weight calibration
(cf. 4.26). Whereas only source points within the same time frame are considered in conven-
tional GRAPPA, source points are collected in three dimensions (frequency/phase encoding
and time) for 2D-slice imaging with k-t-GRAPPA.

The estimation of omitted k-space data can be expressed as a convolution of the weights with
the undersampled data. In the case of k-t-GRAPPA, a series of images is reconstructed based
on the time-enhanced kernel geometries. Let w3D

α,β ∈ CBfe×RBpe×Bt denote the weights (com-

bined to a convolution kernel) in k-t-space for target coil α and source coil β. Let dzf,3D
β be the

zero-filled acquired undersampled data of coil β in the same representation. A time series of
reconstructed data for each coil is obtained by convolution of w3D

α,β with dzf,3D
β , i.e.

d̂sub,3D
α =

∑

β∈C
w3D
α,β ∗ dzf,3D

β . (5.3)

The final series of reconstructed images is obtained by Fourier reconstruction along the k-space
dimensions and subsequent coil combination using either rSoS, Roemer or Walsh combination
(Sec. 4.1). Thus, for coil combination weightings p3D

α , for coils α = 1, . . . , Ncoils, image recon-
struction yields

Îsub,3D =

Nc∑

α=1

p3D
α �

(
DFT −1

x,y

{
d̂sub,3D
α

})
. (5.4)

Finite acquisition requires explicit treatment of k-space borders, as well as the first and last
time frames, since the kernel structure necessarily exceeds the domain of acquired data sam-
ples. Usually, the source domain is artificially enlarged by either zero-filling or by assuming a
periodic boundary condition.
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The k-t-GRAPPA approach is - like GRAPPA - purely data-driven and does not require the
derivation of sensitivity values. It relies on the k-space locality principle and k-space shift-
invariance of the reconstruction weights. Furthermore, temporal correlations are assumed. As
opposed to methods such as UNFOLD (see Sec. 5.4.1), k-t-GRAPPA does not require direct
knowledge about the support of temporal frequencies.

Excluding correlations along the time dimension, k-t-GRAPPA becomes identical to con-
ventional GRAPPA and the analogy to a Sliding Window (SW) approach is found by neglecting
spatial correlations. However, k-t-GRAPPA cannot be expressed as a concatenation of those
two methods, since the three-dimensional convolution kernel cannot be separated into a k-
space and a temporal kernel. Since SW can be analogously formulated as based on a convo-
lution kernel, differences between all methods k-t-GRAPPA, conventional GRAPPA and SW
are pinned down to the different kernel dimensionality and the usage of coil sensitivities, as
illustrated in Fig. 5.3. Note that the different coils are not shown in Fig. 5.3.

With k-t-GRAPPA, higher reduction factors can be achieved compared to conventional par-
allel imaging which act on each time frame separately. Both methods exhibit an improved
noise behavior in comparison to conventional GRAPPA [Huang et al., 2005, Bauer et al., 2013].
[Jung and Kozerke, 2009] demonstrated significant differences in the noise treatment in cardiac
applications of k-t-SENSE and k-t-GRAPPA. Whereas the k-space based method k-t-GRAPPA
exhibits smooth noise enhancement over the range of images, k-t-SENSE shows greater noise
enhancement in the area of motion and less noise in static areas. However, these are heuristic
observations and are not supported by a theoretical analysis so far.

Summary of (time-resolved) parallel imaging

Parallel imaging, where spatial encoding is supplemented by locally varying coil sensitivity
information, facilitates k-space sampling to the sub-Nyquist-regime with a reduction factor R,
while maintaining image resolution. The omission of time-consuming phase encoding steps
directly reduces the total acquisition time at a given spatial resolution. The reduction in scan
time comes at the expense of a loss in SNR, arising from the reduced data aggregation as well as
an additional penalty described by the g-factor. The noise amplification limits the applicability
of parallel imaging methods such as GRAPPA and SENSE when moving to higher reduction
factors.

In dynamic MRI, increasing spatial resolution of Fourier encoding limits the temporal res-
olution and vice versa. Dynamic MRI allows to extend parallel imaging by additionally ex-
ploiting correlations in the time domain. Here, undersampling in k-t-space with time-resolved
parallel imaging provides the potential to improve the spatio-temporal resolution.

In the next chapter, a theoretical framework for a noise analysis of k-t-GRAPPA is devel-
oped which is equivalent to the g-factor formulation for conventional GRAPPA. The presented
analysis was published in [Ramb et al., 2015a]. Furthermore, parameters shaping the differ-
ent - yet similar - noise behavior of the GRAPPA versus the SENSE approach are investigated.
The presented framework bridges noise analyses between image and k-space based as well as
non-time-resolved and time-resolved parallel imaging methods.
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5.5. Clinical applications of dynamic echo planar imaging

Echo planar imaging (EPI) is applied in diverse scientific and clinical context ranging from
measurements of cerebral perfusion or diffusion, to angiography or myocardial perfusion, to
investigations of brain activities referred to as functional MRI. In particular in the clinical con-
text, EPI is still the most common imaging technique to achieve fast multi-slice coverage cap-
turing functional morphological changes in the clinical context. In the scope of this thesis, EPI
is applied for - but not limited to - dynamic susceptibility contrast (DSC) weighted cerebral
perfusion imaging.

5.5.1. Dynamic susceptibility contrast weighted cerebral perfusion imaging

Cerebral perfusion MRI is nowadays part of the clinical routine in the assessment and diagnosis
of tumoral, vascular or inflammatory diseases of the brain. Decreased perfusion is observed in
patients with acute stroke (review of perfusion MRI in stroke patients in [Copen et al., 2011]),
whereas increased perfusion is often perceived in brain tumors, due to enhanced capillary den-
sity and permeability. An overview of MR perfusion imaging in brain tumors can be found
in [Covarrubias et al., 2004]. In both cases, the additional evaluation of the physiology, as tar-
geted by cerebral perfusion MRI, provides more differentiated information to support the clin-
ical diagnosis.

In the diagnosis and treatment of brain tumors, it is important to correctly grade the ma-
lignancy of the tumors. Whereas conventional anatomic MRI allows for a depiction with great
detail, it does not reveal the tumor grade of the affected tissue. In all cases, a stereotactic or
open biopsy has to be performed for histological estimation. It is therefore essential to identify
the most aggressive tumorous area for sampling. Cerebral perfusion MRI has the potential to
assist precise localization as well as detailed delineation of tumorous tissue.

For dynamic susceptibility contrasted (DSC) weighting, paramagnetic gadolinium
(Gd) based contrast agent is injected into the vasculature system [Rosen et al., 1990,
Rosen et al., 1991a, Rosen et al., 1991b]. The volume of contrast agent - referred to as bo-
lus - is transported via the cardiopulmonary circulation to the brain. The interaction of
paramagnetic Gd-chelate with its surrounding magnetized tissue induces susceptibility differ-
ences (Sec. 3.4.2) between the vessel structure and the adjacent tissue. This implies a shortening
of T ?2 -decay rates and a strong signal decrease. Thus, the actual dynamic susceptibility contrast
consists of a signal decrease, when the contrast agent arrives at the observed tissue, followed
by a signal recovery when the contrast agent is washed out.

Dynamic susceptibility contrast is used in the context of cerebral perfusion measurements
to derive hemodynamic parameters that support the classification of the state of perfused tis-
sue. The shape and the amplitude of the signal dip depend on the amount and the magnetic
properties of the contrast agent, as well as the distribution and density of the vessel structure
and the TE [Fisel et al., 1991, Boxerman et al., 1995, Weisskoff et al., 1994, Østergaard, 2005].
Findings further imply that spin echo measurements are to some extent sensitive to the vessel
sizes, which is not the case for GE based measurements. A review of main principles of DSC
weighted cerebral perfusion as well as main methodologies are presented in [Østergaard, 2005,
Østergaard et al., 1996b, Østergaard et al., 1996a]. Main concepts are briefly summarized here.
Since GE based imaging is incorporated in this work, it is solely referred to T ?2 -decay rates in
the following.
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A central assumption in the derivation of perfusion parameters from DSC weighted acqui-
sitions is the linkage of dynamic changes of R?2 = 1/T ?2 decay rates, ∆R?2(t), to the temporal
variation of contrast agent concentration in the tissue, Ct(t), as part of the tracer kinetic ap-
proach:

Ct(t) ∝ ∆R?2(t). (5.5)

Experimental findings based on injections of different doses substantiate a close linear rela-
tionship between the amplitude of the dip and the concentration during the passage of con-
trast agent [Simonsen et al., 1999]. Based on this assumption, the monitored signal drop can be
translated into a time-dependent indicator for contrast agent concentration within the proxim-
ity of the respective spatial origin. The concentration curve is derived based on an estimate of
the mean baseline magnitude signal ŝ0 and calculating ∆R?2 by

Ct(t) ∝ ∆R?2(t) := − ln

(
s(t)

ŝ0

)
/TE, (5.6)

The baseline signal ŝ0 is usually estimated over the time interval after the signal has reached a
steady state and before the arrival of contrast agent.

In DSC weighted cerebral perfusion measurements, the first passage of the bolus is dynam-
ically imaged. EPI thereby typically serves as a fast imaging method to capture the contrast
agent passage. The concentration time curve is then estimated for each pixel. The spatio-
temporal resolution of the acquisition sets boundaries within this process. Figure 5.4 shows
an example of reconstructed magnitudes and concentration time curve. The time to peak, the
bolus arrival time, the FWHM and the area under the curve serve as indicators and can be directly
deduced from the concentration curve. With further calculations, various perfusion parame-
ters can be obtained such as cerebral blood volume (CBV), cerebral blood flow (CBF) or mean
transit time (MTT), of which CBV is the main concern in this work. For a detailed overview
over perfusion parameters refer to [Østergaard et al., 1996b].

Cerebral blood volume (CBV)

A common model to derive CBV is given by the area under the concentration curve normalized
to the first moment of the input concentration - referred to as arterial input function - for each
pixel. Correct derivation of the arterial input function to obtain quantitative CBV values has
been - and still is - a diversely discussed issue, e.g. [Calamante et al., 2002, van Osch et al., 2003,
Kellner et al., 2013]. An estimate of relative CBV can be obtained by

CBV ∝
∫

∆R?2(t)dt. (5.7)

This equation still holds without the normalization by the arterial input function. Integration
is usually performed either solely over the first bolus passage or including the typical second
bolus recirculation.

Careful consideration is required when integration is performed over the complete con-
centration curve and in the case of a non-intact blood-brain barrier. The latter is an epiphe-
nomenon in some brain diseases. With a broken blood-brain barrier, contrast agent enters
surrounding tissue compartments. Unexpected distributions of contrast agent into the tissue
impairs the derivation of CBV, since T1 is thereby artificially altered. This effect is termed T1

leakage. Approaches to correct for T1 leakage are manifold, ranging from mitigating the effect
due to large TR and/or small flip angle acquisition, to retrospective correction based on ac-
quisitions of multiple echoes, to post-processing methods using linear fits to estimate the rate
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Figure 5.4: Time series of a single pixel as part of a DSC weighted cerebral perfusion measurement are shown:
signal magnitudes (left) and the corresponding concentration curve (right). The baseline signal is reached in
steady state and before bolus arrival. The subsequent bolus passage induces the typical signal dip of DSC weighted
imaging.

of falsification, to doubled administration of contrast agent, e.g. [Schmiedeskamp et al., 2012,
Boxerman et al., 2006, Hu et al., 2010, Paulson and Schmainda, 2008]. The considerations pre-
sented below therefore comprise the integration of solely the first bolus passage. Moreover, the
repetition time TR is chosen to be as minimal as possible, yet large enough to avoid T1 leakage
corruption.

In the Chapter 7, k-t-sub-Nyquist sampled EPI is performed in the context of DSC-weighted
cerebral perfusion measurements. The investigation of k-t-sub-Nyquist sampled EPI is moti-
vated by the gained degrees of freedom in improving spatio-temporal resolution for clinical
applications. This is particularly desirable for tumor assessment for an easier delineation of
affected tissue.





Contributions of this thesis

Chapters 2-5 covered the MR imaging process from signal formation to Fourier encoding and
parallel imaging reconstruction. The connection with more general concepts was described
in Chapter 1. In contrast to most works on the subject of MRI, a mathematical language was
emphasized - in particular in the description of Fourier imaging. Among the own contributions
in these chapters is the equivalent theoretical expression of g-factors for SENSE and GRAPPA,
as derived in Chapter 4.

The author’s contribution in the following parts into two main topics that are united under
the umbrella of k-t-sub-Nyquist sampled time-resolved parallel imaging. Chapters 6 and 7 are
each dedicated to one of the topics. Chapter 6 is again sub-divided into two parts of comple-
mentary contents. Each contribution is presented in the form that is common practice for the
MR community: Theory, Methods, Results, Discussion. The author’s publications and conference
contributions are listed on page 159.

Chapter 6 contains the developments towards a unified framework for parallel imaging
methods. A derivation of SENSE in a framework identical to the GRAPPA formulation is pro-
vided and explored in a simulated data set. To this end, the two hybrid methods extended
GRAPPA and truncated SENSE are introduced. With the shown transition from GRAPPA to
SENSE, the presented work sheds light on the relationship between the two most prominent
standard parallel imaging methods and sets a theoretical basis for a more unified framework.

Transitioning from static to dynamic MRI, a g-factor formalism for k-t-GRAPPA is further-
more presented in Chapter 6. Analytical approaches to derive g-factors were previously avail-
able only for standard parallel imaging methods, but not for time-resolved parallel imaging
methods. The presented analysis comprises spatially non-uniform image noise and temporal
frequency responses, which are investigated in a cardiac application. Static and dynamic par-
allel MRI methods are thereby connected. The influence of exploiting spatial versus temporal
correlations is furthermore revealed in the transition from k-t-GRAPPA to Sliding Window re-
construction. In a cooperation with the Institute for Biomedical Engineering, University and
ETH Zürich, Switzerland, [Binter et al., 2016], g-factors were also derived for k-t-SENSE, which
complements the work towards a unified general framework for parallel imaging.

With the confirmed benign g-factors of k-t-GRAPPA at high reduction factors, a central
contribution of this thesis was to transition k-t-GRAPPA concepts into the context of brain
imaging, which is the content of Chapter 7. Therefore, a k-t-sub-Nyquist sampled EPI sequence
(k-t-EPI) with three different acquisition strategies was implemented. EPI has been and is still
a target of vivid research. The introduction of k-t-GRAPPA into EPI has not been previously
reported. k-t-EPI is investigated and applied in the context of dynamic susceptibility contrast
weighted cerebral perfusion measurements. In a close cooperation with the Department of
Neuroradiology of the University Medical Center in Freiburg, k-t-EPI was applied in several
patient measurements to assess the cerebral blood volume at higher spatial resolution than the
current clinical protocol provides.





Chapter 6

Towards a unified general framework for parallel imaging

Parallel imaging allows for faster image acquisition based on hybrid Fourier and sensitivity
encoding. The most prominent parallel imaging methods are Cartesian SENSE and GRAPPA.
Time-resolved parallel imaging techniques, such as k-t-GRAPPA, further exploit correlations
in x-f-space to achieve a similar task in dynamic MRI. The aim of this chapter is to develop the
foundation of a unified theoretical framework for parallel imaging of static and dynamic MRI.

In Sec. 6.1, an equivalent expression for Cartesian SENSE as for GRAPPA is derived. Based
on the shared framework, differences and similarities are investigated. The transition from
GRAPPA to Cartesian SENSE is shown by extending the support in k-space of the GRAPPA
convolution kernel. The effect of the extension in GRAPPA - and likewise truncation of SENSE
- is observed based on g-factor calculations.

In Sec. 6.2, a bridge is built between conventional GRAPPA of static MRI and k-t-GRAPPA
used in dynamic MRI. To this end, an analytical noise analysis framework for k-t-GRAPPA is
developed on the basis of the g-factor formulation for conventional GRAPPA. The subsequent
analysis of k-t-GRAPPA and GRAPPA in a cardiac application confirms the more benign SNR
behavior of k-t-GRAPPA. Furthermore, the transition from k-t-GRAPPA to Sliding Window is
revealed by step-wise virtual compression of coil elements in the reconstruction process.

The g-factor analysis for an extended GRAPPA algorithm was partly presented in
[Ramb and Schultz, 2013]. The derived g-factor framework for k-t-GRAPPA was published in
[Ramb et al., 2013c], including some of the figures. Parts of this work have also been presented
as conference contributions [Ramb et al., 2013a, Ramb et al., 2013b, Ramb et al., 2014a]. Com-
plementary considerations for image space based time-resolved parallel imaging methods
were published in a cooperation [Binter et al., 2016].

6.1. Static imaging with SENSE and GRAPPA: differences and similarities

Cartesian SENSE and GRAPPA both solve the general image reconstruction problem in parallel
imaging based on undersampled data acquisition. However, both methods approach this prob-
lem differently. In this section, similarities and differences are investigated. To this end, SENSE
is expressed in an equivalent formulation as GRAPPA in image space and can then be trans-
formed into a k-space formulation equivalent to GRAPPA in k-space (Sec. 6.1.1). ExtGRAPPA
and trSENSE are introduced to aid a transition between both methods (Sec. 6.1.2). Within the
same framework, the effects of different parameters onto g-factor noise are analyzed (Sec. 6.1.3)
and discussed (Sec. 6.1.4). Parts of this work were presented in [Ramb and Schultz, 2013].
Facets of the relationship between GRAPPA to SENSE are also discussed in [Yeh et al., 2005,
Sodickson and McKenzie, 2001, Schultz, 2013], however, in a different formal approach.
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6.1.1. Theory: from SENSE to GRAPPA

In this section, an expression for Cartesian SENSE reconstruction (see Sec. 4.3.1) similar to the
standard GRAPPA reconstruction (see Secs. 4.5.1 and 4.5.2) is derived.

In Cartesian SENSE, the Moore-Penrose pseudo inverse Cunfold
p ∈ CR×Ncoils (cf. 4.17) is com-

puted for each aliased or folded spatial position in the Fourier reconstructed image of the zero-
filled undersampled data of all coils, denoted by F̌−1dzf ∈ CNpixNcoils (cf. 4.16). Let Îfold :=
F̌−1dzf represent the vector in image space that contains the folded contributions. In order to
express the unfolding operation by a single matrix multiplication, a single unfolding matrix
Cunfold ∈ CNpix×NcoilsNpix is formed. It consists of a block-diagonal matrix with blocks Cunfold

p ,
for each p = 1, . . . , Nsmp, which is column-wise R-times repeated. The unfolded image vector
Î† ∈ CNpix is then derived - analogous to (4.13) - by

Î† :=
1

R
CunfoldÎfold, (6.1)

where the factor 1/R arises, since Îfold contains R replica of the same information (see Re-
mark 4.3.3). This reconstructed image is already coil combined.

In order to obtain the image of a single coil, coil sensitivities of each coil α are described by
a diagonal matrix Cα ∈ CNpix×Npix such that

(Cα)n,m := cα(rm)δn,m. (6.2)

Multiplication by Cα then provides the reconstructed image weighted by coil α:

Î†α := CαÎ† =
1

R
CαC

unfoldÎfold. (6.3)

Define the matrix Call
β ∈ CNpix×NpixNcoils which extends the definition of (6.2) to including all

coils, where coil sensitivity weightings are only non-zero for contributions from the indexed
coil β. Analogous to deriving Î†α, define then Îfold

β := Call
β Îfold as the aliased image corre-

sponding to coil β (R-times replicated). Matrix multiplication can be equivalently expressed
as element-wise multiplication of each coil weighted image and subsequent addition, hence

Î†α =
1

R

∑

β∈C
CαC

unfold
β Îfold

β . (6.4)

In this notation, the matrix CαCunfold
β ∈ CNpix×Npix is a square-matrix which performs a part of

the unfolding process only based on coil β and projects the result onto target coil α.
Two observations are made: first, by the definition of Îfold, each row ofCαCunfold

β necessarily
contains the same unfolding information R-times. Thus, one of the R folded pixel values in
each case suffices to reconstruct the respective R unfolded pixel values. Second, each folded
pixel position p = 1, . . . , Npix (including the R replica) contributes to the same unfolded pixel
position. Hence, the diagonal of CαCunfold

β connects each folded pixel position with the same
pixel position in the unfolded image. Based on the two observations, the diagonal elements
diag

(
CαC

unfold
β

)
are formed into a vector c̃α,β ∈ CNpix and (6.4) simplifies to

Î†α =
∑

β∈C
c̃α,β � Îfold

β , (6.5)
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where � is again used to emphasize element-wise multiplication of the two vectors. By simple
rearranging the vectors c̃α,β , Îfold

β and Î†α ∈ CNpix into two-dimensional representations C̃α,β ,
I fold
β and Îsub

α ∈ CNx×Ny , an equivalent expression of (6.5) is given by

Îsub
α =

∑

β∈C
C̃α,β � I fold

β . (6.6)

This representation of Cartesian SENSE facilitates direct comparison with the image space
GRAPPA formulation of Sec. 4.5.2 (cf. 4.30).

Cartesian SENSE reconstruction of the coil image of coil α thus is determined by C̃α,β , for
each coil β. With linearity of the discrete Fourier transform and the Fourier convolution theo-
rem, (6.6) can be transformed to

d̂sub,2D
α =

∑

β∈C
DFT x,y

{
C̃α,β

}
∗ dzf,2D

β , (6.7)

where DFT x,y{ } denotes the 2-dimensional discrete Fourier transform along the two spatial
dimensions and using the notation as introduced in Sec. 4.5.2. This representation yields a k-
space formula for Cartesian SENSE in analogy to the k-space algorithm of GRAPPA (cf. 4.29).

The equations of (6.6) and (6.7) reveal the following observations:

1. Cartesian SENSE reconstruction can be approached as a convolution in k-space, of which
fully sampled coil data is obtained.

2. The convolution kernel comprises linear combinations of coil sensitivities.
(sensitivity image weights)

3. The local unfolding in the image domain yields generally a global convolution in k-space.
(full extent)

Similarly, for GRAPPA, the equations of (4.29) and (4.30) demonstrate:

1. Cartesian GRAPPA reconstruction can be approached as a multiplication in image space.

2. The convolution kernel comprises linear combinations of in vivo sensitivities.
(ACS image weights )

3. The support of the convolution kernel is postulated to consist of a small neighborhood
structure in k-space. (truncated extent)

Note that it is not a real difference that either the calibration scan precedes the actual mea-
surement (typical for the coil sensitivities estimation of SENSE) or that it is part of the scan
(ACS data acquisition for GRAPPA). For GRAPPA, both variants can be applied and are often
referred to as extra ACS or inplace ACS, respectively. Also for SENSE, coil sensitivities can be
acquired in an extra scan or as part of the measurement, the latter led to the nomenclature of
modified SENSE (mSENSE) [Wang et al., 2001].

With the derived expressions, both approaches can be described precisely with the same
terminology. Therefore, different influences as part of the image reconstruction process can
be isolated to distinguish their effects on the reconstructed image. Two fundamental differ-
ences between SENSE and GRAPPA are the usage of ’pure’ (estimated from acquisitions and
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smoothed, object influences are removed) coil sensitivities in SENSE versus in-vivo sensitivities
(weighted with the object) in GRAPPA, as well as the truncated support of convolution kernels
in GRAPPA versus the full k-space extent in SENSE. These two opposed parameters between
SENSE and GRAPPA can now be targeted in a separate analysis. Differences in the outcome in
terms of g-factor maps are investigated below.

6.1.2. Methods: truncated SENSE and extended GRAPPA

An extGRAPPA (GRAPPA with extended kernel) reconstruction was achieved by extending the
kernel sizes in the GRAPPA reconstruction. The algorithm was based on (4.29), where the
kernel extent is given according to the chosen neighborhood size Bfe×Bpe. If Bfe and Bpe
approachNACS

fee andNACS
pe /R, respectively, the number of possible kernel placements within the

ACS data reduces to one (cf. Sec. 4.5). This leads to a poor robustness of the fitting procedure. In
order to still obtain enough k-space neighborhood samples, the calibration data were therefore
artificially enlarged by periodically repeating samples along both dimensions. The isolated
effect of ’pure’ versus in vivo sensitivities at full kernel extent were compared between SENSE
and extGRAPPA at the maximal kernel extent Bfe = Nx and Bpe = Ny/R.

A trSENSE (SENSE with truncation of the k-space extent of the coil sensitivity data) reconstruc-
tion was obtained by truncating the k-space representation of the coil sensitivities used in the
unfolding process. Truncating the extent allows to compare ’pure’ coil sensitivities versus in
vivo sensitivities at truncated kernel extent. Table 6.1 illustrates how the two hybrid methods
extGRAPPA and trSENSE relate to conventional GRAPPA and SENSE.

The influence of full or truncated kernel extent and the image weights based on coil sensi-
tivities or ACS data was investigated using GRAPPA, extGRAPPA, trSENSE and SENSE image
reconstruction in the same setting. All reconstructions were performed based on a simulated
data set of the Shepp-Logan phantom of size 64×64 with 8 coil channels. Simulated coil-channels
were assumed to be arranged equidistantly in a circle around the object. Gaussian noise was
added in k-space such that the receive coil covariance matrix was given by Ψcoils = 0.1 · 1Ncoils .
Undersampling at a reduction factor R = 4 was simulated. Low resolution in the phantom
data was necessary to reduce computational burden and storage capacity due to the direct full
matrix approach for SENSE and the image weight calibration based on the ACS data at full
kernel extent for extGRAPPA.

An implementation of GRAPPA following the weight calibration of (4.28) and reconstruc-
tion in image space of (4.30) served as a basis for GRAPPA and extGRAPPA. The transition
from GRAPPA to extGRAPPA was obtained by extending the kernel sizes Bfe×Bpe employed
in image weight calibration. Sizes were step-wise increased until a full extent of Bfe×Bpe =
Nx × Ny/R was reached. The weights used in the reconstruction were derived by shifting

truncated extent tr(uncated) SENSE ←→ GRAPPA
l ↖↘ l

full extent SENSE ←→ ext(ended) GRAPPA

sensitivity image weights ACS image weights

Table 6.1: coil sensitivities and a full kernel extent is incorporated in SENSE, whereas GRAPPA employs in
vivo sensitivities and a truncated reconstruction kernel. In order to investigate these two fundamental differences
of GRAPPA and SENSE separately, two hybrid methods, i.e. extended GRAPPA and truncated SENSE, are
introduced.
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the kernel geometry over the ACS data and further circularly beyond the extent of ACS data.
The latter ensured enough k-space neighborhood samples also at large kernel extents. After
calibration of the ACS image weights W 2D

α,β , coil-wise image reconstruction was performed in
image space (cf. 4.30). Coil-wise reconstructions were combined into a single image using rSoS
(cf. 4.4).

An implementation of SENSE according to (6.1)-(6.6) was the foundation for evaluation
of equivalence of the formulation. Based on the sensitivity weights C̃α,β , the transition from
SENSE to trSENSE was performed. Truncation of the extent of coil sensitivity image weights for
trSENSE was performed using a 2-dimensional Gaussian filter constructed from two Gaussian
distributions with standard deviations σfe = Bfe and σpe = BpeR, respectively. The filter was
then applied in the k-space representation of C̃α,β . For conventional SENSE, the full extent
(Nx × Ny) of sensitivity image weights were used. Coil-wise images were obtained based on
(6.6). Again, a single reconstructed image was obtained by rSoS combination (cf. 4.4).

The equivalent reconstruction schemes of (tr)SENSE and (ext)GRAPPA, i.e.

Îsub
α =

∑

β∈C
C̃α,β � I fold

β and Îsub
α =

∑

β∈C
W 2D
α,β � I fold

β , (6.8)

facilitated the direct comparison of the sensitivity image weights C̃α,β of (tr)SENSE with the
ACS image space weights W 2D

α,β of (ext)GRAPPA. Noise enhancement in all four variants was
analyzed with the g-factor as in Cor. 4.6.15, i.e.

gxp =

√∣∣∣
(
pTxpC̃xp

)
Ψ̂coils

(
pTxpC̃

H
xp

)∣∣∣
√∣∣∣
(
pTxp1

)
Ψ̂coils

(
pTxp1

)∣∣∣
and gxp =

√∣∣∣
(
pTxpWxp

)
Ψ̂coils

(
pTxpW

H
xp

)∣∣∣
√∣∣∣
(
pTxp1

)
Ψ̂coils

(
pTxp1

)∣∣∣
, (6.9)

where the matrix C̃xp ∈ CNcoils×Ncoils is defined by
(
C̃xp

)
αβ

= C̃α,β(xp, yp).

6.1.3. Results: influences of kernel extent and weight calibration

Figure 6.1 depicts image reconstructions for SENSE and trSENSE with (truncated) sensitivity
weights in comparison to GRAPPA and extGRAPPA with ACS calibrated weights. The ar-
rangement of the sub-figures corresponds with the axes of Table 6.1. The g-factor maps demon-
strate the influence of image weight variations on noise amplifications in the reconstructed
image.

The two left columns in Fig. 6.1 display (tr)SENSE reconstructions and g-factor maps ob-
tained using sensitivity image weights at truncations in k-space of different extent. Whereas
SENSE performs artifact-free unfolding in the presented scenario, truncating the extent of im-
age weights from measured coil sensitivities introduces artifacts when limiting the represen-
tation in k-space. The g-factor map of SENSE exhibits the typical division of the image into
R compartments with sharp edges at compartment boundaries. This sharp delineation soft-
ens when decreasing the kernel extent. Nevertheless, g-factor values only describe the noise
influence due to coil arrangement and the process of image reconstruction. With the trunca-
tion, artifacts arising in the form of unaliased object edges are not accounted for in the g-factor
analysis.
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The two right columns in Fig. 6.1 illustrate (ext)GRAPPA reconstruction and g-factor maps
using image weights derived by circular weight calibration with varying neighborhood sizes
based on the ACS data. For extGRAPPA, extending the kernel size is very robust and an
artifact-free image is obtained in each scenario. The g-factor maps exhibit considerable in-
fluence on kernel sizes. At small kernel extents, smooth variations of the GRAPPA g-factor
noise are observed. When extending the kernel, these smooth variations are sharpened. At
full extent, strictly delimited compartments very similar to the SENSE g-factor appear for the
GRAPPA g-factor. The GRAPPA g-factors exhibit a high noise level in this case.

The observations are in accordance with the SNR optimality of SENSE, a property that is
expected from theory if correct coil sensitivities are provided. The latter is the case in the sim-
ulated scenario presented here. Interestingly, at large - yet not full - kernel extent, the highest
g-factors of extGRAPPA are found, indicating an ill-conditioned weight calibration problem.
Note that g-factors values in this case exceed the range of color-coding displayed. The aver-
age value in the central part is 10.32. The assessment of a series of different kernel sizes for
(ext)GRAPPA suggests that a smaller kernel size results in a more benign reconstruction in
terms of g-factor noise. However, it should not be too small, since the the smallest kernel of
Bfe×Bpe = 3× 2 shows again increased g-factors.

In Fig. 6.2, the image weights of one target and source coil corresponding to the reconstruc-
tions of Fig. 6.1 are depicted. The change in image weights exhibits alteration from smooth vari-
ations to sharp - yet noise affected - compartment weighting. This demonstrates how GRAPPA
reconstruction becomes very similar to SENSE. The findings indicate that it is the differences
in kernel extents which truly distinguishes between the two approaches.

6.1.4. Discussion

The findings indicate that extGRAPPA at full kernel extent is very similar to SENSE reconstruc-
tion. Based on the true underlying coil sensitivities, extGRAPPA exhibits comparably higher
noise influences in the weight determination, but nevertheless approaches the SENSE recon-
struction in terms of g-factor maps. For extGRAPPA at full kernel extent, the derived weights
as well as the g-factor maps exhibit the same sharp compartments as for SENSE. Observations
suggest that in truncating SENSE, spatial maps of reconstruction weights and g-factors accord-
ingly contain smoother edges. This investigation implies that truncation of the kernel extent
is the actual difference between both methods in terms of signal and noise transfer. The im-
aged object as part of the ACS data and presence of noise do not significantly contribute to
sharpening of contours in image weights and g-factor maps.

The different kernel sizes of extGRAPPA reconstructions reveal an interesting behavior in
terms of g-factors. The most benign g-factor map is obtained at a small kernel size, which is
nevertheless not too small to not convey any information. Compared to the results of this small
kernel size, the g-factor maps are severely increased for the almost maximum kernel extent.
This suggests that there is indeed a gain in truncating the kernel sizes for GRAPPA. Since the
object influences the derivation of weights by the in vivo sensitivities including all coils, the
optimal kernel size most likely depends on the respective object to be imaged.

This is opposed to SENSE, where pure coil sensitivities determine the reconstruction
weighting. Although the g-factor maps suggest an improvement of the noise influences due to
the coil arrangement, a larger truncation of the kernel extent introduces artifacts for SENSE.
This demonstrates that g-factor maps do not reflect systematic errors of the reconstruction. It
further shows that SENSE cannot be improved by a kernel truncation. SENSE relies on the
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(σfe×σpe) (Bfe×Bpe)
3× 2R 3× 2

5× 4R 5× 4
GRAPPA

11× 10R 11× 10

33× 10R 33× 10

64× 16SENSE

trSENSE extGRAPPA

gx-factor

Figure 6.1: Combined reconstructed images and g-factor maps of variations of (tr)SENSE and (ext)GRAPPA
reconstructions at reduction factor R = 4 of the Shepp-Logan phantom are depicted. Whereas sensitivity image
weights were used on all reconstructions on the left, reconstruction images on the right were obtained using
weights that were calibrated based on ACS data. The kernel extent incorporated step-wise increases from top to
bottom.
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Figure 6.2: The absolute value of the image weights of target coil α = 1 and source coil β = 1 are displayed as
employed in the five (ext)GRAPPA and one SENSE image reconstruction results of Fig. 6.1.

correctness of coil sensitivity values, whereas the data-driven method GRAPPA depends on
the in vivo coil sensitivity and object influences, in combination with the kernel geometry and
weight calibration procedure.

6.2. From static to dynamic MRI: Generalized framework for k-t-based methods

Time-resolved parallel imaging methods (as covered in Chapter 5) additionally exploit tempo-
ral correlations, in order to improve spatio-temporal resolution of dynamic MRI. These meth-
ods achieve advantageous SNR at higher reduction factors relative to frame-by-frame recon-
struction, as observed in the measurements. Experimental findings further suggest great dif-
ferences in the noise outcome depending on the type of k-t-method, such as for instance be-
tween k-t-SENSE and k-t-GRAPPA [Jung and Kozerke, 2009]. The findings indicate: Whereas
k-t-GRAPPA exhibits spatially smooth noise influences, k-t-SENSE displays greater noise en-
hancement in the area of motion and less noise in static areas.

Analytical frameworks for deriving the pixel-wise g-factor are available for SENSE
[Pruessmann et al., 1999], GRAPPA [Brau et al., 2008, Breuer et al., 2009] and PARS (parallel
MRI with adaptive radius in k-space) [Yeh et al., 2005]. These methods are applicable only to
individual single image acquisitions for a slice or volume.

In the following, an analytical framework is developed to analyze the signal and noise
transfer in k-t-GRAPPA reconstructions. To this end, an extension of the g-factor for k-t-space
kernel based time-resolved parallel imaging methods is formulated (Sec. 6.2.1). The pro-
posed theoretical framework is used to analyze the noise behavior and temporal fidelity of
k-t-GRAPPA in comparison with conventional GRAPPA (non-time-resolved, solely parallel
imaging) and Sliding Window (time-resolved, without parallel imaging) reconstruction in
an in vivo cardiac measurement (Secs. 6.2.2 and 6.2.3). The formulations in the same theo-
retical setting allows to delineate causes and effects of differences between these methods,
which is discussed in Sec. 6.2.4. Previous heuristic observations of a more benign SNR
behavior are thereby explained in a common theoretical framework. Parts of this work
have been published [Ramb et al., 2015a] and were presented as conference contributions
[Ramb et al., 2013a, Ramb et al., 2013b, Ramb et al., 2014a].
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6.2.1. Theory: k-t-GRAPPA and g-factors in x-f-space

The development of an analytical framework for the analysis of signal and noise transfer com-
prises the following steps: first, the k-t-GRAPPA reconstruction in x-f-space is introduced, to
obtain weights which act like a transfer function. Second, the expression in x-f-space is used to
extend the g-factor of conventional GRAPPA to the domain of temporal frequencies. Third, the
g-factor formalism in x-f-space is transferred into a temporally averaged g-factor expression in
image space which facilitates the comparison with known GRAPPA g-factor maps.

Along with the investigation of noise transfer, the signal behavior governed by the recon-
struction is further considered. In this endeavor, k-t-GRAPPA weights in x-f-space are utilized
to formulate the signal transfer between sub-Nyquist and full-Nyquist sampled scenarios. If
the reference depicting the underlying truth is given, the temporal fidelity with respect to dif-
ferent reduction factors can be rated.

k-t-GRAPPA in x-f-space

Analogous to GRAPPA in image space (Sec. 4.5.2), k-t-GRAPPA can be formulated in x-f-space
when assuming a circular boundary condition for all spatio-temporal dimensions. In cardiac
MRI, this is valid due to the periodic movement of the heart. Hence, reconstruction in x-f-
space solves the treatment of first and last time frames by employing circular neighbors in the
reconstruction.

The reconstruction process in k-t-GRAPPA comprises the convolution in k-t-space (cf. 5.3)
and subsequent Fourier reconstruction of individual coil images of the derived full data set. In
order to perform k-t-GRAPPA in x-f-space, the data - sampled in k-t-space - is transformed into
equivalent x-f-space based representation. After omitted data samples are restored in x-f-space,
the data is expressed in x-t-space to obtain the time series of magnitude images. The derivation
of this process is described below.

Let dzf,3D
β be the zero-filled sub-Nyquist sampled three-dimensional data of coil

β = 1, . . . Ncoils. Let w3D
α,β ∈ CBfe×RBpe×Bt denote the three-dimensional convolution ker-

nel of reconstruction weights for target coil α and source coils β = 1, . . . Ncoils. Repeating (5.3)
here, the omitted data of coil α is reconstructed from the k-t-sub-Nyquist sampled data by

d̂sub,3D
α =

∑

β∈C
w3D
α,β ∗ dzf,3D

β . (6.10)

Let DFT −1
x,y{ · } and DFT −1

x,y,t{ · } be the inverse discrete Fourier transforms along both
spatial dimensions and additionally along the temporal domain, respectively. Likewise, let
DFT t{ · } refer to the discrete Fourier transform solely along the domain of time frames. For
the series of images Îsub,3D

α Fourier reconstructed from restored data d̂sub,3D
α , the convolution

theorem implies the following

Îsub,3D
α = DFT −1

x,y

{
d̂sub,3D
α

}
= DFT t



DFT

−1
x,y,t




∑

β∈C
w3D
α,β ∗ dzf,3D

β









= DFT t




∑

β∈C
DFT −1

x,y,t

{
w3D
α,β ∗ dzf,3D

β

}




= DFT t




∑

β∈C
W̃ 3D
α,β � Ĩ fold,3D

β



 ,

(6.11)
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Figure 6.3: Four time frames resulting from PEAK-GRAPPA reconstruction of k-t-undersampled cardiac data at
reduction factor R = 5 are shown. The equivalent reconstruction between k-t-GRAPPA in k-t-space (first row)
and in x-f-space (second row) is illustrated.

where W̃ 3D
α,β ∈ CNx×Ny×Ntime and Ĩ fold,3D

β ∈ CNx×Ny×Ntime denote the results of the discrete
Fourier transform along both spatial and the temporal dimension of reconstruction weights
and data samples, respectively. The notation � refers again to element-wise multiplication.
After element-wise multiplication and the summation of contributions from different coils in
x-f-space, the final series of images in x-t-space is obtained by an additional Fourier trans-
form along the temporal dimension to transition from the temporal frequency domain to time
frames.

Altogether, (6.11) yields a representation of the k-t-GRAPPA algorithm in x-f-space. The
reconstructed coil images are again combined according to the method of choice (Sec. 4.1). For
coil combination weightings p3D

α , for coils α = 1, . . . , Ncoils, the time series of images is given
by

Îsub,3D =

Nc∑

α=1

p3D
α �


DFT t




∑

β∈C
W̃ 3D
α,β � Ĩ fold,3D

β






 . (6.12)

Figure 6.3 depicts four time frames of reconstructed images based on the same cardiac k-t-space
data, but reconstructed in k-t-space (cf. 5.4) versus in x-f-space (cf. 6.12).

The reconstruction weights in x-f-space establish the transfer from sub- to full-Nyquist-
sampled data. Therefore, applying the reconstruction weights to pure receive coil noise reveals
the noise transfer as part of the image reconstruction process. This, as well as the PSF when
using the weights on a signal point source, will be discussed in the subsequent sections.

The k-t-GRAPPA g-factor in x-f-space

As for conventional GRAPPA, coil geometry-(g-)factor considerations are derived based on
the measured receive coil covariance matrix and the reconstruction weights estimated from
the ACS data. For k-t-GRAPPA, where reconstruction weights comprise k-space neighbors as
well as neighboring time frames, the pixel-wise g-factor is extended to the range of temporal
frequencies. These obtained gxpf -factors refer to the spatial position xp := (xp, yp) and the
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resolved temporal frequencies f , as defined below.

Assume an additive noise term ε̃sub,3D
Iα

to corrupt the otherwise noise-free reconstructed
image data in x-f-space Ĩsub,3D

α . The relation between the noise affected reconstruction in x-f-
space and the Gaussian noise process in the data domain is determined by the reconstruction
weights. These act on the zero-filled Fourier reconstruction Ĩ fold,3D

β with noise term ε̃fold,3D
Iβ

. The
relation is described by

Ĩsub,3D
α + ε̃sub,3D

Iα
=
∑

β∈C
W̃ 3D
α,β �

(
Ĩ fold,3D
β + ε̃fold,3D

Iβ

)
. (6.13)

Definition 6.2.1 (resolved temporal frequencies). Based on the temporal resolution ∆t and the
number of time frames Ntime, define the set of resolved temporal frequencies in accordance with the
Nyquist-Shannon sampling theorem by F∆t :=

{
− 1

2∆t , . . . ,
1

2∆t − 1
Ntime∆t

}
.

Proposition 6.2.2. Let
{
W̃ 3D
α,β ∈ CNx×Ny×Ntime , β = 1, . . . , Ncoils

}
be the set of k-t-GRAPPA weights

in x-f-space for the target coil α. Let Ψ̂coils ∈ CNcoils×Ncoils denote the receive coil covariance matrix in
image space. For each image pixel xp = (xp, yp) with p ∈

{
1, . . . , Npix

}
and each resolved temporal

frequency f ∈ F∆t, define the matrix Wxpf ∈ CNcoils×Ncoils by
(
Wxpf

)
αβ

= W̃ 3D
α,β(xp, f). Then, the

image noise variance of the image pixel xp at the temporal frequency f and for coil α is given by

σ2(ε̃sub
I (xp, f, α)) =

∣∣∣Wxpf Ψ̂coilsW
H
xpf

∣∣∣
αα
.

Proof. Let p ∈
{

1, . . . , Npix
}

and f ∈ F∆t. Assume unbiased image reconstruction providing
image noise with zero mean. The expression of (6.13) implies the following for the image noise
variance at (xp, f):

σ2
(
ε̃sub
I (xp, f, α))

)
= E

[
ε̃sub
I (xp, f, α)εsub

I (xp, f, α)?
]

(6.14)

= E




∑

β

W̃ 3D
α,β(xp, f)εfold

I (xp, f, β)



(∑

γ

W̃ 3D
α,γ(xp, f)εfold

I (xp, f, γ)

)?
 .

(6.15)

With linearity of the mean the equality follows to

σ2
(
ε̃sub
I (xp, f, α))

)
=
∑

β

∑

γ

W̃ 3D
α,β(xp, f)E

[
εfold
I (xp, f, β)εfold

I (xp, f, γ))?
]
W̃ 3D
α,γ(xp, f)?. (6.16)

Using Prop. 3.3.27 and Prop. 4.6.4, this simplifies to

σ2
(
ε̃sub
I (xp, f, α))

)
=
∑

β,γ

W̃ 3D
α,β(xp, f)

(
Ψ̂coils

)
β,γ

W̃ 3D
α,γ(xp, f)? (6.17)

=
∣∣∣Wxpf Ψ̂coilsW

H
xpf

∣∣∣
αα
. (6.18)



104 Chapter 6. Towards a unified general framework for parallel imaging

Proposition 6.2.2 demonstrates how noise variances solely depend on the coil covariance
matrix Ψ̂coils ∈ CNcoils×Ncoils and the reconstruction weights in x-f-space Wxpf ∈ CNcoils×Ncoils . As
for conventional GRAPPA, the relation between sub-Nyquist and full-Nyquist sampled image
noise reflects the additional g-factor.

Proposition 6.2.3. For each pixel xp, p ∈
{

1, . . . , Npix
}

and each resolved temporal frequency

f ∈ F∆t, consider the corresponding standard deviation of image noise, σ
(
ε̃

full
I (xp, f, α)

)
and

σ
(
ε̃sub
I (xp, f, α)

)
, of the full- and sub-Nyquist-sampled image acquisition scenario in x-f-space. Then

σ
(
ε̃sub
I (xp, f, α)

)

σ
(
ε̃

full
I (xp, f, α)

) =
√
R

√∣∣∣Wxpf Ψ̂coilsW
H
xpf

∣∣∣
αα√∣∣∣Ψ̂coils

∣∣∣
αα

.

Proof. Let p ∈
{

1, . . . , Npix
}

and let f ∈ F∆t. In the corresponding Fourier reconstruction from
full-Nyquist sampled data, the standard deviation of noise is reduced by the square root of the
reduction factor R in comparison with the sub-Nyquist sampled scenario:

σxpf (ε̃full
α ) =

1√
R
·
√∣∣∣Ψ̂coils

∣∣∣
αα
. (6.19)

With the result of Prop. 6.2.2 then directly follows

σ
(
ε̃sub
I (xp, f, α)

)

σ
(
ε̃full
I (xp, f, α)

) =
√
R

√∣∣∣Wxpf Ψ̂coilsW
H
xpf

∣∣∣
αα√∣∣∣Ψ̂coils

∣∣∣
αα

, (6.20)

which concludes the proof.

Corollary 6.2.4 (uncombined k-t-GRAPPA g-factor in x-f-space). Based on an artifact-free image
reconstruction, the uncombined g-factor in x-f-space of k-t-GRAPPA (or of similar time-resolved
GRAPPA kernel based methods) is defined by

gxpf,α =

√∣∣∣Wxpf Ψ̂coilsW
H
xpf

∣∣∣
αα√∣∣∣Ψ̂coils

∣∣∣
αα

.

Corollary 6.2.5 (k-t-GRAPPA g-factor in x-f-space). Assuming artifact-free image reconstruction,
the combined g-factor in x-f-space of k-t-GRAPPA or any time-resolved GRAPPA kernel based
method is defined by

gxpf =

√∣∣∣
(
p̃TxpfWxpf

)
Ψ̂coils

(
p̃TxpfW

H
xpf

)∣∣∣
√∣∣∣
(
p̃Txpf1

)
Ψ̂coils

(
p̃Txpf1

)∣∣∣
,

where p̃xpf denotes the vector of coil combination weightings in x-f-space according to the choice of coil
combination method.
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Corollaries 6.2.4 and 6.2.5 provide an analytical description of the noise propagation be-
tween full- and k-t-sub-Nyquist sampled acquisition scenarios with Fourier and k-t-GRAPPA
based reconstructions, respectively. The generality of the concept allows for an application to
any time-resolved kernel based reconstruction scenario. The expression in x-f-space reflects
spatial variations of noise contributions for each temporal frequency separately. Hence, the
filter response is likewise revealed. This facilitates the comparison with approaches that in-
terpolate only in the temporal domain such as Sliding Window (SW). For comparison with
non-time-resolved methods such as conventional GRAPPA, the subsequent section covers how
temporally averaged g-factors are derived combining the contributions in x-f-space.

The temporal average g-factor

The proposed gxf -factor is pixel-wise derived over the range of resolved temporal frequencies.
By Parseval’s theorem, the total noise contribution in the temporal domain is described by the
integral of the squared frequency contributions. Therefore, g-factor contributions of individual
temporal frequencies can be combined accordingly into a pixel-by-pixel g-factor map of the
average temporal domain contributions.

Definition 6.2.6 (total g-factor of k-t-GRAPPA). Let
{
gxpf p = 1, . . . , Npix, f ∈ F∆t

}
denote the

set of pixel- and frequency-wise combined g-factors in x-f-space of a k-t-GRAPPA reconstruction sce-
nario. The total g-factor of k-t-GRAPPA capturing temporally averaged pixel-by-pixel g-factor val-
ues is defined by

g
avg
xp :=

√
1

Ntime

∑

f

(
gxpf

)2
.

That this is indeed a meaningful definition is substantiated by comparison with the sta-
tistical evaluation based on a series of pseudo-replica reconstruction in the Sec. 6.2.2. Total
g-factor values solely depend on the reconstructed pixel position and can be directly compared
to g-factor maps of conventional GRAPPA or SENSE reconstructions. In order to distinguish
between the spatial g-factor maps derived from time-resolved versus non-time-resolved meth-
ods, the notation gavg

xp instead of gxp is used.

The temporal point spread function

The reconstruction weights in x-f-space establish the transfer from sub- to full-Nyquist-
sampled k-t-space data. Therefore, applying the reconstruction weights to a signal point
source reveals the temporal point spread function. The implications for the temporal signal
variations are characterized in the filter response over the range of temporal frequencies.

Let δenc ∈ CNcoils×Ntime such that (δenc)α,t := δt,t0 , where δt,t0 denotes the Kronecker delta.
Then δenc corresponds to a point source in the temporal domain that is of spatially constant
magnitude in all coils. Denote its respective representation in x-f-space by δ̃enc. The signal
magnitude arising in the reconstruction process is captured by

msub
xp,α(f) :=

∣∣∣Wxpf · δ̃enc

∣∣∣
α,f

, (6.21)

for each coil α = 1, . . . , Ncoils and based on expressing the reconstruction weights Wxpf as in
Prop. 6.2.2. In the corresponding Nyquist sampled scenario, the signal magnitude - likewise
denoted by mfull

xp,α(f) - is the input itself. The magnitude transfer function expressing the decay
in temporal frequency bandwidth is captured in the subsequent definition.
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Definition 6.2.7 (temporal point spread function). The magnitude signal transfer over the range of
resolved temporal frequencies is defined for each pixel xp, p = 1, . . . , Npix and each coil α = 1, . . . , Ncoils
by the following ratio:

tPSFxp,α(f) :=
msub

xp,α(f)

m
full
xp,α(f)

=

∣∣∣Wxpf · δ̃enc

∣∣∣
α,f∣∣∣δ̃enc

∣∣∣
α,f

.

Denoting the vector of coil combination weightings in x-f-space by p̃xpf , the combined signal transfer
is captured by

tPSFxp(f) :=
msub

xp (f)

m
full
xp (f)

=

∣∣∣p̃Txpf ·Wxpf · δ̃enc

∣∣∣
∣∣∣p̃Txpf · δ̃enc

∣∣∣
.

The function is termed temporal point spread function (tPSF), since it reflects the relative response
to a temporal point source.

Temporal fidelity

A finite temporal frequency response indicates a loss in temporal fidelity. In case a fully sam-
pled reference acquisition is available, the loss in temporal fidelity can be investigated by the
absolute value of differences.

Definition 6.2.8 (temporal root mean square error). The temporal root mean square error
(tRMSE) is defined by the square root of the cumulative difference between the reconstruction result
and the reference depicting the underlying truth. It is defined for each pixel xp, p = 1, . . . , Npix by

tRMSE(xp) :=

√√√√ 1

Ntime

Ntime∑

t=1

∣∣∣Îsub,3D
t − I full,3D

t

∣∣∣
2
.

The tRMSE demonstrates any temporal bias introduced in the reconstruction as the counterpart
to the analysis of noise variances in the image values.

With Corollaries 6.2.4 and 6.2.5, as well as with Def. 6.2.6, a framework for the analysis of
noise transfer in k-t-methods is derived. Furthermore, Def. 6.2.7 facilitates to express the signal
transfer due to extending the kernel to the temporal domain. Provided a reference exists, the
bias is addressed by Def. 6.2.8.

6.2.2. Methods: signal and noise transfer analysis in cardiac MRI

An in vivo short axis cardiac acquisition was performed on a Philips Ingenia 3T scanner using
a receive coil array with 28 coil elements. A bSSFP (Sec. 3.4.1) was utilized to acquire Nyquist-
sampled images during a 20 s breath-hold acquisition to capture 42 different heart phases (see
Remark 5.1.2). The measurement was performed in a healthy volunteer. Informed consent
was obtained prior to the acquisition. Coil sensitivity maps were acquired and estimated in a
separate scan in advance. The following sequence parameters were used:
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parameter value

TE 1.58 ms
TR 3.15 ms
flip angle αfa 40◦

slice thickness 8 mm
matrix size 148× 132
BW 1316 Hz/Px
number of time frames 42

spatial resolution 2× 2× 8 mm3

temporal resolution 21.6 ms

The duration of one heart cycle was approximately 907 ms. Hence, the 42 images of heart
phases provide a temporal resolution of 21.6 ms and temporal frequencies in units of 1.1 Hz.
The total covered bandwidth of temporal frequencies in the Nyquist-sampled acquisition was
approximately 46 Hz.

Undersampling in k-t-space was retrospectively mimicked for reduction factors ranging
from R = 3 to R = 5, 7 and 9 and following the different patterns of k-t-GRAPPA, PEAK-
GRAPPA, GRAPPA and SW (Figs. 5.2 and 5.3). The number of ACS lines was thereby set to 11.
However, ACS data was only used for weight calibration and not subsequently added in the
reconstructed images, in order to investigate pure reconstruction performance.

Note that retrospective undersampling in the case of the gradient echo based bSSFP acqui-
sitions is justified since signal is sampled in a steady state and with independent excitation for
each phase encoding step. Therefore, sampling schemes can be freely varied. This is opposed
to applying undersampling to image acquisitions comprising several readouts within one ex-
citation interval, such as EPI. In these cases, varied sampling schemes lead to a modification of
the acquisition itself and therefore directly affects the imaging behavior.

In the case of k-t-undersampling, the sampling frequency with respect to single k-space po-
sitions decreases. For a reduction by R = 5 and R = 7, the sample number per k-space position
reduces to 8 and 6 data points, respectively, of the corresponding time series. As a consequence,
the temporal frequency bandwidth lessens to about 8.8 Hz and 6.6 Hz, respectively.

Computation of weights in x-f-space

The reconstruction weights in x-f-space were derived in three steps: First, the kernel geometries
of the R−1 relative target structures were combined into a single convolution kernel. This was
achieved by shifting the individual patterns of sources and targets according to a mutual target
center. Individual weights were additively overlaid and the one central target point of the
combined kernel was set to 1. The convolution kernel for SW thereby simply consists of R
entries of unity which was replicated to fit the number of receive coils of the reconstruction.

Second, the convolution kernel was flipped in the kx−,ky− as well as the temporal dimen-
sion, and furthermore extended in size by zero-filling to match the size of the acquired zero-
filled data in k-t-space. The first and second step is illustrated for k-t-GRAPPA, PEAK-GRAPPA
and SW at reduction factor R = 5 in Fig. 6.4. Small arrows visualize the reversed order on ac-
count of flipping the orientation of the combined convolution kernel.

Third, the inverse discrete Fourier transform DFT −1
x,y,t{ · } was applied along both spatial

dimensions as well as the temporal domain to transfer the augmented, combined convolution
kernel into x-f-space. The such obtained weights in x-f-space are of size W̃ 3D

α,β ∈ CNx×Ny×Ntime ,
for each target and source coil, α, β = 1, . . . , Ncoils.
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a. k-t-GRAPPA

b. PEAK-GRAPPA
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individual kernels convolution kernel

Figure 6.4: In order to obtain the com-
bined convolution kernel, the individ-
ual reconstruction kernels corrsponding
to R − 1 relative target relations for re-
duction factor R are shifted with respect
to a mutual kernel center and flipped in
k-space and temporal dimensions (blue ar-
rows). This process is illustrated for a.
k-t-GRAPPA, b. PEAK-GRAPPA and c.
SW for reduction factor R = 5. Sources
indicate weighting factors from that rela-
tive position. Whereas weights are learned
from the ACS data for k-t-GRAPPA and
PEAK-GRAPPA, all weights are of value
1 in case of SW.

Computation of gxf -factors, gavgx -factors and tPSF

The same algorithm for calculation of combined gxf -factors (Cor. 6.2.5), temporal average
g

avg
x -factors (Def. 6.2.6) and tPSF (Def. 6.2.7) was used for k-t-GRAPPA, PEAK-GRAPPA and

SW. For conventional GRAPPA, the gx-factor algorithm was performed according to Cor. 4.6.15
using weights in image space derived frame-by-frame.

Results of the gxf -factor analysis were reformatted into a series of spatial maps discretized
over temporal frequencies, of which single image columns were extracted for a depiction over
the frequency bandwidth. Spatial maps of gavg

x -factors, depicting the overall noise distribution,
were directly compared with gx-factor maps derived for conventional GRAPPA. Filter response
curves were extracted from the derived tPSF values of single pixel and compared with corre-
sponding gxf -factor curves.

In the presented scenario, a Nyquist-sampled reference is available, since k-t-sub-Nyquist
sampling was only mimicked. Hence, tRMSE values (Def. 6.2.8) could be calculated and com-
pared with the g-factor results. Moreover, the number of coils - the crucial part of paral-
lel imaging - was reduced by grouping coil elements into virtual coil arrays according to
[Buehrer et al., 2007]. Temporal average gavg

x -factors and tRMSE were then derived for the re-
duced coil scenario while the receive coil covariance matrix was set to the identity matrix.

Statistical validation based on pseudo-replica images

All analytically derived results were statistically validated based on a series of pseudo-replica
image reconstructions according to the procedure suggested in [Robson et al., 2008]. To
this end, several sets of 256 pseudo measurement repetitions were generated by replicating
k-t-space data from the Nyquist-sampled original k-t-data and adding Gaussian distributed
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noise to each. Respectively one set - per reconstruction method considered - of pseudo-
replicated k-t-space data was undersampled and reconstructed according to k-t-GRAPPA,
PEAK-GRAPPA and SW. A further set of pseudo-replica was not undersampled and solely
Fourier reconstructed. From such pseudo repetitions of acquisition and reconstruction, each
with different noise impacts, the standard deviations in the cases of sub-Nyquist and full-
Nyquist sampling were derived, denoted by σ̂sub

xf and σ̂full
xf , respectively. Thereof, estimates for

the statistical noise distribution, i.e. statistical g-factors, were computed in the x-f-space as well
as a temporal mean in x-t-space according to

ĝxf :=
σ̂sub
xf

σ̂full
xf

√
R

and ĝavgx :=
1

Ntime

Ntime∑

t=1

(
σ̂sub
xt

σ̂full
xt

√
R

)
. (6.22)

The statistical g-factors in x-f-space (ĝxf ) were directly compared to analytically derived
gxf -factors in x-f-space. The temporal mean of statistical g-factors in x-t-space (ĝavgx ) were com-
pared to the temporal frequency combined g

avg
x -factors (Def. 6.2.6). The latter in particular

emphasizes that gavg
x -factors represent temporally averaged noise distributions in the case of

time-resolved parallel imaging. Analytical gavg
x -factors as well as statistical g-factors in x-t-

space allow to evaluate the noise performance of k-t-methods with respect to gx-factor maps of
non-time-resolved conventional parallel imaging procedures.

6.2.3. Results: signal and noise transfer in a cardiac application

Figure 6.5 depicts analytically derived gxf -factor maps next to statistically estimated ĝxf -factor
maps for SW, k-t-GRAPPA and PEAK-GRAPPA at R = 5. The contribution in static as well as
moving tissue with respect to each individual temporal frequency is demonstrated. Analytical
and statistical results are in excellent agreement.

Two fundamental observations can be derived from the gxf -factor maps of Fig. 6.5: First,
incorporating the coil domain as part of the reconstruction process implies spatially varying g-
factors (k-t-GRAPPA, PEAK-GRAPPA), whereas constant contributions over image space are
obtained in the only-time-resolved method (SW). Second, the gxf -factor maps of higher tempo-
ral frequencies exhibit larger values in moving tissue whereas contributions quickly decrease
in the area of static tissue for k-t-GRAPPA and PEAK-GRAPPA.

All gxf -factor maps demonstrate: While the zeroth temporal frequency component exhibits
values slightly exceeding 1, g-factors lower than 1 appear in higher temporal frequency maps.
This indicates a filtering effect of noise contributions at higher temporal frequencies. The theo-
retical results of g-factors below 1 is striking, since the gx-factor is necessarily greater or equal
to 1 ([Pruessmann et al., 1999]) for non-time-resolved methods such as SENSE.

Characteristic frequency response

Figure 6.6 depicts the analytical and statistical g-factors for mimicked reduction factors ofR = 5
and R = 7. Rather than the complete spatial maps as in Fig. 6.5, only a single image column is
shown, but over the complete range of resolved temporal frequencies. The display demon-
strates the different frequency responses to moving tissue between the three time-resolved
reconstruction methods. Also, effects that result from increasing the reduction factor are vi-
sualized.

In the SW approach, the spatially invariant frequency responses exhibit dark stripes over
the domain of temporal frequencies. The number and repetition of these stop-bands increase



110 Chapter 6. Towards a unified general framework for parallel imaging

Figure 6.5: Analytically derived gxf -factors as well as statistical ĝxf -factors derived from the series of pseudo-
replica at reduction factor R = 5, for SW, k-t-GRAPPA and PEAK-GRAPPA. A single reconstructed magnitude
image is displayed for spatial reference of moving and static tissue. Spatial g-factor maps are displayed for temporal
frequencies of 0 Hz, 1.1 Hz, 2.2 Hz,. . ., 7.7 Hz and 20.9 Hz. Units of 1.1 Hz result from the overal measurement
duration of the heart cycle.

at higher reduction factors. These stop-bands indicate a suppression of contributions from the
respective temporal frequencies.

A similar response is observed for k-t-GRAPPA in the area of static tissue. However, in the
region of the beating heart, values remain around 1 over the complete frequency bandwidth.
The latter appears in both reduction factors.

PEAK-GRAPPA provides generally smooth g-factor variations in the spatial as well as the
temporal frequency domain, which is visible in both Figs. 6.5 and 6.6. As for k-t-GRAPPA,
contributions differ in static tissue compared to motion affected regions. However, a smoother
transition between both static and dynamic areas is observed.

Variations with respect to the higher reduction factor are relatively small. For all three meth-
ods, the decay of values in static tissue when moving to higher temporal frequencies occurs at
a lower temporal frequency for the higher reduction factor R = 7, as compared to the results
for R = 5.

Frequency combined and temporal average g-factors

Figure 6.7 demonstrates temporal frequency combined g
avg
x -factors (Def. 6.2.6) in comparison

with temporal average ĝxt-factors (cf. 6.22) derived from the pseudo-replica images in the tem-
poral domain for SW, k-t-GRAPPA and PEAK-GRAPPA. The shown g-factor maps yield the
combined gxf -factors displayed in Fig. 6.6 for both reduction factors R = 5 and R = 7. The ex-
cellent agreement substantiates how temporal frequency combination of gxf -factor maps rep-
resents temporally averaged g-factor noise in the time domain in the case of time-resolved
reconstruction methods.

Furthermore, gx-factors (Cor. 4.6.15) for conventional GRAPPA at reduction R = 3 are de-
picted. Despite the lower reduction factor, the values highly exceed the g-factors obtained
in time-resolved methods. The strong noise amplification is demonstrated by values greatly
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Figure 6.6: Analytical gxf -factors and statistical
ĝxf -factors are depicted for one imaged column
(red line in the magnitude image) and over the
complete range of sampled temporal frequencies
for Sliding Window (SW), k-t-GRAPPA (k-t-GR)
and PEAK-GRAPPA (PEAK). Results for two
different reduction factors R = 5 and R = 7 are
shown. The selected image column contains pix-
els of the moving heart as well as of static tissue.
The respective differences in g-factor responses of
the three methods are demonstrated. Temporal
frequencies are aligned, wherefore differences be-
tween both reduction factors can be compared as
well.

larger than 1 and confirms high noise penalties for GRAPPA at reduction factors above R = 3
known from practical observations. The maximum and spatially averaged gx-factor values of
GRAPPA at R = 3 are 8.52 and 4.68, respectively. The maximum and spatially averaged values
for all four methods are collected in Table 6.2.

The gx-factors are spatially invariant for SW. Consequently, the total noise contribution in
the temporal domain is independent of pixel position as well. The maximum and average gx-
factor value for SW is 0.45 at R = 5. At the higher reduction of R = 7, the average gx-factor
decreases to 0.38 (cf. Table 6.2).

For k-t-GRAPPA and PEAK-GRAPPA, differences of gx-factors in moving versus static tis-
sue lead to spatially varying gavg

x -factors. Total noise contributions are higher in the region of
the moving heart. At R = 5, maximum values are 0.92 for k-t-GRAPPA and 0.72 for PEAK-
GRAPPA (cf. Table 6.2). At R = 7, the maximum value of k-t-GRAPPA slightly exceeds 1,
whereas it is moderately decreased to 0.69 in the case of PEAK-GRAPPA. Average values of k-
t-GRAPPA and PEAK-GRAPPA are in a similar range for both reduction factors. In both cases,
the average values slightly decrease for the higher reduction of R = 7.

Visual inspection of Fig. 6.7 further suggests that k-t-GRAPPA performs similar to SW in
imaging of static tissue, with a strong enhancement in the area of the heart. In the case of
PEAK-GRAPPA, the relative g-factor increase in pixels containing motion is much less than for
k-t-GRAPPA. Maps of gavg

x -factors for PEAK-GRAPPA exhibit smooth spatial variations with
only a minor variation between both reduction factors.
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Figure 6.7: Temporal average g-factor
noise distributions are displayed for
Sliding Window (SW), k-t-GRAPPA
(k-t-GR) and PEAK-GRAPPA (PEAK)
at reduction factors R = 5 and R = 7,
as well as for conventional GRAPPA re-
construction at reduction factor R = 3.
GRAPPA g-factors are plotted with sep-
arate scaling, since values highly exceed
the g-factors of the three time-resolved
methods. Maps of gavg

x -factors obtained
from frequency combination of the an-
alytical gxf -factors are shown next to
temporal averages of the statistically de-
rived ĝxt-factors. Both maps are in very
good agreement. For k-t-GRAPPA and
PEAK-GRAPPA, the total noise con-
tributions in moving tissue are higher
than in static tissue.
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method
g

avg
x -factors g

avg
x -factors

maximum mean

GRAPPA R = 3 8.52 4.68± 1.22

R = 5 0.45 0.45SW
R = 7 0.38 0.38

R = 5 0.92 0.53± 0.14
k-t-GRAPPA

R = 7 1.07 0.46± 0.16

R = 5 0.72 0.56± 0.08PEAK-GRAPPA
R = 7 0.69 0.49± 0.08

Table 6.2: The table contains max-
imum values and mean values of
the gavg

x -factors depicted in Fig. 6.7
for GRAPPA (reduction factor
R = 3), SW, k-t-GRAPPA and
PEAK-GRAPPA (reduction factors
R = 5 and R = 7).

Figure 6.8: Spatial maps of the
temporal root mean squared errors
(tRMSE) are depicted for SW, k-t-
GRAPPA and PEAK-GRAPPA at re-
duction factor R = 5 as well as at
R = 7.
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The temporal average gavg
x -factor maps of Fig. 6.7 confirm an advantageous noise behav-

ior when exploiting temporal correlations in image reconstruction. In the same acquisition
scenario, k-t-kernel based reconstructions outperform purely k-space based kernel reconstruc-
tion in terms of g-factor results. Nevertheless, as g-factor values further decrease at the higher
reduction for all three time-resolved methods, the trade-off between noise suppression and
reconstruction fidelity requires further consideration.

Noise variances and temporal bias

Figure 6.8 addresses the systematic reconstruction error which is assessed in comparison with
the Nyquist-sampled reference. The tRMSE values determine the temporal bias of the recon-
struction and hence yield a counterpart to the investigation of noise variances. Comparison
of the spatial maps of Figs. 6.7 and 6.8 demonstrate: whereas temporal average gavg

x -factors
decrease for the higher reduction factor, systematic errors in the reconstruction increase. In all
three time-resolved methods, tRMSE errors are related to moving tissue.

For SW, unresolved fold-over artifacts become apparent in the form of ghosts of the moving
heart. SW reconstruction exhibits the largest tRMSE values at both reduction factors, which are
listed as part of the maximum and mean values of Table 6.3. The mean tRMSE, however, is only
slightly higher than for k-t-GRAPPA. Also for k-t-GRAPPA, a strong increase in the maximum
tRMSE values is observed for the higher reduction factor of R = 7 (cf. Table 6.3).

For PEAK-GRAPPA, the spatial maps of tRMSE reveal temporal bias mostly at the heart
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method
tRMSE tRMSE

maximum mean

R = 5 78.56 6.62± 6.39SW
R = 7 76.76 8.41± 9.12

R = 5 45.13 6.08± 5.11
k-t-GRAPPA

R = 7 72.10 8.17± 8.35

R = 5 25.45 5.33± 3.40PEAK-GRAPPA
R = 7 32.57 6.19± 4.38

Table 6.3: The table lists maxi-
mum and mean tRMSE values de-
rived from the spatial maps depicted
in Fig. 6.8 for SW, k-t-GRAPPA and
PEAK-GRAPPA at reduction factors
R = 5 and 7.

contours (cf. Fig. 6.8). Maximum tRMSE are much lower for PEAK-GRAPPA than for k-t-
GRAPPA and SW (cf. Table 6.3). Furthermore, the increase of the tRMSE when moving from a
reduction factor R = 5 to a factor of R = 7 is relatively low. The relative increase between re-
duction factor R = 5 and R = 7 is approximately 1.6 for k-t-GRAPPA and yields 1.3 in the case
of PEAK-GRAPPA. Nevertheless, resulting maximum values atR = 7 are 72.10 in k-t-GRAPPA
versus 32.57 in PEAK-GRAPPA. Between all three methods and both reduction factors, average
tRMSE values are the lowest for PEAK-GRAPPA. Both tRMSE maps and maximum/average
tRMSE values suggest that PEAK-GRAPPA provides the highest temporal fidelity in the com-
parison.

Temporal fidelity as visible in the magnitude images

For visualization of the effects onto temporal resolution, the depiction of a single image column
over the range of acquired time frames is provided in Fig. 6.9. The figure illustrates two main
influences that compromise temporal fidelity: temporal smoothing and noise enhancement.
For conventional GRAPPA reconstruction, the strong noise enhancement - despite the lower
reduction factor - is visible. The high noise level decreases the temporal quality. Temporal
smoothing, however, is not observed.

For SW, temporal smoothing appears at both reduction factors and is more severe at the
higher reduction. Artificial structures appear during contraction of the heart. Noise influences
seem to be minor and are not visible in areas of static tissue.

A similar behavior is observed for k-t-GRAPPA in static tissue. At R = 5, image quality is
comparably improved in moving tissue and artifacts as arising in SW are not present. A slight
noise enhancement during systole is hinted for k-t-GRAPPA at R = 5. At R = 7, however,
strong artifacts and noise influences are revealed.

PEAK-GRAPPA exhibits a benign noise behavior without artificial image alterations. Very
slight spatial smoothing is indicated within tissue compartments, however without consider-
ably compromising the temporal quality at R = 5. For the higher reduction of R = 7, smooth-
ing and noise influences increase in visibility. Nevertheless, even at R = 7, high image quality
is noticeable for the PEAK-GRAPPA reconstruction.

Figure 6.10 illustrates how single pixel magnitudes of different methods evolve over the
course of time frames. Signal contributions within two pixels are displayed: one pixel located
in the blood pool of the heart and one pixel within the area of fat tissue. Whereas the latter
displays constant contributions from static tissue, the first reflects parts of the myocardium
during later time frames and returns to blood pool depiction thereafter. This becomes visible
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Figure 6.9: Magnitude signal of the same image column as in Fig. 6.6 is displayed over the range of acquired
time frames. The Nyquist-sampled reference, GRAPPA reconstruction for reduction R = 3, as well as SW, k-t-
GRAPPA and PEAK-GRAPPA for reduction factors R = 5 and R = 7 are shown. The selected image column
comprises static tissue as well as the moving heart chambers.

in the signal drop of magnitudes of the two upper plots of Fig. 6.10. Whereas SW, k-t-GRAPPA
and PEAK-GRAPPA are in excellent accordance with the reference in the case of the static pixel
for both reduction factors (two lower plots), major differences become visible in the case of the
moving tissue. A reduced drop of the main signal dip is visible for the reduction factor R = 7,
in particular for SW and k-t-GRAPPA reconstruction.

Pixel-dependent signal and noise transfer

Figures 6.11 and 6.12 depict the frequency response according to gxf -factors (Fig. 6.11) and the
reconstruction of a delta input signal (Fig. 6.12) for the same two pixels as described above. Dif-
ferent frequency filtering characteristics become evident. For SW, a main lobe - whose width is
usually determined by the full width at half maximum (FWHM) - and several side-lobes sep-
arated by zero-crossings are visible. The results follow the known theory, but are expressed in
the framework presented here. Therefore, characteristics detected for k-t-GRAPPA and PEAK-
GRAPPA can be directly compared to a known frequency response.

Both k-t-GRAPPA and PEAK-GRAPPA exhibit contributions from all resolved temporal
frequencies. In both, frequency responses vary spatially as a result of parallel imaging recon-
struction. For k-t-GRAPPA, large contributions of high temporal frequencies are observed. A
fast decay is given for the pixel in static tissue, high frequency contributions, however, remain
large. PEAK-GRAPPA exhibits a smooth decay over the range of temporal frequencies. In all
considered cases, the FWHM is the widest for PEAK-GRAPPA.

The tPSF obtained from reconstruction of a delta input signal using the in vivo calibrated
weights in x-f-space confirm the characteristics revealed in the frequency resolved gxf -factors.
k-t-GRAPPA provides a similar FWHM as SW reconstruction, however, without completely
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Figure 6.10: The temporal evolution of the magnitude signal for two individual pixels is depicted for all considered
time-resolved reconstruction methods and two reduction factors. Dotted time curves show the Nyquist-sampled
reconstruction for reference. One pixel is located within the blood pool (red arrow) and depicts the myocardium
during systole. The other pixel reflects magnitude signal in the static area of fat tissue (white arrow).
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suppressing any temporal frequency. In the higher temporal frequency range, k-t-GRAPPA
reaches a plateau. PEAK-GRAPPA provides monotonous decay except for a slight increase
at the higher temporal frequency components in some cases. The FWHM of PEAK-GRAPPA
exceeds the one obtained in SW and k-t-GRAPPA for both reduction factors.

The two main observations from Figs. 6.11 and 6.12 are: first, time-resolved parallel imaging
results in frequency responses which depend on the spatial position. Second, the temporal fre-
quency responses for the time-resolved parallel imaging scenarios shown here cover the overall
range of frequency components. Third, PEAK-GRAPPA provides the most benign frequency
filtering characteristics between the three considered methods.

The influence of the number of coil elements

All previous findings of the three time-resolved methods indicate the main difference to be the
usage of the coil domain (parallel imaging) or excluding it (SW) in the reconstruction process -
in addition to the temporal domain. The effect on the numbers of coil elements and the transfer
between time-resolved parallel imaging and SW is addressed in Figs 6.13 and 6.14, respectively.

Figure 6.13 shows spatially averaged g
avg
x -factors and tRMSE values for different numbers

of coil elements virtually compressed. Since the coil domain is not relevant in SW reconstruc-
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Figure 6.11: The gxf -factor values for the same two pixels as shown in Fig. 6.10 are plotted over the zeroth and all
positive temporal frequencies for SW, k-t-GRAPPA and PEAK-GRAPPA. Values for the pixel depicting moving
tissue are contained in (a,b) and static tissue contributions from fat tissue is depicted in (c,d). The columns
correspond to reduction factor R = 5 (a,c) and R = 7 (b,d). Whereas solid lines illustrate analytically derived
gxf -factors, dotted lines demonstrate the respective result from the pseudo-replica evaluation.
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Figure 6.12: Analogous to Fig. 6.11, tPSF values of the two pixels are shown as obtained from SW, k-t-GRAPPA
and PEAK-GRAPPA. The plots depict reconstructed values, which were derived by applying the in vivo calibrated
weights to a delta input signal in x-f-space. tPSF values differ only slightly between the moving tissue pixel (a,b)
and the static one (c,d). Quicker decay occurs when moving from the reduction factor R = 5 (a,c) to R = 7 (b,d).

tion, spatially averaged g
avg
x -factors are constant in all coil scenarios. k-t-GRAPPA and PEAK-

GRAPPA, however, rely on variations provided by multiple coils and the coil geometry. When
only a single coil element is used, k-t-GRAPPA and PEAK-GRAPPA incorporate only tempo-
ral correlations in the reconstruction process. Both methods then act similar to SW, but with
in vivo calibrated temporal interpolation kernels. With a single coil, the kernel extent along
the temporal domain determines the averaging of neighboring time frames. The extent is the
widest for k-t-GRAPPA (see Fig. 5.3), therefore, decreasing noise variances is the highest for
k-t-GRAPPA in the single-coil scenario.

Comparing mean gavg
x -factors and mean tRMSE values versus the number of incorporated

coils discloses the influence of time-resolved parallel imaging: mean tRMSE decreases while
g

avg
x -factors increase. For the scenarios of only one or two coil elements, calculation of tRMSE

in comparison with the reconstructed Nyquist-sampled reference is affected by the reduced
coverage of the few coil elements.

In the cases of two and more coil elements, PEAK-GRAPPA provides the highest gavg
x -

factors (nevertheless below 1) and lowest tRMSE values for both reduction factors in terms
of spatial averages shown here (comprising moving and static tissue). The simultaneous de-
piction of noise and fidelity factors demonstrates again the antagonistic behavior of noise vari-
ances and temporal bias in k-t-GRAPPA and PEAK-GRAPPA, however, with respect to exploit-
ing spatial correlations based on multiple receiver coils.
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Figure 6.13: Spatially averaged gxavg -factors (a,b) and spatially averaged tRMSE values (c,d) are depicted with
respect to a range of reduced numbers of coils. The pixel-wise gxavg -factors and tRMSE values were additionally
spatially averaged to obtain a single value for each scenario. Derived values are accentuated by a circular marker
and are connected to guide the eye.

Figure 6.14 illustrates a step-wise reduction of using coil sensitivity information in the time-
resolved parallel imaging reconstruction until a single-coil scenario is reached. This corre-
sponds to the step-wise reduction of the parallel imaging influence to pure temporal interpo-
lation. Along the two axes showing coil elements and temporal frequencies, the transition in
the characteristics of the temporal frequency responses is reflected. This includes the decrease
of spatial variations when moving to reduced coil scenarios as well as the emergence of side
lobes along the higher frequency range.

6.2.4. Discussion

The presented signal and noise transfer analysis of a retrospectively k-t-sub-Nyquist sampled
in vivo cardiac acquisition comprises the evaluation of image noise as well as characteristics in
the temporal frequency response with respect to spatial position and in various reduction fac-
tors. The utilized gxf -factor analyses provides a generalization of the known GRAPPA g-factor
formalism for time-resolved methods such as k-t-GRAPPA and PEAK-GRAPPA. Pixel-wise
noise variances are quantified in x-f-space where contributions are considered over the range
of resolved temporal frequencies. Thereby, method-specific frequency responses indicating
temporal frequency filtering are revealed.

Furthermore, temporal average gavg
x -factor maps are derived by frequency combination of
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Figure 6.14: Spatial maps of
gxf -factors are depicted beginning
with the zeroth temporal frequency
and ranging over all positive re-
solved temporal frequency (from
top to bottom row). Virtual coil
scenarios of varying numbers of
coil elements are demonstrated for
PEAK-GRAPPA, beginning with
the original scenario of 28 coil
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from incorporating coil sensitiv-
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ral domain (time-resolved parallel
imaging with PEAK-GRAPPA)
to only utilizing the temporal do-
main (SW) is illustrated. The re-
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gxf -factors. This provides a measure directly comparable to the known gx-factor metric of
non-time-resolved parallel imaging methods. The presented tools facilitate theoretical analyses
where previously solely heuristic observations from practical settings could be derived. Fur-
thermore, the presented theory confirms noise reduction at the expense of temporal smoothing
in a general framework.

The analytically derived gxf - and g
avg
x -factors are validated using statistically derived rel-

ative noise variances based on the concept introduced in [Robson et al., 2008]. Whereas gxf -
factors are compared to relative standard variations between sub- and full-Nyquist-sampled
pseudo-replica reconstruction in x-f-space. The frequency combined gavg

x -factors are evaluated
based on temporal averaged relative standard variations derived from pseudo-replica images
in x-t-space. In all cases, analytical and statistical results are in excellent agreement (Figs. 6.5,
6.6 and 6.7 as well as Fig. 6.11).

Temporal frequency filtering characteristics

The temporal frequency domain reflects method-dependent temporal frequency responses in
the signal and noise transfer (Figs. 6.5, 6.6, 6.11 and 6.12). Temporal frequency filtering is re-
vealed by gxf -factor values below 1 in all time-resolved methods considered. Furthermore,
delta input analyses captured by the tPSF here are used to determine method-dependent fil-
tering characteristics (Fig. 6.12). Similar to the approach presented here, modulation transfer
functions were proposed in [Chao et al., 2010] for the assessment of temporal frequency prop-
erties in UNFOLD-SENSE [Madore, 2002] and variants of k-t-SENSE. Based on the depiction in
x-f-space as well as the tPSF analysis, typical filter characteristics can be investigated.

The three time-resolved methods considered all exhibit properties of a low-pass filter with
decreasing FWHM at higher reduction. The frequency response is spatially constant in the
case of SW, and depends on the spatial position in the case of the two time-resolved parallel
imaging methods. This is a new insight for these methods. The frequency response analysis
of k-t-GRAPPA and PEAK-GRAPPA allows to directly relate the revealed characteristics to
the known frequency filtering behavior of SW. The SW convolution kernel is shaped as a box
and hence, leads to a frequency response that is described by the absolute values of the sinc
function. FWHM of the main lobe is one marker of filter effects. The several side-lobes and
zero-crossings indicates leakage effects. The FWHM of the main lobe decreases with increasing
kernel extent. The non-trivial shapes of three-dimensional convolution kernels for k-t-GRAPPA
and PEAK-GRAPPA reveal different responses in tissues of static versus motion affected areas.
The investigation illustrates how the frequency response of k-t-GRAPPA is similar to SW in the
case of static tissue, however, covering all temporal frequencies, and increases in permeability
in moving tissue. PEAK-GRAPPA exhibits benign filtering behavior by providing the widest
FWHM - in comparison with SW and k-t-GRAPPA - as well as no side-lobes and by presenting
almost monotonous decay over the range of temporal frequencies.

The temporal frequency filtering behavior is directly linked to the kernel geometry and
relies on the sampling pattern as well. The wider FWHM and smooth variations for PEAK-
GRAPPA are explained by the smaller extent in k-t-space of the convolution kernel and the
smooth variations in weighting factors. The latter is evoked by the increased density in the
optimized sampling pattern while the first is implied by the chosen kernel geometry. Both
time-resolved parallel imaging methods exhibit the capability to distinguish between areas of
moving and static tissue in the temporal filtering process evoked by the usage of in vivo coil
sensitivities.
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g-Factors

The derivation of gavgx -factor maps demonstrates an advantageous noise behavior for the
time-resolved methods considered (Fig. 6.7 and Table 6.2). Values below 1 indicate a noise
reduction besides the additional penalty arising due to undersampling by reduction factor
R. The temporal average contributions facilitate the comparison of time-resolved parallel
imaging with the known g-factor metric of non-time-resolved parallel imaging methods
[Pruessmann et al., 1999, Brau et al., 2008, Breuer et al., 2009]. The comparison confirms
the improved SNR performance of k-t-GRAPPA and PEAK-GRAPPA versus conventional
GRAPPA in a theoretical framework.

However, the improved SNR is accompanied by a signal reduction in the domain of tem-
poral frequencies of which temporal blurring can possibly arise. Whether temporal blurring
is induced relies on the temporal frequency filter response of the reconstruction method as
well as the bandwidth of temporal variations present in the monitored dynamics. Sampling of
discrete time frames itself imposes the requirement on band-limited support in the temporal
frequency domain. This is further affected by k-t-sub-Nyquist sampling and time-resolved par-
allel imaging reconstruction. Nevertheless, k-t-sub-Nyquist sampling facilitates in some cases
to increase the repetition rate of data acquisition. The overall effect on temporal blurring is
therefore dependent on many factors and needs to be considered with respect to the concrete
application.

The presented cardiac scenario is based on full-Nyquist sampled data to compare the effect
of k-t-sub-Nyquist sampling in different scenarios and with respect to a common reference.
However, if k-t-sub-Nyquist sampling would have been applied in the presented cardiac mea-
surement, the overall acquisition time would have been drastically reduced which provides in-
creased patient comfort and more scan efficiency in the clinical context. Reduced measurement
times are furthermore beneficial in decreasing the potential for patient motion to compromise
the depiction fidelity. Regardless of acquisition times, the presented analysis shows that tem-
poral fidelity is of good quality for k-t-GRAPPA and PEAK-GRAPPA at R = 5. It is also in an
acceptable range for PEAK-GRAPPA at R = 7 (Figs. 6.9 and 6.10).

tRMSE

The tRMSE analysis is a cumulative indicator of temporal fidelity (Fig. 6.8 and Table 6.3, as
well as Fig. 6.13). The gavgx -factors and tRMSE values together demonstrate the counterparts of
temporal bias and noise variances in the time-resolved methods. Considering noise behavior
solely cannot be the only predictor for a performance evaluation of reconstruction methods.
Accuracy of temporal evolutions in particular yields an important criterion in time-resolved
reconstruction methods.

In SW, where weights are not calibrated on in vivo coil sensitivity data and k-space neigh-
bors are not incorporated in the reconstruction, temporal frequency filtering is applied regard-
less of the degree of motion present in the time series of individual spatial positions. The
applied filter is independent of the position within the image as well as the number of coils
utilized in the data acquisition. A high noise reduction is obtained by temporally averaging
k-t-space data according to the extent of the interpolation kernel. Thereby, high tRMSE values
arise which further increase for higher reduction factors.

For k-t-GRAPPA and PEAK-GRAPPA, temporal frequency filtering appears attenuated in
imaged areas of higher dynamics. Consequently, lower tRMSE values than in SW are obtained,



6.2. From static to dynamic MRI: Generalized framework for k-t-based methods 123

however, with lessened noise reduction. In comparing SW, k-t-GRAPPA and PEAK-GRAPPA,
the latter achieves the lowest tRMSE in all scenarios (Fig. 6.8 and Table 6.3, as well as Fig. 6.13),
but shows the least noise suppression of the three time-resolved methods (Fig. 6.7 and Ta-
ble 6.2).

Generality of the framework

The generality of the presented concepts facilitates its application to any k-t convolution ker-
nel based reconstruction method of which weights are derived in advance. An extension to
the third spatial dimension follows directly, which facilitates application in time-resolved vol-
ume imaging. The extension of the g-factor concept allows for inter-method and intra-method
comparison. Inter-method comparison is established between time-resolved and non-time-
resolved methods, e.g. k-t-GRAPPA and GRAPPA, as well as between time-resolved parallel
imaging and purely time-resolved methods, e.g. k-t-GRAPPA and SW. Intra-method compari-
son, as for instance between k-t-GRAPPA and PEAK-GRAPPA, is useful to evaluate the effect
of different parameters on noise transfer.

The concept presented here in x-f-space may also be applied to non-time-resolved methods.
However, in order to compute gxf -factors in the case of serial image acquisition and non-time-
resolved image reconstruction of each time frame, one set of temporal average weights need to
be derived. This might impose a minor modification to the original reconstruction process, if
different sets of weights were initially incorporated over the domain of time frames. In the case
of non-time-resolved GRAPPA, the described algorithms can be directly applied, if GRAPPA
weights are derived only once and are repeatedly applied. If weights are calibrated frame-by-
frame, a temporal average would be required to derive an overall convolution kernel.

A parallel imaging method in volume imaging and based on sub-Nyquist-sampling in two
directions is introduced in CAIPIRINHA [Breuer et al., 2005a]. Although non-time-resolved 3-
dimensional (in space) CAIPIRINHA scenarios provide a three dimensional sub-Nyquist sam-
pling pattern similar to time-resolved 2-dimensional k-t-GRAPPA reconstructions, there is a
clear difference between incorporating a further spatial versus the temporal dimension. The
presented analysis demonstrates how incorporation of the temporal domain has a completely
different influence.

The influence of the number of coils

The considerations of virtual coil element reduction (Figs. 6.13 and 6.14) demonstrate transi-
tions between the parallel imaging influence and the usage of temporal correlations in the con-
text of fidelity (tRMSE) and g-factors. When the number of coils is reduced, parallel imaging
reconstruction is successively suppressed until convergence to the SW approach is obtained.
Weighting along the temporal domain is prioritized when the complementary coil information
diminishes. The strong weighting of the temporal domain supports greater noise reduction. At
the same time, however, artifacts and temporal smoothing is introduced. The contrary findings
of tRMSE and g-factors when compressing the coil array support the observation (Fig. 6.13).

Further, the cumulative analysis presented here does not reflect any improvements after a
number of 12 coil elements is reached and when moving to higher numbers of coil elements.
Note that the reduced coil array scenarios assume the identity as receiver covariance matrices,
hence, are assumed to be fully decorrelated, in the gavgx -factor computation. Nevertheless, stag-
nation of improvement with respect to increasing the number of coil elements was similarly
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reported in other studies, for instance [Schnell et al., 2014].
The spatially dependent filtering characteristics for PEAK-GRAPPA are benign in terms of

the almost monotonous decay over temporal frequencies as well as the increased noise sup-
pression in static tissue versus the greater permeability in areas of moving tissue. The transi-
tion from time-resolved parallel imaging to purely temporal interpolation demonstrates that
by incorporating the coil sensitivities in the reconstruction process, leakage is avoided and the
FWHM filter behavior is spatially adjusted (Fig. 6.14).

Conclusion

The presented cardiac application and previous discussions of parallel imaging discloses the
following relations of incorporating different domains:

1. With ACS weight calibration, the usage of coil sensitivities as part of the reconstruction
process entails regional noise increases, but also guides the reconstruction process to re-
store depiction fidelity in sub-Nyquist sampling scenarios

2. By incorporating temporal correlations, a noise amplification due to sub-Nyquist sam-
pling is reduced at the expense of temporal fidelity.

3. With a combination of assessing coil sensitivity as well as temporal information, a spa-
tially varying noise transfer as well as spatially variable temporal frequency filtering is
evoked.

The main gain of extending the existing g-factor formulation to the set of time-resolved
parallel imaging reconstruction methods is the establishment of a shared framework for the
analysis. Given a common basis, performances can be evaluated and compared: performances
between various acquisition schemes and method-specific parameters such as the convolu-
tion kernel, the size and sampling strategy of ACS data, performances of time-resolved ver-
sus non-time-resolved parallel imaging methods, and last but not least, performance com-
parison with other established approaches in time-resolved parallel imaging, e.g. k-t-SENSE
[Tsao et al., 2003a] and k-t-PCA [Pedersen et al., 2009]. The latter is established in particular
due to the complementary extension of g-factor considerations for image space based time-
resolved parallel imaging methods [Binter et al., 2016].

6.3. Summary of the g-factor analysis in (time-resolved) parallel imaging

In this chapter, theory and methods towards a unified general framework for parallel imaging
methods were presented. The aim was to shed light on the comparison of and the transition be-
tween non-time-resolved and time-resolved parallel imaging methods. To this end, a GRAPPA
based formulation of SENSE was derived and variants of both methods - termed trSENSE and
extGRAPPA - were investigated.

Furthermore, a general g-factor framework for time-resolved parallel imaging was derived
and demonstrated in a cardiac application. All analyses shown are generally applicable to any
(k-t-)kernel based parallel imaging reconstruction method. The application presented revealed
the different implications of incorporating information from the coil and/or the time domain.
Transitions from k-t-GRAPPA and PEAK-GRAPPA (time-resolved parallel imaging) to conven-
tional GRAPPA (pure parallel imaging) and SW (purely time-resolved) were established.



Chapter 7

k-t-sub-Nyquist sampled parallel EPI

This chapter addresses the advantages and disadvantages of parallel imaging in EPI. A k-t-
sub-Nyquist sampled parallel EPI acquisition and reconstruction scheme is proposed in order
to improve spatial resolution, enhance volume coverage at a given TR and mitigate in-plane
susceptibility artifacts in EPI. The developed method is applied to - but not limited to - dynamic
susceptibility contrast (DSC) weighted cerebral perfusion imaging.

A brief introduction into the clinical motivation of cerebral perfusion imaging as well as
a discussion of earlier achievements in sub-Nyquist sampled EPI is given in Sec. 7.1. Subse-
quently, acquisition strategies and reconstruction approaches developed within this work are
presented in Sec. 7.2. The pulse sequence design of k-t-EPI consists of interleaved EPI with
three different ACS acquisition strategies: inplace, dynamic extra and extra (Sec. 7.2.1). Image
reconstruction is based on k-t-GRAPPA (Sec. 7.2.2). The strategies suggested are first evaluated
based on in vivo measurements with flip angle induced temporal contrast dynamics (Sec. 7.2.3)
and then successfully applied in DSC weighted cerebral perfusion measurements with contrast
agent in patients (Sec. 7.2.4). Results are presented and discussed in Secs. 7.3 and 7.4.

The development and initial feasibility results of k-t-EPI - including some of the figures -
were published in [Ramb et al., 2016b]. Parts of this work have been presented as conference
contributions [Ramb et al., 2014b, Ramb et al., 2015b, Ramb et al., 2015c, Ramb et al., 2016a].
Note that in using k-t-sub-Nyquist sampling patterns in EPI, the sampling scheme leads to
a modification of the acquired echo train. This directly affects the imaging behavior. As a
practical consequence, optimization of sampling schemes by retrospective undersampling of
full Nyquist-sampled data is not an option in EPI.

7.1. Goals

Overcome SNR limitations of parallel imaging at high reduction factors in EPI

Only few, previous reports on actively employing the temporal domain in the image re-
construction process of EPI acquisition exist (see Sec. 4.7). One difficulty reported for
sub-Nyquist sampled parallel EPI is the loss of SNR, inherent to parallel imaging reconstruc-
tions. Time-resolved parallel imaging methods, such as k-t-GRAPPA, exhibit more benign
g-factors compared to conventional parallel imaging methods, as particularly considered
in Chapter 6. EPI with k-t-SENSE was considered in the context of myocardial perfusion
acquisitions [Tsao et al., 2003b]. Keyhole imaging in combination with EPI was discussed by
[Zaitsev et al., 2001, Zaitsev et al., 2005]. A combination of k-t-GRAPPA or PEAK-GRAPPA
and EPI has not been reported previously.
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The purpose of this work is to translate the beneficial SNR behavior of k-t-GRAPPA to
EPI in order to achieve higher reduction factors and ultimately reduced susceptibility artifacts.
Different acquisition strategies are discussed as well as the question whether the advantageous
imaging behavior of k-t-based methods in the context of dynamic measurements of motion is
also beneficial in the context of dynamic contrast acquisitions. The aim is to overcome previous
SNR limitations of parallel imaging in EPI and to facilitate higher reduction factors.

High resolution CBV assessment in DSC weighted cerebral perfusion imaging

Dynamic susceptibility contrast (DSC) weighted cerebral perfusion MRI aids the localization
and delineation of tumorous tissue. Whereas a spatial resolution of approximately 1 mm is
obtained in anatomical MR images, perfusion parameters derived from EPI, such as cerebral
blood volume (CBV), are constrained to lower spatial resolutions (see Sec. 5.5.1). This is due
to the trade-off between readout duration, evoked artifacts and temporal resolution of cerebral
perfusion MRI.

The aim is to acquire CBV maps with higher spatial resolution and improved slice coverage
at a given TR. This allows for a more detailed delineation of tumor borders and to reveal differ-
ent graduation of tumorous tissue. The latter is particularly desirable in assisting stereotactic
surgery biopsies.

7.2. Methods

A gradient spoiled EPI sequence including fat suppression and navigator acquisition for phase
correction [Heid, 1997] was modified to follow a k-t-sub-Nyquist sampling pattern. Three dif-
ferent approaches to perform the additional acquisition of ACS data were realized. The se-
quence and acquisitions strategies are referred to as k-t-EPI with inplace, dynamic extra or extra
ACS (Sec. 7.2.1).

k-t-GRAPPA reconstruction was used to account for k-t-sub-Nyquist sampling (Sec. 7.2.2).
Subsequent to performance evaluation measurements (Sec. 7.2.3), the most benign acquisition
strategy was applied in DSC weighted cerebral perfusion measurements (Sec. 7.2.4).

7.2.1. Data acquisition strategies

Interleaved readout trajectories were implemented to compose the k-t-EPI sequence. The in-
terleave pattern was varied according to the respective ACS acquisition strategies. Different
moments of blip gradients were thereby incorporated to perform the varying step-sizes in k-
space along the phase encoding direction. The amount of phase encoding steps as well as the
number of repetitions at a sampling rate of TR could be adjusted also in the ACS data.

Three different possibilities to combine interleaved sub-Nyquist-sampling as well as
Nyquist-sampled ACS data were investigated. The three variants are presented in Fig. 7.1 and
are referred to as: 1. inplace ACS, 2. dynamic extra ACS, 3. extra ACS acquisition. Figure 7.1
illustrates k-space trajectories with 5 interleaves (only 3− 4 are shown). Each interleave shown
performs undersampling by R (only partly in the case of inplace ACS). The combination of
the R adjacent interleaves yields a full Nyquist-sampled Cartesian data set. The acquisition
with R interleaves relates to reduction factor of R in a k-t-sub-Nyquist sampled acquisition.
Therefore, k-t-EPI acquisitions are referenced by their reduction factor R below, although the
net reduction in the case of inplace ACS is of course lower.
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Figure 7.1: The three acqui-
sition strategies for k-t-sub-
Nyquist sampled EPI with
ACS are illustrated for a sin-
gle slice acquisition (TACQS).
Dynamic extra ACS: ACS
data is acquired during the ac-
tual scan, but separate from
the higher resolution data,
three interleaves are shown.
Extra ACS: ACS data is ac-
quired as part of a pre-scan.
Inplace ACS: ACS data is ac-
quired incorporated in the ac-
tual scan. Four interleaves are
displayed for the extra and in-
place ACS scenarios.

In order to reduce phase variations due to off-resonances between adjacent interleaves, echo
time shifting (ETS) was utilized [Feinberg and Oshio, 1994]. To this end, a temporal delay was
inserted before each undersampled echo train of an interleaved trajectory. This delay varied
depending on the total number of interleaves and the current trajectory shift. For reduction
factor R (corresponding to R interleaves) and an echo spacing of Tes, the different delays were
sTes
R , s = 1, . . . R − 1. Combination of the different interleaves then exhibits a similar timing

as an equivalent fully sampled trajectory. It has been shown that ETS provides more benign
phase behavior in similar EPI trajectories [Zaitsev et al., 2001, Zaitsev et al., 2005]. More details
on the three different ACS acquisition schemes are given below.

Acquisition of inplace ACS

In k-t-EPI with inplace ACS, the ACS lines were acquired as part of the otherwise k-t-sub-
Nyquist sampled trajectory. In the periphery of the designated k-space extent, k-space traver-
sal occurred in step sizes of R∆ky, whereas Nyquist-sampling in step sizes of ∆ky was accom-
plished in the central k-space area. The two different blip gradients are depicted in the pulse
sequence diagram in Fig. 7.2.

The k-space trajectory of k-t-EPI with inplace ACS consisted of three sections with 1. sub-
Nyquist-sampling, 2. Nyquist-sampling and 3. again sub-Nyquist-sampling. While the second
section was held constant over the entire measurement repetitions, the first and third section
were shifted by s∆ky, s = 1, . . . , R − 1 along the phase encoding direction. The latter evoked
the k-t-sub-Nyquist sampling pattern over k-t-space confined by the k-t-space trajectory. The
inplace acquired ACS data was directly inserted in the k-t-space data grid for image reconstruc-
tion.

In this particular case, ETS mitigates not only phase variations between adjacent time
frames, but also compensates the two-fold k-space velocities as part of inplace ACS acquisi-
tions. ETS was implemented by delaying the first and third section of each echo train. Intervals
were prepared such that the Nyquist-sampled ACS section was acquired with the same timing
and realizing the same TE in every measurement repetition.
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Figure 7.2: The pulse sequence diagram of a k-t-EPI trajectory with inplace ACS acquisition is shown. The readout
of the dual density sampling pattern parts into three sections: first, sub-Nyquist-sampling with blip gradients that
perform steps of R∆ky along phase encoding direction, second, the fully sampled ACS data section with Nyquist
sampling (∆ky), third, again sub-Nyquist-sampling. The variations over the measurement repetitions for a k-t-
sub-Nyquist sampling pattern are realized by different phase encoding preparations that induce a series of shifts of
the initial readout.

Acquisition of dynamic extra ACS

In k-t-EPI with dynamic extra ACS, the acquisition scheme consisted of two separate k-space
acquisitions after the same RF pulse excitation. This is illustrated in Fig. 7.1, where the time of
image acquisition TACQS embraces two sets of k-space trajectories: ACS data and sub-Nyquist-
sampled imaging data. Directly subsequent to the acquisition of low resolution ACS data,
the imaging measurement corresponding to the designated higher spatial resolution followed
within the same echo train. The latter varied according to the k-t-undersampling pattern over
the course of repetitions, whereas the ACS acquisition remained the same for each excitation.
The pulse sequence diagram of Fig. 7.3 demonstrates the acquisition scheme of the two data
sets that follow the same RF pulse excitation. Temporal delays for ETS were inserted after the
completed ACS section and before the beginning of the imaging readout.

Acquisition of extra ACS

In k-t-EPI with extra ACS, the total amount of ACS data - including all temporal repetitions -
was collected in an initial set of data acquisition. The actual k-t-sub-Nyquist sampled imaging
data acquisition followed after the ACS section was completed. Figure 7.1 indicates the two-
step procedure of separate prescan and the actual measurement trajectory (dots indicate the
separation). The corresponding pulse sequence diagram is shown in Fig. 7.4.

The NACS
t separate echo train readouts to obtain NACS

t time frames of the low spatial res-
olution ACS data were realized with the same TE and TR as the actual readout. Navigator
echoes for phase correction were acquired separately for both types of echo trains. Nyquist-
sampled ACS readouts and k-t-sub-Nyquist sampled acquisitions were realized with a fixed
step size each, ∆ky and R∆ky, and with fixed blip gradients during the readout interval. ETS
was utilized for the k-t-sub-Nyquist sampled echo train.
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Figure 7.3: The pulse sequence diagram of a k-t-EPI with dynamic extra ACS scheme is illustrated. Directly after
the acquisition of navigator echoes, the first (of two) preparation gradient prepares the initial k-space position for
the sampling of low-resolution ACS data. After the ACS acquisition, the second preparation gradient is used to
traverse to the k-space position of the k-t-sub-Nyquist sampled measurement. Only the latter preparation gradient
varies over the measurement repetitions to achieve the k-t-pattern.
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Figure 7.4: The pulse sequence diagram of k-t-EPI with extra ACS parts into two acquisition blocks, both of
which can be each arbitrarily often repeated. The separation of both blocks is indicated by the small doubled slants.
Whereas the echo train of the ACS data collection incorporates blips realizing Nyquist-sampled phase encoding
steps of ∆ky , blip gradients that perform step sizes of R∆ky are utilized in the echo train of the sub-Nyquist-
sampled data, according to the reduction factor R. In the latter, the shifts of the k-t-Nyquist-sampling pattern are
implemented in different preparation gradients.
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PEAK-GRAPPA
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target

acquired

not acquired

source

target
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Figure 7.5: k-t-GRAPPA reconstruction is illustrated for reduction factor R = 4 and for the PEAK-GRAPPA
pattern with R = 5. For the latter, the serial order of interleaves (s = 0, 1, 2, 3, 4.) was permuted to s =
0, 2, 4, 1, 3. The depiction translates the k-t-space trajectories of k-t-EPI of Fig. 7.1 into the two sets of k-t-space
data utilized in the two steps of the reconstruction. In the first step, reconstruction weights relating source and
target data points are derived based on the ACS data and according to the reconstruction kernel geometry, shown
on the left. In the second step, the reconstruction weights are combined into a single convolution kernel, which is
then convolved with the k-t-sub-Nyquist sampled data, shown on the right.

Shifting in k-t-sub-Nyquist sampling

The k-t-EPI acquisitions are in accordance with the undersampling patterns used in time-
resolved parallel imaging methods. Thereby, the additionally acquired ACS data allows for
the usage of self-calibration methods such as k-t-GRAPPA. In all scenarios with R > 5, the
interleaves were permuted to comply with the desired kernel geometry of PEAK-GRAPPA.
Figure 7.5 illustrates the difference between serial and permuted order of interleaves.

Nyquist and Partial-Fourier sampled EPI

Nyquist sampled EPI acquisitions served as a reference. In order to achieve the designated TE,
5/8- or 6/8-Partial-Fourier had to be incorporated. Partial-Fourier sampling was performed
as described in Sec. 3.5. The asymmetric sampling along the phase encoding direction was
thereby reversed such that the central k-space was met after 1/8th or 2/8th of the echo train.
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7.2.2. Image reconstruction for k-t-EPI

Image reconstruction for k-t-EPI acquisitions was implemented as a six steps procedure and
was performed off-line in MATLAB (The Mathworks, USA). The workflow is schematically
represented in Fig. 7.6. Depending on the acquisition pattern, the missing k-space data
were addressed either by parallel imaging reconstruction or by the projection onto convex
sets (POCS) algorithm. Five iterations were performed of the POCS algorithm presented
in [Haacke et al., 1990]. Note that sub-Nyquist and Partial-Fourier sampling could also be
applied simultaneously, as for instance shown in [Ramb et al., 2014b].

The calibration of reconstruction weights depended on the different ACS acquisition strate-
gies. Whereas temporally averaged reconstruction weights were used in the case of the extra
ACS acquisition scheme, reconstruction weights were derived for each time frame separately
in the case of measurements with inplace or dynamic extra ACS. This is related to the differ-
ence that inplace and dynamic extra ACS lines contain the actual signal dynamics, while the
extra ACS lines describe a different time series. For inplace ACS acquisitions, reconstructions
using Ntime sets of individually derived reconstruction weights as well as using a single set of
temporally averaged weights were investigated. Since the results were very similar, the latter
approach was favored in the results presented, due to faster reconstruction. For dynamic ACS
acquisition, the first approach was incorporated.

Individual coil images were combined based on the adaptive procedure [Walsh et al., 2000].
All k-t-sub-Nyquist sampled measurements were additionally reconstructed using conven-
tional GRAPPA for comparison. Note that conventional GRAPPA is directly applicable also
for the k-t-space undersampling pattern.

start

regridding

phase
correction

3.
sub-Nyquist

sampled?
parallel imaging
reconstruction

yes

4.
Partial-Fourier

sampled? POCS reconstruction
yes

discrete Fourier
transform

coil
combination

stop

1.

2.

5.

6.

Figure 7.6: The workflow of k-t-EPI
image reconstruction consists of six
steps. 1. Regridding and density com-
pensation is performed in order to ac-
count for ramp sampling (Sec. 3.4.2).
2. Phase correction is carried out
based on the navigator echoes acquired
(Sec. 3.4.2). If applicable, 3. paral-
lel imaging reconstruction (Sec. 5.4.2)
or 4. POCS reconstruction (Sec. 3.5)
is then incorporated to reconstruct k-
space data on a grid that fulfills the
Nyquist theorem. The process con-
cludes with 5. an inverse discrete
Fourier transform (Def. 3.3.22) and 6.
coil combination (Sec. 4.1).
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parameter value

TE 30.0 ms
TR 1500 ms
flip angle α variations over repetitions
number of slices 1 slice
slice thickness 3.7 mm
field of view 240× 240 mm2

matrix size 170× 170
BW 1548 Hz/Px
echo spacing 780 µs
number of time frames 120

nominal spatial resolution 1.4× 1.4× 3.7 mm3

temporal resolution 1500 ms

Table 7.1: Sequence parameters for the investigation of the k-t-sub-Nyquist sampling scenarios of k-t-EPI at var-
ious reduction factors are listed. For reference, a Nyquist-sampled EPI (with 5/8-Partial-Fourier sampling to
achieve the TE of 30 ms) was acquired with similar parameters. Note that the high spatial resolution in the
Nyquist-sampled EPI could be realized since only 5 slices were imaged at the given TR.

7.2.3. In vivo measurements with flip angle induced dynamics

Reconstruction quality, temporal fidelity and noise behavior was assessed in a preceding in-
vestigation based on dynamics induced by variations of the flip angle at constant TR. The flip
angle variations mimicked a global bolus passage of contrast agent. The procedure allowed for
a reproducible comparison of different acquisition patterns without the necessity of contrast
agent administration.

In vivo measurements using k-t-EPI with different acquisition strategies were conducted on
a 3T PRISMA Scanner (Siemens, Erlangen, Germany). All acquisitions with flip angle induced
dynamics were obtained from the same healthy volunteer (male, 30 years) and in a single ses-
sion of measurements. For each set of parameters, the same slice orientation was acquired. The
scanner was equipped with a 64-channel head coil array. Among those, the 32 channels that
provide the highest signal magnitude were selected for parallel reception.

Sub-Nyquist-sampling with k-t-EPI was performed at reduction factors of R = 5, R = 7
and R = 9, for each ACS acquisition strategy. Additionally, Nyquist-sampled EPI images were
acquired for the comparison. The latter incorporated 5/8-Partial-Fourier sampling, in order to
realize the designated TE of 30 ms. This TE corresponds to a standard effective echo time in
clinical cerebral perfusion. Please note that additional Partial-Fourier sampling is not required
in the case of k-t-sub-Nyquist sampling to realize the desired TE.

The measurement parameters are listed in Table 7.1. The parameters were chosen to match
a standard clinical protocol besides an increase in spatial resolution to 1.4 × 1.4 × 3.7 mm3.
Although such a high spatial resolution is usually not accomplished in the standard EPI mea-
surement, it was reached by imaging solely five slices. In this way, the relatively long readout
of the Nyquist-sampled EPI could be realized within the given TR of 1.5 s.

The total readout length varied depending on the trajectory, the reduction factor and the
number of ACS lines. The latter was chosen to provide a TE of 30 ms in all acquisitions and is
listed in Table 7.2. For extra ACS, each measurement incorporated 20 temporal repetitions of
the ACS acquisition. Corresponding readout lengths for the echo spacing of 780 µs are collected
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acquisition strategy R = 5 R = 7 R = 9

k-t-EPI with inplace ACS 20 21 18
k-t-EPI with dynamic extra ACS 10 14 18

k-t-EPI with extra ACS 20 21 18

Table 7.2: Choices of numbers of
ACS lines for the different acqui-
sition strategies and reduction
factors.

Table 7.3: Readout
lengths of the varying
acquisition strategies

reduction factor inplace ACS (dynamic) extra ACS

R = 5 50 · 780µs = 39.00 ms 34 · 780µs = 26.52 ms
R = 7 43 · 780µs = 33.54 ms 25 · 780µs = 19.50 ms
R = 9 35 · 780µs = 27.30 ms 19 · 780µs = 14.82 ms

EPI reference R = 1 128 · 5/8 · 780µs = 62.4 ms

in Table 7.3. Among the k-t-EPI scenarios, inplace ACS requires the longest echo train due to
incorporating Nyquist-sampled phase encodings at the central part of k-space. For inplace
ACS, the corresponding net reductions were Rnet = 3.4/4.02/4.97. However, even the longest
readout time of 39 ms at R = 5 is lower than the time of image acquisition for the 5/8-Partial-
Fourier- and Nyquist-sampled EPI of 62.4 ms.

Each acquisition consisted of 120 repetitions during which flip angles were varied only
in the first part of measurement repetitions. The evolution of flip angles over repetitions
was designed similar to the characteristic signal drop during bolus passage in cerebral per-
fusion imaging with contrast agent (see Fig. 5.4). The initial flip angle of 75◦ was step-wise
reduced to a minimum of 7◦ and subsequently incremented to restore the initial flip angle:
75◦, 74.93◦ . . . , 28.91◦, 13.21◦, 7.32◦, 12.43◦, 24.24◦, . . . , 74.56◦, 75◦. Relative flip angle changes
range between 10 and 100% of the initial flip angle. The bolus arrival time was set to t = 10TR
in the sequence. The first 10 measurement repetitions comprise the transition into steady state
and the baseline signal, before designed changes in the magnitude intensity occur.

The k-t-EPI data was additionally reconstructed using non-time-resolved GRAPPA for com-
parison. They are referred to as GRAPPA-EPI or simply as GRAPPA. The POCS reconstructed
Nyquist-sampled EPI scenarios were termed POCS-EPI below. The resulting time series of
images were analyzed in terms of temporal fidelity and noise.

Temporal fidelity

As the repetition with the minimal flip angle mimics the maximal signal drop during the bo-
lus passage, an increase of magnitude values for that particular time frame indicates blurred
temporal information. Therefore, the mean and standard deviation of the magnitude signal
for the lowest flip angle were assessed to reveal temporal smoothing. Since also broadening of
the time curve marks temporal inaccuracy, mean and standard deviation of the FWHM were
estimated. All analyses were performed separately for each pixel.

The FWHM was derived based on fitting a Gaussian function - denoted by f below - with
least-square deviation to the time series of each pixel. Among the three fitted parameters a, b, c,
the outcome of c was used to estimate the FWHM according to the relation:

f(x) = a exp

(
− (x− b)2

2c2

)
and FWHM = 2

√
2 ln 2c. (7.1)

In total, 7456 pixels were included in the estimation of mean and standard deviations of min-



134 Chapter 7. k-t-sub-Nyquist sampled parallel EPI

imal signal magnitudes and FWHM. The pixels were selected by manually drawing a ROI
inside the brain area within the image. The skull and the outer parts of the brain were not
incorporated in the ROI to avoid motion artifacts. Values obtained from the Nyquist-sampled
EPI were assumed to depict a ground-truth reference.

Temporal signal-to-noise ratio

Signal fluctuations of each acquisition and reconstruction type were rated using the last 80
of the 120 measurements, which were acquired without flip angle variations. The temporal
signal-to-noise-ratio was assessed according to the definition below and with Nt = 80.

Definition 7.2.1 (temporal signal-to-noise-ratio (tSNR)). Let d̂sub,3D(xp) denote the reconstructed
k-t-space signal of combined coil contributions of pixel xp. The temporal signal-to-noise-ratio
(tSNR) is defined for each pixel xp, p = 1, . . . , Npix by

tSNR(xp) =
d̂sub,3D(xp)

σ(d̂sub,3D(xp))
,

where the nominator and denominator are defined by the mean and standard deviation, i.e.

d̂sub,3D(xp) :=
1

Nt

Nt∑

t=1

d̂sub,3D(xp, t)

σ(d̂sub,3D(xp)) :=

√√√√ 1

Nt − 1

Nt∑

t=1

∣∣∣d̂sub,3D(xp, t)− d̂sub,3D(xp)
∣∣∣
2
.

Remark 7.2.2. The tSNR reflects temporal variations in the time series of individual pixels. It demon-
strates also influences by artifacts that fluctuate over the temporal repetitions. Periodically changing
artifacts due to the periodic repetition of different trajectories are likewise revealed.

Temporal average g-factor

Temporal average g-factor values were derived to capture SNR losses due to parallel imaging.
In the case of k-t-GRAPPA, the total g-factor contribution was calculated following Def. 6.2.6.
For the additional conventional GRAPPA reconstruction, g-factors were derived according to
Cor. 4.6.15 and subsequently averaged over the range of time frames.

7.2.4. First-pass bolus perfusion in vivo measurements

Initial feasibility results of k-t-EPI in cerebral perfusion imaging were obtained in two repeated
DSC weighted acquisitions, each measurement with only half of the normal contrast agent
dose, and by comparing k-t-EPI with the currently standard clinical EPI protocol. The mea-
surements were conducted on a 3T clinical scanner (Tim TRIO, Siemens, Erlangen, Germany)
in six patients (two measurements per subject). The patients examined had been diagnosed
with different grades of tumorous tissue found in various areas of the brain. The study was
approved by the local ethical committee, and written informed consent was given prior to ex-
amination.

The two cerebral perfusion imaging scenarios were performed in the order of 1. the cur-
rently standard clinical EPI protocol and 2. the proposed k-t-EPI acquisition with inplace ACS
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at reduction factor R = 5. The sequence parameters of both imaging protocols are depicted
in Table 7.4. For DSC weighted imaging, an injection of 0.2 ml per kg body weight of 0.5 M
Gadoteridol (Prohance, Bracco Imaging, Italy) was administered at a flow rate of 3 ml/s.

The serial image acquisition was performed during the injection of contrast agent and com-
prised 50 time frames. The same temporal resolution, effective echo time and spacing were
used, in order to support the direct comparison. The echo spacing and respective reduced
sampling along phase encoding direction led to the following readout times per slice:

96 · 780µs = 74.88ms, for standard EPI, 6/8-Partial-Fourier sampling,
50 · 780µs = 39.00ms, for k-t-EPI, inplace ACS, R = 5.

The k-t-EPI sequence achieved in particular substantially higher spatial resolution with in-
creased brain coverage. Whereas the nominal spatial resolution was 1.8 × 1.8 mm2 for the
standard EPI and at the given field of view of 240× 240 mm2, the k-t-EPI sequence provided a
nominal spatial resolution of 1.4 × 1.4 mm2 with the same field of view and TR. The nominal
spatial resolution is indicated, since spatial resolution can potentially be further decreased due
to the asymmetric sampling in the case of Partial-Fourier sampling, or imposed by relaxation
over the readout interval.

All k-t-EPI data sets were additionally reconstructed using non-time-resolved GRAPPA for
comparison. Two sets of reconstructions were derived for the conventional EPI acquisition as
well: first, the vendor based reconstruction and second, off-line Fourier reconstruction incorpo-
rating the POCS algorithm with 5 iterations. Whereas the first yields images as currently used
in the clinical context, the latter facilitates the comparison with k-t-EPI acquisitions and recon-
structions within the same reconstruction framework, where all steps are controlled. In order
to distinguish the four reconstructions based on the two acquisition types, they are referred to
as:

1. standard EPI
2. POCS-EPI

}
conventional EPI acquisition

3. k-t-EPI
4. GRAPPA-EPI

}
k-t-EPI with inplace ACS acquisition

Assessment of CBV maps, temporal fidelity and g-factors

The cerebral blood volume (CBV) was determined off-line for POCS-EPI, k-t-EPI and GRAPPA-
EPI and using the vendor’s platform in the case of standard EPI. Off-line estimated CBV were
derived according to the formulae presented in (5.6) and (5.7), which reduce in the case of
discrete time series to

ˆCBV(xp) ∝
∑

t

∆R̂?2(xp, t),

where ∆R̂?2(xp, t) := − ln

(
Î full
t (xp)

Î0(xp)

)
/TE and Î0(xp) :=

1

Nt

Nt∑

t=1

Î full
t (xp).

(7.2)

The summation was performed over the first bolus passage. For the comparison, the window
selected for the display of the relative CBV maps of each method was scaled to a similar ap-
pearance.



136 Chapter 7. k-t-sub-Nyquist sampled parallel EPI

acquisition parameters conventional EPI k-t-EPI, inplace ACS

TE 30.0 ms
TR 1500 ms
flip angle αfa 75◦

number of slices 15 slices 20 slices

slice thickness 3.7 mm
field of view 240× 240 mm2

matrix size 128× 128 170× 170

BW 1548 Hz/Px 1446 Hz/Px
echo spacing 780 µs
phase undersampling 6/8 Partial-Fourier R = 5, 20 ACS lines
number of phase encoding steps Npe = 96 Npe = 50
number of time frames 50
nominal spatial resolution 1.8× 1.8× 3.7 mm3 1.4× 1.4× 3.7 mm3

temporal resolution 1500 ms

Table 7.4: The table contains acquisition parameters of the first-pass DSC weighted cerebral perfusion measure-
ments of the standard clinical protocol (conventional EPI) and the proposed k-t-EPI acquisition with inplace ACS
at reduction factor R = 5.

Average temporal signal evolutions between POCS-EPI, k-t-EPI and GRAPPA-EPI were
compared based on two designated ROIs, in order to find differences in temporal fidelity. To
this end, time series of magnitudes were normalized to individual baselines for each pixel.
Mean and standard deviation were computed. The FWHM was furthermore estimated by
the same fitting procedure as presented in (7.1) and according to least-square deviation for
each reconstructed pixel separately. Its mean and standard deviation were compared between
POCS-EPI, k-t-EPI and GRAPPA-EPI.

For the assessment of SNR losses as an inherent penalty in parallel imaging, temporally
averaged g-factors were derived in the case of k-t-EPI and GRAPPA-EPI.

7.3. Results

Based on the in vivo measurements with flip angle induced dynamics, individual reconstruc-
tion results are examined from various aspects in Sec. 7.3.1. Initial results in DSC weighted
cerebral perfusion are shown in Sec. 7.3.2.

7.3.1. Measurements with flip angle induced dynamics

Figure 7.7 presents the same time frame of the series of magnitude images for the various
k-t-EPI acquisitions with flip angle induced dynamics. A time frame in steady state is chosen
and before flip angle variations occur. The k-t-EPI scenarios are demonstrated for the three
ACS acquisition schemes (inplace, dynamic extra and extra ACS) at three different reductions
(R = 5, 7 and 9). The measurements confirm the feasibility of highly undersampled EPI with
high depiction quality.
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Figure 7.7: Reconstructed magnitude
images of the same slice and time
frame are displayed for the three k-t-
EPI imaging scenarios at different re-
duction factors: (a,b,c) R = 5, (d,e,f)
R = 7 and (g,h,i) R = 9. The different
ACS schemes are sorted into columns:
(a,d,g) inplace ACS, (b,e,h) dynamic
extra (dyn-ex) ACS and (c,f,i) extra
ACS.

Figure 7.8: Transverse slice
reconstructions are shown for (a)
POCS-EPI (Nyquist-sampled,
R = 1 and 5/8-Partial Fourier)
and (b,c) two scenarios of k-t-
EPI at R = 9. White arrows and
dashed lines indicate artifacts
due to different in-plane suscep-
tibilities. These are improved in
k-t-EPI.

a
POCS-EPI

b
extra (R = 9)

k-t-EPI

c
inplace (R = 9)

k-t-EPI



138 Chapter 7. k-t-sub-Nyquist sampled parallel EPI

a
extra (R = 5)

a
extra (R = 5)

k-t-EPI

b

extra (R = 5)

b

extra (R = 5)
GRAPPA

c
inplace (R = 5)

c
inplace (R = 5)

k-t-EPI

d

inplace (R = 5)

d

inplace (R = 5)
GRAPPA

Figure 7.9: Magnitude images are presented for k-t-EPI acquisition at R = 5 with (a,b) extra ACS and (c,d)
inplace ACS scheme. Magnifications of the brain area indicated are used to disclose the different noise levels
between (a,c) k-t-GRAPPA and (b,d) additional GRAPPA reconstruction of the same data sets.

In-plane susceptibilities and noise

As stressed by the dashed lines and white arrows in Fig. 7.8, POCS-EPI is affected by in-plane
susceptibility artifacts that lead to a signal loss in the orbito-frontal cortex. This loss is mitigated
in the k-t-sub-Nyquist sampled acquisitions due to the shorter readout duration per slice. Fig-
ure 7.8 emphasizes particularly the improvement of in-plane susceptibility artifacts in k-t-EPI
at R = 9 as opposed to POCS-EPI. At R = 9, the shortest readout duration of the considered
scenarios is provided with extra or dynamic extra ACS.

In-plane susceptibility artifacts are likewise moderated in the additional GRAPPA recon-
structions, since the same sub-Nyquist sampled data is the basis. However, starting at R = 5,
GRAPPA reconstructions are corrupted by severe noise amplification, which is observed in all
scenarios. This effect is highlighted in Fig. 7.9. The depiction discloses a substantial loss in
image quality of the GRAPPA reconstructions, already at R = 5. More fine details are resolved
in the k-t-EPI images. White matter and gray are in particular easier to distinguish.

Temporal fidelity

Figure 7.10 reveals the signal drop induced by flip angle variations. An image column of the
transverse slice is displayed over the range of time frames acquired. The POCS-EPI acquisition
serves as a reference. Excellent agreement is found for k-t-EPI with inplace ACS acquisition
at all reduction factors, as well as for the GRAPPA reconstructions. The latter is expected,
since conventional GRAPPA does not incorporate neighboring time frames in the reconstruc-
tion process. However, the high noise level is visible over all time frames for the GRAPPA
reconstruction.

Slightly reduced temporal fidelity is suspected in k-t-EPI with dynamic extra ACS acquisi-
tion, with no noticeable increase at the higher reductions. At reduction factor R = 9, however,
temporal fidelity appears degraded by residual aliasing artifacts. Severe temporal blurring oc-
curs at reconstructions based on extra ACS acquisitions. The width of the signal dip is already
slightly broadened at R = 5, which increases in severity when moving to higher reductions.
Strongest blurring is found for extra ACS at R = 9. Although extra ACS provided high robust-
ness against in-plane susceptibility artifacts, the findings suggests to exclude this acquisition
scenario for DSC weighted cerebral perfusion measurements.
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Figure 7.10: Reconstructed magnitude
values of an image column are dis-
played along the series of time frames
acquired. The spatial position of the
column is indicated in the additional
transverse slice representation. Recon-
structions correspond to the magni-
tude images of Fig. 7.7- 7.9, and com-
prise (a) POCS-EPI, (b-d,f-h,j-l) k-t-
EPI for the three acquisition strategies
and the three reduction factors, as well
as additional GRAPPA reconstruction
forR = 5 with (e) inplace and (i) extra
ACS acquisition.

A closer consideration of the temporal depiction quality is given in Fig. 7.11, where the time
series of individual pixels are regarded. Figure 7.11a compares different acquisition strategies
at R = 5, while Fig. 7.11b shows the time series for different reduction factors for the same
acquisition type (inplace ACS). Figure 7.11a discloses how the extra ACS scheme leads to a re-
duction of the signal depth. Both inplace and dynamic ACS acquisition reflect the same magni-
tude response as the POCS-EPI reference. Time series obtained from GRAPPA reconstruction
exhibit signal fluctuations, in particular during constant flip angle application. Figure 7.11b
demonstrates excellent temporal fidelity for the inplace ACS acquisition scheme and k-t-based
reconstruction kernels during the variation of flip angles and at all three reduction factors.
Shortly before the first flip angle decrease occurs, as well as shortly after the last increase, in-
creased magnitude values are observed for reduction factors R = 7 and R = 9. However, the
cause cannot be clearly deduced from the current display, since the slightly different effective
spatial resolutions could also cause variations.

Whereas time series of solely one pixel location is considered in Fig. 7.11, a cumulative
evaluation is presented in Fig. 7.12 and Table 7.5. Figure 7.12 addresses the temporal fidelity
with respect to the depth of signal decrease (Fig. 7.12a and b) and the FWHM of the mimicked
bolus passage (Fig. 7.12c and d) in the various k-t-sub-Nyquist-sampled scenarios.

Differences of the three acquisition strategies with respect to increasing reductions are
shown in Fig. 7.12a and c. A loss of depth and width of the virtual bolus passage is evident
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Figure 7.11: Magnitude values for a single pixel - as specified by the white arrow in the transverse slice image -
are plotted over the range of time frames. Different scenarios are grouped. For the same reduction factor R = 5,
reconstructed time series of k-t-EPI of the inplace, dynamic extra (dyn-ex) and extra ACS scheme are shown in (a),
and in comparison with the POCS-EPI for reference. Additional GRAPPA reconstructions of the same three data
sets (indicated by the same colors) are drawn using dashed lines. Results of all reduction factors, but solely from
the inplace ACS acquisition scheme (red), are brought together in (b). For reference, POCS-EPI is again included.
GRAPPA reconstructions are not inserted in (b).
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Figure 7.12: Mean values and standard deviation for the statistical evaluation of 7456 pixel (blue ROI in the
magnitude image) are presented. Intensities of the time frame corresponding to RF pulse excitation with the
lowest flip angle are investigated in (a,b). A cumulative analysis of the estimated FWHM values is depicted in
(c,d). The exhaustive analysis is shown in Table 7.5.
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method minimum FWHM tSNR

POCS-EPI R = 1 0.16± 0.03 6.06± 0.37 48.01± 15.69

R = 5 0.16± 0.03 6.04± 0.38 47.99± 15.49
k-t-EPI R = 7 0.16± 0.04 6.16± 0.4 43.32± 13.40
inplace ACS R = 9 0.17± 0.05 6.07± 0.5 45.91± 14.90

R = 5 0.17± 0.05 6.12± 0.78 12.29± 4.32
GRAPPA-EPI R = 7 0.17± 0.07 8.42± 15.11 5.73± 2.68
inplace ACS R = 9 n.a. n.a. n.a.

R = 5 0.21± 0.04 6.5± 0.52 34.20± 14.49
k-t-EPI R = 7 0.27± 0.05 7.04± 0.89 33.14± 13.61
dyn-ex ACS R = 9 0.24± 0.05 8.61± 3.75 35.39± 14.54

R = 5 0.17± 0.07 6.41± 4.56 7.51± 2.47
GRAPPA-EPI R = 7 0.31± 0.14 10.49± 23.44 4.26± 2.20
dyn-ex ACS R = 9 n.a. n.a. n.a.

R = 5 0.33± 0.05 7.5± 0.62 46.44± 19.57
k-t-EPI R = 7 0.47± 0.07 9.4± 3.25 39.94± 18.16
extra ACS R = 9 0.54± 0.09 23.24± 37.72 33.45± 14.44

R = 5 0.18± 0.08 6.22± 1.08 11.01± 4.69
GRAPPA-EPI R = 7 0.32± 0.2 10.22± 33.28 5.17± 2.73
extra ACS R = 9 n.a. n.a. n.a.

Table 7.5: Mean and
standard deviations of
the minimum signal
and FWHM estimated
for all imaging strate-
gies are displayed.
A subset of which is
contained in Fig. 7.12.
Average tSNR values
and corresponding
standard deviations
are furthermore listed.
The estimation was
performed over the
7456 pixels highlighted
by the blue ROI in
Fig. 7.12.

in k-t-EPI with extra ACS acquisitions and k-t-kernel based reconstructions. Temporal fidelity
decreases severely when moving to higher reduction factors. Also for the dynamic extra
ACS scheme, the depth and width as observed in the POCS-EPI reference are not reached
on average. Whereas values are in a closer range at reduction factor R = 5, in particular
FWHM values are considerably increased at reduction factor R = 9. High temporal fidelity
with unbiased mean values are achieved with k-t-EPI and inplace ACS acquisition. Deviations
occur in a slightly larger interval, however still within an acceptable range. Increases with
respect to higher reduction factors are minor.

Figure 7.12b and c reveals different behaviors of time-resolved k-t-GRAPPA versus non-
time-resolved GRAPPA reconstruction of the three acquisition strategies. Whereas mean val-
ues diverge substantially between the three ACS scenarios in the case of k-t-kernel based recon-
structions, differences are much smaller for conventional GRAPPA. Nevertheless, both confirm
the closest agreement with POCS-EPI in the case of inplace ACS. It is striking that GRAPPA ex-
hibits greater standard deviations than each time-resolved counterpart. It is also the standard
deviation that differs strongly between the three acquisition strategies in the case of conven-
tional GRAPPA.

Explicit values for the cumulative analysis of depth and width of the imitated bolus pas-
sage are accumulated in Table 7.5. Remaining scenarios are furthermore listed, in order to
complement the selection displayed of Fig. 7.12. Only values for GRAPPA reconstructions at
R = 9 were excluded, since evaluation was impaired by visible, strong artifacts. Please note
again the close agreement between k-t-EPI with inplace ACS - at all reduction factors - and the
POCS-EPI reference. Values for GRAPPA reconstructions at reduction factorR = 7 exceed their
counterparts of k-t-GRAPPA reconstructions even in the worst-case scenario of R = 9 of the
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Figure 7.13: tSNR val-
ues of a transverse slice are
shown for k-t-EPI with in-
place ACS and additional
GRAPPA reconstructions
at (a,e) R = 5 (b,f), R = 7
and (c,g) R = 9, as well
as for (d) POCS-EPI. A
complementary cumulative
analysis of tSNR is con-
tained in Table 7.5.

latter.

tSNR and g-factor

Based on the previous findings on temporal fidelity, k-t-EPI with inplace ACS acquisition
scheme is further investigated. Figure 7.13 presents tSNR maps derived over an interval of
repetitions with constant flip angle. Compared to POCS-EPI, GRAPPA reconstructions are af-
fected by a severe loss of tSNR, whereas k-t-EPI with k-t-GRAPPA reconstruction provides the
same high tSNR. Residual aliasing artifacts are visible in the tSNR maps of GRAPPA.

Cumulative tSNR values - also for the other acquisition schemes - are listed in Table 7.5. A
close agreement with POCS-EPI is found for k-t-EPI with extra ACS acquisition at reduction
factorR = 5, as well as for all inplace ACS scenarios, in the case of k-t-GRAPPA reconstruction.
In the GRAPPA reconstructions (R = 5 and R = 7), tSNR losses range between 68% and
85%. Best performance is hereby found again for the inplace ACS scheme at reduction R = 5.
In comparison, reductions between 1% and 31% are present in k-t-GRAPPA reconstructions,
including also scenarios with reduction factor R = 9.

As a counterpart of tSNR considerations, temporal average g-factor penalties are demon-
strated in Fig. 7.14. Frequency combined gavg

x -factor maps, which reflect temporally averaged
contributions, are provided in the case of k-t-GRAPPA. Whereas g-factor penalties decrease
when moving to higher reduction factors in the case of time-resolved parallel imaging, high
g-factor values are obtained in the GRAPPA reconstructions of R = 5 and R = 7. The sub-
stantially higher g-factor penalty implies severe SNR degradation. The g-factor results support
the observations made in terms of tSNR. The reduced noise variances of k-t-EPI are in accor-
dance with investigations in the context of cardiac MRI, as covered in Chapter 6. Both tSNR
and g-factor maps complement the visual impression of spatio-temporal depiction quality of
the various strategies. Due to its superior performance in the investigation with flip angle in-
duced dynamics, k-t-EPI with inplace ACS acquisition scheme at R = 5 was selected for DSC
weighted cerebral perfusion imaging in patients.
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Figure 7.14: Frequency combined
gavg
x -factor maps are displayed for

k-t-EPI at (a) R = 5, (b) R =
7 and (c) R = 9, all with the
same color coding. Temporal av-
erage gx-factor maps for the ad-
ditional GRAPPA reconstruction
are depicted for (d) R = 5 and (e)
R = 7. A different scaling range
is used for the latter, since val-
ues are much higher. The trans-
verse slices correspond to the one
of Fig. 7.13.
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7.3.2. DSC weighted cerebral perfusion

Initial feasibility results of the application of k-t-EPI with inplace ACS at R = 5 in DSC
weighted imaging of cerebral perfusion are demonstrated in Figures 7.15, 7.16 and 7.17.
Three representative patients - out of six imaging sessions in total - are shown in order to
demonstrate different aspects. Each figure corresponds to one of the three patients.

Figure 7.15 shows reconstructed magnitude images and corresponding CBV maps of a sin-
gle slice. All four reconstruction scenarios - based on the two DSC weighted acquisitions at
half-dose - are demonstrated: Standard EPI and POCS-EPI (conventional EPI measurement),
as well as k-t-GRAPPA and GRAPPA reconstruction of the k-t-sub-Nyquist sampled EPI acqui-
sition. The figure shows the same slice for all measurements. In total 15 slices were acquired in
the conventional measurement and 20 slices in the case of k-t-EPI at R = 5. Improved spatial
resolution in the k-t-sub-Nyquist sampled acquisition is clearly noticeable.

In Fig. 7.15, data are shown of an oligodendroglioma WHO (World Health Organization)
grade II in the left temporal lobe. It corresponds to the area with high signal intensities in the
left temporal lobe of the FLAIR images. Small veins draining into the left temporal lobe are
visible in the magnitude images and corresponding CBV maps. These are best to delineate in
k-t-EPI and are also apparent in POCS-EPI. Fine details are concealed in GRAPPA-EPI due to
the presence of noise in both the magnitude image and the CBV map.

A small leptomeningeal artery in a sulcus on the right temporo-occipital lobe (magnifi-
cation) is better depicted in k-t-EPI than in the standard EPI or in POCS-EPI. The GRAPPA
reconstruction - coming from the same measurement data - provides this fine detail. However,
the fidelity in the latter is compromised by the noise enhancement. The detail is lost in the
corresponding CBV map of the GRAPPA reconstruction.

Figure 7.16 contains a similar arrangement of transverse slice images obtained in another
patient with a glioblastoma multiforme WHO grade IV. Magnitudes during bolus passage as
well as CBV maps are represented for standard EPI, k-t-EPI and GRAPPA-EPI. Tumor is evident
in the corpus callosum and the left anterior cingulate cortex. The T1-weighted reference and
the FLAIR image demonstrate hyperintense contrast in these areas.
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Figure 7.15: Magnitude images during bolus passage and corresponding CBV maps are displayed for (a,f) standard
EPI, (b,g) POCS-EPI, as well as (c,h) for k-t-EPI (inplace ACS, R = 5) and (d,i) GRAPPA-EPI. The first two and
the latter two are derived from the conventional EPI acquisition and the k-t-sub-Nyquist-sampled measurement,
respectively. Furthermore shown is (e) a T1-weighted image and (j) a FLAIR acquisition. Both give evidence for
a oligodendroglioma WHO grade II in the left temporal lobe (white oval). Prominent veins that pass into the left
ventricle are visible in the corresponding CBV maps (white arrows). The magnifications highlight a small artery
in a sulcus to emphasize the different spatial resolutions of the two acquisition, as well as different reconstruction
performance of the four approaches.
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Figure 7.16: Reconstruction results of magnitude images during bolus passage and CBV maps are shown for (a,e)
standard EPI, (b,f) k-t-EPI and (c,g) GRAPPA-EPI. The latter two are based on the same measurement data. The
first is obtained directly from the vendor’s platform. For reference, T1-weighted and FLAIR images are displayed
in (d) and (h), respectively. A multifocal glioblastoma multiforme WHO grade IV in the corpus callosum and in
the left anterior cingulate cortex (white, dashed and solid arrows) leads to increased intensities in the T1-weighted
image and the FLAIR image. In the case of k-t-EPI acquisition, the CBV map shows finer details in the corpus
callosum than in the standard EPI. (see magnification). Note that interpolation to a higher pixel grid is evident in
the vendor’s CBV map.
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Figure 7.17: Similar as to Figs. 7.15 and 7.16, reconstructed images of a transverse slice during bolus passage
are represented, together with CBV results, for (a,e) standard EPI, (b,f) POCS-EPI, as well as (c,g) k-t-EPI. The
first two constitute on-line and off-line reconstructions of the same measurement data. The third is the proposed
k-t-EPI scenario. Additionally, a T1-weighted (d) and a FLAIR image (h) is given for reference. The patient has
an anaplastic oliogastrocytoma WHO grade III in the left mesial parietal lobe (white, dashed arrows). The increase
in CBV is best delineated in the case of k-t-EPI. In-plane susceptibility artifacts can be seen in standard EPI and
POCS-EPI, but are mitigated in k-t-EPI (white, solid arrows).

The improved spatial resolution facilitates a finer depiction in k-t-EPI, in particular with
respect to the small lesion in the cingulate cortex. In the case of standard EPI, the affected
area is hard to distinguish from the vessels of the anterior interhemispheric fissure and it is
obscured by noise in the GRAPPA-EPI scenario. Likewise, the tumorous part in the corpus
callosum is easier to delimit from the ventricles in k-t-EPI than in POCS-EPI. Corresponding
CBV maps of k-t-EPI hereby exhibit a more detailed gradation. Within this area, CBV values
of k-t-EPI suggest the most aggressive part to be more confined and centralized compared to
the findings of the standard EPI measurement. The transverse slice furthermore reveals in-
plane susceptibility artifacts in the latter, which are not present in the acquisition strategy of
k-t-EPI. GRAPPA-EPI shows similar CBV behavior. However, CBV maps appear again highly
corrupted by noise and artifacts are visible in the magnitude image.

In Fig. 7.17, cerebral perfusion images from a third patient with an anaplastic oliogastrocy-
toma WHO grade III in the left mesial parietal lobe are displayed. The tumor is hyperintense in
the FLAIR image and abnormal contrast behavior is observed in the T1-weighted reference. In
the standard EPI and POCS-EPI, the corresponding area is hard to determine within the CBV
maps. A much better assessment of the increased CBV of the tumor is achieved based on the
significantly higher spatial resolution in k-t-EPI.

The measurement data of all six patients provided a higher spatial resolution of magnitude
images and in the assessment of CBV. In all cases, areas of tumorous tissue were more confined
in the CBV maps. In cases of very small lesions, these were often better to locate in the high
resolution maps of k-t-EPI acquisition compared to the conventional EPI.
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Figure 7.18: For the same patient data as in Fig. 7.15, average signal evolution are displayed in (a) and (b),
for two different ROIs (corresponding to the blue box). Intensity curves were normalized to the baseline each and
shifted along the time domain to account for different timings of administration of contrast agent during individual
measurements. Furthermore shown are mean and standard deviations of the FWHM estimation within the same
ROIs, in (c) and (d).

Temporal evolution, tSNR and g-factors

In addition to the visual representation in Fig. 7.15, an analysis based on ROIs of the same
measurement is presented in Fig. 7.18 for POCS-EPI, k-t-EPI and GRAPPA-EPI. This data set is
representative of the results in other patient measurements. Normalized and averaged magni-
tude intensity time curves for two different ROIs, as well as the cumulative mean and standard
deviation of the FWHM estimation, are displayed. The three methods exhibit the same depth
during maximum signal decrease, but differ slightly after the bolus passage. Note that k-t-EPI
and GRAPPA-EPI were derived from the same acquisition data. As this data was acquired
during the repeated administration of contrast agent, the first administration could still affect
the measurement. Both k-t-EPI and GRAPPA-EPI time curves are very similar. In both, slight
systematic fluctuations are present in the averaged temporal evolution. The latter indicates the
origin to lie within the acquisition itself and not the reconstruction method.

Estimations of the FWHM reveal a much greater range of deviation for GRAPPA-EPI than
in k-t-EPI. For the second ROI, the mean obtained in GRAPPA-EPI is even lower than in the
POCS-EPI reference. Mean FWHM of k-t-EPI and POCS-EPI are in a close agreement. Standard
deviations of k-t-EPI are found to be larger in some regions.

Using the example of the slice of Figure 7.19, tSNR and g-factors are assessed for two differ-
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Figure 7.19: tSNR maps and temporal average g-factors for the same slice as in Fig. 7.16 are shown for the two
parallel imaging reconstructions of k-t-EPI and GRAPPA-EPI. Whereas k-t-EPI provides high tSNR and low
g-factor penalty, tSNR is reduced and g-factor noise amplified in GRAPPA-EPI.

ent parallel imaging reconstruction scenarios as part of k-t-EPI and GRAPPA-EPI in Fig. 7.19.
As expected from the analysis based on dynamics induced by flip angle variation, k-t-EPI
produces higher tSNR and lower g-factor penalty than GRAPPA-EPI. The g-factor map of
GRAPPA-EPI exhibits the typical increase in the central part of the reconstruction due to re-
duced sensitivities. The same area has also slightly higher g-factor values in k-t-EPI, which is
not visible in the same color coding as GRAPPA-EPI.

7.4. Discussion

Based on an interleaved EPI trajectory, three different acquisition strategies that facilitate k-t-
undersampled EPI with ACS data acquisition were presented: k-t-EPI with inplace, extra and
dynamic extra ACS. The sampling scheme allows to incorporate time-resolved parallel imag-
ing reconstruction methods, such as k-t-GRAPPA, into EPI. In this way, the number of time-
consuming phase encoding steps can be substantially reduced while maintaining or even in-
creasing the spatial resolution. The thereby shortened echo train has a beneficial effect on sup-
pressing in-plane susceptibility artifacts as well as geometric distortion. Previous reports on in-
corporating non-time-resolved parallel imaging methods, such as GRAPPA, into EPI were lim-
ited to low reduction factors. With k-t-EPI, the aim to overcome SNR limitations was reached.
Higher reduction factors with a more benign SNR behavior were presented.

In order to evaluate the three acquisition strategies with respect to different reduction fac-
tors, in vivo measurements with flip angle induced dynamics were performed. The most be-
nign acquisition scenario for DSC weighted cerebral perfusion imaging was identified: k-t-EPI
with inplace ACS at reduction factor R = 5. It was successfully applied in DSC weighted cere-
bral perfusion imaging in patients. The goal of high spatial resolution CBV assessment was
thereby achieved without sacrificing temporal resolution. Comparison with the standard clin-
ical routine measurement confirms that more fine details are reproduced in the k-t-EPI mea-
surement. Several cases were shown, where the higher resolution in CBV maps provided a
substantial gain in information. Additionally, improved imaging behavior in the orbitofrontal
cortex with less distortion was observed.
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SNR in comparison with GRAPPA

High g-factor penalties limited the application of high reduction factors in the context of non-
time-resolved parallel imaging and make time-resolved methods more favorable. However,
neighboring time frames are somehow combined in the latter and temporal fidelity is therefore
a great issue. These concerns are addressed in the analysis of in vivo measurements based on
controlled flip angle induced dynamics, as well as in the DSC-weighted acquisitions in patients.

The substantial SNR loss in conventional GRAPPA reconstructions is effectively compen-
sated by applying k-t-GRAPPA in EPI. Figures 7.7 and 7.9 demonstrate the improved image
quality in terms of SNR. Correspondingly, DSC-weighted images during bolus passage exhibit
a reduced noise level in k-t-EPI acquisitions (Figs. 7.15 - 7.17).

The improved noise behavior of k-t-EPI is confirmed in the theoretical framework of g-
factors (Figs. 7.14 and 7.19). In GRAPPA reconstructions, high temporal average g-factors cer-
tify a high noise level. The findings clearly indicate that reduction factors above R = 7 exceed
the capability of conventional GRAPPA reconstruction, despite the usage of the high number
of 32 coil channels.

Since the g-factor solely reflects penalties in noise variances and not systematic errors, it
cannot constitute the only metric assessed in rating the quality of reconstructions in k-t-EPI. On
this account, tSNR values were assessed to reveal temporally fluctuating artifacts of the series
of reconstructions. Maps of tSNR of k-t-EPI appear to be of a similar quality as for POCS-EPI
(Fig. 7.13 and Table 7.5)). However, slight blurring artifacts appear also in k-t-EPI in the DSC
weighted acquisition shown in Fig. 7.19. In GRAPPA reconstructions, tSNR loss is strong and
maps exhibit residual artifacts.

Spatio-temporal fidelity and dependency on ACS

[Blaimer et al., 2011] reported that improved g-factors in time-resolved parallel imaging come
at the expense of a loss in temporal fidelity. Accuracy in the reconstruction of dynamics was
therefore thoroughly considered based on the controlled flip angle variation scheme. Visual in-
spection (Fig. 7.10), comparison of magnitude evolutions (Fig. 7.11 and 7.18) and an evaluation
based on mean values and standard deviations (Fig. 7.12 and Table 7.5)) yielded conclusive
assertions about the temporal fidelity in k-t-EPI.

Although differences in timing are not a criterion for exclusion of image reconstruction,
temporal depiction fidelity demands certain aspects to be fulfilled. Reconstruction techniques
that use convolution kernels in k-t-space implicitly assume shift invariant relations as defined
by the kernel geometry. The acquired ACS data have to sufficiently reflect the relevant spatio-
temporal correlations, in order to obtain reliable reconstruction weights. As evident in the
different temporal response of the three acquisition strategies (Figs. 7.11 and 7.12), depiction
fidelity highly depends on the spatio-temporal information the ACS data provides.

In the extra ACS scheme, both sets are acquired in separate RF pulse excitations with the
same TR. This supports signal stability and facilitates higher amounts of ACS lines to be sam-
pled in comparison to the other acquisition strategies. The latter increases the number of ob-
servations used in the system of equations for calibration of the weights, which seems to be
beneficial at first. However, extra ACS data is acquired before the dynamics of the mimicked
or actual bolus passage occur. The findings suggest that the full depth of signal decrease cannot
be obtained with extra ACS acquisition and k-t-kernel based reconstruction (Fig. 7.12 and Ta-
ble 7.5). Corresponding FWHM estimations likewise demonstrate a strong broadening of the
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intensity variation in these scenarios. Temporal smoothing becomes worse when moving to
higher reduction factors. This clearly indicates the necessity of updating ACS data to suffi-
ciently match the spatio-temporal information of the k-t-sub-Nyquist sampled data sets.

An update of ACS data on dynamics is performed in the dynamic extra and the inplace ACS
acquisitions scheme. Both schemes therefore provide ACS data that reflects the temporal varia-
tion as contained in the k-t-sub-Nyquist sampled data set. ACS data of these schemes therefore
allow for the calibration of convolution kernels in k-t-space either as one single averaged kernel
or as individual kernels per time frame. Whereas the first has the advantage of more equations
in the derivation of the weights, the latter benefits from temporally more accurate calibration
data. Procedures need to be chosen in the context of the target application.

Whereas the trajectory of the individual echo trains are the same for k-t-EPI with dynamic
extra and extra ACS, two main differences in the temporal order are substantial: 1. the different
temporal information content of the ACS data, as already discussed, and 2. different relaxation
influences. While both sets are acquired within the same RF excitation in the dynamic extra
ACS scheme, both sets are acquired in separate RF pulse excitations for the extra ACS scheme.
The first implies that relaxation influences - in particular T ?2 -decay - are effective over both sets
in combination, which is not the case in the latter. Whereas timing differences prevents the extra
ACS to be incorporated in the images itself, contrast and off-resonance differences impedes the
insertion of dynamic extra ACS data. The fixed ky sampling steps in both acquisition schemes
is generally more favorable in terms of a more benign off-resonance behavior. Furthermore,
greater echo train reductions relative to the inplace ACS scheme are possible.

The range of ACS lines in the dynamic extra scheme is restricted to a relatively small num-
ber of lines, since the desired TE in the subsequent sub-Nyquist sampled echo train imposes
timing limitations. The calibration of weights is therefore more affected by noise, which then
propagates into the reconstructed image. In terms of temporal fidelity, decreased FWHM on
the one hand indicate a smeared temporal response for dynamic extra ACS (Fig. 7.12 and Ta-
ble 7.5). On the other hand, the signal depth seems less affected (Figs. 7.11/ 7.12 and Table 7.5).
This suggests that artifacts could be a main reason for the corrupted temporal fidelity. An
improvement of the stability in dynamic extra ACS acquisition as well as development of an
advanced strategy to use the ACS data as part of the image series could potentially alleviate
these issues in further works.

With the inplace ACS scheme, all data acquired is part of the reconstructed time series of
images. An advantage of the acquisition strategy is the same contrast behavior in both ACS
and sub-Nyquist-sampled data. In particular the main image contrast - provided by the ACS
data - is acquired without g-factor penalty. Another benefit is the dynamically updated ACS
data, as already mentioned. Disadvantages of the acquisition scheme arise from the varying
phase encoding step sizes within the acquisition of individual images. Dual density acquisi-
tions in EPI with two different velocities in k-space traversal are more prone to off-resonances.
Difficulties arise due to the superposition of two different artifact outcomes.

In k-t-EPI with inplace ACS acquisition, excellent agreement with POCS-EPI is observed
(Figs. 7.11/ 7.12 and Table 7.5). This indicates high temporal fidelity in the inplace acquisition
scheme. Mean values of the induced signal intensity drop, as well as the FHWM, are in the
same range as for POCS-EPI, also at the higher reduction factors.

As discussed, the three schemes reveal a high dependency on how ACS data is acquired
in EPI. An interesting aspect is revealed in the comparison of a time-resolved and a non-time-
resolved parallel imaging reconstruction for k-t-EPI, e.g. k-t-GRAPPA and GRAPPA, in con-
junction with these acquisition dependencies. The known trade-off between the time-resolved
and non-time-resolved methods lies within noise variances and depiction bias. The latter man-
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ifested for instance in the investigation of g-factors and tRMSE as part of Chapter 6. Fig. 7.12b
and d demonstrate for the quid quo pro of variances and bias in the three approaches of k-t-
EPI: Different ACS schemes mainly affect the mean signal and not the variances in the case of
k-t-GRAPPA reconstruction. In the case of GRAPPA, the different schemes affect the variance
and not so much the mean signal.

Artifact assessment

Artifacts of k-t-EPI are expected to appear with periodicity ofR, due to the periodic application
of R different readout trajectories. The tSNR was used to reveal increased variances due to ar-
tifacts that fluctuate over the temporal repetitions. However, an appropriate procedure for the
differentiation of temporally changing artifacts was not found. The combination of trajectory
variations, in particular in combination with physiological noise influences, e.g. breathing or
heart beat, complicates the separate assessment.

In k-t-EPI with dynamic extra and extra ACS, wave-like artifacts were sometimes perceived.
Whenever these wave-like artifacts were observed, it was in regions of strong B0 inhomogene-
ity and solely as part of in vivo measurements. Wave-like artifacts could indicate residual
aliasing artifacts that could not be resolved due to insufficiency of the reconstruction weights
to account for different off-resonance effects of the individual trajectories. Corresponding CBV
maps (not shown here) did not exhibit direct effects of the artificial variation, which is presum-
ably due to the greatly different temporal frequency of these artifacts.

Benefits of increased spatial resolution and improved SNR might outweigh wave-like ar-
tifacts that sometimes arise. However, this depends on the target application. For instance in
fMRI, any artificial increase at a higher frequency could introduce temporal correlations which
alter the derived general linear model dramatically. Further analysis on the outcome and oc-
currence of these artifacts is therefore highly required.

Since these artifacts were not observed in inplace ACS acquisition, the DSC weighted cere-
bral perfusion imaging scenarios presented were not affected. Nevertheless, a more distinct
assessment of minor periodic fluctuations in correlation with physiological influences would
be highly beneficial.

Potentials of k-t-EPI in DSC weighted cerebral perfusion

Time-resolved parallel imaging reconstruction with k-t-EPI and inplace ACS acquisition at re-
duction factor R = 5 was chosen, since it was clearly superior over the other two ACS schemes
and GRAPPA reconstruction in terms of SNR and temporal fidelity. Its application in DSC
weighted cerebral perfusion imaging facilitated a substantial increase in spatial resolution com-
pared to the standard clinical EPI protocol (Figs. 7.15 - 7.17). Initial feasibility was confirmed
in six patients.

Fine details, such as small arteries or venous structures are revealed in the magnitude im-
ages of k-t-EPI (Fig. 7.15). High resolution is further preserved in the subsequent CBV assess-
ment. In comparison with the standard EPI, small lesions, as found in the cingulate cortex
(Fig. 7.15) or in the parietal lobe (Fig. 7.17), are easier to delineate in the high resolution CBV
maps of k-t-EPI.

High spatial resolution provides the potential of more precise delineation of tumor borders.
This is supported by the intrinsically finer pixel depiction, but also since partial volume effects
are effectively mitigated when the imaging raster of the imaged volume is increased. Differ-
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ent types of tissue - in particular vessels and tumorous tissue - are better to distinguish based
on the higher spatial resolution CBV maps provided by k-t-EPI. Figure 7.16 demonstrates the
small lesion in the cingulate cortex to be much better resolved in the k-t-EPI acquisition than in
the conventional EPI. It is specifically easier to differentiate it from the vessels of the anterior
interhemispheric fissure. The finer gradation of CBV values of Fig. 7.16 furthermore suggests
more detailed estimates of CBV. In stereotactic biopsy surgeries, the more precise localization
with more distinct intensity information would be highly beneficial to identify the most ag-
gressive tumorous area for sampling. The enhanced information of high resolution CBV could
furthermore assist the navigation in open brain surgeries. The improved spatial resolution and
the more accurate geometric conformity thereby simplifies co-registration with the structural
MR images for neuronavigation.

Limitations of the current investigation

Relative CBV values depend to some extent on the acquisition type and the method used for
post-processing [Paulson and Schmainda, 2008]. On this account, k-t-EPI was not only com-
pared to the vendor’s CBV result - used in the clinical routine -, but also to an off-line re-
construction of the exact same post-processing framework (POCS-EPI). In this way, unknown
impacts onto CBV derivation can be excluded.

Furthermore discussed in [Paulson and Schmainda, 2008], is the effect of doubled adminis-
tration of contrast agent. In their study, the application of a full dose of contrast agent as a pre-
load is demonstrated to exhibit statistically significant consistency in CBV results. A pre-load
potentially decreases T1 of tissue, wherefore the baseline signal appears reduced. However,
this could also weaken relative effects of T1 leakage.

Two half-dose boli were administered in the patient measurements presented. Solely two
half-dose DSC weighted acquisitions allow the evaluation of k-t-EPI in direct comparison with
the standard technique of the clinical routine. Two measurements with normal contrast agent
dose - in either two different patients or in the same patient at two separate days - cannot be
directly compared. In the acquisitions presented, confounding influences due to T1 leakage are
assumed to be low at the given TR of 1.5s. Nevertheless, the repeated contrast agent adminis-
tration slightly alters the measurement.

The ROI analysis of Fig. 7.18 shows small differences in the signal response after the first-
pass of bolus between the two acquisitions. Attenuated recovery of the baseline signal indicates
predominant effects of T ?2 leakage according to [Paulson and Schmainda, 2008]. These were
excluded in the CBV derivation presented, since integration was performed solely over the
first bolus passage. Figure 7.18 further demonstrates the same maximal relative signal drop in
k-t-EPI as in POCS-EPI.

It has been reported in various applications that dual or multi-echo acquisition allows
for the correction of T1 leakage effects [Schmiedeskamp et al., 2012, Zaitsev et al., 2005,
Paulson and Schmainda, 2008]. The high reduction available with k-t-EPI can be directly
translated into an increase of either the number of echoes fitted into one TR or the spa-
tial resolution of individual echo acquisitions. Promising imaging scenarios as presented in
[Schmiedeskamp et al., 2012] could be refined using k-t-EPI, in order to support the adjustment
of T1 leakage influences.

This work presents initial feasibility of k-t-EPI with inplace ACS for DSC weighted cerebral
perfusion imaging. The two main limitations of the current study are: 1. doubled administra-
tion of half-dose contrast agent and 2. the limited number of only six subjects. Reasoning for
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the first was discussed above and seems unavoidable for evaluation of the proposed methods
in terms of the clinical status quo. In order to overcome the second limitation, a clinical study
with a cohort of patients is required. Concrete calculation of the number of cases required
would then be based on 1. the expected difference between both acquisitions, 2. a designated
range for equivalence of both acquisition results, 3. an estimate of the standard deviation of
both measurements, as well as 4. the designated power of the study. To avoid any bias due to
the order of the two measurements with contrast agent, a pseudo-randomized order is neces-
sary.

The cases acquired so far suggest that the high spatial resolution CBV maps achieved with
k-t-EPI and inplace ACS acquisition atR = 5 indeed allow for a substantial gain of information
for the clinical application.

Generality of the k-t-EPI concept and relation to other techniques

Here, k-t-EPI is applied to dynamic susceptibility contrast (DSC) weighted cerebral perfusion
imaging. However, the generality of the modifications provided with k-t-EPI allow for direct
application in any other EPI based dynamic MRI scenario. Among the possible applications are
dynamic contrast enhanced (DCE) MRI, angiography or myocardial perfusion, as well as arte-
rial spin labeling (ASL) or blood oxygenation level dependent (BOLD) fMRI, or diffusion MRI.
These applications typically rely on EPI based readouts, where various sampling approaches
provide different pros and cons.

The presented k-t-EPI trajectory could be used to enhance approaches of interleaved GE-
EPI as reported for instance in the context of contrast-enhanced first-pass cardiac imaging
[Bhat et al., 2009] or for DCE-weighted cardiac perfusion [Ding et al., 1998]. Likewise, it could
be compared with standard two-dimensional EPI or three-dimensional approaches for ASL as
done in [Vidorreta et al., 2013]. Moreover, achievements of parallel EPI as presented in the con-
text of diffusion or fMRI, e.g. [Bammer et al., 2001, Schmidt et al., 2005], could be investigated
further with the usage of k-t-EPI. Initial results of k-t-EPI in fMRI were presented as conference
contributions [Ramb et al., 2015b, Ramb et al., 2015c].

As k-t-EPI relies on k-t-sub-Nyquist-sampling, it does not conflict with other advanced
imaging techniques related to RF excitation or multiple echo acquisitions. The potential, ben-
eficial implications of k-t-EPI for multi-echo acquisition were already discussed in the con-
text of T1 leakage correction. Recently described multiband excitation [Larkman et al., 2001b,
Larkman et al., 2001a, Moeller et al., 2010] increases the acquisition efficiency by simultaneous
slice excitation. It uses sensitivity encoding to separate different slice information. In the appli-
cation of k-t-EPI presented here, the echo train reduction was used to increase spatial resolution
and brain coverage while maintaining temporal resolution - at given TE and TR. The multi-
band technique could be investigated for k-t-EPI, in order to accomplish an additional gain in
temporal resolution.

Parallel imaging in three-dimensional EPI acquisitions were discussed for instance for
readout-segmented EPI with GRAPPA (R = 2) in diffusion MRI [Frost et al., 2014], as well as
for multi-shot EPI and GRAPPA (R = 2) in fMRI [Lutti et al., 2013]. Again, higher reductions
could be reached with further development of k-t-EPI for three-dimensional slab acquisitions.

The introduction of CAIPIRINHA (sub-Nyquist sampling along two phase encoding
directions) in three-dimensional EPI was very recently used in the context of fMRI at 7T
[Narsude et al., 2015]. A comparison with k-t-EPI could provide further insights about effects
of undersampling along different domains in EPI. Moreover, transverse slice images of k-t-EPI
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benefit from mitigated in-plane susceptibility artifacts. These artifacts increase with field
strength, e.g. at 7T [Martino et al., 2011]. Including k-t-EPI at high fields therefore offers the
potential to alleviate this concern.





Chapter 8
Summary and outlook

At the core of this thesis lies the investigation of k-t-sub-Nyquist sampled time-resolved paral-
lel MRI. With k-t-sub-Nyquist sampling, MRI measurements become more efficient, since time-
consuming gradient encoding steps are omitted. Efficiency is only guaranteed, if the imaging
information can be reconstructed without compromising the spatio-temporal resolution by im-
age artifacts, noise or spatial blurring. Reconstruction from partially sampled data is the task
of (time-resolved) parallel imaging and implicitly poses assumptions on the imaging data. A
central question of this work was to evaluate implications of these implicit assumptions with
respect to imaging acquisitions that are influenced by measurement noise and signal instabili-
ties.

United by the motivation to respond to this central question, k-t-sub-Nyquist sampling
with time-resolved parallel imaging was approached from two ends: from the theoretical and
the practical end. A signal and noise transfer analysis for time-resolved parallel imaging meth-
ods was derived as one key element towards a unified theoretical framework of these methods.
Furthermore, time-resolved parallel imaging was explored in the practical context of k-t-sub-
Nyquist sampled EPI, where signal is sensitive to disturbances such as the off-resonance phe-
nomena. On the one hand, a united theoretical framework is needed to evaluate and optimize
different approaches. On the other hand, it cannot be considered in theory alone, as more com-
plex influences are solely revealed in the practical realization. For this reason, both ends were
pursued in this work.

The theoretical side: towards a unified framework

From SENSE to GRAPPA: Two prominent methodological approaches of parallel imaging in the
case of static MRI are connected by analogous expressions, paired with the investigation of
differences by their effects on g-factor outcomes. SENSE uses sensitivities at full acquisition
extent as unfolding weights. GRAPPA employs ACS calibrated reconstruction weights with a
truncated kernel extent. Two hybrid methods, extGRAPPA and trSENSE, demonstrate the tran-
sitions between SENSE and GRAPPA. The difference in the kernel extent mainly distinguishes
between the two approaches.

From GRAPPA to k-t-GRAPPA: A generalization of the known GRAPPA g-factor for k-t-
kernel based time-resolved parallel imaging methods such as k-t-GRAPPA is provided. The
generalized gxf -factors are derived pixel-wise and over the range of resolved temporal fre-
quencies. Frequency combination of these quantify the temporally averaged g

avg
x -factors for

time-resolved methods that are directly comparable to the g-factors of non-time-resolved par-
allel imaging methods. By the extension of the g-factor concept, non-time-resolved parallel
imaging (e.g. GRAPPA) and time-resolved parallel imaging (e.g. k-t-GRAPPA) are bridged. The
more benign SNR behavior of k-t-GRAPPA compared to GRAPPA is explained in a theoretical
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framework. The improvement due to PEAK-GRAPPA kernels is analyzed. The antagonistic
behavior between g-factors (reduced noise variances) and temporal smoothing (increased bias)
in time-resolved parallel imaging is demonstrated in an in vivo cardiac application.

From k-t-GRAPPA to Sliding Window: The extended g-factor framework is likewise applica-
ble to the Sliding Window (SW) approach. By step-wise virtual compression of coil elements, a
transition from time-resolved parallel imaging (k-t-GRAPPA) to solely temporal kernels (SW)
is performed. The effect onto g-factors reveals: The usage of multiple coil information as well
as temporal correlations in the reconstruction process results in a spatially varying signal and
noise transfer. The pixel-wise frequency response characteristics of k-t-GRAPPA are analyzed
with reference to known theory. In particular the PEAK-GRAPPA kernel exhibits benign filter-
ing characteristics for dynamic MRI.

The practical side: k-t-sub-Nyquist-sampled Parallel EPI

In k-t-EPI, the transition of k-t-GRAPPA concepts to brain imaging scenarios is performed.
There are several degrees of freedom in the realization of k-t-sub-Nyquist sampled EPI with
k-t-GRAPPA reconstruction. Three acquisition strategies are presented: k-t-EPI with inplace
ACS, dynamic extra ACS and extra ACS. The signal behavior of EPI that is sensitive to any
inconsistencies demonstrates the effects of different acquisition strategies on the image recon-
struction result of time-resolved parallel imaging. The different acquisition strategies reveal
the necessity that ACS data contains the underlying dynamics, whereas the kernel calibration
does not need to be performed separately for each time frame. The different k-t-EPI scenarios
based on dynamics induced by flip angles confirmed similar observations as obtained in the
theoretical considerations, where the g-factor and tRMSE analysis demonstrated a decrease in
noise variances at the expense of an increased bias.

To incorporate parallel imaging in EPI reduces the readout times per slice and increases
the bandwidth of the phase encoding direction. Ultimately, this mitigates the main source
of artifacts in EPI. With the presented imaging scenarios, the benign SNR behavior of time-
resolved versus non-time-resolved parallel imaging reconstructions is made accessible for EPI.
Higher reduction factors were achieved compared to previous applications of conventional
GRAPPA in EPI. Due to the higher reduction factors, the k-t-sub-Nyquist sampled acquisitions
result in considerably reduced spatial blurring and mitigated in-plane susceptibility artifacts
compared to standard EPI.

EPI is diversely used in research and in the clinical context. The k-t-EPI with inplace ACS
acquisition was applied to - but is not limited to - dynamic susceptibility contrast weighted
cerebral perfusion imaging in tumor patients. With the higher reduction factors achievable, the
k-t-sub-Nyquist sampled acquisition and k-t-GRAPPA reconstruction allows for an increase
of spatial resolution and improved slice coverage at the same TR, compared to standard EPI.
This facilitates the assessment of perfusion parameter maps, such as the cerebral blood volume
(CBV), at a higher spatial resolution. With the derived spatial resolution of 1.4 mm at 3T, the
CBV maps correspond more closely to the anatomical images, which are typically obtained
with a resolution of approximately 1 mm. This provides great potential in particular in the
assistance of stereotactic biopsies or open brain surgeries. In tumor imaging, the preliminary
study indicated an easier delineation of tumor borders due to the increased spatial resolution.



157

Further developments in spatio-temporal image reconstruction

The analysis of differences in kernel based methods revealed the benefits of incorporating sen-
sitivity information from multiple coils in combination with the temporal domain in the re-
construction process. The gained understanding in different outcomes of kernel based meth-
ods that incorporate either the domain of coils (GRAPPA) or time frames (SW) or both (k-t-
GRAPPA) in the reconstruction can be used in further approaches.

[Liang, 2007, Haldar and Liang, 2010] introduced the concept of partial separability (PS) in
the context of MRI. The spatio-temporal image I ∈ CNpix×Ntime is thereby expressed by

I(xp, t) =
L∑

l=1

ul(xp)vl(t), for p = 1, . . . , Npix and t = 1, . . . , Ntime, (8.1)

where ul(xp) indicate the spatial weights and vl(t) denote the temporal basis functions. The tem-
poral subspace spanned by the set { vl }Ll=1 can be obtained from a data set of high temporal
resolution by singular value decomposition.

[Lustig and Pauly, 2010, Murphy et al., 2012] propose a GRAPPA kernel based iterative par-
allel imaging reconstruction procedure referred to as iterative self-consistent parallel imaging re-
construction from arbitrary k-space (SPIRiT). In their method, the iterative reconstruction is con-
strained by the requirement of self-consistency of neighborhood relations in k-space, similar to
GRAPPA. To this end, a SPIRiT operator is determined based on a Nyquist-sampled data set.

The ACS data in the k-t-EPI scenarios presented in this work fulfill the requirements of both
high temporal resolution and Nyquist-sampling. Therefore, it allows for the derivation of a set
of temporal basis functions V ∈ CL×Ntime (in matrix form), as well as a SPIRiT operator Ǧ. Fur-
ther work with k-t-EPI therefore comprises an iterative reconstruction approach that integrates
temporal basis functions of the PS approach with kernel-based iterative parallel imaging of
SPIRiT. The spatio-temporal image I† ∈ CNpix×Ntime is obtained by

I† = U †V, with U † = argmin
U∈CNpix×L
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(
F̌ (UV )

)∥∥2

2
+
∥∥Ǧ (UV )

∥∥2

2
+R(U), (8.2)

where Š is the sampling operator, F̌ performs the discrete Fourier transform along both spatial
dimensions. The additional termR(.) describes the optional usage of regularization to promote
for instance spatial-spectral sparsity. Initial results have been presented in [Ramb et al., 2016a]
and a comprehensive study will be subject to future work.
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ĎACS in vivo encoding matrix 67

∆R?2(t),∆R̂?2(xp, t) dynamic changes of 1/T ?2 , estimates of the rates for individual pixels 88,
135

∆rs local distortion due to local field inhomogeneities 53

DFT discrete Fourier transform 55, 64, 101

DFT −1 discrete inverse Fourier transform 39, 70, 101

E Fourier encoding kernel 29

Ec coil sensitivity and Fourier encoding kernel 62

EACS in vivo sensitivity and Fourier encoding kernel 66
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I, I†, Î general image representation, the additional dagger marks optimality in the case of a
set of feasible image representations, the additional hat marks reconstructed images that
are affected by image noise 31, 36, 41
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representation in x-f-space containing fold-over artifacts over temporal frequencies, as a
result from image reconstruction of sub-Nyquist sampled data, also indexed to reference
individual coils 103

k := (kx, ky)
T k-space coordinates of frequency and phase 28

Ksmp sampled k-space coordinates / k-space trajectory 30

δa,b Kronecker delta 64, 105

εjkl Levi-Civita symbol 11

m⊥ (r, t) spatial magnetization density with spatial and temporal dependency 19

m∆ω
⊥ (∆ω, t) spectral magnetization density with resonance frequency and temporal depen-

dency 19, 20

m⊥ (r, 0) spatial magnetization density immediately after RF pulse excitation 19, 20, 27

M := (Mx,My,Mz)
T macroscopic magnetization 13

M0 =
(
0, 0,M0

z

)T macroscopic magnetization of the thermal equilibrium 13

Mrot (Larmor- or RF-)rotating frame of reference 15, 17

M‖ := Mz longitudinal magnetization 13, 18

M⊥ := Mx + iMy transverse magnetization 13, 18

Ncoils number of coils 22, 59, 80

Nnoise number of noise samples 22

Npix = NxNy number of pixels used in the image reconstruction, where Nx and Ny denote
samples along the two image dimensions 39, 40, 60

Nsmp = NfeNpe number of signal samples, where Nfe and Npe denote samples along the fre-
quency and phase encoding direction, respectively 30, 36, 39, 54, 59, 80

NACS
fe , NACS

pe number of ACS samples along frequency or phase encoding direction 67

Bfe, Bpe number of source samples along frequency or phase encoding direction addressed by
the GRAPPA reconstruction kernel 67, 96, 98

Ns number of spins in an ensemble 13

Ntime number of time frames 79, 80

∆ωcs chemical shift of Larmor frequencies between two types of tissue 52

ωrf excitation frequency 16, 20, 25

Ω domain over which the two-dimensional image representation is defined 31, 35



ω0 Larmor frequency 12, 25, 51

Ωε sample space of a Gaussian distributed random variable 21

pα(xm), pα, p
2D
α , p3D

α ,p,pxp , p̃xpf coil weightings for the combination of images from different
coils 60, 76, 85, 102, 104

xp = (xp, yp)
T pixel coordinates in two-dimensional imaging 40, 71

~ Planck’s constant 11–13

Ψcoils receive coil covariance matrix 22, 60, 71

Ψ sample noise covariance matrix 71

Ψ̂, Ψ̂full image noise covariance matrix, superscripts are used to indicate the data sampling and
reconstruction involved 71, 73

r := (x, y, z)T spatial coordinates in R3 9, 25, 26

R reduction factor 54, 56, 65, 81

Rnet net reduction factor 57, 133

s the complex MR signal 20, 21, 79

ŝ0 estimate of the mean baseline magnitude signal 88

Š sampling operator that selects samples according to the k-space coordinates / k-space tra-
jectory 31, 36

C set of coils 62

K k-space described as set of k-space vectors or k-space coordinates 28

T set of time frames 80

F∆t set of resolved temporal frequencies 103

σ2(.), σ(.) variance and standard deviation 22, 40

σcs relative chemical shift factor of Larmor frequencies between two types of tissue 52

σfe, σpe standard deviation of the Gaussian kernel along frequency and phase encoding direc-
tion 97

µ̌ = (µ̌x, µ̌y, µ̌z)
T magnetic moment operator 12

Š =
(
Šx, Šy, Šz

)T spin operator 11, 12

s̃ the free induction decay MR signal with respect to k-space coordinates 29, 80

[tADC,0, tADC,1] time interval for the analog-digital converter 27
[
tfe,0, tfe,1

]
time interval for the frequency encoding gradient 27, 28

[
tpe,0, tpe,1

]
time interval for the phase encoding gradient 28

[tp,0, tp,1] time interval for the RF-pulse 15, 16, 27
[
tslc,0, tslc,1

]
time interval for the slice selection gradient 26, 28



T1 relaxation of the recovery of the longitudinal magnetization 14, 18

T2 relaxation of the transverse component 14, 18

T ?2 relaxation of the transverse component when taking spectral deviations and the dephasing
due to static field inhomogeneities into account 20, 46

TE, TEeff echo time or effective echo time 47, 49

Ts absolute temperature 13, 22

Tes time interval of echo spacing in EPI 48, 51

TACQS time of image acquisition to sample one complete MR image 47

tPSFxp,α(f), tPSFxp(f) the temporal point spread function over temporal frequencies for a re-
constructed pixel (with respect to a coil) 106

TR time of repetition 47

tRMSE(xp) the temporal root mean square error in a reconstructed pixel 106

tSNR(xp) the temporal signal-to-noise in a reconstructed pixel 134

U raw MR signal / voltage induced in a coil according to Faraday’s law of induction 19

Uε ’noise’ voltage / voltage induced in a coil according to Faraday’s law of induction without
preceding RF pulse excitation 21, 22

V imaged volume 25

w2D
α,β two-dimensional representation of the reconstruction weights as a convolution kernel,

indexed to reference the target and source coils 69

Wxp matrix representation of the reconstruction weights in image space of all target and source
coils, fixing a single pixel 74, 97

W 2D
α,β two-dimensional representation of the reconstruction weights in image space, indexed to

reference the target and source coils 70, 74, 76

w3D
α,β three-dimensional (two spatial, one temporal dimension) representation of the recon-

struction weights as a convolution kernel, indexed to reference the target and source coils
85, 101

Wxpf matrix representation of the reconstruction weights in image space of all target and
source coils, fixing a single pixel 103

W̃ 3D
α,β three-dimensional (two spatial, one temporal dimension) representation of the recon-

struction weights in x-f-space, indexed to reference the target and source coils 101, 103
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