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Zusammenfassung

In der vorliegenden Arbeit wird die Exploration von einer Landschaft mit Hilfe von
Teams aus Robotern diskutiert. Die Landschaft wird dabei von einem Graphen model-
liert, an dessen Kanten die Roboter in einem rundenbasierten Modell entlanglaufen, mit
dem Ziel alle Knoten des Graphen zu besuchen. Ein Algorithmus wählt dazu für jeden
Roboter in jeder Runde eine anliegende Kante aus, an der dieser entlanglaufen kann,
um zu einem neuen Knoten zu gelangen.
Die besondere Schwierigkeit, im Gegensatz zum Problem des Handlungsreisenden mit

mehreren Handlungsreisenden (mTSP), ist dabei, dass das betrachtete Team weiter
eingeschränkt wird.
In unserem ersten Szenario (Exploration) wird dem Team der Überblick über den

Graphen verwehrt, so dass der Algorithmus alle Entscheidungen auf dem bereits be-
suchten Teil des Graphen gründen muss. Wir zeigen für dieses Szenario neue untere
Schranken auf Gittergraphen mit rechteckigen Hindernissen. Zudem erweitern wir die
unteren Schranken für diese Gittergraphen und auch auf Bäumen damit sie auch gegen
randomisierte Algorithmen bestehen. Des Weiteren zeigen wir effiziente Algorithmen
für die Erkundung der Gittergraphen als auch für Bäume. Um die Untersuchung mit
empirischen Ergebnissen zu ergänzen, zeigen wir noch Experimente auf sogenannten
Kammbäumen, eine für viele Algorithmen schwierige Art von Graph.
Als weiteres Explorationsszenario behandeln wir Roboter, die zwar eine Karte besit-

zen, jedoch nicht miteinander kommunizieren können (unaware cleaning). Dies schließt
auch die Wahrnehmung anderer Roboter aus. Dabei ist es nicht nur interessant alle
Knoten des Graphen einmal abzulaufen, sondern auch diese immer wieder zu besuchen.
Dazu müssen Roboter sich so bewegen, dass ihre Bewegung kompatibel mit der der
anderen Roboter ist. Gemeinsam soll so ein effizientes Durchsuchen oder Reinigen einer
durch einen Graphen modellierten Landschaft ermöglicht werden. Wir zeigen für dieses
Szenario einen Algorithmus der asymptotisch optimal Gittergraphen (ohne Hindernisse)
reinigen kann. Zudem zeigen wir auch wie ein solches Reinigungsteam eine komplexe
Landschaft, die durch einen beliebigen Graphen modelliert wird, angehen kann. Am
Ende evaluieren wir noch empirisch unsere Algorithmen auf dem Gittergraphen um
eine Intuition zu verschaffen für die Effizienz und Probleme dieser Algorithmen.



Abstract

This thesis discusses the exploration of a landscape by a team of robots. The landscape
is for that purpose modeled by a graph, along whose edges robots may travel in a
round-based model with the goal to visit all vertices of the graph. For this purpose an
algorithm chooses for each robot in each round an incident edge to traverse to reach a
new vertex with that robot.
The special challenge, in contrast to the traveling salesman problem with multiple

salesman (mTSP), is, that the considered team is being further restricted.
In our first scenario (exploration) the team is forbidden to see an overview of the

graph, such that the algorithm must base all its decisions on the already visited part of
the graph. We show for this scenario new lower bounds on grid graphs with rectangular
obstacles. In addition we extends the lower bounds for these grid graphs and for trees to
hold up against randomized algorithms. Furthermore we show efficient algorithms for
the exploration of grid graphs as well as for trees. To complete our analysis we present
experiments on so called comb trees, a class of graph that forces several algorithms into
their worst case behavior.
As a second exploration scenario we examine robots which indeed have a map of

the graph, but may not communicate with each other (unaware cleaning). This also
excludes the perception of other robots. For this scenario it is not only interesting to
visit all nodes of the graph once, but to indefinitely repeat visiting them. To achieve
this robots have to move in a way, such that their movement is compatible with that of
other robots. Collectively this should enable them to efficiently search or clean a graph
modeling a landscape. We prove for this scenario an algorithm cleaning grid graphs
(without obstacles) in asymptotic optimal time. Additionally we show, how such a
cleaning team can tackle a general graph modeling a complex landscape. Finally we
evaluate empirically our algorithms on the grid graph to provide an intuition for the
efficiency and problems of these cleaning algorithms.
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1 Introduction

When thinking of the word exploration, pictures form in one’s mind of Christopher
Columbus sailing over the ocean towards India just to discover a continent that was
unknown to the people in Europe. A picture of the expedition of a young Alexander
von Humboldt forms navigating his boats upstream on the Orinoco River, discovering
new animal species on the way.
Exploration as an objective of research may appear at first glance to be outdated.
With satellites orbiting and watching the earth, exploration seems to be a task of

the past. The days of ships sailing over an ocean to discover new continents are over.
Satellites and airplanes produce maps of the earth easily accessible to anyone with a
smartphone. On the other hand researchers are still venturing to remote places looking
for yet undiscovered flora and fauna. But even mapping data of an urban area may
simply not be precise enough for every task required, e.g. steering self-driving cars or
robotic lawnmowers. Maps might be inaccessible to a robot as internet connectivity
could be considered not permissible under a strict security model or unavailable for a
private indoor environment such as a factory floor or a chamber cleaned by a robot
vacuum cleaner. In addition the environment could often be changing, because new
furniture is added to a room or a child’s toys are left lying around obstructing a formerly
accessible path of a cleaning robot. The environment could also be severely changed,
for example a team of robots searching for a missing person after an earthquake, indoor,
outdoor or underground, will be forced to work without a reliable map, as an earthquake
can change any environment in a hardly foreseeable way.
Last but not least, the exploration of space has just begun and while writing this the

space probe New Horizons has just sent back high resolution images from the dwarf-
planet Pluto. The mars rover Curiosity is still exploring the surface of Mars which is
not as well mapped out as the planet we are living on.
All these endeavors to further knowledge of the environment can be categorized as

forms of exploration. Many of the named examples could also be categorized as research,
but not all. Nobody would call a vacuum cleaner’s quest for covering a room thoroughly
research, but to a cleaner, that is oblivious to yesterday’s cleaning of the same room,
every run is a new exploration. If we look up Webster’s simple explanation of the word
exploration we get “the act or an instance of searching through or into” [exp16]. This
is not to far of from the source of the word research which Webster provides as from
middle french “recerche - to go about seeking” [res16].
The similarity between the two words is mind-boggling, especially if we start to

interpret environment to be searched in a wider sense.
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1 Introduction

For example the world wide web forms a graph containing text or knowledge that
can be explored by a software agent: Such a web crawler has to explore the web-graph
to find all available data and make it available via an index for end users. If a human
does the same, following links and interpreting the found text, it may as well be called
research as it is an exploration.
It does not end with exploring data. Even computation itself can be viewed from the

perspective of an explorer. The computation tree defined by a non-deterministic Turing
machine (NTM) and its input-band can be considered an explorable environment. An
agent similar to a deterministic Turing machine, but with additional capability to revert
to the former state (Reversible TM [Ben73]), can simulate the NTM by exploring the
whole computation tree of the NTM. However, in order to do this, to find an accepting
state, the whole computation tree has to be explored in the worst case.
In the web as well as in the real world, teamwork or parallelism becomes a necessity

for large environments or problem sizes. While a single robot may be able to explore
and clean a house, it would be near impossible or at least uneconomic to build a single
robot capable of cleaning a whole city on its own or building a computer capable of
crawling the whole world wide web by itself. In a similar way our agent exploring the
computation tree would require time exponential in the depth of the tree, while an
exponentially large set of agents could explore the whole tree in polynomial time.
Coordinating the team is necessary to not explore the same part of the web-graph

multiple times or distribute the cleaning robots evenly over an area to avoid any un-
wanted duplication of effort arising from cleaning an area multiple times or walking to
an area with too many robots.
Having a map of the cleaning or mowing area or knowing how many many web pages

are to be expected on every website, would allow us to distribute the work evenly. At
the beginning the team could divide the work load fairly. Given just a map and an
enumerated team no communication is necessary, because every team member could
separate the work identically and then assign itself the workload according to its own
number. Without a map, communication can be used to distribute the work, call for
more help and repeatedly redistribute the team-members if the last distribution leaves
a lot to be desired.
But for very large teams the communication to coordinate robots becomes in itself a

hard task. In extreme environments, such as tunnels, robots may be unable to commu-
nicate, distances in cities may be too large to communicate point-to-point with antennas
or a present communication infrastructure and protocols may be unsuitable for a large
crowd of robots. Also communication could become unaffordably expensive compared
to the rest of the robot, e.g. if robots are small and cheap or in an environment that
needs very sophisticated communication equipment to enable communication at all, for
instance robots operating underwater or a robot digging through the ground.
Another motivation to consider working without communication is, that the commu-

nication between robots can pose a security threat. In so called patrolling scenarios
robots cover an area similar to cleaners, but are looking for intruders that are more
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intelligent than dust bunnies. In such a scenario, radio waves used for communication
might allow an intelligent intruder to spot and surveil patrolling robots and therefore
could ease intrusion into an area. Moreover, not just communication can be a prob-
lem, if patrolling robots know about each other, capturing one robot and reading out
its storage could provide all information needed to evade the patrolling team. Even
if robots simply move in some choreographed way, without communicating after the
start of the patrolling, an attacker that only spots a few robots may be able to guess
where other robots are likely to appear. Using unaware robots for patrolling would
have the advantage that they are randomized, so no regular patterns can be exploited
by an intruder. In addition, the lack of communication or need for visibility between
each other could be a good model for robots, that try to be invisible to an intruder
by being camouflaged and keeping radio silence. The absence of even the knowledge
on how many other robots are in the field, makes such a robot near worthless for an
intruder capable of capturing a robot for intelligence purposes.

Our Focus

In this thesis, our focus lies in team work for exploration. Our central question is how
to efficiently use a large number of robots to parallelize the exploration of an area.
In Chapter 2 we look at the classical exploration without a map: The exploration

for the purpose of creating a map. Robots will communicate somehow, but our main
concern is not to handle the communication, but the question of how to distribute
the robots in a way that guarantees a good runtime for the exploration. The goal is
to answer the questions: How much does it help an exploration team, if we use more
robots? Or what is the difference if you give a team twice as much time or twice as
many team members? We answer these questions by showing the efficiency of such a
team without a map, compared to a team of the same size that uses map of the area
for making better choices in distributing its robots.
In Chapter 3 we look into organizing the exploring team with a map with as little

communication as possible. We ask the question if we can efficiently organize an explo-
ration of a known area in the sense of cleaning, mowing, searching or patrolling without
making use of any communication at all. Neither direct communication, nor any form of
indirect communication such as enumerating or getting a count of other team members
or observing the movement patterns of other team members, will be allowed. Here we
ask again the question of how much additional time is required, if the owner deploys
a large team of unaware robots. We answer this by comparing the team’s efficiency to
that of a communicating team and we evaluate the performance for differing team and
graph sizes.
If we expand our view, we can include a lot of types of work done by teams, but we also

need to distinguish what should not be viewed as an exploration. We see exploration
as work where the movement dominates any time-cost. For example, it is common for
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1 Introduction

current vacuum cleaners to move at about the same speed while vacuuming as when
not vacuuming. If the team has work to do in an area that dominates the cost for the
movement to such an extent that any movement can be amortized with the cost for
the work, it is for our purpose no exploration. We expect exploration to only consist
of movement, therefore if work is needed in an area, it must be small enough to be
amortizable by the movement, so we can ignore it.
No method of fast or instant travel is allowed or possible. For the cleaning robot

this could mean to take a taxi to his next place of cleaning, if the speed of the taxi
compared to cleaning is sufficiently fast, it can be considered instantaneous. Smartly
redistributing robots in reaction to newly found territory, but also the changing cost
for distributing robots to locations explored further away from each other is a central
aspect of collaborative exploration. If the cost associated with instant travel is cheap
enough to make it viable for any step, there is no longer a point in modeling the problem
on a landscape. We could then distribute robots to workloads and redistribute robots as
needed, ignorant of different costs between different balancing strategies. For example a
web-crawler can jump to any web page of a static website just by requesting the URL it
is interested in from the server. It doesn’t have to go there by consecutively requesting
linked documents that will finally lead it to the document of interest.

Modeling the Real World

To study these challenges of robot teams and evade the need for a real-world testbed
with thousands of robots, a mathematical model is used. We will formally introduce
this model later in Section 1.1. We represent robots as entities moving along the edges
of a graph in a round-based model.
Hence, this allows us a different point of view for the quality of such algorithms than

would otherwise be affordable. Asymptotic run times are not visible in testbeds with
dozens or even less robots. Even the largest simulations we are capable of executing,
with thousands of robots and millions of nodes, fail to demonstrate a difference between
polylogarithmic and small polynomial run times.

Why model exploration with graphs? The discretization of real terrain into a
graph depends on the way a robot perceives the environment. In case of a web-crawler
the environment is already discrete and representation as a graph comes naturally.
For the real world, this discretization depends on the perception capabilities of the

robot. If a satellite picture from a landscape is given, shape analysis can be used to
extract a graph from the pixels or contours in a bitmap, a complex topic of its own (for
a survey we refer to [Lon98]).
For navigation, the positioning and environment information has to be extracted

from sensor data of a robot and has somehow to be translated into a format in which
algorithms can work efficiently. This mobile robot localization problem is a key problem
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for robotics and will not be discussed in this thesis. We do assume that any robot is
capable of perfectly locating itself in any environment.
Since movement happens for non-flying robots in a two dimensional environment, it is

natural to use a two dimensional abstraction of the environment. A natural description
for such an environment is to utilize geometrical forms, i.e. an Euclidean plane in
combination with simple polygons to approximate obstacles, for instance in [DKP91,
AKS99]. Sight can be used to explore such a plane with respect to the obstacles. But
arguing proofs with geometry instead of graphs is complicated. For implementation in
a simulation we face a similar problem. A discrete model kept as graph is simpler to
compute on, than a complex geometrical environment.
One way to translate a polygon landscape to a graph is to triangulate it. Every

triangle can then be interpreted as a vertex of a corresponding graph that is to be
explored, with edges connecting the nodes that represent triangles adjacent to each
other. A robot on a node representing a triangle can see then the whole area covered
by the triangle if its sight is unlimited. This is somewhat similar to the solution to
the art gallery problem [Chv75], where a polygon-shape must be be covered with star-
shaped polygons. Using coloring to optimize the number of nodes in the graph is a
possibility to gain a constant factor, but this omits the problem of which vertices,
representing star-shapes, should be connected.
Polygons are a good discretization for robots capable of sight and transforming these

into graphs may preserve a geometrically formulated problem. For example, seeing
everything of a landscape as a problem is preserved, but gradually perceiving more of
a landscape while walking around a corner is not. However, there is a simpler method
if working with vacuum cleaners or simple robots covering the ground by traversal,
instead of just viewing it with a camera. We can lay a grid over the environment. Any
vertex of that grid then covered by an obstacle can be deleted from the grid graph,
thus forming a grid over the passable terrain. For simple obstacles this leads to the
graphs discussed in Section 2.1 to Section 2.3. For the general case of non-rectangular
obstacles a planar graph can be used to model the environment. For this case we discuss
in Chapter 2 also the exploration of trees.
While graphs represent a discretization of space, a round-based model does the same

discretization for time. For the grid graph, time discretization is natural as all distances
between neighboring nodes are uniform. For a triangulated graph, this is not necessarily
the case.
The capability of a robot to perfectly localize itself in the real world in combination

with a reasonable amount of storage space, can be seen in the notion of labeling the
nodes in the graph. This allows for algorithms that do not have to do extra bookkeeping
tricks like Bender et al. in [Ben94, BFR+02]. Combining these two abstractions allows
us to simulate and argue without first needing to solve the simultaneous localization
and mapping problem, as we would have to do in a real world testbed using real robots.
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1 Introduction

(a) A landscape modeled with polygon shapes (b) Same landscape as grid

Trees Trees are chosen over planar graphs as they represent a hard sub-problem to
the online-exploration of general graphs. Meaning we are unable to show a stronger
lower bound for general graphs or planar graphs. It should be noted that any graph
can be explored with a tree exploration algorithm by building a spanning tree of the
graph while exploring it, e.g. newly discovered edges that lead to circles can be ignored.
But any guarantee for the run-time of a tree exploration algorithm only refers to this
spanning tree created by the exploration algorithm and not the diameter of the graph.
It depends on the tree exploration algorithm itself, if an additional adaption from tree
to graphs is necessary to prevent extreme spanning diameters from occurring. For
example a tree algorithm adapted to the graph could choose to switch its spanning tree
or parts of its spanning tree with a shortest path tree, when ever this change halves the
depth of the tree it works on or the algorithm is in a position where the change is for
free.
After formalizing this model in the next section we will be able to look at problems

large groups of robots face:
How to organize efficiently an exploration? (Chapter 2)
How to repeatedly cover a whole graph with robots? (Chapter 3)

1.1 Model

Our algorithms work on an undirected, connected graph G = (V,E) with |V | = n. We
use d as the depth of a tree. For grids we use m × m′ as notation for a rectangular
2-dimensional grid of which V is a subset. The means the nodes of V are then described
as tuples: V ⊆ [0, . . . ,m− 1]× [0, . . . ,m′− 1], where any edge {(i, j), (i+ 1, j)} exists if
(i, j), (i+1, j) ∈ V and any edge {(i, j), (i, j+1)} exists if the nodes (i, j), (i, j+1) ∈ V .
Without restriction we assume m′ ≤ m.
The term distance refers to the number of edges on a shortest path between two

nodes.
All nodes are labeled with a unique identifier in order to be distinguishable.
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1.1 Model

The goal of an algorithm A is to visit any node as soon as possible and then revisit
all nodes in as short as possible intervals. To achieve this an algorithm is given k robots
that each is assigned to a node of the graph. We require for our algorithms that k is a
small polynomial in the graph size: k = nc, 0 < c < 1.
In each round t an algorithm has to decide for each of its k robots where to move. A

robot can move from its current node to any node that is adjacent in the graph. There
is no restriction made to the time needed to compute the next step for all robots.
The first visit time of a node or exploration time of a node tf (A, v) is the

number of the round, in which a robot visits this node for the first time. The visit
time of a node tθ(A, v) is the supremum of all time intervals between any two visits of
this node (revisit) including the time interval necessary for the first visit by any robot.
The long term visit time of a node is the supremum of time intervals between any
two visits of a node by any robot after an arbitrarily long time. The corresponding
definitions for the full graph is given by the maximum first visit, visit and long term
visit time of all nodes. We will refer to the first visit time for the full graph as tf (A)
and for visit time as tθ(A). To shorten notation we will often omit A and just write tf
or tθ.
We are analyzing two types of restricted algorithms which we compare to an optimal

offline algorithm.
• Exploration algorithms are restricted in their knowledge of the graph. They can

only use the induced subgraph defined by the already visited nodes of V and
their adjacent nodes to compute the next move. This implicitly defines an global
communication model, because a global algorithm controlling all robots with full
knowledge of the team and all nodes the team explores is equivalent to running
a distributed algorithm, i.e. k instances of A are executed, with full exchange of
information between instances. For exploration all robots start assigned to the
starting node s ∈ V . We focus with exploration algorithms on minimizing the
exploration time tf , as after the graph is explored the exploration algorithm has
no longer any restrictions and can mimic the optimal offline algorithm.

• Parallel Unaware cleaning algorithms are restricted in their knowledge about other
robots. As an additional challenge cleaning algorithms do not necessarily start
with all robots at the same node. All k robots are positioned in the graph on
their starting nodes S = {s1, . . . , sk}. The algorithm has to decide for each robot
r which edge to traverse without knowledge of the other robots, basing all its
decisions solely on its starting position sr and the structure of the graph G . This
simulates the algorithm is running in a robot unaware of other robots. Robots
never learn in these scenarios about the first visit and visit times of nodes, as
revealing these would immediately tell the robot the positions of other robots and
allow for more effective algorithms. Note that the value r is not provided to the
algorithm. If r was known the algorithm would have knowledge that at least r
robots are present and additionally know that it is currently controlling the r-th
robot.
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1 Introduction

• Offline algorithms are used as baseline algorithm to measure against. These are
unrestricted in their knowledge of the graph and aware of all robots. We measure
the other algorithms by comparing the ratio of their first visit and visit time with
the fist visit time and visit time of the offline algorithm.

Competitiveness first visit = tf (AOnline)
tf (AOffline)

Competitiveness visit = tθ(AOnline)
tθ(AOffline)

This analysis of restricted algorithms is called competitive analysis. The restricted
algorithms are in competitive analysis synonymously called online algorithms.
To get a worst case competitive analysis of an algorithm, an adversary, in full
knowledge of AOnline, may now choose G,k and S to force the restricted algorithm
into its worst case competitive ratio.

Implicitly the parallel unaware cleaning an exploration algorithms define a commu-
nication model. For the exploration a single algorithm knowing the
For randomized algorithms, we will use the term with high probability to refer to an

event which occurs with probability p = 1 − n−c with constant c ≥ 1. In all of our
results, this constant c can be arbitrarily increased if one allows a larger constant factor
for the run-time. It is important that the first visit and visit of randomized algorithms
is only ever shown with high probability and becomes weaker if we ask for a probability
of p = 1 instead as we do for the deterministic algorithms.

1.2 Related Work

Exploration using a single robot has been studied for decades (for a survey we recom-
mend [RKSI93]) and can be considered as the online variant of the Traveling Salesman
Problem (TSP) [Kar72]. The standard offline version TSP can be considered solved for
the euclidean version of TSP, as Arora Sanjeev has shown a polynomial-time approxi-
mation scheme(PTAS) [Aro96] for it.
But in contrast to TSP exploration algorithms do not know the graph beforehand

and have to find an as cheap as possible tour through a graph that is uncovered with
every step. This leads to a totally different problem from the offline version.
For the single robot case, asymptotically optimal exploration up to a factor of two

is possible with depth-first search(DFS). Using a map, the exploration of a line or
tree can be improved by preventing double traversal of edges. Desmark et al. [DP04]
show various competitive constants that can be gained depending whether an anchored,
unanchored or no map at all is available. A more abstract concept for a map is used
by Fraigniaud et al. in [FIP08]. They show that O(log log(d)) bits of information can
be enough to explore a tree faster than normal DFS.
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1.2 Related Work

Our graphs are labeled to avoid introducing any complexity into the exploration by
robots not knowing where they are. If graphs are not labeled, DFS cannot be directly
used. M.A. Bender presents solutions for this scenario in [Ben94, BFR+02] using a
pebble or a second robot for bookkeeping.
In 2004, Fraigniaud et al. consider the multi-robot exploration problem for trees

(later published in journal form in [FGKP06]). They present an algorithm, that with a
competitive factor of O(k/ log k), is far apart from their lower bound of Ω(2 + 1

k ) and
quite close to the trivial upper bound ofO(k) achieved by executing a DFS using a single
robot. While the lower bound is improved by Dynia et al. in [DLS07] to Ω( log k

log log k ),
the upper bound remained the state of the art for 10 years until our recursive approach
was published in 2014 (O. et al in [OS14]).
Several restrictions for the exploration can improve the bounds. If algorithms are

restricted to greedy exploration, an even stronger bound of Ω(k/ log k) is shown by
Higashikawa et al. [HKLT12]. This matches the algorithm of Fraigniaud et al., which
is such a greedy algorithm.
For restricted graphs several better algorithms exist. Dynia et al. showed in [DKHS06]

a faster exploration for trees restricted by a density parameter p, enforcing a minimum
depth for any subtree depending on its size. For example, trees embeddable in p-
dimensional grids could be explored with competitiveness of O(d1−1/p).
In Brass et al.[BCMGX11] an upper bound of O(nk +dk−1) is shown. They implement

an algorithm that moves robots similar to the method of Fraigniaud et al. [FGKP06],
but also works on graphs using only a local communication model with bookkeeping
devices.
Dereniowski et al. discuss in their work very large values of k. They show how many

more robots need to be invested to explore in asymptotically optimal time. They show
a minimum of k = dn1+ε for a constant ε > 0 robots to be necessary. This improves
the trivial bound of O(nd) required to explore any graph in exactly time d by flooding
[DDK+13]. They also show their algorithm to be transferable from trees to graphs
without loosing the O(1

ε ) competitiveness.
Exploration of directed graphs is not discussed here, as graphs are undirected to

represent an exploration of normal terrain where you can take a step back if needed.
Competitive analysis done by Albers et al. [AH00], Fleischer et al. [FT05], Papadim-
itriou et al. [DP90] and Förster et al. [FW12] indicates this to be a harder problem
than the undirected case. The direction property of the edges allows the adversary to
generate sub-graphs that force a robot to redo the whole exploration to get back to a
new unexplored node.
Some works model the exploration geometrically, this is useful if robots have a sense of

sight enabling to see additional nodes before visiting them [GR03, KKMZ10] or having
to move around corners to make everything visible in case of unlimited vision [AKS99,
AKS08, CLP11].
We will later take a look at a 2-dimensional geometric model with rectangular obsta-

9
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cles. Papadimitriou et al. discuss with a similar model a online version of the shortest
path problem([Dij59]). Their goal is to navigate a room instead of exploring it fully.
For reaching a line in distance m they show a competitive factor of O(

√
m) [PY91].

With randomization this bound was later improved to O(m4/9 logm) by Berman et
al. [BBF+96]. Reaching not a line in distance m, but a point in a m ×m-grid can be
done faster. Bar-Eli et al. show in [BEBFY94] that reaching a given point in time
O(m logm) is possible. We will use this result as base algorithm for exploring such
grids faster than it is currently possible for trees. By itself this result is already enough
to explore a m ×m-grid graph with k = m2 robots in O(m logm)-steps. This can be
done by navigating each robot to a different vertex in the grid.
A discussion of a 1-dimensional geometric model without obstacles, but offering dif-

ferent speeds for walking and working is done by Czyzowicz et al. in [CGG+15]. They
show a 2-competitive algorithm for searching a segment of unknown length with such
a heterogeneous team of robots.
Very different results are generated by energy models. While the task stays the same,

visiting all nodes in the graph, time is no longer a limit, but the distance traveled by
robots. The goal in this model is to minimize the maximum distance traveled by robots,
as for example Dynia et al show in [DKS06] to explore trees 8-competitive in the maxi-
mum energy needed per robot along with a lower bound of 1.5-competitiveness for any
deterministic online-algorithm. Another variant of the energy model is the exploration
assuming a fueling station at a starting node, this is called piecemeal exploration, as
in Duncan et al. [DKK06]. One more energy-like variant was presented by Das et
al. [DDK15]. They assume a fixed energy for the robots and minimize the amount of
robots needed for the exploration.
When the graph is known beforehand, as with the parallel unaware cleaning al-

gorithms, the problem resembles more the traveling salesman problem than explo-
ration. Solving TSP with multiple agents is called Multiple Traveling Salesman Problem
(mTSP) and is discussed by Bektas et al. [Bek06] and Fredericksen et al. [FHK76].
The mTSP tries to cover the graph with a set of tours and minimizes the length of

the longest tour. This corresponds to the offline parallel cleaning problem, if we use the
distance between nodes in the graph as cost measure between nodes in mTSP. Even
if salesmen start at different nodes, the problem can still be reduced to the regular
mTSP [Guo95].
A variant of mTSP that requires robots to repeatedly visit the same area as good

as possible is Patrolling algorithms [PR11b]. Robots have to repeatedly patrol along
a landscape modeled by a graph or geometrically to detect intruders into an area.
Common strategies for this are either performing a tour along a circle on the graph
and distributing robots evenly or partitioning the graph and asserting one robot per
partition. Recently, this topic has garnered the interest of more research in the field of
robotics [ARS+04, Che04, EAK09].
We consider our parallel unaware cleaning problem as a very restricted version of

the patrolling problem. Usually patrolling algorithms are allowed communication or

10
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robots are able to sense each other for coordination, while we have to work without this
coordination. In these works idleness of nodes is minimized or point visit frequency is
maximized which both translate to our visit time.
Machado et al [MRZD03] compared in their work several patrolling algorithms with

different restrictions empirically. Their category of communication-less algorithms
nearly matches our scenario and are therefore worth comparing to. One of those al-
gorithms, the Conscientious Reactive, will later be compared to our solution to the
problem. Portugal et al. in [PR11a] feature more empirical analysis also including the
Conscientious Reactive Algorithm.
A similar definition to first visit time is the notion of cover time for random walks.

Likewise visit time can be compared to the hitting time H(i, j), the expected time
starting from node i to reach node j. Our robots are not forced to use random walks.
Thus, the Lollipop graph, a lower bound construction for the cover time of Ω(n3) [Lov96]
and obtained by joining a complete graph to a path graph with a bridge (see Figure 1.1),
can be cleaned quite efficiently by parallel unaware cleaners.

Figure 1.1: Lollipop graph example

1.3 Our Contribution

Most of the work in this thesis has been published previously in conference proceedings.
Chapter 2 about exploration algorithms relies heavily on [OS12], where we have

studied exploration of a seemingly simpler subclass of graphs called grid graphs with
rectangular obstacles.
We show the lower bound for the exploration of grid graphs to be the same as for

trees (Ω(log k/ log log k)) and follow up by discussing how the lower bounds for trees
and grid graphs change, if we allow for randomization in the exploration algorithms. It
turns out that this does not change the bound for trees, but for the grid graph we are
merely able to show a weaker bound of Ω(

√
logm/ log logm).

We proceed in Section 2.3 by showing an exploration algorithm for the grid graph
which is O(log2 n)-competitive. Thereby improving the best bound of O(n 1

2 ) which

11
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could be achieved by adapting Dynia et al.’s algorithm from [DKHS06] to the grid.
In the same chapter we present our main result from [OS14], the first online explo-

ration with sub-polynomial overhead of ko(1) on trees with d, k being polynomial in n,
or 2(2+o(1))

√
(log d)(log log k)(log k)(log k + logn) for any values of k and d.

Chapter 3 is based upon our work published in [OS15] studying the necessity for
communication in an offline exploration like scenario, the parallel unaware cleaning
model.

12



2 Exploration

In this chapter we take a look at the exploration of two interesting graph classes:
Trees and grid graphs with convex obstacles. The trees we deem interesting for being
the hardest subclass of general graphs known to us. The grid graphs with convex
obstacles on the other hand are a class that could be considered a more natural model
for environments build by humans. In the following sections we will see lower bounds
for both classes and the state of the art exploration algorithms to explore these graph
classes.
First, we take a look at the offline algorithms for exploration.
Creating an optimal path Popt through a known graph for a single robot is NP-hard.

Ideally we would never touch any node twice which would result in a Hamiltonian path
for the given graph. Using k robot changes the problem to finding paths P1, . . . , Pk
where ⋃ki=1 V (Pi) = V (G) and we have the goal to minimize the longest path: tf =
maxi=1,...,k{|Pi|}.
There are obvious limits to minimizing the longest path. These limits help us to

to provide a simple lower bound an offline algorithm can reach. Each node must be
visited and each robot can visit at most one new node each round. The starting node is
already visited in the beginning. In addition the node farthest away is in distance d and
must be included in at least one path. Therefore we get a lower bound for any offline
algorithm of tf ≥ max{dn−1

k e, d}. While this is not directly helpful, we can now create
an offline algorithm that solves the exploration within a constant factor of this offline
lower bound. This is done by using the DFS path over the graph and separate it into
k segments, each to be explored by its own robot (See Algorithm 1). This establishes
a constant approximation factor of three of this offline solution to any optimal offline
solution.

A constant factor offline approximation. A very basic observation is the constant
factor offline approximation presented in Algorithm 1, which establishes a constant
approximation factor of three.

Algorithm 1: Offline 3-competitive multi-robot exploration of trees for robot r
1: Compute a cycle of length 2n− 2 using DFS covering G
2: Divide the cycle into k paths of size at most |Pi| ≤ d2n−2

k e
3: Go to the first vertex of Pr
4: Traverse Pr

13
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Lemma 1 Algorithm 1 needs at most d+d(2n−2)/ke robot moves and has a competitive
factor of three.

Proof: Every exploration algorithm needs at least max{d(n − 1)/ke, d} steps. The
number of robot moves of Algorithm 1 is at most tf ≤ d + d(2n − 2)/ke ≤ 1 · d + 2 ·
d(n− 1)/ke ≤ 3 ·max{d, d(n− 1)/ke}. Hence, it is 3-competitive. �

In the following sections we will see how well exploration algorithms can at best
perform against this offline bound and how good the best algorithms do perform against
it.

2.1 Lower Bounds for Exploration

The best lower bound construction for trees was found by Dynia et al. in [DLS07] and
called the Jellyfish-Tree in Figure 2.4. The Jelly Fish construction uses t ≥ k long
path graphs to separate poisons, carefully sized conglomerate of nodes, to force any
online algorithm to redistribute its robots Ω( log k

log log k ) times. In this section we show a
construction inspired by this work for grid graphs with only rectangular obstacles.
Since we take a look at the asymptotic behavior, we restrict values for the side length

m of the overall grid and the number of robots k to be powers of 2. For our construction
we choose m = k2. We separate G into k rectangular sub-grids, our poisons, such that
the shortest path between every pair of these areas has a length of Θ(m), see Figure 2.1.
Given the paths of robots in a poison area visiting at most w nodes in total and

each robot starting (or departing) at one of the four corners of an area of m/2 ×m/k
we construct the grid poison in the following way: For each j ∈ {1, . . . , logm − log k}
consider a sub-grid of 2j × 2j-squares. If no robot has visited a square, then all vertices
of this square except the border nodes (leftmost and rightmost column, lowermost
uppermost row) will be removed. The border nodes are necessary to ensure that the
square shaped obstacles remain disjoint and that the robot in the neighboring square
does not learn anything. We call w the fooling size of the grid poison.

Lemma 2 Given a deterministic strategy of robots where the number of all traversed
nodes of the robots is at most w in a m × m′ (with m ≥ m′) rectangle, then the
corresponding poison has at most size O(m+w logm′). No visited vertex is adjacent to
a rectangle.

Proof: Clearly, the w traversed vertices remain in the graph. When a sub-grid of
dimension 2j × 2j is removed, then 2j+2 − 4 vertices remain in the graph.
We estimate the number of such sub-grids which can be reached by any robots. Four

sub-grids can be reached without any traversal since the robots may start at the corners.
The explored sub-grids are connected since they result from a set of paths starting in
the corners. So, at most 4 + w22−j sub-grids of dimension 2j × 2j can be reached.
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Figure 2.1: Separation of the grid poison areas
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Figure 2.2: Deterministic construction of the grid poison based on the exploration paths of
robots

Figure 2.3: Example graph for the deterministic lower bound
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2.1 Lower Bounds for Exploration

Note: This is a slight overestimation as we can actually only reach two and not four
new sub-grids by traversing the edge length of one sub-grid.
We want to count all 2j × 2j sub-grids which are replaced by an obstacle. Each

such sub-grid has three neighbor sub-grids (horizontal, vertical and diagonal) in its
superordinate 2j+1 × 2j+1 sub-grid, of which at least one has been visited by a robot.
Otherwise, the superordinate sub-grid would have been replaced by an obstacle. So the
number of replaced sub-grids is at most 4(4+w22−j). In each of them′×m′ sub-squares
of the m×m′ grid poison with at most wi robot paths we observe at most the following
number of vertices.

logm′∑
j=2

4(4 + wi22−j) · (2j+2 − 4) ≤ 64m′ + 64wi logm′

Summing over all such m/m′ squares we get at most
64m+ 64w logm′ = O(m+ w logm′) vertices. �

While w visited vertices are not enough to encounter any obstacle, we show that
visiting O(w logm′+m) vertices suffice to visit all vertices. An offline strategy with at
most k ≤ m robots can do so in time O(wk logm′ +m).

Lemma 3 A grid poison with fooling size w in a m ×m′ rectangle (m ≥ m′) can be
explored by k′ robots in time O(m+ w

k′ logm′) in the offline setting.

Proof:
Partition the p ≤ 64m + 64w logm′ vertices of the grid poison in bi ×m′ rectangles

such that ∑k′
i=1 bi = m and that the number of vertices in each rectangle is at most

p
k′ + m′. Each of the k′ robot explores one such rectangle. It needs m steps to reach
the rectangle. For exploring such a rectangle, a robot may have to take a detour into
neighbored rectangles because an obstacle hinders the direct path. Such detours have
at most 4m′ vertices. Furthermore, paths inside the rectangle may be traversed at
most twice. This leads to an upper bound for 2bi + 4m′ for the exploration within the
rectangle. To reach the rectangle at most m steps are necessary. This results in an
exploration time of at most m+ 6m′ + 2 pk = O(m+ w logm′

k′ ). �

The fooling size of the grid poisons is chosen according to the following distribution:

wσ(i) =
⌈

km

(log k)2 ·
1
i

⌉

Where σ denotes a permutation depending on the deterministic exploration strategy.

Lemma 4 There is an offline strategy which explores this graph within O(m) steps
using k robots.
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2 Exploration

Proof: Remember that m = k2 and m′ = k. Define W :=
k∑
i=1

wσ(i) and note that

W = O
(
k + km

log k

)
. An offline exploration strategy sends one robot in each grid poison

for time cm to explore the grid poison. After this round, it sends
⌊
wσ(i)
W k

⌋
robots in

each unexplored grid poison for time c ·m as well.
All poisons with fooling size of at most m/ log k can be explored within the first

round. If wσ(i) >
W
k , then at least one robot will explore the grid poison after this

round. This is the case for i ≤ c k
log k for some constant c > 0. Exploring such a poison

costs time linear in

m+
wσ(i)⌊
k
wσ(i)
W

⌋ logm′ = O
(
m+ W

k
logm′

)
= O(m) .

�

Theorem 1 Any deterministic exploration strategy needs at least Ω
(
m · log k

log log k

)
steps

to explore this graph with k robots.

A proof is analogous to the lower bound in [DLS07]:
Proof: For the lower bound argument we consider rounds of length m/2. Note that
in each round a robot can visit only one poison grid. Let kt,i denote the number of
robots that visit poison Ti in round t. At the beginning of each round the adversary
allows the robots to know the size of some of the poisons while a decreasing number
of poisons remain of unknown size. As soon the robots learn the size of the poison the
poison is lost and no more exploration costs are accounted for (since the overall offline
exploration cost is O(m)). Furthermore, we do not count the costs of replacement from
one poison grid to another.
Let ut be the number of unexplored poisons after the t-th round. Then, at least ut

2
poisons are explored by at most 2 k

ut
robots. By our construction we can ensure that

ut ≥
k

2t log2t k
.

For this we adapt the permutation σA (we will write σ for brevity) to an exploring
Algorithm A in the following way. All the poisons are sorted according to whether A
sends kt,i ≥ 2 k

ut
robots into a poison in the t-th round. For this purpose we place the

poison grids with larger number of robots in the first round at the beginning, then we
continue within the set at the beginning by sorting poison grids according to the robots
of the second round and so forth.
By induction before round t at least ut−1 poisons are unexplored. Now the search

algorithm can place at most k robots among those poisons and at least ut−1
2 poisons are
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2.1 Lower Bounds for Exploration

explored by at most 2 k
ut−1

robots in round t. Hence, the robots cannot explore those
poisons where

|Tσ(i)| ≥ m2t log2t−2 k ≥ km
( 1
ut−1

+ 1
ut−2

+ . . .+ 1
u0

)
(by induction) since the robots have only time m/2 to explore the poison area. The
number of poisons ut of this size can be evaluated by using the definition of the distri-
bution.

km

ut(log k)2 ≤ m2t log2t−2 k

Thus, we have
ut ≥

k

2t log2t k

which proves the number of unexplored poisons by induction.
Note that for tlast = 1

4
log k

log log k we have

utlast = k

22tlast log2tlast k
≥ k

k
1

2 log log k 2 1
2 log k

≥ k

k
1
2k

1
2

= 1 .

By this construction, we have at least Ω
(

log k
log log k

)
rounds with unexplored poison

grids where each of the rounds have a run-time of m2 . �

This implies an exploration time for any deterministic online algorithm of

Ω
(
m · log k

log log k

)
leading directly to a lower bound for the competitive ratio of

Ω
( log k

log log k

)
Therefore, we achieve the same lower bound for grid graphs with rectangular obstacles

that was achieved for trees. In section 2.3 we will show a exploration algorithm that
nearly matches this bound.
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Figure 2.4: Jellyfish-Tree construction from [DLS07].

2.2 Lower Bounds for Randomized Algorithms

As in the last section very strict knowledge of the movement of an algorithm was used
to create poisons, we now take a look at randomized algorithms. We will show in this
chapter that while randomization makes it harder to create poisons and show lower
bounds, it does not prevent the construction of poisons completely. We show in this
section that a similar bound for trees and a slightly weaker bound for the exploration of
grid graphs with rectangular obstacles exists than it does for deterministic algorithms.

Lower Bound for Randomized Tree Exploration

We first show that the lower bound given in [DLS07] for trees also applies for randomized
algorithms. Consider the Jellyfish-Tree in Figure 2.4. We use the same construction
with k subtrees and a random permutation σ over {1, . . . , k}. The i-th subtree consists
of a path of length t = k and a poison which is a tree of size |Tσ(i)| and depth |Tσ(i)|

t
where

|Tσ(i)| :=
⌈

k

log k ·
1
i

⌉
· t

where in each level t − 1 leaves are connected to a parent and the graph continues at
a random child, which we call the target child. The permutation σ is chosen uniformly
at random. In [DLS07] the following lemma has been shown regarding the offline
exploration time.

Lemma 5 The Jellyfish-Tree can be explored in time O(t) using k robots.

Yao’s principle [Yao77] is used to show a lower bound for randomized strategies. We
choose the randomized Jellyfish-Tree for a deterministic exploration strategy and show
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2.2 Lower Bounds for Randomized Algorithms

a lower bound on the expected time.

Theorem 2 For every randomized online exploration algorithm A, there is a graph
such that tf (A) is at least Ω

(
log k

log log k

)
times larger than the optimal time needed to

explore this graph offline by k robots.

Proof: We consider rounds of length t. In each round a robot can visit only one
poison. We assume that the deterministic exploration strategy knows the graph family.
Therefore it has determined a poison, if it has found all target children.
Now in each round of length t steps a different number of robots might explore a

poison.

Lemma 6 The probability that in a round a target child in depth ` is explored with
k′ ≤ t robots in less time than 1

2
t
k′ is at most e−

1
8 `.

Proof: We assume that all k′ robots test different children where each child is a target
child with equal probability. Then, the probability to find the target child of the next
level within i steps is i · k′t .
Define the random variable X which denotes the number of steps to find one target

child with k′ robots. Then P [X = j] = k′

t for j ∈ {1, . . . , dt/k′e − 1} and P [X =
dt/k′e] = t−k′ mod t

t . Clearly, 1
2bt/k

′c ≤ E[X] ≤ 1
2 t/k

′.
If k′ ≥ t/2 the target child may be found in each step. Otherwise if k′ < t/2 we

can bound the number of steps to find a series of ` target children using Hoeffding’s
inequality from [Hoe63a] (Theorem 2). Assume ` independent target children and let
S` = ∑`

j=1Xj,i, where Xj,i denotes the random variable above for k′ robots. Then, by
the tail inequality, we have for all t ≥ 0 and ai = 1 and bi = dt/k′e

P [S` − E[S`] ≤ −δ] ≤ e−2δ2/
∑`

i=1(bi−ai)2

Since bi − ai ≤ t/k′ we have

P [S` − E[S`] ≤ −δ] ≤ e−2δ2k′2/(`t2)

We choose δ = 1
2E[S`] ≥ 1

2` · b
t
k′ c and get for k′ ≤ t/2

P

[
S` ≤

1
2E[S`]

]
≤ e−

1
2 `

2bt/k′c2k′2/(`t2)

≤ e−
1
2 `(1−k

′/t)2 ≤ e−
1
8 `

Remember that for k′ > t/2 we have

P

[
S` ≤

1
2E[S`]

]
= 0
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The probability that a target child in depth ` is explored with k′ robots in less time
than 1

2
t
k′ is at most e− 1

8 `. �

This implies the following corollary which shows that with high probability 1 − 1
n2

that maximum speedup by randomization in a poison is a factor of O(logn).

Corollary 1 The probability that in a round of length t a target child in depth 16 lnn
is explored with k′ ≤ t = k robots in less time than 1

2
t
k′ is at most 1

n2 .
So, k′ robots in a round of length t can only find all target children in depth of at

most 32k′ lnn = (64 ln 2)k′ log k with probability 1− 1
n2 .

Now, in the first round, we have k robots which are (deterministically) each assigned
to a poison, but necessarily each poisons receives at least one robot. They have at most
time t to explore each poison.
Consider poisons of depth of at least cj logj k for c = 28. There are as many as
k

cj logj+1 k
such poisons. Such a poison cannot be explored with less than cj logj−2 k

26 ln 2
robots with high probability. Then, only target children up to depth cj log1−j k, i.e. a
fraction of 1

log k of the poison can be explored with high probability.

Correspondingly, there are at most 26(ln 2)k
cj logj−2 k

poisons which may have enough robots
and these poisons are randomly distributed over the set of all poisons. The probability
that more than cj logj−2 k

26 ln 2 robots are assigned to a poison is at most 26(ln 2)
cj logj−2 k

.
The expected number of explored poisons of this depth cj logj k after the first round

is at most

r = k

cj logj+1 k

26(ln 2)
cj logj−2 k

= 26(ln 2)k
c2j log2j−1 k

.

We can apply a Chernoff bound [MU05] since the success of sending the correct or a
higher number of robots into a poison is negatively correlated: The exploration of a
poison decreases the probability that another poison is explored. For r ≥ 8 lnn we get
with high probability that at most 2r poisons are explored with high probability which
is the case for 2 ≤ j ≤ 1

4 log k/ log log k. Further, note that for j ≥ 2

2r ≤ k

cj+1 logj+1 k

since
27(ln 2)k

c2j log2j−1 k
≤ k

cj+1 logj+1 k

and
cj logj k ≥ (27 ln 2)c log2 k .

because c ≥ 27 ln 2.
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Hence, the number of unexplored poisons of depth at least
cj logj k for j ≥ 2 is at least (

1− 1
c

)
k

cj logj+1 k

after the first round with high probability.
By induction, at the beginning of the (u+ 1)-th round we have at least

(1− 1
c

)ukc−j log−j−1 k

unexplored poisons of depth at least cj logj k for j ≥ 2u and j ≤ 1
4 logn/ log logn. We

assume that these bounds are tight.
Again, for poisons of depth at least cj logj k a number of cj logj−2 k

26 ln 2 of robots is not
able to explore more than a fraction of 1

log k of such poisons. So, there at most 26(ln 2)k
cj logj−2 k

poisons which may have enough robots and these poisons are randomly distributed over
the set of all unexplored poisons which is at least
(1− 1

c )ukc−2u log−2u−1 k. The probability that enough robots are assigned to a poison
is therefore at most

26(ln 2)k
cj logj−2 k

((
1− 1

c

)u
kc−2u log−2u−1 k

)−1

= 26(ln 2)c2u−j log2u−j+1 k .

The expected number of explored poisons is at most

r =

(
1− 1

c

)u
k

cj logj+1 k
· 26(ln 2)c2u−j log2u−j+1 k

= 26(ln 2)
(

1− 1
c

)u
c2u−2jk log2u−2j−2 k

Note that for j ≥ 2u+ 2

2r ≤
(

1− 1
c

)u k

cj+1 logj+1 k

since

27(ln 2)
(

1− 1
c

)u
c2u−2jk log2u−2j−2 k

≤
(

1− 1
c

)u k

cj+1 logj+1 k

and
cj−2u logj−2u k ≥ (27 ln 2)c log2 k .
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Figure 2.5: Recursive construction of poison areas for the randomized lower bound

because c ≥ 27 ln 2. Again, we can apply Hoeffding’s bound [Hoe63b] since the explored
poisons are negatively correlated. Applying Hoeffding’s bound for r ≤ 8 lnn, we get
with high probability that at most 2r poisons are explored with high probability, which
is the case for 2u ≤ j ≤ 1

4 log k/ log log k.
Therefore, the number of unexplored poisons of depth ≥ cj logj k for j ≥ 2u+ 2 is at

least (
1− 1

c

)(
1− 1

c

)u k

cj logj+1 k

after the (u+ 1)-th round with high probability, which proves the induction.
Since for all u ≤ 1

4
log k

log log k we can find unexplored poisons with high probability, the
claim follows. �
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Lower Bound for Randomized Grid Exploration

This theorem can be transferred to grids with rectangular bounds. Again we use a con-
struction with poison areas as in the deterministic lower bound for the grid. Obviously,
we cannot use the same construction, since it heavily depends on the knowledge of the
deterministic strategy.
Therefore, we use a randomized recursive construction where we place one poison

within another. This “Matryoshka doll”-like construction has two features. First, it is
hard to find the next enclosed grid poison. Second and most astonishingly: It is bigger
on the inside. Every next Matryoshka doll inside is twice as large as the outer one. This
is possible, due to the fact that the outer poison has much fewer (yet longer) paths.
The outer grid construction is depicted in Figure 2.2. We construct poison areas

specifically designed for k =
√
m randomized robots where the overall size of the grid

is m ×m. The whole area is designed in a way that there is an offline strategy where
k robots explore the graph in O(m) steps.
We recursively define the poison areas as depicted in Figure 2.5 starting with the

uppermost layer which fits into the overall construction with a0 = 1
4m−2, b0 = b = 1

2m
and c0 = c = m

k+3 in the overall construction of Figure 2.2. Further, define for i ≥ 0

ai+1 = 1
4bi − 2 , bi+1 = 1

2bi , ci+1 = ci
1

22i

So, we have the closed form for i ≥ 0:

ai = m 2−i−2 − 2 , bi = m 2−i−1 , ci = m

k2i(i+1)

This recursive definition ends when cr+1 ≤ 1 for some r. Therefore

m

k2(r+1)(r+2) ≥ 1

which is implied by
logm ≥ log k + (r + 1)2

And therefore:

r ≤
√

logm− log k − 1 =
√

2
2
√

logm− 1

Note that the recursive constructions replace at most one of the inner rectangles with
the next level. In this construction, one of the inner obstacles is replaced by another
element. In the lowest level this obstacle is a barrier. The following lemma describes
the length of all paths in the fixed level i of the recursion.

Lemma 7 For a grid poison of level i ≥ 1, the complete area to be explored is at most
m2i.
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2 Exploration

Proof: We have at least d ci
ci+1+3e vertical paths of length bi which have an overall

length of bi = m2−i−1. Note that by definition

ci
ci+1

= 22i

Therefore
ci

ci+1 + 3bi ≤ 22i m 2−i−1 = m2i−1

The length of all horizontal paths is bounded by 4ci ≤ m. �

We define the workload of an exploration strategy in a poison as the sum of all paths
of all robots.

Lemma 8 For all p ∈ [0, 1] in a grid poison of level i ≥ 1 the next recursive grid poison
has not been found with a workload of at most 1

2pm2i with probability 1− p.

Proof: Consider the paths of a deterministic strategy of length w = pm2i. The
expected number of possible poisons that can be inspected with this workload is at
most 1

2
pn2i
bi

= 1
2

pn2i
n2−i−1 = p22i. Clearly the probability is p for finding the correct target

and therefore 1− p for failing to do so. �

Now we choose the levels `j of the poisons 1, . . . , k according to the following distri-
bution where σ is a random permutation over {1, . . . , k}.

|Tσ(i)| =
tk

log k ·
1
i

and
`j = blog |Tj |c

The maximum size of such a grid poison is bounded by
t2O(
√

log k). So, we replace our distribution of poison sizes with

|Tσ(i)| =


tk

log k ·
1
i

if k

2O(
√

log k) log k
≤ i

m2O(
√

log k) else

where we round to the next power of two.

Theorem 3 For every randomized online exploration algorithm, there is a grid graph
with disjoint rectangular obstacles such that the exploration time is at least Ω

( √
log k

log log k

)
times longer than the optimal time needed to explore this graph offline by k robots.
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Proof: The proof is analogous to the proof of the randomized lower bound for graphs.
The first difference is that we do not prove with high probability, but with probability
1− 1

logn . This probability for each poison is large enough since the expected number of
unexplored poisons is considered.

The second difference is that the number of rounds is now limited by r =
√

log k
log log k .

This is the reason for the worse lower bound. We consider rounds of length m/2. In
each round a robot can visit only one poison grid. We use Yao’s principle [Yao77]and
consider a deterministic strategy on the random graphs.
Consider poison grids of level of at least log(cj logj k) for c = 28. There are k

cj logj+1 k

many such poison grids. Not even a fraction of 1
log2 k

of such a poison grid can be
explored in a round of length m/2 with less than cj logj−2 k robots with probability
1 − 1

log2 k
. We can bound the number of poisons that are explored in the error case

with Chernoff bounds. If k
cj logj−2 k

≥ 8 lnm, then the error probability that more than
2 k
cj logj−2 k

such poison grids are explored is at most 1
m2 .

So, there are at most 3 k
cj logj−2 k

poison grids which may have enough robots and these
poisons are randomly distributed over the set of all poisons w.h.p. The probability that
more than cj logj−2 k robots are assigned to a poison is at most c−j log2−j k.
The expected number of explored poisons of this level

log(cj logj k) after the first round is at most

r = k

cj logj+1 k

3
cj logj−2 k

= 3
c2j log2j−1 k

We can apply a Chernoff bound since the explored poisons are negatively correlated:
The exploration of a poison decreases the probability that another poison is explored.
For r ≥ 8 lnm, we get with high probability that at most 2r poisons are explored with
high probability which is the case for 2 ≤ j ≤

√
log k/ log log k.

Further, note that for j ≥ 2

2r ≤ k

cj+1 logj+1 k

since
6k

c2j log2j−1 k
≤ k

cj+1 logj+1 k

and
cj logj k ≥ 6c log2 k .

if we choose c ≥ 6.
Hence, the number of unexplored poison grids of level at least

log(cj logj k) for j ≥ 2 is at least (
1− 1

c

)
k

cj logj+1 k
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after the first round with high probability.
After each round the robots may be placed on different poison grids. Although

the robots need time m/2 to travel from one poison grid to another, we do not use
this feature, since we also have to deal with robots which do not travel to new poisons
which complicates the analysis. It is easy to see that taking the travel time into account
accounts only for a constant factor.
By induction, at the beginning of the (u+ 1)-th round we have at least

(1− 1
c

)ukc−j log−j−1 k

unexplored poison grids of level at least log(cj logj k) for j ≥ 2u and
j ≤
√

logm/ log logm. We assume that these bounds are tight, i.e. we allow the robot
strategy to learn about the situation in the other poison grids.
Again, for poison grids of level at least log(cj logj k) a number of cj logj−2 k of robots

is not able to explore more than a fraction of 1
log2 k

of such poisons with probability
1− 1

log2 k
. Again, we bound the error case by Chernoff bound if k

cj logj−2 k
≥ 8 lnm then

the error probability that more than 2 k
cj logj−2 k

such poison grids are explored is at
most 1

m2 .
So, there at most 3k

cj logj−2 k
poisons which may have enough robots and these poisons

are randomly distributed over the set of all unexplored poisons which is at least (1 −
1
c )ukc−2u log−2u−1 k. The probability that enough robots are assigned to a poison is
therefore at most

3
cj logj−2 k

((
1− 1

c

)u
kc−2u log−2u−1 k

)−1

= 3c2u−j log2u−j+1 k

The expected number of explored poisons is at most

r =

(
1− 1

c

)u
k

cj logj+1 k
· 3c2u−j log2u−j+1 k

= 3
(

1− 1
c

)u
c2u−2jk log2u−2j−2 k

Note that for j ≥ 2u+ 2

2r ≤
(

1− 1
c

)u k

cj+1 logj+1 k

since
6
(

1− 1
c

)u
c2u−2jk log2u−2j−2 k ≤

(
1− 1

c

)u k

cj+1 logj+1 k
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2.2 Lower Bounds for Randomized Algorithms

and
cj−2u logj−2u k ≥ 6c log2 k .

because we chose c ≥ 6.
Again, we can apply Hoeffding’s bound since the explored poisons are negatively

correlated. Applying Hoeffding’s bound for r ≥ 8 lnm we get with high probability
that at most 2r poisons are explored with high probability which is the case for 2u ≤
j ≤
√

log k/ log log k.
Accordingly, the number of unexplored poisons of depth at least cj logj k for j ≥ 2u+2

is at least (
1− 1

c

)(
1− 1

c

)u k

cj logj+1 k

after the (u+ 1)-th round with high probability, which proves the induction.
So, for

√
logm/ log logm rounds of length m, there will be unexplored poisons with

high probability. �

These lower bounds could be generalized to robots with vision where each cell needs
only to be seen by the robots (and not necessarily visited). This can be done by
placing small view obstructing squares at all junctions in the lower bound construction
presented here. However such an argument is, of course of questionable utility, as such
a universal counter-strategy for vision defeats the purpose of modeling the line-of-sight
at all.
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2.3 Exploration with Rectangular Obstacles

In this section we take a look at the exploration of grid graphs with rectangular obsta-
cles. Contrary to normal trees grid graphs allow us a sense of direction or area. This
allows us to devise a divide and conquer strategy for multi-robot exploration that is
faster than any algorithm working on trees.
Applying Bar Eli et al.’s result from [BEBFY94] for navigating to any point in a

m × m′-grid (m ≥ m′) with unknown oriented rectangular disjoint obstacles in time
O(m logm′) or to the obstacle in which the point lies, we present an efficient divide-
and-conquer strategy. We use the following notations:
Let N,E, S,W denote the directions. A δ1δ2-path is a directed path which consists

only of steps with directions δ1 and δ2. For neighbored directions δ1, δ2 ∈ {N,E, S,W}
a greedy δ1δ2-path is a path without obstacles where from the starting point the path
goes to direction δ1. Each time an obstacle occurs, the path takes a turn in direction δ2
and continues until the way is free again in direction δ1, then it continues in direction
δ1. From every point in the grid, every greedy δ1δ2-path exists and has a maximum
length of 2m− 1.
We need the notion of surroundable regions.

Definition 1 A surroundable region is a set of connected nodes which has a bounding
path which is described by the concatenation of a greedy NW , WS, SE, and EN -path.
Note that the complete m×m′-grid is such a surroundable region.
The continuous area A(R) of a region R is the area of the region of R where the

bounding path and the region is interpreted geometrically.

Every surroundable region has a bordering path with a length of at most 4m−2. For our
divide-and-conquer algorithm we successively partition such regions. We also consider
a geometric version of the grid graph in the Euclidean plane bounded to [0,m − 1] ×
[0,m′ − 1]. Obstacles are obviously modeled by rectangles. For the paths of the robot
we consider series of line segments connecting the middle points of the empty squares
representing the nodes of the graph.

Lemma 9 Each surroundable region R can be partitioned into two surroundable re-
gions R1, R2 such that R1 ∪ R2 = R and A(Ri) ≤ 3

4A(R) for i ∈ {1, 2}. This can be
done in time O(m logm) with a single robot.

Proof: For a fixed region R consider a point p = (px, py) in this Euclidean space. Then
we define Q1(p) as the area of R in the NE-quadrant (including obstacles). Similarly,
we define Q2, Q3, Q4 as the areas of R in the NW , SW and SE-quadrant. Clearly, the
sum of all Qi(R) equals the area A(R) of R. See Figure 2.6 for visualization.

Lemma 10 There exists a point p such that:
1. Q1(p) = Q3(p) and Q2(p) = Q4(p)
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p
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R2

Q1Q2

Q3 Q4

m

m'

NW-path

SE-path

Figure 2.6: Partitioning an area for efficient exploration
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2. Q1(p) +Q3(p) ≥ A(R)/2 or Q2(p) +Q4(p) ≥ A(R)/2.

Proof: Consider the function f13(x, y) = Q1((x, y))−Q3((x, y)). If x is smaller than
any x-coordinate of a point in R and y is smaller than any y-coordinate of a point in
R, then f13(px, py) = A(R). If x is larger than any x-coordinate of a point in R and y
is larger than any y-coordinate of a point in R then f13(px, py) = −A(R). Further, the
function is continuous and decreases with x and y. Therefore, for each x there exists a
y such that f13(x, y) = 0 and for all y there exists a x such that f(x, y) = 0.
For the function f24(x, y) = Q2((x, y)) − Q4((x, y)), we can deduce the equivalent

observations.
Given a rectangle (x1, y1), (x2, y2) where f13(x1, y1) ≤ 0, f13(x2, y2) ≥ 0, f24(x2, y1) ≤

0 and f24(x1, y2) ≥ 0, we can conclude that in one of the four equal-sized sub-rectangles
this condition is preserved. The choice of the rectangle depends on the signs of f13(1

2(x1+
x2), 1

2(y1 + y2)) and f24(1
2(x1 + x2), 1

2(y1 + y2)). This implies the existence of a point p
where f13(px, py) = f24(px, py) = 0.
Since f13(px, py) = f24(px, py) it follows Q1(p) = Q3(p) and Q2(p) = Q4(p). If

Q1(p) +Q3(p) ≥ Q2(p) +Q4(p) then

2(Q1(p) +Q3(p)) ≥ Q1(p) +Q3(p) +Q2(p) +Q4(p) = A(R) .

Otherwise we have Q1(p) +Q3(p) < Q2(p) +Q4(p) and therefore

2(Q2(p) +Q4(p)) > Q1(p) +Q3(p) +Q2(p) +Q4(p) = A(R) .

�

This point p can be efficiently computed, since the region R is defined by horizontal
boundaries. Now we navigate a robot to this point p using the algorithm of [BEBFY94].
If it lies within an obstacle, the algorithm will circle the obstacle, otherwise it will reach
the node which is in smallest distance to the point.
Assume that Q1(p) + Q3(p) ≥ A(R)/2. Then, we will construct a path within the

second and forth quadrant which divides R into R1 and R2. For this, starting from p
we simply follow a greedy NW -path until we reach the boundary of R. Then, we follow
a greedy SE-path starting from p until we reach the boundary of R. This path will not
leave the second and forth quadrant and the sub-regions are again surroundable.
If p lies within an obstacle, we take the obstacle corner points in the second and forth

quadrant with respect of p. Then, we construct NW -paths and SE-paths from these
two points and combine them with two surrounding paths of the rectangular obstacles
around p.
In both cases we have A(R1) ≥ Q1(p) ≥ 1

4A(R) and also A(R2) ≥ 1
4A(R).

If Q1(p) +Q3(p) < A(R)/2 then we have Q2(p) +Q4(p) ≥ A(R)/2 and we make the
symmetric construction within the first and third quadrant of p using greedy NE and
SW -paths. Again, we get A(R1) ≥ 1

4A(R) and A(R2) ≥ 1
4A(R). Since A(R1)+A(R2) =

A(R) the claim follows. �
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Algorithm 2 uses this partitioning to explore the square.

Algorithm 2: O(log2m)-competitive multi-robot exploration of the m × m′ grid
with k robots

1: Start with the full square as a single surroundable region
2: All robots start in the upper left corner
3: for i← 1, 2, . . . , log k do
4: Partition all 2i−1 regions in parallel using one robot per region
5: end for
6: while Unexplored regions exist do
7: Explore all k regions with one robot each using depth-first search
8: If a robot finishes the DFS it returns to the upper left corner
9: if at least k/2 robots have returned to the upper left corner then

10: Stop the entire exploration
11: Partition all k/2 unexplored regions
12: end if
13: end while

Theorem 4 Algorithm 2 can explore them×m′ grid with k robots in time O(m log2m+
m logm log k + (n logn)/k) where m < n ≤ m2 is the number of nodes in the grid
(without obstacles) using the global communication model.

Proof: First note that a single robot can explore a connected area with n′ (non-
obstacle) vertices using depth-first search in time 2n′, but that such an area cannot be
explored with less than n′ steps by a single robot.
It takes at most 2 log4/3m rounds of re-partitioning until all surroundable regions

have a size of at most 1, since the size of a region is reduced by at least a factor of
3/4. Each partitioning takes O(m logm) steps for one robot. Moving to the left upper
corner takes 2m − 1 steps using a greedy NE-path. Hence, the time of the lines 3–5
can be estimated by O(m logm log k) steps. The while-loop (line 6) is executed at most
O(logm) times. All partitioning steps in line 11 take therefore O(m log2m) steps.
For the exploration time, we consider the rounds of the while-loop (lines 6–13). Let

nj denote the number of unexplored vertices at the beginning of the j-th round. There
are two cases:
In the first case, the loop finishes in round j since less than k/2 robots have returned

and all regions are explored. So, more than k/2 robots have explored nj vertices in
parallel. This has taken at most 4nj/k steps, since k/2 robots have explored at most
nj vertices in parallel with DFS. Therefore, the time for this round can be estimated
by 4n/k.
In the second case, the k/2 robots have returned in the j-th round, but k/2 unexplored

regions will be again completely revisited in the round j + 1. Let R be an explored
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region with the largest number of vertices (given by F ). This means R is explored
in at least F (R) steps. All explored regions have been explored in at most 2F (R)
steps. However, all k/2 unexplored regions must have had at least 1

2F (R) vertices,
since otherwise they would have been explored in this round by the DFS. Summarizing
over the k/2 unexplored regions we have 1

4kF (R) ≤ n and therefore F (R) ≤ 4n/k which
results in an upper time bound for the exploration of 8n/k steps in this round.
Since there are at most O(logm) rounds in the while-loop there are at most
O((n logm)/k) steps for the exploration. �

The global communication of our model can be replaced with a local communication
scheme, if all robots stop the algorithm every 8m steps, move to the left upper node,
communicate, and then return to their work. This needs 4m steps and only increases
the exploration time by a constant factor.

Corollary 2 Using only local communication the m ×m′ grid can be explored with k
robots in time O(m log2m + m logm log k + (n logm)/k), the same as using the global
communication model.

Every optimal exploration strategy where all k robots start in the left upper corner
needs at least 2m − 1 steps to reach the opposite corner. The other lower bound of
n/k results from the optimal parallelization of the exploration of the n cells. Further
note, that k = m · m′ robots can explore the m × m′ grid in time O(m logm′). For
this purpose, each robot navigates to its assigned node. This establishes a competitive
factor of O(logm′). For k ≤ m2 we have log k ≤ 2 logm and thus a run-time of
O(m log2m + n(logm)/k) compared to lower bound of Ω(m + n/k) resulting in the
following corollary.

Corollary 3 There is an exploration strategy to explore anm×m-grid andm < n ≤ m2

with oriented disjoint rectangular obstacles with a competitive exploration time ratio of
O(log2 n) in the local communication model.

2.4 Efficient Tree Exploration

In this section, we turn our eyes again back to the tree exploration. First, we introduce
the Yo-yo algorithm. The Yo-yo algorithm perfectly parallelizes the work in a tree with
any number of robots, but is very susceptible to the depth of a tree. The Yo* later is
then an iterated version of the Yo-yo that can handle trees of larger depth efficiently.

The Yo-yo Exploration

The basic idea of the Yo-yo exploration algorithm is to successively explore every set
of nodes in the tree with the same depth. After each exploration step all robots return
to the root and are perfectly rebalanced for the next exploration step. For most trees,
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this algorithm is not very efficient, since most of the time the robots commute between
the root and the leafs of the so far known sub-tree. We denote the number of nodes in
depth i by ni.

Algorithm 3: The Yo-yo Algorithm: 4d-competitive multi-robot exploration of a
tree

1: All robots start at the root of the tree
2: for i← 2, . . . , d do
3: Partition all ni nodes in depth i into k subsets Vi,1, . . . , Vi,k with |Vi,j | ≤ dnik e.
4: for all j ← 1, . . . , k do in parallel
5: for all u ∈ Vi,j do
6: Move robot j to u
7: Move robot j to the root
8: end for
9: end for

10: end for

The main motivation of this algorithm is that the competitive ratio 4d only depends
on the depth d, which we can improve later on by a technique which does not work
with a competitive factor depending on k. Note that for at least d ∈ O( k

log k ) robots
Yo-yo is asymptotically at least as good as the best known algorithm of Fraigniaud et
al. [FGKP06].

Lemma 11 The Yo-yo algorithm needs at most d(d + 1) + 2dn/k rounds to explore a
graph with n nodes, depth d and k robots, and thus has a competitive exploration ratio
of at most 4d.

Proof: The success of the exploration algorithm follows by an easy induction over the
tree depth. For the number of rounds, note that in lines 6 and 7 each of the k robots
moves for 2i rounds in order to explore a node in Vi,j and return to the root. This is
repeated in the loop starting at line 5 for at most dni/ke times. Therefore, the overall
number of rounds for the outer loop starting at line 2 is the following.

d∑
i=1

2i
⌈
ni
k

⌉
≤

d∑
i=1

2i
(

1 + ni
k

)

= d(d+ 1) +
d∑
i=1

2ini
k

≤ d(d+ 1) + 2dn
k
,

where we use ∑d
i=0 ni = n. Now, every exploration algorithm needs at least
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max{d, dn/ke} ≥ 1
2(d+ n/k) rounds. So, the competitive factor is at most

d(d+ 1) + 2dnk
max{d, dn/ke} ≤

2d2 + 2dnk
1
2(d+ n/k)

≤ 4d

�

By ignoring any newly discovered edges leading to circles, the Yo-yo can also be
adapted to graphs which are not trees. Because of the breadth-first order of exploration
of Yo-yo the exploration time will remain unchanged for the graph exploration.

The Yo* Algorithm

Starting from the Yo-yo algorithm (Algorithm 4) we use a recursive approach to improve
the efficiency of the exploration. To avoid the rebalancing step passing the root in each
step we divide the graph into the uppermost segment of depth c and b segments of
depth a such that d = ab+c which values are to be chosen later on, see Figure 2.7. The
first segment will be explored by the base algorithm, e.g. the Yo-yo algorithm. One can
easily see that if the competitive ratio grows with the depth of the tree we can bound
the ratio with a smaller term now.
All deeper unexplored segments will be handled together with the last explored seg-

ment (see Figure 2.8). These two segments form a forest of trees. If the number of
trees is greater than the number of robots, we can use DFS to efficiently explore them.
However, the size of the trees can differ and therefore, we rebalance the robots if half
of the trees have been explored by DFS. The rebalancing costs at most d steps and this
has to be repeated at most logn times.
If the number of trees has been reduced to be smaller than the number of robots, we

use the base algorithm and rebalance again, if half of the trees have been completely
explored. So, we have log k iterations for all the b segments.
Taking the Yo-yo algorithm and choosing segments of depth a = c = d

1
2 a back-on-

the-envelope calculation gives us a competitive ratio of O(d 1
2 ) for the first segment and

a ratio of O(d 1
2 (logn+ log k)) for all the other segments. So, after one iteration of the

Yo* algorithm we improve the depth-dependent factor in the ratio from d to d 1
2 . Now,

if we take this new algorithm as base algorithm and choose segments of size d 1
3 we

improve the ratio to d 1
3 . However, there is an overhead in the iteration, where constant

factors grow exponentially over the number of iterations and thus must be carefully
analyzed.
We define gA(d, k) to describe the competitiveness of an algorithm A that only de-

pends on d and k for any tree. Now, we assume that we start from a gA(d, k)(d+ n
k ) time

bounded algorithm and try to turn it into a more efficient one using the Yo* algorithm.
From gA(d, k) we only know that it is a monotone increasing function with respect to
d and k, e.g. for the Yo-yo algorithm we have gYo-yo(d, k) = 4d. We will omit A on g
for brevity when ever it does not lead to ambiguity.
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Algorithm 4: The Yo* algorithm using a base algorithm
1: All k robots start at the root of the tree
2: Explore the subtree of depth c with the base algorithm
3: for j ← 1, . . . , b do
4: R← set of nodes in depth max{0, c+(j−2)a}, which are ancestors

to at least one unexplored succeeding node in depth [c+ (j−
1)a, c+ ja]

5: while R 6= ∅ do
6: if k ≤ |R| then
7: Equally partition all nodes in R into sets V1, . . . , Vk such that |Vi| ≤

⌈
|R|
k

⌉
8: for i← 1, . . . , k do
9: Ti ← minimum tree connecting all unexplored nodes in

depth [c+ (j − 1)a, c+ ja] with an ancestor in Vi
10: end for
11: while less than k/2 subtrees of R are explored do
12: for all i← 1, . . . , k do in parallel
13: Perform a DFS exploration step in Ti with robot i
14: end for
15: end while
16: else
17: for i← 1, . . . , |R| do
18: Equally assign ki robots to node vi of R such that ki ∈

{⌊
k
|R|

⌋
,
⌈
k
|R|

⌉}
19: Ti ← minimum tree connecting all unexplored nodes in

depth [c+ (j − 1)a, c+ ja] with ancestor vi
20: end for
21: while less than k/2 subtrees of R are fully explored do
22: for all i← 1, . . . , |R| do in parallel
23: Perform one step of the base exploration algorithm

on Ti with ki robots
24: end for
25: end while
26: end if
27: R← set of nodes in depth max{0, c+(j−2)a}, which are ancestors

to at least one unexplored succeeding node in depth [c+ (j−
1)a, c+ ja]

28: end while
29: end for
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Figure 2.7: The first round of the Yo* algo-
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Figure 2.8: The principle of the Yo* algorithm

Lemma 12 Given a g(d, k)(d + n
k )-time bounded base algorithm for a graph with un-

known number of nodes n, given depth d = ab + c, a, b, c ∈ N, and k exploring robots,
then the Yo* algorithm can explore such a tree within the following number of rounds(

d+ n

k

)
(8g(2a, k) log k + g(c, k) + 2b(log k + logn) + 4 logn) .

Proof: We denote by n0 the number of nodes in depth at most c. By nj we denote
the number of nodes of the tree with depth in the interval [1 + c+ (j − 1)a, c+ ja]. By
definition ∑b

j=0 nj = |V |.
We use the base algorithm to explore the first segment, which needs at most

t1 = g(c, k)
(
d+ n0

k

)
(2.1)

rounds.
In all other rounds we use the base algorithm several times when k > |R|. After each

iteration of the while-loop from lines 21–25 the number of |R| is reduced by a factor
of 2, which implies at most log k iterations. The variable ν = 1, . . . , log k counts the
iterations of this loop. Let Rj,ν be the variable R in the j-th loop and the ν-th iteration.
Let kj,ν be the smallest number of robots in this phase, i.e. kj,ν = bk/|Rj,ν |c.
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2.4 Efficient Tree Exploration

The trees connecting all unexplored nodes with an ancestor node in Rj,ν are named
Tj,ν,i for i ∈ {1, . . . , |Rj,ν |}. Now define

nj,ν := median(|V (Tj,ν,i)| , i ∈ {1, . . . , |Rj,ν |})

where for an even number m the median refers to the m/2-th largest element. Note
that the median implies that

nj,ν
|Rj,ν |

2 ≤
|Rj,ν |∑
i=1
|V (Tj,ν,i)| ≤ nj−1 + nj

So, we can conclude that
log k∑
ν=1

nj,ν |Rj,ν | ≤ 2(nj + nj−1) log k .

The run-time of one invocation the base algorithm is by definition at most

g(2a, kj,ν)
(

2a+
⌈
nj,ν
kj,ν

⌉)

by design of the loop in line 21. Since kj,ν ≥ |Rj,ν | and nj,ν ≥ 1 we can use
⌈
x
byc

⌉
≤ 2xy+1

for x, y ≥ 1. ⌈
nj,ν
kj,ν

⌉
=
⌈

nj,ν
bk/|Rj,ν |c

⌉
≤ 2nj,ν |Rj,ν |

k
+ 1

The run-time over all invocations of all these loops is therefore

t2 ≤
b∑

j=1

log k∑
ν=1

g(2a, kj,ν)(2a+ dnj,ν/kj,νe)

≤ g(2a, k)

2ab log k + b log k + 2
b∑

j=1

log k∑
ν=1

nj,ν |Rj,ν |
k


≤ g(2a, k)

2ab log k + b log k + 2
b∑

j=1

2(nj−1 + nj) log k
k


≤ g(2a, k)

(
2(d− c) log k + b log k + 8n

k
log k

)
≤

(
2d+ b+ 8n

k

)
g(2a, k) log k .

It remains to count all rebalancing moves of the robots. It takes at most 2d steps
to reassign a robot to its new tree. For the case k > |R|, this iterates at most b log k
times, resulting in

t3 ≤ 2bd log k
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2 Exploration

steps.
Now we analyze the case k ≤ |R|. After each iteration of the loop of line 11 the

number of nodes in |R| is halved. Hence, the number of loops is bounded by logn. The
sum of all iterations of the loop 11 is bounded by 4(nj−1 + nj)/k rounds, since k/2
robots successfully explore the graph in parallel. So, summing over all j we get

t4 ≤
b∑

j=1

4(nj−1 + nj)
k

≤ 8n
k

logn

for the DFS-exploration. Again we have to rearrange the robots between the trees
which costs at most

t5 ≤ 2bd logn

additional steps.
So, for c ≤ 2a and d ≥ 1 the time-cost is bounded by:

tf = t1 + t2 + t3 + t4 + t5

≤ g(c, k)
(
d+ n0

k

)
+ g(2a, k)

(
2d+ b+ 8n

k

)
log k

+ 2bd log k + 4n
k

logn+ 2bd logn

≤ d

(
g(c, k) +

(
2 + b

d

)
g(2a, k) log k

)
+ n

k
(g(c, k) + 8g(2a, k) log k + 4 logn) + 2db(log k + logn)

≤
(
d+ n

k

)
(g(c, k) + 8g(2a, k) log k + 2b(log k + logn) + 4 logn)

�

We use polynomials of d for a and b, which results in the following Lemma.

Lemma 13 Given a g(d, k)(d + n
k )-time bounded base algorithm A-` for a graph with

unknown number of nodes n, given depth d and k exploring robots, the Yo* algorithm
provides a (d+ n

k )(9g(2dα, k) log k+8d1−α(log k+logn))-time bounded robot exploration
algorithm A-l+1.

Proof: We choose a = bdαc, b = bd/ac, and c = n − ab. Note that c ≤ a and
b ≤ 2d1−α. From Lemma 12 it follows that the exploration time of Yo* is the following:

tf ≤
(
d+ n

k

)
(g(c, k) + 8g(2a, k) log k + 2b(log k + logn) + 4 logn)

≤
(
d+ n

k

)(
g(dα, k) + 8g(2dα, k) log k + 4d1−α(log k + logn) + 4 logn

)
≤

(
d+ n

k

)(
9g(2dα, k) log k + 8d1−α(log k + logn)

)
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2.4 Efficient Tree Exploration

�

Starting from the 4d-competitive Yo-yo algorithm, or synonymously Yo-0 for the
iteration, we choose α = 1

2 and obtain by the last Lemma a O(d 1
2 (log k + logn))-

competitive multi-robot exploration algorithm. This algorithm can also be asymptot-
ically improved by the same lemma. For this purpose we choose α = 2

3 and get a
O(d 1

3 (log k)(log k + logn)) algorithm. Of course this process can be iterated using the
following lemma.

Lemma 14 For k ≥ 2, c ≥ 4, β ∈ [0, 1], γ ≥ 0 and a base exploration algorithm Yo-`
with a run-time of

(
d+ n

k

)
cdβ(log k)γ(log k+ logn), the Yo* algorithms can achieve an

exploration time bound of
(
d+ n

k

)
20c · dβ/(β+1)(log k)γ+1(log k + logn).

Proof: We choose α = 1
1+β such that αβ = 1 − α. This observation will be used for

the run-time of an iteration the Yo* algorithm.

gYo-`+1 ≤ 9gYo-`(2dα, k) log k + 8d1−α(log k + logn)
≤ 9c2βdαβ(log k)γ+1(log k + logn) + 8d1−α(log k + logn)
≤ 18cdβ/(β+1)(log k)γ+1(log k + logn) + 8dβ/(β+1)(log k + logn)
≤ 20cdβ/(β+1)(log k)γ+1(log k + logn) ,

where we use 2β ≤ 2 and 18c+ 8 ≤ 20c for c ≥ 4.
�

Note that the iteration β 7→ β/(β + 1) with starting point β = 1 results in the series
1, 1

2 ,
1
3 ,

1
4 , . . .. Let β1 := 1 and βi+1 := βi/(βi + 1). If βi = 1

i , then

βi+1 =
1
i

1
i + 1

= 1
i+ 1 .

So, after ` iterations of the Yo* algorithm, starting from the Yo-yo algorithm we have
the following ratio:

gYo-` ≤ 4 · 20`d
1
`+1 (log k)`(log k + logn) .

So far, we have assumed to know the depth. This is not necessary, since we use
exponential doubling to find it. This introduces an additional factor of log d which we
will take into account from now on. This competitive factor is only taken into account
once, since after a correct guess the recursive approach invokes the next exploration
algorithm with the correct depth value.

Theorem 5 The Yo* multi-robot exploration algorithm with ` iterations can explore
an unknown tree with depth d and size n with a competitive ratio of at most

O
(
20`d

1
`+1 (log k)`(log k + logn)(log d)

)
.
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2 Exploration

Proof: Since the depth of tree is unknown we iteratively restart the Yo* exploration
algorithm with an assumed depth of d′ = 1, 2, 4, . . .. An exploration is canceled if a
node with depth larger than d′ has been found, then the exploration starts from scratch.
In the final step the time for the exploration is therefore at most (assuming d′ = 2d− 1
in the worst case)(

2d− 1 + n

k

)
4 · 20`(2d− 1)

1
`+1 (log k)`(log k + logn) .

Now 2d − 1 + n/k ≤ 2(d + n/k) and (2d − 1)
1
`+1 ≤ (2d)

1
`+1 ≤ 2d

1
`+1 results in an

additional factor of 4. It takes log d iterations until d′ ≥ d and therefore we have a total
run-time of at most

16
(
d+ n

k

)
· 20`d

1
`+1 (log k)`(log k + logn) log d

The competitive factor originates from the observation that the minimal time for offline
exploration is max{d, n/k} ≥ 1

2(d+ n/k).
�

This is our main important result for tree exploration algorithms. What follows is
a discussion of how many iterations are necessary to achieve best possible asymptotic
bounds. It turns out that the relationship between the depth and the number of robots
is crucial. For very small depths d = O((logn)c), already the Yo-yo algorithm provides
a competitive ratio of O((logn)c). Similar for small poly-logarithmic teams of robots
k = O((logn)c) a single robot doing DFS will achieve a bound of O((logn)c). For
polynomial depths and robots, as we require for our model, Yo* provides better bounds:

Theorem 6 The Yo* algorithm can achieve a competitive factor of

2(2+o(1))
√

(log d)(log log k)(log k)(log k + logn)

for a k-multi-robot exploration of graphs of size n and depth d.

Proof: Again we test the depth of the tree by performing the ` iterations of the Yo*
algorithm, where we double a depth parameter d′ every time we finde a node in depth
d′ + 1. Then, we relaunch the exploration. As the iteration depth of Yo* we choose
` =

⌈√
log d′

log log k

⌉
, because

(log k)` = 2

⌈√
log d′

log log k

⌉
log log k

≤ 2
√

(log d′)(log log k) log k

and
d′2/(2`+1) ≤ 2(log d)

√
log log k/

√
log d = 2

√
(log d)(log log k)
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2.4 Efficient Tree Exploration

Now we have
20`(log d′) ≤ 2

√
log d+log log d = 2o(1)

√
(log d)(log log k)

for large enough k. So, the only remaining relevant factor is log k+ logn which implies
the result.

�

This bound is not always smaller than the best known competitive ratio ofO(k/ log k).
Yet, for trees with depth d ∈ O(n/k) and k = nc for some 0 < c < 1 this becomes a
bound of:

O(2
√

(logn)(log logn)(log2 n)) = no(1)
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2 Exploration

2.5 Empirical Evaluation of Tree Algorithms

We present here a short empirical evaluation of the Yo-yo and Yo* algorithm. We use a
computer simulation to explore a comb-structured tree. The comb structure is chosen
as it works as a lower bound for greedy algorithms and at the same time punishes
algorithms that are not greedy enough. For example, an algorithm only sending a new
robot from S when ever a node has more than 2 children will be O(d)-competitive.
For the exploration, we fix the size of the tree to the number of robots. Accordingly,

if we explore a tree with k robots the tree will have n = k2 nodes and a depth of
d = 2k − 2 (see Figure 2.9).

k

k

s

Figure 2.9: Comb scaled to number of robots

In Figure 2.10 we can see a comparison of the Yo-yo as well as Yo* algorithms with
one, two and three iterations. The curve labeled as Equal-dist is the algorithm shown
by Fraigniaud et al in [FGKP06]. It distributes robots equally to all child nodes in the
tree and finishes all sub-trees before returning to a parent node.
The implementations of Yo-yo (Algorithm 3) and the Yo* (Algorithm 4) was done

slightly different from the version used in the proofs. First of all, we fix the number
of iterations of Yo* and name the resulting algorithm accordingly Yo-`. The Yo-yo
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2.5 Empirical Evaluation of Tree Algorithms

algorithm is in this nomenclature synonymous to Yo-0. We never execute a DFS step
(lines 7–15 in Algorithm 4) in the Yo-` algorithms. Since we are not using DFS as base
algorithm, k ≥ |R| is assumed to be always true. Additionally instead of choosing R
to depth max{0, c+ (j − 2)a}, we set these root vertices of subtrees to depth c+ (j −
1)a instead (line 4). Moreover we provide the algorithms with the depth of the tree
beforehand so it does not have to restart.
From Figure 2.10 we can see that Yo-Yo and Yo-1 for all tested values of k need more

steps than the other algorithms. While Yo-2, Yo-3 are on a par for the tested tree size.
In Figure 2.11 and Figure 2.12 the competitive values are plotted for better compar-

ison. Viewing the exploration it becomes clear that constants dominate explorations of
graph sizes which we were able to simulate. Further iterations of Yo* can not improve
its speed, but will slow it down. The large competitive factors shown in Figures 2.11
and 2.12 indicate that the algorithm as it is, is not useful for real world application.
For k > 1000 we can see the competitive factor is roughly by a factor of 2 better than
an algorithm using only DFS with a single robot!
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Figure 2.10: Exploration time for Comb

Several optimizations come to mind for improving exploration in practice.
1. Not stopping the exploration while redistributing robots could reduce the number

of re-distributions in case of the comb from log k to 1 as all robots except the ones
furthest to the right only have a line to explore.

2. Not waiting for half the trees being finished before redistributing robots, but
instantly redistributing robots of finished trees could slightly improve the speed
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Figure 2.11: Competitive values for Comb

of the exploration if combined with optimization 1. .
3. A faster base algorithm than the Yo-yo could improve exploration. Not going back

to the root, if enough robots reside in nodes with unexplored children, will change
the base algorithm for exploring teeth of the comb from an O(d)-competitive to
an O(1)-competitive algorithm.

4. Waiting for a level in the Yo* tree to finish before going to the next is necessary
to concentrate robots in dense areas. However, going on with a single Robot
executing DFS could improve exploration for trees like the comb slightly.

We are so far unable to proof if any or all of these improvements combined have an
influence on the asymptotic run-time of the Yo* algorithm for general trees.
Yet, for further experiments we define a new algorithm called Hedge Cutter, by chang-

ing the Yo* to not stop while redistributing robots (optimization 1) combined with
instantly redistributing the robots of finished trees. With this change the penalty for
more iterations of this new Hedge Cutter algorithm is reduced, or as we conjecture,
removed. Tests show that choosing a = c = d/2, b = 1 leads for the comb to the fastest
run-time. If we iterate the algorithm indefinitely, it has also the benefit that knowledge
of d beforehand becomes unnecessary. By choosing a and c in such a way that the
algorithm separates the depth in half, it inherently does an exponential search for the
depth while executing. Also, by iterating until a tree only consists of a single node, the
optimization 3 has no further effect on the exploration. This means for example any
sub-tree T , that is a path graph, is explored in |T | = d = nT steps.
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Figure 2.12: Competitive values for Comb in log-log

In Figure 2.13 we can see that this improvement greatly increases the speed. For
comparison Offline shows the optimal time the comb can be explored in by an offline
algorithm (2k-2 steps), while HC-` shows different Hedge Cutter variants restricted
to ` iterations. In the log-log plot (Figure 2.15) the downward slope of the curve for
the Hedge Cutter algorithm is visible. That is exactly what we expect to see for an
algorithm with a sub-polynomial run-time. The competitive factor on the largest comb
we are able to simulate is smaller than 6. We can even proof that the Hedge Cutter
has logarithmic competitiveness on the comb:

Theorem 7 The Hedge Cutter algorithm can achieve a competitive factor of

O(log d)

for a k-multi-robot exploration of a comb of size n = m ·m and depth d = 2m− 2.

Proof:
Time for exploring the comb spine of length m is bounded by the time for the left

comb spine half T (m/2), the maximum time to move to a tooth (m), the time for the
last or leftmost robot to explore a tooth and to move to the lower comb spine half (2m)
and to explore the lower comb spine half then with all robots T (m/2) (see Figure 2.16):
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Figure 2.13: Exploration time for Comb with Hedge Cutter

T (m) ≤ T (m/2) +m+ 2m+ T (m/2)
= 3 log(m) ·m
= O(m logm)

After the whole spine is explored, the rest of the comb will be explored in time 2m.
Therefore the Hedge Cutter is O(log d) competitive on the comb.

�

We can not show a competitive bound for general trees, but conjecture that the
exploration of a comb represents an asymptotic worst case for the Hedge Cutter.
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2m

T(m)

s

T(m/2) T(m/2)

Figure 2.16: Behavior of Hedge Cutter on the comb
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3 Parallel Unaware Cleaning

In this chapter, we will take a look at parallel unaware cleaning. Recall that this means
that we provide the robots with complete knowledge of the graph, but instead forbid
the online algorithm any knowledge about other robots set onto the same task. This
includes any form of communication. Already knowing the starting positions of other
robots in the graph would completely solve parallel unaware cleaning. Even measuring
indirectly other robots, e.g. bumping into them or measuring the height of grass or
amount of dirt on the path, could be used for communication and can therefore not be
allowed in this setting.
As an illustration and starting example we show how differently a circle graph and a

path graph behave in this setting(see Figure 3.1 and Figure 3.2). The simple algorithm
sending robots in one direction in the circle (go right), or just to one end on the line,
then returning to the other end (right-left traversal), performs quite differently for both
graphs.
On the circle the go right traversal strategy performs very well. With robots dis-

tributed among the circle, the largest distance between these robots r will be the first
visit time as well as the revisit time for this online strategy. It also provides a natural
lower bound for the offline strategy. The first visit time tf of the offline strategy can
never be smaller than tf = r/2. If the offline strategy uses both adjacent robots to
clean this gap, while at the same time not leaving any other gap unattended, the right
traversal strategy is at most by factor 2 slower than the offline algorithm.
For the path graph, the overhead of such an algorithm is a factor of n. If the left

end node is not covered and all robots walk first to the right end and then return, no
robot can visit the left node in less than n rounds. A smarter oblivious algorithm could
improve this by sending robots into a random direction instead, yielding a competitive
factor of O(logn) in the expectation. However, a deterministic solution exists: the
smart cow algorithm [BCR93], which in the i-th phase for i = 1, 2, . . . , n explores
2i nodes first to the left and then 2i nodes to right from the starting node. While
the smart cow algorithm is designed to find a hole in a fence, which it does within
a competitive factor of nine, the same competitive factor can be shown for the cycle
and the path graph. This shows that for these simple graphs deterministic competitive
visiting strategies exist.
However, for the long term visit problem the situation is different. Symmetry cannot

be resolved by any deterministic algorithm. If all robots have the same starting node
no competitive ratio better than O(n) can be achieved for these algorithms.
The following section provides some simple algorithms and illustrates why these are
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"Go Right" is 2-competitive

r
"Random direction"

 is O(log n)-
competitive

"smart cow"
 is 9-competitive

Figure 3.1: Parallel unaware cleaning algorithms for the cycle graph. Illustrating competitive
ratio for first visit.

"Random direction" is O(log n)-competitive

"right-left traversal" is O(n)-competitive

"smart cow" is 
9-competitive

r

Figure 3.2: Parallel unaware cleaning algorithms for the Path graph
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not a solution to the visit problem.

3.1 Canonical Cleaning and General Observations

In the beginning of this section, we take a look at the Conscientious Reactive Algorithm
(Algorithm 5). Machado et al. test in [MRZD03] several different architectures of
communication between agents and perception of the environment. They show that the
Conscientious Reactive Algorithm performs best in two empirical setting, consisting of
two graphs of 50 nodes, 106 or 69 edges generated by putting obstacles in a grid graph
and skeletonizing the remaining passable area. Between 1 to 30 robots with random
starting positions were simulated over a large number of rounds.
With this algorithm, each robot has to keep track of the visit times of all nodes, but

does not take the visits of other robots into account. The robot simply looks at its
neighboring nodes and visits the one not visited for the longest time. By only choosing
a random node for unvisited neighbors, we get a finite number of random choices. Since
no communication with other robots takes place, this algorithm fits our own model and
we can take it into account in Section 3.4 for experimental evaluation.

Algorithm 5: Conscientious Reactive Algorithm for Robot r
vr ← sr starting position
while true do

if exists by r not visited node in N(vr) then
vr ← choose not visited node by r uniform at random from N(vr)

else
vr ← node from N(vr) not visited for the longest time by r

end
Move to vr

end

On a line or circle it behaves similarly to choosing a random direction at the begin-
ning, i.e. while having a competitive first visit ratio of O(logn), it is no solution to the
long term visit problem as gaps will not be closed. But this O(logn) ratio can not be
proven for the first visit of every graph. To illustrate the need for more complex cleaning
algorithms, we prove that the Conscientious Reactive Algorithm is uncompetitive.

Theorem 8 Algorithm 5 is a high probability Θ(n)-competitive first visit algorithm for
undirected graphs.

Proof: Consider the graph in Figure 3.3 consisting of a clique of size n
2 and n

2 single
nodes, each connected only with one different node of the clique. Each robot starting at
a node of the clique has for the rounds t ≤ n

4 a probability of p < 4
n to visit a non-clique
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Figure 3.3: Worst case for Algorithm 5

node. So k robots will visit in expectation by round n/4:

E(#visitednon− cliquenodes) < k · n4 ·
4
n

of the non clique nodes. So for k ≤ n
2 robots in expectation not all non-clique nodes

will have been visited and therefore there is no high probability for a first visit time of
t ≤ n

4 . Therefore, Algorithm 5 is Ω(n)-competitive.
Each robot will perform as worst case a DFS traversal of a graph and Algorithm 5 is

therefore O(n)-competitive. �

In Section 3.4, we will compare the Contentious Reactive Algorithm to solutions
provided by us in the following pages.

Canonical Cleaning

Now, we present first general strategies and techniques that can be proven to work
efficiently. For u ∈ V let N`(u) denote the set of nodes in G within distance of at most
` to the node u. For a set A ⊆ V let N`(A) = ⋃

u∈AN`(u). The following lemma is the
key technique, which provides a lower bound for the number of robots in the vicinity.

Lemma 15 Given a graph with a robot placement with a offline first visit time of tf .
Then, for any set of nodes A the number of robots in the node set N`(A) is at least
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d|A|/(tf + 1)e for ` ≥ tf .

Proof: First note that for each cleaning strategy it is not possible that robots outside
of Ntf (A) ⊆ N`(A) can reach any node within A in at most tf steps. Let k be the
number of robots that explore A within time tf . At the beginning at most k nodes can
be occupied by k robots. Then, in every subsequent round at most k additional nodes
of A can be visited. In order to visit all nodes in A we have k(tf + 1) ≥ |A|. This
implies k ≥ |A|

tf+1 . �

Later on, we use this lemma in a bait-and-switch strategy. We use A as bait to ensure
that enough robots exist in a region for the offline strategy. Then we switch and let
these robots work on other areas.
While randomization is necessary for dispersing the robots, too many probabilistic

decisions are problematic, because the chance that some nodes remain unvisited for
long times may grow over time. Therefore, we present only algorithms that use a finite
number of randomized decisions. This technique is presented in the canonical algorithm,
which is the base for some of our strategies. It requires the algorithms cycle-start-node
and waiting time to provide where and when the robot should start cycling the graph.

Algorithm 6: Canonical cleaning algorithm for robot j using algorithms cycle-
start-node and waiting-time
Traverse the graph by DFS yielding a cycle P with V (P ) = V of length 2n
vs ← cycle-start-node(sj)
Move robot j on the shortest path to vs
w ← waiting time(sj , vs)
Wait w rounds
if vs occurs more than once in P then

Choose a random occurrence in P
end
while true do

Walk to the next node of P
end

Because of the coupon collector’s problem, a basic problem of probability theory [New60],
one cannot expect a better competitive factor than O(logn). Therefore, in the long run
the problem can be solved by the canonical algorithm.

Theorem 9 Using the canonical cleaning it is possible to achieve a long-term visit
time of O((n/k) logn) and a visit time of diameter(G) +O((n/k) logn) with high prob-
ability.

Proof: We choose for each robot an independent uniform random choice of the nodes
of the cycle P as the cycle-start-node. The waiting-time is defined as diameter(G) −
|sj , vs|. So, all nodes start the traversal at the same time.
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approximated TSP

shortest path to
random start node

robot following cycle

Figure 3.4: A canonical algorithm guarantees a O( n
k logn) long-term visit time.

Let g be a subpath on the cycle P of length at most 2n. The probability that no
robots are in this subpath is (1 − g

|P |)
k . For k robots a subpath g ≥ 2cn lnn

k is empty
with probability(

1− g

|P |

)k
≤ exp

(
− gk
|P |

)
≤ exp

(
−gk2n

)
≤ exp (−c lnn) ≤ n−c .

Hence, the maximum gap between two nodes on the cycle P is at most O((n/k) logn)
with high probability.
So, the long term visit time is bounded by this gap. From the waiting time, the first

visit time follows. Note that after the first visit, the revisit time matches the long term
visit time. �

For graphs with small diameter this results in a logarithmic competitive ratio, e.g.
in balanced trees the diameter is bounded by O(logn). So, the canonical cleaning
algorithm gives us the following bound.

Corollary 4 Graphs with diameter of O(logn) have a competitive ratio of O(logn) for
the first and revisit visit time with high probability.

Proof: Let cycle-start-node(u) map to a uniform random node v of the tree. And let
waiting-time(u, v) = diameter(G) − |u, v|. Let t∗f and t∗v be the optimal first and visit
times and let k ≤ n be the number of robots.
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3.1 Canonical Cleaning and General Observations

Figure 3.5: A graph solved by Canonical Cleaner in O(n), because diameter(G) ∈ O(n)

Theorem 9 states that the first visit and visit time is bounded by diameter(G) +
O((n/k) logn) = O(logn + (n/k) logn) = O((n/k) logn). From Lemma 15 it follows
for A = V that t∗f ≥ n/k−1 and t∗v ≥ n/k. This implies a competitive ratio of O(logn)
for k ≤ n. If t∗f > 0 it also holds for k ≥ n. In the case of t∗f = 0, the robots already
cover all nodes and every algorithm is optimal for the first visit time. �

For graphs with larger diameter, e.g. diameter(G) ∈ O(n), the Canonical Cleaner
with starting-node and waiting-time defined as in Theorem 9, we can give an example
of its bad performance of O(n) for the first visit time:
If a graph G consists of v1, . . . , vn/2 ∈ V nodes on a circle and to each is exactly

one node connected vn/2+1, . . . , vn ∈ V , for k = n/2 and si = vi i = 1, . . . , n/2 (see
Figure 3.5). With extremely high probability of

p ≥ 1− 2−k

at least one of the nodes vm,m ∈ {n/2 + 1, . . . , n} will not be chosen as cycle-start-
node. Since vm is not on the path from any starting node si to the cycle-start-node(si).
Therefore, it cannot be visited by any robot before the end of the waiting-time.

Transforming First Visit to Visit

Another interesting technique is to transform a probabilistic first visit time strategy
into a visit time algorithm succeeding with high probability. The only drawback is,
that the first visit time and the visit probability for all nodes must be known.
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3 Parallel Unaware Cleaning

Lemma 16 Assume there exists a parallel unaware cleaner algorithm A for k robots
on a graph with n nodes, where for all nodes u the probability that the first visit time
is less or equal than tf is at least p > 0. Furthermore, tf and p are known. Then,
this cleaning algorithm can be transformed into a canonical algorithm having visit time
O(1

p tf logn) with high probability.

Proof: Let P (r) with |P (r)| ≤ tf be the resulting path of robot r performing algorithm
A. Then, the cycle-start-node of the canonical algorithm is defined by choosing a
random uniform node vs from P (r). We set waiting-time(r)=0.
We now show that this algorithm fulfills the time behavior.
1. The first visit time can be proven as follows:

Each node is visited with a probability of at least p
tf
. However, there are depen-

dencies between these events, since nodes might be visited by the same robot.
So, we consider the subpath before a node v of length 2ctf lnn

p on a cycle C of
length 2n with V (C) = V . Then, at least c lnn different robots have positive
probabilities to visit this interval. Let 1, . . . , k be these robots and let pi be the
probability that one of these robots visits this interval. For these probabilities we
have ∑k

i=1 pi ≥
p
tf

ctf lnn
p = c lnn, since otherwise a node exists which is visited

with a smaller probability than p
tf
.

The probability for not visiting this interval is therefore

k∏
i=1

(1− pi) ≤
k∏
i=1

exp (−pi) ≤ exp
(
−

k∑
i=1

pi

)
≤ exp (−c lnn) ≤ n−c .

Since with high probability a cycle-start-node is chosen on the cycle P at most
(2ctf lnn)/p nodes before v, v will be visited after tf + 2 cp tf lnn steps for the first
time w.h.p. From the union bound the claim follows.

2. The visit time follows by the following observation: From the observations above
we know that the subpath of length 2ctf lnn on P before and after any node is
visited within time tf . Therefore, the visit time of a node is at most 4ctf lnn+2tf .

�
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3.2 The Torus and the Grid Graph

For graphs with larger diameters, other algorithms are necessary. Therefore, we consider
torus and grid graphs, where we present optimal unaware cleaner strategies.
Define a m×m-Torus GT = (V,ET ) graph by V = [0, . . . ,m− 1]× [0, . . . ,m− 1] and

with edges {(i, j), (i+ 1 mod m, j)} and {(i, j), (i, j + 1 mod m)} for (i, j) ∈ V . Every
node has four neighbors, where we call the directions north, east, south, and west in
the standard way. Parallel unaware robots can clean the torus graph with only a small
overhead.

Algorithm 7: Competitive torus cleaner strategy for robot r
(x, y)← (sr.x, sr.y) starting position
for i← 1, 2, . . . ,

√
n do

if random event occurs with probability (x− sr.x + 1)/(i+ 1) then
x← x+ 1

else
y ← y + 1

end
Move to (x, y)

end
H := cycle of Figure 3.7.
while true do

Move to the next node of H
end

The first technique, the for-loop of Algorithm 7, is that the cleaner uses a probabilistic
process to create a uniform probability distribution over a linear growing and moving
set of diagonal nodes. A pure random walk would create a binomial distribution. So,
the probability distribution “pushes” to the corners, see Figure 3.6.
Likewise in the canonical algorithm we switch after some time to a deterministic

cycling algorithm. The difference is, that this cycle is adapted to the first phase and is
a perfect Hamiltonian cycle, see Figure 3.7.
The proof relies on the bait-and-switch-strategy, where the bait is a diagonal field of

length t and width 2tf . In the neighborhood of such a field at least Ω(t) robots must be
placed at the beginning or the offline strategy does not succeed within first visit time
tf . The first phase of the cleaner strategy moves these robots to a given target node
with probability O(1/t). So, a constant number of robots pass any target node within
any time frame of length O(tf ). Since, the robots’ random decisions are independent,
an increase of a factor of O(logn) gives the time bound for the first phase.
For the second cycling phase, we have chosen the cycle with respect to the first

phase, such that the cycle does not destroy the distribution we created in the first

59



3 Parallel Unaware Cleaning

start
node 1/2

1/2
2/3

1/3

1/3

2/3

3/4

1/4

2/4
2/4

1/4

3/4

4/5
1/5

3/5

2/5

3/5

2/5

4/5

1/5

1/2

1/3

1/4

1/5

Figure 3.6: Torus cleaner strategy

Figure 3.7: Final cycle through the
torus

phase. Therefore, the same argument can be reused in order to estimate the maximum
distance between two nodes on this cycle.

Theorem 10 Algorithm 7 is a high probability O(logn)-competitive visit algorithm for
the m×m-torus graph.

Proof: The following Lemma shows that the torus algorithm distributes the robots
with equal probabilities.

Lemma 17 For all t ∈ {1, . . . ,
√
n}, i ∈ {0, . . . , t} the probability that a robot starting

at node (sr.x, sr.y) is at node (sr.x + i, sr.y + (t− i)) after t rounds is 1/(t+ 1).

Proof: This follows by induction. For t = 0 the probability is 1 that the robot is at
the start node (sr.x, sr.y). Assume that at round t− 1 the claim is true.
For the induction we have to consider three cases:
• If x = sr.x and y = sr.y + t, then the probability to move to this point is the

product of the stay probability at (x, y − 1) and the probability to increment y.
By induction this is 1

t

(
1− 1

t+1

)
= 1

t+1 .
• If y = sr.y and x = sr.x + t, then the probability to move to this point is the

product of the stay probability at (x, y − 1) and the probability to increment x.
By induction, this is again 1

t

(
1− 1

t+1

)
= 1

t+1 .
• For all other cases, we have to combine the probability to increment x and y, the

sum of which is t
t+1 . By induction we get as probability 1

t
t
t+1 = 1

t+1 claim follows.
�

Assume that tf is the optimal offline first visit time for a robot placement in the
torus. For the cleaning of a target node (x, y) we choose a set of nodes S with t− 4tf
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Figure 3.8: The robot recruitment area for
robots exploring the target node.
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Figure 3.9: The robot recruitment area for
robots on the cycle.

nodes at a diagonal in distance t, see Figure 3.8. A = Ntf (S) is now the bait, i.e. the
area, which guarantees the minimum number of robots the recruitment area Ntf (A).
Lemma 15 states that at least |A|/(tf + 1) robots must be in this recruitment area
Ntf (A). Now, the cleaning algorithm makes sure that all these robots pass through
the target node during the time interval [t− 2tf , t+ 2tf ] with a probability of at least
1/(t + 2tf + 1). Now, the size of |A| is at least 2tf (t − 4tf ). So, the expected number
of robots passing through the target node is at least

|A|
(tf + 1)(t+ 2tf + 1) ≥

2tf (t− 4tf )(t+ 2tf + 1)
tf + 1 ≥ t− 4tf

t+ 2tf + 1 .

So for t ≥ 10tf we expect at least a constant number of 1
2 robots passing through

any node in a time interval of length 3tf . If we increase the time interval to the size
of some ctf logn for some appropriately chosen constant c, applying a Chernoff bound
ensures us to visit this node with at least one robot with high probability.
This proves that in the first phase of the algorithm we visit (and revisit) each node

in every time intervals of length O(tf logn).
It remains to be shown that in the second phase, where the algorithm enters the cycle,

the distance on the cycle is bounded by O(tf logn). For this, we consider 4tf <
√
n

consecutive nodes on the cycle, which lie on 4tf consecutive diagonals, see Figure 3.9.
So, all of the |A|/(tf + 1) robots in the recruitment area have a target node, which can
be reached after

√
n steps. For each of these target nodes, the probability to be reached

by a robot on the corresponding diagonal is at least 1√
n
. The minimum size of |A| is at

least
√
n− 2tθ, which results in an expected number of at least

2tf (
√
n− 2tf )

(2tf + 1)
√
n
≥ 1− tf√

n
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robots on the target nodes of the cycle. For tf ≤ 1
2
√
n this means that the expected num-

ber of robots in an interval of length 4tf is at least 1
2 . Accordingly, the longest empty

interval has length of at most O(tf logn) by applying Chernoff bounds on O(logn)
neighbored intervals.
For tf ≥ 1

2
√
n, we consider

√
n consecutive nodes on consecutive diagonals. Every

robot ends the first phase and starts the cycle within this interval with probability 1√
n
.

The minimum number of robots to explore all n nodes is at least n
tf+1 , which follows

by Lemma 15 for A = V . Now, for c tf√
n

logn neighbored intervals on the cycle each of
length

√
n the probability that a single robot chooses a node in this interval is at least

tf√
n

c logn√
n

= c
tf
n

logn .

So, the expected number of robots is c ntf
tf
n logn = c logn for an time interval of length

c
tf√
n

√
n logn = ctf logn. Now, by Chernoff bounds the probability that we find this

interval to be empty is at most n−c′ for some constants c, c′.
Thus, the maximum distance of two robots on a cycle in the first and second phase is

at most O(tf logn) with high probability. Since the visit time is at least the first visit
time the competitive ratio of O(logn) follows. �

This algorithm can be easily adapted for the grid graph, which consists of the same
node set, but edges {(i, j), (i + 1, j)} for i 6= m, (i, j) ∈ V and {(i, j), (i, j + 1)} for
j 6= m, (i, j) ∈ V .

Theorem 11 There exists a high probability O(logn)-competitive visit time cleaning
algorithm for the m×m-grid graph with n = m2 nodes.

Proof: We embed a 2m× 2m-torus graph GT on the m×-grid graph GG by mapping
the four vertices (x, y), (2m− x+ 1, y), (x, 2m− y + 1), (2m− x+ 1, 2m− y + 1) onto
the vertex (x, y) ∈ V (GG). Note that the edges of the torus map to edges in the grid.
At the beginning, we choose for each robot a random representative vertex in the torus

graph and then we follow the algorithm for the torus graph. The proof is analogous
to the one of the torus graph, except for a constant factor increase of the competitive
factor. �
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3.3 Unaware Parallel Traversal of General Graphs

For general graphs, we use a partition of the graph, which balances the work load of the
robots. For the randomized partition, we are inspired by the techniques of embedding
tree metrics for graphs [FRT03].
We partition the graph into disjoint recruitment areas R1, . . . , Rn ⊆ V . All robots in

a recruitment area Ri have to visit the nodes in a working area Wi which is a proper
subset of Ri. These sets are defined by a random process such that each node has a
constant probability to be contained in a working area and we show that the number of
robots in the recruitment area is large enough to ensure that this node is visited with
constant probability. This constant probability will be increased later on by repeating
the partitioning several times.
We give a formal description of the sets used in Algorithm 8. The recruitment

partition uses center nodes c1, . . . , cn which are given by a random permutation π of
all nodes V = {v1, . . . , vn}, i.e. ci = vπ(i). The partition is based on the neighborhood
set N`(u), which is the set of nodes v for which the distance to u is at most `. So, we
define for a radius ` and for all i ∈ {1, . . . , n}.

Ri := N`(vπ(i)) \
i−1⋃
j=1

N`(vπ(j)) . (3.1)

The working areas are defined for radius ` and an estimation of the first visit time
t ∈ [tf , 2tf ] as

Ui := Nl−2t
(
vπ(i)

)
\
i−1⋃
j=1

N`+2t
(
vπ(j)

)
(3.2)

Wi := Nt (Ui) (3.3)

We denote byW = ⋃n
i=1Wi the set of nodes that will be worked on and let U := ⋃n

i=1 Ui.
These definitions are used for a probabilistic cleaning Algorithm 8, which covers a

constant part of the graph.

Algorithm 8: One-shot-cleaning G = (V,E) using V = R1∪̇ · · · ∪̇Rn and
W1, . . . ,Wn ⊆ V
Choose i such that sr ∈ Ri
Ti ← Steiner-Tree-Approximation(Wi)
Ci ← DFS-Cycle(Ti)
Move to a random node of Ci
Walk on Ci for 68t logn rounds
Move back to sr
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The One-shot-cleaning algorithm makes use of a straight-forward constant factor
Steiner-tree approximation based on Prim’s minimum spanning tree algorithm[Pri57],
presented as Algorithm 9.

Algorithm 9: Steiner-Tree-Approximation with input G = (V,E), W ⊆ V
(C1, . . . , Cp)← connected components of W in G
while p > 1 do

Choose the component Cj with the nearest node to C1
W ←W ∪ (node set of shortest path between C1 and Cj to W )
(C1, . . . , Cp)← connected components of W

end
return spanning tree of C1

The following lemma shows that every node is chosen with a probability of at least
1
4 to be the target of a robot cleaning in some area Wi.

Lemma 18 For a graph G, a node v ∈ V , β chosen randomly from [1, 2], a random
permutation π over {1, . . . , n}, and for l = 8βt logn the probability that v ∈ W is at
least 1

4 .

Proof: We will prove that P (v ∈ U) ≥ 1
4 , which implies the claim because U ⊂W .

Consider the first node w in the ` + 2t-neighborhood of v according to the random
permutation π, i.e. w = uπ(i∗) where i∗ = min{i | |v, uπ(i)| ≤ `+ 2t}. If w is closer than
`−2t to v, i.e. |v, w| ≤ `−2t, then v is in the working area of w (and U), since no node
with a smaller index can be closer than w, i.e. w ∈ Ui∗ ⊆ U . On the other hand if this
node is in the critical distance |v, w| ∈ (`− 2t, `+ 2t], then it is excluded from Ui∗ and
since i∗ has the smallest index in the vicinity it is also not in any other working area,
i.e. v 6∈ U . Since π is a random permutation the probability of v ∈ W is given by the
number of elements in the closer vicinity:

P`(v ∈ U) = |N`−2t(v)|
|N`+2t(v)|

This implies
2 logn∏
i=0

P`+4it(v ∈ U) = |N`−t(v)|
|N`+8t logn+2t(v)| ≥

1
n

(3.4)

Now, we choose β randomly from {1, 1+ 1
2 logn , 1+ 2

2 logn , . . . , 1+ 2 logn−1
2 logn } and compute

` = 8βt logn. Hence,

P (v ∈ U) = 1
2 logn

2 logn−1∑
i=0

P8t logn+4it(v ∈W )
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Assume that P (v ∈ U) < 1
4 , then at least half of all values of

(P8t logn+4it(v ∈W ))i∈{0,...,2 logn−1} are smaller than 1
2 . Then, we observe the following.

2 logn∏
i=0

P8t logn+4it(v ∈ U) <
(1

2

)logn
= 1
n
,

which contradicts (3.4). Therefore P (v ∈W ) ≥ P (v ∈ U) ≥ 1
4 .

The same argument holds, if we choose β randomly from the real interval [1, 2].
�

Now, we investigate whether there are enough robots in the recruitment area Ri in
order to explore Wi. The number is large enough if a given node is explored with
a constant probability. However, there is a major problem: Ui, Wi, or Ri might be
disconnected. Robots might travel long routes between the nodes in Wi outside of Wi

or even Ri.
Therefore, we need an upper bound on the size of these connecting routes. This has

been the motivation to extend U with a surrounding of t neighborhood nodes. So, for
β ∈ [1, 2] we have the following lemma.

Lemma 19 For ` = 8βt logn, let Ti be the tree connecting all nodes in Wi constructed
in Algorithm 9. Then,

|V (Ti)| ≤ 17|Wi| logn .

Proof: Each of the p connected components C1, . . . , Cp of Wi has at least one node
of U and its t-neighborhood. So, Cj has at least t nodes, implying |Wi| ≥ pt. Every
node of Wi has a distance of at most ` = 8βt logn to vπ(i). The maximum distance
between two components is thus at most 16βt logn because of the triangle inequality.
Which implies that at most 16(p− 1)βt logn nodes are added to connect the original p
connected components. So,

|V (Ti)| ≤ 16(p− 1)βt logn+ |Wi|

≤ 16 p− 1
p
|Wi| logn+ |Wi|

≤ 17|Wi| logn .

�

The following lemma shows that the one-shot-cleaning algorithm needs only a
logarithmic overhead.

Lemma 20 The number of moves of a robot using one-shot-cleaning for ` = 8βt logn
and β ∈ [1, 2] is at most 100t logn.

Proof: The maximum distance of any node from u toWi is at most `− t = 8βt logn−
t ≤ 16t logn. So, moving to the start node and moving back to the start node needs
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at most 32t logn rounds. Moving on Ci needs 68t logn rounds resulting in 100t logn
rounds. �

Now, we need to show that the number of robots in the recruitment area Ri is large
enough. This follows by Lemma 15 substituting A = Wi.

Lemma 21 If the robots are placed such that a first visit time of tf is possible for the
offline algorithm, and t ∈ [tf , 2tf ], then for the number ki of robots originally placed in
Ri we have

ki ≥
|Wi|
tf + 1 ≥

|Wi|
2t .

Proof: A single robot can explore at most tf+1 nodes in the first tf rounds. Therefore
the minimum amount of nodes to be explored by all robots in Ri is ki(tf + 1) ≤ 2kitf .
�

These observations allow us to find a general strategy for the first visit problem for
unaware parallel cleaners.

Algorithm 10: High probability first visit cleaner of G = (V,E)
for i ∈ {1, 2, . . . , logn} do

t← 2i
for j ∈ {1, . . . , 4(c+ 1) lnn} do

Choose randomly β ∈ [1, 2]
Choose random permutation π over V
One-shot-cleaning(G, ` = 8βt logn, t, π)

end
end

Theorem 12 Algorithm 10 is a high probability O(log2 n)-competitive first visit algo-
rithm for every undirected graph.

Repeating the one-shot-cleaning O(logn) times gives us a high probability.
Proof: Consider the round of the outer loop, where t = 2i ∈ [tf , 2tf ], where tf is the
first visit time of the optimal algorithm. We show that in this round all nodes will be
explored with high probability. Lemma 20 states that the number of robot moves of
one-shot-cleaning is bounded by 100 · 2i logn. So, the overall number of each robot
moves is bounded by 800(c+ 1) log2 n.
For any node u the probability, that the one-shot-cleaning algorithm for ` =

8βt logn chooses u ∈ W is at least 1
4 following Lemma 18. If u resides in Wi, the

number of robots performing the cleaning is at least |Wi|/(2t) implied by Lemma 21.
These ki robots have to explore a cycle of length at most twice the size of the connected
Steiner-tree computed in Algorithm 9. These are at most 34|Wi| logn nodes. Now,
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Algorithm 8 starts with a random node node and explores 68t logn nodes. So, after
one execution of the one-shot-cleaning algorithm the probability of a node not to
be explored is at most

1− 1
4

68t logn
34|Wi| logn = 1− t

2|Wi|

The cleaning is independently executed for each of the ki robots ki ≥ |Wi|
2t times.

(
1− t

2|Wi|

) |Wi|
2t
≤ e−

1
4

Hence, the maximum probability of a node not to be explored after 4(c+ 1) lnn repe-
titions is at most 1

nc . �

The visit time problem needs more moves, since a robot may make a fast first visit,
but does not know when to end. Our solution is to guess the first visit time.

Algorithm 11: High probability visit of G = (V,E)
Choose uniform at random i ∈ {1, 2, . . . , logn}
t← 2i
Choose randomly β ∈ [1, 2]
Choose random permutation π over V
One-shot-cleaning(G, t, β, π)
Traverse the graph by DFS yielding a cycle C with V (C) = V of length 2n
Go to a random node visited during the one shot cleaning
while true do

Walk to the next node of C
end

Theorem 13 Algorithm 11 is an high probability O(log3 n)-competitive visit algorithm
for every undirected graph.

Proof: Lemma 18 implies that P (w ∈ Wi) ≥ 1
4 if ` = 8βt logn. The probability that

a robot chooses the correct value t = 2i ∈ [tf , 2tf ] is 1/ logn. So, the probability that
a node is visited within first visit time 800ctf logn is at least p = 1

4 logn . By Lemma 16
this implies a visit time algorithm with high probability with time O(tf log3 n).

�
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3.4 Empirical Evaluation of Parallel Unaware Cleaning

In this section, we will take a look at simulations of cleaning algorithms shown in this
chapter. Algorithms provided in this chapter have crude approximations in them. These
may be unimportant for the proofs as they only change constants for the run-time, but
for any experiment constant factors of 40c or even 800c are problematic. Preliminary
experiments in the Master Thesis of Felix Thein [The15] indicate not only that the
approximation of 800c is far too crude and is not applicable for simple graphs. The
constant factors may appear in the proof, but they do not appear in the measurements.
For example, the factor of 34 by the MST approximation of the Steiner-tree will not
apply to the empirical evaluation on a grid graph. On the other hand a factor of 2 from
using a DFS path instead of a Hamiltonian path, turns out to be a huge disadvantage
when comparing with other algorithms. A circle that uses a DFS path becomes similar
to the line with the same problems for border nodes and also has the full factor of
2 larger paths between those nodes compared to the, in this case easy to compute,
Hamiltonian cycle.
We here compare four different algorithms on a torus graph.
• CC - The Canonical Cleaner (Algorithm 6) using a randomly chosen cycle-start-

node and diameter minus distance traveled as waiting time (the same was used
for Theorem 9). To improve the comparison to the preliminary experiments we
use a Hamiltonian cycle instead of a DFS cycle to traverse the graph.

• CR - The Conscientious Reactive Algorithm provided as Algorithm 5.
• HPV - The High Probability Visit Algorithm (Algorithm 10). This algorithm has

by far the largest constants in the proof. Again, we replace the final DFS cycle
over the whole graph with an Hamiltonian cycle for traversal.

• TC - The Torus Cleaner (Algorithm 7) is used unchanged.
To compare these algorithms we do not simply provide a measurement of the first

visit time of the graph and the visit time. To better characterize the cleaning of a graph,
we want to provide measurements depending on time. Therefore we characterize the
cleaning with the concept of idleness, which is defined as time since the node has been
visited last. This concept is similar to our visit time, but because of its dependence on
time of measurement better fit to describe an experiment.
The idleness of node vi (instantaneous node idleness) at time t is described by :

Idlt(vi) = t− tlast visit of vi

The idleness of the whole graph G (average instantaneous node idleness) at any
time t:

Idlavgt(G) =
n∑
i=1

Idlt(vi)/n

We also provide (maximum instantaneous node idleness) which allows us to directly
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see visit and first visit time for the cleaning.

Idlmaxt(G) = max
i=1,...,n

(Idlt(vi))

The first visit time can be determined by taking a look at the first extremum of the
curve and the visit time by determining the maximum of the curve over t. As a third
benchmark to directly see how the first visit progresses, we provide graphs for the ratio
of nodes visited.
For all the following experiments, we do 11 simulations for each setting. Then we

present the run with the median first visit time. The duration of each algorithms
simulation is exactly twice as long as it takes an algorithm to visit every node (2tf (A)).
This is not enough for HPV and CR to converge to a steady state. The torus is set to
have side length m = 160 resulting in a graph of size n = 25600 nodes.
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3 Parallel Unaware Cleaning

Same Node Placement with few Robots

For the first setting, we fix the number of robots to k = m = 160 and place them
all on the same starting node. This is kind of a simple scenario. As tf is larger than
the diameter of the graph, we expect algorithms such as the Canonical Cleaner to do
very well. In Figure 3.10 we can see that the average node idleness behaves best for
the Canonical Cleaner. Its rather even distribution allows the CC Algorithm to be
less than a factor of 2 larger than a theoretical optimal offline solution which could
achieve Idlavgt(G) = 80 by distributing robots perfectly even (see Figure 3.10). The
Idlmaxt(G) is for all algorithms dominated by the first visit time. Here we can also
see a larger difference to an optimal offline algorithm, which would be able to explore
this scenario in no more than dm2/ke = m < tf ≤ 3m/2 and therefore in at most
Idlmaxt(G) ≤ 240. Thus the Canonical Cleaner and Torus Cleaner algorithms, which
solve this scenario best, are at least a factor of 4 worse than an optimal solution (see
Figure 3.11 and Table 3.1).

Table 3.1: Exploration Times
1 2 3 4 5 6 7 8 9 10 11

CC 764 783 957 976 1031 1055 1091 1095 1114 1227 1501
CR 2601 2647 2654 2685 2734 2756 2787 2903 2997 3080 3235
HPV 1897 2063 2139 2141 2181 2214 2249 2536 2588 3312 3337
TC 799 959 959 960 1106 1119 1120 1120 1277 1280 1434
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Same Node Placement with many robots

For the next run of experiments, we increase the amount of robots by a factor of 10.
This allows the optimal offline algorithm to achieve a first visit time of tf = m − 1.
So the first visit is now determined by the diameter. In Table 3.2 we can see that the
Torus Cleaner reliably hits all nodes by following its random distribution (Figure 3.6).
But is still a factor of 2 off from an optimal algorithm. We get this factor from only
walking in one direction (north and east) instead of choosing the direction randomly.
The CR algorithm looses ground in this scenario as its random process for choosing
nodes hinders dispersing robots quickly to the farthest away nodes. We can also see
that the TC algorithms average instantaneous node idleness is the largest in the long
term, because the TC algorithm will only disperse robots starting at a single node to a
diagonal in the grid graph.

Table 3.2: Exploration Times
1 2 3 4 5 6 7 8 9 10 11

CC 261 265 267 271 274 278 281 286 293 301 306
CR 1072 1088 1143 1144 1164 1200 1216 1221 1239 1263 1294
HPV 281 298 300 302 334 337 346 349 408 474 501
TC 318 318 318 318 318 318 318 318 318 318 318
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Random Placement with few Robots

In this section we go back to using m = k = 160 robots, but set them on k random
positions in the graph.
If robots are placed randomly, this benefits algorithms which otherwise fail to disperse

robots quickly. Comparing Figure 3.18 to 3.12, we can see that CR has now a clear
advantage to the HPV cleaner. Even TC cleaner can profit slightly for the average case,
because dispersing robots on a single diagonal in the torus has a negative effect on the
node idleness.

Table 3.3: Exploration Times
1 2 3 4 5 6 7 8 9 10 11

CC 785 786 802 878 962 1028 1093 1229 1273 1322 1962
CR 1451 1469 1632 1640 1726 1800 1826 1828 1930 1960 1996
HPV 1897 2063 2139 2141 2181 2214 2249 2536 2588 3312 3337
TC 770 897 913 926 945 952 965 1042 1107 1200 1265
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Random Placement with many Robots

In our last cleaning experiment, we use many robots k = 1600 = 10m and disperse them
randomly in the torus. If robots were distributed evenly instead of randomly it would
allow for a first visit time of topt = tf = dn−kk e = 15. This is improbable. However,
there is an averaging effect. While it is hard to calculate what is the expected tf we
can calculate how many robots in our experiment will fall into a square sized n

k ×
n
k and

we can check what is the probability of such a square being hit by less than half the
robots needed to clean it in time n

k :

P (≤ n

2krobots) =
d n2k e∑
i=0

(
k

i

)
∗ pi ∗ (1− p)k−i, p = n

k2

For our experiment’s parameters, 2 such squares will exist in expectation. However,
if we allow robots to come to the square from all nodes in distance n

2k . With an
overwhelming probability no square with such a vicinity containing less than n

2k robots
exist. Therefore we conjecture tf ≈ 2n/k for this scenario.
In Diagram 3.19 we can see why the Canonical Cleaner has problems on graphs with

a large diameter. For diameter(G) =
√
n and small tf , the average instantaneous node

idleness increases, while a rising number of robots stop moving and wait for the rest of
the robots to find their random position in the graph. We can not perceive the same
kind of problem for the instantaneous max idleness. If the graph didn’t have a uniform
topology, where the paths to the randomly chosen node can solve the first visit, or a
larger diameter, ensuring longer waiting times for the CC algorithm, then the Canonical
Cleaner would perform worse (as was shown in Figure 3.5) .

Table 3.4: Exploration Times
1 2 3 4 5 6 7 8 9 10 11

CC 214 219 221 225 227 234 234 258 258 259 261
CR 151 157 159 163 164 168 184 184 189 210 227
HPV 188 204 214 217 235 239 242 249 282 296 323
TC 144 149 150 160 163 170 170 178 197 199 210
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4 Conclusion

In this thesis we discussed the cooperation of robots in online scenarios. The robot
teams were either forced to work without a map of their task or without being allowed
to be aware of each other.

In the Exploration chapter we studied the exploration with multiple robots of grid
graphs and trees without the use of a map. We showed that the grid graph allows us
to construct the same competitive lower bound as in trees of Ω( log k

log log k ).
Further, we discussed randomized algorithms. For randomized tree exploration the

lower bound of Ω( log k
log log k ) is equal to the deterministic bound by Dynia et al. [DLS07].

For the grid graph, we were only able to show a weaker lower bound of Ω(
√

log k
log log k ).

On the positive side, the upper bounds for online exploration could be significantly
improved in this thesis. We were able to bound competitiveness for the exploration of
grid graphs by O(log2 n). Before this work, the best known bound for this scenario was
the algorithm provided by Dynia et al. in [DKS06] with competitiveness of O(

√
n).

For trees, we were able to show the first sub-polynomial competitive bound on trees.
This bound is non-trivial for extreme values of k, d, n, but for k and d being small
polynomials it can be expressed as no(1). By improving the so far best competitive
bound of O( k

log k ), this closed down the exponential gap between upper and lower bound
that had been open for nearly a decade.
In the last section, we showed some empirical results for our exploration algorithms.

For the largest graph sizes we can simulate, the Yo* is only slightly faster than a DFS
algorithm with a single robot. Positively, with the optimization of not stopping while
redistributing robots, we created the Hedge Cutter algorithm which solves the comb
graph with O(log d) competitiveness and for which we have yet to show the existence
of a tree with a worse competitive bound. The simulation of the Hedge Cutter shows
very low constant factors. On the largest simulatable instance with 4 million nodes, we
are by a factor of 6 slower than an optimal offline solution.
To put these results into perspective we conclude with a list of multi-robot exploration

algorithms for different graph types and values for k and d where they are efficient (Table
4.1). We omit the competitive factors above poly-logarithmic and below polynomial in
k and d for clarity and refer to the appendix for these.

In the Parallel Unaware Cleaning chapter we discussed a central question of
distributed algorithms: How much do we benefit from communication? Or in other
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k d graph competitive factor algorithm
logc′ n any any O(logc′ n) DFS
logc′ n any tree O( logc

′
n

log logn) Greedy [FGKP06]
any O(

√
n) rect. obst. O(log2 n) Algorithm 2

any logc′ n any O(logc′ n) Yo-yo
nc nc tree ko(1) Yo*
nc nc comb O(logn) Hedge Cutter
n O(

√
n) rect. obst. O(logn) Algorithm 2

d · n1+c′ any any O( 1
c′ ) Dereniowski et al. [DDK+13]

nd any any 1 Flooding/Greedy

Table 4.1: Competitive exploration time ratios for constants 0 < c < 1 and c′ > 0

words: Can we cope with a parallel problem if communication is not available?
We have shown that a first visit can be achieved with an overhead of O(log2 n) and

visit withO(log3 n) in general graphs. This implies that cooperation is not dependent on
communication for tasks such as searching or cleaning. Communication only improves
such tasks by a poly-logarithmic factor depending on the graph type required for the
model.
On the grid and torus, with an even stronger bound of O(logn), a non-communicating

team can perform best. This matches the lower bound of Ω(logn) given by the coupon
collector’s problem. Unlike the algorithm presented for general graphs the parallel
unaware cleaner strategy for torus and grids have provably small constant factors in-
volved. Furthermore, the grid represents a good model for such robots doing vacuuming
or mowing work.
The empirical evaluation indicates that the overhead for the Torus Cleaner Algo-

rithm is small enough to make it a viable alternative for any application of patrolling
algorithms with expensive communication. In addition, the solution for general graphs
(Algorithm 10) is, despite its large constants in the proof, only off by about a factor of
2 from the specialized Torus Cleaner Algorithm. Therefore, it can also be considered a
viable algorithm for application.

For both scenarios, we have presented algorithms with proven upper bounds for the
competitiveness. Especially for the exploration we improved the best known solution
from polynomial to sub-polynomial overhead. With our algorithms, we showed how
much additional run-time these algorithms require compared to an optimal offline solu-
tion utilizing a map and communication between robots. Our results show, that when
forced to give up communication completely or to work without a map, this comes at
a time-cost for a team, which has to be considered for designing such a cooperative
exploration or cleaning system.
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4 Conclusion

For the future we hope that the algorithms presented here can be further improved,
since only the bound for the parallel unaware cleaning of grids is tight. General graphs
and trees may still be improvable to the same logarithmic bound.
Moreover, for exploration there is a task left to do. While the Yo*-algorithm is the

algorithm with the best shown bounds for trees, the presented Hedge Cutter algorithm
lacks any proven bounds on unrestricted trees. But because we can not even generate
a counter example that forces it into a bad run-time we are optimistic for the future.
We conjecture its run-time to be logarithmic or poly-logarithmic and will try to find a
proof for this soon.
Overall during this thesis we improved the state of the art in cooperative graph

exploration tremendously. We believe the presented results and techniques will inspire
new work and promote new progress on the subject.
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Appendix

Table 4.1 extended

We restricted the model to small polynomial values for d and k. If this restriction is
lifted we can extend Table 4.1 some more for sub-polynomial and super-poly-logarithmic
values for the Yo* Algorithm:

Line 1 of Table 4.2

If d and k are not polynomial in n The competitive factors have to be expressed differ-
ently.

d = kO(1)

k = dΩ(1)

⇒ competitive factor of Yo* = ko(1) logn

Theorem 6 states a competitive bound of

2(2+o(1))
√

(log d)(log log k)(log k)(log k + logn) .

for the Yo* algorithm. Note that the requirements for d and k imply: log d = O(log k),
which implies

√
(log d)(log log k) = O(

√
(log k)(log log k)) ∈ o(log k). Hence, we have a

competitive factor of at most

2(2+o(1))o(log k)(log k)(log k + logn) ≤ ko(1)(log k)2 logn

≤ k
o(1)+ 2 log log k

log k logn
= ko(1) logn .

k d n competitive factor
dΩ(1) kO(1) ko(1) logn Yo*

2 c
2
4 (log k)2/ log log k kc(1+o(1)) logn Yo*

2ω
(√

log d log log d
)

2O(2
√

log d)
ko(1) Yo*

Table 4.2: Competitive exploration time ratios for the Yo* algorithm
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Line 2 of Table 4.2

For very high trees the Yo* shows a polynomial competitiveness. Substituting the result
of Theorem 6

2(2+o(1))
√

(log d)(log log k)(log k)(log k + logn)

with value:

d = 2
c2
4 (log k)2/ log log k

⇒ log d = c2

4 (log k)2/ log log k

⇒ competitive factor of Yo* = kc(1+o(1)) logn

For the first factor we get the following

2(2+o(1))
√

(log d)(log log k) = 2(2+o(1))
√

c2
4 (log k)2

= 2c(log k)(1+o(1))

The other two factors can be bound as following

(log k)(log k + logn) ≤ (log k)2 logn

≤ k
log log k

log k 2 logn
∈ ko(1) logn

This results in an overall competitive ratio of kc(1+o(1)) logn.
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Line 3 of Table 4.2

For trees with small depths compared to k Theorem 6 implies the same bound as in
the polynomial case.

k = 2ω
(√

(log d)(log log d)
)

⇒ log k = ω

(√
(log d)(log log d)

)
n = 2O(2

√
log d)

⇒ logn = O(2
√

log d)
⇒ competitive factor of Yo* = ko(1)

This k implies
(log d)(log log d) = o((log k)2) .

If log log d = o(log log k), then log d = o(log k) and therefore

log d = o

(
(log k)2

log log k

)
.

Otherwise, if log log d = Ω(log log k), then 1
log log d = O( 1

log log k ) and therefore also

log d = o(log k)2

log log d = o

(
(log k)2

log log k

)

follows. We substitute this into the first factor of Theorem 6 and get:

2(2+o(1))
√

(log d)(log log k) = 2(2+o(1))o(log k) = ko(1) .

Combined with log d = o
(
(log k)2/(log log k)

)
gives

logn = O(2
√

log d)

= O(2
√
o((log k)2/(log log k)))

= 2o(log k)

= ko(1) .

Of course, log k = ko(1) which implies the competitive ratio of ko(1) for the product of
these terms.
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