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Introduction

Science has a long tradition in exploring a subject by examining its parts. This is
done with the anticipation that findings about the parts of a subject yield knowledge
about the subject itself. This successful strategy facilitated the development of
sophisticated measurement devices and experiments, from the microscope to telescopes,
spectrometers, and particle accelerators. In biology, this approach has led from the
description of the anatomy of e.g., plants and animals, to a detailed understanding
of the construction and function on the cellular level [1]. Chemistry has started with
describing chemical reactions on the level of atoms but has nowadays developed a
branch called quantum chemistry, where results from quantum mechanics are used in
order to e.g., describe the electron transfer process at electrochemical interfaces such
as provided by a metal electrode placed in an electrolyte solution [2].

With the construction of the Large Hadron Collider, physics makes the largest effort
in science in learning about the most fundamental parts from which matter is built.
The standard model of particle physics is a result of this effort. It classifies all known
subatomic particles and describes the most important fundamental forces acting on
them. While the standard model is not the only fundamental theory, the discovery
of a boson in 2012 which so far conforms to the Higgs boson predicted within the
standard model has strengthened its case [3, 4].
For sciences dealing with subjects built from matter, the idea might occur that by

investigating the most fundamental parts of matter, particle physics is the basic science
from which all other sciences can be derived. Many-body physics is concerned with
effects manifesting in large ensembles of bosons and fermions only, such as magnetism
or superconductivity. Thus, even though these particles are described in the standard
model, their collective behavior is fundamentally different from their behavior when
treated as free particles. Consequently, many-body physics, is not just applied particle
physics. Further up the scale one finds that biology is not just applied cell biology, and
behavioral science is not just applied biology. Each science deals with new phenomena
whose description demands new laws, concepts, and generalizations [5].

An example for such an emergent phenomenon is friction. Forces between elementary
particles are conservative. However, even though macroscopic structures are built
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from elementary particles, motion on the macroscopic scale can be a dissipative
process. This is due to the fact that the surface of a macroscopic structure can
convert mechanical energy into thermal energy, a property not described on the scale
of elementary particles. Another example is the concept of temperature or pressure as
defined in thermodynamics. On the scale of fundamental particles such as atoms or
molecules, the motion of each particle must be described. Only for an ensemble of
particles the notion of temperature and pressure is definable.
Systems with emergent phenomena are termed complex systems. The study of

complex systems is the study of the interaction of the parts of a system. Particularly,
the collective behavior of the parts which emerges from their interaction is studied [6, 7].
Prominent complex systems are social societies, the brain, the stock market, or the
signaling in living cells [6, 8–11].
An important tool for studying complex systems is network theory [12–20]. A

complex system is modeled as a network by identifying its individual parts as nodes and
modeling the interaction between its parts as links. A network provides an accessible
visual representation of a complex system. By means of its network representation a
complex system can also be treated mathematically.
In application, the network representing a complex systems is constructed based

on observations. The nodes of such an empirical network are commonly defined by
the recording sites, its links are established by applying a measure of interdependence
such as the correlation coefficient to the observations. The correlation coefficient is
a bivariate measure, i.e., the recordings of two nodes are taken into account while
the recordings of all other nodes are disregarded. Bivariate methods lead to so-called
indirect links in a network. An indirect link suggests a direct interaction between two
nodes, even though the latter share no direct physical connection in the system under
investigation. The physical interaction of the two nodes is indirect, which leads to the
term indirect link. Indirect links are spurious and a known peculiarity of bivariate
measures [21]. However, the fundamental argument for indirect links to arise in the
context of bivariate measures is missing. This argument is derived in the course of the
first part of the present thesis. To this end, the notion of networks, network models,
and network classes is introduced in Chap. 1.

In Chap. 2, the task of network reconstruction from data is discussed such that the
cause for the emergence of indirect links is revealed. The interdependence measure
for establishing the links in an empirical network yields a coefficient of the respective
measure. This can e.g., be the correlation coefficient. All such coefficients can be
collected in a matrix which then characterizes the interaction structure of the entire
system as assessed by the measure.
Bivariate measures can be generalized to the multivariate domain. Multivariate

measures include the entire set of measurements when assessing the relation of two
nodes. By virtue of a linear regression, a multivariate measure can be derived for
each bivariate one. For the correlation coefficient, the partial correlation coefficient
is the multivariate counterpart. Such a multivariate measure relates to its bivariate
one by the inversion of the matrix of interaction coefficients of the latter. The missing
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argument for the emergence of indirect links is derived by finding the relation in the
other direction, from the bivariate measure to the multivariate measure.
To challenge the theory established in Chap. 2, a series of simulation studies is

conducted in Chap. 3. On the example of the correlation coefficient, the results illustrate
that bivariate measures yield indirect links as predicted by the theory. Moreover, the
classification of a network is shown to be affected. It is shown that a random network
once analyzed by a bivariate interdependence measure is indistinguishable from a
small-world network [22]. Therefore, despite the common practice [11, 15, 23–26], it is
not reasonable to claim a complex system to conform to the small-world model when
its interaction structure is inferred by an bivariate interdependence measure.
The partial correlation coefficient is adequate in avoiding indirect links as long as

the states of all relevant parts of the complex system are directly observed and the
observation is independent identically normally distributed. However, a complex system
consisting of dynamical subsystems exhibits temporal correlations. Observational noise
usually prevents the direct observation of states. Such empirical data can be modeled
by the state-space model (SSM). In the linear SSM, the state of the system is modeled
by an autoregressive process, its observation by a stochastic linear function. The state
of the system in the SSM is optimally estimated by the so-called Kalman filter [27]. As
the Kalman filter is model-based, it requires the parameter values of the SSM. These
values can either be provided by external knowledge or can be estimated. Based on the
estimated parameters, a set of interdependence measures has been proposed [18, 28–31].
Employing these interdependence measures renders a reliable identification of network
links possible even if the observed system is dynamic and measurements are prone to
observational noise. A maximum-likelihood estimator (MLE) of the parameters in the
SSM has been constructed using the expectation-maximization (EM) algorithm [32].
The major drawback of this algorithm is its computational complexity resulting in
long runtimes. In Chap. 4, strategies for reducing the complexity of the EM algorithm
are presented. The implementation of these strategies allows the application of the
EM algorithm to large data sets [33]. A simulation study comparing the conventional
and the optimized EM algorithm validates the significant reduction in runtime by
two orders of magnitude [34]. The source code of the optimized algorithm is freely
available. ∗

In Chap. 5, a state-estimation problem is considered. It addresses the situation
where an electrocardiogram (ECG) is recorded in the presence of an external magnetic
field, such as inside a magnetic resonance imaging (MRI) scanner. In this situation,
the ECG is the superposition of the electrical activity of the heart and the Hall voltage
evoked by the Lorentz force acting on ions dissolved in blood. The Hall voltage is
commonly called magnetohydrodynamic (MHD) signal. The total ECG is referred
to as MHD-ECG. To date, it is an unsolved problem to reliably reconstruct the
electrical activity of the heart from the MHD-ECG. A possible solution is proposed
in Chap. 5. The approach employs the extended Kalman filter for state estimation.

∗https://github.com/wmader/fdmb
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In the Kalman filter, model prediction and observation are weighted such that the
mean squared prediction error is minimized [27]. To this end it is assumed that the
observational noise is independent identically normally distributed. Since the MHD
signal leads to temporally correlated non-normally distributed observational noise, the
extended Kalman filter needs adaptions. In Chap. 5, it is proposed that the amount of
model-based smoothing applied to the state estimate is adjusted manually. At the
example of an application, the effect of this tuning is demonstrated. It is shown that
under certain assumptions, the proposed filtering procedure is capable of reconstructing
the cardiac ECG from measurements recorded inside a MRI scanner.
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Network reconstruction and classification
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Chapter 1.

Networks: definition, properties, and models

In this chapter networks are defined, fundamental network properties are
discussed, and models for regular, random, and small-world networks are
presented.

A possibility to model and visualize complex systems is their description by networks.
To this end, the entities of the complex system are denoted nodes and their relations
are denoted links [7, 35, 36]. Complex systems which have been investigated based
on their network description include power grids [12], traffic networks [13, 14], disease
spreading [37], climate networks [15], stock market interactions [16, 17], and biological
networks such as the interaction of different areas in the human brain [18–20]. This
list, despite incomplete, motivates the usefulness of the network approach in a variety
of fields. Mathematically, networks are treated by tools from graph theory [38].
The purpose of this chapter is to give an overview of network theory on which

successive chapters built upon. Networks are defined in Sec. 1.1. Core properties
of networks are introduced and discussed in Sec. 1.2. The characteristics of models
for regular, random, and small-world networks are established in Sec. 1.3. In order
to distinguish these three network models, the average distance and the clustering
coefficient can be employed. Hence, their behavior within the three network models is
discussed in detail.

1.1. Definition of a network
A network G = (N,L) is defined as a set of nodes N = {n1, n2, . . . , nN} 6= ∅ of size
N = |N|, and a set of links L = {l1, l2, . . . , lM} enumerated from 1 to M = |L|. A
link lk joins two nodes, say ni and nj. Accordingly, this link is alternatively denoted
lij = (ni, nj) [39]. The adjacency matrix A is a N ×N matrix describing the topology
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Chapter 1. Networks: definition, properties, and models

[ tikzpicture optimized away because it does not contribute to exported
PDF]

(a) Undirected network

[ tikzpicture optimized away because it does not contribute to exported
PDF]

(b) Directed network

Figure 1.1.: Graphical representation of an (a) undirected and a (b) directed network.
While the directed network could have been drawn in a straight line, it is arranged to
reassemble the seven bridges of Königsberg which motivated Leonhard Euler to start
the field of graph theory in 1736 [41].

of the network. It is Aij = 1 if lij ∈ L, and zero otherwise. The diagonal of A is
zero [39].

Undirected networks If lij is an unordered pair of nodes, then lij ∈ L ⇔ lji ∈ L.
Such a link carries no directional information, and a network solely possessing such links
is called undirected [→Fig. 1.1 (a)]. The associated adjacency matrix A is symmetric.
By arranging nodes in rows and links in columns, the N ×M incidence matrix B is
constructed. It is Bij = 1 if lj is attached to ni, and zero otherwise. The adjacency and
incidence matrices are connected by A = Θ

(
BBT

)
− I [40], where Θ (·) denotes the

componentwise Heaviside step function and (·)T matrix transposition. The maximum
number of links in an undirected network is N(N − 1)/2. If attained, the network is
called complete [40].

Directed networks In a directed network, lij is an ordered pair of nodes. Therefore,
lij ∈ L no longer implies lji ∈ L. It is possible to move from nj to ni along lij , but not
the other way round [→Fig. 1.1 (b)]. With respect to node nk, links leading away from
nk are called outgoing links, while links leading towards nk are called incoming links.
The link lij is thus an outgoing links with respect to nj and an incoming one with
respect to ni. In general, the adjacency matrix of a directed network is not symmetric.
A directed network is complete if there are N(N − 1)/2 outgoing as well as incoming
links.
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1.2. Properties of networks

1.2. Properties of networks
This section introduces network properties which are of interest to describe and
discriminate regular, random, and small-world networks. Specifically, these are the
node degree, distance, clustering coefficient, and efficiency.

1.2.1. Node degree
The degree gk of node nk is the number of links attached to nk. In undirected networks
it is

gk =
N∑

i=1
Aik =

N∑

j=1
Akj . (1.1)

In directed networks, the degree of outgoing links is go
k = ∑

iAik, the degree of incoming
links is gi

k = ∑
j Akj.

1.2.2. Distance
A path is an alternating sequence of nodes and links starting at ni and ending at nj.
No node is allowed to appear more than once in a path. The path length is a function
of the path. A common choice is to identify the path length with the number of links
in the path. The shortest path connecting ni and nj is called geodesic. Its length Dij

is the distance of ni and nj . The matrix D is the N ×N matrix of distances in G. For
undirected networks, D is symmetric. The maximum of D is the diameter e of G [39].

The distance matrix is an important quantity of a network as it quantifies the costs to
travel from one node to another. Example costs are time, when sending data packages
over the internet [39], money, when transporting goods between cities via railway, or
information, when a longer transmission time of messages causes disadvantages in a
competitive situation.
If any set of two nodes is connected by a path, G is called connected. Otherwise,

the network is said to be disconnected. In a disconnected network nodes separate in
at least two disjoint sets. Each set is termed a component of a network [39]. If two
nodes ni and nj belong to different components, they are not reachable from each
other. Conventionally, their distance Dij is set to infinity [42].
The average distance

L = 1
N2

N∑

i,j=1
Dij . (1.2)

quantifies the average separation among all nodes. Subtle variations of this definition
are discussed in App.A.1. If G is disconnected, L diverges. By calculating L for the
largest component of G only, the divergence of L is avoided [12]. It is also common to
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Figure 1.2.: Entire network G, subnetwork Gk, and local clustering coefficient. Each
node without a direct connection to nk is depicted by a dashed circle. This includes
nk itself. Each nodes which shares a links with nk is depicted by a full circles. The
respective link is drawn as a dashed red line. The subnetwork Gk contains exactly all
nodes depicted as full circles. The links withing Gk are drawn as solid red lines. All
other links are drawn as dashed black lines. As each node in Gk shares a link with
nk in G each link withing Gk induces a triangle about nk in G established by two
dashed red lines and a solid red line. The relative number of triangles about a node
is quantified by the local clustering coefficient. For some nodes, the local clustering
coefficient is given above the node. Node nk for example has the local clustering
coefficient ck = 1/5, cf., Eq. (1.4)

exclude all paths of infinite length from L [42]. To avoid the ambiguous definition of L
for disconnected networks, the efficiency

E = 1
N(N − 1)

N∑

i 6=j

1
Dij

(1.3)

has been proposed [43]. Evaluated on the entire network G, the global efficiency
corresponds to the average distance.
Let Nk be the set of all direct neighbors of node nk and Lk the links among them.

Keep in mind that nk is not contained in Nk. The subnetwork of direct neighbor of
nk is given by Nk and Lk. This subnetwork is termed Gk. An example of such as
subnetwork in the context of an entire network G is given in Fig. 1.2. Evaluated on Gk,
the local efficiency corresponds to the local clustering coefficient which is introduced
in the following [43, 44].

1.2.3. Clustering coefficient
The local clustering coefficient is a local measure of connectivity. For an undirected
network, let Ã denote the adjacency matrix of Gk. Note that nk is not part of Gk.
Then, the local clustering coefficient of nk is defined as [12]

ck =





2
gk(gk − 1)

N∑

i>j

Ãij if gk ≥ 2,

0 otherwise.
(1.4)
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By construction, each pair of nodes (ni, nj) part of Gk is connected in G by a path of
length two going through nk

ni nk nj
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.

Consequently, each link in Gk yields a triangle about nk in G. This is also illustrated
in Fig. 1.2. The maximum number of links in Gk is (gk(gk − 1))/2. The sum over Ãij
in Eq. (1.4) counts the actual number of links in Gk. Therefore, the local clustering
coefficient 0 ≤ ck ≤ 1 is the ratio of existing and possible triangles about nk [→Fig. 1.2].
Alternatively, the local clustering coefficient can be calculated from the adjacency

matrix A of G directly [39],

ck =





1
gk(gk − 1)

N∑

i,j=1
AkiAijAjk if gk ≥ 2,

0 otherwise.
(1.5)

By averaging ck over the entire network G, the average clustering coefficient, or short
the clustering coefficient,

C = 1
N

N∑

k=1
ck (1.6)

is defined.
The definition of the local clustering coefficient can be generalized naturally to

directed networks. Every node then possesses a separate clustering coefficient with
respect to its outgoing and incoming links.

Transitivity Originating from the sociology literature, transitivity is another measure
on how well a network is connected locally [42, 45]. For completeness, a short discussion
on the matter can be found in App.A.2.

1.3. Network models
A network model is a set of instructions on how to obtain a specific type of network.
Thus, a network might be viewed as the realization of a network model. Each
model exhibits specific properties such as a small or large clustering coefficient or a
certain probability to separate in more than one component. If the properties of an
empirical network G complies with the properties of the, say, small-world model, G is
said to belong to the class of small-world networks. Models for regular, random, and
small-world networks are discussed in the following. The three models are distinguished
by the scaling of the average distance and the clustering coefficient. Thus, the scaling
of these properties is discussed in detail for each model.
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1.3.1. Regular ring networks
Networks in which all nodes have the same degree g [→Eq. (1.1)] are called regular [40].
A special case within this class are regular ring networks [→Fig. 1.3]. A regular ring
network GN,h is determined by its number of nodes N and the number of left-hand
neighbors h of each node. The parameter h is in [0, bN/2c] ⊂ N, ∗ where bxc denotes
the largest integer smaller than or equal to x. The node degree in GN,h is gk = 2h for
all nodes nk. As all nodes are equal, a property of a single node matches the respective
property averaged over the entire network.

Average distance

In the model for regular ring networks, the average distance

Lrr ∝
N

4h = N

2gk
(1.7)

scales linearly with N [46]. This result together with exact equations for the average
distance is derived in App.A.3.

Clustering coefficient

The clustering coefficient in the regular ring model is [46]

Crr = 3h− 3
4h− 2 . (1.8)

This result can be derived by noting that the subnetwork Gk of the neighboring
nodes of nk includes the 2h nodes {nk−h, . . . , nk+h} \ {nk}. Node nk−h is not adjoined
with {nk+1, . . . , nk+h}, nk−h+1 not with {nk+2, . . . , nk+h}, and so forth [→Fig. 1.3].
Consequently, the lower and upper h-triangle of the adjacency matrix Ã of Gk is zero,
leaving

Mk = 1
2
[
4h2 − 2h− (h+ 1)h

]
(1.9)

= h

2 [3h− 3] (1.10)

links in Gk. The first two terms in Eq. (1.9) count the number of elements in Gk

without the diagonal, the last term subtracts the lower and upper h-triangle. Using

∗Strictly speaking, for N even, h = N/2 leads to two links between one pair of nodes. Since two
nodes are allowed to be connected by at most a single link, the second link is dropped.
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Figure 1.3.: A regular ring network with N = 12 and h = 2. Direct neighbors of nk
are labeled.

Eq. (1.4) with gk = 2h, the clustering coefficient

Crr = ck = 2Mk

gk(gk − 1)

= h(3h− 3)
2h(2h− 1)

= 3h− 3
4h− 2

(1.11)

is derived. As h� 1, Crr approaches 3/4. Since 0 ≤ C ≤ 1, the clustering coefficient
is considered large in regular ring networks.

1.3.2. Random network
In the model for random networks considered here, every link is equally likely. Thus,
node properties like the degree or the local clustering coefficient are random variables
yet with the same probability distribution for each node.

Models of random networks

Interpreting all networks with N nodes andM links as the ensemble of

((
N
2

)

M

)

possible
networks, a random network GN,M is obtained by choosing any network from the
ensemble with equal probability [47]. Without building up the ensemble in the first
place, such a random network can be realized by drawingM links from the ensemble of
all
(
N
2

)
possible links without replacement [48]. This model is known as the Erdős-Rényi

model of random networks [47].
In a related model, all M links are drawn with replacement from the ensemble of

possible links. This model includes the possibility of two nodes being connected by
more than one link [49]. In the following, the scaling of L and C in the Erdős-Rényi
model is considered.
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Scaling of the average distance

From the scaling of the diameter e(N) in a random network [50], the scaling of the
average distance

Lrd(N) ∝ e(N) ∝ lnN (1.12)

is derived. Details can be found in App.A.4. Compared to the linear scaling in regular
ring networks [→Eq. (1.7)], the logarithmic scaling of Lrd is slow. The average distance
in random networks is thus considered small compared to regular ring networks.

Clustering coefficient

Denoting the mean degree E(gk) = z, the clustering coefficient of GN,M is C = z/N [39]
when self-loops were allowed in the network. The Erdős-Rényi model excludes self-loops
in its realizations, such that the clustering coefficient is obtained as follows.
A network from the Erdős-Rényi model has M = Nz/2 links. The probability of

any two nodes being adjacent is

w = 2M
N(N − 1)

= z

N − 1 .
(1.13)

The expected number of nodes included in the subnetwork Gk is z. The number of
links within Gk is a binomially distributed random variable X ∼ B

([
z
2(z − 1), w

) ]

with expected value

E(X) = z

2(z − 1)w = z(z − 1)
2

z

N − 1 . (1.14)

The expected value of the local clustering coefficient is hence

E(ck) = 2 E(X)
z(z − 1) = z

N − 1 . (1.15)

Without self loops, nk cannot be its own neighbor, yielding N − 1 in the denominator.
Since the derivation of Eq. (1.15) is node independent, the expected value of the local
clustering coefficient equals the clustering coefficient

Crd = E(ck) . (1.16)

Scaling of the clustering coefficient

To investigate the scaling of the clustering coefficient with N , the mean degree z
is considered constant, such that E(ck), Eq. (1.15), is a function of N only. It is
readily found that Crd scales as 1/N . Consequently, as N increases, Crd tends to
zero. Compared to regular ring networks, random networks exhibit a small clustering
coefficient, except for rather dense networks with z ≈ N .
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1.3.3. Small-world networks
The term small world has been introduced to science in 1967 by Stanley Milgram [51].
The discussion on the topic, however, had started in the 1950s with a manuscript
which was not published until 1978 [52]. The expression small world refers to the
everyday observation that the chain of acquaintance connecting oneself to a random
person somewhere on the globe is much shorter than naively expected. This finding
leads to the impression that this world must be a small one. The term small-world
phenomenon was coined to refer to this finding. Within the scope of network theory,
the small-world phenomenon translates to a short average distance, which is intrinsic
to random networks.
A second everyday experience is not captured by random networks: a friend of a

friend is likely to be a friend of oneself, too. This translates into a large clustering
coefficient as in regular ring networks.

In [12], a model which covers both everyday observations and thus resides between
regular and random networks is proposed. Realizations of the model can exhibit a
short average distance and a large clustering coefficient at the same time. In analogy
to the small-world phenomenon, these networks are called small-world networks.
Small-world networks are not only found in the context of social groups. Their
diverse appearance ranges from biological systems such as the neuronal network of
Caenorhabditis elegans [12] to technical ones as the power grid of the western United
States of America [12].
The effect of the small-world property in dynamical systems is investigated in [12]

within the scope of a simple disease spreading model as well as coupled phase oscillators.
It is found that diseases spread quickly on a small-world topology and that the
synchronization of phase oscillators happens almost as readily as in a complete
network [12].
These findings suggest that small-world networks pass information efficiently. In

fact, the efficiency E of small-world networks is high, both on the global and the local
scale [43].

The model of small-world networks

The small-world model involves a rewiring strategy starting from a regular ring network
GN,h. One after the other, each node in GN,h is visited h times. Let i ∈ [1, h] ⊂ N
denote the i-th visit of node nk. The link connecting nk and nk+i is detached from nk+i
and attached to any node in N \ {nk} with equal probability w. Rewired links usually
span longer distances than before. Thus, these links are referred to as shortcuts [12].
The small-world model was contrived to obtain networks with a large clustering

coefficient as in a regular ring but a much lower average distance. Denote C̄(w) the
mean of the clustering coefficient obtained from a set of realizations of the small-world
model at rewiring probability w; L̄(w) is the respective mean of the average distance.
Since the small-world model equals the regular-ring model at w = 0, C̄(w)/C(0) ≈ 1
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Figure 1.4.: Normalized clustering coefficient C̄(w) and average distance L̄(w)/L(0) in
the small-world model averaged over multiple realizations with N = 1000 and h = 10.
The ratio L̄(w)/L(0) undergoes a phase transition at wsc = (Nh)−1 = 10−4 when the
first shortcuts appear [→Eq. (1.17)]. This rewire probability marks the start of the
transition into the small-world regime. The ratio C̄(w)/C(0) complies with (1− w)3

[→Eq. (1.20)]. At w = 0.1, C̄(w)/C(0) is about 0.7 which can be considered as the
upper limit of the small-world regime [46]. This figure extends on [12, Fig. 2]

and L̄(w)/L(0) < 1 define the small-world regime of the small world model. For a
network with N = 1000 and h = 10, these ratios are depicted in Fig. 1.4 as a function
of w averaged over 20 realizations [12].
At small values of w, the regime of regular-ring networks resides [→Fig. 1.4 and

Fig. 1.5, left], where C̄(w)/C(0) ≈ 1 and L̄(w)/L(0) ≈ 1.
For an intermediate range of w, shortcuts yield a dramatic decrease of the average

distance while the clustering coefficient remains large. In this range, realizations of
the small-world model exhibit the small-world property [→Fig. 1.4]. An example at
w = 0.1 is given in Fig. 1.5 in the middle.

The regime of random networks resides at large values of w [→Fig. 1.4 and Fig. 1.5,
right]. Both, clustering coefficient and average distance have decreased, such that
C̄(w)/C(0) ≈ 0 and L̄(w)/L(0) ≈ 0. By means of the average distance and the
clustering coefficient, realizations of the small-world model become indistinguishable
from realizations of the random network model [12, 46]. It is worth mentioning that
even at w = 1, the local structure of realizations of the small-world and random model
differ [→Fig. 1.5, right]. Since the starting nodes of all left-hand links are not affected
by the rewiring, gk ≥ h for all nodes in a network from the small-world model [46].
The random model allows for gk ≥ 0.

Average distance

The average distance starts to drop as the first shortcuts occur. The scaling of
the average distance with N than changes from linear as in regular ring network
to logarithm as in random networks [53]. This regime is entered once the expected
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Figure 1.5.: Three realizations of the small-world model with N = 12 and h = 2. The
realization shown on the left is obtained at w = 0 and thus equals the initial network
GN=12,h=2. In the middle, a realization at w = 0.1 with three shortcuts (red lines)
is presented. At w = 1 (right), all links are rewired. However, since only left-hand
neighbors are affected by the rewiring procedure, gk ≥ h ∀k.

number of rewired links Mr = wNh is equal or larger than one. Thus,

wsc = 1
Nh

(1.17)

is the critical rewiring probability for shortcuts to arise [53]. For w ≥ wsc, small-world
networks might be obtained as realizations of the small-world model.

Clustering coefficient

In the initial network GN,h, the clustering coefficient is C(0) = 3h−3
4h−2 [→Eq. (1.11),

p. 27]. For w > 0, the probability for two nodes which were adjacent in Gk at w = 0
still being part of and adjacent in Gk is (1−w)3 [46]. This can be seen by recognizing
that the probability for one link to stay in place is 1−w. Consequently, the probability
for all three links of a triangle to stay in place is (1 − w)3. Rewiring can also add
links to Gk. The effect is in the order of 1/N as illustrated in Fig. 1.6. In total,
after rewiring, the average number of links in Gk is h

2 (3h − 3)(1 − w)3 + O (1/N)
[→Eq. (1.10)] [46]. Since the total number of links in G is invariant under rewiring,
the mean node degree is constant. Therefore the average number of possible links in
Gk remains h(2h− 1). By defining the clustering coefficient as the ratio of the mean
number of links in Gk to the mean number of possible links in Gk, it takes the form

C̃(w) = c̃k(w) = 3h− 3
4h− 2(1− w)3 +O

( 1
N

)
(1.18)

= C(0)(1− w)3 +O
( 1
N

)
(1.19)
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Figure 1.6.: Addition of a link to G1 by rewiring. The two links which move between
sketches are drawn as a red and a green line, respectively. The initial state is shown
on the left, in which G1 consists of the two nodes n2 and n3 which are themselves
connected. As depicted in the middle, by rewiring l13 (red), n3 is removed from G1
and some randomly chosen node, here n4, is added to G1. Even though n4 is now
part of G1, it is not per se a neighbor of any other node in G1. Thus, G1 is currently
a network without any link. On the right it is shown that by rewiring l45 (green)
which is attached to n4, l45 may be connected to a node in G1. This happens with
probability (wg1)/N which is in the order of 1/N . This is the reason for the correction
in Eq. (1.18).

such that the equation for the ratio

C̃(w)
C(0) ≈ (1− w)3

=: f(w)
(1.20)

is derived. This definition is compatible with the common clustering coefficient in the
sense that the dependence on w as well as on N and the physical interpretation remain
unchanged [46] as depicted in Fig. 1.4. As (1−w)3 < u for a fixed u ∈ [0, 1] ⊂ R, C(w)
has decreased to the point where the small-world property is considered lost. Thus,

wrd = 1− u1/3 (1.21)

is the critical rewiring probability to leave the small-world regime and enter the random
regime of the small-world model. In literature, the value u = 0.7 is proposed [46].

Existence of the small-world regime

The preceding discussion assumes that the beginning of the small-world regime is
defined by the average distance while the clustering coefficient defines its ending, cf.,
Fig. 1.4. For the existence of the small-world regime in the model, this implies that the
average distance must drop earlier than the clustering coefficient, and consequently
wsc < wrd must hold. It follows from Eqs. (1.17) and (1.21) that this is the case for

N ≥ 1
(1− u1/3)h (1.22)
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nodes in the network. The lower boundary of h can be determined by recognizing that
for h = 1, the clustering coefficient is zero. Thus, the minimal admissible value for
h in the regular ring network initializing the small-world model is 2. Together with
u = 0.7 from literature [46], Eq. (1.22) determines N = 5 as the minimal network size
for which a small-world network can be obtained from the model. However, a network
with N = 5 and h = 2 is fully connected, such that the notion small world becomes
meaningful only for networks with N > 5 nodes. Thus, for all relevant network sizes
N > 5, ideally N � 5, a small-world network can be obtained from the small-world
model.
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Chapter 2.

Network reconstruction based on bivariate and
multivariate measures

In this chapter the relation of the bivariate correlation coefficient and its
multivariate counterpart, the partial correlation coefficient, is investigated in
order to identify the reason for the existence of so-called indirect links. Parts
of this chapter are published in [22]: W. Mader, M. Mader, J. Timmer,
M. Thiel, and B. Schelter. Networks: On the relation of bi- and multivariate
measures. Scientific Reports, 5:10805, 2015 .

In the previous chapter, networks are discussed from a graph-theoretical point of view.
This is, nodes and links are accessible such that the properties of networks can readily
be investigated. This aspect of network theory finds its application, e.g., when the
resilience of a power-grid is concerned or bottlenecks in the throughput of a public
transportation system are to be identified.

In the case that networks are used to describe complex systems, regularly, no prior
knowledge about nodes and links exists. Instead, the representing network needs
to be inferred from measurements. Network nodes are identified with measurement
sites [18, 54, 55]. In order to establish links, commonly symmetric bivariate measures
are applied to measurements [11]. In particular, the correlation coefficient is frequently
employed [15, 24, 26, 56, 57]. The partial correlation coefficient is the multivariate
counterpart of the correlation coefficient. In empirical networks, so-called indirect links
can occur. An indirect link does not correlate to a direct physical connection. Thus,
indirect links hamper the analysis of a complex system by means of its representing
network. By exploiting the relation of the bi- and multivariate correlation coefficient,
the bivariate correlation coefficient is characterized with respect to the occurrence of
indirect links. This characterization provides the yet missing argument why bivariate
interdependence measures identify indirect links.
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2.1. Complex systems
Networks are used to model and visualize a wide range of complex systems such as
power grids, traffic systems, social communities, climate, or neuronal systems [12–
15, 18–20, 58]. By modeling a system as a network, the system is decomposed into
individual entities which are represented as nodes. The links in the network encode
the interaction pattern among these entities. It is thus a requirement of the network
approach that the system can be decomposed in individual entities. Complex systems
suitable for network analysis can be filed in three categories.

Complex systems with explicit network representation Complex systems of this
category explicitly provide their network representation. Examples are power grids,
in which the nodes are readily identified as power plants, transformer stations, and
appliances, or subways, in which subway stations define the nodes. In the former
system, links are defined by power lines, in the latter by tracks.

Complex systems with individual entities In contrast to the last category, complex
systems of this category provide their set of nodes, but not their set of links. For
example social communities naturally decompose into individual entities defining the
nodes in the corresponding network. In consequence, also the number and locations of
recording sites are determined by the system itself. Links represent the interaction
between entities and must be estimated from observations of the dynamics of the
entities.

General complex systems In general, both nodes and links must be externally
provided. This is, the entities constituting a complex system as well as their interactions
are not predefined but must be constructed from data. When modeling the climate
or seismic activity, the beginning and ending of a local subsystem might not be
clearly definable [59], such that the identification of entities is hampered. In other
systems, e.g., the human brain, the resolution of the measurement device might be
too poor to resolve individual entities. Theoretically, a brain decomposes without
ambiguity into single neurons. It is however impossible nowadays to observe all single
neurons and their anatomical connectivity. Measurement techniques such as on-scalp
electroencephalography capture the mean activity across a patch of neurons [60], which
is not defined by anatomical considerations, but by technical constraints. Beforehand,
it is unclear whether each spatial sample point corresponds to an unique functional
region of the brain. While the term spatial sampling is intuitive for the following
discussion, the sampling problem is not necessarily a truly spatial one. For example,
the behavior of individuals can be observed, such that the system is not distributed
spatially but across individual persons. In such systems, it is nontrivial or even
impossible to tailor the spatial sampling to the system under investigation [11]. While
systems described in the last paragraphs themselves define their nodes and with them
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Figure 2.1.: Defining nodes by measurements sites. In case the entity e1 is not observed,
no node for e1 is introduced in the associated network. Since e1 influences e2 and e3,
a direct link between n2 and n3 must be concluded in the network, in contrast to the
true connectivity.

the number and positions of recording sites, here the opposite is true: network nodes
are identified with measurement sites. In consequence, three situations may arise.

Firstly, the spatial sampling chosen is too wide-meshed, such that individual entities
of the system, and therefore nodes in the network, are missed. A missing entity which
influences two or more other entities creates spurious links in the representing network,
as shown in Fig. 2.1. If e1 is unobserved, no node n1 is introduced in the corresponding
network. The influence of e1 onto e2 and e3 can only be explained by a spurious link
directly connecting n2 and n3. In some situations, entities, even though they are
unobserved, can be identified. These approaches are naturally limited, however. An
overview can be found in [28, 61]
Secondly, if the spatial sampling it too close-meshed, two or more sensors might

record from the same entity leading to a cluster of two or more highly connected nodes.
This scenario is investigated in [11], where also the effect on the classification of the
network is discussed.

Thirdly, the spatial sampling is ideal such that the sampling does not cause spurious
links.

When recording from an unknown complex system attention must be paid to which
extent the spatial sampling defines the corresponding network. Once the nodes are
defined, links remain to be identified.

2.2. Bi- and multivariate interdependence measures
While it is important to remember the possible impact of the spatial sampling, this
thesis assumes nodes as given. The emphasis is placed on the inference of links
from recordings of the nodes. The connectivity of two nodes is established by an
interdependence measure which is applied to recordings of the dynamics of the nodes.
Interdependence measures are bi- or multivariate in nature.

In this section, the Pearson correlation coefficient and its multivariate counterpart,
the partial correlation, is introduced [62]. The discussion of the partial correlation
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will demonstrate a generic strategy on how to extend a bivariate measure into the
multivariate domain.

Both measures operate on the first two central moments of a random vector. Thus,
they can be applied to every random vector from any distribution with existing first
and second moment. Since the multivariate normal distribution is the only distribution
determined by the first two moments, clearly, this is the distribution both measures
are designed for.

2.2.1. The multivariate normal distribution
The multivariate normal distribution is the generalization of the normal distribution
to k ≥ 2 dimensions. It has the probability density function

fX(x) = 1√
(2π)k |Σ|

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
, (2.1)

with µ the k-dimensional mean vector, Σ the k × k-dimensional covariance matrix,
and |·| the determinant of a matrix. For k = 2, Eq. (2.1) describes the bivariate normal
distribution. For the density to exist, Σ must be positive definite. A multivariate
normally distributed random variable is denoted X ∼ N (µ,Σ). Let ε ∼ N (0, I),
and T such that Σ = TT T, then

X = Tε+ µ (2.2)

is a random vector with density as given by Eq. (2.1) [63]. From Σ, T can be obtained
by the Cholesky decomposition, for which T can be chosen as a lower triangular
matrix. It is then denoted Tc. Samples from X are drawn by transforming samples of
ε according to Eq. (2.2).

2.2.2. Construction of the multivariate normal distribution for a system of
interest

In order to analyze the correlation and partial correlation with respect to a system
of interest S, the multivariate normal distribution arising from S must be found. In
particular, the covariance Σ of the distribution must conform to the topology of S.
To this end, its topology is translated in a directed network with weighted adjacency
matrix Ă. The network is directed since the interactions in a physical system are
necessarily causal.

In case the topology of S is without loops, no circular dependency among variables
exists, such that variables are naturally ordered. Taking the loop-free system shown
in Fig. 2.2 (a) as an example, the system of linear equations

X1 = ε1 , X2 = aX1 + ε2 , X3 = bX2 + ε3 , X4 = cX3 + ε4 , (2.3)
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(b) Mesh with a loop

Figure 2.2.: Topologies of physical systems for which the transformation matrix T is
to be found. A loop-free topology (a) induces a natural ordering of nodes. With the
occurrence of loops, (b), the ordering is lost.

describing it is readily found. It is εi ∼ N (µi, σ2
i ) , i = 1, . . . , 4. In Fig. 2.2 (b), an

exemplary network with one loop is shown. Its weighted adjacency matrix is

Ă =




0 0 0 0
a 0 0 d
0 b 0 0
0 0 c 0


 , a, b, c, d ∈ R . (2.4)

Since loops break the ordering of variables, the equivalent of Eq. (2.3) takes the form

X = ĂX + ε+ (I − Ă)µ . (2.5)

Solving for X yields

X = (I − Ă)−1[ε+ (I − Ă)µ] = Tε+ µ , with (2.6)
T = (I − Ă)−1 , such that (2.7)

TT T = Σ . (2.8)

Uniqueness of T By retaining Σ, Eq. (2.8) can be generalized to

Σ = TE(TE)T = TeTe
T (2.9)

if EET = I holds. This determines E as the identity matrix but with the additional
freedom to choose the sign of the diagonal entries. It follows from Eqs. (2.8) and (2.9)
that the two systems defined by

Ă = −T−1 + I , and Ăe = −Te
−1 + I ,

= −ET−1 + I ,
(2.10)

respectively, lead to the same covariance matrix Σ. Concerning links among different
nodes, E only influences the sign of the entries of T−1, such that the systems Ă and
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Ăe are topologically equivalent, but the sign of connections might differ. While the
diagonal of Ă is zero, this in not necessarily true for Ăe. In case the diagonal element
of (T−1)ii, i ∈ [1, k] ⊂ N changes on multiplying T−1 with E, (Ăe)ii = 2 follows.
For the same covariance matrix Σ, also a topologically different system Ăc can

be constructed using the Cholesky decomposition. If Ă is a strictly lower triangular
matrix, T must be lower triangular, but in general, T is fully occupied. Since Σ
is symmetric and positive definite, a lower triangular matrix Tc can be obtained as
the Cholesky decomposition of Σ. Consequently, both T and Tc lead to the same
covariance matrix. It transpires that there are also two matrices Ă and Ăc defining
two different topologies with the same Σ. The matrix Ăc is guaranteed to be lower
triangular, but its diagonal, in general, is nonzero. Thus, both systems Ăe and Ăc
can include self-loops. The systems Ă, Ăe, and Ăc are inherently indistinguishable by
correlation analysis.

2.2.3. Bivariate measures
A bivariate measure for the dependency of two random variables X and Y is the
covariance

cov(X, Y ) = E {[X − E(X)] [Y − E(Y )]} , (2.11)

where E(·) denotes the expected value. The Pearson correlation coefficient

%XY = cov(X, Y )√
var(X) var(Y )

, (2.12)

is the dimensionless, normalized version of the covariance.
Bivariate measures operate on two variables, here X and Y . Other variables possibly

affecting X and Y are not taken into account when investigating their dependency.

2.2.4. Limitations of bivariate measures
Consider the loop-free network depicted in Fig. 2.2 (a). The pairwise correlation is
nonzero between all components ofX = (X1, X2, X3, X4). It is the gist of the following
Sec. 2.3 to show that this result is independent of the specific bivariate measure used.
Consequently, all bivariate measures fail in reconstructing the connectivity structure
of a complex system. For a = −c = 0.57 and b = 1.35, the correlation coefficients of
X are displayed in Fig. 2.3 (a). Dashed lines indicate that correlation coefficients of
unconnected nodes are nonzero, such that link are suggested even though they do not
exist in the underlying system.

2.2.5. Direct and indirect links
It follows from the previous section that direct and indirect links need to be conceptually
distinguished. Direct links have a representation in the physical world, indirect links
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(a) Bivariate result
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(b) Multivariate result

Figure 2.3.: Correlation and partial correlation analysis of realizations of Eq. (2.3). For
a = −c = 0.57 and b = 1.35, realizations from Eq. (2.3) are drawn and analyzed both
with the correlation and partial correlation coefficient. Correlation analysis yields the
fully connected network shown in (a). Direct links (black) as well as indirect links
(red, dashed) are reported. In contrast, partial correlation analysis, (b), reveals direct
connections only.

do not and are thus spurious. Taking the network shown in Fig. 2.3 (a) as an example,
black lines indicate direct, while the red lines indicate indirect links. An indirect link
occurs whenever

1. no path of length one, but at least one path of length larger than one connects
two variables, and

2. the dependency measure cannot make use of the full information of the variables
along these paths.

All pairs of variables for which both conditions are fulfilled are connected by an indirect
link. The major drawback of bivariate measures applied to establish network links is
thus that indirect links are induced.

2.2.6. Multivariate measures
Multivariate measures are designed to overcome this limitation. Let Z = (XT,Y T)T

be an (u+ v)-dimensional random vector partitioned in the two u- and v-dimensional
random vectors X and Y . A multivariate analysis of the relation withing Y takes
into account all information provided by X. The generic pattern to extend a bivariate
measure to the multivariate domain is to apply the respective bivariate measure to the
residuals εY obtained from regressing Y on X. This procedure is called partialization.
If Y is of dimension two and εY is statistically independent of X, the multivariate
measure is nonzero between actually linked variables only. ∗ An example network
constructed by the partial correlation is given in Fig. 2.3 (b).

∗The marrying of parents with a joint child is an exception. It is discussed in Sec. 2.3.3.
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The partial correlation

The multivariate counterpart of the Pearson correlation coefficient is the partial
correlation. The regression model used is linear both in its parameters and its
variables.

The best linear predictor Let X, Y , and Z be as above. The mean

µZ =
(
µX
µY

)
(2.13)

and covariance

ΣZZ =
(

ΣXX ΣXY

ΣY X ΣY Y

)
(2.14)

of Z also partition into subsystems [62]. The partialization of Y with respect to X is
based on the linear regression model

Y = a+ bX + ε . (2.15)

Its parameters are determined by minimizing

E
[
(Y − a− bX)(Y − a− bX)T

]
. (2.16)

The minimum ΣY Y −ΣY XΣ−1
XXΣXY is attained for the v-vector

a = µY −ΣY XΣ−1
XXµX (2.17)

and the v × u matrix of regression coefficients

b = ΣY XΣ−1
XX , (2.18)

where ΣXY = ΣT
Y X [62]. Consequently, the best linear predictor of Y given X is

defined [62, 64]

E(Y |X ) = µY + ΣY XΣ−1
XX(X − µX) . (2.19)

Partial covariance of Y given X The difference

εY = Y − E(Y |X )
= Y − µY −ΣY XΣ−1

XX(X − µX)
(2.20)

is the residual of Y after the linear influence of X is removed. The covariance of εY
ΣεY εY

= ΣY Y −ΣY XΣ−1
XXΣXY (2.21)

constitutes the partial covariance matrix of Y given X [62]. The diagonal of ΣεY εY

contains the partial variance of Y . The off-diagonal entries characterizing the interac-
tion structure within Y after removal of the linear information contained in X by the
partial covariance of Y .
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Partial correlation of Y given X The partial correlation matrix

πY Y = s ·ΣεY εY
·s , sii = (ΣεY εY

)−1/2
ii , sij = 0 : i 6= j , i, j = 1, . . . , v (2.22)

is the normalized partial covariance matrix, Eq. (2.21) [62].

2.2.7. Partialization as a matrix operation
The partial correlation for partitions with v = 2 is of particular interest since only
than the dependency between the two variables of Y is assessed with respect to
the information of the entire system. To obtain all such partitions, the best linear
predictor has to be calculated for each partition, separately. Fortunately, the pairwise
partial correlation matrix π relates to the normalized inverse of the correlation matrix
% [65–67]

π̃ = s · u · s , sii = u
−1/2
ii , sij = 0 : i 6= j , i, j = 1, . . . , u+ v . (2.23)

with

u = %−1 (2.24)

by

π = 2I − π̃ . (2.25)

The proof of Eq. (2.25) [67] can also be found in App.A.5.
For theoretical considerations, this approach is convenient. In application however,

the numerical inversion of an ill conditioned matrix can easily fail. Therefore, at least
for larger systems, more robust results are expected by directly relying on the best
linear predictor.

2.3. Emergence of indirect links
As explained in Sec. 2.2.5, bivariate measures provoke indirect links. In this section,
the complete picture of the emergence of such links is rigorously analyzed. It becomes
evident that any bivariate measure which is based on partialization causes indirect
links, not only the correlation coefficient.
By reversing the steps of partialization for v = 2 as discussed in Sec. 2.2.7, the

covariance matrix

Σ = (2I − π)−1 (2.26)

is calculated from the partial correlation matrix. The inverse is guaranteed to exist
since 2I − π 2.25= π̃

2.23= sus, and s and u are both invertible. In case the absolute
value of the largest eigenvalue of 2I − π is smaller than one, the matrix inversion can
be expanded in a Taylor series. This allows to analyze the emergence of indirect links
in great detail.
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Taylor expansion of the covariance matrix The matrix of any normalized measure,
e.g., the partial correlation matrix, can be written as

π = I + P . (2.27)

In order to reverse the steps of partialization, first the off-diagonal entries of π have
to be multiplied by −1, yielding

π̆ = I − P . (2.28)

The inverse of π̆ is a covariance matrix Σ of the system described by π. Key to the
insight in the emergence of indirect links is the Taylor expansion of

Σ = π̆−1 = f(P ) = (I − P )−1 (2.29)

about P0 = 0 which is the geometric series

Σ = Tf(P ,P0) = I +
∞∑

q=1
P q , [→App.A.6]. (2.30)

Links emerge from powers of P . The first order approximation

T1f(P ,P0) = I + P , (2.31)

comes with already normalized diagonal, such that in first order Σ coincides with the
partial correlation matrix π, cf., Eq. (2.27). Indirect links start to emerge with the
second order of Tf(P ,P0). This allows to infer some properties of indirect links.

1. In general, powers of P contribute nonzero values to all entries of Σ leading to
a fully connected network.

2. The normalization of Σ in order to obtain % alters the values of direct links.

3. For a network with coinciding correlation and partial correlation, P must be
nilpotent of degree 2 [→Eq. (2.30)]. With P symmetric, this is only possible for
P = 0. Thus, only networks without any links are correctly reconstructed by a
bivariate interdependence measure.

2.3.1. Correlation coefficient of indirect links
As shown in the previous section, bivariate measures inevitably provoke indirect links.
For any partial correlation matrix π, Eq. (2.26) specifies the corresponding bivariate
covariance matrix Σ. Now, consider the special case of the three-node chain which
translates to

A =




0 0 0
a 0 0
0 b 0


 , T =




1 0 0
a 1 0
ab b 1


 , and network

n1n2 a

n3

b

[ tikzpicture optimized away because it does not contribute to exported
PDF]

. (2.32)
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The special interest in this situation arises from the fact that the chain transforms into
a triangle by adding a single indirect link between n1 and n3. The relative number
of triangles in a network is considered a distinctive characteristic quantified by the
clustering coefficient. The emergence of artificial triangles is expected if the correlation
coefficient of the indirect link attains values comparable to the correlation coefficient
of direct links. The artificial increase of triangles may cause false conclusion upon the
class of the underlying network.
Proposition 2.3.1 (Correlation coefficient of indirectly linked nodes, isolated case).
In the three-node chain network, Eq. (2.32), the correlation coefficients of the two pairs
of directly linked nodes and the correlation coefficient of the indirectly linked node pair
can attain comparable values.
Proof. The covariance matrix of the three-node chain network is

TT T = Σ =




1 a ab
a a2 + 1 ba2 + b
ab ba2 + b a2b2 + b2 + 1


 , (2.33)

leading to the correlation matrix

% =




1 a√
α

ab√
αβ−a2

a√
α

1 b
√
α√

αβ−a2

ab√
αβ−a2

b
√
α√

αβ−a2
1



, α = 1 + a2, β = 1 + b2 . (2.34)

In particular, the correlation coefficient characterizing the indirect link reads

%31 = ab√
(1 + a2)(1 + b2)− a2

(2.35)

= ab√
1 + b2(1 + a2)

. (2.36)

In case b2(1 + a2)� 1, %31 is approximately ab. For b2(1 + a2)� 1

%31 ≈
ab

b
√

1 + a2

≈



a for a2 � 1 ,
1 for a2 � 1 .

(2.37)

Likewise, the relative strengths of the indirect link compared to the two direct ones

%21

%31
= 1
b

√

b2 + 1− a2

1 + a2 , (2.38)

%32

%31
=
√
α

a
=
√

1 + 1
a2 , (2.39)
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also approximate one for a � 1 and b 6= 0. Equations (2.35) – (2.39) show that the
correlation coefficient of the indirect link in a three-node chain can reach a value
comparable to the ones of the direct links.

This is the theoretical explanation for the so-called transitivity property of bivari-
ate measures [21, 68], and it follows that in general, a correlation analysis fails at
distinguishing direct and indirect links.
The above derivation is based on an isolated three-node chain. If embedded in

a larger network, other nodes connected to the chain also influence the correlation
coefficients. This influence is characterized by the following proposition.
Proposition 2.3.2 (Correlation coefficient of indirectly linked nodes, embedded
case). Connecting an additional node n0 to the head of the isolated three-node chain
[→Eq. (2.32)] with linkage parameter z, Eq. (2.41), yields

%z31 = %31 ·
√

1 + z2

1 + z2%2
31
, (2.40)

as the correlation coefficient of the indirect link. The superscript z indicates the
presence of n0.
Proof. The four-node chain subject to this proposition translates to

A =




0 0 0 0
z 0 0 0
0 a 0 0
0 0 b 0


 , T =




1 0 0 0
z 1 0 0
za a 1 0
zab ab b 1


 ,

n0

n1

z

n2 a

n3

b

[ tikzpicture optimized away because it does not contribute to exported
PDF]

. (2.41)

Let n1 to n3 constitute the three-node chain of Prop. 2.3.1, and n0 the additional node
linked to n1 by parameter z. In analogy to Eq. (2.36), the correlation coefficient of the
indirect link between n1 and n3 is now

%z31 = ab
√

1 + z2
√

1 + b2 + (ab)2 + (zab)2
. (2.42)

Equation (2.42) can be rewritten as

%z31 = ab√
1 + b2 + (ab)2

·
√

1 + b2 + (ab)2
√

1 + b2 + (ab)2 + (zab)2
·
√

1 + z2

= %31 ·
√√√√ 1

1 + (zab)2

1+b2+(ab)2

·
√

1 + z2

= %31 ·
√

1
1 + z2%2

31
·
√

1 + z2

= %31 ·
√

1 + z2

1 + z2%2
31
,

(2.43)

which proofs the proposition.
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Figure 2.4.: Correlation coefficient %z31 of the indirect link discussed in Prop. 2.3.2. As
%z31 is expressed in terms of %31, cf., Eq. (2.40), z = 0 equals the value of %31 which is
given in front of each line. For z < 1, %z31 is virtually independent of z. With z > 1,
the impact of n0 increases such that %z31 eventually reaches one for all %31 6= 0.

Based on Prop. 2.3.1 and 2.3.2, the influence of the extra node n0 onto the correlation
coefficient of the indirect link is now discussed. In Fig. 2.4, the graph of Eq. (2.40) is
shown where different values of %31 are color coded. Since %z31 is expressed in terms of
%31, Fig. 2.4 shows %31 at z = 0. The graph is shown for positive values of z only to
allow the x-axis to be logarithmically scaled. The negative branch of z is the reflection
of the positive across the y-axis since %z31 is symmetric in z. It is observed that %z31 is
virtually independent of z for z < 1. For z > 1, %z31 increases and eventually reaches
its maximum which is one for all values of %31 > 0.
With %31 ∈ [−1, 1] ⊂ R and z ∈ R, %31 and z are not directly comparable. More

insight gives the investigation of %z31 with regard to a, b, and z. To this end, assume
that all connections in the network are approximately of equal strength, translating to
a = b = z. In this case, %31 and %z31 are functions of a single variable, say a, shown in
Fig. 2.5 (a). For |a| � 1 and |a| � 1, both functions yield approximately equal values.
Their largest relative difference is located at a = ±1, where they differ by the factor√

3/2, cf., Fig. 2.5 (b). It follows that in a network in which connection strengths are
reasonably balanced, the two direct links closest to the indirect one mainly determine
its strength. This finding extends the applicability of Prop. 2.3.1 to three-node chains
embedded in a larger network.
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Figure 2.5.: Comparison of the correlation coefficient of the indirect link in an isolated
and an embedded three-node chain. For a = b = z, in (a) the graphs of %31 and %z31
are shown in blue and orange, respectively. Their ratio is shown in (b). At a = ±1,
the two functions exhibit their largest relative difference which is %z31 =

√
3/2 · %31.

2.3.2. Partialization in the non-linear domain
A non-linear, non-parametric extension of the linear regression is the generalized
additive model. In this model, Eq. (2.19) is replaced by [69]

E(Y |X ) = s0 +
k∑

i=1
si(Xi) . (2.44)

Each si is a smooth function mapping the realizations of Xi to Y . The approach is
non-parametric as it is unnecessary to specify the functional form of si. Instead, si is
estimated by smoothing the scatter plot of realizations of Xi and Y. The estimation
of the si is carried out one after the other [69]. Transferring this approach for the
conditional expected value over to the partial correlation, the two residual time series

εYi
= Yi − E(Yi |X ), i = 1, 2 (2.45)

are now calculated using Eq. (2.44). In theory, this allows for a non-linear version of
the partial correlation

π = corr(εY1 , εY2) . (2.46)

In application, however, results of Eq. (2.46) are unreliable. The estimated functions
si(Xi) allow for oscillations. The time scale of these oscillations is defined by the
number of realizations from which si is estimated. This structure is thus common
to all si and is reflected in the residuals. This results in the tendency to spurious
correlations. In consequence, partialization cannot be trivially carried over to the
non-linear domain.
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Figure 2.6.: Smallest network not satisfying the Wermuth condition.

2.3.3. Moral networks
As briefly mentioned in Sec. 2.2.6, partial correlation leads to indirect links in one
specific situation. This situation is discussed in this section.

Partial correlation analysis turns the directed network of the underlying system in
an undirected one. Thereby, a link between two nodes is only included in the network
if it can be admitted given the information of all remaining nodes. There is one
exception. Assume the directed network in Fig. 2.6: Y1 and Y2 are unconnected and
have zero covariance, but they have a common child X, to which both have a nonzero
covariance. A directed network is called Wermuth if it contains no subnetwork with
this configuration [70]. In the undirected conditional independence network defined by
the partial correlation, Y2 and Y1 have partial covariance (−ab), even though Y1 and
Y2 are independent. The joint child X marries its parents Y1 and Y2 in the conditional
independence network. Therefore, such networks are called moral networks [71]. In
conclusion, partial correlation analysis reports the moral network associated with the
system under investigation. For a directed network, the corresponding moral network
is constructed by joining unconnected parents of any joint child by an undirected link
and transmuting all directed links into undirected links by simply neglecting their
directional information [70].

2.4. Estimating links from data
Let the probability density function fX(x; θ) of a random sample X = {X1, . . . , Xm}
be parametrized by θ. Then, any function of X

s(X1, . . . , Xm) =: T (2.47)
is called a statistic [72]. The realization of the statistic

t = s(x1, . . . , xm) (2.48)
is a function of the realization of X. If T is evaluated to infer the value of θ, T is
called an estimator. The value t of T is then called an estimate of θ [73].
The sample correlation coefficient

rxy =
∑m
i=1(xi − x̄)(yi − ȳ)√∑m

i=1(xi − x̄)2∑m
i=1(yi − ȳ)2

(2.49)
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is an estimate of the correlation coefficient of two random variables X and Y based
on their realizations x = {x1, . . . , xm} and y = {y1, . . . , ym}. It employs the sample
mean

x̄ = 1
m

m∑

i=1
xi , (2.50)

an estimate of the expected value. Sample correlation coefficient and sample mean are
functions of xi and yi only and can thus be derived from observations of a system.
In case x is a k-variate set of realizations, i.e., a k × m matrix, of the random

variable X, an estimate of the covariance matrix of X is

Q = 1
m− 1

m∑

i=1
(xi − x̄i)(xi − x̄i)T , (2.51)

where xi is the i-th column of x. The sample correlation matrix is then

R = s ·Q · s , sii = Q
−1/2
ii , sij = 0 : i 6= j , i, j = 1, . . . , k . (2.52)

The partial correlation matrix is estimated by substituting R for Σ in Eq. (2.21).

2.5. Quantification of links
In order to translate (partial) correlation coefficients into links, either a threshold is
applied to the coefficients or hypothesis tests are performed. The discussion of both
approaches assumes that the system under investigation induces a network with a
single component. In case this assumption does not hold, the discussion applies to
each component of the network, separately.

2.5.1. Link quantification by an arbitrary threshold
Thresholding the correlation coefficient might be considered a first approach to link
quantification [11, 15, 23–26]. To this end, either a threshold can be defined directly,
or the desired number of links in the network is fixed. The following example shows
that both approaches fail in reconstructing the underlying connectivity.

The sample correlation matrix R and the matrix p of p-values of the four-node-chain
network presented in Fig. 2.2 (a) on p. 39 is

R =




1.00 0.47 0.40 −0.02
0.47 1.00 0.81 −0.13
0.40 0.81 1.00 −0.17
−0.02 −0.13 −0.17 1.00


 , p =




1.00 0.00 0.00 0.77
0.00 1.00 0.00 0.03
0.00 0.00 1.00 0.00
0.77 0.03 0.00 1.00


 . (2.53)

By fixing the number of links to three as in the underlying network, the three
largest correlation coefficients indicate the network depicted in Fig. 2.7. The physical
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Figure 2.7.: Network reconstructed from realizations of Eq. (2.3) corresponding to
Fig. 2.2 (a). Links are established by the three largest correlation coefficients given
in Eq. (2.53). The reconstructed network does not correctly reflect the interaction
structure of the system investigated.

connection between X3 and X4 is discarded in favor for the relatively strong indirect
connection between X1 and X3. As a consequence, the wrong topology is reported
in which an open triangle is closed as discussed in Sec. 2.3. This, in turn, artificially
increases the average clustering coefficient to C = 3/4 while in the true network it
is C = 0. The same results for a threshold at 0.4 applied to R directly such that
|Rij| < 0.4 is set to zero.

2.5.2. Test statistic for correlation coefficients
Instead of a threshold, either statistical tests or confidence intervals may be employed
for a rigorous statistical analysis. For the sample correlation coefficient, which is an
estimate of %, the Fisher transformation

F (rxy) = 1
2 ln

(
1 + rxy
1− rxy

)
= arctanh(rxy) (2.54)

is considered. The corresponding random variable is normally distributed with mean
µ = F (%) and standard deviation σ = 1√

m−3 , where m is the sample size. The null
hypothesis that % equals some value %0 can be tested by finding the p-value for

z =
√
m− 3[F (rxy)− F (%0)] (2.55)

from the standard normal distribution [74].
The hypothesis test of the partial correlation is analogous after reducing m by

the dimension of X, u = dim(X) [→Sec. 2.2.6]. The test statistic for the partial
correlation is thus z =

√
m− 3− u[F (rxy) − F (%0)] [75]. In case more than one

correlation is assessed statistically, the critical values must be corrected for multiple
testing. The rejection of the null hypothesis refers to the significant existence of a link
in the network.
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Chapter 2. Network reconstruction based on bivariate and multivariate measures

2.5.3. Link quantification by the critical value of the correlation coefficient
On the one hand it is proofed in Sec. 2.3 that bivariate measures report nonzero values
between nodes ni, nj irrespective whether or not they are joined by a physical link
as long as they are connected by a path. Consequently, F (rninj

)− F (0) > 0. On the
other hand, with F (rninj

)− F (0) > 0, z becomes arbitrarily large for an increasing
sample size m, such that an arbitrarily small p-value can be obtained. Therefore, in
the limit of an infinite amount of data, a bivariate measure always reports a complete
network.
The effect can be seen by considering again Eq. (2.53) which is obtained from

m = 300 samples. Evaluation of the p-values at the 95% significance level yields a
fully connected network except for the link between X1 and X4. By increasing the
sample size to m = 106, the sample correlation matrix becomes

R =




1.00 0.50 0.42 −0.14
0.50 1.00 0.84 −0.29
0.42 0.84 1.00 −0.35
−0.14 −0.29 −0.35 1.00


 , with p =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , (2.56)

such that a complete network must be concluded. This demonstrates that a bivariate
measure reports a complete network provided a sufficient amount of data. In other
words, whenever a bivariate network analysis does not lead to a complete network,
the amount of data is insufficient for the statistics.

2.5.4. Quantification based on multivariate measures
The partial correlation being a multivariate measure is designed to take into account
the information of the entire system. Since the interactions defined by Eq. (2.3) are
strictly linear, the partial correlation coefficients and p-values estimated from m = 106

realizations

P =




1.00 0.30 −0.00 −0.00
0.30 1.00 0.79 0.00
−0.00 0.79 1.00 −0.20
−0.00 0.00 −0.20 1.00


 , with p =




0.00 0.00 0.24 0.89
0.00 0.00 0.00 1.00
0.24 0.00 0.00 0.00
0.89 1.00 0.00 0.00


 (2.57)

correctly reveal the physical connectivity of the system. Hence, there is no need to
resort to an arbitrary threshold since the statistics of the measures can be readily
applied.
In this chapter, the correlation coefficient is characterized with respect to the

emergence of indirect links. It is argued, that multivariate measures should be used
to avoid indirect links. A series of simulation studies is carried out in the following
chapter in order to further analyze the correlation coefficient when used to reconstruct
networks from measurements.
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Chapter 3.

Network reconstruction and classification - a
simulation study

The results presented in this chapter demonstrate the characteristic of the
correlation coefficient as derived in the previous chapter, as well as the
misclassification of random networks as small-world networks once analyzed
by a correlation coefficient. The results are published in [22]: W. Mader,
M. Mader, J. Timmer, M. Thiel, and B. Schelter. Networks: On the
relation of bi- and multivariate measures. Scientific Reports, 5:10805, 2015
.

The purpose of this chapter is twofold. The first part of the presented simulation
study aims at underpinning the theoretical argument for the emergence of indirect
links developed in Sec. 2.3. Moreover, the extent of the effect on actually reconstructed
networks is investigated. To this end, simulations are conducted on a regular ring
network and two variations of random networks.
Due to the intuitively attractive features of the small-world model [→Sec. 1.3.3],

networks in a variety of fields are investigated for being small world. Based on bivariate
interdependence measures, small-world networks are reported for brain-functional
networks [23, 76–79], seismic [24, 55, 59, 80] and climate networks [15, 25, 57, 81],
networks occurring in literature research [82] or computer science [83]. Motivated by
the appearance of small-world networks in such diverse fields, the second part of this
chapter is concerned with the question, whether the use of bivariate measures also
affects the classification of empirical networks as being small world.
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Chapter 3. Network reconstruction and classification - a simulation study

3.1. Simulation setup
The simulation study investigates properties of partial correlation matrices and their
corresponding bivariate correlation matrices. The general scheme of the study is the
following:

1. Generate a partial correlation matrix describing a complex system of interest.

2. Calculate the corresponding bivariate correlation matrix which would have
resulted from a bivariate analysis of realizations of the system [→Sec. 2.3].

3. Analyze the properties of the resulting correlation matrix. If applicable, compare
the properties of the correlation and the partial correlation matrix.

In Sec. 2.2.2, an approach for finding the partial covariance matrix for a complex
system is described. Therefore, the weighted adjacency matrix Ă of the system has to
be defined in the first place. This offers the advantage that correlation coefficients can
be calculated in terms of the connection strengths defined in Ă. While this is necessary
for the preceding discussion on the emergence of indirect links, a simpler approach is
sufficient for the simulation study presented in the following. The partial correlation
matrix is obtained from the adjacency or incidence matrix of the system directly. To this
end, two approaches are pursued. The first is based on diagonally dominant matrices,
the second exploits the incidence matrix. Both approaches generate a symmetric,
positive-definite matrix matching the topology of the system. The corresponding
bivariate correlation matrix is then obtained by matrix inversion [→Eq. (2.26)].

3.1.1. Diagonally dominant matrix
Derived from Sylvester’s criterion [84], a diagonally dominant, Hermitian matrix with
real and non-negative diagonal elements is positive definite [85, Prop. 2.6 and Prop.
2.16]. In a diagonally dominant matrix, the sum over each row or column excluding
the diagonal element must not exceed the value of the diagonal element [86]. Using
this criterion, the adjacency matrix of a network is turned into a partial correlation
matrix. For this purpose, the diagonal is set to one, and each nonzero entry of the
off-diagonal is replaced by a partial correlation coefficient. The partial correlation
coefficients are chosen such that their row-sum is smaller than one. This approach
limits the range of possible partial correlation coefficients, since correlation matrices
exist which are not diagonally dominant.

3.1.2. Incidence matrix
To broaden the range for partial correlation coefficients, the incidence matrix of a
network is employed. The matrix square of the incidence matrix reflects the topology
of the network. The matrix square of a weighted incidence matrix hence leads to
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3.2. Regular Networks
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(b) Positive correlation

Figure 3.1.: Histogram of correlation coefficients. The correlation coefficients corre-
sponding to direct links (blue) have the largest absolute value. Indirect links (orange)
successively adopt smaller correlation coefficients with increasing path length. As the
resolution of the histogram is reached for small correlation coefficients, the count per
correlation value exceeds M = 80.

a valid covariance matrix reflecting the network’s topology. By normalization, the
partial correlation matrix of the system is found.

3.1.3. Considerations on the network size
The study was stimulated by a cooperation in the field of neuroscience. There, brain
networks are often investigated based on electroencephalography measurements. This
technique usually comprise about 80 sensors. Accordingly, simulations are carried out
on networks with N = 80 nodes.

3.2. Regular Networks
The aim of this first simulation is to review the Taylor series which describes the
emergence of indirect links for bivariate measures [→Eq. (2.30)]. To this end, a
regular ring network with N = 80 and h = 1 is investigated for the simplicity of the
resulting pattern in the correlation matrix. The regular ring network is modeled by
a partial correlation matrix with zero off-diagonal elements, except for the first sub-
and superdiagonal and the lower left and upper right corner. All nonzero entries are
set to ζ which is determined according to the diagonally dominant criterion. As the
node degree is g = 2 for all nodes, |ζ| = 0.49 is chosen such that 2 |ζ| < 1 holds. A
simulation is conducted for ζn = −0.49 and ζp = 0.49, respectively.
Employing the algorithm introduced in Sec. 2.3, the bivariate correlation matrix

of the system is calculated. Owing to the structure of the partial correlation matrix,
P q [→Eq. (2.30)] are symmetric and persymmetric matrices for all q > 0 ⊂ N. Also,
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Chapter 3. Network reconstruction and classification - a simulation study

the values of the i-th off-diagonal equal the values in the (N + 1− i)-th off-diagonal,
where i ∈ [1, bN/2c] ⊂ N.

Moreover, for i as above but starting at two, the i-th off-diagonal remains zero for
all P q where q < i. The i-th off-diagonal encodes indirect links connecting nodes of
distance i. Since the absolute value of the partial correlation coefficient is smaller
than one, the correlation coefficients of indirect links decrease with the distance of the
indirectly connected nodes.

The correlation matrix of the ring network turns out to be fully populated, encoding
direct and indirect links. The histograms of bivariate correlation coefficients are
presented in Fig. 3.1. Irrespective of the sign of ζ, links cluster with respect to their
constituting path length. Direct links possess the largest correlation coefficient as
expected from the framework. In each cluster, 80 links are gathered. On approaching
small values of the correlation coefficients, the resolution of the histogram is reached,
and multiple clusters stack up in a single bin. Hence, the link count exceeds M = 80.

3.3. Random networks
In this section, the above simulation study is applied to random networks. Networks are
obtained from the Erdős-Rényi model with N = 80 nodes and M = dN log(N)e = 351
links; N log(N) links guarantee a network with only one component [39, 47].

3.3.1. Constant partial correlation coefficient
In the first simulation on random networks, ζ is the value of the partial correlation
coefficients of all links. Thus, compared to the last simulation, only the topology of the
network is changed. The partial correlation matrix is constructed using the diagonally
dominant criterion. To this end, the maximum node degree gmax is determined from
the adjacency matrix. Accordingly, all nonzero entries of the adjacency matrix are
set to ζ = 0.95/gmax and its diagonal is set to one. The correlation matrix is again
derived from the partial correlation matrix. As shown in Fig. 3.2, direct links exhibit
larger correlation coefficients (blue) than indirect ones (orange). This results from
the fact that the correlation coefficients of indirect links are introduced by powers of
P starting at q ≥ 2 [→Eq. (2.30)], but correlation coefficients of direct links start at
q = 1. Thus, if all partial correlation coefficients equal ζ, direct and indirect links can
be separated by applying a properly chosen threshold to the correlation coefficients.

The structure of a regular ring network is reflected in its partial correlation matrix
yielding the clustering of the respective correlation coefficient. In contrast, the partial
correlation matrix of a random network is randomly occupied. Hence, even though
all links share the same partial correlation coefficient, the node degree varies among
nodes and with it the diagonal entries of the bivariate covariance matrix. Therefore,
through normalization, a range of bivariate correlation coefficients is obtained.
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Figure 3.2.: Histogram of correlation coefficients calculated from a N = 80, M = 351
random network with a shared value of the partial correlation coefficients of all links.
Direct (blue) and indirect (orange) links can be separated by a threshold.

The main finding of this simulation is the separation of the correlation coefficients of
direct and indirect links in case the strength of all connections are in a narrow range.
Consequently, direct and indirect links are successfully discriminated by thresholding
bivariate methods. While it is a strong assumption to expect all connections strengths
in a narrow range, finding a proper threshold in this situation seems feasible as the
correlation coefficients of direct and indirect links fall in disjoint intervals, cf., Fig. 3.2.

3.3.2. Variation of partial correlation coefficients
When dealing with random networks that exhibit varying strengths of connectivity, a
more complicated scenario emerges. For this simulation, both methods to construct the
partial correlation matrix described in Sec. 3.1 are used. Firstly, in order to construct
the partial correlation matrix using the diagonally dominant criterion, the maximum
node degree gmax is obtained. Then, realizations of a uniformly distributed random
variable in [0, 0.99/gmax] determine the values of the partial correlation coefficients.

Secondly, the partial correlation matrix is obtained by starting with the incidence
matrix B of an Erdős-Rényi network with N = 80 and M = 351. The values of
the nonzero entries of B are drawn from the uniform distribution over the interval
[0, 1]. The partial correlation matrix is obtained as the normalized matrix square
of this weighted incidence matrix. According to Eq. (2.42), two strong direct links
induce a strong indirect one. Hence, if the strengths of connections in the system
spread across a broad interval, the partial correlation coefficients also occupy a broad
range. Consequently, it is likely to find a bivariate correlation coefficient of a direct
connection which is smaller than the bivariate correlation coefficient of a strong indirect
one. This is visualized in Fig. 3.3. Again, correlation coefficients of direct links are
shown in blue, correlation coefficients of indirect ones in orange. In Fig. 3.3 (a), the
histogram for the diagonally dominant construction of the partial correlation matrix is
presented. The histogram for the construction based on the incidence matrix is given
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(b) Incidence matrix square

Figure 3.3.: Histograms of correlation coefficients calculated for a N = 80, M = 351
random network with varying connection strengths. The partial correlation matrix is
obtained by the diagonally dominant criteria (a) and the incidence matrix (b). The
correlation coefficients of direct (blue) and indirect (orange) links overlap.

in Fig. 3.3 (b). Both histograms show the same qualitative behavior: the distribution of
the correlation coefficient of direct and indirect links, respectively, overlap. Thus, any
selection criterion, e.g., a threshold operating on correlation coefficients must report a
mixture of direct and indirect links. Direct and indirect links are not distinguishable
by the bivariate correlation coefficient.
In general, when estimating links from measurements, the underlying system is

unknown. Typically, the system exhibits a non-regular topology combined with varying
connection strengths. As demonstrated, bivariate interdependence measures are inept
to reveal the correct network topology.

As discussed in the next section, this result has also implications for the classification
of reconstructed networks.

3.4. Small-world classification in application
In Sec. 1.3.3, the small-world model is introduced. From a theoretical point of view, a
network is considered small world, if L(N) scales at most logarithmically with N and
C is large [11, 12, 53, 87]. However, when a network Ga is analyzed in application, the
scaling of L(N) is often not accessible because Ga has a fixed number of nodes. To infer
whether Ga complies with the small-world model, its average distance and clustering
coefficient, say La and Ca, are compared to the respective properties Lrnd and Crnd of
a random network Grnd; Grnd is constructed such that is has the same number of nodes
and the same average node degree as Ga [11, 88]. Now, if La ' Lrnd and Ca � Crnd,
Ga is considered to exhibit the small-world phenomenon [11]. Due to the nature of
random networks, Lrnd and Crnd are random variables. Hence, normalizing Ga with a
single realization Grnd is not representative. Instead, the mean values L̄rnd and C̄rnd
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(b) Histogram of γ

Figure 3.4.: Histograms of the small-world indicators λ and γ for random networks
analyzed by a bivariate interdependence measure. The values of λ and γ are calculated
for 100 realizations of Ga. Since λ ≈ 1 and γ > 1 for all realizations, every random
network observed through correlation coefficients is falsely classified as small world.

averaged over multiple realizations of the random model are used for normalization.
In literature, the small-world conditions are usually formulated as

λ = La/L̄rnd , (3.1)
γ = Ca/C̄rnd , (3.2)

where λ ≈ 1 and γ � 1 must hold in order to characterize Ga as a small-world
network [11, 21].

3.5. Bivariate measures and the small-world phenomenon
The preceding sections demonstrated analytically and by simulations that in general,
network reconstruction from data by bivariate measures fails. In this section, it is
shown that bivariate measures also have an noteworthy impact on the classification of
the reconstructed network with respect to the small-world phenomenon.
The simulation study pursuing this question has the following set-up. Firstly, λrnd

and γrnd are sampled from 100 realizations of the Erdős-Rényi model GN,M with
parameters N = 80 and M = dN log(N)e = 351. From this ensemble, L̄rnd and C̄rnd
is calculated to be used in Eqs. (3.1) and (3.2).

Secondly, the network Ga is generated. To this end, again, a realization of GN,M is
drawn and its incidence matrix is used to construct a partial correlation matrix thereof.
From this partial correlation matrix, the bivariate correlation matrix is calculated
[→Eq. (2.26)]. In order to obtain a network comparable to its random ancestor, a
threshold is applied to the bivariate correlation matrix to select the M = 351 strongest
links. This procedure yields the network Ga, in accordance to the strategy frequently
applied in literature [11, 15, 23–26]. Using Eqs. (3.1) and (3.2), Ga is assessed for the
small-world property. In order to sample the distribution of the small-world classifiers
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Chapter 3. Network reconstruction and classification - a simulation study

λ and γ derived from networks of the type of Ga, this procedure is repeated 100 times.
Because the variance of L̄rnd and C̄rnd is negligible, the same averages L̄rnd and C̄rnd
are used in all repetitions.

The result of the simulation is summarized in Fig. 3.4. In Fig. 3.4 (a), the small-world
indicator λ for all 100 realizations of Ga is presented, in Fig. 3.4 (b) the indicator
γ is shown. By construction, the network underlying Ga is truly random as it is a
realization of GN,M . After the network has undergone a correlation analysis, it exhibits
the small-world property in all 100 cases. All random networks are falsely classified
as small-world ones. The explanation of the result is the transitivity property of
bivariate measures for which the mathematical foundation is given in Sec. 2.3. This
result applies to all networks in which links are established by a naive application
of a bivariate interdependence measure irrespective of the dynamics observed, the
measurement technique used, or the specific bivariate measure employed.
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Summary of: Network reconstruction and
classification

Complex systems such as power grids, the brain, the climate, social communities,
or the interaction of different earthquake-prone areas are commonly modeled and
visualized as networks.

In Chap. 1, networks are defined as a set of nodes and a set of links. Based
on different properties, certain network models may be characterized. Models for
regular-ring, random, and small-world networks are considered in this chapter. They
are distinguished by the scaling of the average distance and the clustering coefficient
with the network size. It is shown that in the regular-ring model the average distance
scales linearly with the network size while the clustering coefficient is a function of the
degree of nodes only. In the random model, the average distance scales logarithmically
rather than linearly. The clustering coefficient depends inversely on the network
size, tending to zero for increasing networks. Compared to the regular-ring model,
average distances in the random model are short and clustering coefficients are low.
In the small-world model, the average distance scales logarithmically as in random
networks, while the clustering coefficient is comparable to that of regular networks.
A realization of the small-world model is the realization of the regular-ring model
in which links are randomly rewired with a certain probability. A critical rewiring
probability wsc is defined at which realizations of the small-world model differ from
regular-ring networks. A second critical rewiring probability wrd is given at which the
clustering coefficient starts to decline and realizations of the small-world model become
indistinguishable from realizations of the random model. For a rewiring probability
w ∈ [wsc, wrd] ⊂ R, realizations of the small-world model exhibit the small-world
property. Using expressions for both critical values, it is argued that for relevant
network sizes the small-world regime is included in the small-world model. In other
words, the average distance always declines considerably earlier than the clustering
coefficient.
In Chap. 2, the construction of the network representation of a complex system

based on data measured from the complex system is addressed. Usually, the nodes in
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the representing network are identified with the recording sites at which the dynamics
of the complex system are observed. Network links are established by quantifying
coefficients reported by an interdependence measure applied to the recorded dynamics.
Interdependence measures can either be bi- or multivariate in nature. Bivariate
measures quantify the relation of two nodes without taking into account third-party
influences. As analytically derived, these measures induce indirect links that do
not correspond to physical connections in the observed system. On the contrary,
multivariate measures do take third-party influences into account, such that indirect
links can be avoided. As shown, multivariate measures are obtained from bivariate
measures by partialization, i.e., by removing linear influences of the remaining nodes
onto the two nodes for which the linkage is established. Partialization may equivalently
be achieved by linear regression or by matrix inversion. By expanding the matrix
inversion in a Taylor series, the emergence of indirect links in bivariate measures is
rendered explicit on an analytical footing. As an example, the correlation coefficient
is considered.
In Chap. 3, a series of simulations is presented to show the effect of bivariate

measures onto the reconstruction of networks and their classification oneran the
example of the correlation coefficient. In a first simulation study, the effect of bivariate
measures onto network reconstruction is investigated for the case that linkage strengths
are the same across all connections in a truly regular-ring network. As expected
from the Taylor expansion presented in Chap. 2, direct links exhibit higher values
of the correlation coefficient than indirect ones. In fact, the correlation coefficients
of indirect links become smaller as the path length constituting the indirect link
becomes larger. In the second simulation study, the same setting is applied to
truly random networks. Again, direct links exhibit higher values than indirect links.
However, now the degree of indirectness is no longer determinable from the linkage
strength. As of the third simulation study, direct links are indistinguishable from
indirect links by their correlation coefficients when different linkage strengths prevail
in the investigated network. A mixture of direct and indirect links is identified when
determining relevant links by their correlation coefficients. In the fourth simulation
study, the effect of bivariate measures on the network classification is explored. To this
end, random networks are generated and bivariately treated for network reconstruction.
Average distance and clustering coefficients are computed to determine whether the
reconstructed networks are of small-world type. As expected from theory, networks
reconstructed by a bivariate measure are falsely classified as small world even though
they are inherently random.
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Parameter estimation in dynamic processes
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Chapter 4.

Efficient parameter estimation in the state-space
model

The expectation-maximization algorithm allows to construct maximum-like-
lihood estimators in the case of missing values in data. The computational
complexity of the algorithm leads to long runtimes of the derived estimators.
In this chapter, two provisions which reduce the runtime considerably are
proposed and implemented. The main results of this chapter are published
in [34]: W. Mader, Y. Linke, M. Mader, L. Sommerlade, J. Timmer,
and B. Schelter. A numerically efficient implementation of the expectation
maximization algorithm for state space models. Applied Mathematics and
Computation, 241:222–232, 2014.

The preceding part treats the reconstruction of networks from observations. To this
end, the partial correlation was especially highlighted which assumes independent
and identically distributed (iid) observations from a multivariate normal distribution.
However, consecutive states of a natural process are usually correlated over time.
Recordings of such states are called time series [89]. The model

X(t) = CX(t− 1) + ε(t) , ε(t) ∼ N (0,Q) (4.1)

yields such autocorrelated states X(t). Let

C =



a1 0 0
b21 a2 0
0 b32 a3


 , Q =



q1 0 0
0 q2 0
0 0 q3


 , (4.2)
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then X = (X1, X2, X3)T and, as derived in App.B.1,

var(X1) = q1

1− a2
1
,

cov(X1, X2) = a1b21 var(X1)
1− a1a2

,

var(X2) = q2 + b2
21 var(X1) + 2a2b21 cov(X1, X2)

1− a2
2

,

cov(X1, X3) = a1b32 cov(X1, X2)
1− a1a3

,

cov(X2, X3) = a2b32 var(X2) + a3b21 cov(X1, X3) + b21b32 cov(X1, X2)
1− a2a3

,

var(X3) = q3 + b2
32 var(X2) + 2a3b32 cov(X2, X3)

1− a2
3

.

(4.3)

The covariance of the first and the third process

cov(X1, X3) = a2
1b21b32q1

(1− a2
1)(1− a1a2)(1− a1a3) (4.4)

is in general nonzero, in contrast to their physical connectivity. While this is expected
for the correlation coefficient, it also holds for the partial correlation coefficient. Up to
normalization and sign, the partial correlation coefficient is obtained by inverting the
correlation matrix with elements Eq. (4.3). The insufficiency of the partial correlation
for autocorrelated processes is made explicit by the following numerical example.
Setting a1 = 0.8, a2 = 0.7, a3 = 0.5, b21 = 0.3, and b32 = 0.6, the partial correlation
coefficient and its p-values estimated from m = 105 realizations are

P =




1.00 0.38 −0.02
0.38 1.00 0.64
−0.02 0.64 1.00


 , with p =




0.00 0.00 0.21
0.00 0.00 0.00
0.21 0.00 0.00


× 10−7 , (4.5)

indicating a complete network. This result holds in general.
In order to infer the correct interaction structure including directional information,

the matrices C and Q need to be estimated. To this end, a powerful method is
parameter estimation in the so-called state-space model (SSM) [→Sec. 4.1] by the
method of maximum-likelihood (ML) [→ Sec. 4.2]. The expectation-maximization (EM)
algorithm [→ Sec. 4.3] allows to construct a maximum-likelihood estimator (MLE) for
the parameters in the SSM [32]. However, the EM algorithm is a runtime intensive
procedure. The work presented in this chapter aims at considerably reduce this runtime,
such that the application of the EM algorithm to large data sets becomes feasible [33, 34].
Suitable strategies are presented in Sec. 4.6. In Sec. 4.7, the implementation of the
optimized algorithm is applied to simulated data in order to demonstrate the decrease
in runtime as well as to assess its accuracy. ∗

∗The optimized EM algorithm can be freely obtained from https://github.com/wmader/fdmb.
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4.1. The state-space model

Concerning the reconstruction of networks, several interdependence measures in the
time and frequency domain are defined based on the parameters of the SSM [18, 29–
31, 33]. Thus, once parameters are estimated, these measures are available to quantify
interactions.

4.1. The state-space model
A versatile model tailored to time-series data is the state-space model (SSM) [27, 89, 90].
In the SSM, the so-called dynamic equation models the state of the process of interest,
while its observation is modeled by a separate observation equation.

4.1.1. The autoregressive process
The process informally introduced by Eq. (4.1) is called multivariate or vector-au-
toregressive process (VAR) [91]. The most general form of a VAR[p] of order p is

X(t) =
p∑

τ=1
C(t, τ)X(t− τ) + ε(t) , ε(t) ∼ N (0,Q(t)) . (4.6)

The k-dimensional state vector X(t) of time t is obtained from the p previous state
vectors and additive driving noise ε(t) [27, 89]. Driving noise is modeled by a k × 1-
dimensional normal random vector with zero mean and covariance matrix Q(t). The
correlation of successive states is determined by the transition matrices C(t, τ). The
matrices C(t, τ) and Q(t) are of dimension k×k. The initial valueX(0) of Eq. (4.6) is
drawn from the normal distribution with mean µ0 and covariance Σ0. Throughout this
chapter, C(τ) and Q are assumed time constant. In that case, the normal distribution
with parameters µ0 = E[X(t)] = 0 and Σ0 = E[X(t)X(t)T] is the density of the
process. The covariance matrix is calculated as vec[Σ0] = vec[(I −C ⊗C)−1] vec[Q],
using the Kronecker product ⊗ and the vec operation [92]. The initial value X(0) is
than drawn from this distribution.

Driving noise

Driving noise is part of the dynamics of a system. It accounts for the intrinsic
stochasticity of a process, such as the movement of pollen grains in water [93]. Driving
noise is also employed to model the average effect of details of the system which are
unknown or too subtle to be modeled explicitly. In that case, driving noise straightens
the discrepancy between the model and the modeled system. The central limit theorem
justifies to model driving noise as a normal random variable. Driving noise is modeled
without time correlation, such that consecutive realizations are independent.

67



Chapter 4. Efficient parameter estimation in the state-space model

Embedding of a vector-autoregressive process of order p

Analogous to formulating a k-dimensional differential equation of order p as a kp-di-
mensional equation of order one, a k-dimensional VAR[p] can be formulated as kp-di-
mensional VAR[1]. By embedding, e(·), the transition matrix, state, and noise vector,
Eq. (4.6) translates to [89]

eX(t) =




C(1) C(2) . . . C(p− 1) C(p)
I 0 . . . 0 0
0 I . . . 0 0
... ... . . . ... ...
0 0 . . . I 0




︸ ︷︷ ︸
eC




X(t− 1)
X(t− 2)
X(t− 3)

...
X(t− p)




︸ ︷︷ ︸
eX(t−1)

+




ε(t)
0
0
...
0




︸ ︷︷ ︸
eε(t)

. (4.7)

The sum over the past p states in Eq. (4.6) is rewritten as the product of the kp× kp
matrix eC and the kp × 1 state vector eXt = (X(t)T, . . . ,X(t − p + 1)T)T. The
kp× kp covariance matrix of the driving noise is zero except for the upper left corner
which contains Q. Thus, without loss of generality, the following discussion is confined
to VAR[1] processes.

4.1.2. Observation of the process
Empirical signals are often obscured by a significant amount of observational noise.
Observational noise is provoked by different sources such as temperature, stochastic
movement, or fluctuations in the medium through which a system is observed: an
example for the latter is the flickering of stars when observed through an atmosphere.
In the SSM, the observation of the state vector X(t) is modeled by

Y (t) = OX(t) + η(t) , η(t) ∼ N (0,R) , (4.8)

where O is the o× kp observation matrix and η(t) additive observational noise. The
dimension of Y (t) and η(t) is o× 1. Due to the central limit theorem, observational
noise can be assumed normally distributed with zero mean and o×o covariance matrix
R. As some components of X(t) may go unobserved while others may contribute to
more than one component of Y (t), o 6= kp is allowed. This applies in particular when
formulating a VAR[p] process as a VAR[1] process, where only the first k states are
observed. Since X(t) is not directly observable, it is referred to as hidden state. The
dynamic and observation equation assemble the SSM

X(t) = CX(t− 1) + ε(t) , ε(t) ∼ N (0,Q) ,
Y (t) = OX(t) + η(t) , η(t) ∼ N (0,R) .

(4.9)
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4.1.3. Gauge invariance and the uniqueness of parameters
Identical observations Y (t) can be obtained from an infinite number of combinations of
matrices C, O, and Q, since the SSM is invariant under a continuous transformation
with an invertible matrix L. Consider the substitution

X(t)→ X̃(t) = LX(t) , (4.10)

and the accordingly transformed SSM
LX(t) = LCL−1LX(t− 1) +Lε(t) ,
Y (t) = OL−1LX(t) + η(t) .

(4.11)

By renaming the variables in Eq. (4.11)

X̃(t) = C̃X̃t−1 + ε̃(t) , ε̃ ∼ N
(
0,LQL−1

)
,

Y (t) = ÕX̃(t) + η(t) , η ∼ N (0,R) ,
(4.12)

the observation Y (t) of the original SSM is retained from a SSM with transformed
parameters C̃, Õ, and Q̃. In order to determine the parameters of the SSM from
observations Y (t), this ambiguity has to be resolved. This can e.g., be achieved by
setting O = I. In consequence, the observation of linear combinations of X(t) is
removed from the model. However, the linear combination of observations can be
interpreted as instantaneous interactions, which are just as well encoded by correlated
driving noise. Consequently, Q may gain nonzero off-diagonal entries for O = I. By
this choice, the parameters Θ = {C,Q,R} remain to be estimated.

4.2. Maximum-likelihood estimation
For parameter fitting, the method of maximum likelihood [94, 95] is by far the most
general and powerful option [96]. Suppose a distribution with probability density
function f(Y ; Θ) parametrized by Θ. Let Y = (Y1, . . . , Ym) be iid observations from
that distribution with realizations y = (y1, . . . , ym). Since cov(Yi, Yj) = 0 for all
i, j ∈ {1, . . . ,m}, i 6= j, their joint probability density function is

f(y; Θ) =
m∏

i=1
f(yi; Θ) , (4.13)

and ∫
· · ·

∫ ∞

−∞
f(y; Θ) dy1 · . . . · dym = 1 . (4.14)

For a fixed value of Θ, f(y; Θ) in Eq. (4.13) is the probability of a realization y of
Y . In this view, f(y; Θ) is a function of y. Considered as a function of unknown
parameters Θ but with fixed observations y,

L(y |Θ) =
m∏

i=1
f(yi; Θ) (4.15)
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is called the likelihood function. Note that this is not a probability density function,
since

∫ ∞

−∞
f(y; Θ) dΘ 6= 1 . (4.16)

The value maximizing Eq. (4.16) is the most plausible for Θ given the observed data.
Therefore,

Θ̂ = arg max
Θ

L(y |Θ) (4.17)

is the maximum-likelihood estimate of Θ. It is often convenient to consider the
log-likelihood function

L(y |Θ) = lnL(y |Θ) , (4.18)

which can equally well be maximized to obtain Θ̂.
The method of maximum likelihood allows to construct estimators in a generic way.

An estimator for Θ which is unbiased and a fully sufficient statistic for Θ is termed
fully efficient [96]. A maximum-likelihood estimator (MLE) is asymptotically fully
efficient.

4.3. The expectation-maximization algorithm
In the case of the SSM, the likelihood function as given in Eq. (4.15) depends on the
realization of the observation y but also on the realization of the hidden state x. As
x is unobserved, the method of maximum likelihood cannot be employed directly.
The expectation-maximization (EM) algorithm [→Fig. 4.1] is a generic algorithm

to obtain an iterative ML estimate of parameters from incomplete data, e.g., y in the
SSM [89, 97]. To this end, the joint probability density function of the complete data,
the union of x and y, is required. Let f(x,y; Θ) be this joint probability density
function. Establishing a MLE based on the EM algorithm for a specific model is a
two-stage process. Firstly, by assuming some parameter value Θς for Θ, the expected
value of the log-likelihood function

E[L(X,y |Θ) |y,Θς ] = L̃(E[X |y,Θς ],y |Θ) (4.19)

must be derived. The expected value E(X |y,Θς ) is conditioned on the observation y
and Θς . It is important to note that Eq. (4.19) is still a function of Θ. In the second
step, Eq. (4.19) is maximized with respect to each parameter Θi by solving

∂L̃(E[X |y,Θς ],y |Θ)
∂Θi

= 0 . (4.20)

For each Θi, an update equation of the form

Θς+1 = g[E(X |y,Θς )] , (4.21)
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Hidden
states x(t)

Initial parameters
Θ1

Observations
y(t) =

Ox(t) + η(t)

Expectation
E(x |y, Θς ) by

the Kalman
smoother

Maximization
Parameter
update by
Eq. 4.21

Final estimates
of hidden states
x(t)c, P c

Final parameter
estimates Θc+1

iterate 1 ≤ ς ≤ c
EM algorithm

once converged

c times

[ tikzpicture optimized away because it does not contribute to exported
PDF]

Figure 4.1.: Expectation-maximization procedure for the state-space model. The
Kalman smoother provides the conditional expected values appearing in Eq. (4.19).
With these at hand, parameter updates as sketched in Eq. (4.21) yield an updated
parameter vector. The EM algorithm is initialized with parameters Θ1, which have
the sole constraint to define a stationary SSM. At convergence after c iterations, Θc+1

is the ML estimate of Θ.

results, i.e., Θς+1 is some function g of E(X |y,Θς ).
As implied by Eqs. (4.19) and (4.21), the EM algorithm is iterative involving two

steps. In the first step, E(X |y,Θς ) is attained. If the value of L̃ is of interest,
Eq. (4.19) can be evaluated. This step is commonly termed the expectation step. In the
second step, the update equations are evaluated evolving the parameter values from
Θς to Θς+1. This is known as the maximization step. These two steps are iterated
until some convergence criterion is reached. This criterion is either the difference of
the incomplete-data likelihood of consecutive iterations [89, 98], or some measure of
parameter change of consecutive iterations [34]. Unfortunately, a small variation in one
does not imply a small variation in the other or even global optimality of parameter
estimates. Since the objective is to estimate parameters, it remains advisable to define
convergence by parameter change. When converged after, say, c iterations, Θc+1 is a
ML estimate of Θ.

In the SSM, the conditional expected value E(X |y,Θς ) is provided by the Kalman
smoother which itself is based on the Kalman filter.
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4.4. Kalman filter and smoother
Let a noisy time series y(t) be recorded up to time t. Then, for time s, some statement
is to be made about y(s). For s < t, the problem is called smoothing, for s = t filtering,
and for s > t prediction.
In 1960, Rudolf E. Kalman introduced a formalism to obtain an estimate x̂ of

the hidden states X in the SSM based on the observations y [27]. According to this
formalism, the average mean squared error

E[(Xt − x̂t)2 |y1, . . . ,yt ] (4.22)

is to be minimized. In order to allow for a tight notation, time is given as subscript
(·)t for the rest of this chapter. The formalism of minimizing Eq. (4.22) is nowadays
well known as Kalman filter. Despite its name, it includes filtering and prediction of
X as well as the reconstruction of unobserved dimensions of X in case of o < k [27].

The conditional expected values introduced now use the notation, that the subscript
t denotes the estimation time point and the superscript s up to which measurement it
is conditioned on. Thus, the conditional expected value of the state vectorX is [32, 89]

x̂st = E[Xt |y1, . . . ,ys ] , (4.23)

and its conditional error covariance is

P s
t1,t2 = E[(Xt1 − x̂st1)(Xt2 − x̂st2)T]

g= E[(Xt1 − x̂st1)(Xt2 − x̂st2)T |y1, . . . ,ys ]
= cov(Xt1 ,Xt2 |y1, . . . ,ys ) .

(4.24)

The relation g= only holds if Xt is Gaussian [89]. For t1 = t2 = t, the shorthand P s
t is

used.

4.4.1. Kalman filter
The Kalman filter is an iterative algorithm to estimate the hidden state X in the SSM
with minimal mean-squared error [→Eq. (4.22)] [27]. The equations of the Kalman
filter are [32, 89, 99]

x̂t−1
t = Cx̂t−1

t−1 , (4.25)
P t−1
t = CP t−1

t−1C
T +Q , (4.26)

x̂tt = x̂t−1
t +Kt

(
yt −Ox̂t−1

t

)
, (4.27)

P t
t = P t−1

t −KtOP
t−1
t , (4.28)

Kt = P t−1
t OT

(
OP t−1

t OT +R
)−1

. (4.29)
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The filter is initialized at t = 0 with initial state x̂0
0 = µ0 and error covariance P 0

0 = Σ0.
The initial values µ0 and Σ0 must be provided by external knowledge in the same way
as, e.g., C or O. Hence, x̂0

0 and P 0
0 are considered as parameters of the SSM and are

to be estimated in the EM algorithm. The explicit initial values of these parameters
are noncritical as long as they yield a stationary SSM.
Based on the predicted state x̂t−1

t , the expected observation at time t

ŷt = E(Yt |y1, . . . ,yt−1 ) = Ox̂t−1
t (4.30)

can be calculated. As the realization of Yt is observed, the particular value

δ̃t = yt −Ox̂t−1
t (4.31)

of the prediction error or innovation [98]

δt = Yt −Ox̂t−1
t (4.32)

is accessible [89]. Its variance evaluates to

Σt = var[δt] = var[O(Xt − x̂t−1
t ) + εt] = OP t−1

t OT +R . (4.33)

The filter involves a time-update and a measurement-update step. The time update,
Eqs. (4.25) and (4.26), is a one-step ahead model-based prediction of state x̂t−1

t and
error covariance P t−1

t . It is important to note that the time update does not consider
the observation at time t.
The measurement update, Eqs. (4.27) and (4.28), integrates the information of the

current measurement yt. In order to derive Eq. (4.27), the joint probability density
function of Xt and δt conditioned on the observations {y1, . . . ,yt} is needed. The
corresponding covariance is [89, Eq. (6.26)]

cov(Xt, δt |y1, . . . ,yt ) = cov(Xt,Yt −Cx̂t−1
t |y1, . . . ,yt )

= cov(Xt − x̂t−1
t ,Yt −Cx̂t−1

t |y1, . . . ,yt )
= cov(Xt − x̂t−1

t ,C(Xt − x̂t−1
t ) + ηt |y1, . . . ,yt )

= cov(Xt − x̂t−1
t ,Xt − x̂t−1

t |y1, . . . ,yt )CT

= P t−1
t CT .

(4.34)

With the variance terms, Eqs. (4.26) and (4.33),
(
Xt

δt

) ∣∣∣∣∣y1, . . . ,yt =
(
Xt

δt

) ∣∣∣∣∣y1, . . . ,yt−1, δt (4.35)

∼ N
([
x̂t−1
t

0

]
,

[
P t−1
t P t−1

t OT

OP t−1
t Σt

])
(4.36)
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is the desired joint probability density function [89, Eq. (6.27)]. Equation (4.35)
holds, since δt contains all information of yt not yet contained in x̂t−1

t , cf., Eq. (4.32).
Recalling Eq. (2.19), the expected value of Xt conditioned on δ̃t, i.e., x̂tt, is

x̂tt = x̂t−1
t + P t−1

t OTΣ−1
t δ̃t

= x̂t−1
t + P t−1

t OT
(
OP t−1

t OT +R
)−1

δ̃t

= x̂t−1
t +Ktδ̃t .

(4.37)

Thus, the Kalman gain Kt transforms the time-updated state estimate in its expected
value conditioned on all observations including the newly acquired yt. Using Eqs. (2.21)
and (4.24), the measurement update for the conditional error covariance

P t
t = var(Xt |y1, . . . ,yt )

= E[(Xt − x̂tt)(Xt − x̂tt)T |y1, . . . ,yt ]
= P t−1

t − P t−1
t OTΣ−1

t OP
t−1
t

= P t−1
t − P t−1

t OT(OP t−1
t OT +R)−1OP t−1

t

= P t−1
t −KtOP

t−1
t

(4.38)

is derived.
The Kalman filter is a forward recursion, which is independent of future observations

and thus allows for online application. Another property of the filter is that Eqs. (4.26),
(4.28), (4.29) do not involve observations, such that the (lag one) error covariance P t

t

and P t−1
t and the Kalman gain Kt can be calculated before the filtering starts. With

the computational power of contemporary computers, preparing P t−1
t , P t

t , and Kt

beforehand is not of great interest anymore. However, for the application of the Kalman
filter in the Apollo mission to the Moon in 1969, this was a nice advantage [100].

Prediction State and error covariance predictions are obtained by iterating Eqs. (4.25)
and (4.26) until the desired time t̃ > t is reached using x̂tt and P t

t as initials.

4.4.2. Kalman smoother
The smoother is a recursion moving backwards in time. Thus, it is only applicable to a
fully recorded time series containing, say, m samples. The Kalman smoother equations
for t = m,m− 1, . . . , 1 are [32, 89, 99, 101]

Jt−1 = P t−1
t−1C

T
(
P t−1
t

)−1
, (4.39)

x̂mt−1 = x̂t−1
t−1 + Jt−1

(
x̂mt −Cx̂t−1

t−1

)
, (4.40)

Pm
t−1 = P t−1

t−1 + Jt−1
(
Pm
t − P t−1

t

)
JT
t−1 . (4.41)
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In analogy to Kt [→Eq. (4.29)], Jt is the smoother gain. The final estimate x̂mm and
its covariance Pm

m provide the initial values for the smoother. The recursion

Pm
t−1,t−2 = P t−1

t−1 J
T
t−2 + Jt−1

(
Pm
t,t−1 −CP t−1

t−1

)
JT
t−2 , t = m,m− 1, . . . , 2 (4.42)

with initial value

Pm
m,m−1 = (I −KmO)CmP

m−1
m−1 (4.43)

is the so-called lag-one covariance smoother [32, 89].

4.5. Maximum-likelihood estimation of state-space model
parameters by the expectation-maximization algorithm

The parameters in the SSM can be estimated in an iterative manner by an MLE
which is constructed using the EM algorithm. Since the observation matrix O is
fixed to the identity in order to resolve the gauge invariance in the SSM [→ Sec. 4.1.3],
the parameter vector Θ = (µ0,Σ0,C,R,Q) remains for estimation. The discussion
follows [32].
The joint probability density function of m samples from the SSM is

f [(x,y),Θ] = f [x0, (µ0,Σ0)]
m∏

t=1
f [xt, (C,Q)]

m∏

t=1
f [yt, (O,R)] . (4.44)

Since the driving and observational noise in the SSM is Gaussian, the log-likelihood
function considered as a function of Θ reads

L(Θ) =− 1
2 log |Σ0| −

1
2(x0 − µ0)TΣ−1

0 (x0 − µ0)

− m

2 log |Q| − 1
2

m∑

t=1
(xt −Cxt−1)TQ−1(xt −Cxt−1)

− m

2 log |R| − 1
2

m∑

t=1
(yt −Oxt)TR−1(yt −Oxt) .

(4.45)

Thus, by denoting the trace of a matrix by tr(·), the conditional expected value
[→Eq. (4.19)] of the likelihood function

L̃(Θ) =− 1
2 log |Σ0| −

1
2 tr

{
Σ−1

0

[
Pm
t + (x̂m0 − µ) (x̂m0 − µ)T

]}

− m

2 log |Q| − 1
2 tr

{
Q−1

[
γ − βCT −CβT +CαCT

]}

− m

2 log |R|

− 1
2 tr

{
R−1

m∑

t=1

[
(yt −Ox̂mt ) (yt −Ox̂mt )T +OPm

t O
T
]}

,

(4.46)
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with

α =
m∑

t=1

[
Pm
t−1 + x̂mt−1(x̂mt−1)T

]
, (4.47)

β =
m∑

t=1

[
Pm
t,t−1 + x̂mt (x̂mt−1)T

]
, (4.48)

γ =
m∑

t=1

[
Pm
t + x̂mt (x̂mt )T

]
, (4.49)

is derived. Based on Θς , the quantities x̂mt , Pm
t , and Pm

t,t−1 are obtained from
the Kalman smoother [→Eqs. (4.40) and (4.41)] and lag-one covariance smoother
[→Eq. (4.42)]. Advantage is taken of the fact that covariance matrices are symmetric
and thus self-adjoint. The parameter update equations are obtained using partial
derivatives of Eq. (4.46) with respect to each parameter. The calculation is recapped
in App.B.2. The update equations are derived as

C(ς+1) = βα−1 , (4.50)

Q(ς+1) = 1
m

(
γ − βα−1βT

)
, (4.51)

R(ς+1) = 1
m

m∑

t=1

[
(yt −Ox̂mt ) (yt −Ox̂mt )T +OPm

t O
T
]
. (4.52)

Mean and covariance of the initial value x0 are updated as µς+1
0 = x̂m0 and Σς+1

0 = Pm
0 .

4.5.1. Initialization and convergence
For the first iteration of the EM algorithm, the SSM is initialized as follows. The
mean of the time series yt defines µ1

0, whereas Σ1
0 can be set to a reasonable baseline

value [32]. The remaining parameters C, Q, and R can be initialized unrestricted, as
long as they yield a stationary SSM. As discussed in Sec. 4.3, convergence is determined
by the relative change of C [→Eq. (4.50)], quantified by

κ = max
i,j

[
(Cς)ij − (Cς−1)ij

(Cς)ij

]
, i, j = 1, . . . , kp . (4.53)

4.5.2. Constrained update equations for the embedded VAR process
The Kalman filter and smoother base on the VAR[1] model. As the Kalman filter
provides the conditional expected values needed in the EM algorithm, a VAR[p] model
must be reformulated as VAR[1] in order to estimate its parameters. According to
Sec. 4.1.1, this is unproblematic in general. However, this reformulation implies a
certain structure of C and Q. With the next proposition, it is proven, that this
structure is maintained by the update equations of the EM algorithm.
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Proposition 4.5.1. The structure of C and Q resulting from the reformulation of
a VAR[p] as a VAR[1] is maintained by the parameter update equations of the EM
algorithm as given in Eqs. (4.50) and (4.51).

Proof. Constrained optimization is carried out by the use of Lagrangian multipliers.
The Lagrangian multipliers of the elements of the transition matrix Cij are denoted
λij, the multipliers for the elements of the covariance matrix Qij are denoted ωij,
with i, j = 1, . . . , kp. In case Cij or Qij refers to an unconstrained element, λij or
ωij, respectively, are set to zero. Constraints are formulated as Cij − φij = 0 and
Qij − ψij = 0. The constrained elements of C are either zero or one, the constrained
elements of Q are all zero. Thus, φij and ψij are also either zero or one, according
to the desired value of Cij and Qij. From the unconstrained expected value of the
log-likelihood function as given in Eq. (4.46), the expected value of the constrained
log-likelihood function

L̃n = L̃+
kp∑

i,j=1
λij(Cij − φij) +

kp∑

i,j=1
ωij(Qij − ψij) (4.54)

is derived. Its partial derivative with respect to Q is

∂L̃n

∂Q
= ∂L̃
∂Q

+ ∂

∂Q

∑

i,j

ωij(Qij − ψij)

= ∂L̃
∂Q

+
∑

i,j

ωijêij

= ∂L̃
∂Q

+ Ω
!= 0 .

(4.55)

It is shown in App.B.2.2, Eq. (B.31) that

∂L̃
∂Q

= −1
2
(
mQ−1 −Q−1F TQ−1

)
, (4.56)

where F is defined as

F = γ − βCT −CβT +CαCT . (4.57)

By the use of Eq. (4.56), Eq. (4.55) becomes

−1
2
(
mQ−1 −Q−1F TQ−1

)
+ Ω = 0 . (4.58)

Multiplication by 2Q from the left and by Q from the right yields

− (mQ− F ) + 2QΩQ = 0 . (4.59)
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The first term arises from the unconstrained case, such that equating coefficients
with the unconstrained parameter update equation stated in Eq. (4.51) leads to the
constrained update equation

Qς+1
n = 1

m

(
γ − βα−1βT

)
+ 2
m
QΩQ

= Qς+1 + 2
m
QΩQ .

(4.60)

The derivatives

∂L̃n

∂ωij
= 0 , for i, j = 1, . . . , kp (4.61)

determine the constrained elements of Q to zero, such that

Q =
(
� 0
0 0

)
(4.62)

results, where � indicates nonzero elements. By virtue of the form of Q

QΩQ =
(
� 0
0 0

)
·
(

0 �
� �

)
·
(
� 0
0 0

)
= 0 . (4.63)

Thus, Eq. (4.51) and Eq. (4.60) are equivalent, such that the unconstrained update
equation already maintains the structure of Q. The same argument applies to the
update equation for C.

Due to numerical inaccuracy, the constrained parts of C and Q might nevertheless
differ from their desired values. It is therefore advisable to reset these elements after
each parameter update.

4.6. Reducing the computational complexity of the EM
algorithm

As proposed in this thesis, the runtime of the EM algorithm is reduced by parallelization
as well as by exploiting fixed-point equations for the Kalman filter and smoother gain.
Both approaches are presented in the following.

4.6.1. Parallelization
The parameter update equations stated by Eqs. (4.50) – (4.52) only depend on the
sum of xmt and Pm

t either directly or through Eqs. (4.47) – (4.49). Each sum occurring
in Eqs. (4.47) – (4.49) can be divided in, say, u sub-sums. For each sub-sum i, an
individual Kalman filter and smoother can obtain xm/ut,i and Pm/u

t,i in parallel, where
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the index i = 1, . . . , u referes to the i-th sub-sum. From the intermediate results αi,
βi, γi, the corresponding full-data quantities

α =
u∑

i=1
αi , β =

u∑

i=1
βi , γ =

u∑

i=1
γi (4.64)

are rapidly calculated. The same argument applies to Eq. (4.52), directly. Most of
the runtime of the EM algorithm is spent in the Kalman filter and smoother. Thus,
executing them in parallel on a computer system with v cores decreases the runtime
of the entire algorithm by the factor min(u, v).
The data processed by a sub-sum is called panel in the following. Repeated

measurements are a natural candidate for panels. In that case, repetitions can be
analyzed in parallel and collated afterwards in order to obtain the parameter estimates,
which fit the entire data set.

Splitting a long time series in u shorter ones which are then processed in parallel
offers an additional approach to take advantage of parallelization. The Kalman filter,
however, needs some time to converge for each of the u panels. Thus, some of the
information present in early recordings of each panel is wasted. Fortunately, as an
afterthought of the second optimization, this drawback is eliminated as soon as the
panels are long enough for the filter to converge at all [34].

4.6.2. Fixed points of the Kalman gains
As matrix inversion is computational complex, this optimization approach aims at
avoiding matrix inversions in the Kalman filter and smoother gain

Kt = P t−1
t OT

(
OP t−1

t OT +R
)−1

, (4.65)

Jt−1 = P t−1
t−1C

T
(
P t−1
t

)−1
. (4.66)

Both gains depend on time by P t−1
t and P t

t . However, for a stationary process, the
(lag-one) error covariance does not change with time, making their update equations
(4.26) and (4.28) fixed-point equations. In literature, this property is used e.g., to
establish the asymptotic distribution of the maximum-likelihood estimator [89]. In
this section, the fixed-point equations are exploited to reduce the computational
complexity of the EM algorithm. After engaging the Kalman filter, the (lag-one) error
covariance changes its value with each time step until its fixed-point is reached, such
that P t

t = P t−1
t−1 and Pm

t = Pm
t−1 holds.

Since the smoother gain is a function of the error covariance of the filter, it is at
this point fully determined as

J = P t
tC

T(P t−1
t )−1 . (4.67)

The update equation for the error covariance of the smoother than reads

Pm
t = P t

t + J(Pm
t − P t−1

t )JT . (4.68)
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Using the Kronecker product ⊗ and the vec operation [92], Eq. (4.68) is rearranged to

Pm
t − JPm

t J
T = P t

t − JP t−1
t JT (4.69)

(I − J ⊗ J) vec(Pm
t ) = vec(P t

t − JP t−1
t JT) , (4.70)

such that the explicit expression

vec(Pm
t ) = (I − J ⊗ J)−1 vec(P t

t − JP t−1
t JT) . (4.71)

is found. Along the same line, the explicit expression

vec(Pm
t,t−1) = (I − J ⊗ J)−1 vec

[
(I − JC)P t

t J
T
]

(4.72)

for the lag-one error covariance is obtained [34].

4.6.3. Optimized expectation-maximization algorithm
The following sequence constitutes the EM algorithm taking advantage of the run
time optimization introduced in the last two sections [34].

0. Initialize the Kalman filter.

1. Iterate
P t−1
t = CP t−1

t−1C
T +Q ,

P t
t = P t−1

t −KtOP
t−1
t ,

Kt = P t−1
t OT

(
OP t−1

t OT +R
)−1

.

(4.73)

until convergence starting from P 0
0 = P n

0 as of the last EM iteration.

2. Calculate the smoother gain and the error covariance of the smoother by
Eqs. (4.67), (4.71), (4.72). As they are data independent, their results apply to
all panels.

3. Filter the observations, possibly for all panels in parallel, by calculating

x̂tt = Kyt + (I −KO)Cx̂t−1
t−1 , t = 1 . . . n , (4.74)

x̂mt−1 = Jx̂mt + (I − JO)x̂t−1
t−1 , t = n . . . 1 . (4.75)

Initialize x̂0
0 to x̂n0 from the last EM iteration.

4. Evaluate

α = mPm
t−1 +

m∑

t=1

[
x̂mt−1(x̂mt−1)T

]
, (4.76)

β = mPm
t,t−1 +

m∑

t=1

[
x̂mt (x̂mt−1)T

]
, (4.77)

γ = mPm
t +

m∑

t=1

[
x̂mt (x̂mt )T

]
, (4.78)
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and Eq. (4.64) if applicable, in order to finally update C, Q, and R through
Eqs. (4.50) – (4.52).

5. Repeat 1. to 4. until convergence.

4.7. Application to simulated data
In this section, the performance of the optimized EM algorithm is demonstrated. To
this end, the conventional algorithm [32, 89] as well as the algorithm with the here
proposed optimizations are implemented [34]. † The runtimes of both algorithms are
than compared.
The accuracy of parameter estimates of the optimized algorithm is assessed by

means of their spectral representation as well as by repeated estimations. Calcula-
tion of confidence bounds for parameter estimates would also be possible using the
second derivative of the complete-data likelihood. However, this is already reported
elsewhere [33, 102]. The overall view yields that the implementation is fast, accurate,
and correct.

4.7.1. Runtime improvements
In a first simulation study, the runtime of three different implementations of the EM
algorithm is compared. Firstly, the conventional EM algorithm is implemented in
Matlab, secondly in C++. Thirdly, the optimized EM algorithm is implemented in
C++. That way, the effect of the different programming languages as well as of the
proposed optimizations on the runtime can be studied separately.
Three time series are used to benchmark the runtime which are realizations of a

three-dimensional VAR[2] with transients discarded. The time series have 1000, 5000,
and 30 000 data points, respectively. To each time series, a SSM is fitted. Each SSM
includes a three-dimensional VAR of order 3, 5, and 10, respectively. All calculations
are performed on two 2.93 GHz Quad-Core Intel Xeon CPUs with 32 GiB of computer
memory in total. Algorithms are rated by the average time spent for one EM iteration.

Runtimes of conventional and optimized EM algorithm In Fig. 4.2, the average
runtimes of all EM implementations are plotted against the number of data points
of the analyzed time series. The performance of the conventional EM algorithm is
comparable for the two programming languages. Thus, the effect of the programming
language on the runtime can be considered negligible. Yet, the conventional algorithm
is outperformed by the optimized algorithm by a runtime that is reduced by two orders
of magnitude. This is a major improvement, which allows to analyze data sets which
hence have been too large [33].

†The optimized EM algorithm can be freely obtained from https://github.com/wmader/fdmb.
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Figure 4.2.: Overview of the runtime of the different EM implementations. The results
of the Matlab implementation are shown in shades of blue, the results of the C++

implementation of the conventional EM algorithm in shades of orange, and in shades
of green, the results of the optimized C++ implementation are presented. The shades
of colors encode from light to dark the process order 3, 5, and 10 of the fitted SSM.

4.7.2. Accuracy of parameter estimates
Two simulation studies addressing the quality of the parameter estimates obtained by
the implementation of the optimized EM algorithm are carried out. In the first study,
the power spectral density function calculated from both the true VAR parameters
and the VAR parameters estimated in the SSM are compared. In the second study,
the accuracy of the actually estimated parameter values is investigated by means of
repeated estimations.

Power spectral density function of the VAR process

The power spectral density function, or simply power spectrum, H(ω) describes the
distribution of frequencies contained in a stationary random process. In particular,
H(ω) dω denotes the power of the process in the infinitesimal frequency bin [ω, ω +
dω] [103]. The power spectrum of a VAR process

H(ω) = 1
2πc ·Q · c

∗ , widh c =
(
I −

p∑

τ=1
C(τ)e−iwτ

)−1

, (4.79)

is determined by its transition matrices C(τ) and the covariance matrix of the driving
noise Q [91]. The conjugate transposed matrix of c is denoted c∗. In the simulation
study, the true values of C and Q are known. Thus, the true spectrum and the
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(b) Second process component

Figure 4.3.: True and estimated power spectra. Shown in blue is the true spectrum.
The smoothed periodogram is shown in orange. The spectrum shown in green is
calculated from the parameters of a fitted VAR model. The remaining spectra are
calculated from parameters estimated in the SSM by the optimized EM algorithm for
value {10−1, 10−2, 10−3, 10−5, 10−7} of the convergence criterion κ.

spectrum calculated from estimated parameters can be compared. For this study, a
two-dimensional VAR[3]

C(1) =
(

0.9 0
0.35 0.7

)
, C(2) =

(
−0.5 0.1
0.2 −0.3

)
,

C(3) =
(

0 0.15
−0.25 −0.4

)
, Q =

(
1 0
0 1

) (4.80)

is considered. After discarding 104 data points from a realization of the process in
order to avoid transient effects, a time series with m = 103 data points is obtained.
Gaussian noise is added to the time series in order model additive observational noise.
The variance of the observational noise is chosen such that the signal-to-noise ratio
(SNR) is 1/8 for both process components.

In Fig. 4.3, the true and estimated spectra of both process components are compared.
The true (True) spectra without observational noise are calculated from the true
process parameters and are used as reference for the estimates. A model-free estimator
of the spectrum is the smoothed periodogram. Since this estimator does not take
into account observation noise, its estimates (AR) are mostly flat due to the large
amount of observational noise. As the VAR model does also not include observation
noise, the spectrum calculated from fitted VAR parameters (AR) is also mostly flat.
For an increasingly strict convergence criterion κ ∈ {10−1, 10−2, 10−3, 10−5, 10−7}, cf.,
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(b) Second process component

Figure 4.4.: Repeated spectral estimation from different realizations of a single process.

Eq. (4.53), the spectra of both process components calculated from maximum-likelihood
SSM parameter estimates converge to the true spectrum. The peaks, the most informed
regions in a spectrum, are well recovered for all values of κ.

Parameter estimates depend on the realization of the process. In a second study, for
each of 20 different realizations of the process defined by Eq. (4.80), the spectrum is
estimated in the SSM at κ = 10−5. Estimated spectra are shown in Fig. 4.4. Frequency
regions with large power are well determined by the data and are invariant under
process realizations. Estimated parameters are mostly determined by the contributions
of these frequencies to the time series. Thus, parameter estimates are such that the
estimated and true spectrum match well in these frequency regions. Consequently,
for all process realizations, the peaks of the spectrum are correctly identified, but
especially at high frequencies, the estimated spectra depend on the realization.

Repeated estimation with varying initial conditions

The accuracy of the optimized EM implementation is studied by estimating parameters
multiple times from one time series starting from random parameter values. To this
end, the parameter vector Θ = {µ0,Σ0,C,R,Q} of a two dimensional SSM with
process order two is estimated from a realization of the same model. Thus, the model
is the correct one for the fitted data such that true and estimated parameter values
are directly comparable. The first 500 samples of the time-series which is used for
fitting is depicted in Fig. 4.5. The SNR is one for both components. Convergence is
defined by κ ∈ {10−5, 10−7}. For both value of κ, 100 fits are performed.

For κ = 10−7, the estimated values of C are shown in Fig. 4.6 (a). The 100 repeated
fits yield two distinct sets of parameter estimates. The first is on spot with the
true parameter values. This solution is termed correct in the figure legend and is
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Figure 4.5.: Realization of the SSM from which the parameter estimates presented
in Fig. 4.6 are obtained. The hidden states are depicted in blue. Parameters are
estimated from their noisy observations plotted in orange.

plotted as blue circles. The estimates of the second set are incompatible with the true
parameter values. This solution is referred to as concurrent shown by orange squares.
Analogously, the results for Q are presented in Fig. 4.6 (b), those for R are presented
in Fig. 4.6 (c). The concurrent solution for q11 is much larger than its true value in
order to meet the variance of the data.
Even though the estimates of the concurrent solution are incompatible with the

true values, the associated spectrum resembles the main features of the true one. At
κ = 10−5, the correct solution is found in about 75 % of all fits. This percentage
increases with decreasing κ, such that at κ = 10−7 the correct solution is found in 90 %
of all fits. As with all optimization problems, the convergence criterion is a trade-off
between time and accuracy. The EM algorithm is no exception.

The EM algorithm guarantees to increase the likelihood of the parameter estimates
with each iteration until a fixed-point of the likelihood function is reached. However,
the EM algorithm is not guaranteed to converge to the global maximum of the
likelihood function [104]. By a multi-start approach, the parameter space is sampled,
such that local maxima and at best the global maximum are found. The maximum
with largest likelihood repeatedly found by multi-start fitting can be assumed to be
the global maximization, yielding an estimate of the true parameter values [105]. In
this regard, the algorithm achieves accurate parameter estimates.
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(a) Estimates of C(1) and C(2)
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(b) Estimate of Q
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(c) Estimate of R

Figure 4.6.: Average parameter estimates from 100 repetitions at κ = 10−7. Standard
errors are smaller than plot marks. The elements of the transition matrix C are
shown in (a) with the time lag given as superscript. The true parameter values are
denoted by black circles. The fits yield two solutions. The estimates of the correct
solution are on spot with the true values. The estimates of the concurrent solution
are incompatible with the true values. In (b) and (c), analogous results are shown for
Q and R, respectively.
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Summary of: Parameter estimation in dynamic
processes

Typical for empirical data is the presence of both driving and observational noise.
Driving noise belongs to the process and influences its dynamics. Observational noise
prevents the direct observation of the state of the underlying process. Depending on
the signal-to-noise ratio, the variance of the observation may be dominated by the
dynamics of the process or by the observational noise. The state-space model (SSM)
is a linear model tailored to such data. It models the dynamics of a system by an
autoregressive process together with a linear and stochastic observation equation.
A maximum-likelihood estimator for the parameters of the SSM can be derived

using the expectation-maximization (EM) algorithm. While this procedure is well
established, its long runtime is a major drawback in application. In this chapter,
two optimization strategies are developed which allow to reduce the runtime of the
algorithm substantially.
The first optimization exploits the fact that the parameter update is based on the

sum of the contributions of all time points in the time series under investigation. This
sum can be divided into sub-sums, which allow to run multiple Kalman filters and
smoothers, say u, in parallel and combine their results afterwards. Thus, the runtime
can be reduced by the factor u.
The second optimization relies on the fixed-point equations for the Kalman filter

and smoother gain. In the conventional EM algorithm, these gains must be calculated
for each time point of the filtered time series. In the optimized EM algorithm, both
gains are calculate only once before each EM iteration and are then applied to the
entire time series. In effect, the dependence of the runtime on the number of filtered
data points is reduced. This optimization is most efficient for large time series.
The chapter concludes with a simulation study comparing the performance of the

conventional and optimized EM algorithm. It is demonstrated, that the optimized
algorithm outperforms the conventional one by two orders of magnitude with respect
to runtime, and that the parameter estimates of the optimized algorithm are accurate.
The optimized algorithm is freely available under https://github.com/wmader/fdmb.
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Part III.

PANG: An advanced preamplifier for ECG
signals recorded in the MRI environment
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Chapter 5.

Reconstruction of the cardiac ECG signal in the MRI
environment

For medical applications, a high quality electrocardiogram would be desirable
for patients which are under magnetic resonance imaging examination. To
date, this is an unsolved filtering problem. In this chapter, an possible
solution based on the extended Kalman filter is developed. The material
presented is in preparation for publication as W. Mader, W. Buchenberg,
M. Mader, B. Schelter, and J. Timmer. Reconstruction of the cardiac ECG
signal in a MRI environment. Insights in Medical Physics, in preparation .

Magnetic resonance imaging (MRI) is a medical imaging modality routinely used to
image the structure and function of tissue and organs of the human body. Magnetic
resonance imaging operates with an external magnetic field in the range of 1.5 T to
3.0 T provided by a superconducting solenoid. Compared to computer tomography
or fluoroscopy, which rely on X-ray images, MRI does not involve ionizing radiation.
Moreover, MRI allows for different imaging schemes by which contrast recovery
can be adapted to the tissue of interest. For some medical interventions, such as
cardiac catheterization, the patient’s heart must be monitored by means of the
electrocardiogram (ECG). The MRI environment however, induces noise into the
recording of the ECG, because ions dissolved in the bloodstream get deflected in the
presence of a magnetic field by the magnetic part of the Lorentz force. Thus, an ECG
recorded in a MRI environment is the superposition of the electrical activity of the
heart and the voltage evoked by the Lorentz force.
The endeavor of the work presented in the following is to recover the electrical

activity of the heart from the ECG recorded in a MRI environment in order to establish
MRI in the catheterization laboratory (cath lab). A cath lab is an examination room
in a hospital designed to examine the arteries of the heart as well as the heart chambers
and to treat possible abnormalities thereof. The intervention involves inducting one
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or several catheters into the patients vessels or chambers. Catheters are used for
diagnosis, i.e., an electrophysiology study testing the electrical activity and conduction
pathways of the heart, or for intervention, e.g., catheter ablation. Catheter ablation
allows to treat arrhythmia that cannot be treated otherwise. Such arrhythmia arise
when the conduction pathways of the heart are faulty. By local heating or freezing
of the catheter, abnormal tissue causing the arrhythmia is removed. In state of the
art cath labs, fluoroscopy is used for catheter guidance and position control. In order
to asses the progress and success of ablation, the electrical activity of the heart must
be monitored reliably, i.e., a high-quality ECG must be available. The advantage of
MRI compared to fluoroscopy in the cath lab would be better visibility of catheters
by optimized imaging schemes, which are impossible by fluoroscopy, and avoidance of
ionizing radiation, to which patient and staff are exposed.

In the following, an approach to recover the electrical activity of the heart from an
ECG recorded in the MRI environment is presented. It employs a non-linear model
for the ECG signal of the heart, and the extended Kalman filter to estimate this ECG
signal.
In Sec. 5.1, the ECG is introduced, followed by the theory on the induced signal

in the presence of a magnetic field in Sec. 5.2. The data available in this project is
presented in Sec. 5.3. Section 5.4 ties together the theory of the extended Kalman filter,
the model for the cardiac ECG as well as the proposed filtering scheme with associated
discussion. Also, the procedure to retrieve parameter values needed for the Kalman
filter is presented. Finally, in Sec. 5.5, the filter is applied to ECG measurements and
the results of the project are discussed.

5.1. Electrocardiography
The contraction of the heart in the course of a heartbeat is orchestrated by an electrical
signal generated by the sinoatrial node and propagated by the electrical conduction
system of the heart. It is built up from specialized cardiac muscle cells, not from
neurons, making ablation possible. As the electrical signal travels along the heart,
the heart muscle depolarizes and contracts. Depolarization causes a change of the
electrical potential in cardiac muscle cells. A 12-lead electrocardiogram (ECG) records
the time course of 12 standardized projections of the heart’s electrical activity from
10 electrodes placed on chest and limbs. Lead I, for example, measures the voltage
between the electrodes placed on the left and right wrist. The electrode on the left
ankle provides ground. A prototypical lead I time course of one cardiac cycle is shown
in Fig. 5.1. Time is normalized and given in radian. The ECG of a healthy heart shows
distinct features commonly labeled P, Q, R, S, and T. The ECG conveys information
about the operability of the electrical conduction system of the heart. Moreover,
mechanical properties of the heart can be inferred from the ECG.
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Figure 5.1.: A prototypical lead I trace of one cardiac cycle. The ECG of a healthy
heart exhibits distinct features labeled P, Q, R, S, and T. Time is normalized as it
has been transformed to angle in radian.

5.2. Blood flow contribution to the ECG in a MRI environment
In this section, the physical background of the voltage induction registered by the
ECG in a MRI environment is summarized. This induced voltage is referred to as the
magnetohydrodynamic effect [106]. The ECG describing the electrical activity of the
heart only is referred to as cardiac ECG, the combined recording of the hearts activity
and the MHD signal is referred to as MHD-ECG.

A theory describing the dynamics of an electrically conducting fluid when interacting
with electromagnetic fields is magnetohydrodynamics (MHD) [107]. The general idea is
to couple the Navier-Stokes equation with Maxwell’s equations by adding the Lorentz
force to the set of external forces of the Navier-Stokes equation [108]. While MHD
describes a range of dynamic phenomena [109], here only the voltage induced by the
flow of blood through an external magnetic field B is of relevance.
In this simplified situation, all observed effects can be explained by the magnetic

part of the Lorentz force

FL = q (v ×B) (5.1)

acting on an ion of charge q dissolved in blood. As depicted in Fig. 5.2 (a), the blood
flow velocity v is oriented along the z-axis and the magnetic field B along the x-
axis. Consequently, positively charged ions are deflected in positive y-direction while
negatively charged ions are deflected in negative y-direction. The separation of ions
results in the electrical field

E = v ×B , (5.2)

as depicted in Fig. 5.2 (b). This process corresponds to the Hall effect in electrical
conductors.
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(b) Charge separation and in-
duced electrical field.

Figure 5.2.: Schematics of forces and fields in the plain of the cross section of a blood
vessel. In (a), the blood flow velocity v and the resulting Lorentz force acting on
ions dissolved in blood is depicted. The external magnetic field B is oriented along
the x-axis. The Lorentz force separates positively and negatively charged ions. The
separated charges and the resulting electric field are shown in (b).

By integrating E over the diameter 2a of the vessel along the y-axis, the induced
voltage

−U =
∫ a

a
E(r) · ey dr

=
∫ a

a
|E(r)| dr

(5.3)

is obtained. Under established conditions, Eq. (5.3) simplifies to

−U = 2aBv̄ , (5.4)

where v̄ is the mean velocity of the blood across the vessel and B = |B| [108, 110].
Equation (5.4) describes the voltage contribution of an infinitesimally short segment of
the vessel that is perpendicular to B. While the largest portion of U is induced in the
aortic arch [111, 112], where Eq. (5.4) is approximately valid, the overall induced voltage
also comprises contributions from smaller vessels, and the complex flow of blood in the
heart [113]. Since in medical applications, the velocity field of the blood is unknown,
the overall induced voltage cannot be determined and accordingly subtracted from the
MHD-ECG in order to reconstruct the cardiac ECG. Consequently, data-analysis-based
approaches are more feasible than modeling from first principles [106, 114].
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5.3. The electrocardiogram data
From a healthy volunteer, a 12-lead ECG is recorded at 1000 Hz by standard equipment ∗

used in clinical routine. The ECG is recorded outside and inside a MRI scanner †.
The static magnetic field of the scanner is 1.5 T. For image acquisition, magnetic field
gradients and radio waves are generated by the imaging unit of the scanner. Since the
ECG equipment can not be used in the presence of alternating electromagnetic fields,
the imaging unit is turned off during ECG acquisition.
Ten seconds of pristine cardiac ECG recorded at B = 0 T are shown in Fig. 5.3.

Across all leads, a clear ECG of the heart’s electrical activity is traced. Figure 5.4
shows the same amount of data recorded from the same volunteer inside the MRI
scanner at B = 1.5 T. The aim of the project is to resurrect the cardiac ECG as shown
in Fig. 5.3 from recordings of the MHD-ECG as shown in Fig. 5.4 in real time.

Judging by the eye from Fig. 5.4, the electric signal of the heart vanishes in the first
six leads. Not even the most prominent event in lead I, the R-peak, remains detectable.
Since the MHD contribution to the ECG is caused by the blood flow, it is expected to
be on the same time scale as the cardiac ECG. Surprisingly, the additional noise in
the ECG is not only on this but also on a much faster time scale. The observational
noise seems to be amplified by the presence of the magnetic field. One might thus
speculate that the standard ECG equipment used is not appropriate for the MRI
environment. For example, specially shielded cables might be required in order to
prevent interference with the magnetic field.
The lead that contains the highest amplitudes and best visible QRS-complexes is

lead V2. It is thus the best candidate to recover the ECG. The remaining discussion
will concentrate on this lead.

5.3.1. Average time course of the cardiac cycle
The largest impact of the MHD effect is expected to occur at the time of the T-wave,
when the blood is ejected from the left ventricle [111]. To see this, the mean of
subsequent cardiac cycles is considered. In order to calculate average time courses,
the ECG recordings are segmented into single cardiac cycles aligned at their R-peaks.
Since individual cardiac cycles differ in their length, their recording time must be
normalized such that the same sample point is comparable across different cycles. To
this end, the cardiac cycles are resampled, such that each cycle spans 200 sample
points. The average cardiac cycle and its standard deviation is estimated from the
ensemble of segmented cardiac cycles.
In order to characterize the effect of an external magnetic field onto the ECG,

an ECG is recorded at varying strengths of the magnetic field. In Fig. 5.5, means
and standard deviations of cardiac cycles, estimated from approximately 80 single

∗EP-Tracer, CardioTek, Maastricht
†Symphony, Siemens, Germany
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Figure 5.3.: A 12-lead ECG recorded outside the MRI scanner at B = 0 T. Each lead
show a clean signal originating from the electrical activity of the heart. The lead AVF
projects along an isopotential, such that the ECG signal almost vanishes.
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Figure 5.4.: A 12-lead ECG recorded inside the MRI scanner at B = 1.5 T. All leads
are heavily contaminated with observational noise. The observation noise is on the
time scale of the ECG as well as on a much faster time scale.
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Figure 5.5.: Mean ECG cardiac cycles of one volunteer recorded at different magnetic
field strengths B. To investigate hysteresis effects, the ECG was firstly recorded
outside of the MRI scanner (C1), secondly on the examination table outside of the
scanner (T1), thirdly inside the scanner (S), and than in revered order presented as T2
and C2, respectively. The recordings C1 and C2 show a typical V2 lead dynamics. At
the intermediate position corresponding to T1 and T2, the morphology remains almost
unchanged, but the standard deviation of the signal given as ribbon is considerably
increased. Inside the scanner a large amount of observational noise is present, and the
variance of the signal is further increased.
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cycles each, are shown. The respective ECG time series are consecutively recorded as
ordered from top to bottom. The plots labeled C1 and C2, respectively, are calculated
from an ECG recorded outside the MRI examination room at B = 0 T. The cardiac
ECG is well resembled. The ribbon denotes the standard deviation of the considered
cardiac cycles. The average traces T1 and T2 correspond to recordings for which
the volunteer is positioned on the MRI examination table, with the table extended
out of the scanner. At this intermediate field strength, the morphology of the signal
remains largely unchained compared to C1 or C2. However, the variance has already
increased considerably. Inside the scanner (S), the variance has further increased, and
even the overall shape of the ECG has changed. The T-wave is now approximately
three times as large as the Q-wave. This is due to the MHD effect. Also, additional
fluctuations are present in the previously flat part as of C1. It is unclear if this can be
solely attributed to the MHD effect or whether other sources like cable-noise caused
by the magnetic field play also a role. The comparison of C1 to C2 and T1 to T2
reveals no hysteresis in the signal.

5.3.2. Filter requirements
The MHD signal and the cardiac ECG overlap both in the time and frequency
domain [115]. Therefore, a classical filter in either of the domains would be ineffective.
If applied to a given time or frequency range, both the electrical activity of the heart
and the MHD effect would be filtered out to the same extent. Moreover, it is the
aim of this project, to be able to capture temporal changes in the ECG as well as
single events such as a premature ventricular contraction. Therefore, averaging is an
inappropriate option. In order to meet the requirements for the reconstruction of the
cardiac ECG, an approach using the extended Kalman filter together with a non-linear
model for the cardiac ECG is pursued in this thesis. In contrast to methodologically
comparable approaches [106, 114, 116], here, data recorded by standard equipment
already established in medical routine is used. Thus, MRI compatibility would come
as an update of the currently used EP-Tracer software.

5.4. Extended Kalman filter and ECG model
The Kalman filter is optimal for estimating the hidden states X of the linear SSM
in the sense that E[(Xt − x̂t)2 |y1, . . . ,yt ] is minimized, cf., Sec. 4.4. The model for
the cardiac ECG is however non-linear. Two methods to extend the Kalman filter
to the non-linear domain are available. For the extended Kalman filter, the dynamic
model used is linearized such that the usual Kalman filter equations can be employed
with only small adaptions. The unscented Kalman filter avoids the linearization of
the model. Instead, a set of points are obtained, such that their sample mean and
covariance reflect the mean and covariance of the state. These points are termed sigma
points. In contrast to Monte-Carlo-type particle filters, sigma points are not drawn
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from a probability distribution, but they are constructed by a deterministic algorithm.
That way, the first two moments of the state are characterized by the least possible
number of sample points. The sigma points are propagated by the non-linear model to
predict future mean and covariance of the state [117]. Both filters were implemented
and tested in this project. However, the unscented Kalman filter proved to be unstable
because the model used for the MHD-ECG does not capture all effects present in the
data. Therefore, only results from the extended Kalman filter are discussed. In the
following, the extended Kalman filter and afterwards the model for the ECG of the
heart is discussed.

5.4.1. The extended Kalman filter
The state-space model (SSM) in its conventional linear form is introduced in Sec. 4.1.
Now, the SSM

X(t) = f(X(t− 1), ε(t)) , ε(t) ∼ N (0,Q) , (5.5)
Y (t) = g(X(t),η(t)) , η(t) ∼ N (0,R) (5.6)

is considered, in which the equation f : Rk → Rk governing the process is possibly
non-linear, as is the observation equation g : Rk → Ro. In application, the state vector
X(t) as well as the realizations of the random variables ε and η modeling driving and
observational noise are unknown. However, given an estimate of the state vector at
time t− 1, say x̂t−1

t−1, predictions of the state and observation vectors at time t are

x̂t−1
t = f

(
x̂t−1
t−1,0

)
, (5.7)

ŷt−1
t = g

(
x̂t−1
t ,0

)
, with E(ε) = E(η) = 0 . (5.8)

The notation of time as sub- and superscript is as introduced in Sec. 4.4. While
Eqs. (5.7) and (5.8) are appropriate to predict the state and its observation, f and
g must be linearized in order to propagate covariance matrices. To this end, the
time-dependent Jacobian matrices Ct, Vt, Ot, and Wt, with entries

Cij = ∂fi
∂xj

(x̂tt, 0) , Vij = ∂fi
∂εj

(x̂tt, 0) , Oij = ∂hi
∂xj

(x̂tt, 0) , Wij = ∂hi
∂ηj

(x̂tt, 0) (5.9)

are calculated. With the established notation, the extended Kalman filter takes the
form [118]

x̂t−1
t = f

(
x̂t−1
t−1, 0

)
, (5.10)

P t−1
t = CtP

t−1
t−1C

T
t + VtQtV

T
t , (5.11)

x̂tt = x̂t−1
t +Kt

[
yt − g

(
x̂t−1
t , 0

)]
, (5.12)

P t
t = P t−1

t −KtOtP
t−1
t , (5.13)

Kt = P t−1
t OT

t

(
OtP

t−1
t OT

t +WtRtW
T
t

)−1
. (5.14)

As with the conventional Kalman filter, model parameters must be known or estimated.
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Figure 5.6.: Trajectory of f̃(ϕ), cf., Eq. (5.16), exemplifying how events in the ECG
are modeled.

5.4.2. A model for the cardiac ECG
In the model for the cardiac ECG, the events P, Q, R, S, and T are modeled by [119]

fi(ϕ) = ai exp
[
−(ϕ− ϕi)2

2σ2
i

]
, i ∈ Ω = {P, Q, R, S, T} . (5.15)

Since the ECG is a quasi-periodic signal, f is considered a function of angle ϕ ∈
[0, 2π] ⊂ R. The position of the i-th event is defined by ϕi, its amplitude and width
by ai and σi, respectively. To exemplify the shape of fi(ϕ), the graph of

f̃(ϕ) =
2∑

i=2
fi(ϕ) with a1 = 1 , φ1 = 1

2π , σ2
1 = 0.5 ,

a2 = −0.5 , φ2 = 3
2π , σ2

2 = 0.3
(5.16)

is shown in Fig. 5.6. In the extended Kalman filter, the state X(t) must be iterated
to X(t + δ). Thus, the time derivative of Eq. (5.15) is needed. With the angular
frequency ω

dϕ
dt = ω, (5.17)

∂fi
∂ϕ

dϕ
dt = −ωϕ− ϕi

σ2
i

fi(ϕ) (5.18)

is derived. Integration of Eqs. (5.17) and (5.18) from time t to t+δ can be accomplished,
e.g., by the Euler method. The cardiac ECG X(t) is then described by

ϕ(t+ δ) = (ϕ(t) + δω) mod 2π , (5.19)

X(t+ δ) = X(t)− δω
∑

i∈Ω

∆ϕi
σ2
i

fi(ϕ) + ν(t+ δ) (5.20)

= X(t)− δω
∑

i∈Ω

∆ϕi
σ2
i

ai exp
(
−∆ϕ2

i

2σ2
i

)
+ ν(t+ δ) . (5.21)
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Discrepancies between model and data are accounted for by the Gaussian driving noise
term ν(t) [119, 120]. In Fig. 5.1 on p. 93, one cardiac cycle of the model is shown in
lead I projection for ν = 0. The model is 2π periodic.

The duration of a human cardiac cycle is approximately one second. By adapting ω
in Eqs. (5.19) and (5.21), the duration of actually measured individual cycles can be
mapped to [0, 2π] ⊂ R. By this normalization of time the model can be applied to
data with different cardiac cycle duration.
Defining X(t) = (ϕ(t), X(t))T, the observation of X(t) is modeled as

Y (t) = IX(t) + η(t) , η(t) ∼ N
(

0, I ·
(
σ2
ϕ(t)

σ2
X(t)

))
, (5.22)

with σϕ(t) the standard deviation of the position ϕ(t) and σX(t) the standard deviation
of the ECG X(t).

5.4.3. Linearization of the model
In the model of the cardiac ECG, ϕ(t) and X(t) define the state, while ω, ai, ϕi, and
σi are considered iid Gaussian random variables. They are thus attributed to the
process noise of Eq. (5.5), such that

ε = (ω, ai, ϕi, σi, ν)T , i ∈ Ω , (5.23)
results. The two-dimensional state transition matrix

Ct =




∂ϕt
∂ϕt

∂ϕt
∂Xt

∂Xt

∂ϕt

∂Xt

∂Xt




=
(

1 0
a21 1

)
, with (5.24)

a21 = −δω
∑

i∈Ω

ai
σ2
i

(
1− ∆ϕ2

i

σ2
i

)
exp

(
−∆ϕ2

i

2σ2
i

)
(5.25)

is obtained by linearization of the dynamic equations (5.19) and (5.21) as formulated
in Eq. (5.9). The transition matrix for the driving noise covariance matrix V is derived
analogously. The respective partial derivatives can be found in [120, Eq. 11]. The
observation equation (5.22) is linear such that

O = W =
(

1 0
0 1

)
. (5.26)

5.4.4. Modeling the cardiac ECG in a scanner
Models of ECG recordings from inside the MRI scanner have to comprise not only the
cardiac ECG, denoted E , but also the MHD effect, sayM. Here, the model

X(t) = E(t) ,
Y (t) = X(t) +M(t) + η(t) ,

(5.27)
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which can be collated to

Y (t) = E(t) +M(t) + η(t) (5.28)

is used. The MHD effect is part of the observation equation as it does not interact
with the dynamics of the heart. Together with η(t) it forms the observational noise.
SinceM(t) is not iid as it exhibits temporal correlations, it cannot be combined with
η(t). Based on the model given by (5.28) three ways to recover E(t) are conceivable.

MHD effect modeled from first principles Using a model from first principles for
M and accompanying measurements, the expected value of the ECG

E [E(t)] = Y (t)−M(t) (5.29)

is easily accessible using E(η) = 0. The field of blood velocity causing the MHD effect
is complex and unknown in application. Firstly, this is due to the pulsative nature
of the blood flow. Even more important though is the fact that the orientation of
the flow with respect to B cannot be determined on a per-patient basis. Primarily,
the position of blood vessels are unknown since these anatomic details vary between
humans. Furthermore, the exact placement of the patient on the examination table
cannot be controlled precisely. For these reasons, this approach, while elegant, is not
feasible.

Effective model combining the cardiac ECG and the MHD effect A second
possibility of establishing Y (t) is to describeM(t) by a similar model as E(t). Instead
of parameters that fit the dynamics of E(t), parameters that correspond to the average
MHD effect need to be specified. This approach would combine two models of the form
given in Eq. (5.21) in an additive manner. As each single model consists of summations
only, the two effective models are equivalent to a single effective one with respectively
many terms and adjusted driving noise. Since the signals from the heart and the MHD
effect overlap in time and frequency domain [114], a single effective model cannot help
in discriminating the two sources. In consequence, a deviation from, e.g., the usual
T-wave could indistinguishably be caused by a change in the electrical activity of
the heart or a change in the velocity field of the blood and thus by the MHD effect.
In order to make E(t) identifiable in this approach, the model forM(t) needs to be
fixed for the entire examination time, implying a MHD signal which does not change
between cardiac cycles. As this assumption does not hold for cath lab interventions,
this approach is inappropriate for the problem at hand.

Model the cardiac ECG directly This is the approach proposed and developed in
this thesis. Therefore, first the mean MHD effect M̄(t) is derived from the difference
of the ECG signal recorded inside and outside of the scanner. Then the observed
cardiac ECG is assumed to be given by

Ẽ(t) = Y (t)− M̄(t) . (5.30)
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(a) Average cardiac- and MHD-ECG
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(b) Average MHD signal

Figure 5.7.: Average time courses and their difference for lead V2. Figure (a) shows in
blue the average of the cardiac ECG calculated from 101 cardiac cycles, and in orange
the MHD-ECG calculated from 77 cardiac cycles. The most prominent differences are
located at the P- and the T-wave. In (b), the average MHD signal is presented. It is
defined as the difference of the average cardiac ECG and the average MHD-ECG.

From Ẽ(t), the true underlying cardiac ECG state is estimated by the extended
Kalman filter. The drawback of this approach is that the MHD effect is assumed to
stay constant during the examination time. However, since Ẽ(t) complies with the
model of the cardiac ECG in the best possible way, and the Kalman filter is known to
be optimal for estimating hidden states, this approach is promising.

5.4.5. Estimating the mean MHD effect
From the resampled ensemble of single cardiac cycles, cf., Sec. 5.3.1, the average cycle
of the cardiac and the MHD-ECG is calculated. Both average time courses of lead V2
are presented in Fig. 5.7 (a). The difference of the two time courses shown in Fig. 5.7 (b)
is the mean MHD effect registered in lead V2. The mean MHD effect of other leads is
estimated accordingly.

5.4.6. Kalman filter preliminaries
The Kalman filter estimates hidden states by the support of a model. The observations
based on which the hidden states are estimated are assumed to be a realization
of that model observed by a known observation function. Additive normally iid
observational noise may be introduced by the observation function. By considering
the MHD signal as part of the observational noise, the observational noise is not
anymore distributed as assumed. Even if the average MHD signal is removed from
the MHD-ECG, observations cannot be fully described by the model of the cardiac
ECG, because the inter-cycle variation of the MHD signal is too large. This makes
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adaptions of the filter necessary to which end the covariance matrices of the driving
and the observational noise Q and R are adjusted.
In the Kalman filter, the correction of the observed state by the model takes into

account the difference between the observed state and its prediction by the model. The
effect of the model onto the final estimate is stronger the more reliable the prediction
is compared to the observation. In other words, if R is large compared to Q, the
model prediction dominates the state estimate and the other way around.

5.4.7. Noise covariance matrices in the extended Kalman filter
The interplay of Q and R in the extended Kalman filter is as follows. The predicted
state for time t based on all information up to t−1, x̂t−1

t , is corrected by the prediction
mismatch and the Kalman gain as

x̂tt = x̂t−1
t +Kt

[
yt − g

(
x̂t−1
t , 0

)]
. (5.31)

Thus, the Kalman gain determines the amount of correction applied to the predicted
state. The Kalman gain is a function of the state covariance P and the observational
noise covariance R. On the one hand, if the driving noise covariance Q is large, the
model output is dominated by driving noise. In consequence, the modeled dynamics
vanish leading to an uninformative model prediction. Accordingly, P also is large
[→ cf. Eq. (5.11)] such that the filter tends to rely on the observation. On the other
hand, if R is large, observations are uninformative or unreliable such that the state
estimate is mostly based on the model prediction.

In conclusion, the final estimate depends both on the model and on the observation.
The extent to which it is influenced by either of the two factors depends on the
relation of Q and R. By tuning this relation, it is thus possible to adjust the degree
of model-guided smoothing to derive the final estimate of the underlying cardiac ECG,
x̂tt. This idea is pursued in the following.

5.4.8. Determining parameter values
The free parameters of the Kalman filter are the parameters of the cardiac ECG
model, cf., Eq. (5.21), and the elements of the covariance matrices of the driving and
observational noise, Q and R, respectively.

Parameters of the ECG model

The parameters of the model of the cardiac ECG are fitted to the mean time course of
the cardiac ECG by the Levenberg-Marquardt algorithm as implemented in Matlab
2013a. Fitted parameters are ai, ϕi, and σi with i ∈ Ω = {P,Q,R, S, T}. The angular
frequency ω is fixed, as each cardiac cycle is resampled to span 200 sample points
such that time is already normalized. For lead V2, the fit result is shown in Fig. 5.8 in
orange. The mean time course of the cardiac ECG is presented in green. Since exactly
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Figure 5.8.: Mean cardiac ECG and model fit. The mean time course of the cardiac
ECG of lead V2 is shown in blue. To this time course, the model of the cardiac ECG
is fitted. The model output with fit parameters is given in orange.

five events are modeled, the cardiac ECG model can only fit to these events, while to
other trends in the signal it remains unfitted. Therefore, the first 50 sample points are
a flat line in the fit. The parameter values of this fit are used in all results presented
in the following.

Covariance R of the observational noise

In general, the covariance of the driving and observational noise are not free parameters
but determined by the dynamics and the measurement device, respectively. However,
in this application, the Kalman filter is used to provide an operator with the possibility
to select the amount of model-based smoothing applied to observations by adjusting
the driving and observational noise covariance matrices, accordingly.
For all results presented, the covariance of the observational noise is

R =
(

0 0
0 5.6

)
× 106 . (5.32)

The first dimension corresponds to time. Each cardiac cycle is normalized, and for
each cycle, the model and data are aligned with respect to the R-peak. Therefore, the
position in time is well determined, represented by the variance R11 = 0. The second
dimension corresponds to the observational noise of the ECG for which the variance
is estimated from measurements. To this end, first Ẽ(t) [→Eq. (5.30)] is calculated
for each cardiac cycle. Then, the difference of Ẽ(t) and the mean cardiac ECG is
obtained. This time series specifies the MHD signal ∆Mi(t) of each individual cardiac
cycle i. The MHD effect is assumed to cause the major part of the observational noise.
Therefore, the variance of the observational noise is identified with the variance of
∆Mj(t), which is 5.6× 106 for this recording.
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Covariance Q of the driving noise

The uncertainty of the parameters of the model ω, ai, ϕi, and σi with i ∈ Ω together
with the variance of ν, cf., Eq. (5.21), are combined in the diagonal covariance matrix
of the driving noise. The diagonal of Q contains thus the variances

{
σ2
ω, σ

2
ai
, σ2

ϕi
, σ2

σi
, σ2

ν

}
, i ∈ Ω . (5.33)

Since time is well determined as elaborated in the previous paragraph, σ2
ω is zero. The

amplitudes ai and widths σi of ECG events are likely to vary with different cardiac
cycles. Therefore, the variance of the corresponding driving noise

σ2
ai

= ai × 10−1 , σ2
σi

= σi × 10−1 , ∀i ∈ Ω (5.34)

is chosen to 10 % of the respective parameter value. Assuming the activity of the
heart as regular, it is reasonable to fix the positions ϕi of ECG events in the model by
setting σ2

ϕi
to zero. The variance of the driving noise ν of the model for the cardiac

ECG

σ2
ν = R22 × 10−3 (5.35)

is determined relative to the variance of the observational noise of the ECG, R22.
That way, the ratio of the two quantities is fixed and reflects the degree to which the
prediction is determined by model and observation.

As discussed in Sec. 5.4.7, the Kalman filter is supposed to operate with a manually
tuned ratio of Q and R. For this to facilitate easily, a proportionality factor γ is
introduced for each diagonal element of Q. The filter ultimately operates with Q
multiplied by the diagonal matrix of proportionality factors. The diagonal of this
matrix is denoted γ. In the following, filtering results are presented for different values
of γ. Initially,

γω = γν = γϕi
= γai

= γσi
= 1 . (5.36)

Apart from the argumentation given for the values of the covariance matrices, parameter
values are determined by experience.

5.4.9. Proposed filter procedure
The proposed procedure to reconstruct the cardiac ECG from the ECG recorded in a
MRI scanner is as follows.

1. Record 30 s of cardiac ECG at B = 0 T.

2. Record 30 s of MHD-ECG inside the MRI scanner at B > 0 T

3. Process the recordings obtained in step 1 and 2 as follows
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a) Segment each time series into single cardiac cycles and align each cycle at
its R-peak.

b) Remove the respective median from each cycle.
c) Calculate the mean cardiac and mean MHD cycle by averaging over the

ensemble of respective cycles.
d) Calculate the average MHD effect, M̄(t), as the difference of the mean

cardiac cycle and mean MHD cycle obtained in the last step.
e) Subtract the average MHD effect from each cardiac cycle of the MHD-ECG.

The resulting time series is denoted Ĕ(t).

4. Estimate the variance of the observational noise R22. To this end, subtract the
mean cardiac cycle from each cardiac cycle of Ĕ(t) and join the resulting data in
a new time series. The variance of this joint time series determines R22.

5. Fit the model of the cardiac ECG to the mean cardiac cycle.

6. Initialize the proportionality factors γ for example to one and adjust them once
the filter is running.

After these steps are completed, the parameters of the non-linear state-space model
used in the extended Kalman filter are determined. The filter operates on a per-cycle
basis, since the duration of a cardiac cycle must be known beforehand. A separate
Kalman filter is needed for each lead of the ECG.
The procedure described above is applied to an MHD-ECG time series of lead V2

with varying values of γ. The results are discussed in the next section.

5.5. Application to ECG recordings
The aim of the filtering approach is to reconstruct the cardiac ECG in the time domain
such that a clinician can read the status of the heart from the reconstructed ECG.
Therefore, the performance of the filter is assessed by comparing time series of final
estimates derived from the MHD-ECG to time series of the cardiac ECG recorded in
the absence of an external magnetic field. By doing so, results with a varying amount
of model-based smoothing controlled by γ are obtained and discussed.
In Fig. 5.9, the preprocessed MHD-ECG signal Ĕ(t) is shown in blue. This signal

is the observation for the extended Kalman filter. The ECG reconstructed by the
proposed Kalman procedure is plotted in green. The target of reconstruction, the
cardiac ECG, is shown in red.

Results for γω = γν = γϕi
= γai

= γσi
= 1 are shown in Fig. 5.9 (a). Much emphasis

is placed on the observation, such that the state estimate follows the trend of the
observation. Still, the heavy fluctuations of the observation occurring between the
T-wave and the P-wave of the successive cycle is reduced.
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Figure 5.9.: Results obtained from the Kalman filter. The input to the filter, Ĕ(t), is
depicted in blue. As reference, the cardiac ECG is plotted in red. The final estimate
obtained from the filter is given in green. From top to bottom, γ varies such that the
MHD-ECG is dominant in the top row and basically neglected in the bottom row.
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Chapter 5. Reconstruction of the cardiac ECG signal in the MRI environment

By the choice of γω = 0, γν = 0.5, γϕi
= γai

= γσi
= 0, the impact of the observation

onto the state estimates is reduced, as shown in Fig. 5.9 (b). The driving noise in
the model of the cardiac ECG remains the only source of uncertainty, such that the
estimates follow the cardiac ECG much closer than in the first setting. Still, strong
deviations of the observation from the model drive the reconstructed ECG away from
the model prediction. This can be seen, e.g., at the T-wave of the first, seventh, and
eighth cycle, or the T-P segment starting at the first, third, and fourth cycle. The
capability of the estimate to deviate from the model prediction is essential, since
otherwise the estimate becomes independent of the measurement. This would render
the reconstructed ECG uninformative as it would contain no information about the
patient’s medical status. Therefore, this setting is a good candidate for application.

In Fig. 5.9 (c), the setting in which the filter output is independent of the measure-
ment is depicted. To this end, γω = γν = γϕi

= γai
= γσi

= 0 is chosen. Since the
filter is now forced to obey entirely to the model, the reconstructed ECG matches the
model output precisely. Even though the ECG seems well reconstructed, this is not a
sensible regime of the Kalman filter, since the status of the patient cannot be reflected.
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Summary of: PANG: An advanced preamplifier for
ECG signals recorded in the MRI environment

The electrocardiogram (ECG) recorded in the presence of a magnetic field as in
a magnetic resonance imaging (MRI) scanner is the superposition of the electrical
activity of the heart and the magnetohydrodynamic (MHD) effect. The MHD signal
can be attributed to the observational noise. Unlike conventional observational noise,
the MHD signal is not normal iid distributed. Moreover, the MHD effect overlaps
with the electrical activity of the heart both in time and frequency domain. Therefore,
reconstruction of the cardiac ECG from the MHD-ECG is not a straightforward
filtering problem.

In this chapter, a filtering scheme employing the extended Kalman filter is proposed.
The Kalman filter is adjusted such that it becomes possible for an operator to specify
the amount of model-based smoothing applied to the state estimate. To this end,
the ratio between the driving noise and the observational noise covariance is made
adjustable. In application, this mechanism can be used to tune the filter towards
the quality of measurement. This is demonstrated by the application of the filter
to an ECG recorded by standard medical equipment inside a MRI scanner. As the
equipment is not designed for the MRI environment, the amount of observational
noise consisting of the MHD effect and conventional observational noise, is large. As
shown, under certain conditions, the proposed filtering procedure is yet capable of
reconstructing the cardiac ECG. With more specialized ECG equipment, it is expected
that the reconstruction quality can be improved by placing more emphasis on the
measurement.
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Summary

The human brain, the stock-market, or the internet are systems built from entirely
different single entities, yet sharing the characteristic, that their respective units
exhibit a collective behavior which is fundamentally different to the behavior observed
when the respective units are studies in isolation. The appearance of such a collective
behavior is termed emergence, and systems showing emergent phenomenon are termed
complex systems. Thus, the study of complex systems is the study of the interaction of
individual units. This makes network theory a natural tool for visualizing, quantifying,
and characterizing complex systems. A network describing entities and their interaction
can be constructed from measurements of a complex system. To this end, the recording
sites are commonly translated into network nodes, and an interdependence measure is
applied to the measurements to infer the network links. The first part of the present
thesis deals with the creation of such a network. Therefore, the notation and definition
of networks, network models, and network classes is given in Chap. 1.
When constructing and exploring an interaction network, the main challenge is to

avoid spurious links, such as indirect links, which do not correspond to a physical
connection in the observed system. Bivariate measures establish a link between two
nodes exclusively based on measurements from these nodes. In contrast, multivariate
measures establish links while accounting for the information present in the entire set
of measurements. Networks which are reconstructed by a bivariate measure contain
indirect links. The general theoretical argument for the existence of indirect links in
such networks is yet missing. In Chap. 2, this argument is developed by exploring the
generic relation between bi- and multivariate interdependence measures. Moreover,
by expanding the relation of bi- and multivariate measures in a Taylor series, the
formation of indirect links is made explicit. The derived argument is independent
of the system under investigation. Thus, bivariate measures in general are proven
inappropriate for establishing network links.
In Chap. 3, a series of simulations employing the theory derived in Chap. 2 is

conducted. The results show the effect of bivariate measures onto the reconstruction
of networks on the example of the correlation coefficient. It is demonstrated that,
indeed, bivariate measures indicate indirect links. Moreover, network classification
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also fails due to effects caused by indirect links. This is demonstrated by a simulation
study revealing that random networks are indistinguishable from small-world networks
when analyzed by a bivariate interdependence measure.

In the context of dynamic complex systems, interdependence measures assuming
independent identically normally distributed states, such as the partial correlation
coefficient, become unreliable. Commonly, measurements also contain observational
noise. The state-space model is a linear model tailored to measured states which are
correlated and impaired by observational noise. States are modeled by an autoregressive
process and observational noise is accounted for by a linear stochastic observation
equation. By means of the expectation-maximization algorithm, a maximum-likelihood
estimator for the parameters of the SSM was constructed. The major drawback of
the EM algorithm is its computational complexity resulting in long runtimes. Two
optimization strategies that reduce the runtime by about two orders of magnitude
are presented in Chap. 4. This major improvement is shown in a simulation study
demonstrating the efficiency and accuracy of the implementation.
Based on the parameters of the SSM, interaction measures have been proposed

allowing to reliably establish network links from measurements. It is also possible to
estimate the underlying state which is not observed directly due to observational noise.
To this end, the Kalman filter is the optimal procedure.

Filtering the electrical activity of the heart from an electrocardiogram recorded in
the presence of a magnetic field as in a magnetic resonance imaging scanner poses
such a state estimation problem. The ECG recorded inside a MRI scanner is the
superposition of the electrical activity of the heart and a Hall voltage. The recording of
the electrical activity of the heart is termed cardiac ECG, the signal of the Hall voltage
magnetohydrodynamic signal, and the recording of the superposition of both signals
MHD-ECG. The Hall voltage is evoked by the external magnetic field that results in a
Lorentz force acting on ions dissolved in blood. For medical applications it would be
desirable to reliably estimate the cardiac ECG from the MHD-ECG. Unfortunately,
the MHD signal overlaps with the electrical activity of the heart both in the time and
frequency domain. In the SSM, the MHD signal can be treated as observational noise.
Then, however, the observational noise can no longer be modeled by a iid random
variable.

In Chap. 5, a possible solution to this filtering problem is proposed. It employs the
extended Kalman filter, which is adjusted to enable an operator to manually specify the
amount of model-based smoothing applied to the estimate of the underlying state. The
tuning of the filter with regard to the quality of the measurement is demonstrated in an
application, in which an ECG is recorded by standard medical equipment inside a MRI
scanner. As the equipment is not designed for the MRI environment, the amount of
observational noise consisting of the MHD signal and conventional observational noise,
is large. Under certain conditions, the proposed filtering procedure is yet capable of
reconstructing the cardiac ECG. With more specialized ECG equipment, it is expected
that the reconstruction quality of the proposed procedure can be further improved by
placing more emphasis on the measurement.
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The two topics of this thesis, exploration of the interaction in complex systems
as well as state estimation in the context of ECG recordings, are connected by the
need to model empirical data by the SSM. Apart from the discussed application, the
proposed optimized EM algorithm is useful for all areas of research in need to estimate
parameters in the SSM. For example researchers from the financial science have shown
interest in this tool.
By modeling the MHD-ECG by the SSM, the SSM is driven out of its area of

application supported by theory. Hence, the proposed procedure can only be a
phenomenological one. However, with more advanced recording equipment, and thus a
better SNR, the design of the procedure allows to expect more reliable state estimates.
Thus, it seems well possible to introduce MRI vision to the cath lab in the coming
years.
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Glossary

Abbreviations

C++ The C++ programming language.
cath lab Catheterization laboratory.

ECG Electrocardiogram.
EM Expectation-maximization.

iid Independent and identically distributed.

Matlab A programming language and a trade mark of Mathworks.
MHD Magnetohydrodynamics.
ML Maximum-likelihood.
MLE Maximum-likelihood estimator.
MRI Magnetic resonance imaging.

SNR Signal-to-noise ratio.
SSM State-space model.

VAR Vector-autoregressive process.

Nomenclature

L Set of links in a network.
N Set of nodes in a network.

A, A Adjacency matrix and its element.
B, B Incidence matrix and its element.
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C, C Transition matrix of a VAR process and its element.
c, C Local and (average) clustering coefficient.
D, D Distance matrix and its element.
E Efficiency.
e Diameter of a network.
f A probability density function.
G, GN,h, GN,M A general network, a regular-ring, or a Erdős-Rényi network.
Gk The subnetwork containing all direct neighbors of node nk.
g Degree of a node, i.e., the number of links connected to a node.
H Power spectral density function.
h Number of left-hand neighbors of a node.
J Kalman smoother gain.
K Kalman filter gain.
L Average distance in a network.
L Log-likelihood function.
lk, lij The k-th link or the link connecting nodes ni and nj.
M Number of links in a network.
m Number of samples, upper limit of a sum.
N Number of nodes in a network.
n A node in a network
O, O Observation matrix in the SSM model and its element.
P Conditional error covariance in the Kalman filter.
P Sample partial correlation matrix.
p Order of a VAR process.
Q, Q Covariance matrix of the driving noise of a VAR process and its

element.
R, R Covariance matrix of the observational noise in the SSM and its

element.
R, R Sample correlation matrix and its element.
r Sample correlation coefficient.
X, x Some random variable and its realization.

ε Driving noise in the VAR process.
ς Variable enumerating the iterations in the EM algorithm.
η Observational noise in the SSM model.
Θ The parameter vector usually to be estimated.
λ, γ Parameters indicative for the small-world property of empirical

networks.
π, π Partial correlation matrix and its element.
%, % Correlation matrix and its element.
τ Time-lag variable of the VAR process.
w A probability.
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Appendix A.

Supplement to Network reconstruction and
classification

A.1. Definition of the average distance
The average distance can be defined in slightly different ways. While the general
discussion given in the main body is sufficient for this thesis, the different definitions
are presented in this section for completeness

In undirected networks, the lower triangular ofD is enough to determine the average
distance. Two definitions for the average distance

Li = 2
N2

N∑

i≥j
Dij , or (A.1a)

Le = 2
N(N − 1)

N∑

i>j

Dij (A.1b)

are used. While in Eq. (A.1a) the diagonal elements Dii = 0 are included, in Eq. (A.1b)
they are not. The two definitions differ by the factor Li/Le = (N − 1)/N = 1− 1/N
which is in o (1/N) [11]. In literature [11, 42], also L̃i = 2/[N(N + 1)]∑i≥j Dij is used,
counting the diagonal entries twice.
In directed networks the complete matrix D must be traversed, leading to

Li = 1
N2

N∑

i,j=1
Dij , or Le = 1

N(N − 1)

N∑

i 6=j
Dij (A.2)

depending on whether or not diagonal elements are considered.
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n9

n10

n1 n2 n3 n4 n5 n6 n7 n8

[ tikzpicture optimized away because it does not contribute to exported
PDF]

Figure A.1.: In this network, the clustering coefficient converges to one while the tran-
sitivity converges to zero with increasing number of nodes. The clustering coefficient
evaluates the existence of triangles centered around a node, leading to ck = 1 for
k = 1, . . . , 8. The transitivity quantifies if from the existence of a chain of lengths
three, e.g. n1, n10, n2, it can be concluded that n1 and n2 are adjacent. Such behavior
is generally referred to as transitive. The figure is taken from [44].

A.2. Transitivity
In Sec. 1.2.3, the local clustering coefficient is introduced as a measure for the local
connectivity in a network. Rooted in the sociology literature, the transitivity

R = 3 × # of triangles in G
# of connected triples of nodes in G (A.3)

is another measure on how well a network is connected locally [42, 45]. A set of three
nodes form a connected triple when connected by at least two links, and a closed triple
or triangle when connected by three links. The transitivity quantifies if the start
and end nodes of a three node chain are also connected, in which case the linkage is
transitive.

In contrast to the local clustering coefficient which acts on the nearest neighbors of
a node, the transitivity takes into account the connection status of nearest and second
nearest neighbors of a node. Thus, the local clustering coefficient of n1 of Fig.A.1
quantifies if n9 and n10 are connected, but since e.g. n2 is no direct neighbor of n1, the
connectivity of n1 and n2 is irrelevant for the (local) clustering coefficient. However,
n1, n10, n2 form a connected triple, and therefore appear in the denominator of the
transitivity. In fact, for this network, the clustering coefficient converges to one with
increasing number of nodes while the transitivity converges to zero [44].

A.3. Average distance in a regular ring network
In Sec. 1.3.1, the scaling of the average distance in a regular ring network is given.
This sections presents the exact equations for the average distance and is completed
by deriving the scaling behavior. The average distance in GN,h is obtained from the
first column D1 of its distance matrix D. An expression Lo for N odd and Le for N
even is derived.
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A.3. Average distance in a regular ring network

Odd number of nodes First, N odd ∗ and (N − 1)/(2h) ∈ Z is considered. The
lengths of the geodesics recorded in D1 are {1, 2, . . . , (N − 1)/(2h)}, every value
occurring 2h times. Using ∑n

i=1 i = n(n+ 1)/2, the sum over D1 reads

L̃Zo(N) = 2h
(
N − 1

2h + 1
)
N − 1

4h , (A.4)

and the average distance

LZo
i (N) =

(
N − 1

4h + 1
2

)
N − 1
N

, if Dii is included (A.5)

LZo
e (N) = N − 1

4h + 1
2 , if Dii is excluded (A.6)

is found.
To derive the general expression for N odd †, (N − 1)/(2h) ∈ Q is considered. For

the first

Ñ =
⌊
N − 1

2h

⌋
2h+ 1 (A.7)

nodes Eq. (A.4) applies. Integer division is denoted by the floor function b·c. The
remaining N − Ñ nodes contribute a path of length (Ñ − 1)/(2h) + 1 each. With

λ(Ñ) = (Ñ − 1)/(2h) + 1 (A.8)

the sum over D1 reads

L̃o(N) = L̃Zo(Ñ) +
(
Ñ − 1

2h + 1
)

(N − Ñ)

= 2h
(
Ñ − 1

2h + 1
)
Ñ − 1

4h +
(
Ñ − 1

2h + 1
)

(N − Ñ)

= λ(Ñ)
(
Ñ − 1

2 +N − Ñ
)

= λ(Ñ)
2 (2N − Ñ − 1) .

(A.9)

If Dii is excluded, the average distance

Lo
e(N) = Lzo

e (Ñ)2N − Ñ − 1
N − 1 (A.10)

= Lzo
e (Ñ)

(
1 + N − Ñ

N − 1

)
(A.11)

∗Example: N = 9, h = 2, D1 = (0, 1, 1, 2, 2, 2, 2, 1, 1)T
†Example: N = 15, h = 3, D1 = (0, 1, 1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1)T
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can be formulated in terms of LZo
e (Ñ) = λ(Ñ)/2 [→Eq. (A.6)]. As to be expected,

LZo
e is the special case of Lo

e for N = Ñ .
The average distance including the diagonal can be expressed in terms of LZo

i (Ñ) as

Lo
i (N) = LZo

i (Ñ)
(

Ñ

Ñ − 1

)(
2N − Ñ − 1

N

)
(A.12)

= LZo
i (Ñ)

(
Ñ

N

)( 2N
Ñ − 1

− 1
)
, (A.13)

which includes LZo
i (Ñ) as the special N = Ñ .

Even number of nodes If N is even ‡ and N/2h ∈ Z, the largest geodesic is of length
N/(2h) occurring 2h− 1 times. Therefore, the sum over D1 is

L̃Ze(N) = 2h
(
N

2h + 1
)
N

4h −
N

2h (A.14)

=
(
N − 2

4h + 1
2

)
N , (A.15)

resulting in the expressions

LZe
i (N) = N − 2

4h + 1
2 , if Dii is included (A.16)

LZe
e (N) =

(
N − 2

4h + 1
2

)
N

N − 1 , if Dii is excluded. (A.17)

for the average distance.
In the case in which N is even § and N/(2h) ∈ Q \ Z, for the first

Ñ =
⌊
N

2h

⌋
2h (A.18)

nodes Eq. (A.15) applies. Because N and Ñ are both even but not equal, N − Ñ is at
least 2. The first of those extra nodes contributes a geodesic of length Ñ/(2h), each
other a geodesic of length Ñ/(2h) + 1. The total contribution of all extra nodes is

∆Ľe = Ñ

2h +
(
Ñ

2h + 1
)

(N − Ñ − 1) . (A.19)

The correction does not vanish for N = Ñ , as

∆Ľe = N

2h −
Ñ

2h − 1 6= 0 . (A.20)

‡Example: N = 8, h = 2, D1 = (0, 1, 1, 2, 2, 2, 1, 1)T
§Example: N = 14, h = 3, D1 = (0, 1, 1, 1, 2, 2, 2, 3, 2, 2, 2, 1, 1, 1)T
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This implies, than Eq. (A.19) cannot be used to formulate an expression independent
of N/(2h). The reason becomes evident when combining Eq. (A.14) with Eq. (A.19)

Ľe =
(
N

2h + 1
)
N

2 −
N

2h + Ñ

2h +
(
Ñ

2h + 1
)

(N − Ñ − 1) (A.21)

=
(
N

2h + 1
)
N

2 +
(
Ñ

2h + 1
)

(N − Ñ − 1) . (A.22)

The term −N
2h needed for N/(2h) ∈ Z is compensated by ∆Ľe in any case. The

remaining correction is a multiple of Ñ/(2h) + 1, introducing an offset of one as shown
in Eq. (A.20).
To overcome this deficiency, Eq. (A.19) can be expressed as

∆L̃e = Ñ

2h +
[
Ñ

2h + 1−Θ
(
Ñ −N

)]
(N − Ñ − 1) , (A.23)

where Θ (·) denotes the Heaviside step function. The average distance including the
diagonal elements becomes

Le
i (N) = LZe

i (Ñ)Ñ
N

+ Ñ

2hN +
[
Ñ

2h + 1−Θ
(
Ñ −N

)] N − Ñ − 1
N

, (A.24)

and without diagonal elements

Le
e = LZe

e (Ñ)Ñ − 1
N − 1 + Ñ

2h(N − 1) +
[
Ñ

2h + 1−Θ
(
Ñ −N

)] N − Ñ − 1
N − 1 . (A.25)

Both expressions simplify to LZe
i or LZe

e , respectively, for N = Ñ .

Scaling of L(N) An important feature of a network class is the scaling of its
properties. The corrections to the respective integer cases given in Eqs. (A.11), (A.13),
(A.24) (A.25) only involve terms of the form Ñ/N and (N − Ñ)/N . The difference

N − Ñ =




(N − 1) mod 2h if N is odd
N mod 2h if N is even

(A.26)

is in [0, 2h − 2] only traversing even numbers, since both arguments of the modulo
operation are even. Therefore, the contribution of

Ñ

N
= 1− 2(h+ 1)

N
and N − Ñ

N
= 2(h+ 1)

N
, (A.27)

vanishes as N increases. The scaling of all general expressions is hence inherited from
their integer counterparts, Eqs. (A.5), (A.6), (A.16) (A.17). Using L to denote the
average distance irrespective of N being even or odd,

L ∝ N

4h = N

2gk
(A.28)

scales linearly with N [46]. For this reason, the average distance in regular networks is
considered large.
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A.4. Scaling of the average distance in random networks
In this section, the scaling of the average distance with the number of nodes N in the
model of random networks [→ Sec. 1.3.2] is derived. As a preliminary step, the scaling
of the diameter e(N) is assessed, as it defines an upper bound for L(N).
Consider a network from the Erdős-Rényi model with N nodes and mean degree

E(gk) = z, defining M = Nz/2. Thus, node nk is expected to have distance one to z
other nodes, distance two to about z2, distance three to about z3, and distance s to
about zs nodes [50]. As the diameter is the largest distance in the network, the sum
over all distance up to e

e∑

i=1
zi = N (A.29)

equals the total number of nodes in the network. This sum can be written as the
partial sum of the geometric series by letting i start at zero

e∑

i=0
zi = ze+1 − 1

z − 1 = N + 1 (A.30)

and adapting the right hand side accordingly. The diameter e(N) as a function of N
is then found by rearranging Eq. (A.30) as

e(N) = logz[(N + 1)(z − 1) + 1]− 1 (A.31)

= logz[(N + 1)(z − 1)] + logz
[
1 + 1

(N + 1)(z − 1)

]
− 1 (A.32)

≈ logz[(N + 1)(z − 1)]− 1 (A.33)
= logz(N) + logz[1 + 1/N ] + logz(z) + logz[1 + 1/z]− 1 (A.34)
= logz(N) + logz[1 + 1/N ] + logz[1 + 1/z]− 1 (A.35)
≈ logz(N)− 1 , (A.36)

from which the number of nodes as a function of the diameter

N(e) ≈ z(e+1) . (A.37)

is derived. This derivation does not take into account that some of the nodes of distance
s might coincide with nodes of distance s̃ < s. For N � z, this imponderability
becomes negligible and has therefore no influence on the scaling behavior.
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Turning to the average distance, the sum over the lengths of all paths in the network

L̃(N) =
e(N)∑

i=0
izi (A.38)

= eze+2 − (e+ 1)ze+1 + z

(z − 1)2 (A.39)

= z(e+1)
(
ez − (e+ 1) + z−e

(z − 1)2

)
(A.40)

= z(e+1)
(
e(z − 1)− 1 + z−e

(z − 1)2

)
(A.41)

= z(e+1)
(

e

z − 1 + z−e − 1
(z − 1)2

)
(A.42)

has to be normalize by N ≈ z(t+1) [→Eq. (A.37)]. Therefore, the average distance

L(N) = L̃(N)
N

(A.43)

≈ e(N)
z − 1 + z−e − 1

(z − 1)2 (A.44)

≈ e(N)
z − 1 (A.45)

≈ 1
(z − 1)2 logz(N) (A.46)

(A.47)

also scales with logz(N), which is slow compared to regular networks [→Eq. (A.28)].
The average distance in random networks is thus considered small.

A.5. Proof: Partialization as a matrix operation
The algorithm described in Sec. 2.2.7 is proven as follows [67]. The notation in
this section is mostly in line with the original publication. Particularly, all vectors
are column vectors, but often displayed as row vectors such that Z = (X,Y ) is

written, where Z =
(
X
Y

)
would be entirely correct. Please mind that var[(X,Y )] =

cov[(X,Y ), (X,Y )] is different from cov(X,Y ).
Let Z, X, and Y be defined as in Sec. 2.2.6 with u = dim(X) and v = dim(Y ).

Without loss of generality assume E(Z) = 0. The linear least square predictor of Y
from X is defined as

Y (X) = cov(Y ,X) var(X)−1X (A.48)
= BX , (A.49)
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where B = cov(Y ,X) var(X)−1 is the v × u matrix of regression coefficients. The
orthogonality of the residuals Y − Ŷ on X

cov(Y − Ŷ ,X) = cov(Y ,X)− cov(BŶ ,X) = 0 (A.50)

follows by direct evaluation. Based on B, the sweep operator

L =
(

I 0
− cov(Y ,X) var(X)−1 I

)
(A.51)

is defined. It is L(X,Y ) = (X,Y − Ŷ ); L is invertible. Because L inherits the
orthogonality property from B, cov[L(X,Y )] is block diagonal. By expanding

var[L(X,Y )] = var(X,Y − Ŷ ) (A.52)
= L var(X,Y )LT , (A.53)

the expression

var(X,Y ) = L−1 var(X,Y − Ŷ )L−T (A.54)

is derived. Because var(X,Y − Ŷ ) is block diagonal, the inverse of Eq. (A.54)

var(X,Y )−1 = LT var(X,Y − Ŷ )−1L (A.55)

=
(

var(X)−1 +BT var (Y |X)−1B −BT var (Y |X)−1

− var (Y |X)−1B var (Y |X)−1

)
(A.56)

=:
(
EXX EXY
EY X EY Y

)
=: E (A.57)

can easily be calculated. The notation var(Y |X) refers to the variance of Y given
all linear information of X. It is the partial variance of Y with respect to X. The
matrix of the partial variance E is often called concentration matrix. Please note that
EY Y is the inverse of the partial correlation of Y given X.
The proof is completed by stating two corollaries which discuss the relationship of

var(X,Y )−1 to the partial correlation coefficients. The corollaries are a simple recaps
of Corollary 5.8.1 and Corollary 5.8.2 from [67].

Corollary A.5.1. Each diagonal element of the inverse variance is the reciprocal of
a partial variance. [→Corollary 5.8.1, [67] ]

Proof. Set v = 1 such that EY Y is scalar and

EY Y = var(Y |X )−1 = 1/ var(Y |X1,X2, · · · ,Xu ) . (A.58)

As any diagonal element can be selected by first permuting the original random vector,
the proposition is true for all diagonal elements.
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Corollary A.5.2. Each diagonal element of the inverse variance, scaled to have a
unit diagonal, is the negative of the partial correlation between the two corresponding
variables, partiallized on all remaining variables. [→Corollary 5.8.2, [67] ]

Proof. Set v = 2 and denote the elements of the 2× 2 matrix EY Y by {eij}, then

EY Y =
(
e11 e12
e21 e22

)
= var(Y |X )−1 . (A.59)

This can be rearranged for

var (Y |X) =
(

var(Y1 |X ) cov(Y2,Y1 |X )
cov(Y1,Y2 |X ) var(Y2 |X )

)
(A.60)

= 1
e11e22 − e21e12

(
e22 −e12
−e21 e22

)
. (A.61)

After the matrices are normalized by their respective diagonal elements
(

1 ?
cov(Y1,Y2 |X )/{var(Y1 |X ) var(Y2 |X )}1/2 1

)
=
(

1 ?
−e12/(e11e22)1/2 1

)
(A.62)

corr(Y1,Y2 |X ) = −e12/(e11e22)1/2 is found by equating coefficients. The ? represents
its respective value from the lower triangular part of the matrix. As argued in Cor. A.5.1,
permutation allows any two variables to be selected, and hence the argument applies
to all off-diagonal entries.

A.6. Taylor expansion of the inverse of a partial correlation
matrix

In the Taylor expansion of a real function f(r), r can be substituted by the square
matrix R, where the scalar operations translate to their matrix counterparts. If the
convergence radius of the real function is |r| < d, than the Taylor series of the matrix
function converges for ‖R‖ < d in case the matrix norm satisfies ‖AB‖ ≤ ‖A‖ ‖B‖.
The real function corresponding to the special case of calculating the inverse of 1−R
is

f(r) = (1− r)−1 . (A.63)

It derivatives are

f ′(r) = (1− r)−2, f ′′(r) = 2(1− r)−3, fn(r) = n!(1− r)−n−1 , (A.64)

leading to the Taylor series about r = 0

Tf(r, r0) = 1 +
∞∑

m=1
rm . (A.65)
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Consequently, the Taylor series of the matri-valued function is

Tf(R,R0) = 1 +
∞∑

m=1
Rm =

∞∑

m=0
Rm . (A.66)

Corollary A.6.1. The matrix inverse of 1−R can be written as

(1−R)−1 =
∞∑

m=0
Rm . (A.67)

The series converges for ‖R‖ < 1.

Proof. It is
( ∞∑

m=0
Rm

)
(1−R) =

∞∑

m=0
(Rm)−Rm+1) (A.68)

= 1−Rm+1 . (A.69)

If limm→∞Rm+1 = 0 is satisfied (∑∞m=0R
m) (1−R) = 1. Therefore, Cor.A.6.1 hold

if ‖R‖ < 1.
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state-space model

B.1. Correlation of the three dimensional autoregressive chain
The process for which the elements of the covariance matrix are given in Eq. (4.3) is

X(t) = CX(t− 1) + ε(t) , ε(t) ∼ N (0,Q) (B.1)

with

C =



a1 0 0
b21 a2 0
0 b32 a3


 , Q =



q1 0 0
0 q2 0
0 0 q3


 . (B.2)

It is a stationary process, such that e.g., var[x1(t − 1)] = var[x1(t)] holds. It has
expected value zero, E[x(t)] = 0. Its variance and covariance equations are derived as
follows.

var[X1(t)] = E{X1(t)2} (B.3)
= E{[a1X1(t− 1) + ε1(t)]2} (B.4)
= a2

1 var[X1(t− 1)] + var[ε1(t)] (B.5)
= a2

1 var[X1(t)] + q1 (B.6)

= q1

1− a2
1

(B.7)
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cov[X1(t), X2(t)] = E{X1(t)X2(t)} (B.8)
= E{[a1X1(t− 1) + ε1(t)][a2X2(t− 1) + ε2(t)

+ b21X1(t− 1)]} (B.9)

= a1a2 cov[X1(t− 1), X2(t− 1)] + a1b21 var[X1(t− 1)] (B.10)

= a1b21 var[X1(t)]
1− a1a2

(B.11)

var[X2(t)] = E{[a2X2(t− 1) + ε2(t) + b21X1(t− 1)]2} (B.12)
= a2

2 var[X2(t− 1)] + var[ε2(t− 1)] + b2
21 var[X1(t)]

+ 2a2b21 cov[X1(t− 1), X2(t− 1)]
(B.13)

= q2 + b2
21 cov[X1(t), X2(t)]

1− a2
2

(B.14)

cov[X1(t), X3(t)] = E{X1(t)X3(t)} (B.15)
= E{[a1X1(t− 1) + ε1(t)]

[a3X3(t− 1) + ε3(t) + b32X2(t− 1)]} (B.16)

= a1a3 cov[X1(t− 1), X3(t− 1)]
+ a1b32 cov[X1(t− 1), X2(t− 1)]

(B.17)

= a1b32 cov[X1(t), X2(t)]
1− a1a3

(B.18)

cov[X2(t), X3(t)] = E{X2(t)X3(t)} (B.19)
= E{[a2X2(t− 1) + ε2(t) + b21X1(t− 1)]

[a3X3(t− 1) + ε3(t) + b32X2(t− 1)]} (B.20)

= a2a3 cov[X2(t− 1), X3(t− 1)]
+ a2b32 var[X2(t− 1)]
+ a3b21 cov[X1(t− 1), X3(t− 1)]
+ b21b32 cov[X1(t− 1), X2(t− 1)]

(B.21)

= 1
1− a2a3

{a2b32 var[X2(t)] + a3b21 cov[X1(t), X3(t)]

+ b21b32 cov[X1(t), X2(t)]}
(B.22)

var[X3(t)] = E{[a3X3(t− 1) + ε3(t) + b32X2(t− 1)]2} (B.23)
= a2

3 var[X3(t− 1)] + var[ε3(t)] + b2
32 var[X2(t− 1)]

+ 2a3b32 cov[X2(t− 1), X3(t− 1)]
(B.24)

= q3 + b2
32 var[X2(t)] + 2a3b32 cov[X2(t), X3(t)]

1− a2
3

(B.25)
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B.2. Parameter update equations of the EM algorithm
A recap of the derivation of the parameter update equations of the EM algorithm for
the transition matrix C and the covariance matrix of the driving and observational
noise Q, and R, respectively, is given in this section. As the update equations evolve
parameter values from the current EM iteration, say ς , to the next, say ς + 1, the right
hand side of each equation employs the parameter values of the ς-th EM iteration.
The left hand side of each equation evaluates to the updated parameter values. These
values are used in the (ς + 1)-th EM iteration. On the left hand side, the iteration is
denoted as superscript.

To derive the update equations, the partial derivatives of the expected value of the
log-likelihood function

L̂(Θ) =− 1
2 log |Σ0| −

1
2 tr

{
Σ−1

0

(
Pm
t + (xm0 − µ) (xm0 − µ)T

)}

− m

2 log |Q| − 1
2 tr

{
Q−1

(
γ − βCT −CβT +CαCT

)}

− m

2 log |R|

− 1
2 tr

{
R−1

m∑

t=1

[
(yt −Oxmt ) (yt −Oxmt )T +OPm

t O
T
]}

,

(B.26)

with respect to each parameter is solved for zero. The substitutions

α =
m∑

t=1

[
Pm
t−1 + x̂mt−1(x̂mt−1)T

]
,

β =
m∑

t=1

[
Pm
t,t−1 + x̂mt (x̂mt−1)T

]
,

γ =
m∑

t=1

[
Pm
t + x̂mt (x̂mt )T

]
,

(B.27)

are used in L̂(Θ). Non-standard matrix operations are taken from the Matrix Cook-
book [92]. Please mind that covariance matrices are real and symmetric.

B.2.1. Update equation for the transition matrix
The partial derivative of L̂ with respect to the transition matrix C leads to

−2 ∂L̂
∂C

= ∂

∂C
tr
[
Q−1

(
−βCT −CβT +CαCT

)]

= −Q−1β −Q−1β +Q−1CαT +Q−1CαT

= −2 +CαTβ−1 +Cαβ−1

= −2 + 2Cαβ−1

= 0 ,

(B.28)
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which is solved for C, such that the parameter update

Cς+1 = βα−1 , (B.29)

is found [32].

B.2.2. Update equation for the driving noise covariance matrix
In order to derive the update equation for the covariance Q of the driving noise

F = γ − βCT −CβT +CαCT (B.30)

is substituted in Eq. (B.26), such that

−2 ∂L̂
∂Q

= ∂

∂Q

[
m log |Q|+ tr

(
Q−1F

)]

= mQ−1 −Q−1F TQ−1

= mQT − F T

= 0

(B.31)

is derived. By solving for Q, the expression

Qς+1 = 1
m
F

= 1
m

(
γ − βCT −CβT +CαCT

) (B.32)

is found. Using Eq. (B.29), this result can be simplified to [32]

Qς+1 = 1
m

(
γ − βα−1βT − βα−1βT + βα−1αα−1βT

)

= 1
m

(
γ − βα−1βT

)
.

(B.33)

B.2.3. Update rule for the observational noise covariance matrix
By the substitution

F =
m∑

t=1

[
(yt −Oxmt ) (yt −Oxmt )T +OPm

t O
T
]

(B.34)

in Eq. (B.26), the expression

−2 ∂L̂
∂R

= ∂

∂R
m log |R|+ tr

(
R−1F

)

= mR−1 −R−1F TR−1

= 0

(B.35)
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is derived. By solving for R, the update equation for the covariance matrix of the
observational noise

Rς+1 = 1
m

m∑

t=1

[
(yt −Oxmt ) (yt −Oxmt )T +OPm

t O
T
]
. (B.36)

is determined [32].
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