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Abstract

The segmentation of the brain in medical images is a challenging problem owing to
the high complexity of the brain structure. In the presence of tissue alterations, such
as tumours and diffuse lesions, the localisation and segmentation of a given tissue, or
region, of interest becomes even more challenging due to large anatomic deformations.

This work addresses several applications of automatic segmentation of brain structures
in magnetic resonance (MR) images, with the aim of improving clinical diagnosis. These
include the identification of brain tissues, the segmentation of pathological brain regions,
and the quantification of abnormal brain vasculature. In particular, three brain diseases
have been considered: focal cortical dysplasia, multiple sclerosis and glioblastoma tu-
mours. Because of the high anatomical variability of these diseases, a specific method
has been developed for each of them.

Focal cortical dysplasia is characterised by an abnormal stratification of the brain grey
matter. Its identification in MR images is a difficult task due to the limited contrast of
the lesions. Current methods rely solely on the information extracted from T1-weighted
MR images and, to a lesser extent, also from FLAIR images. In this work the delineation
of this kind of lesion is performed through the extraction of several features from both
T1-weighted and FLAIR images, which represent intensity, shape, and form, and by
creating a baseline for normal-appearing tissue based on the MR images of several healthy
subjects. These features are extracted for both the patient and the healthy volunteer
datasets and are subsequently combined in a probabilistic framework. The proposed
method has been tested on 11 patient datasets and has been compared with a state-of-
the-art method. For all patient data the focal cortical dysplasia has been detected with
a high precision and with improved results with respect to the compared method.

Multiple sclerosis is a neurodegenerative disease of the central nervous system, whose
main manifestations are lesions in the white brain matter. In T1-weighted and FLAIR
images, multiple sclerosis lesions have similar intensities as the grey matter. Many meth-
ods rely strongly on an atlas-driven pre-segmentation, which can be inaccurate at the
boundary between grey and white matter. As a result, the detected white matter can
contain areas of grey matter that might be segmented as lesion. Here, a geometric brain
model is proposed to simultaneously segment all tissue types as well as the lesions with-
out using an atlas. The segmentation problem is formulated as an energy minimisation
approach and a local solution is found via the graph-cuts method. The energy consists of
three terms, namely the appearance, local and global energies. The appearance energy
models the intensity of the different tissues, whereas the local energy models the geomet-
ric constraints. The global energy is composed of a connectivity prior for the grey matter
and a minimum size constraint for the lesions. The proposed connectivity prior achieves
better results compared to state-of-the-art methods and recovers a number of false neg-

iii



Abstract

atives for the lesions. On the other hand, the minimum size constraint forces the lesions
to have a minimum size and therefore avoids possible noisy lesion segmentations. The
proposed method has been tested on two different databases, and for both competitive
results in comparison to several state-of-the-art methods have been achieved.

Glioblastoma tumours are one of most aggressive types of primary brain tumours. To
maintain their aggressive proliferation they initiate the formation of new blood vessels
which present irregular shapes and immature organisation patterns, and they have a
high permeability. In this work, novel quantification measures for these abnormalities
are proposed. These measures are based on the local incoherence of vessel orientations
and are computed for both tumour and normal-appearing vasculature. The method
has been tested on 12 patients, and in every dataset all the proposed measures are
able to discriminate very accurately between tumour and normal vessels. Additionally,
one of our measures has shown correlation with two histological markers, i.e. MIB and
endothelial proliferation. A weak but positive correlation with MIB has been found,
while the endothelial proliferation has a negative correlation with our measure.

The segmentation methods proposed in this work open the way for a more precise
diagnostic evaluation in particular in diseases where lesion identification is currently
challenging. In addition the novel quantification measures proposed for the glioblastoma
vessel analysis in combination with histologic correlation can help to connect macroscopic
vessel appearance with cellular abnormalities in blood vessels and might therefore be
suited to identify prognostic subgroups in glioblastoma.
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Zusammenfassung

Die Segmentierung des Gehirns in medizinischen Bildern ist ein schwieriges Prob-
lem aufgrund der hohen Komplexität der Gehirnstruktur. In Gegenwart von Gewe-
beveränderungen, wie beispielsweise Tumoren oder diffusen Läsionen, wird die Lokalisie-
rung und Segmentierung eines vorgegebenen Gewebes oder einer Region noch schwieriger
wegen der großen anatomischen Deformationen.

Diese Arbeit befasst sich mit einigen Anwendungen der automatischen Segmentierung
von Hirnstrukturen in Magnetresonanztomographie-(MRT)-Bildern, mit dem Ziel, die
klinische Diagnostik zu verbessern. Dazu gehören die Identifizierung von Hirngeweben,
die Segmentierung der pathologischen Hirnregionen, und die Quantifizierung von abnor-
men Hirngefäßsystemen. Insbesondere wurden drei Hirnerkrankungen untersucht: die
fokale kortikale Dysplasie, die Multiple Sklerose und Glioblastome. Wegen der hohen
anatomischen Variabilität dieser Erkrankungen wurde eine angepasste Methode für jede
von ihnen entwickelt.

Die fokale kortikale Dysplasie ist durch eine abnorme Stratifizierung der grauen Hirn-
substanz gekennzeichnet. Die Identifizierung in MR-Bildern ist eine schwierige Aufgabe
aufgrund des begrenzten Kontrasts der Läsionen. Derzeitige Verfahren verlassen sich
ausschließlich auf die Informationen die aus T1-gewichteten MR-Bilder extrahiert werden,
und in geringerem Umfang auch auf FLAIR Bilder. In dieser Arbeit wurde die Abgren-
zung der Läsionen durch die Extraktion mehrerer Eigenschaften aus den T1-gewichteten
und den FLAIR Bildern durchgeführt: die Intensität, die Form, und durch die Erstel-
lung eines Basisdatensatzes für Normalgewebe basierend auf MR-Bildern von gesun-
den Probanden. Diese Eigenschaften wurden sowohl in Datensätzen von Patienten als
auch von gesunden Probanden bestimmt, und anschließend mit einem probabilistischen
Ansatz kombiniert. Das vorgeschlagene Verfahren wurde an 11 Patientendatensätzen
evaluiert und mit etablierten Verfahren verglichen. In allen Patientendaten konnte die
fokale kortikale Dysplasie mit hoher Präzision und mit verbesserten Ergebnissen in Bezug
auf die etablierten Verfahren nachgewiesen werden.

Multiple Sklerose ist eine neurodegenerative Erkrankung des zentralen Nervensys-
tems, deren Hauptmanifestationen Läsionen in der weißen Hirnsubstanz sind. In T1-
gewichteten Bildern und in FLAIR Bildern haben MS-Läsionen ähnliche Signalinten-
sitäten wie die graue Hirnsubstanz. Viele Verfahren beruhen auf einer Atlas-basierten
Vorsegmentierung, die an der Grenze zwischen grauer und weißer Substanz ungenau sein
kann. Infolgedessen kann die detektierte weiße Substanz Bereiche der grauen Substanz
enthalten, die als Läsionen segmentiert werden. In dieser Arbeit wird ein geometrisches
Hirnmodell ohne Verwendung eines Atlas vorgeschlagen um gleichzeitig alle Gewebe-
typen sowie die Läsionen zu segmentieren. Das Segmentationsproblem wird als En-
ergieminimierung formuliert, und eine lokale Lösung wird über ein Graph-Cut-Verfahren
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Zusammenfassung

bestimmt. Die Energie besteht aus drei Termen: der Form, der lokalen Energie, und der
globalen Energie. Die Formenergie gibt die Signalintensität der verschiedenen Gewebe
wider, während die lokale Energie die geometrischen Randbedingungen modelliert. Die
globale Energie besteht aus einer Konnektivitäts-Annahme (connectivity prior) für die
graue Substanz, einer Nebenbedingung einer Mindestgröße (minimum size constraint) für
die Läsionen. Die Konnektivitäts-Annahme erzielt bessere Ergebnisse als konventionelle
Methoden, insbesondere bei der Identifikation von falsch negativen Ereignissen. Anderer-
seits erzwingt die Größeneinschränkung eine Mindestgröße der Läsionen und vermeidet
so mögliche Fehlsegmentierungen im Rauschen. Das vorgeschlagene Verfahren wurde
auf zwei unterschiedlichen Datenbanken getestet, und für beide konnten im Vergleich zu
konventionellen Methoden vergleichbare Ergebnisse erreicht wurden.

Glioblastome stellen eine der aggressivsten Arten von primären Hirntumoren dar.
Zur Aufrechterhaltung ihrer aggressiven Proliferation initiieren sie die Bildung neuer
Blutgefäße, die an ihrer unregelmäßigen Form und dem unreifen Muster erkennbar
sind, und die eine hohe Permeabilität aufweisen. In dieser Arbeit werden neue Quan-
tifizierungsmethoden für diese Gefäßanomalien vorgeschlagen. Diese Methoden basieren
auf der lokalen Inkohärenz der Gefäßorientierungen und werden sowohl für Tumorgefäße
wie auch für normal erscheinende Gefäßsysteme berechnet. Die Methode wurde an
12 Patienten getestet, und in jedem Datensatz konnte das Verfahren sehr genau zwis-
chen Tumor- und Normalgefäßen unterscheiden. Darüber hinaus korrelierte ein Mess-
parameter mit zwei histologischen Markern, dem MIB und der Endothelproliferation.
Es zeigte sich eine schwach positive Korrelation mit dem MIB, während die Endothel-
proliferation eine negative Korrelation aufwies. Die in dieser Arbeit vorgeschlagenen
Segmentierungsverfahren öffnen den Weg für eine präzisere Diagnostik insbesondere in
Krankheiten, bei denen die Läsionsidentifizierung momentan noch schwierig ist. Außer-
dem können die neuen Messparameter für die Glioblastom-Gefäßanalyse in Kombination
mit histologischen Analysen dazu beitragen, die makroskopische Gefäßstruktur mit zel-
lulären Abnormalitäten der Blutgefäße zu verbinden, so dass möglicherweise prognostis-
che Untergruppen von Glioblastompatienten identifiziert werden können.
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Chapter 1

Introduction

Medical image segmentation is one of the primary post-processing techniques to sup-
port diagnostic image analysis in clinical practice. In fact, it is commonly used in a wide
range of applications, including localisation of pathology, treatment planning, computer-
integrated surgery, and to monitor the evolution of degenerative diseases. Due to the
complexity of the human body, the segmentation of medical images is still a challeng-
ing task, and each organ, or tissue of interest requires in general specific segmentation
techniques that may not be appropriate for other organs or tissues.

The human visual system is able to discriminate between several objects in an image
on account of different shape, texture and/or local intensity. These commonly used fea-
tures are also exploited by segmentation algorithms that automatically extract individual
objects/organs or discriminate among multiple ones. In many pathologic conditions, and
especially in the case of cancer, the affected organ(s) often show large anatomic defor-
mations, as well as noticeable changes in their fat/water content. Such alterations may
affect the shape, the size, and the relative anatomical location of a given organ. There-
fore, segmentation techniques developed for healthy subjects can fail, in the presence of
disease, to provide equally satisfactory, quantitative results. More advanced algorithms
that take into account organ-specific changes caused by disease are therefore needed.

In particular, the accurate segmentation of diseased brain tissue remains an open
problem, due both to the inherently high structural complexity of the brain and to
tissue deformations caused by disease. For this reason, in this thesis novel algorithms
have been developed for the segmentation of focal cortical dysplasia and multiple sclerosis
lesions, and for the quantification of vessel abnormality in glioblastoma brain tumours.
The remainder of this chapter gives a brief introduction to brain anatomy, pathology and
imaging methods, as relevant to this work, and closes with a description of the structure
of the thesis.

The human nervous system is divided into the central nervous system (CNS) and
the peripheral nervous system (PNS). The CNS, in turn, is divided into the brain and
the spinal cord. The brain is responsible for integrating sensory information and for
providing higher motor and cognitive functions, including language, planning, reasoning,
and abstract thought. The brain is therefore one of the most extensively studied organs.
For this purpose, various imaging techniques, combined with post-processing methods,
have proved extremely useful. In this work, magnetic resonance (MR) images were
used. In clinical practice, magnetic resonance imaging (MRI) has established itself as
a technique of choice for imaging not only for the brain, but many other organs as
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Chapter 1 Introduction

(a) (b) (c)

Figure 1.1: In (a) an axial, in (b) a sagittal, in (c) a coronal slice of a MRI healthy brain.
Starting from the outer border there are the skull, the corticospinal fluid (CSF), the cortical
grey matter (GM), the white matter (WM), the subcortical nuclei/grey matter (SGM), and the
ventricles (V).

well. Due to the absence of ionising radiation, MRI is less invasive than alternative
imaging techniques, such as computed tomography (CT). Moreover, it provides soft
tissue contrast as well as variable image contrasts. As an example, three anatomical MR
images, at different orientations, of a healthy brain are shown in Figure 1.1. A plethora
of segmentation algorithms have been developed to delineate the different tissues and
substructures of the brain, providing useful insight in the anatomical variation of the
brain and its pathology.

The brain is separated from the enclosing skull by membranous tissue. Between these
membrane layers the corticospinal fluid (CSF) is circulating, which also fills the ventricu-
lar system (V) in the centre of the brain. The brain itself is classified in two tissue types,
namely the white matter (WM) and the grey matter (GM). The GM on the surface of
the brain is called cortex and is mainly formed by the neuron cell bodies and their respec-
tive nuclei. The internal GM (SGM) contains several subcortical nuclei (e.g., the globus
pallidus, the caudate nucleus, and the putamen). The WM is mainly formed by neuron
axons. In Figure 1.1 a typical MRI of the human head is depicted with T1-weighted
(T1-w) contrast. The intensity of the brain tissues is higher compared to the skull and
the CSF, which appear dark, and the intensity of the WM is higher than the GM.

Concerning brain pathology, both brain tumours and neurodegenerative diseases have
received particular research attention. The precise identification and delineation of a
tumour boundary is crucial to the successful surgical removal of the cancerous tissue.
This can prolong patient life expectancy and, in certain cases, lead to nearly normal
living conditions. As regards neurodegenerative diseases, it is of foremost importance to
monitor their progress over time, as this will help pharmaceutical research to develop
new drugs able to slow the degeneration.

Focal cortical dysplasia (FCD) is a malformation of cortical development, and one of
the major causes of pharmacologically intractable epilepsy. This disease is caused by an
abnormal development of the cortical grey matter leading to an atypical stratification
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(a) (b) (c)

Figure 1.2: Axial MR slices illustrating the three pathologies considered in this work. In (a)
an FCD patient, in (b) an MS patient, and in (c) a patient with a glioblastoma tumour.

of the tissue. Patients affected by FCD experience recurrent seizures, and can presently
achieve seizure freedom only after successful surgery. Therefore, the precise pre-surgical
localisation and complete surgical removal of the dysplastic tissue is pivotal for a good
outcome and for the avoidance of any additional interventions.

Multiple Sclerosis (MS) is the most frequent chronic inflammatory disease of the CNS
caused by inflammatory demyelination (destruction of the myelin sheath covering the
nerve axons). The pathogenesis of MS lesions is still unclear and one of the most challeng-
ing aspects of the disease that remains to be understood is the nature of, and mechanisms
leading to, tissue injury. The main clinical manifestations of this disease are caused by
lesions affecting the brain white matter and grey matter. Accordingly, lesion identifica-
tion and volumetry are crucial steps in quantifying the burden of the disease. In the
clinical routine the lesions are still manually annotated, which is time-consuming, leads
to subjective variability, and lacks reproducibility.

Glioblastoma multiforme is one of the most aggressive primary brain tumours. Due to
its rapid proliferation pattern, glioblastoma depends on the formation of new supplying
blood vessels (neo-angiogenesis). Such newly formed vessels are often characterised by
an increased number and size, an irregular shape, immature vessel organisation, and, in
particular, by a high degree of vascular permeability. Many anti-angiogenic therapeutic
approaches attempt to inhibit the formation and maturation of new blood vessels, and
thus to disconnect the growing tumour from its vascular supply with nutrients. The
therapeutic success of anti-angiogenic therapies depends on many factors, and the early
detection and quantification of the changes of the vascular architecture under therapy is
highly desirable in order to improve and stratify anti-angiogenic therapies.
Figure 1.2 shows a representative axial slice for each of the three diseases considered in
this work.
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Chapter 1 Introduction

1.1 Outline of the Thesis

Chapter 2 explains the basic principles of nuclear magnetic resonance imaging. Start-
ing from the level of the nucleus, the principle for generating MR images of given tissues
and organs is described. Because MR imaging can provide a variety of image contrasts
in order to differentiate the tissues of interest, the relevant brain imaging contrasts used
in this work are introduced.

Chapter 3 introduces the background theory on image segmentation with a brief
description of the most interesting and relevant techniques. In this connection, an initial
grey matter segmentation method is presented. This method combines the well-known
atlas based and level-set image segmentation techniques to improve the segmentation
over pure atlas based methods.

Chapter 4 further introduces the background theory of graph-cuts based methods.
Starting from the binary segmentation method, the extension to a multi-labelling ap-
proach is described. More recent developments, such as object interactions are also
described. The theory presented in this chapter is fundamental for the understanding of
our contribution to the problem of lesion segmentation presented in Chapter 6.

The next three chapters present the main contributions developed in this thesis:

Chapter 5 presents our work on focal cortical dysplasia lesion segmentation. These
lesions are, in many cases, not visible with conventional MR imaging. Therefore, we
propose a segmentation method which combines several features extracted from multiple
brain MR images in order to identify and segment this type of lesions. Due to the high
complexity of the problem, we rely on information extracted from healthy brains which
provides a baseline for ‘normal’ brain tissue. Both the extracted features and the healthy
baseline are subsequently combined into a probabilistic framework to highlight abnormal
cortical regions.

Chapter 6 presents our method for the segmentation of multiple sclerosis lesions in
white matter. The method is based on a geometric model of the brain tissues, which
constraints the lesions to the white matter. The method improves over other techniques
described in the literature by introducing a connectivity prior and a minimum lesion size
constraint, both of which help to reduce the number of incorrectly identified lesions.

Chapter 7 presents a clinically oriented study concerning glioblastoma tumours. Fol-
lowing an initial segmentation of the brain vasculature, tumour vessel abnormality is
quantified by considering the local vessel orientation both in tumours and in healthy
vasculature. Interestingly, one of our measures correlates well with existing histological
markers of vessel abnormality in tumours.

Chapter 8 summarises the contributions of this thesis, presents the main conclusions
and suggests possible improvements to the techniques developed in this work.
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Chapter 2

Basic Concepts of MRI

In this chapter a brief explanation of the basic concepts of Magnetic Resonance-
Imaging (MRI) is provided, ranging from how an image is generated from atomic nuclei
within the body, to the contrast mechanisms in clinical MRI. These concepts provide
an important basis for the methods presented in the subsequent chapters of this thesis.
For a more detailed description of the theoretical aspects, an interested reader may be
referred to textbooks such as [1, 79].

2.1 Larmor Frequency and Net Magnetisation

Nuclear Magnetic Resonance (NMR) is a phenomenon based on the interaction be-
tween a magnetic field and an atomic nucleus. Nuclei possess an intrinsic quantum
mechanical property, known as spin.

The spin value is quantised in integer multiples of 1/2, and it is dependent on the
atomic number, i.e., spin I = 0, 1/2, 1, 3/2, 2. MRI uses mainly hydrogen 1H nuclei
(I = 1/2) due to their high concentration in fat and water of which the human body
mainly is composed. The 1H nucleus can be considered classically, as a vector (spin
vector) with a defined orientation and magnitude, Figure 2.1(a).

If a macroscopic ensemble of hydrogen nuclei, i.e. arbitrary tissue or pure water, is
considered, the spins axes are randomly orientated in all directions. The net magnetisa-
tion (sum over all spin vectors) is then 0 (Figure 2.1(b)). Instead, if the tissue is placed

inside a static magnetic field
−→
B 0, the spin angular momentum of the individual nuclei

(a) (b)

Figure 2.1: Example of nucleus rotating around its axes in (a). Arbitrary positions of nuclei
inside a tissue in (b).
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Chapter 2 Basic Concepts of MRI

Figure 2.2: Procession of the magnetisation in the presence of the magnetic field
−→
B 0. The axis

of rotation is parallel to
−→
B 0.

interacts with this static field causing a precession motion of the nuclei, where the axis

of rotation is in the direction of the static magnetic field
−→
B 0.

The motion of each nucleus can be described by a coordinate system where x and y

are perpendicular to, and z parallel to
−→
B 0, respectively (Figure 2.2). The perpendicular

coordinates are non-zero and vary with time, while the z coordinate remains constant.
The frequency of precession is proportional to the strength of the magnetic field and

is described by the Larmor equation:

w0 = γB0 (2.1)

where w0 is the Larmor frequency (MHz), and γ is known as the gyromagnetic ratio
and is constant for each nucleus. For a hydrogen nuclei, γ has the value of 2π · 42.577
MHz/Tesla.

In the magnetic field the hydrogen nuclei can occupy one of two energy states. In the

lower energy state the spin vectors are oriented in the same direction of
−→
B 0 (parallel),

while in the higher energy state they are antiparallel to
−→
B 0. Therefore, the energy

difference between the two energy levels ∆E is proportional to the magnetic field strength
B0:

∆E = hw0 =
hγB0

2π
(2.2)

where h is the Planck’s constant.
The spin population in thermal equilibrium is given by the Boltzmann distribution.

The ratio between population on the higher (n+) and the lower energy level (n−) can
be described by:

n−

n+
= exp

(

−∆E

kT

)

= exp

(

−hω0

kT

)

(2.3)

where T is the temperature and k is the Boltzmann constant. At 1.5 Tesla (T) and room
temperature T = 300K, hω0 << kT , n−/n+ = 0.999995, i.e. the lower energy state has
only additional five spins for every million.
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2.2 Relaxation

(a) (b) (c)

Figure 2.3: Equilibrium orientation of
−→
M0 in (a); a pulse flips

−→
M0 by an angle α (b). The

magnetisation
−→
M0 consists of two components (b)-(c): Mz or longitudinal component, and Mxy

or transverse component. During relaxation to equilibrium Mz increases while Mxy decreases (c).

Given the number of excess spins, i.e. n = (n− − n+), the total magnetisation M0 is
given by:

M0 = γhn =
Nγ2h2B0

kT
(2.4)

where N = n− + n+ is the total number of spins in the ensemble. At equilibrium, the

orientation of
−→
M0 is parallel to

−→
B 0.

2.2 Relaxation

To create an MR signal, the patient or sample is exposed to an electro-magnetic
Radiofrequency (RF) pulse at a frequency matching the Larmor Frequency w0. Since
the resonance condition ∆E = hω0 is fulfilled, the energy contained in the RF pulse is
absorbed by the nuclei, exciting them from the lower to the higher energy state.

In a classical description of the RF absorption, the RF pulse deflects
−→
M0 from its

equilibrium (orientation parallel to
−→
B 0) by an angle (flip angle α) depending on its dura-

tion and magnitude. The magnetisation now consists of two components: a longitudinal

component Mz parallel to the magnetic field
−→
B 0 and a transverse component Mxy per-

pendicular to the magnetic field and rotating with the Larmor frequency around the
−→
B 0

axis. When the transmitter is turned off, the nuclei immediately start to return to the
original equilibrium state, Figure 2.3. The precessing transverse magnetisation induces
an MR signal S(t), where t is the time, as a voltage in a nearby receiver coil (Faraday
induction):

S(t) ∝ −→
Mxy(t) = |−→Mxy| exp(iω0t) = Mx(t) + iMy(t). (2.5)

The process of recovery to equilibrium state is called relaxation, and is tissue-dependent.
In MR, two of the commonly measured main relaxation processes are T1 and T2. The
spin lattice relaxation is described by the T1 time required by the Mz to return to
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Chapter 2 Basic Concepts of MRI

Tissue type T1 [ms] T2[ms]

Grey matter 1820 99

White matter 1084 56

Heart 1420 32

Liver 812 42

Blood 1932 275

Table 2.1: Relaxation times at 3T for different tissue types.

63% of its equilibrium value. On the other hand, the spin-spin relaxation process is
described by time T2 required by Mxy to decay to 37% of its initial value. Both effects
are due to interaction processes between spins and a perturbation of the static magnetic
field. Mathematically, the temporal evolution of the magnetisation components can be
expressed as exponential decays:

Mz(t) = |M0| · (1− exp−t/T1)−Mz(0) · exp−t/T1 (2.6)

Mxy(t) = Mxy(0) · exp−t/T2 . (2.7)

By altering the time between excitation with an RF pulse and signal acquisition, T1 and
T2 influence the contrast on an MR image. The relaxation times vary across tissue types
due to biochemical differences, Table 2.1.

2.3 Image Creation

In order to generate an image, the MR signal is made spatially dependent through
the application of magnetic field gradients. These gradients are small perturbations

superimposed on the main magnetic field
−→
B 0. In the presence of a gradient, the magnetic

field B(−→r ) is linearly dependent on the position r = (x, y, z) inside the magnet:

B(−→r ) = B0 +
−→
G · −→r = B0 + (Gxx+Gyy +Gzz) (2.8)

where
−→
G is a linear gradient along a direction. Three physical gradients are used, one in

each of the x, y, and z directions. Each of the physical gradients, Gx(t), Gy(t) and Gz(t),
can be combined to produce one or more of the three functional gradients required to
obtain an image. These functional gradients are known as: slice selection, readout or
frequency encoding, and phase encoding. The combination of the gradients, RF pulses,
data sampling periods, and the timing between each of them is known as a pulse sequence
and used to acquire an image, Section 2.4. The presence of the gradients changes the
nuclei precession frequency, i.e. w0(

−→r ), Equation (2.1):

w0(
−→r ) = γ(B0 +

−→
G · −→r ). (2.9)
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2.3 Image Creation

Figure 2.4: Example of two slice selection gradients, G1 and G2 with a frequency ωRF ± BW
of the RF pulse. With the stronger gradient G1 the slice thickness (∆z1) is narrower than the
weaker gradient (∆z2).

Equation (2.9) states that in the presence of a gradient field, a nucleus will precess at a
unique frequency that depends on its exact position inside the gradient field.

The localisation of a 2D slice in space is accomplished using frequency selective excita-

tions in conjunction with a slice selection gradient
−→
GSS . The gradient direction defines

the slice orientation, while the gradient amplitude determines the slice thickness, and
the frequency of the RF pulse determines the slice position along a vector normal to the
slice. A frequency selective RF pulse has two parts: a carrier frequency and a narrow
range of bandwidth (BW ) determined by the RF pulse duration, Figure 2.4. The appli-

cation of
−→
GSS has the effect of causing the nuclei in the sample to precess at different

frequencies, depending on spatial location along the direction of the gradient. When
an RF pulse is applied in the presence of such a gradient only the nuclei exhibiting a
precession frequency matching that of the RF pulse carrier frequency wRF±BW satisfy
the resonance condition.

After the selection of a single slice, the two in-plane directions x and y are spatially en-
coded by applying gradients along these directions. The measured signal is manipulated,
as an example, by a gradient applied in the x direction, i.e. Gx, as follows:

S(t) =

∫ ∫

Mx,y(x, y) · e−iγxGxtdxdy. (2.10)

The variable t can be expressed as the k-space kx, defined as:

kx = γGxt. (2.11)

Substituting Equation 2.11 into Equation 2.10 yields:

S(kx) =

∫ ∫

Mxy(x, y) · e−ikxxdxdy. (2.12)
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Chapter 2 Basic Concepts of MRI

(a) (b)

Figure 2.5: Acquired k-space (a), and the corresponding 2D Fourier transformed magnitude
image (b).

Equation (2.12) shows the relationship between the measured signal S(kx) and the trans-
verse magnetisation, i.e. S(kx) is the Fourier transformation of Mxy. In MR the signal
acquisition, Equation (2.10), is acquired in the presence of a frequency encoding gradient−→
GRO, which consists out of two individual gradients known as pre-phasing and readout

gradient (perpendicular to
−→
GSS). The pre-phasing gradient is applied first. The readout

gradient is of opposite polarity and has an integral of twice the size of the pre-phasing
gradient. When the frequency encoding gradient is applied, the pre-phasing gradient
causes the nuclei inside the sample to precess at different frequencies that depends on
the position of the nuclei with respect to the gradient. The application of the readout
gradient causes a reversal of the frequency change, thus making the precession of the
nuclei synchronous. This is at a maximum when the integral of the readout gradient is
equal to the negative integral of the pre-phasing gradient. This point in time is known

as an ‘echo’. The application of
−→
GRO corresponds to a projection along the frequency

encoding direction of the signal originating from the entire slice. This corresponds to a
line in the k-space at (kx, 0).

To encode the second dimension, the so-called phase encoding gradient
−→
GPE , is used.

This gradient is oriented perpendicular to the
−→
GSS and

−→
GRO and is played out in

between them. It adds a linear phase, proportional to gradient strength, to the signal,
which corresponds to a shift in ky direction. To sample the complete slice, different

phase encoding gradient strength are applied before playing out
−→
GRO. For a resolution

of N pixels in phase encoding direction, signal acquisition has to be performed N times

by gradually alternating
−→
GPE.

Measurement techniques can be divided into 2D and 3D categories based on the excited
volume that it is used to generate the signal. For 3D acquisition an additional phase

encoding gradient perpendicular to
−→
GPE and

−→
GRO is necessary to sample the third

direction.
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2.4 Pulse Sequences

(a) (b) (c) (d)

Figure 2.6: 2D slices of a representative brain. In (a) an MPRAGE image in (b) a FLAIR
image, in (c) a T2 weighted image, and in (d) TOF image contrast.

The MR signals are collected by a receive coil, digitalised as a function of time and
converted into a complex format. These data are known as raw data or k-space data.
Each signal point has a real and imaginary value. The image or the displayed matrix
that it is commonly seen, is obtained by the Fourier transform of the complex raw data,
Equation 2.12 (Figure 2.5). The maximum signal contained in k-space is located at
the central point of the raw data matrix, where the echo has occurred and is primarily
responsible for the image contrast. The outer portions of the raw data have relative low
signal value and mainly provide edge definition to the resultant image.

2.4 Pulse Sequences

In order to acquire an image a combination of RF pulses and gradients are required to
localise the position of the nuclei in the tissue of interest. The combination of all these
components is known as pulse sequence. The pulse sequence contains the hardware
instructions, such as RF pulses and gradient pulses, necessary to acquire the MR image
in a specific manner. By changing sequence parameters, such as timing or RF pulses,
different contrasts between the different tissue types can be achieved.

The repetition time (TR) is the time between successive RF excitations and determines
the amount of T1 weighting contributing to the image contrast. The echo time (TE) is
the time between the excitation pulse and the signal echo. It determines the amount of
T2 weighting. For inversion recovery sequences, where the imaging sequence is preceded
by an inversion pulse, the inversion time (TI) is defined as the time between the 180◦

inversion pulse and the image excitation pulse and also contribute T1 weighting (T1-w)
of an image. Short TI have a low minimum T1 relaxation, while long TI times allow
significant T1 relaxation prior to the imaging excitation pulse. A correct choice of TI
enables signal suppression of tissues based on their T1 relaxation times. Flip angle

defines the angle of rotation away from the equilibrium axis that
−→
M0 undergoes through

RF absorption. The flip angle together with TR and TI values determines the amount
of T1 weighting present in the image.
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Chapter 2 Basic Concepts of MRI

Examples of pulse sequences for tissue identification, used in this thesis, are the
Magnetisation-Prepared Rapid Acquisition Gradient Echo (MPRAGE), the Fluid-Atte-
nuated Inversion Recovery (FLAIR), T2-weighted (T2-w) Turbo Spin Echo (TSE) and
Time Of Flight (TOF), which are routinely used to image the brain, Figure 2.6.

The MPRAGE is related to the T1 relaxation value and captures high tissue contrast
while providing high spatial resolution.

The FLAIR sequence allows to suppress signal from fluid by adjusting the TI. There-
fore, the signal from the CSF can be eliminated for brain imaging and the detection of
subtle changes at the periphery of the hemispheres and in the periventricular region close
to CSF can be determined. The usefulness of FLAIR sequences has been evaluated in
diseases of the central nervous system such as multiple sclerosis and infarction [36]. An
example of a T2 weighted image is shown in Figure 2.6(c) where the CSF is hyperintense
due to long T2 time, which enables the identification of brain tumours and oedema.

Another example of a pulse sequence, which is very useful to analyse vasculature in
the brain, is called Time Of Flight (TOF) MR angiography. This type of sequence satu-
rates the signal of static tissue of a slice or volume using high flip angles and short TR.
Unsaturated inflowing blood creates a bright vascular image without use of contrast me-
dia. Placing an additional saturation slab on one side parallel to the slice can selectively
destroy the MR signal from the in-flowing blood from this side of the slice. This allows
the technique to be flow direction sensitive and to differ between arteries and veins. In
Figure 2.1(d) the TOF image shows the bright arterial blood, whereas static tissue is
almost completely saturated.
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Chapter 3

Image Segmentation

The segmentation of images is one of the central problems in image understanding both
for computer vision and medical imaging applications. The goal of image segmentation is
to separate or detect an object of interest, or foreground, from the background. In multi-
object segmentation, the image is divided into different components, where the number
of components depends on the problem to be solved. In this case the segmentation
can also be regarded as a process of assigning a label to each object. Given the image
I : Ω → R

c, where c ≥ 1 is the number of input images, Ω ⊂ R
3 is the domain, and the

disjoint regions {R1, R2, ..., Rm}, the problem of image segmentation can be formulated
as:

Ω =
m⋃

i=1

Ri, Ri ∩Rj = ∅,∀i 6= j

where each region can represent an object. A segmentation method can be based on
intensity information, texture, motion, shape, spatial relationship or other information
extracted from the image. For example an object may be detected due to its high contrast
against the surrounding objects, or in the case of video analysis the object of interest
could be detected by its motion in consecutive frames. In medical images, typically, the
object to be segmented is an organ, such as the liver, or the heart ventricles, or a lesion,
or also a specific tissue, like brain grey or white matter. For such images, the most
discriminative information is in general the intensity difference between neighbouring
tissue types. Organ shape can also be a very helpful feature in guiding the segmentation
process, especially when the object is surrounded by structures with similar intensities
(Figure 3.1).

A very important application of medical image segmentation is to identify or to mon-
itor pathologies such as tumour growth or degenerative diseases. For a large number
of diseases, the boundaries between healthy and pathological tissue are rather smooth,
therefore the precise identification of e.g., tumours and other lesions is a difficult task
which requires highly experienced radiologists. Often, signal intensities are not discrim-
inative enough and additional information needs to be considered. Typically, a com-
parison with healthy subjects can help in seeing the difference between the pathological
organ/tissue and normal tissue. In addition, tumour tissue can have a very different
texture as compared to the healthy surrounding tissues. In particularly difficult cases,
specific information on the location of the pathology can be very helpful to exclude
potential errors and in targeting the segmentation to a limited region of interest.
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Chapter 3 Image Segmentation

(a) (b) (c) (d)

Figure 3.1: Examples of medical images: (a) brain image where the intensity contrast already
discriminates between grey (GM) and white matter (WM), (b) heart image where the shape prior
(yellow ring) can help to segment the left ventricle, (c) brain tumour shows a different texture
from the normal appearing tissues, and (d) brain lesions localised in the white matter.

In the following sections, a Bayesian formulation of the segmentation problem is pre-
sented, followed by an overview of the most common segmentation methods with a par-
ticular attention to the algorithms that have been applied to brain MR images. Lastly,
methods which are formulated as denoising approaches, but which can also be used for
image segmentation, are described.

3.1 Bayesian Formulation

Many approaches model the image segmentation problem using a probabilistic frame-
work. Given an input image I : Ω → R

c and the labelling f : Ω → L, where L is the
label space, one wishes to maximise the posterior probability with respect to f :

P (f |I) = P (I|f)P (f)

P (I)
(3.1)

where P (I|f) represents the likelihood that an image I originates from the labelling f ,
while P (f) is the prior probability of the labelling. The maximisation of Equation (3.1),
is equivalent to the minimisation of its negative logarithm:

−log P (f |I) = − log(P (I|f)) − log(P (f)) + log(P (I)). (3.2)

The log(P (I)) is treated as constant value since it denotes the probability that the
observed image is possible. Let EApp(f) = − log(P (I|f)) represent an ‘appearance en-
ergy’ term corresponding to the intensity information of the image, and let EKnowledge =
− log P (f) denote the energy associated with the a priori information about the object
to be segmented e.g., information concerning the relative tissue location. Then Equa-
tion (3.2) can be rewritten as an energy minimisation problem:

E(f) = EApp(f) + βEKnowledge(f) (3.3)
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3.2 Segmentation Methods

where the parameter β weights the two energies. With this formulation the objective is
to find a labelling f which minimises Equation (3.3). The above definitions show that the
appearance energy is related to the probability of the grey values given the labelling f ,
while the knowledge or internal energy is described by the negative log-likelihood of the
a priori probability of a given f . Note that if the label space L contains only two labels,
then the labelling f represents a binary segmentation, or also called mask. On the other
hand, in a multi-labelling framework, the label space contains more than two labels and
the region of the image identified by a label is defined as a region Rℓ = {x ∈ Ω|f(x) = ℓ},
∀ℓ ⊂ L.

There is a variety of global and local optimisation techniques that can be applied
to maximise Equation (3.1) or to minimise Equation (3.3) [11, 52]. In Chapter 6 it is
described how it is possible to achieve the segmentation of multiple sclerosis brain lesions
using Equation (3.3), and how a local optimal solution is computed.

3.2 Segmentation Methods

A number of automated and semi-automated segmentation algorithms have been pro-
posed in the literature [63, 100], with a large interest on medical images [107, 114]. In
this section the main focus is on some of these methods and on the description of their
main characteristics, advantages and limitations.
The application of these methods to MR medical images can be challenging due to several
artefacts present in these images: noise, inhomogeneity, and partial volume effects. The
inhomogeneity, also called bias-field, is the presence of smoothly varying intensities inside
tissues, and the partial volume effect denote the contribution of multiple tissue to the
intensity of a single voxel. These artefacts are generally modelled in the segmentation
algorithms.

3.2.1 Thresholding

This class of methods encompasses some of the simplest approaches to perform seg-
mentation, which regard pixel intensity as the main feature to discriminate between two
or multiple regions. Thresholding methods attempt to find an intensity value, called
threshold, which separates the desired region or tissue from neighbouring ones. The
segmentation is then achieved by grouping all the pixels with an intensity greater than
the threshold into one class, and the rest into a second class:

f(x) =

{

1, if I(x) > T

0, if I(x) ≤ T

where T is the threshold value, 0 and 1 represent two different classes. The selection of
two or more thresholds is known as multithresholding and separates the image into mul-
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tiple regions. The formulation of a thresholding method can be seen as the minimisation
of Equation (3.3) where the internal energy is not considered, therefore β = 0:

E(f) = EApp(f).

This technique was applied, for example, to cardiac MR segmentation [119] and it is
commonly used as a pre-selection step for more advanced segmentation methods, such as
for brain extraction [103, 121]. A main limitation of thresholding approaches is the lack
of spatial information related to the segmented region, which causes these methods to be
particularly sensitive to noise and bias field. Both of these artefacts distort the intensity
histogram and therefore, hinder the segmentation. Evolved thresholding methods have
been proposed, which consider local intensity differences [84] as well as connectivity
priors [76].

3.2.2 Feature-based Techniques

The most intuitive feature that can be extracted from an image is the pixel/voxel
intensity, as for the thresholding methods (Section 3.2.1). It is common to model the
distribution of such intensities to discriminate pixels which do not fit into the chosen
model and might therefore be identified as outliers or disease pixels. One of the commonly
used models to represent image intensities is the Gaussian distribution:

N (I(x)|µ, σ2) =
1√
2πσ2

exp

(

−(I(x)− µ)2

2σ2

)

(3.4)

where I(x) represents the intensity of the pixel x, µ is the mean value and σ is the
standard deviation of the pixel intensities. In case there are multiple input images the
1D-Gaussian model becomes multi-dimensional, where the number of input images is
represented by c. The intensity distributions in MR images, usually, cannot be described
by a single Gaussian distribution due to the presence of multiple tissues. Therefore a
more flexible way to model signal intensities is by means of a weighted sum, or linear
superposition of Gaussians, i.e. a Gaussian Mixture Model (GMM):

p(x) =
K∑

k=1

πkN (x|µk, σk) (3.5)

where K is the number of Gaussians and π are the mixture parameters weighting the
influence of each Gaussian, subject to

∑K
k=1 πk = 1. This last constraint forces p(x) in

Equation (3.5) to have a maximum value of 1 and therefore to be a valid probability.
Every Gaussian density N (x|µk, σk) has its own mean µk, and variance σk. When the
number of input images is greater than one, i.e. c > 1, then the Gaussian density
becomes N (x|µk,Σk) where the bold fonts represent vectors and Σk is the covariance
matrix which, intuitively, is a generalisation of the variance to multiple dimensions. Note
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(a) (b) (c)

Figure 3.2: Examples of intensity in (a), texture in (b) and motion segmentation in (c).

that for the MR image contrasts used in this thesis each tissue type can be modelled by
a Gaussian.

There are other ways to describe and to characterise an image. For example it is
possible to analyse the texture, the motion or the shape of the object/tissues that are
contained in the image, Figure 3.2. Features can be classified in three different types:
intensity, texture or shape features. Intensity features are the most commonly used.
They are based on the pixel intensity values and are therefore derived from the histogram
of pixel intensities. Examples of intensity features are the mean, variance, skewness,
kurtosis, and the entropy. The mean is the average value of the intensities, and the
variance represents the intensity variation around the mean. Skewness represents the
symmetry of the intensity histogram around the mean value; the kurtosis is the flatness
of the histogram; and the entropy represents the histogram uniformity.

Texture features provide a higher-order description of the image and contain informa-
tion about the spatial distribution of the variation of the grey level. In other words they
represent the pattern of the image. These features can be scalar quantities, discrete his-
tograms, or any type of characteristic which gives texture properties of the image, such
as spatial structure, contrast, orientation, and brightness. Texture features have been
widely used to discriminate between tumours and healthy tissues in the brain [59, 65].
An interesting characteristic of certain tumours, such as glioblastoma or astrocytoma,
is that they lack texture, as compared to normal appearing tissues, whereas within the
tumour it is hard to discriminate between cysts, necrotic and solid parts.

Shape features provide geometrical information about an object which is part of a
given image, therefore they represent a prior knowledge about the object to be segmented.
Examples of these features include the centroid, area, perimeter, and orientation of the
object of interest.

In order to perform a feature-based segmentation, the first step is to extract one or
multiple features from the input image. Then a classification method is required to
separate the features into one or multiple classes. A simple way to achieve the classifica-
tion can be by applying a thresholding technique (Section 3.2.1); more advance methods
will be presented in Section 3.2.3. An example of this procedure will be presented in
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Figure 3.3: Example of a brain image with two patches. The top one is in the white matter
and the bottom one lies between the ventricles and the white matter.

Chapter 5 where we propose a feature-based approach to discriminate between epileptic
lesions and normal-appearing tissue in the brain.

Recently a feature called ‘patch’ has been successfully used in medical imaging appli-
cations [149]. A patch is a part of the image with a specified size (Figure 3.3). Patches
represent the local structure, shape and image intensity of the object they are taken from.
Images, especially medical ones, reveal similarities across multiple locations, therefore,
a subset of the total amount of patches can be used to represent the image. The process
of learning the relevant patches is called ‘dictionary learning’ [138].

3.2.3 Classifiers

Classifier methods are pattern recognition techniques that are capable of separating a
feature space, not necessarily intensity features, derived from an image into two regions,
e.g. tumour and non-tumour voxels. A one-dimensional feature space may simply consist
in the pixel intensities of an image, and a two-dimensional feature space can be created
using, as an example, the intensities from two different image contrasts. See Section 3.2.2
for more details on image features. Classifiers are supervised method that require a
training set, or rather a subset of input data for which the classification, or label, is
known. This set is then used to ‘train’, or learn, the parameters of the classifier. After
the training phase, the rest of the input data are classified. This classification process
can be binary (two labels) or can assign multiple labels.

One of the simplest classifiers used in medical imaging is the K-Nearest Neighbours (K-
NN) classifier. This is a non parametric classifier which discriminates the pixels based on
the most common class among its K nearest neighbours. It is very easy to implement and
requires only an integer value K, a set of labelled examples and a metric to measure the
distance between two input data sets. Some disadvantages of this classification method
are the poor performances when the training set is small since it tends to over-fit the
input data, its sensitivity to irrelevant or redundant features as all features contribute
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(a) (b)

Figure 3.4: Example of input data classified by the black curve in (a). Mapping of the input
data in (a) into a higher dimensional space (b) where the data are separated by a hyperplane
(solid black line). The input data lying on the dashed line are the support vectors, and represent
points with equal distance to the hyperplane. The distance between the hyperplane and the
dashed lines is called margin.

equally to the similarity, and all the training samples must be stored. This type of
classifier was applied in combination with more advanced techniques to the segmentation
of gliomas [68].

Support Vector Machines (SVM) are more advanced type of classifiers, which per-
form a binary linear classification of the input data. In order to achieve a non-linear
classification, a mapping of the input data into a high-dimensional space is performed
with a kernel function. In the high dimensional space a separating hyperplane is iden-
tified as the one having the largest distance to the nearest training-data point of any
class, Figure 3.4. The SVM technique is widely used in object detection and recognition
as well as text recognition and biometrics [125]. Additionally, it has been applied in
medical imaging for brain tumour segmentation [158], lesion segmentation [45, 75], and
disease identification [89, 160]. On the other hand, SVM assumes that the data are in-
dependently and identically distributed, which is not the case for medical images, since
both intensity inhomogeneity and noise can be spatially dependent. Therefore, SVM is
usually combined with other methods to consider spatial information [77]. Note that
when a Gaussian kernel is used for the mapping, SVM is similar to the K-NN classifier,
therefore it has similar properties.

A commonly used parametric classifier is the maximum-likelihood, or Bayesian, classi-
fier. It assumes that the pixel intensities are independent samples taken from a mixture
of probability distributions, usually Gaussian (Equation (3.5)). The training phase is
obtained by taking representative samples for each density function and estimating the
corresponding Gaussians parameters µk,Σk accordingly. The classification of new data
is performed assigning to each pixel the class with the higher posterior probability.

In general classifiers are not iterative, therefore once the classifier is trained the new
input data can be directly assigned to a class. A disadvantage is that they generally do
not perform any spatial modelling. This weakness has been addressed by using classifiers
in conjunction with other methods which take the spatial relationship into account. In
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addition they require a manually labelled training set which can be time consuming. On
the other hand, in the case of application to brain images, if the same training set is used
for different subjects, this can lead to biased results as anatomical differences between
subjects are not taken into account.

3.2.4 Clustering

Clustering methods perform a segmentation grouping a set of pixels/voxels in such a
way that the pixels/voxels in the same group, called cluster, are ‘closer’ to each other than
the pixels/voxels in other clusters. This class of methods consider spatial consistency
and can be seen as an improvement over the thresholding technique, Section 3.2.1, where
the pixels are clustered based only on a threshold value and no spatial information is
included. Clustering algorithms also belong to the class of machine learning techniques
but, unlike the classifier methods, they are unsupervised methods. Therefore they do not
require a training set to learn the classification parameters, as in the case for classifiers
(Section 3.2.3), but instead they iterate between segmentation/labelling of the input
data and estimation of the classification parameters. Especially, clustering methods are
training themselves with the available data.

Commonly used clustering algorithms are K-means, fuzzy c-mean and expectation
maximisation [40]. The K-means clustering method aims to partition the data into K
clusters by iteratively computing the mean for each cluster and subsequently assigning
the pixels to the cluster with the nearest mean. The objective function can be written
as:

J =

N∑

n=1

K∑

k=1

rnk||xn − µk||2 (3.6)

where N is the number of input data points, µk represents the mean of the kth cluster,
and rnk ∈ {0, 1} is a binary variable which indicates if input data n belongs to the cluster
k. Note that x can represent, as for the classifier methods, a vector with multiple features.
The objective is to find the {rnk} and {µk} for which J is minimised.

The fuzzy c-means algorithm is a generalisation of the K-means clustering and allows
for a ‘soft’ segmentation, i.e. the coefficients rnk can assume any value in the interval
[0, 1].

The Expectation-Maximisation (EM) algorithm for image segmentation is generally
applied to Gaussian Mixture Models (GMM), see Section 3.2.2. The EM is a method
that seeks to find the parameters which maximise the likelihood of the model. The
image intensities are assumed to be generated from Gaussian distributions, and the
EM provides a segmentation/partition of the image based solely on these intensities.
Assuming that the data are identically and independently distributed, the log-likelihood
of Equation (3.5), for multi-dimensional data, is given by:

ln p(X|π,µ,Σ) =
N∑

n=1

ln

{ K∑

k=1

πkN (xn|µk,Σk)

}

(3.7)
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where X = x1, ...,xN are the input data, N (xn|µk,Σk) is a Gaussian random variable
with mean µk and covariance matrix Σk, and the mixing coefficients π represent the
respective weights of the Gaussian distribution in the mixture. Note that the maximum
likelihood approach, as applied to GMM models, has singularities. Let consider the
case where N (xn|xn, σ

2
kI), where I is the identity matrix, then in the limiting case

σk → 0 this term goes to infinity. Therefore the maximisation of the log-likelihood
function is not a well-posed problem because such singularities can always happen when
a Gaussian collapses into one point data and σ tends to zero. A possible solution to this
problem is to employ certain heuristics, such as detecting when a Gaussian is collapsing
and therefore resetting its mean to a random value and the variance to a large value.
Another possibility is to remove from the model the collapsed Gaussian.

In order to maximise Equation (3.7), the derivatives with respect to each parameter
are computed. Computing the derivative with respect to the mean µk and setting it
equal to zero, the following equation is obtained:

N∑

n=1

πkN (xn|µk,Σk)
∑

j πjN (xn|µj,Σj)
︸ ︷︷ ︸

γ(znk)

Σ−1
k (xn − µk) = 0 (3.8)

where γ(znk), known as the responsibilities, represent the posterior probability that xn

was generated by the kth component. Multiplying both sides of the above equation by
Σk yields (after rearrangement):

µk =
1

Nk

N∑

n=1

γ(znk)xn, where Nk =
N∑

n=1

γ(znk). (3.9)

The variable Nk is related to the actual input points which do contribute to cluster k.
The derivative of Equation (3.7) with respect to Σk results in:

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk).(xn − µk)
T . (3.10)

The maximisation with respect to the mixing coefficients πk is subject to the constraint
∑

k πk = 1. This can be achieved with the use of the Lagrange multipliers, λ, and
maximising the following expression:

ln p(X|π,µ,Σ) + λ

(
K∑

k=1

πk − 1

)

. (3.11)

21



Chapter 3 Image Segmentation

Computing the derivative with respect to πk and setting it equal to zero results in:

N∑

n=1

N (xn|µk,Σk)
∑

j πjN (xn|µj,Σj)
+ λ = 0. (3.12)

Multiplying both sides by πk, and taking the second Equation (3.9) into account, gives
Nk + πkλ = 0. Next, summing over k, λ = −N is obtained, which gives:

πk =
Nk

N
. (3.13)

The results in Equations (3.9), (3.10), and (3.13) show that it is not possible to directly
compute the model parameters, since they depend on the responsibilities γ(znk), and
the responsibilities themselves depend on the model parameters. Therefore a possible
way to estimate the maximum likelihood parameters is in an iterative fashion, i.e. the
Expectation-Maximisation (EM) algorithm.

The EM algorithm starts with some random values for means, covariance matrices
and mixing coefficients. Then two steps are iterated in succession: the Expectation,
or E-step, and the Maximisation, or M-step. During the E-step, the current model
parameters are used to estimate the posterior probabilities, or responsibilities, γ(znk),
while in the M-step the model variables are re-estimated using Equations (3.9), (3.10),
and (3.13). The general EM steps are summarised in Algorithm 1.
The final classification is performed considering the estimated GMMs: every input data
will belong to the class with the highest log-likelihood.

A drawback of the EM algorithm is that it requires many iterations to reach con-
vergence. Therefore it is common practise to use the K-means algorithm in order to
find a suitable initialisation for the GMM model parameters. Additionally when the
log-likelihood function has multiple local maxima, the EM algorithm does not guaran-
tee that the largest one is actually found. The combination of K-means with the EM

Algorithm 1

1: Choose an initial value for µk, Σk and πk. Evaluate the initial log likelihood value,
Equation (3.7)

2: repeat

3: E-step: expectation of the posterior probabilities:

γ(znk) =
πkN (xn|µk,Σk)

∑K
j=1 πjN (xn|µj,Σj)

4: M-step: maximise the expectation of the log-likelihood in the model parameters,
Equations (3.9), (3.10), and (3.13).

5: until Convergence of either the parameters or of the log-likelihood.
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(a) (b)

Figure 3.5: Examples of MRF graphs. Vertices (circles) are connected by the edges (black
lines). In (a) a 4-connected graph. In (b) an 8-connected graph which can be used to obtain
better geometrical details.

algorithm is also used in the proposed method that will be presented in Chapter 6 to
model the different brain tissue intensities.

The EM clustering method is widely used in combination with atlas-based approaches,
Section 3.2.6, to get a soft segmentation of the brain tissues [4].

3.2.5 Markov Random Fields and Graph-based Techniques

A Markov random field (MRF), is a statistical model represented by a set of random
variables X = (X1,X2, ...,XN ) that can be used with segmentation methods. A MRF
models spatial relationships between neighbouring pixels. Such local correlations are
particularly useful for modelling image properties, and in medical imaging they are used
to represent the fact that a pixel has a high probability of belonging in the tissue/class
of its neighbours. Therefore an anatomical structure composed by a single pixel has a
very low probability of occurrence in a MRF model.

Markov random fields can be modelled using graphs. A graph G = {V, E} consists of a
set of vertices V = (v1, v2, .., vN ), which can correspond to the image pixels/voxels, and a
set of edges E which represent the connection between two vertices: (vi, vj) ∈ E , vi, vj ∈ V.
In MRF the edges are considered undirected, so (vi, vj) and (vj , vi) refer to the same
edge which is typically qualified as a weight w(vi, vj). A simple representation of a graph
can be seen in Figure 3.5.

By definition, the variables in the MRF need to follow the Markov Property, which
states that in a stochastic process the conditional probability distribution of future states
for a process depends only on the present state and not on the precedent sequence of
state transitions [85]. When applied to an image, this property may be interpreted as
restricting the local dependence of any given pixel intensity to the intensities of just close
neighbouring pixels. Therefore the conditional probability of a random variable can be
expressed as:

P (Xi|Xk, k 6= i) = P (Xi|Xk, k ∈ Ni) (3.14)

where Ni represents the neighbourhood of Xi.
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Markov random fields are often incorporated into brain tissue clustering segmentation
algorithms such as K-means by using a Bayesian prior model for brain tissues [58, 159].
The segmentation is obtained by maximising the posterior probability of the segmen-
tation given the image data. Additionally, MRFs have been applied to brain tumour
segmentation in combination, for example, with support vector machines [77] and atlas
models [9].

A difficulty associated with the use of MRF models is the proper selection of the
parameters controlling the strength of spatial interactions [85]. Too high values can
result in an excessively smooth segmentation, hence in the loss of important structural
details. In addition, MRF methods usually require computationally intensive algorithms.
Despite these disadvantages, MRFs are widely used not only to model segmentation
classes, but also to model intensity inhomogeneities that can occur in MR images [159]
as well as texture properties.

In the remainder of this subsection the graph theory presented above is used to perform
image segmentation, i.e. the graph-based approaches. The inclusion of MRF into graph-
based segmentation techniques will be described in Chapter 4.
Given an image I : Ω → R, the pixels x ∈ Ω, which are needed to be separated, are
inserted into the graph as vertices, i.e. there is a one-to-one correspondence between the
vertices and the pixels. Computing an image segmentation based on a graph means to
find mutually exclusive components, such that each component A is a connected graph
G

′

= (V ′

, E ′

), where V ′ ⊆ V, E ′ ⊆ E and E ′

contains only edges connecting vertices in
V ′

. Therefore all the components (A1, A2, ..., Ak) in which the graph is partitioned must
satisfy Ai ∩ Aj = ∅,∀i 6= j and A1 ∪ ... ∪Ak = G. Note that a component is ‘a part’ of
the image I, hence a subset of the pixels.

In graph theory a cut of the graph is related to the edges which are cut to identify, in
binary segmentations, two disjoints sets Ai, Aj . The cost of the cut is defined as:

cut(Ai, Aj) =
∑

v∈Ai,u∈Aj

w(v, u). (3.15)

In order to find the best cut the problem is usually formulated as an energy optimisa-
tion [104]. Wu and Leahy [152] were the first to apply the concept of graph cuts to image
segmentation. They formulated Equation (3.15) as a minimisation of a cost function,
which gives the so-called minimum cut. The method seeks to find the minimum cut
which separates existing segments in the graph. The minimum cut criterion is intuitive
but it is biased towards small components. This can be observed from Equation (3.15)
where the cost of the cut increases with the number of edges that need cutting. Therefore
the algorithm favours the separation of the image into small sets of points.

This problem was addressed by the normalised cut (Ncut) algorithm proposed by Shi
and Malik [117]. Instead of looking at the total edge weights connecting two partitions,
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they propose to compute the cost based on the edge weights of all the vertices in a set,
i.e. edges between Ai to all the vertices in the graph:

Ncut =
cut(Ai, Aj)

assoc(Ai,V)
+

cut(Ai, Aj)

assoc(Aj,V)
(3.16)

where assoc(Ai,V) =
∑

u∈Ai,v∈V
w(u, v) and assoc(Aj,V) is similarly defined. With this

formulation the Ncut value is no longer small for partitions with few vertices, therefore
the problem of minimum cut bias is avoided.

Cox et al. incorporated the interior region and the boundary information into the
minimisation [34]. The minimisation considers the ratio between the cost of the exterior
boundary and the one of the interior part:

RegionCut(Ai, Aj) =
length(Ai)

weight(Ai)
(3.17)

where length(Ai) represents the length of the boundary and weight(Ai) is the cost of
the segmented area. This formulation favours large regions and the denominator term
is balanced by the cost of the contour. For example, if the edge costs are relatively low,
then a larger region enclosing low intensity edges may be preferred over a small region
with high contrast.

The minimum mean cut proposed by Wang and Siskind addresses this problem by
defining an edge-based function [147]:

MeanCut(Ai, Aj) =
cut(Ai, Aj |w(u, v))

cut(Ai, Aj |1)
(3.18)

where the numerator represents the cut cost given the edge weights w(u, v), and the
denominator is similarly defined with all edge weights set equal to 1. This approach
finds the best cuts which minimises the average edge weight on the boundary.

The methods presented above have been used in different image segmentation appli-
cations. The main common drawback of all these approaches is their lack of spatial
information. Studies in psychology demonstrated that contextual knowledge is crucial
for understanding visual information. The MRF theory provides a useful way of mod-
elling contextual information such as the relation between neighbouring pixels. One of
the most prominent algorithm which includes MRF, is the max-flow/min-cut presented
by Boykov and Jolly [17], usually referred to as graph-cuts. One of the main contribu-
tions on this work, presented in Chapter 6, is based on this theory and its evolutions.
Therefore, a complete description of the necessary theory to understand the method we
propose in Chapter 6, is presented in Chapter 4.

3.2.6 Atlas-based Approaches

An atlas, or template, is a reference image which contains information about the
anatomic region to be segmented. A number of atlases have been created during the last
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years, in particular for the brain tissues. First a brief description on how to generate an
atlas is presented, and subsequently its application to image segmentation.

Here the focus is on how to generate a brain atlas, but the same technique can be
applied to any other anatomical organs. There are two types of atlases: topological and
probabilistic [25]. Topological atlases are based on a single subject, which is considered to
be representative of the object to be segmented, in terms of size, shape or intensity. One
of the first topological atlas is the Talairach atlas which was proposed to identify deep
grey matter structures [135]. Atlases based on a single subject are not representative
for anatomical variability. Therefore a variety of statistical, or probabilistic, atlases
have been proposed and are based on a population. This kind of atlas is in continuous
evolution. They are relatively flexible since a new subject can be easily incorporated
or the input images can be subdivided based on specific criteria such as age or gender.
Examples of this kind of atlas can be found in [43, 74]. The creation of a probabilistic
atlas is a process which includes segmentation and registration. Here, only a brief
introduction to registration is given, for a detailed review on registration techniques
see [38, 163].

The first problem that occurs when analysing multiple image contrasts is to assure
that the images are registered. Two images are assumed to be registered when they
can be perfectly superimposed, so that any structure present in a given image appears
in exactly the same location in the other image. When analysing complex structure,
such as brain tissues, this constraint becomes very important since a shift of just a few
voxels can result in different tissues being wrongly aligned, hence leading to an incorrect
segmentation.

The various types of registration approaches can be classified according to their degrees
of freedom. The most common general transformations are rigid, affine, and non-linear.
Rigid transformations allow for translation, rotation along the three Cartesian axes and
a global scaling factor. Affine registration use more complicated distortions such as
shearing. Finally, non-linear registration allows for more complex transformations, such
as stretching and dilating, with an increased number of degrees of freedom. The latter
transformations are very useful for the alignment of abdominal organs such as liver and
lungs [108], whereas rigid or affine transformations are often sufficient for the brain.

The first step of the atlas generation, performs a registration, usually affine, of all the
subject data into a common space. Following a standardisation of image intensities, the
set of registered images is averaged voxel-wise and the resulting image is a probabilistic
map. This procedure can be applied to every kind of image contrast available, which will
produce different atlases. A very useful, hence widely used, type of atlas is one that de-
scribes tissue probabilities. These are computed in the same way as described above and
require that for each subject data the tissue segmentation is available. Usually a manual
annotation of the different tissues is performed. An example of a T1-weighted intensity
atlas including tissue probability maps of grey matter, white matter and cerebrospinal
fluid is shown in Figure 3.6.
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(a) (b) (c) (d)

Figure 3.6: Example of a T1-weighted intensity atlas in (a), and the tissue probability maps for
grey, white matter and cerebrospinal fluid in (b), (c) and (d) respectively.

The process of generating an atlas is very time consuming. A well-known problem
during the registration is that, depending on the method of the registration employed,
certain brain anatomical structures may appear consistently deformed. Additionally
a substantial number of healthy subjects are needed in order to generate statistically
significant probability maps, and for specific anatomical regions this can be a challenging
task.

When atlases are used to perform segmentation the initial step is to find a geometri-
cal transformation τ ∈ T , where T is the space of all possible transformations, which
optimally aligns the atlas with the input image as closely as possible. Given the input
image I : Ω → R and an intensity atlas πI : Ω → R, the process of finding τ , can be
formulated as:

arg max
τ

m(I, τ(πI)) (3.19)

where m is the metric used to evaluate the similarity between the input image and the
transformed atlas. This initial registration step is performed using an intensity atlas, and
the same transformation is applied to the tissue probability maps. As a result, these
registered maps are the segmentation. Since the brain has a large anatomical variability,
this single step is not guaranteed to provide alone a correct segmentation of the region
of interest. Therefore, a possible way to improve the tissue segmentation is to integrate
the atlas information into the formulation. Specifically, with reference to Equation (3.3)
the atlas can be encoded into the EKnowledge as it gives spatial information to the voxels.

Most brain segmentation methods rely on a good initial atlas-based segmentation step
and, subsequently, they implement different techniques to produce the final tissue seg-
mentation [92, 144]. Van Leemput et al. [144] propose to initialise the segmentation using
an atlas of tissue probabilities and to constrain the classification process by weighting
these probabilities for each voxel. This method also accounts for neighbourhood infor-
mation with a Markov Random Field (MRF) model (Section 3.2.5).

Other methods consider the registration and the segmentation as two closely related
and mutually dependent steps. The registration with an atlas can benefit from an
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initial segmentation step, and the brain segmentation requires prior information obtained
from the registration to the atlas. Ashburner and Friston [5] proposed an algorithm in
which they iteratively perform the registration and the segmentation steps. The energy
that they propose to minimise contains the registration parameters, the intensity model
formulation (GMM) and the bias field:

E = −
N∑

i=1

ln

(

ρi(β)
∑K

k=1 γkbik(α)

K∑

k=1

γkbik(α)

2πσ2
k

exp

(

−(ρi(β)yi − µk)
2

2σ2
k

))

. (3.20)

In Equation (3.20), the total number of pixels in the image I is represented by N and the
intensity of the pixels is denoted by yi. The GMM model depends on the K Gaussian dis-
tributions, the means µk, the standard deviations σk and the mixing parameters γk. The
bias field is encoded in ρ(β) where β are the unknown parameters, while the registration
parameters are represented as the α variable. Since the minimisation involves mutually
dependent parameters, the authors proposed to use an iterated conditional model. The
minimisation starts with an initial estimate and then iterates until a local optimal so-
lution is found. Each iteration involves alternating between estimating different groups
of parameters while keeping the others fixed. The GMM parameters are updated using
an EM algorithm, while keeping the bias field and the registration parameters constant.
The deformation of the probability maps is re-estimated while the GMMs and the bias
field are kept fixed. A similar approach is used to estimate the bias field. For further
implementation details, the reader is referred to [5, 105].

The algorithm proposed by Ashburner and Friston [5] is freely available as part of
the Statistical Parametric Mapping (SPM) tool [124]. In Chapter 5 it is used as a
pre-processing step for our proposed method for the detection of epileptic lesions. A
modification, instead, has been developed for the segmentation of the brain grey matter,
Section 3.2.7.

3.2.7 Active Contours and Level-set Methods

Image segmentation can be performed using active contours (or snakes) models. For
a comprehensive review, the reader is referred to [98]. The basic idea of contour models
is to evolve a curve based on constraints from a given image I, to segment an object in I.
Ideally the curve starts somewhere near the object to be detected, and iteratively moves
in the direction normal to the curve itself until reaches the boundary of the object. The
goal of the final segmentation is to preserve important features of the object, such as
edges and corners, while smoothing irrelevant details. The segmentation is ahieved by
performing a local optimisation and as for the MRF (Section 3.2.5) spatial consistency
is included. The classical snake model was proposed by Kass et al. [67] and depends on
the gradient of the image I, so it is able to stop the curve evolution at the boundary of
the segmented object:

F (C) = α

∫

|C ′(s)|2ds+ β

∫

|C ′′

(s)|ds − λ

∫

|∇I(C(s))|2ds. (3.21)
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Here, C is the parametrised curve and α, β and λ are positive parameters. The first
two terms control the smoothness of the curve, while the last term attracts the contour
towards the object that presents high intensity gradients. Equation (3.21) is non-convex
and therefore one cannot compute a global solution. Straightforward implementations
of this energy model are not capable of handling changes in the topology of the evolving
contour. Therefore the topology of the final curve will be as that for the initial curve C0

(curve C at time zero) unless special procedures, many times heuristic, are implemented
for detecting possible splitting and merging. This is problematic if an unknown number
of objects must be simultaneously detected.

In implicit curve representation, contours are represented as the zero level curve of
some embedding function φ : Ω → R:

C = {x ∈ Ω|φ(x) = 0}. (3.22)

There are different methods to evolve implicit contours. The most popular ones are
known as level-set methods, initially proposed in [99], where C is propagated by evolving
a time dependent function φ(x, t) according to a Partial Differential Equation (PDE).

The first formulation considers a velocity field ~V (x) which represents the evolution at
each point x of the implicit surface φ(x). If one wants to move all the points on the
surface with respect to ~V , then the ordinary differential equation

dx

dt
= ~V (x) (3.23)

must be solved for all the points x which are on the front at time t, i.e. φ(x) = 0.
Practically, this means that the front must be discretised into a finite number of pieces,
which can be a challenging task especially if the connectivity of the surface changes and
if the surface elements have become too distorted. In order to avoid the aforementioned
problems the implicit function φ can be used to represent both the interface and its own
evolution. This can be represented by the convection, or level set, equation:

∂φ

∂t
+ ~V · ∇φ = 0. (3.24)

This PDE represents the motion of the interface where φ(x) = 0. At every new time
point, the curve evolves and the new location of the surface needs to be calculated. A
well know discretisation method to compute this evolution is the upwind differencing
described in [98].

The first application of the level-set formulation to image segmentation was proposed
in [27], and a first application to synthetic medical images was proposed in [91]. The
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curve evolution or level-set formulation for the snake energy in Equation (3.21) was
proposed in [28, 69]:

∂φ

∂t
= |∇φ|div

(

g(I)
∇φ

|∇φ|

)

= g(I)|∇φ|div
( ∇φ

|∇φ|

)

+∇g(I) · ∇φ

(3.25)

where div is the divergence operator, and the modulus of the gradient |∇I|, in Equa-
tion (3.21) is replaced by a more general edge based function g(I). Ideally this function
should stop the evolution of the curve whenever an edge is encountered. This level-set for-
mulation allows topological changes and geometric flexibility, and has been successfully
applied to problems in two and three spatial dimensions.

An evolution of the level-set methods was formulated by Chen and Vese [31]. These
authors propose an alternative active contours method whose stopping criterion does not
involve edge functions. The stopping term of this approach is based on the Mumford-
Shah segmentation technique [95]. The model developed by these authors can detect
objects boundaries having a variety of gradient values, for instance, objects that are
very smooth, or even have discontinuous boundaries. In addition, the model and its
level-set formulation are such that interior contours are automatically detected, and the
initial curve can be selected to be anywhere in the image. The basic idea of the model
considers an evolving curve C and the two regions that this curve identifies: an interior
region with an average intensity of c0, and an exterior one with an average intensity of
c1. The model is formulated as follows:

F (c1, c2, C) = µ · Length(C) + ν · Area(inside(C))

+ λ1

∫

inside(C)
|I − c0|2 + λ2

∫

outside(C)
|I − c1|2 (3.26)

where µ, ν ≥ 0, λ1, λ2 > 0 are scalars. The first and the second terms are the regularising
terms. From this formulation it is possible to observe that the scalars µ and ν and are
controlling the smoothness of the curve, particularly useful in the presence of noise.
Using the variational level-set formulation presented in [161], the unknown variable C
can be replaced by the unknown variable φ. Defining the Heaviside step function H, and
the one dimensional Dirac measure δ0 as:

H(z) =

{

1, if z ≥ 0

0, if z < 0
δ0(z) =

d

dz
H(z) (3.27)

the regularisation terms in Equation (3.26) can be formulated as:
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Length{φ = 0} =

∫

Ω
|∇H(φ)| =

∫

Ω
δ0(φ)|∇φ|,

Area{φ ≥ 0} =

∫

Ω
H(φ)

(3.28)

and the third and fourth terms as:
∫

φ>0
|I − c0|2 =

∫

Ω
|I − c0|2H(φ),

∫

φ>0
|I − c1|2 =

∫

Ω
|I − c0|2(1−H(φ)).

(3.29)

Using the above equalities, the energy F (c1, c2, φ) can be written as:

F (c1, c2, φ) =µ

∫

Ω
δ(φ)|∇φ| + ν

∫

Ω
H(φ)

+ λ1

∫

Ω
|I − c1|2H(φ) + λ2

∫

Ω
|I − c2|2(1−H(φ)).

(3.30)

Keeping c1 and c2 fixed and minimising F with respect to φ, the Euler-Lagrange equation
for φ is:

∂φ

∂t
= δǫ(φ)

[

µdiv

(∇φ

|φ|

)

− ν − λ1(I − c1)
2 + λ2(I − c2)

2

]

(3.31)

where δǫ is a globally positive approximation of the δ function.

In general, there is a large number of level-set methods which can be classified into
two major classes: edge-based models [28, 82], and region-based models [31, 102, 112].
Edge-based methods use local edge information to attract the contour towards the object
boundaries. Region based methods identify a region descriptor, or features, of the object
to be segmented, in order to guide the evolution of the curve. Most of these methods are
following the same generic steps. At the initial step, the contour φ needs to be placed
either outside or inside the region of interest, and is then allowed to evolve according to
a partial differential equation. The positioning of the initial contour is still a challenging
task for many level-set methods.

The method we proposed in [126] is an initial attempt to perform a segmentation of
the grey matter tissue in T1-w images acquired at 7 Tesla. Our algorithm is based on
an atlas probability map segmentation which corrects the high inhomogeneity present
in 7T images and provides an initial segmentation of the main tissues: Grey Matter
(GM), White Matter (WM), and cerebrospinal Fluid (CSF). The atlas based method
is similar to the one proposed by [5] described in Section 3.2.6. Therefore registration
to a T1-weighted (T1-w) atlas is interleaved with the segmentation into the three main
tissues and bias estimation. Since the input images have a very high resolution these
steps are performed using a multi resolution approach. In the lowest resolution image the
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(a) (b) (c) (d) (e)

Figure 3.7: 2D slice of a T1-w image acquired at 7T in (a), and the bias corrected image in (b).
Tissue segmentation obtained with an atlas based approach into GM (c), WM (d), and CSF (e).

bias field parameters are estimated (Section 3.2.6), and subsequently applied, without
re-estimation, to the higher resolution images. When convergence is reached, we have
T1-w image corrected for bias field and a segmentation into grey matter, white matter
and cerebrospinal fluid, Figure 3.7. Even if bias correction improves the image contrast,
high frequency noise is still present in the image. Therefore the atlas-based grey matter
segmentation may contain several regions which are not correctly detected.
Therefore a second step is introduced where the segmentation of the grey matter is
refined using a level-set approach. In addition to the original input image, a standardised
image S is introduced, in which every tissue type is assigned a constant pixel intensity,
Figure 3.8(a). The computation of S is based on the mean values of the tissues types
computed with the atlas based approach previously described:

Sx = GMx ·µGM +WMx ·µWM +CSFx ·µCSF

where x denotes a voxel in the image. The seed points, which define the initial con-
tour, are randomly sampled on the atlas based GM segmentation output as those voxels
which have a high probability value of being GM. Given the standard level-set Equa-
tion (3.24) the speed function ~V is modelled as being dependent on both the original
and standardised images:

~V (x) = β1 [(1− α)D1(x) + ακ(x)] + β2 [(1− α)D2(x) + ακ(x)] . (3.32)

The variable κ represents the mean curvature of the contour and it is defined as κ =
∇ · ∇φ

|∇φ| , α it is a constant value, β1 and β2 are constants weighting the two terms of the
speed function, while the terms D1 and D2 encode the intensity information from the
original and standardised image, respectively:

D1(x) = 2 · |µGM − I(x)|n
ǫ+ |µGM − I(x)|n − 1 D2(x) = 2 · |µGM − S(x)|n

ǫ+ |µGM − S(x)|n − 1 (3.33)

where ǫ and n are constant values, and empirically fixed at ǫ = 0.01 and n = 1.5. The
proposed method has been tested on several 7T T1-w images, an example is shown in
Figure 3.8(b)-(c). For all the images an improved GM segmentation has been obtained
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(a) (b) (c)

Figure 3.8: 2D slice of the standardised image S in (a), final GM segmentation obtained with
the proposed method in (b), and a 3D visualisation of the GM in (c).

compared to the results achieved only with an atlas based approach. The results demon-
strated that level-set approaches provide good results but they need to be combined with
other methods to overcome the inherent difficulties of the initialisation phase.

Similar approaches have been proposed where the initial contour has been identified
with thresholding approaches [81, 83].

The presented class of methods can be used independently or in combination to per-
form the segmentation of object(s)/organ(s) of interest. The choice of the appropriate
algorithm depends on the application and on the number and type of images used. As al-
ready mentioned, a feature-based approach to detect focal cortical dysplasia is proposed
in Chapter 5, while a graph-based method is proposed to segment brain white matter
lesions (Chapter 6).

3.3 Relation between Denoising and Segmentation

Image denoising and segmentation are two fundamental, and closely related problems
in image processing and computer vision. The goal of denoising is to remove noise
and/or spurious details from a given, possibly corrupted, digital image while maintaining
essential features such as edges. The commonly used models for noise are, for example,
Gaussian random noise or salt and pepper. As described earlier, the goal of segmentation
is to divide a given image into regions that belong to distinct objects. The quality of the
segmentation is inversely related to the level of noise present in the image. Therefore,
any segmentation algorithm requires an initial step which either removes as much noise
as possible or incorporates it into the model formulation. Denoising and segmentation
can be formulated using variational principles expressed in terms of PDEs.

The description starts with the presentation of the total variation denoising paradigm,
which is related to the contributions of this thesis presented in Chapter 6. The active
contour model presented in Section 3.2.7 and used in the method we proposed in [126],
can also be seen as a denoising algorithm. The curve, that models the object to be
segmented, has to preserve important features, such as corners, while removing irrelevant
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details that may be caused by noise. Then, for completeness, a brief description of two
additional methods is provided.

3.3.1 Total Variation

The Total Variation (TV) is defined as the integral of absolute gradient of a signal.
The signal in images can be seen as the pixel/voxel intensity. TV denoising is based
on the principle that images affected by noise have a high total variation. Therefore,
reducing the TV of the image subject to it being as close as possible to the original
image, removes the unwanted noise.

One of the best known methods is the total variation based model published by Rudin,
Osher, and Fatemi (ROF) [115]. Let u(x) : Ω → R, where x ∈ Ω and Ω ∈ R

3 be the
image without noise. In the ROF model, the corrupted image I(x) : Ω → R can be
described as:

I(x) = u(x) + n(x) (3.34)

where n is a Gaussian white noise of variance σ2. The ROF model minimises the following
energy:

min
u

∫

Ω
|∇u|dΩ s.t.

∫

Ω
(u− I)2dΩ = σ2. (3.35)

Chambolle showed that the non-convex ROF model, Equation (3.35) can be turned into
a convex problem by replacing the equality constraint into an inequality constraint [30].
Therefore the unconstrained model becomes:

min
u

[∫

Ω
|∇u|dΩ+ λ

∫

Ω
(u− I)2 dΩ

]

(3.36)

where λ is a scalar parameter that controls the tradeoff between smoothness and fidelity
to the original data. If λ = ∞ the minimisation will result in the original image, while if
λ = 0 the result is an image where the intensity values are the mean value of the original
image. The Euler-Lagrange equation for the unconstrained ROF model is:

−∇
( ∇u

|∇u|

)

+ 2λ(u− I) +
∂u

∂N
= 0 (3.37)

where ∂u/∂N is the derivative of u normal to the boundary. This equation is not differ-
entiable at points where |∇u| = 0, therefore different techniques have been developed to
minimise it. A simple approach to overcome this problem is to regularise the gradient as
|∇u|ǫ =

√

|∇u|2 + ǫ. The parameter ǫ influences the performance of the algorithm and
must therefore be chosen with care: a too low value of ǫ will slow down the algorithm
in regions with low intensity gradients, whereas high values will cause edge blurring.
Chambolle proposed to use the dual formulation for the TV norm [29]:

|∇u| = maxp · ∇u with |p| ≤ 1 (3.38)
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where p is a vector field. Substituting this equation into Equation (3.36) gives the
primal-dual formulation:

J = min
u

max
p

∫

Ω
p · ∇u dΩ+ λ

∫

Ω
(u− I)2dΩ. (3.39)

The Euler-Lagrange formulation for the primal-dual results in:

∂J

∂u
= 2λ(u− I)− divp

∂J

∂p
= ∇u

(3.40)

where div is the divergence operator.
An efficient algorithm to minimise the primal-dual is to use a gradient descent proposed

in [29]. The algorithm steps are briefly described in Algorithm 2, where the variable t
represents the iterations.

Algorithm 2

1: Initialise ut = I, and pt with random values s.t.||pt|| ≤ 1.
2: repeat

3: ut+1 = ut − τ [2(u − I)− λdivp]
4: pt+1 = pt + σ(λ∇u)
5: pt+1 =

pt+1

max{1,||p||}
6: ut = ut+1, pt = pt+1

7: until Convergence of the vector field p and of u.

The variables λ, τ , and σ in Algorithm 2, are scalar values which need to follow the
inequality σ · τ ≤ 1

8λ2 .
There are additional methods proposed to solve the unconstrained ROF model, as

for example the method of Total Generalised Variation proposed in [18] or the first-
order scheme for convex optimisation proposed in [150]. The total variation model has
been applied to various vision problems, including segmentation and registration. The
method proposed in [141] performs image segmentation by minimising an energy which
considers a weighted total variation, as described in [20], and additionally incorporated
user constraints.

In Chapter 6 we will see how the denoising algorithm proposed by Chambolle [29] can
help to detect and segment lesions in the brain.

3.3.2 Other Methods

Anisotropic Diffusion

In an image, the presence of noise can cause spurious local variations in pixel intensities,
i.e., locally unphysical pixel intensity gradients. Here, the theory of diffusion processes
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provides a sensible approach to image denoising. Physically, diffusion consists in the
motion of particles (atoms or molecules) from a region of higher concentration to a
region of lower concentration. Under certain experimental conditions, this is expressed
quantitatively by Ficks law as:

J = −D∇u. (3.41)

Equation (3.41) states that a concentration gradient, ∇u, gives rise to a particle flux, J ,
that tends to equalise the concentration. Mathematically, these quantities are related
through the diffusion tensor D. If the flux is parallel to the concentration gradient, the
diffusion is said to be isotropic, otherwise anisotropic. In diffusion processes, mass is
neither created nor destroyed. The conservation of matter is expressed by the continuity
equation:

∂u

∂t
= −div J (3.42)

where t represents the time and div is the divergence operator. Introducing Fick’s law,
Equation (3.41), into Equation (3.42) the diffusion equation is obtained:

∂u

∂t
= ∂tu = div(D∇u). (3.43)

In image processing the diffusion equation can be applied to an image I, by considering
pixel intensities, or grey values, to represent the local concentration gradient. Thus, the
local gradient of image grey values will tend to be equalised, resulting in a smoothed
image. The diffusion equation applied to an image I becomes:

It = div(c(x, y, t)∇I) (3.44)

where It describes the evolution of the smooth image over time t, and c is the diffusion
coefficient. A constant value for c leads to a linear diffusion equation with homogeneous
diffusivity. With this formulation the filter will smooth the noise in the image I but
also important structures as for example the edges. To avoid this undesirable effect an
inhomogeneous diffusivity can be chosen as c = g(∇I), as in the anisotropic diffusion
method of Perona and Malik [106]. The underlying idea is to smooth out the image
while preserving the image edges:

It = div(g(|∇I|)∇I) (3.45)

where g is a non-negative, monotonically decreasing function with g(0) = 1. This defini-
tion of the function g guarantees that in regions with large variations in pixel intensity,
the diffusion will be comparatively low, hence the location of the edges will be preserved.
On the other hand, in regions with small variations in pixel intensity, the image will be
further smoothed out due to the relatively high local diffusion coefficient. The definition
that Perona and Malik gave for the class of functions g is ill-posed [44, 97]. As discussed
by Catté et al. [44] there are some admissible functions, as for example g(s) = e−s,
for which the solution of Equation (3.45) is unstable. In fact, in order to obtain both
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existence and uniqueness of the solution the function g must satisfy that s · g(s) is non
decreasing [60]. Catté et al. [44] proposed a new model which overcomes the problem
mentioned above and which is robust in the presence of noise:

It = div(g(|∇Gσ ∗ I|)∇I) (3.46)

where Gσ is the Gaussian function. Thus the modification consists in replacing the
gradient |∇I| by its estimate |∇Gσ ∗ I|. The main drawback of this regularisation is
that it introduces a blurring effect which depends on the choice of the parameter σ. The
optimal choice of σ is noise dependent, thus requires a priori knowledge of the noise
level.

Weickert [148] proposed to regularise Equation (3.45) using a truly anisotropic diffu-
sion:

It = div(D(|∇Gσ ∗ I|)∇I). (3.47)

The parameter σ again needs to be estimated but the blurring effect is reduced by the
diffusion tensor D.

The remarkable results of anisotropic diffusion techniques are mainly associated with
the introduction of anisotropic smoothing. This technique is able to simultaneously
eliminate noise and preserve, or even enhance edges. This is in contrast to conventional
spatial filtering techniques that do not preserve region boundaries or small structures.
For this reason this is still an active field of research and many different methods have
been proposed to regularise and/or relax Perona and Malik’s diffusion method [54, 139].

Anisotropic diffusion methods have been used in different applications such as noise
reduction and edge detection [7, 155, 156]. These methods have also been applied to
enhance structures in medical images such as X-ray angiograms, microscopy images of
kidney [66] as well as ultrasound images [156].

Non-Local Means

The main idea of Non-Local (NL)-means filtering is that the restoration of a noisy
texture patch (Section 3.2.2) is improved by using similar texture patches in other parts
of the image.

This method was developed by Buades et al. and proposes a new way to denoise
images [22]. Instead of looking at every pixel independently it considers also their neigh-
bourhood. Given the noisy image I : Ω → R, the NL-means for pixel i is defined as:

NL[I](i) =
∑

j

w(i, j)I(j) (3.48)
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where the weight w depends on the similarity between pixel i and j. This similarity
depends on the intensity values of I(Ni) and I(Nj), where N is the neighbourhood, or
‘patch’, of a pixel, and is defined as:

w(i, j) =
1

Z(i)
exp

(

−||I(Ni)− I(Nj)||22
h2

)

(3.49)

where h is a parameter which controls the degree of filtering and Z(i) is a normalisation
constant defined as:

Z(i) =
∑

j

exp

(

−||I(Ni)− I(Nj)||22
h2

)

. (3.50)

Therefore, image denoising is achieved by averaging out the intensities of the most similar
pixels in the image. Since the similarity measure considers the neighbourhood of each
pixel, this method is able to preserve texture.

The NL-means method has been widely used for texture denoising [21], video process-
ing [90] and surface smoothing [154]. More recently, it also has been applied to brain
image segmentation [33]. In this paper the authors use a set of manually segmented
images as a prior for the segmentation. When a new image needs to be processed they
compare the local patches of the image to the patches of the segmented images.
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Chapter 4

Introduction to Graph-cuts

In this chapter the relevant background for our contribution, that will be proposed
in Chapter 6, is explained. The description starts with the graph-based segmentation
algorithm, i.e. the max-flow/min-cut, proposed by Boykov and Jolly [17]. The algo-
rithm is usually referred as graph-cuts and is able to find the global optimum for binary
segmentation problems. Then, the extension to multi labelling problems is provided as
well as to local optimisation techniques. Finally, further developments, such as object
interactions, are described.

4.1 General Formulation

Graph-cuts is one of the most prominent algorithm which includes MRF (Section 3.2.5),
and here the same graph notation is used. Given the unknown labelling f : Ω → L, where
L is the labelling space, and an image I, the energy function that Boykov and Jolly [17]
propose to minimise is:

E(f) =
∑

i∈I

Di(fi) + λ
∑

(i,j)∈N

Vi,j(Ii, Ij) (4.1)

where N represents the neighbourhood of each vertex i ∈ Ω, and λ is a weighting
parameter. The first term represents the cost of assigning the label fi to the pixel i,
while the second term represents the penalty of neighbour interactions and can therefore
be seen as a smoothing term. The parameter λ weights the relative importance between
the data and the regularisation constraint: if λ is small, then the data term is more
important while if λ is large, then the regularising term is more relevant. In the extreme
case of λ = 0, the minimisation relies only on the intensity information of the image,
hence the resulting segmentation is identical to a thresholding approach. In the other
extreme case of λ = ∞, the optimal solution consists in all the pixels being assigned
to the same label. Therefore, a correct value for λ needs to be chosen and this choice
depends on the specific application.

Note the formal similarity between Equation (4.1) and Equation (3.3): any energy
function of the type given by Equation (4.1) can be derived as the maximum a posteriori
estimate, and hence is justified by Bayesian statistics. The data term D(·) or the EApp

energy both represent the intrinsic information contained in the image. As an example,
this energy can encode pixel-wise intensity information, which can be modelled using
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a Gaussian or GMM distribution. On the other hand, the knowledge term V (·) or the
energy EKnowledge both encode spatial information. In [17], Boykov and Jolly propose to
use the following function:

Vi,j(Ii, Ij) = exp

(

−(Ii − Ij)
2

2σ2

)

· 1

dist(i, j)
(4.2)

where Ii represents the intensity of the pixel i, and dist measures the distance between i
and j. This function highly penalises discontinuities between pixels of similar intensities,
i.e. |Ii − Ij | < σ, while it has a small penalty value if |Ii − Ij| > σ. Note that if fi = fj
there is no additional cost to the cut, while if fi 6= fj then the Vi,j(Ii, Ij) will contribute
to the cost.

4.2 Graph Construction

The minimisation of Equation (4.1) needs that all the voxels in the image are inserted
in the graph as vertices, so there is a one-to-one correspondence between the vertices and
the pixels. Moreover, two additional vertices, namely the source (s) and the sink (t) are
required. These two vertices must be in the graph and they represent the background and
the foreground in a binary segmentation framework. Therefore a cut separates the source
from the sink : the vertices which, after the cut, are connected to the source represent the
background of the image, while those connected to the sink are the segmented object.

In order to model the two energy terms in Equation (4.1), the graph contains two types
directed edges: the t-link and the n-link. The t-links are the terminal edges: prior to the
cut, they connect each vertex that takes parts in the segmentation to both the source
and the sink ; after the cut, a segmentation is obtained where each vertex is connected
via a t-link either to the source (if the vertex is part of the background) or to the sink
(if it is part of the foreground). The n-links connect neighbouring vertices/pixels and
hence encode spatial information. A graph representation of a 3 × 3 image is shown in
Figure 4.1.

Now it is shown how to construct this directed graph, with the assumption that the
source represents the intensity level 0 and the sink represents the intensity level 1. In
Equation (4.1) the data term Di(fi) represents the cost of assigning the label fi ∈ {0, 1}
to the pixel i. If the pixel i is assigned to the source then Di(0) < Di(1). To encode this
information into the graph two t-links for each pixel node are created: the first t-link
connects pixel i to the source, as denoted by (s, i), and has the weight Di(1). Similarly
the second t-link connects i to the sink, denoted by (i, t), and has the weight Di(0). The
weights in the graph are non-negative, i.e. Di ≥ 0.

Next, the regularisation term is introduced, where it is assumed that the original image
is piece-wise constant. This assumption can be encoded with the use of n-links, which
connect neighbouring pixels. The size of the neighbourhood depends on the specific
application, as an example one can used 4-connected or 8-connected neighbourhood.
The weights of these n-links depend on the function V (see Equation (4.1)) and on λ.
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(a) (b)

Figure 4.1: Graphs model for a 3 × 3 image in (a). The orange and green vertices are, respec-
tively, the source and the sink. Orange and green edges connecting the vertices to s or t are the
t-links, while the black edges connecting the vertices are the n-links. In (b) a cut of the graph
(dashed line) separates between nodes connected to the source and to the sink vertices.

To see how to perform a cut on such a graph, the reader is referred to [14]. The cost
of any cut C of the graph depends on the weight values of the n-links and t-links which
are cut. First let consider the contribution of the t-links to the cut. For every node
in the graph it must be decided where the edge with lowest weight lies. If the lowest
weight is that of the edge (i, t), then Di(0) will contribute to the cut cost and the pixel
i will be assigned to the source (label 0). If the cut is on the edge (s, i), then Di(1)
will contribute to the cost and in this case the pixel i will be assigned to the sink (label
1). For the contribution of the n-links let assume that the pixels i and j are neighbours
and are connected by the edges (i, j) and (j, i). If i and j are on the same side of the
cut, then the respective weights of (i, j) and (j, i) do not contribute to the cost of the
cut. However if i and j are on different side of the cut then these n-links are cut and
contribute to its cost.

4.3 Submodularity Condition

In general the graph-cuts method by its construction, computes binary segmenta-
tions. An important work, published by Kolmogorov and Zabih [73], formalises the class
of function that can be minimised by graph cuts. The author showed that the function
E in Equation (4.1) is graph representable if it is a regular/submodular function. This
condition states that the cost of assigning two neighbouring pixels to the same label has
to be less than or equal to the cost of assigning different labels to them:

Vi,j(0, 0) + Vi,j(1, 1) ≤ Vi,j(0, 1) + Vi,j(1, 0). (4.3)
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Figure 4.2: Graph representation for the regularity term.

Submodularity is ensured when all edge weights are non-negative. The Vi,j, second
term of Equation (4.1), represents the potential cost of the two neighbouring vertices
i, j in four different situations: Vi,j(0, 0) represents the cost that both vertices, or nodes,
are assigned to the source, Vi,j(1, 1) is the cost when they are both assigned to the
sink and Vi,j(1, 0), Vi,j(0, 1) are the costs when the cut separates the two nodes. The
possible interactions between the nodes i and j can be schematically represented with
the following tables

Vi,j =
Vi,j(0, 0) Vi,j(0, 1)

Vi,j(1, 0) Vi,j(1, 1)
=

A B

C D

A B

C D
= A +

0 0

C - A C -A
+

0 D - C

0 D - C
+

0 B + C - A - D

0 0

Consider the second expression. The first term A is a constant value which does not
need to be inserted in the graph; the second and third terms depend only on the vertices
i and j, respectively; and the last term is the regularity term (see Equation (4.3)). The
graph construction for the overall energy contribution due to pixels i and j is illustrated
in Figure 4.2, where the weights C − A > 0 and D − C > 0 are placed on the t-links
while the regularity term weights the n-link between i and j.
If the graph construction follows the regularity condition, the solution to the minimisa-
tion problem is guaranteed to be optimal. The proof can be seen in [73].
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i0 = 0, i1 = 0 i0 = 1, i1 = 1 i0 = 0, i1 = 1
(a) (b) (c) (d)

Figure 4.3: Ishikawa construction for 3 labels. In (a) the t-links connecting every node in the
layers to s and t. From (b) to (d) the three possible configurations, where the cut is represented
by the dashed line. (b) represents L = 1, or rather i0 = i1 = 0, (c) represents L = 3 where
i0 = i1 = 1, and in (d) the additional ∞-edge in added between the layers to force i0 = 0, i1 = 1
which represents L = 2.

4.4 Multi-labelling Segmentation

Graph-cuts are devised for binary segmentation problems and have found many ap-
plications, but for multi-labelling problems the technique must be extended. Given the
labelling f : Ω → L, where L is the labelling space which contains more than two labels,
Equation 4.1 can be extended in:

E(f) =
∑

i∈I

Di(fi) + λℓ1,ℓ2

∑

(i,j)∈N

Vi,j(Ii, Ij) (4.4)

where the parameter λ is now dependent on two labels ℓ1, ℓ2 ∈ L. A multi-labelling
problem is in general NP-hard, but becomes polynomial if a total ordering of L, i.e. ≤L,
is given such that λℓ1,ℓ2 , is convex with respect to this ordering. Let us start to observe
that λℓ1,ℓ2 , in Equation (4.4), is a scalar value, but can also be interpreted as a function:
λ : L2 → R [64]. Ishikawa studied functions that can be written as λℓ1,ℓ2 = F (|ℓ1 − ℓ2|)
for a convex function F [64]. Then, the polynomial run time was achieved by Ishiwaka,
by first allowing an independent binary decision for each label ℓ which requires that the
label space L has to be expanded to the set of its subsets, i.e. 2L. Thus, the multi-
labelling f : Ω → L becomes the extended multi-labelling f̂ : Ω → 2L. Secondly, he
introduced the inclusion constraints

ℓ ∈ f̂(x) ⇒ ℓ′ ∈ f̂(x) for all ℓ′ ≤L ℓ,
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(a) (b) (c)

Figure 4.4: Two moves introduced in [16]. In (a) the initial configuration, in (b) an α/β-swap
move and in (c) an α-expansion.

which ensure that f̂(x) has the form {ℓ′ ∈ L|ℓ′ ≤L ℓ} for some ℓ ∈ L. He showed that
the data terms can be chosen in a way that an optimum of the original multi-labelling
f : Ω → L is derived from the optimal f̂ : Ω → 2L via f(x) := max f̂(x).

Given the label space L = {1, ..., k}, the graph is to be constructed by creating k −
1 copies i0, i1, ..., ik−2, of each vertex/pixel i. Every copy of a given vertex is itself
considered as a vertex and can be seen as being part of a separate ‘layer’ in the graph,
where it encodes a specific label. All copies are then connected to the source and to
the sink, (s, i0), (s, i1), ..., (s, ik−2) and (i0, t), (i1, t), ..., (ik−2, t), as was previously done
for the binary case, Figure 4.3(a). These n-links represent the relationship between
neighbouring pixels, which can be within a ‘layer’ or across ‘layers’. Intra-layer n-links
have the same meaning as for the binary graph so they represent the smoothing term
for each label. Through-layer n-links represent the ordering of the labels. In addition
they can be used to encode, for example, topological constraints or minimum distance
constraints between two or multiple labels. This kind of graph is usually referred as
‘Ishikawa construction’.

It is worth seeing how to encode different labels. Let us suppose that k = 3 labels,
without loss of generality denoted as L = {1, 2, 3}. According to the Ishikawa construc-
tion, two graph layers, hence also two copies i0, i1, of each vertex/pixel, are required. In
the graph, these nodes (copies) are connected to both s and t, as shown in Figure 4.3(a).
Thus, there are four different possible configurations: if both i0 and i1 remain connected
to the source, then they are both assigned the label 0 (configuration 0 0, Figure 4.3(b));
if i0 is attached to the source while i1 is attached to the sink, their respective labels
are 0 1 (configuration 0 1); interchanging connections give rise to a configuration 1 0;
finally in the configuration 1 1 both nodes remain connected to the sink, Figure 4.3(c).
It is seen that both configurations, 0 0 and 1 1, are ordered; they represent label 1
and 3, respectively. On the other hand, for the configurations 0 1 and 1 0 there is no
obvious ordering between the two. Therefore, Ishikawa introduced an ∞-edge between
the different layers as shown in Figure 4.3(d). This additional edge enforces that if the
vertex in layer 0 is assigned to the sink, then so is also for the vertex in layer 1 and
both vertices are assigned label 1. With this additional constraint there are only three
possible configurations, namely 0 0, 0 1, 1 1.
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4.5 Local Optimisation

The pairwise term Vi,j in Equation (4.1), is not suitable for many computer vision
applications if the number of labels in L is large, as it does not preserve discontinuities.
The penalty that a convex function Vi,j imposes on discontinuities is large, and in an
optimal labelling f these discontinuities are smoothed out with a ‘ramp’. Even if the
cost of few steps are equal to the cost of a single large one, using the absolute difference
measure, in practice over-smoothed disparities are seen. Below, it is shown how to
minimise discontinuity preserving functions using graph-cuts.

A possible way to construct a discontinuity-preserving function Vi,j is to bound its
maximum value. An example is given by the Potts model, defined by Vi,j = K ·T (fi 6= fj),
where fi, fj represents the labels of the nodes i and j and the function T returns 1 if the
labels are different, 0 otherwise [110]. Unfortunately, performing energy minimisation
with a Potts model is NP-hard [16].

Boykov et al. [16] proposed two different procedures, or ‘moves’, that can be indepen-
dently used to minimise, locally, this kind of energy functions: the ‘swap move’ and the
‘expansion move’ which will be described in rest of the section. There are also other ap-
proximation algorithms that have been developed in order to minimise non-submodular
functions, for example the quadratic pseudo-boolean optimisation (QPBO) [72, 113],
QPBOP, where the last P stands for ‘probing’ [13], and the QPBOI where the I stands
for improving [113].

Both these moves are generally applied to multi labelling problems, and they allow
many pixels to change their label simultaneously. The swap involves exactly two labels,
α and β, say simultaneously. During an α/β-swap move, pixels with the label α can
get the new label β, and vice versa, while all the other pixels retain their current label,
see Figure 4.4(b). This type of move can be applied when the so-called inequality
Vi,j(α,α) + Vi,j(β, β) ≤ Vi,j(α, β) + Vi,j(β, α) holds.
The expansion move considers one label at the time, as for example α. The α-expansion
move allows any image pixel to change its label to α, Figure 4.4(c). The expansion move
can be used when Vi,j(α,α) + Vi,j(β, γ) ≤ Vi,j(α, γ) + Vi,j(β, α) holds for all α, β, γ ∈ L.
In this case the function Vi,j is said to satisfy the expansion inequality.
Both of these algorithms are based on an initial segmentation which provides a labelling
of the image, e.g. the Ishikawa construction. In addition both of these moves find a
local minimum with respect to their move, and the two algorithms are quite similar in
their structure. First it is important to define the meaning of ‘local minimum’. For each
labelling f , the set of moves is defined as Mf . Then f is a local minimum if there exists
a labelling f ′ such that E(f) ≤ E(f ′). The structure of the algorithms can be seen in
Algorithm 3. The sets of moves Mf involves, in general, both α/β-swap or α-expansion
move. The Algorithm 3 is generally repeated for all α/β pairs in the label space or for
all individual α labels. Because the number of expansion/swap moves for each label,
or pair of labels, is exponential in the number of vertices/pixels, a direct search for
the optimal expansion/swap move is unfeasible. However, it is possible to compute the
optimal α-expansion or the optimal α/β-swap using the max-flow/min-cut algorithm
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Algorithm 3

1: Start with an arbitrary label f
2: repeat

3: f ′′ = arg min E(f ′) among f ′ ∈ Mf

4: if E(f ′′) < E(f), then set f = f ′′

5: until E(f ′′) ≥ E(f)

presented above, Section 4.1. This is because the computation of any of these moves is
a binary minimisation problem which is regular/submodular when the swap/expansion
inequality holds. In the remainder of this section it is described how to find the optimal
move for both algorithms.

4.5.1 Swap Move

In order to compute the optimal move for a α/β-swap, let consider only that part of
the graph which contains the nodes with labels α and β, denoted by Gα,β = (Vα,β, Eα,β).
Since it is a binary segmentation, one constructs the graph as for the max-flow algorithm,
with the only difference that the terminal source vertex is renamed α and the terminal
sink vertex is renamed β (Figure 4.5(a)).

For simplicity let consider two neighbouring pixels, corresponding to two vertices in
the graph, the i and j vertices. The weights of the t-links are defined as:

tαi = Di(α) +
∑

j∈Ni

j 6∈αβ

Vi,j(α, fj) tβi = Di(β) +
∑

j∈Ni

j 6∈αβ

Vi,j(β, fj) (4.5)

where Ni represents the neighbourhood of i. From Equation (4.5) one sees that the
terminal weights depend on the data term Di(·) as well as on the interaction with nodes

(a) (b)

Figure 4.5: Two types of move as introduced in [16]: (a) α/β-swap graph, (b) α-expansion
graph constructions.
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(a) (b)

Figure 4.6: Example of α-expansion graphs. In (a) the graph for i = α and j = β, while in (b)
the graph for i = β and j = γ.

which are neither α or β. After the graph is constructed the max-flow/min-cut algorithm
can be used to perform an optimal cut. An example of the α/β-swap move can be seen
in Figure 4.4(a).

4.5.2 Expansion Move

The α-expansion move is a binary segmentation where, for simplicity, the source and
the sink vertices in the graph are respectively denoted as α and α. Note that ᾱ represents
any possible label in the label space different than α. Since all vertices can, potentially,
change label, all the vertices are included into it G = {V, E}. In order to understand how
to construct the graph, two neighbouring vertices i and j, are considered. The energy
to be minimised based on this pair of vertices is:

Vi,j = V0,0 īj̄ + V0,1īj + V1,0ij̄ + V1,1ij (4.6)

= V0,0(1− i)j̄ + V0,1(1− i)(1 − j̄) + V1,0ij̄ + V1,1(1− ī)j

= ij̄ (V0,1 + V1,0 − V0,0 − V1,1)
︸ ︷︷ ︸

submodular term

+ i(V1,1 − V0,1) + j̄(V0,0 − V0,1)
︸ ︷︷ ︸

linear term

+ V0,1
︸︷︷︸

const.

(4.7)

where the terms V·,· = Vi,j(·, ·) of Equation (4.3). The notation ī, or j̄, indicates a
label change, e.g. if i has label α, then ī indicates label ᾱ. Equation (4.7) contains
a submodular/regular term, two linear terms, one each for the i and j vertices, and a
constant term which represent a cost that needs to be added to the graph. The subscript
indices, 0 and 1, represent two possible behaviours: 0 if the label does not change, and 1
if the label was ᾱ and becomes α. The graph construction can be seen in Figure 4.5(b).

There are three possible label configurations for any pair of vertices i, j.
The simplest configuration occurs for i = j = α. Since both nodes are already labelled
as α, in Equation 4.6 the terms proportional to V0,1 and V1,0 vanish because they are
respectively multiplied by ī and j̄, both of which are zero. The two remaining terms
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(a) (b) (c)

Figure 4.7: Object interactions proposed in [37]. In (a) A contains B, in (b) A attracts B, and
in (c) A excludes B.

V0,0, V1,1 do not contribute to the cost since the two nodes have the same label and the
cut will not separate them. Therefore, in this simple case, no additional costs must be
added to the graph.
The second case occurs when one of the two vertices is labelled as α and the other is
labelled differently, for example i = α and j = ᾱ. The costs are now given by V0,0 = Vα,ᾱ,
V0,1 = Vα,α = 0, V1,0 = Vα,ᾱ and V1,1 = Vα,α = 0. Both the submodular term and the
linear term for i vanish, while the linear term for j becomes V0,0−V0,1 = Vα,ᾱ and needs
to be added to the graph, Figure 4.6(a).
The third case occurs when neither vertex is labelled as α, for example i = β and j = γ.
In this case V0,0 = Vβ,γ , V0,1 = Vβ,α, V1,0 = Vα,γ and V1,1 = Vα,α = 0. The resultant
linear term for i is −Vβ,α, whereas for j this is Vβ,γ − Vβ,α and the submodular term
becomes Vβ,α + Vα,γ − Vβ,γ , Figure 4.6(b). After the graph is constructed the max-flow
algorithm can be used to perform an optimal cut. An example of the α-expansion move
is shown in Figure 4.4(c).

4.6 Further Developments

Further developments in graph-cuts applications have addressed the study of object
interactions and introduced, for example, object constraints such as connectivity.

4.6.1 Objects Interaction

Delong and Boykov analysed different object interactions in a multi-labelling frame-
work [37]. Given two objects A and B, the authors studied the following three interac-
tions: ‘A contains B’, ‘A attracts B’, and ‘A excludes B’ represented in Figure 4.7.
The first two interactions are submodular, whereas the exclusion constraint is not. These
interactions are very common in medical applications, since they can represent the rela-
tive position of different organs or tissues. Therefore, all three interactions are analysed
next.
To impose the inclusion constraint, the labels need to be nested. To see this, consider
the label space L = {1, 2, 3} with a two layered graph, as prescribed by the Ishikawa
construction, Equation 4.4. The Ishikawa construction already eliminated the 1 0 con-
figuration by introducing an ∞-edge between the two layers, but this does not suffice
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Figure 4.8: Inclusion and attraction constraints proposed on [37]. The inclusion is imposed by
the ∞-edges, where the attraction is imposed via an edge weight α.

to enforce an inclusion constraint. To remedy this, Delong and Boykov included ad-
ditional ∞-edges between the layers that connect a given vertex in layer 0 with the
neighbourhood of the corresponding vertex in layer 1, Figure 4.8.
As seen in Figure 4.8, pixel i0 fan out several ∞-edges reaching the neighbours of i1.
The effect of these edges can be seen by considering two nodes i and j with different
configurations: i is labelled as 0 1, and j as 1 1. The ∞-edge from i0 to j1 imposes that
around the nodes labelled as 1 1, there can only be vertices labelled 0 1 in addition to
vertices labelled 1 1. Therefore the inclusion constraint is obtained.

The second interaction is ‘A attracts B’. This constraint is similar to the inclusion
constraint, with the difference that instead of the ∞-edges, through-layer edges are
defined with a positive weight α, as shown in Figure 4.8.

The third and more complicated type of interaction is ‘A excludes B’. Consider the
pair of vertices i, j, each belonging to a different object. Table 4.1 lists the cost of the
four possible configurations, i.e. when i0 = 0 or i0 = 1, and j1 = 0 or j0 = 1:

i0 j1 Vi,j

0 0 0

0 1 0

1 0 0

1 1 ∞
Table 4.1: Exclusion constraint costs for two neighbouring vertices i and j.

As it is possible to see Vi,j(1, 1) = ∞, therefore this interaction is not graph representable,
as the regularity condition in Equation (4.3) does not hold. The energy minimisation
is NP-hard. In this case, approximate solutions such as QPBO or α/β swap, described
above, can be used.

Based on these simple interactions, it is possible to create more complex ones such
as a hierarchy of nested regions, mutually exclusive regions, or combinations of these,
Figure 4.9. Note that since the exclusion constraint is not graph-representable the objects
B and C in Figure 4.9(b) have a non-empty intersection.

Multi label methods that take into account object interactions are very useful in med-
ical image segmentation. Different organs and tissue types can be modelled as separate
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(a) (b)

Figure 4.9: Advanced inclusion constraints. In (a) inclusion and exclusion interactions. In (b)
hierarchical configuration: where A contains both B and C and B excludes C.

objects, and their position or mutual interactions can be represented in graph form.
For example, the heart can be represented as an object which contains two ventricles
that exclude one another. A similar example is that of kidney segmentation, where the
medullar regions are independent, mutually exclusive objects but are all contained inside
the kidney [37]. In Chapter 6 will be shown how such constraints can be used to model
the various brain tissues simultaneously.

4.6.2 Connectivity Constraint

Yet another useful extension of graph-cuts consists in the introduction of a so-called
connectivity prior. The idea is to enforce that the object of interest consist solely of
connected parts, that is, for this object no separate, independent parts are allowed in
the segmentation. This kind of prior is very relevant to many medical applications: it
can model, for example, bone or soft tissue connectivity. Connectivity priors were first
introduced by Vicente et al. in [146]. The idea proposed by these authors is to perform
an initial, constraint-free segmentation of the image, followed by manual selection of the
points which must be connected to the main object of interest. The connection between
the points and the main region is performed iteratively, where, at each iteration, the
vertex which gives the best energy value is added to the object. This algorithm is
very time consuming, in particular for 3D computations. In this thesis, a new type of
connectivity prior has been developed that provides improved performance in terms of
time and segmentation quality. This is described in Chapter 6.

Graph-cut methods, with their various extensions, have found widespread use in segmen-
tation applications. In particular, they have been used in brain segmentation, including:
segmentation of the neonate brain [122], segmentation of internal brain structures such
as the hippocampus [142] and the subcortical nuclei [151], and tumour segmentation. In
this thesis, a new method, based on graph-cuts, has been developed to segment brain
white matter lesions. This is described in Chapter 6.
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Chapter 5

Localisation of Focal Cortical Dysplasia

Focal Cortical Dysplasia (FCD) is a malformation of cortical development, and is one
of the major causes of pharmacologically intractable epilepsy. This disease causes an
abnormal development of the cortical grey matter characterised by an atypical stratifi-
cation [101]. Patients affected by FCD suffer from recurrent seizures and only after a
successful surgical treatment they can achieve seizure freedom. Therefore the precise
pre-surgical localisation and complete surgical removal of the dysplastic tissue is pivotal
for a successful outcome and for the avoidance of any additional interventions [41]. The
four subtypes of FCD lesions are 1a, 1b, 2a, 2b [101]: types 2a and 2b are more visi-
ble in brain images compared to FCD of type 1a-1b. The development of high-quality
brain imaging methods, in particular MRI, has contributed to the routine treatment
of epilepsy. An example of an axial MR image of a patient with a typical FCD lesion
(highlighted in red) is shown in Figure 5.1.

In this chapter we present our method to localise FCD lesions in brain MR images
which has been published in [127] and is here reported in an extended format. The
method is based on the extraction of multiple features from the patient data, and on
the comparison of these with the same features extracted from healthy volunteers. We
tested the algorithm on several confirmed FCD patients, and for all a correct localisation
of the lesion has been obtained.

(a) (b) (c)

Figure 5.1: An axial slice of a typical example of an FCD lesion. In (a) the FLAIR image, in
(b) the T1-weighted (T1-w) and in (c) the segmented lesion superposed on the T1-w image.
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5.1 Related Work

There has been a considerable amount of work aimed at the localisation of FCD
lesions, mainly by extracting various image features. FCD lesions show a variation in
the intensities, changes in texture, cortical thickening, as well as blurring of the grey-
matter/white-matter interface.

Most of the proposed methods rely solely on the information extracted from T1-
weighted (T1-w) images, and to a lesser extent also on FLAIR images [46]. A large
number of these methods follow some general steps: initial intensity inhomogeneity cor-
rection, segmentation into Grey Matter (GM), White Matter (WM) and CelebroSpinal
Fluid (CSF), feature extraction, mainly based on GM tissue, and a final classification
step to identify the lesion.

The method proposed by Louek et al. [88] extracts several features from T1-w images.
As an initial step the method performs a segmentation into GM, WM and CSF using
an atlas based approach [3]. All the relevant features are then computed in the GM
mask, as FCD lesions appear only in cortex. The first-order features employed include
mean, median, and variance of the GM intensities, as well as measures computed on the
histogram such as skewness and kurtosis. Second-order texture properties are based on
co-occurrence matrices [57], such as contrast and homogeneity. The last set of features is
based on run-length-based techniques which calculate textural measures from grey-level
run lengths in different image directions. All these features are subsequently used to
train an SVM classifier, which separates the FCD lesion voxels from the healthy cortex
voxels. A limitation of this method is its dependence on an atlas based approach to
segment the GM, which may give imprecise results along boundaries.

A similar approach has been proposed by Antel et al. [2] where they also use a T1-w
image to detect the lesions. The extracted features are the cortical thickness, blurring
between WM/GM interface, hyper-intense signal compared to the GM-WM peaks, and
texture information extracted with the co-occurrence matrices. The identification of the
FCD lesions is performed using two Bayesian classifiers consecutively. The first classifier
considers cortical thickness, blurring and hyper-intense signal, while the second classifier,
based on the result of the first one, discriminates based on textural features.

The method proposed by Colliot et al. [32] combined a probabilistic estimation of
FCD with a level-set approach. The method extracts features as in [2] and combines
them to create a probability map. Subsequently a manual selection of a FCD region is
needed to initialise the deformable model which then delineates the lesion boundary.

The method proposed by Bergo et al. [10] computes, among other features, the mid-
sagittal plane which is then used to compare patches situated to the right and left of this
plane. For each patch, the method extracts features such as mean and standard deviation
of the intensities, contrast, entropy and homogeneity based on the co-occurrence matrix.
The final classification step is based on a Reduced Coulomb Energy classifier [40].

Huppertz et al. [61] proposed to use a set of control images as a reference for normal
appearing tissue, to determine an FCD probability map, or so-called ‘junction image’ IJ .
The authors initially perform a tissue segmentation based on T1-w images, and then use
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the GM and WM maps to identify two different thresholds: Tlow = µ(GM)+0.5 ·σ(GM),
and Thigh = µ(WM)+0.5 ·σ(WM). All voxels in the T1-w image with intensities between
Tlow and Thigh are initially selected to create a binary image, and subsequently a cubic
smoothing kernel is applied to highlight clustered voxels. In their study, the authors
processed each instance of healthy volunteer data to obtain a binary image, as described
above. Based on this, mean and standard deviation images were subsequently calculated
for the entire dataset of healthy volunteers. The junction image, or IJ , is obtained by
voxel-wise subtraction of the mean image of the healthy volunteer database from the
binary image of the patient, and dividing by the standard deviation image.

We propose a method that is based on an extended set of image features, extracted
from T1-w and FLAIR images, which are then combined in a probabilistic framework.
Similarly to the method proposed by Huppertz et al. [61], we also employ statistics of
normal tissue from a database of healthy volunteers. An intensity feature is extracted
from both FLAIR and T1-w images, whereas texture and form features are only extracted
from T1-w image. The features are used for the characterisation of both controls and
patients. The reference for normal statistics is obtained voxel-wise from the set of co-
registered control images and is used to infer the probability of FCD. The FCD lesions
are identified with high precision and increased sensitivity compared to the commonly
used clinical method of Huppertz et al. [61]. The reference for validation consists in a
visual evaluation by an expert physician as well as the resected region that results in
freedom from seizures.

5.2 Pre-processing

In order to identify and localise FCD lesions two types of MR image contrast, i.e., T1-
w and FLAIR, are commonly used in clinical practice, as they provide complementary
information. In what follows, the T1-w image is denoted as I

′

T1 : Ω → R, and the FLAIR
image as I

′

F . In addition to patient data, identified as P , a dataset of healthy volunteers
data C are used which provide a control reference for the FCD lesions.

The following pre-processing steps are applied both to patient and to volunteer data.
The first pre-processing steps are performed with the atlas-based tool SPM8 [124]: intra-
subject registration to remove possible misalignment between the FLAIR and the T1-w
images, patient normalisation to MNI space [42], and tissue segmentation into GM, WM
and CSF regions (performed with the method proposed by Ashburner and Friston [5] and
described in Section 3.2.6). To improve the robustness of the registration, the Anterior
Commissure (AC) point is provided as input to SPM8 for inter-subject registration,
Figure 5.2(a). Additionally, a brain localisation has been performed with the BET
tool [121] using the T1-w image. This tool also provides a binary brain mask, which is
applied after registration to the FLAIR image to remove the skull and the non-brain
tissues. The intra-subject rigid registration TR has been estimated for all patients P
and controls C. The reference, or fixed, image is I

′

T1
while the moving image is I

′

F , and
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(a) (b) (c) (d) (e) (f) (h)

Figure 5.2: Pre-processing steps. The input images in (a) and (b), normalised IF in (c) and
IT1 (d), and tissue segmentation into WM, GM, and CSF from (e) to (h), respectively. The red
circle in (a) surrounds the anterior commissure.

the image distance is the normalised mutual information for multi-contrast registration.
Finally all subjects are normalised to T1-w MNI space with an affine registration TA.
The equations below show that the registration is applied to both the FLAIR and the
T1-w images:

IF,V(x) = T −1
A,V · T −1

R,VI
′

F,V(x) IT1,V(x) = T −1
A,VI

′

T1,V(x),

where V = 0...P − 1, P, ..., P + C − 1.
The non-uniform radio frequency field of the head coil results in intensity inhomo-

geneities in the images which have been jointly removed in the IT1
and IF images using

the co-occurrence method [56]. The final tissue segmentation into GM, WM and CSF is
estimated on the basis of the bias-corrected IT1 image. In addition, intensity standardis-
ation has been performed for all the patient and control data by matching their intensity
ranges using three continuous piecewise linear segments for the dynamic ranges. The
three linear segments are defined by the zero intensity point, the mode intensity of GM,
the mode intensity of WM, and the highest intensity value. These are computed from
the average image of the control set. The complete dynamic range of image intensities
is then normalised to [0,...,1].

5.3 Extraction of Features

The proposed method uses a variety of intensity-based, texture-based, and form-based
features which are extracted from IT1 and IF . The various features are computed for
each spatial location x ∈ Ω, for both the images of the control dataset and for the
patient data. In this framework a voxel x can be classified as belonging into one of two
classes {H,FCD}, where H represents the class of healthy tissue, and the pathology can
only be FCD. The features computed on the control data provide a spatial voxel-based
reference for the normal appearing statistics H. Every feature fi, where i is an index
over the features, is modelled as a Gaussian distribution. Therefore, for each feature
and each spatial location x, the mean µ(fi(x)) and the standard deviation σ(fi(x)) are
estimated, from which the probability that fi(x) follows a normal distribution, is denoted
as G(fi(x);µ(fi(x)), σ(fi(x))).
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(a) (b) (c) (d) (e)

Figure 5.3: Axial slices of a FCD lesion in the yellow circle. In (a) the IF , in (b) the IT1, in (c)
the intensity feature, in (d) the gradient magnitude, and in (e) f||∇I||2 .

In the following subsections a description of the specific features and the probabilistic
framework used to estimate the FCD probability is provided.

5.3.1 Intensity-based Features

In IF , the FCD lesions appear hyper-intense compared to the normal-appearing GM
tissue surrounding the lesions. Therefore, the intra-patient mean value µGM (IF ) and
the standard deviation σGM (IF ) over the GM region are estimated. Assuming that the
probability of the normal appearing tissue follows a Gaussian distribution, the probabil-
ity of voxel x being classified as FCD is equal to the complement of G evaluated at the
mean value µGM(IF ). Thus, for IF , the intensity-based feature fF , is expressed as:

fF (x) =

{

1−G(IF (x);µGM(IF (x)), σGM(IF (x))) if IF (x) > µGM(IF )

0 otherwise.
(5.1)

In IT1 images, FCD lesions may show intensities similar to those in GM and healthy
WM. Therefore, in order to model these intensities a larger range from µGM(IT1) to
µWM(IT1) is considered. In this case the Gaussian distribution is modelled with µ = 0.5 ·
(µWM(IT1)+µGM(IT1)) and with a standard deviation of σ = 0.5·(σWM(IT1)+σGM(IT1)):

fT1(x) =

{

1−G(IT1(x);µ(IT1(x)), σ(IT1(x))) if µGM(IT1) < IT1(x) < µWM(IT1)

0 otherwise.

(5.2)
Both fF and fT1 are combined into a 2D distribution to model the hypo-intensity in IT1

and the hyper-intensity in IF , Section 5.3.4. An example of the joint intensity feature
for an FCD patient is shown in Figure 5.3(c).

5.3.2 Texture-based Features

FCD lesions are associated with a blurring of the boundary between GM and WM. In
order to extract features to represent such characteristics, first a computation of the spa-
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(a) (b)

Figure 5.4: Axial slices of an FCD lesion in the yellow circle. In (a) the IT1 and in (b) the
orientation feature f∠∇I .

tial derivatives of IT1 along the three axis X,Y,Z is computed: ∇IT1 = [IX , IY , IZ ]. The
first feature intended to represent this texture in FCD regions is the gradient magnitude
of the IT1 image (Figure 5.3(d)). The probability for a voxel to be in a lesioned area can
be taken to be proportional to the negative of the log of the gradient magnitude [153].
The log scale is introduced to enhance the low gradient values typical of FCD lesions:

f||∇I||2(x) = − log ||∇IT1(x)||2. (5.3)

Regions with high gradient magnitude will have a low f||∇I||2 and vice-versa, Figure 5.3(e).
The second texture feature highlights the diffuse boundary separation between GM

and WM. It is expressed as the variance of the spatial orientation of the gradient, com-
puted over IT1 [153]. Assuming that variations in gradient orientation, when projected
onto the three co-ordinate planes, are mutually uncorrelated, this feature is computed
as:

f∠∇I = σX,Y,Z ≈ σXY (∠(IY , IX)) + σXZ(∠(IZ , IX)) + σY Z(∠(IZ , IY )) (5.4)

where ∠(IX , IY ) represents, for example, the angle of orientation of the gradient on the
X,Y plane, and so on, Figure 5.4.

5.3.3 Form-based Features

Focal cortical dysplasia lesions appear as regions of amorphous brain tissue or, equiva-
lently, as a merging of WM and GM regions with no clear separating boundary between
them. This is in contrast to a well-formed cortex that has a sharp boundary. The first
form-based feature to represent this boundary is the fractional anisotropy [8], defined
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(a) (b)

Figure 5.5: Axial slices of a FCD lesion in the yellow circle. In (a) the IT1 and in (b) the
orientation feature fth.

considering the eigenvalues of the Hessian matrix, i.e. e0, e1, e2, in a window size of
(2mm)3:

fFA(x) =

√

2

3
·
√

(e0(x)− µ(x))2 + (e1(x)− µ(x))2 + (e2(x)− µ(x))2
√

e0(x)2 + e1(x)2 + e2(x)2
(5.5)

where µ(x) = (e0(x) + e1(x) + e2(x))/3.
The second feature computes the skewness of the histogram of local cortical thick-

ness [153]. The thickness t(x) of the GM is approximated as the shortest straight line
segment passing from each voxel and ending on the two closest opposite cortical bound-
aries:

t(x) = min
l(x)

∫

l(x′)
IGM (x′)dl(x′) (5.6)

where l is the line segment of the two points connecting the WM and the CSF, and IGM

is an image representing the GM tissue provided from the GM segmentation.
The skewness of a voxel x is defined by considering a surrounding neighbourhood

of size N , and estimating the mean, µt(x), and the standard deviation, σt(x), of the
thickness inside the neighbourhood. The sample skewness is defined by the expression:

fth(x) =

∑N
n=1(tn(x)− µt(x))

3

(N − 1)σt(x)3
. (5.7)

Note that Equation (5.7) can assume positive and negative values. An example of fth
computed on an FCD patient is shown in Figure 5.5.

5.3.4 Spatial Probability Map for FCD Lesions

The various features described in the previous paragraphs are computed for all the
registered control and patient data sets. The features calculated for the patient data
are compared, voxel-wise, to the corresponding normal statistics µ(f(x)) and σ(f(x)).
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A Naive Bayesian classifier is here used, and a further assumption of independency
among the probability distributions of the various features is made [153]. Therefore the
probability of H (healthy) can be expressed as:

P (H|f0, f1, ..., fm−1) ∝ P (f0, f1, ..., fm−1|H)P (H) = P (H)
m−1∏

i=0
P (fi|H) (5.8)

where m is the number of features, and fi ∈ {fth, fFA, f∠∇I , f||∇I||2}.
The voxel-wise probability of FCD is derived as the complement of the probability of

healthy tissue given in Equation (5.8):

P (FCD|f0, f1, ..., fm−1) = 1− P (H|f0, f1, ..., fm−1) = 1− P (H)

m−1∏

i=0

P (fi|H). (5.9)

The probability of lesion in the 2D intensity joint distribution of fF and fT1 is ex-
pressed as:

P (FCD|fF , fT1)(x) = 1−
FLAIR∏

k≡T1

G(fk(x);µ(fk(x)), σ(fk(x))). (5.10)

Combining all features, gives the spatial probability map, PFCD for FCD lesions:

PFCD = P (FCD|fF , fT1) ·
∏

i

P (FCD|fi) (5.11)

where i ∈ {th, FA,∠∇I, ||∇I||2}. In order to constrain the FCD lesion only to the GM
region an additional template is used, i.e. the Automated Anatomical Labelling (AAL)
template [140], as a spatial prior. This template provided a parcellation of the GM tissue,
and as it is already in MNI space, no additional registration is needed to align it to the
patient data. The use of this atlas as a binary mask on the PFCD is straightforward
and considerably reduces the number of false positives. To further remove remaining
noisy voxels, a Gaussian smoothing is added to PFCD. The final FCD probability map
is thereby:

PFCD = P (FCD|fF , fT1) ·
∏

i

P (FCD|fi)P (AAL ≡ 1)PG(FCD|FCDN ) (5.12)

where P (AAL ≡ 1) is the probability of being GM given from the AAL template, and
the last term PG(FCD|FCDN ) is the spatial Gaussian smoothing computed over a
neighbourhood N around each voxel.
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IT1 IF PFCD IJ RV

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (l)

(m) (n) (o) (p) (q)

Figure 5.6: From top to bottom: axial, sagittal, and coronal slices showing a typical example
of FCD2b lesion. From the left to right: IT1, IF , PFCD, IJ and the RV. The blue arrows point
to the FCD lesion.

5.4 Results

The proposed method has been tested on an in-house database, composed by healthy
controls and patients affected by FCD. First the used measures to quantify the perfor-
mances are described, and subsequently the detailed results on the patient data. The
method proposed here has been also compared with the clinically validated FCD feature
called ‘junction image’, IJ [61].

In order to quantify the quality of the proposed PFCD a comparative ground truth needs
to be defines. Here, the post-operative MR image has been used to localise the resection
volume (RV), or rather the brain area that has been surgically removed. In the pre-
operative surgical planning, especially for refractory cryptogenic epilepsy, i.e. no visible
MRI lesion, the signals from an electroencephalogram (EEG) are analysed to localise
the lesions [136]. During a seizure the EEG usually reveals a spike in correspondence of
the location where the seizure started. With this additional information, a more precise
delineation of the FCD lesion can be performed. Note that this area, for many patients,
is much larger than the actual MRI visible FCD lesion. This is mainly because, during
surgery, all suspected diseased brain tissue is removed to avoid further interventions.
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IT1 IF PFCD IJ RV

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (l)

(m) (n) (o) (p) (q)

Figure 5.7: From top to bottom: axial, sagittal and coronal slices showing a typical FCD2a
lesion. From the left to right: IT1, IF , PFCD, IJ and the RV images. The blue arrows point to
the FCD lesion.

In order to perform quantitative measures, a binary mask of the resection volume has
been created for all patients using the ITK-SNAP tool [157]. In order to compare this
mask with our results, the PFCD has been thresholded at a value of 0.5. Since in most
patients, the resection volume is larger than the actual lesion, the PFCD may, in some
cases, not cover the entire region but only part of it. The used quantitative measures
are the Precision P and the Specificity S. The precision is defined as:

P =
TP

TP + FP

where TP denotes the number of true positives, and FP is the number of false positives.
The precision is a measure of the extent to which lesion voxels, i.e., true positives, are
correctly identified by the segmentation algorithm. The highest possible precision of
100% is diminished by the presence of false positives. The specificity is defined as:

S =
TN

TN + FN

where TN is the number of true negatives, and FN is the number of false negatives.
The best sensitivity value is 100%; this decreases with the the number of lesion voxels
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IT1 IF PFCD IJ RV

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (l)

(m) (n) (o) (p) (q)

Figure 5.8: From top to bottom: axial, sagittal and coronal slices showing a typical FCD1a
lesion. From the left to right: IT1, IF , PFCD, IJ and the resection volume (RV) images. The
blue arrows point to the FCD lesion.

incorrectly missed out (false negatives) in the segmentation. Note that the specificity
increases with the number of true negatives, which can itself be increased easily by
doubling the imaging resolution. In our framework the resolution has been kept constant.
The validity of this measure, however, remains considerably high owing to the difficulty
of detecting FCD lesion.

Additionally, a validation was performed by an expert physician who visually com-
pared the estimated PFCD with the post-operative MRI which presented in the figures
as the resection volume (RV), and verified the high specificity of the method.

It is very common for imaging data of epilepsy patients, in particular for children,
to present motion artefacts. Where motion artefacts have been identified, the data has
been excluded from the study. Here, P = 11 patients (4 women and 7 men; mean age
14.75; age range 5−38 years) who suffered from epilepsy caused by FCD of types 1a, 1b,
2a, and 2b have been considered. All of them underwent a surgical treatment that led
to seizure freedom for at least two years. The histopathology that has been performed
in the resected tissue confirmed in all patients the presence of FCD lesion(s) with their
type. The study also included images from C = 20 controls (11 women and 9 men;
mean age 27.2 years; age range 23−32 years). The study has been approved by the
local review board and both patients and volunteers provided informed consent for the
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Table 5.1: Quantitative evaluation of the proposed method (PFCD) and the method presented
in [61] (IJ ) with respect to precision P and specificity S. The values are expressed in percentage.

P S
Patient PFCD IJ PFCD IJ

01 Figure 5.6 46 18 68 76

02 Figure 5.7 57 16 80 74

03 Figure 5.8 50 17 50 65

04 FCD2b 48 20 87 70

05 FCD2a 49 16 70 70

06 FCD2b 50 12 79 52

07 FCD2a 53 18 67 70

08 FCD1a 45 19 60 61

09 FCD2a 54 15 70 72

10 FCD1b 53 17 61 65

11 FCD1b 54 15 60 60

Mean 51 17 68 67

analysis of their imaging data. Brain images have been acquired in a 3T Siemens Trio
MRI Scanner equipped with a head coil. The field of view of the MR images covered of
the head and the neck region. The acquisition protocol consists of a 3D MPRAGE T1-w
sequence with TR/TE/FA = 1390ms / 2.15ms / 15◦, and with a matrix size = 156 ×
512 × 512; a 3D FLAIR image with TR/TE/FA = 5000ms / 338ms / 120◦, and with a
matrix size of 156 × 512 × 512.
The presented results include four different FCD subtypes, namely FCD1a, FCD1b,
FCD2a, and FCD2b. For each patient the IT1, IF , PFCD, IJ and the RV are shown in
all three projections, i.e. axial, sagittal and coronal. Figure 5.6 shows an FCD of type
2b, Figure 5.7 shows a lesion of type 2a, while Figure 5.8 shows a FCD of type 1a. In
the probability maps PFCD shown in Figure 5.6(c)(h)(o), and in Figure 5.7(c)(h)(o), the
lesions have a high probability and are inside the RV. The high probability voxel are
also clustered spatially in contrast to other irregularly placed voxels in the image.

Figure 5.8 illustrates an example of imaging data for an FCD1a type lesion. Both
FCD1a and FCD2a type lesions are comparatively less conspicuous in MRI images [94].
As is shown in the first two columns of Figure 5.8 the lesion is not clearly distinguishable
by visual inspection of the anatomical images, IT1 and IF , whereas the probability maps
PFCD (third column) do highlight a small fraction of the lesion that lies within the
resection volume. Additionally, IJ shows the presence of stripe artefacts due to the
cubic smoothing kernel of uniform weights applied after the generation of the binary
map.

The quantitate evaluation for all eleven patients is shown in Table 5.1. For all patient
data, both the precision and the specificity of the method proposed here are higher, on
average, than those obtained from the IJ method.
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5.5 Summary and Discussion

A new method for the 3D localisation of FCD lesions using MR images has been
presented. The proposed method uses different image features which include information
related to spatial variations in image intensity and to the shape of the lesions, as well
as some particular characteristics such as the blurring of the GM-WM border and the
increase in cortical thickness.

An intensity feature has been evaluated for both FLAIR and T1-w images, Section 5.3.1.
For FLAIR images, this highlights regions with an intensity higher than the mean inten-
sity of the GM. For T1-w images, this feature highlights regions where image intensities
lie between those for GM and WM.

Focal cortical dysplasia lesions present blurred boundaries with the WM. This anatom-
ical characteristic can be studied with the use of texture features, Section 5.3.2. The
first feature involves the gradient of image intensity, f||∇I||2, which is comparatively low
in lesioned areas (therefore the log gradient is used to enhance the contrast in these
regions). A second feature which enhances the blurring of FCD lesions is the local inco-
herency of the gradient orientation f∠∇I . Lastly, the shape of the lesions is described by
two form-based features, namely the fractional anisotropy fFA, and the skewness, fth,
of the distribution of cortical thickness, Section 5.3.3.

The combination of all features has been able to represent the location of the lesions
in all investigated cases. Therefore, all the features extracted from the patient data
have been combined into a probabilistic map PFCD which represents, for each voxel, the
probability of being an FCD lesion.

All the above features have been computed also for a control database, to obtain the
reference probability of normal cortical tissue. Comparison with the control database
is necessary and fundamental to avoid potential false positives due to normal tissue
variability. Additionally a spatial prior has been introduced, the i.e. ALL template, to
constraint the PFCD to cortical regions.

Due to the presence of motion artefacts several patient data have been excluded from
the study. However the method has been tested on 11 FCD patients of types 1a, 1b, 2a
and 2b, all of whom underwent surgical resection which confirmed the presence of FCD
lesions. FCD2a and FCD1a lesion types are less conspicuous in MR images [94]. As is
shown in the first and second columns of Figures 5.7 and 5.8, the lesions are not clearly
visible in the FLAIR and T1-w images. On the other hand, the probability maps PFCD

in the third column of Figures 5.7, and 5.8 highlight regions corresponding not only to
the resected volume but to other regions as well.

A visual comparison of our results with the method proposed by Huppertz et al. [61]
which provides the probability map IJ has been performed. As shown in Figures 5.7, 5.6
and 5.8 the PFCD shows high probability values in locations contained in the resected
volume and has a reduced number of false positives compared to IJ , therefore it is
possible to observe that the lesions are identified with a higher precision. Additionally a
quantitative evaluation based on precision P and specificity S has been computed using
the resection volume as ground truth. The latter, in general, covers a brain area which
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is much bigger than the actual lesion visible in MR images. However, the results in
Table 5.1 showed that our approach performs best, on average, in both measures. Note
that even if the IJ produces a better segmentation in Figure 5.6 the precision value is
low due to the very high number of false positive detected. For FCD2b and for FCD1a,
Figure 5.6 and 5.8, the proposed method has a lower specificity compared to the IJ .
This may be due to the extended resection volume, which is much larger than the actual
lesion.

The method developed in this work significantly improves the localisation of FCD
lesions, as compared to a clinically evaluated standard [61]. These quantification results
are dependent on the resection volume, which can be, as already discussed, much larger
than the actual lesion. Therefore, a manual annotation, provided by an expert physician,
can help to have a more precise quantitative evaluation. Potential improvements include
the quantification of the contribution of the single features to the total probability PFCD

and the enlargement of the control database. This, on the one hand, is expected to
improve the estimation of local probabilities of healthy tissue; and it would allow a
better matching of control data and patient data for any given case, thereby enhancing
the probability of correct lesion detection.
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Chapter 6

Segmentation of Multiple Sclerosis Lesions

Multiple Sclerosis (MS) is a neurodegenerative disease of the central nervous system,
and its main hallmarks are lesions which are appearing in the white and grey brain
matter. The pathogenesis of lesions is not completely clear, and understanding the
nature and mechanism of tissue injury remains one of the most challenging aspects of
the disease. Accordingly, accurate lesion identification and volumetry are crucial for
quantifying the burden of the disease. In the clinical routine the lesions are manually
annotated. This rather time-consuming process is prone to subjective variability and
therefore offers poor reproducibility. Lesions present in grey matter usually cannot be
well differentiated either in FLAIR or T1-weighted (T1-w) images, since they have very
similar signal intensities to those of normal grey matter tissue. This chapter is concerned
solely with lesions appearing in the white matter. An example of a typical MS patient
is shown in Figure 6.1.

In this chapter our method for performing lesion segmentation in the brain white
matter is described. Our algorithm is based on a geometric model of the brain which
simultaneously segments the normal-appearing tissues, such as grey matter and white
matter, and the MS lesions. Novel features of the proposed algorithm include the use of
prior information such as the connectivity of the cortical grey matter and a minimum
lesion size. The algorithm has been tested on two databases with 15 and 22 patient data
respectively, and competitive results have been achieved compared to state of the art
methods. The work presented in this chapter has been published in [131] and is here
reported in an extended format.

(a) (b) (c)

Figure 6.1: Axial slice of a patient with a typical pattern of MS lesions. In (a) the T1-w image,
in (b) the FLAIR image and in (c) the manually segmented lesions superimposed on the FLAIR.
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6.1 Related Work

Lesion segmentation of the brain white matter is an extensively studied field of medical
imaging post-processing. Most segmentation methods strongly rely on available atlas
information, although a number of atlas-free algorithms also have been presented [49,
51, 149]. Other methods use machine learning techniques to discriminate between normal
tissue and lesions. In the following, some of the most interesting methods published over
the last years are discussed, pointing out the main differences with the segmentation
method proposed in this chapter. For a detailed literature review the reader is referred
to [50, 86].

As described in Section 3.2.6, atlas-based methods usually start with a registration
of the patient data to an atlas in order to determine the locations of the major brain
tissue, i.e. GM, WM, and CSF. The accuracy of the registration is important to initially
discriminate healthy tissue from the lesions, and due to the high inter-brain variability
this step may result in an erroneous tissue classification.
A publicly available atlas-based segmentation tool is Lesion-TOADS (Topology-preservi-
ng Anatomical Segmentation) [118], which is part of the MIPAV software [93]. The under-
lying method uses an intensity atlas and a topological atlas, both of which are computed
from healthy volunteer data. In Lesion-TOADS the brain segmentation is formulated as
an energy optimisation, and the minimisation iterates between the optimisation of the
two atlases with respect to the patient data, to obtain both an intensity and a topolog-
ically consistent segmentation. Therefore, in this first step only the main tissue types
are segmented. Since the lesions topologically belong to the WM, a two-class separa-
tion between WM and lesion voxels is performed subsequently. The lesion segmentation
results are highly dependent on the atlas information and on the quality of the first
segmentation step. In contrast to this approach, our method models the location of WM
lesions simultaneously with the segmentation of the other brain tissues and, in addition,
topological information is incorporated without the use of an atlas.

The method proposed by Souplet et al. [123] is less sensitive to atlas-driven misclassifi-
cation. As a first step it performs an atlas-driven segmentation to obtain the GM, WM,
and CSF masks of the patient data. Next, it creates a contrast enhanced FLAIR image
which highlights the lesions. Based on this new image, outliers with respect to the WM
mask are initially identified as potential lesions. Lastly, a morphological post-processing
step renders the final lesion segmentation.

The Lesion Segmentation Tool (LST) proposed by Schmidt et al. [116] embodies an
extension of the above method. The software is freely available as a MATLAB plugin [78].
This method computes outliers with respect to each of the tissue types, resulting in a so-
called ‘belief map’ which contains an upper bound of the possible lesions. Hyper-intense
voxels on this map are identified as seeds for a region-growing approach which produces
the final lesion segmentation.

The Model of Population and Subjects (MOPS) [137] extends the classical atlas-based
approach by using local intensity models instead of global ones. This method performs a
tissue segmentation into GM, WM, CSF by coupling global and local Gaussian Mixture
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Models (GMM). The global GMMs are computed on the patient data, one per each tissue
type. The local models are extracted from a dataset of healthy volunteers, estimating a
Gaussian Mixture Model (GMM) per pixel. These GMMs are then used to calculate in
the patient data the likelihood of each tissue type. Lesions are initially identified as voxels
having a low likelihood with respect to the local intensity models, and subsequently, a
graph-cuts segmentation is performed to refine the segmentation.

Machine learning techniques, most notably classifiers, have been widely applied to
segmentation problems. Usually these methods start with a segmentation of the brain
into GM, WM, and CSF tissues. This information is then input to a pixel-wise classi-
fication step. In the presence of small lesions these classifiers may mix lesion and WM
voxels. Zijdenbos et al. [162] created a pipeline based on an Artificial Neural Network
(ANN) classifier to discriminate lesion and non-lesion voxels, using multiple image con-
trasts and three tissue segmentation (GM, WM, CSF) calculated from an atlas of healthy
volunteers.

Geremia et al. [53] proposed a method in which a lesion classifier is trained using
a random forest approach [19]. The method extracts many different features from the
multiple image contrasts incorporating neighbourhood information for every pixel. Even
if the neighbourhood is considered, the final decision is made independently for every
pixel. An extension of this method was proposed by Cabezas et al. [26] which combines
more classifiers into a Gentleboost framework [48].

Another interesting machine learning technique is the patch-based approach (Sec-
tion 3.2.2). The size of the patch plays an important role in the representation of both
lesion and healthy tissue. Weiss et al. [149] sparsely encode the patient image using a
dictionary consisting of 3× 3× 3-patches. An ‘artificial’ image is then created from this
dictionary, assuming that the amount of lesion-patches, in the dictionary, is small com-
pared to the patches extracted from other tissues. The artificial image should therefore
contain no lesion. The pixel-wise difference between the original and the artificial images
highlights the lesions and some inherent reconstruction error. A final threshold applied
to the difference image provides the lesion segmentation. Guizard et al. [55] propose a
non-local mean approach introducing a rotational invariant distance measure (RMNMS)
to account for the diversity of MS lesions.

Recently, non atlas-based methods have also been proposed for lesion segmentation.
Gao et al. [49] presented a regularised segmentation method which encodes each tissue
type with a constant intensity value while taking a global bias correction field into ac-
count. A fuzzy segmentation is computed by formulating a global energy functional that
is convex in each variable. A local minimum is computed by an iterative minimisation
approach. A graph-cuts binary segmentation method was proposed by Garcia-Lorenzo
et al. [51] that discriminates MS lesions from healthy tissue. Post-processing steps were
also included in order to remove lesions appearing in external CSF and in areas close
the brain boundaries.

While non atlas-based methods clearly do not suffer from atlas-related misclassifica-
tion, an important drawback is that they do not encode geometric information. Unlike
the above mentioned methods, the non atlas-based method developed in this thesis does
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Figure 6.2: In (a) the brain geometric model used in the proposed method, and in (b) an
example of a segmentation obtained using the geometric model.

incorporate geometric/topologic information, which, together with a graph-cuts minimi-
sation approach, will be shown to produce more robust segmentation results.

6.2 Notation

The proposed method is based on the brain topologic assumption shown in Fig-
ure 6.2(a). The various tissue types are represented as independent circles with a relative
specific position. Therefore, the cortical CSF is assumed to surround the cortical grey
matter, which itself is adjacent to the white matter. Inside the white matter there are the
lesions and the subcortical nuclei which contain the ventricles. The following notation
is used to describe the proposed lesion segmentation method.

As already presented in Chapter 3, a medical image is defined as a mapping I : Ω → R
c.

In this work, c = 2 refers to the available FLAIR and T1-w image contrasts.
The goal of the brain segmentation method presented in this thesis is to determine a
labelling f : Ω → L that assigns to each voxel x a label f(x) ∈ L of the label space
L := {CSF,GM,WM,SGM,V,L}. These labels refer, respectively, to sulcal CSF, grey
matter, white matter, subcortical grey matter nuclei, ventricles and lesions.
In addition, the region identified by the label ℓ is denoted as Rℓ, Section 3.1. Lastly, the
hard constraints voxels used to guide the minimisation process are denoted as Sℓ = {x ∈
Ω|f(x) = ℓ} for ℓ ⊂ {L − L}.
In this chapter the following colour code is used for labelling: CSF appears in yellow,
GM in blue, WM in green, SGM in orange, V in red and L in magenta. In the case
that only the binary mask of the lesions is presented, then green is used for the manual
annotation and orange for the proposed segmentation.
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6.3 Pre-processing

The analysis of MR brain images requires a number of pre-processing steps in order to
correct for intensity inhomogeneities (which are typical artefacts for this kind of images)
and to eliminate potential sources (like the skull and the non-brain tissues) of registration
errors. In this section all the necessary steps are described. First the image registration
is performed to align the input images, then inhomogeneity correction is computed. In
a final step, a partial segmentation of the brain in performed and it is used as hard
constraint for the proposed method.

6.3.1 Image Registration

As already discussed in Section 3.2.6, the quality of the registration is fundamental for
a correct segmentation. Since the c different patient image contrasts, used as the input
to our method, may have a relative misalignment of a few voxels, a rigid registration is
used to align them. This transformation is estimated using the default parameters of
the ITK libraries [62].

Subsequently skull stripping is performed using the BET toolkit [121]; this step re-
moves the signal from the skull and from the non-brain tissues, avoiding any potential
miss-classification in this region. This tool also provides a brain mask which can be
used to speed up the computations by considering only brain tissue voxels, avoiding any
computation over the background voxels.

6.3.2 Inhomogeneity Correction

Due to the inhomogeneities inherent to the MR acquisition process, a correction for
the bias field in the images is needed. In this thesis, this is performed by extending the
method proposed by Li et al. [80] to the case of c > 1 image contrasts. This method
has been originally proposed for c = 1 and in the following this assumption is used;
whenever a modification is needed to allow for c > 1, this will be clearly indicated. The
method [80] models the bias field in the image and generates a segmentation into the
three main brain tissue types, i.e. GM, WM, and CSF. It starts using the following
formulation for an image:

I(x) = b(x) · J(x) + n(x)

where I denotes the observed image, b is the bias field, J is the noise- and bias- free
image and n represents additive Gaussian noise. In the ideal image J the ith tissue type
can be represented by a constant value vi, that is, J is piecewise constant:

J(x) =
N∑

i=1

viui(x)
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where N is the number of tissues, and ui is a membership function such that:

ui(x) =

{

1, if x ∈ Ωi

0, otherwise

N∑

i=1

ui(x) = 1

where Ωi represents the region for the tissue i. These membership functions ui are
actually the tissue segmentation masks. The bias field b is assumed to vary slowly and
is represented as a linear combination of a set of basis functions:

b(x) =

M∑

m=1

wmgm(x)

where wm are the weights for cosine basis functions gm. The energy that the method
in [80] seeks to minimise is given by:

F (U,v,w) =

N∑

i=1

∫

Ω
|I(x)− (wTG(x))vi|2ui(x)dx, with b(x) = wTG(x)

where w = (w1, ..., wM )T , G(x) = (g1(x), ..., gM (x))T , U(x) = (u1(x), ..., uN (x))T and
v = (v1, ..., vN )T . This energy can be minimised iteratively by performing interleaved
minimisation with respect to each variable. The minimisation with respect to the vector
of tissue intensities, v, regards U andw as fixed, and amounts simply to the computation
of the average intensity value with respect to every tissue type:

v̂i =

∫

x∈Ωi
I(x)b(x)ui(x)dx

∫

x∈Ωi
b2(x)ui(x)dx

. (6.1)

Since in our configuration there are multiple images, a mean value per tissue per image
contrast is computed.

The minimisation of F with respect to the basis function weights, w, is computed by
taking the derivatives of F with respect to w, with U and v held constant. This results
in:

∂F

∂w
= −2s+ 2Aw, s =

∑

x∈Ω

I(x)G(x)J(x) and A =
∑

x∈Ω

G(x)G(x)T J2(x)

where J = vTU . The solution for w is:

ŵ = A−1s. (6.2)

Finally the minimisation of the membership functions ui is computed according to the
formula below, with v and w kept fixed:

imin = arg min
i

|I(x)− (wTG(x)vi)|2.
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Note that for multiple input images, i.e. c > 1, the best i value for the voxel x is
computed considering all images:

imin = arg min
i

c∑

im=1

|Iim(x)− (wTG(x)vi)|2. (6.3)

The steps for performing inhomogeneity correction and obtaining an initial segmentation
are summarised in Algorithm 4.
The outputs of this algorithm are the bias free image/images, and the segmentation
masks of the main tissue types. The value for N has been set to N = 3 and therefore an
initial segmentation of the brain tissues with just three labels is obtained, Figure 6.3(a)-
(e). These labels are combinations of the six labels in L, i.e., csf = {CSF,V}, gm =
{GM,SGM}, wm = WM as shown in Figure 6.3(e).

6.3.3 Partial Segmentation

Given the wm, gm, csf masks, a partial segmentation with respect to a subset of L is
subsequently computed, that is used as hard constraint for the proposed method.

In order to separate V from CSF, a binary graph-cuts segmentation, Section 4.2, is
performed on the csf mask. The seed points necessary to guide the graph-cuts segmenta-
tion are extracted according to a distance criterion with respect to the brain boundaries.
In order to identify the brain boundaries, the brain mask provided by the BET tool is
used. The seeds for the CSF are those voxels in the csf mask which lie closest to the brain
boundaries. The seeds for the V are computed taking into account the central location
of the V, therefore these voxels need to have a distance to the brain boundaries which
reaches the brain centre. Once the seeds voxels are identified, a binary segmentation
which separates the lateral ventricles from the cortical CSF is computed. In our setting,
the label V includes, anatomically, the two lateral ventricles. Note that at this step of
the segmentation process, a precise separation is not needed since these are only initial
estimations that will be corrected later.

The separation of SGM from GM on the gm mask is similarly performed via a graph-
cuts segmentation. In this case one can use the segmentations CSF and V obtained in
the previous step in order compute the seeds for SGM and GM. More precisely the seeds

Algorithm 4 Inhomogeneity correction and initial segmentation

1: Initialise U , v and w

2: repeat

3: Update v according to v̂, Equation (6.1)
4: Update w according to ŵ, Equation (6.2)
5: Update U according to Equation (6.3)
6: until Memberships ui do not change
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(a) (b) (c) (d) (e) (f) (g)

Figure 6.3: Based on the original FLAIR (a) and T1-w (b), the bias field (c) is computed [80] in
order to correct the input images, for example the FLAIR (d). The bias field computation also
provides coarse segmentation mask of gm, wm and csf (e). These masks are subsequently refined

in order to obtain masks for SGM and V (f). Strongly eroding these masks S
(0)
ℓ , provides the

masks Sℓ that serve as hard constraints (g) for our segmentation framework (Section 6.4.1).

for the SGM are voxels in the gm mask close to V, and the seeds for GM are the voxels
in gm close to CSF.

These steps produce an initial labelling f0 : Ω → L− {L} and an initial segmentation

S
(0)
ℓ := {x ∈ Ω|f0(x) = ℓ}, Figure 6.3(f).
The method of Li et al. [80] provides three masks: gm, wm, and csf. Therefore, lesions

are inside S
(0)
WM, S

(0)
GM, and S

(0)
SGM. To have a correct initial segmentation, the lesion voxels

need to be removed from these segmentation masks. Assuming that lesions are hyper-
intense in FLAIR, one can take, as a conservative threshold, the median value of the
FLAIR intensities. Hence, all voxels with an intensity value higher than the threshold

are eliminated from S
(0)
WM, S

(0)
GM, S

(0)
SGM. To be completely sure that these segmentations

do not contain any lesion voxels, an erosion of each segmentation with a sphere of radius
2 mm is performed, which results in the segmentation masks Sℓ, Figure. 6.3(g). Note
that due to the strong erosion the Sℓ have a coverage of 15% of the image domain. The Sℓ

are hard constraints for our method, so they will not change their label, and furthermore
they will guide the segmentation process.

The following section describes the energy that is minimised to obtain a segmentation
of the brain which represents the lesions. In the optimisation process it is described how
to rely on the few voxels of the hard constraints Sℓ to guide the minimisation, Section 6.5.

6.4 Geometric Brain Model

In this section the proposed geometric model to represent the brain is described. More-
over, it is explained how it is included in the energy formulation.

Given an input image I, the objective is to determine the most likely probable labelling
f . The Bayesian formulation presented in Section 3.1 is briefly recalled below for ease
of reference. The logarithm of the posterior probability of the labelling f is given by:

− logP (f |I) = − log(P (I|f))− log(P (f)) + log(P (I)) (6.4)
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where P (I) denotes the probability of the observed image I, which is treated as con-
stant, and P (I|f) describes the likelihood that the image I ‘originates’ from the la-
belling f . A standard way to estimate this likelihood is to compute the respective
probabilistic intensity models for each tissue type. For this reason, in the sequel, the
term EApp(f) := − log(P (I|f)) is referred to as the appearance energy. The term P (f)
models the prior information of the geometric model. Two independent geometric prop-
erties are modelled, i.e., P (f) = PLoc(f) · PGeo(f). The PLoc(f) models the fact that
only certain transitions between different tissue types are allowed, while the term PGeo(f)
enforces the global geometric properties which the brain model must satisfy. Defining
ELoc(f) := − log(PLoc(f)) as the local geometric energy and EGeo(f) := − log(PGeo(f))
as the global geometric energy, our model attempts to minimise the following energy:

E(f) := EApp(f) + ELoc(f) + EGeo(f). (6.5)

In the remainder of this section, every energy is described in detail. The minimisation
of Equation (6.5) will be addressed in Section 6.5.

6.4.1 Appearance Energy

In brain lesion segmentation a standard way to represent tissue intensities is to model
each tissue type with a Gaussian Mixture Model (GMM) [137, 143], Section 3.2.4. Here,
the GMM probability of a tissue ℓ ∈ L is denoted by pℓ. The probability to assign the
label ℓ to a given voxel x with intensity y = I(x) is given by:

pℓ(y) =

Kℓ
∑

i=1

αℓ
iG(µℓ

i ,Σ
ℓ
i ; y)

Kℓ
∑

i=1

αℓ
i = 1. (6.6)

Here Kℓ is the number of Gaussian models that are mixed in order to model the tissue
type ℓ. Each Gaussian model G(µℓ

i ,Σ
ℓ
i ; ·) is defined by its mean intensity µℓ

i and its
covariance matrix Σℓ

i . The mixture parameters αℓ
i determine the importance of each

Gaussian model in the distribution pℓ. Note that the GMM are multi-dimensional, as in
this work two image contrasts have been considered.

Here the first usage of the initial segmentations Sℓ from Section 6.3 is encountered.
Since the voxels in these masks are hard constraints, they will not change label. Therefore
the probability that a voxel x is labelled ℓ is:

Pℓ(x) =







1 if x ∈ Sℓ

0 if ∃ℓ′ 6= ℓ : x ∈ Sℓ′

pℓ(I(x)) otherwise.

(6.7)

As it is possible to see from Equation (6.7), the probability of the voxels belonging to
Sℓ is unity, meaning that there is no need to compute the intensity probability value for
those voxels.
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In the appearance model Pℓ, the assumption is made that, for each voxel x that belongs
to the tissue type ℓ, the voxel intensity is an independent, identically distributed random
variable. Thus the appearance energy can be written as:

EApp(f) =− log

(
∏

x∈Ω

Pf(x)(I(x))

)

=
∑

x∈Ω

− log
(
Pf(x)(I(x))

)
(6.8)

where f(x) represents the label for voxel x. From this equation one can see how various
Sℓ contribute to the overall energy. In particular, assigning to a given voxel x ∈ Sℓ a
label ℓ

′ 6= ℓ is penalised with an infinite cost (− log(0) = +∞). This implies that Sℓ ⊂ Rℓ

for all ℓ ∈ L− {L}, therefore the region Rℓ must always contain Sℓ. Thus, the inclusion
constraint Sℓ ⊂ Rℓ can be considered as a global constraint that is at all times enforced
during the optimisation process.

6.4.2 Local Geometric Model

The minimisation of Equation 6.5 with respect to the appearance energy alone would
result in a noisy segmentation, since EApp encodes no neighbourhood or geometric infor-
mation. Therefore, to avoid overly noisy labelling it is common to penalise neighbouring
voxels if their labels disagree. This penalty is represented as a pair-wise term between
adjacent voxels. In the method developed in this thesis, these pair-wise terms are also
used to additionally impose local topological constraints. These topological constraints
represent our geometric model, see Figure 6.4 (r.h.s.): each tissue schematically repre-
sented in the figure by a colour region, has a specific relative position. As an example
the CSF lies on the outermost part of the brain, and can only be adjacent to the cortical
grey matter (GM).

In order to impose these constraints and to achieve a smooth segmentation, a 6-
neighbourhood N(x) is used. The local geometric model is formulated as:

ELoc(f) =
∑

x∈Ω

∑

y∈N(x)

λf(x),f(y) · g(x, y) (6.9)

where g : Ω×Ω → R
+ is a gradient based function which provides a high penalty between

pixels of similar intensities [15, 17, 70]. This function is similarly defined as the one in
Equation 4.2:

g(x, y) = exp

(

−0.5 ·
( |I(x)− I(y)|

σ

)1.5
)

· 1

dist(x, y)
+ ǫ.

The positive scalar value ǫ = 0.01 guarantees that the g(x, y) always exceeds the thresh-
old ǫ, σ guarantees that the method is not sensitive to the dynamic intensity range
of image I, and the distance dist(·, ·) between the two voxels takes into account the
anisotropic resolution of I. For any two voxels x and y with different labels (f(x) 6= f(y)),
if |I(x) − I(y)| < σ then g(x, y) represents a relatively high penalty compared to
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CSF GM WM SGM L V

CSF 0 λCSF,GM ∞ ∞ ∞ ∞
GM λCSF,GM 0 λGM,WM ∞ ∞ ∞
WM ∞ λGM,WM 0 λWM,SGM λWM,L ∞
SGM ∞ ∞ λWM,SGM 0 ∞ λSGM,V

L ∞ ∞ λWM,L ∞ 0 ∞
V ∞ ∞ ∞ λSGM,V ∞ 0

WM

GM

CSF

L

SGM

V

L

Figure 6.4: The relationship between two different tissue layers ℓ1 and ℓ2 is modelled by weight-
ing their interface with a factor λℓ1,ℓ2 ≥ 0. An infinite cost prevents two regions from having a
common boundary. The λ-values are based on the geometric model shown in Figure 6.2(a) and
here reported in the right hand side.

|I(x) − I(y)| > σ. Moreover, for a given intensity difference |I(x) − I(y)|, the assigned
penalty is higher the smaller the distance dist(x, y). The symmetric weighting factor
λf(x),f(y) of Equation (6.9) handles different label transitions. To favour smooth segmen-
tations λℓ1,ℓ2 = 0 if ℓ1 = ℓ2. Therefore there is no additional costs in our energy in case
two neighbouring voxels have the same label, i.e. f(x) = f(y). In addition, only those
segmentations that satisfy the topological restrictions described below are allowed (see
also Figure 6.4):

• CSF is adjacent only to GM, then λCSF,ℓ = ∞ for ℓ ∈ {WM,SGM,L,V}.

• GM is adjacent to the WM and it is surrounded by CSF, then λGM,ℓ = ∞ for
ℓ ∈ {SGM,L,V}.

• WM surrounds the lesions and is adjacent to the GM as well as the SGM. Hence,
λWM,ℓ = ∞ only for CSF and V.

• L are only found inside the WM, then λL,ℓ = ∞ for ℓ ∈ {CSF,GM,SGM,V}.

• SGM is adjacent to the ventricles and the WM, then λSGM,ℓ = ∞ for ℓ ∈
{CSF,GM,L}.

• V are modelled as being surrounded by the subcortical GM. Therefore, λV,ℓ = ∞
for ℓ ∈ {CSF,GM,WM,L}.

The different transitions are illustrated in the sketch of Figure 6.4, while the values
for λℓ1,ℓ2 are summarised in the table of Figure 6.4. Note that the ∞ values represent
impossible transitions. In our geometric model there are six labels which occupy specific
relative positions leading to five allowed transitions: CSF-GM, GM-WM, WM-L, WM-
SGM, and SGM-V.
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✘✘✾ ✘✘✾

(a) (b) (c)

Figure 6.5: FLAIR image in (a). Resultant segmentation without (b) and with enforcement of
the minimal size constraint in Equation (6.13)(c). Upon enforcing the constraint, a small lesion
can either disappear or grow to satisfy the constraint (arrow in (b,c)).

6.4.3 Global Geometric Model

The intensities of the cortical and subcortical grey matter, and of lesions are all very
similar both in FLAIR and in T1-w images, therefore the probabilities pℓ of these three
tissues are not sufficiently discriminative to generate a correct segmentation. If one
would compute a segmentation based only on EApp and ELoc, most of the lesions would
be segmented as either GM or SGM since the resultant energy costs would be smaller
than the cost of introducing the label L, Figure 6.11(b).

To overcome this limitation, additional global constraints to the regions Rℓ of these la-
bels, i.e., RGM, RSGM, are introduced. Anatomically, the GM is continuously connected;
this feature will also be assumed to hold for SGM (Figure 6.4). Therefore, a connectivity
prior on RGM and RSGM can be enforced, resulting in the prior PCC(f).

In addition, noise in MR images can appear as local hyper-intensities in the WM, and
these small regions can be wrongly segmented as lesions. To limit these false positives a
minimum size constraint for the lesions has been introduced, enforcing that each lesion
contains at least a ball of 1 pixel radius. This results in the prior Pmin(f). These priors
are modelled as mutually independent probabilities, obtaining:

PGeo(f) = PCC(f) · Pmin(RL). (6.10)

Taking the negative logarithm, the global energy is obtained:

EGeo(f) = − log(PGeo(f)) = − log(PCC)− log(Pmin(RL)). (6.11)

Let ECC(f) = − log(PCC) and Emin(f) = − log(Pmin(RL)), then the global energy can
be re-written as:

EGeo(f) = ECC(f) + Emin(f)

with:

ECC(f) =

{

∞ if RGM or RSGM are not connected

0 otherwise
(6.12)
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�
�✠

F1

✁
✁
✁✁✕

F2

(a) (b) (c) (d) (e) (f)

Figure 6.6: FLAIR image in (a). The minimisation of E0(f) results in the labelling shown in
(b), which contains the false labels F1 (grey) and F2 (dark green). In (c) the removal of the false
labels. Final labelling at low(d), middle (e), and original (f) resolution.

and

Emin(f) =

{

0 ∀A ⊂ RL is connected component, ∃x ∈ A : ∀y 6∈ A : ‖x− y‖ > 1

∞ otherwise.

(6.13)

An example of the minimal size prior is shown in Figure 6.5. Lesions with a radius
smaller than 1 voxel can either disappear or increase in size, Figure 6.5(c).

6.5 Energy Optimisation

The energy in Equation (6.5) is not submodular [73], because the exclusion constraint
between L and SGM, Figure 6.4, is not graph-representable, and the regularity condi-
tion (Section 4.3) in Equation (4.3) is not satisfied. Therefore in order to minimise
Equation (6.5) it is necessary to search for a local optimal solution. In this thesis, a
coarse-to-fine approach is followed whereby at the lowest resolution level an optimal so-
lution is found by excluding certain constraints. As explained in detail below, based on
this solution it is feasible to recover all the constraints that our model imposes, and due
to local optimisation a final segmentation in the image original resolution is achieved.

The coarse-to-fine approach subsamples the image I : Ω → R
c and its image domain

Ω by a factor of s
(1)
x1

× s
(1)
x2

× s
(1)
x3

to obtain I1 : Ω1 → R
c. By subsampling I1 by another

factor of s
(2)
x1

× s
(2)
x2

× s
(2)
x3

, a second image I2 : Ω2 → R
c is obtained. All the subsampling

factors are greater than or equal to 1, and their actual value depends on the resolution
of the data. As a result, a pair of lower resolution images, I1 and I2, is obtained from
the original image I. Note that in our method with two image contrasts, both input
images are subsampled.

In Section 6.5.1 the input images for the proposed method are described, Figure 6.7,
while in Section 6.5.2 an initialisation for the labelling f |Ω2 is computed, Figure 6.6(b).
In Section 6.5.3 an improvement with respect to f |Ω2 is obtained, Figure 6.6(c). After
finding a local minimum for f |Ω2, Figure 6.6(d), the resolution is iteratively increased in
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✄
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(a) (b) (c) (d)

Figure 6.7: Original FLAIR and T1-w images in (a) and (c). In (b) and (d) the result of the
denoising algorithm proposed by Chambolle [29]. Red arrows point to two representative lesions.

order to find a local minima for f |Ω1, and finally for f itself, Figure 6.6(e)-(f). The λℓ1,ℓ2

values of Section 6.4.2 are fixed parameters with the exception of λWM,L. In Section 6.5.4
two globally optimal hyper-parameters are learned that allow to choose the correct value
for λWM,L.

6.5.1 Input Images

Additionally to the T1-w and FLAIR images, the method considers a denoised version
of both images for the computation of the appearance energy in Equation (6.8). This
additional information can help to better distinguish the intensity model of each label
compared to the others.

In order to smooth an image while simultaneously preserving the edges, the method
proposed by Chambolle [29] and presented in Section 3.3.1, has been used. The pa-
rameter σ, which controls the tradeoff between smoothness and fidelity to the original
data, has been kept constant for all the image resolutions and empirically estimated,
σ = 0.25. The value for λ depends on the actual image resolution: a large value would
preserve all structures in the image, while a small value would result in an image with
an average intensity. Therefore, λ has been empirically set to λ = 20 for I2, λ = 40 for
I1 λ = 60 for I. The additional parameter τ is determined according to the inequality
in Section 3.3.1. These values have all been chosen according to the smoothness and the
intensity difference between the tissue types present in the denoised image. An example
of this denoising method applied to both FLAIR and T1-w images is shown in Figure 6.7.
The WM is seen to be more uniform in the denoised image Figure 6.7(b)-(d), while small
objects as the lesions are still visible, arrows in Figure 6.7(b).

With these two additional images the appearance energy EApp is, at each resolution,
computed over four images, i.e., the original and the denoised FLAIR and T1-w images.
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6.5.2 Computation of the Initial Labelling

The minimisation of Equation 6.5 starts with an initial estimation, for each label, of
its associated GMM, which consists of a mixture of two Gaussians. The GMMs are
initially estimated from the results of the initial segmentations Sℓ (Section 6.3.3) and
are subsequently used in EApp. For each Sℓ, its GMM is determined by first using a K-
means clustering, Section 3.2.4 to obtain an initial partition of the voxels. Subsequently
an Expectation-Maximisation algorithm (Section 3.2.4), is initialised with the mean
values of the clusters obtained with the K-means. After the EM converges the final
GMM model parameters are obtained. This procedure is implemented in the mlpack
library [35], and is here used with the default parameters.
Since, at this stage, no lesion segmentation SL is available, it is not possible to use the
above procedure to estimate the GMM model for the lesions. The lesions appear hyper-
intense in the FLAIR image, and hypo-intense in the T1-w image, and for both images
one can use the mean intensity of SWM and SGM to estimate the GMM for the lesions,
Figure 6.7. The mean lesion values for the FLAIR image, µL(FLAIR), and for the T1-w
image, µL(T1), are estimated as:

µL(FLAIR) = µ(SGM(FLAIR)) + (µ(SGM(FLAIR))− µ(SWM(FLAIR)))

µL(T1) = µ(SWM(T1))− (µ(SWM(T1))− µ(SGM(T1)))

The covariance matrix is estimated based on the variance of the SWM in both images:

ΣL =

[
σ2(SGM(FLAIR)) 0

0 σ2(SGM(T1))

]

(6.14)

Delong and Boykov proved in [37] that a simplified version of the problem stated
in Equation (6.5) does fit into the Ishikawa formulation, Section 4.4. To achieve this,
the label space must be modified (see below) and the following energy E0(f) must be
considered instead, which does not incorporate geometric information:

E0(f) := EApp(f) + ELoc(f). (6.15)

For the altered label space, it is actually possible to either choose a smaller label space or
an extended label space. Consider both the maximal lower bound Ľ ⊂ L, a smaller label
space, and the minimal upper bound L̂ ⊃ L, an extended label space, that satisfy the
Ishikawa construction. The maximal lower bound Ľ = L − {L} ignores the lesion label,
and the energy E(f), with this label space, can be directly minimised with graph-cuts.
However, since our method requires that the lesions are segmented, the label space L̂,
which includes additional labels, is chosen:

L̂ := {CSF,GM,WM,L, {L,SGM},SGM,V,F2} . (6.16)
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CSF GM WM SGM L V F1 F2

x0 0 0 0 0 0 1 0 1
x1 0 0 0 0 1 1 1 1
x2 0 0 0 1 0 0 1 1
x3 0 0 1 1 1 1 1 1
x4 0 1 1 1 1 1 1 1

Figure 6.8: Ishikawa construction for our six labels. On the left, the inter-layer∞-edges required
to generate the labels on the right. In addition to the six labels two false labels, F1 and F2 appear.

As already shown in Section 4.4, the Ishiwaka construction requires multiple copies of
the input image to encode the different labels. Since our method models six labels, five
copies of each image are needed. The number of possible label configurations is 25 = 32,
which can be reduced to 8 if ∞-edges, or rather an ordering between the labels, are
introduced. The left-hand side of Figure 6.8 shows the configuration used in the model
presented here; note that x0, ..., x4 denote a copy of voxel x in the zeroth to fourth layer,
respectively. The right-hand side of Figure 6.8 lists all the possible labels that can be
obtained imposing the constraints depicted on the left.

This scheme, Equation 6.16, produces two labels that were not intended to be modelled.
To understand this, let consider the voxel on layer 0, i.e. x0. If x0 has label 1, then also x1
must have label 1 due to the∞-edge between the two layers. This constraint is applied to
all the pair of voxels which are connected by an ∞-edge. All the possible configurations,
given the 5 layers and the ∞-inter layer edges, are the eight ones presented in Figure 6.8
(r.h.s.).
As a result, the lesions and the SGM are not separated, leading to the false label F1 :=
{L,SGM}. The false label F2 is an artefact from the ventricle model and is embedded
inside V, Figure 6.6(b).

In the following it will be explained how to construct the graph. Both EApp and ELoc

in E0(f) have to be considered, Equation (6.15). The appearance energy adds weight
on the terminal links, source and sink, while the local energy adds weights on the edges
between neighbouring voxels. Let D0, D1,..., D5 denote the appearance of each tissue
type, assuming that D0 represent CSF probability, D1 represents the GM probability,
D2 the WM, D3 the SGM, D4 the L and D5 the V. Then the weights on the terminal
links of the graph follow the configuration in Figure 6.9(a), where the layer order is
consistent with the one in Figure 6.8 (l.h.s.). The hard constraint voxels included in
Sℓ, will be also in the graph, like every other voxel in the image, but they will have
specific weights. These weights are either 0 or ∞, thus guaranteeing that in the final
segmentation their labels remain unchanged. An example of a voxel belonging to SGM

is shown in Figure 6.9(b).
The local energy, ELoc, considers neighbourhood interactions, which are represented

by edges connecting two neighbouring voxels. The smoothness of the segmentation is
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(a) (b)

Figure 6.9: Appearance energy weights for our model. In (a) the general case, while in (b)
the weights for a voxel x ∈ SGM. The ∞-edges force the voxel to be segmented as GM, and
determine the shown cut (black dotted line). The edges without weight take the value zero.

encoded by the weights computed with Equation (6.9). A representation of these edges
can be seen in Figure 6.10(a). Additionally with ELoc, a minimal distance of 1 voxel
between non-neighbouring tissues is encoded: for example, between CSF and WM a
layer of GM must be present. This is valid also for all other pairs of non adjacent tissues:
between GM and L, as well as between L and SGM, there must be a WM region. Note
that in the transition from L to V there must be a layer of WM and a layer of SGM.
This minimal distance can be encoded in the graph by adding ∞-edges as shown in
Figure 6.10(b). For every voxel, the edges associated with both the appearance energy
and the local energy must be created.

The minimisation of the graph so constructed converges into the global optimum.
Therefore one can use this optimum f̂ : Ω2 → L̂ of E0(·) to find a feasible labelling
f : Ω2 → L with respect to E(·), hence a labelling that satisfies E(f) < ∞.

As a first step the two false labels are removed. Since F2 uses the same appearance
model as V, F2 is simply replaced with V. Removing F1 is more complicated since it is a
combination of L and SGM. Therefore these two labels need to be separated. In order to
disallow the transition between SGM and L, some of the WM has to appear between SGM
and L. This can be efficiently performed with the α/β-swaps algorithm, Section 4.5.1, in
the region RL ∪RSGM ∪RF1

with respect to the labels {WM,SGM,L}. For convenience,
initially all the voxels belonging to F1 are assigned to L. Next, WM/SGM-swaps and
WM/L-swaps are performed until convergence is reached. This occurs when the energy
between two consecutive iterations does not decrease.

This process leads to a mapping f : Ω2 → L with E0(f) < ∞, which might still
violate some global geometrical constraints, resulting in E(f) = ∞. In this case, the
minimal lesion size constraint cannot be violated, for the subsampling that results in
lesion diameters larger than 1 voxel at the original resolution. This means that either
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(a) (b)

Figure 6.10: Local energy weights between two neighbouring voxels x and y, according to our
model. In (a) the edges encoding the smoothness of the segmentation, while in (b) the edges
encoding the minimal distance constraint between non adjacent tissues.

RGM or RSGM are not connected. Without loss of generality it is assumed that RGM is
not connected. In the next paragraph the proposed connectivity prior is explained, with
a brief summary of the already proposed priors.

Connectivity priors are in general NP-hard. Vicente et al. [146] proposed a connectiv-
ity constraint for binary image segmentation and for user selected points in the image,
where the selected points are iteratively connected to the segmented object. Since this
method is limited to binary segmentation, is it hardly applicable to our multi-labelling
framework. In addition, the manually selected points are in contrast with an automated
process. In a recent approach, Stühmer et al. [132] proposed a connectivity prior which
introduces a distance measure based on image intensities. This is a feasible approach
provided that the distribution of intensities for the connected object is clearly distin-
guishable from those of labels/objects. Since the GM, SGM, and the L have similar
intensity distributions this method is hardy applicable to our framework. Therefore, a
distance function based on the gradient values is proposed, Figure 6.11(f). CSF voxels
are assigned a distance of zero. For voxels in other brain regions, their distance increases
as a function of their Euclidean distance to the CSF and of the image gradient. In order
to incorporate this constraint into the graph, ∞-edges are added to the layer which
‘controls’ the GM. Such an edge connects a given voxel x to the closest neighbour y,
Figure 6.12(a).

The proposed connectivity constraint is able to correctly connect the GM tissue and
recover some L labels, Figure 6.11(g). The connectivity constraint is similarly applied to
the SGM, Figure 6.12(b). Note that in this case the distance function is computed from
the ventricles. After encoding these two additional constraints, an initial segmentation
f : Ω2 → L is obtained that satisfies E(f) < ∞, Figure 6.6 (c).
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Slice #181

✕
Slice #181

✕
Slice #183 Slice #181

☛✐

Slice #181 Slice #181

✐

Slice #181

(a) (b) (c) (d) (e) (f) (g)

Figure 6.11: FLAIR image in (a). Segmentation obtained without the connectivity constraint
may lead to a disconnected GM (b) (arrow in (b)). Enforcing the connectivity prior as pro-
posed in [146] creates a thin artefact connection path (c). The prior proposed in [132] uses
an appearance based distance map (d) to enforce connectivity, but fails in our multi-labelling
setting (arrow in (e)). Using the proposed gradient based distance map (f) instead results in a
connected GM (g) and an improved lesion segmentation (circle in (e) and (g)).

6.5.3 Local Energy Minimisation

In Section 6.5.2 it has been shown how to obtain a feasible initialisation f : Ω2 → L,
i.e., a labelling that satisfies E(f) < ∞ at the lowest image resolution. After reaching a
global optimum with respect to L̂, Equation (6.16), the false labels had to be removed via
local optimisation, which was limited to three labels, i.e. WM, L, and SGM. Because
changes in these labels can also potentially affect the other labels, it is necessary to
improve the initial labelling in order to determine a (local) minimum for the entire label
space L at all image resolutions. This procedure is described in this section. To find such
a minimum, all possible α/β-swaps are performed, on the whole label space L. Note that
even though there are six labels, only five out of 15 different α/β-swaps are necessary,
due to topological restrictions, Figure 6.4: CSF /GM, GM /WM, WM /L, WM /SGM,
and SGM /V.

As explained in Section 4.5.1, the α/β-swaps algorithm for binary segmentation con-
verges to a local optimum solution. In our configuration, the five possible α/β-swaps are
applied in cascade fashion. Starting from the outermost tissue, i.e., the CSF, CSF /GM-
swaps is applied, and as a results both RCSF and RGM are updated. Next, GM /WM-
swaps is applied and RGM and RWM are thereby updated. The remaining α/β-swaps
are applied following this order: WM /SGM-swaps, WM /L-swaps and SGM /V-swaps.
Each α/β-swaps lowers the energy, and convergence is reached when the energy value
between consecutive iterations no longer decreases.

Upon convergence, the GMMs probabilities pℓ of Section 6.4.1 are updated in an EM-
like fashion, Section 3.2.4 to a new distribution qℓ. The GMMs are initialised with respect
to the hard constraint sets Sℓ, Section 6.5.2 and, after convergence of the α/β-swaps,
the new regions Rℓ are used to compute the new GMM models, i.e. qℓ. In order to avoid
large jumps in the intensity models, only ‘half of the gradient update’ is here used. To
understand how this is computed, initially a pure Gaussian model is considered, and
subsequently the extension to GMMs is explained. If pure Gaussian model are used,
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(a) (b) (c)

Figure 6.12: Connectivity constraint for GM in (a) and SGM in (b). The ∞-edges are between
a voxel x and its closest neighbour y; the position of the ∞-edge corresponds to the layer in the
Ishikawa construction which ‘controls’ the GM and SGM labels respectively. In (c) the ∞-edges
enforcing the minimal size constraint for the lesions in the high resolution image are shown. Note
that the central voxel represents the centre of mass of a lesion.

then pℓ = G(µℓ,Σℓ) and qℓ = G(µℓ,Σℓ) are combined. In this case, the mean value can
be computed with respect to the Bhattacharyya distance, to obtain G(µ,Σ):

µ =
µp + µq

2
, and Σ = Σp · U · Λ 1

2 · UT , (6.17)

where U · Λ · UT is the diagonalisation of Σ−1
p · Σq. Note that, in this case, the G(µ,Σ)

represents the model that would be used.
In the case of GMMs the models pℓ = G(µp,Σp, αp) and qℓ = G(µq,Σq, αq) have multiple
Gaussians that need to be matched. The matching is computed by a linear assignment
approach [96] using the Bhattacharyya distance. After the matching is performed the
mean and covariance matrix are updated for each Gaussian with Equation 6.17. The
mixing coefficients are updated with α =

αp+αq

2 . Therefore, instead of using the qℓ model
directly, our method uses the model resulting from the described update.

The local optimisation with respect to α/β-swaps and GMM re-estimation is iterated
until convergence. Upon convergence, the resolution from Ω2 to Ω1 is extended and
re-iterated, α/β-swaps and GMM re-estimation, until a locally optimal labelling f |Ω1

is found. For this and the highest resolutions, the minimal lesion size constraint, Equa-
tion (6.13), may be violated. In this case, for the centre of mass cA of each connected
component A ⊂ RL it is enforced that f(cA) = L , which implies that f(x) = L for all
‖x− cA‖ ≤ 1 voxel, which can be easily integrated into the graph cut optimisation [37],
Figure 6.12(c). This means that for every lesion the centre of mass is calculated, and
from it ∞-edges are added, that link the centre of mass to its neighbourhood. After
introducing these constraints, any small lesion will either be automatically removed or
extended to include a ball of diameter 3 voxel, Figure 6.5.
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Algorithm 5

1: Find initial labelling according to Section 6.5.2
2: repeat

3: Local optimisation w.r.t. α/β-swaps and GMM re-estimation
4: until convergence
5: Increase resolution if possible and goto Line 2

The final step requires that the resolution increases from Ω1 to Ω. After convergence
of α/β-swaps and GMM re-estimation, the optimal labelling f : Ω → L is found. The
complete method is summarised in Algorithm 5, and the process is shown in Figure 6.6.

6.5.4 Hyper-parameter Learning

The various GMM parameters i.e. the mean, the covariance and the mixing coefficients,
are optimised for every tissue using an Expectation Maximisation algorithm [35]. The
remaining parameters are the five different λ terms that specify the local geometric
model (Section 6.4.2). Since the main goal is to achieve lesion segmentation, all λ values,
except λWM,L are fixed empirically. In order to make this latter adaptive to the contrast
in the image, it is modelled as being affinely dependent on the maximum magnitude:

mg(I) = max
x∈Ω

||∇I||, where ∇I(x) =

(
∂I

∂x1
,
∂I

∂x2
,
∂I

∂x3

)

.

Thus, λWM,L = m ·mg+b where m and b are so-called hyper-parameters that are to be
optimally chosen. The optimal values for m and b are learnt from a given training set
using the parametric max-flow framework [71].
For notation simplicity, in the following let assume λ = λWM,L. The max-flow algorithm
shows that, for a binary segmentation, given two submodular energies E1 and E2, the
set of optimal segmentations (s) with respect to the energy

E(λ) = min
s

E1(s) + λE2(s) (6.18)

is finite and can be computed efficiently. Note that the max-flow algorithm has been
proposed for binary segmentations, therefore in our multi-labelling approach the RL

is considered as foreground, and the remaining tissues are background. Moreover, the
energy E1 represents our EApp plus ELoc for all non-lesion voxels, while the second energy
E2 is our ELoc of the lesion voxels. The EGeo is not considered since its possible values
are only 0 or ∞, hence given a feasible segmentation the energy does not increase due
to the geometric energy term.

Each of the optimal segmentations covers a certain interval [λi, λi+1] of feasible values
for λ. Since our method iteratively solves submodular problems, it is only necessary to
track the subdivision of the intervals in order to obtain any possible final segmentation
for any value of λ. In order to find the λ values corresponding to the subdivision points,
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Figure 6.13: Graphic representation of the energy functions obtained with two different values
of λ, i.e. λ0 and λ1. The intersection point identifies a subdivision point, λ∗.

first the range of possible λ values is defined. The smaller value is usually set to zero,
λ0 = 0, whereas the highest value must correspond to a segmentation where no lesions
are segmented, e.g. λ1 = 100. Therefore the best λbest ∈ [λ0, λ1]. Given the energy
functions E(λ) = E1(sλ0

) + λE2(sλ0
) for λ0, and E(λ) = E1(sλ1

) + λE2(sλ1
) for λ1, a

new subdivision λ∗ ∈ [λ0, λ1] can be defined as the interaction lines between the two
functions, Figure 6.13. Note that the blue line, which corresponds to λ1, is parallel to
the λ-axis since E2(sλ1

) = 0. The value of λ∗ can be analytically calculated as:

E1(sλ0
) + λ∗E2(sλ0

) = E1(sλ1
) + λ∗E2(sλ1

) (6.19)

re-arranging the above equation results in:

λ∗ =
E1(sλ1

)− E1(sλ0
)

E2(sλ0
)− E2(sλ1

)
(6.20)

Once the first λ∗ is found, then the intervals [λ0, λ
∗] and [λ∗, λ1] are recursively analysed,

until no new λ∗ is identified. The final intervals [λi, λi+1] correspond to a convex domain
Ai in the 2D domain of feasible values for m and b. For each domain the energy value of
the correspondent segmentation is stored. For each patient in the training set a different
separation of the domain is computed. The intersection of these different separations
of the domain (one for each patient) leads to a partition that contain a finite number
of regions, where in each region the final energy value is the sum of the corresponding
energies in the training set segmentations, Figure 6.14.

Let A∗ be the region with the lowest cumulative energy value. By choosing (m, b) as
the centre of mass of A∗, the globally optimal hyper-parameters for our algorithm are
obtained, Figure 6.14.
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(a) (b)

Figure 6.14: Example of m-b domain parcellation in (a), and a close-up in (b). The magenta
dots represent the optimal values.

6.6 Results

Our MS lesion segmentation method has been evaluated on the MS grand challenge
clinical dataset [133], and on an in-house database. Additionally the proposed method
has been compared against several state of the art methods.

In Section 6.6.1 a description of commonly used measures for evaluating the quality
of a segmentation method is provided. In addition, in this thesis a new measure called
Distance Dice Dθ has been introduced. The goal of this new measure is to be more
robust with respect to perturbations that occur within a small distance θ along the
lesion segmentation boundaries.

For all the experiments the T1-w and the FLAIR images of each patient have been used.
The coefficients of the local geometric model have been empirically set as: λCSF,GM = 1,
λGM,WM = 2, λWM,SGM = 10 and λSGM,V = 1. The subsampling factors for the MICCAI

database have been set to s
(1)
x1

= s
(1)
x2

= s
(1)
x3

= s
(2)
x1

= s
(2)
x2

= s
(2)
x3

= 2, while for the in-

house database have been set to s
(1)
x3

= 1 and s
(1)
x1

= s
(1)
x2

= s
(2)
x1

= s
(2)
x2

= s
(2)
x3

= 2. Note
that for I1 no downsampling was performed in the through-plane direction x3 since the
in-house data have a lower resolution in this direction (Section 6.6.3).

6.6.1 Measures

In order to evaluate the quality of a segmentation it is common to compare the seg-
mentation against a manual annotation of the lesions. Usually the manual annotation
consists in a binary mask defined by an expert physician, in which lesion voxels have a
positive value (congenitally set to unity). It is also desirable to have multiple manual
annotations which can be beneficial to identify the lesions on which physicians agree and
also to weigh the likelihood of the lesions according to the level of agreement.
There are two classes of measures to compare a given manual annotation, also called
Ground Truth (GT ), with a lesion segmentation. The first class regards the whole lesion
as unity, therefore even if the manual annotation and the segmentation differ by few
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voxels the score is still 100%. This class of measures give more importance to the actual
detection of the lesion rather than to the precision of the segmentation. On the other
hand, the second class of measures considers the voxel as the unity for comparison, so
the focus is on the precision of the lesion segmentation.

In the following the lesion segmentation is identified as S, and the manual annotation
as GT , Figure 6.15(a). The measures defined on the lesion level are the True Positive
Rate (TPR), and the False Positive Rate (FPR) defined as:

TPR =
|S ∩GT |
|GT | FPR =

|S| − |S ∩GT |
|S| = 1− TPR

|GT |
|S|

where |S| and |GT | are the number of lesions in the segmentation and in the ground
truth, respectively; |S ∩ GT | denotes the number of lesions in GT which overlap with
at least one lesion in S. The best value of the TPR is 100%, so when all the lesions in
GT have an overlap with at least one lesion in S. The best value of the FPR is 0, hence
when there are no lesions in S without an overlap to GT .

At the voxel level various measures have been defined. The Volume Difference VD
considers the actual volume of the lesions is S, i.e. VS, and compares it with the volume
of the lesions in GT , VGT :

VD =
|VS − VGT |

VGT
.

The volume can be computed by counting the voxels in the segmentation. The best
value is 0, thus when the total volume of S is equal to the total volume in GT .

The symmetric Surface Distance (SD) considers the distance between the surface vox-
els of every lesion in both S and GT [133]:

SD =

∑

x∈∂GT d(x, ∂S) +
∑

y∈∂S d(∂GT, y)

|∂S|+ |∂GT|

where ∂S and ∂GT represent the surface voxels of S andGT respectively, and d represents
the Euclidean distance. Surface voxels are defined as those which have at least one
neighbour which is not a lesion. The best value is 0.

The additional measures defined on the voxel level require a precise identification
of missed, oversegmented and properly segmented voxels. Let define the (number of)
True Positives (TP ) as the number of correctly identified voxels, i.e., voxels in S which
coincide with the corresponding voxel in GT . Define the False Positives (FP ) as the
number of oversegmented voxels in S, hence those voxels which do not coincide with their
corresponding voxel in GT . Finally, define the False Negatives (FN) as the number of
lesion voxels missed out in the segmentation, i.e., the number of voxels in GT which do
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(a) (b) (c)

Figure 6.15: In (a) a representation of the ground truth GT and segmentation S, and in (b) the
classical FN , FP and TP . In (c) the proposed distance dice Dθ, where the introduced tolerance
zone is shown, (dashed lines) in which the TP can increase in number.

not overlap with a voxel in S, Figure 6.15(b). Based on these terms it is possible to
define the Recall factor R, also called TPRv on the voxel level:

R =
TP

TP + FN
=

TP

|GT | .

The best value for R is 100%. This measure is sensitive to the number of FN, hence to
the percentage of missed voxels. The Precision P , already presented in Section 5.4 is
defined as:

P =
TP

TP + FP
=

TP

|S|
the best value being 100%. Note that P = 1 − FPRv, where FPRv is the FPR at
the voxel level. A high precision P means that the number of false positives is small in
comparison to the number of true positives. This, however, does not necessarily imply
that the region S will closely match GT (consider the case where S ⊂ GT ). In general,
the goodness of the segmentation, as compared with the ground truth, requires that
both R and P be high. This is captured by the Dice coefficient D, which combines P
and R and is defined as:

D = 2
P ·R
P +R

=
2 · TP

FP + FN + 2 · TP
and the best value is 100%.

Since GT is often inaccurate at the lesion boundary, in this thesis a new distance-based
Dice coefficient Dθ has been introduced, where θ defines a tolerance zone both inwards
and outwards of the GT border. The voxels included in the tolerance zone are considered
neither as FN nor as FP , but instead as TP , resulting in Dθ ≥ D, Figure 6.15. Dθ

is similar to the slack borders measure that was introduced in [145] to evaluate lung
segmentations. This measure ignores the information around the boundary for TP as
well as for FN and FP. Therefore, the slack borders measure may be smaller than D. On
the other hand, the distance-based Dice coefficient Dθ always provides a higher or equal
measure than the classical Dice coefficient.
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T1-w FLAIR Proposed T1-w FLAIR Proposed

Figure 6.16: Example of results produced by our method for T1-w and FLAIR images from the
MICCAI test dataset. The results are shown as orange overlay on the FLAIR image. The first
three columns show data from patient CHB15, the other columns from patient UNC03.

6.6.2 MICCAI Dataset

The MS lesion challenge proposed in 2008 [133] consists of 20 patient data in the
training set and 22 in the test set. The patients were scanned at the University of North
Carolina (UNC) and at the Children’s Hospital, Boston (CHB). While the acquisition
protocol consisted of T1-w, T2-w and FLAIR images, in the method proposed in this
thesis only T1-w and FLAIR images have been used. All images have an isotropic
resolution of 0.5 × 0.5 × 0.5 mm3. The training set used here consists of 10 CHB and
10 UNC patients. One and two manual annotations were respectively available for CHB
and UNC patient data. On the other hand, the test set was evaluated online using two
manual annotations. The training set has been used to estimate the hyper-parameters,
m and b, for the λL,WM and the test set to evaluate the performance of our method.

These data have been evaluated with respect to VD, SD, TPR and FPR. The website
of the challenge also provides a score based on average values of all four measures. Our
method has been compared with Lesion-TOADS [118], LST [116], with the method
proposed by Geremia et al. [53], the MOPS method [137], and the RMNMS method [55].
The results are shown in Table 6.1, where boldface values represent the best value for each
metric and each dataset. All the methods produce similar results, however our method
gives the best performance with respect to the FPR, i.e., provides the most conservative
segmentation with respect to all other state of the art methods. In Figure 6.16 a visual
result of the proposed method for two patients from the test set is provided: CHB15 is
presented in the first three columns and UNC03 in the last three.

6.6.3 In-House Database

The in-house database contains of data from 20 MS patients (mean age 37.2; age range
28− 55 years). It is divided up into two datasets: the first contains data from 5 patient
data, the second from 15 patient data.

Both datasets were acquired with a 3T Siemens Trio MR System. The acquisition
protocol for both consists of a 3D MPRAGE T1-w image and a 3D FLAIR image. The
first dataset has a matrix size of 480 × 512 × 160 with a resolution of 0.5 × 0.5 × 1.2
mm3. The MPRAGE parameters are: TR/TE/FA = 1390 ms / 2.15ms / 9◦; and FLAIR
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Chapter 6 Segmentation of Multiple Sclerosis Lesions

T1-w FLAIR GT LST L-TOADS Proposed

✁✁✕

Figure 6.17: Results for the in-house dataset, consisting of T1-w and FLAIR images. The
results are overlaid on the FLAIR image. The ground truth GT (green) is shown together with
the results obtained with LST (blue), Lesion-TOADS (red) and the proposed method (orange).
Each row presents a different patient and the red arrow in the third row points to a ‘dirty’-
appearing-WM region.

parameters are TR/TE/FA = 5000ms / 388ms / 120◦. The second dataset has a matrix
size of 512×512×160 with a resolution of 0.49×0.49×1 mm3. The MPRAGE parameters
are TR/TE/FA = 2300ms / 2.98ms / 12◦; the FLAIR parameters are TR/TE/FA =
5000ms / 394ms / 120◦.

Two expert neuroradiologists, one for each dataset, provided a manual GT segmen-
tation on the FLAIR images. The first dataset has been used for the hyper-parameter
learning phase and the second one for the testing phase. For each image, the lesion load
has been computed as the sum of the total volume lesion volume in GT : for the first
dataset, total lesion volume is 1.01 − 9.8 cm3, for the second 0.9 − 24 cm3.

The method presented here has been compared against Lesion-TOADS [118] and
LST [116]. For both external methods the parameters have been fine-tuned in order
to obtain the best results, Figure 6.17. In Table 6.2 the results for each of the pre-
sented measures are shown, with boldface values representing the best value for each
metric. It observed that the method proposed in this thesis performs best in terms of
VD, TPR, R, D and Dθ=0.5mm. The LST method performs best for the SD and P
measures, whereas Lesion-TOADS gives the best performance for the FPR. In general,
the Dθ scores improve with respect to D for all methods.
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Table 6.2: Comparative results of our method with two state of the art methods on the in-
house dataset of 15 patients. The SD is expressed in millimetres while all the other measures are
expressed in percentage.

Patient Method VD SD TPR FNR P R D D0.5

Pat 01
L-TOADS 48 6 65 10 30 45 36 44
LST 53 4 75 70 60 29 39 68
Proposed 37 5 100 80 59 37 45 69

Pat 02
L-TOADS 50 7 60 42 30 43 36 42
LST 52 4 78 59 72 34 46 71
Proposed 50 4 85 70 72 35 47 74

Pat 03
L-TOADS 63 5 76 42 77 39 51 70
LST 89 4 90 72 88 10 18 41
Proposed 9 3 56 72 48 35 40 44

Pat 04
L-TOADS 40 6 60 36 10 43 16 20
LST 48 2 54 62 74 38 51 73

Proposed 7 2 48 53 49 44 46 72

Pat 05
L-TOADS 170 9 10 50 10 44 16 35
LST 67 3 44 77 84 28 42 68
Proposed 44 2 67 77 81 45 58 83

Pat 06
L-TOADS 106 6 13 74 20 15 17 20
LST 86 5 56 86 76 17 28 63
Proposed 78 8 85 83 86 19 31 67

Pat 07
L-TOADS 86 6 20 50 5 47 9 30
LST 67 3 64 60 91 41 57 84
Proposed 35 4 80 75 78 51 61 83

Pat 08
L-TOADS 92 10 50 33 10 43 17 30
LST 64 2 32 11 50 29 37 55
Proposed 24 3 66 18 48 59 53 66

Pat 09
L-TOADS 31 7 50 40 10 31 15 30
LST 25 1 75 21 64 71 68 84
Proposed 26 1 66 20 77 57 65 85

Pat 10
L-TOADS 53 6 65 55 79 37 50 70
LST 63 2 69 69 87 43 58 79

Proposed 60 1 61 60 47 75 58 78

Pat 11
L-TOADS 73 3 60 74 66 41 51 71
LST 74 2 85 60 87 31 46 76
Proposed 24 1 72 61 75 57 64 85

Pat 12
L-TOADS 94 5 10 46 10 41 16 40
LST 45 1 73 30 71 56 63 81

Proposed 36 2 76 30 52 60 60 73

Pat 13
L-TOADS 49 2 65 60 67 35 46 74
LST 52 1 55 34 77 53 63 80

Proposed 23 2 54 30 58 71 64 78

Pat 14
L-TOADS 25 5 25 58 30 30 30 43
LST 66 1 43 63 85 42 56 80
Proposed 39 2 65 50 80 51 62 87

Pat 15
L-TOADS 77 5 51 54 91 17 29 57

LST 57 3 33 70 32 23 27 50
Proposed 55 2 75 64 27 50 35 55

Mean
L-TOADS 70 6 45 48 36 37 29 45
LST 61 2 62 56 73 36 47 70
Proposed 36 3 70 56 62 50 52 73
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✲ ✛

Figure 6.18: Axial slices with FLAIR at the level of the cerebral peduncle. The intensity
difference between the corticospinal tract (red arrow) and two brainstem lesions is seen on the
left. The proposed method segments only the lesions.

It is noted that certain brain regions, like the so-called ‘dirty’-appearing white matter
and the corticospinal tract, exhibit a diffuse hyper-intense appearance in MRI images.
This complicates the correct delineation of these areas, parts of which can wrongly be
classified as lesions. The ‘dirty’-appearing white matter is usually considered as a lesion,
even if the precise boundaries are hard to detect precisely. An example is shown in
Figure 6.17 third row. In Figure 6.18 the lesions close to the corticospinal tract have
been correctly segmented, while the tract itself has not been detected.

6.6.4 Robustness against Noise

The robustness of the proposed method against increasing levels of noise has been
tested. Rician noise has been artificially added to both FLAIR and the T1-w images
on three representative patients with low, moderate and high lesion loads, respectively.
The percentage of the added noise is based on the brightest tissue, i.e., GM for the
FLAIR and WM for the T1-w. The noise levels tested are 1%, 3%, 5%, 7%, and 9% over
the mean value of the brightest tissue, and additionally a comparison against Lesion-
TOADS and LST has been performed. For all three methods, the optimal parameters
estimated for the selected patient data (without artificially added noise) have been used.
In Figure 6.19 the Dice coefficient D and D0.5 versus the noise level are plotted for LST,
Lesion-TOADS and for the proposed method.

For noise levels between 1%−5%, the performance of the proposed method is minimally
affected, whereas for a noise level of 9% the coefficient D decreases by 20% in the patient
data with low and moderate lesion loads. Note that both the D and D0.5 values for 0%
of noise are the same as for 1% for all the methods. For a high lesion load, all three
methods were barely sensitive to the noise level. Figure 6.20 presents comparative image
segmentation results, at all noise levels, for the patient data with a moderate lesion load
discussed in this section.
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(a) (b) (c)

Figure 6.19: D (solid lines) and D0.5 (dashed lines) values for increasing levels of noise. Lesion-
TOADS (red), LST (blue), and the proposed method (orange) for three representative patients
with high (a), moderate (b), and low (c) lesion loads.

6.7 Summary and Discussion

A new method for 3D lesion segmentation has been presented which does not require
the use of an atlas. The proposed method formulates the segmentation as an energy
minimisation problem consisting of three different energies, i.e. appearance energy, lo-
cal geometric model, and global geometric model. The appearance energy encodes the
image intensity for each tissue type, as modelled by tissue-specific GMM models. The
local energy encodes a geometric model of the brain which fixes the relative position of
each tissue. Compared to an atlas-based approach, this model is more flexible and easier
to adapt to varying brain shapes. Therefore, the artefacts that may appear during an
atlas-based registration are avoided. The global energy, on the other hand, represents ad-
ditional constraints, specifically, the connectivity of the GM and SGM and a constraint
on minimum lesion size. Both these constraints aid in the process of lesion segmentation
by reducing, through the connectivity constraint ECC that some lesion voxels get erro-
neously assigned to GM or to SGM, and that noisy hyper-intense voxels get segmented
as lesion.

One of the main contributions of this thesis is the proposed connectivity constraint,
which uses a distance function based on the gradient of image intensities. Similar to other
methods the connectivity prior is imposed as a hard constraint. However, whereas the
formulation of Stühmer et al. [132] is applicable to binary segmentation, the more general
formulation proposed here is designed for multi-labelling segmentation. In Section 6.4.3
it has been shown that the method of Stühmer [132] fails to enforce a connectivity prior in
our multi-labelling setting, whereas our method properly connects the GM, Figure 6.11.

The second global constraint introduced in this work is the minimum lesion size. For
the high resolution step, this is fixed to a diameter of 3 voxels. As shown in Figure 6.5,
owing to the effect of this constraint, the resulting lesion segmentation becomes less
noisy, however small lesions may be grown to the predetermined size dictated by the
constraint or they disappear.

The overall energy in Equation (6.5) is minimised following a coarse-to-fine approach.
The input images have been down-sampled twice, resulting in I2 and I1. Following the
Ishikawa construction [64] it has been possible to globally optimise the energy E0(f),
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No noise No noise 1% noise

(a)

3% noise 5% noise

7% noise 9% noise

Figure 6.20: Results of the segmentation in the presence of noise. In (a) the original FLAIR
image with GT. Then the results with increasing levels of noise. The comparison is made with
respect to Lesion-TOADS (red), LST (blue), and the proposed method (orange).

consisting of the appearance and local geometry energies, in the image I2 with lowest
resolution, while ignoring the global energy EGeo. Delong and Boykov [37] showed that
combining an inclusion constraint with an exclusion constraint, for example in our model
WM includes both L and SGM which are excluding themselves, results in an expression
for the energy that is no longer submodular. Hence, the exclusion constraint between L
and SGM could not be modelled in our framework. As a result of the failure to model
that exclusion constraint, the minimisation of E0(f) generated two false labels, F1 and
F2, Section 6.5.2. Using the α/β-swap algorithm [16] it has been possible to repair all
the erroneously assigned labels and to find a feasible solution for the overall energy E(f).
Then, the resolution is increased to I1 and a local optimum is found alternating between
all possible α/β-swap and GMM re-estimations. A similar procedure has been applied
at the original resolution and a final labelling for the original images was found.

Our method is based on few parameters, namely the λl1,l2 values for each neighbouring
tissue. These values are empirically estimated and kept constant for all our experiments
with the exception of λWM,L. This term has been modelled to be affinely dependent on
the maximum amplitude of the image gradient, in order to make it adaptive to varying
image contrasts, Section 6.5.4. In the hyper-parameter learning step, for which global
optimality is guaranteed, the affine parameters m and b have been estimated that give
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the best result with respect to the training set. These values of m and b have been used
to find the best λWM,L for each individual item of the patient data in the test set.

The proposed method uses FLAIR and T1-w images: T1-w images provide compara-
tively more information about the contrast between different tissue types, while FLAIR
images are more sensitive to lesion intensities. Additional image contrasts can be eas-
ily incorporated into our framework. This only affects the computation of the GMMs,
which can nevertheless be efficiently computed for multiple image contrasts. On the
other hand, the size of the graphs used is virtually independent of the number of differ-
ent contrasts available. The run time of the proposed method is about 3 hours for the
in-house database and about 7 hours for the MICCAI data.

A limitation of the proposed method is that the geometric model is not entirely anatom-
ically correct, since the ventricles may also be adjacent to the WM and the lesions. The
reason of this modelling choice is that there are signals from the ventricle that are not cor-
rectly suppressed in MR images. These voxels have a high intensity value in the FLAIR
image and can therefore be represented by the SGM-model. In practice, our model
may create a thin artefactual layer of subcortical GM around the ventricles. While the
resulting labelling might not be anatomically correct, it only slightly affects the lesion
segmentation. From Figure 6.17 (first row) and Figure 6.16 it is seen that the lesions
around the ventricles have been properly segmented.

The proposed method is biased towards detection and segmentation of lesions appear-
ing in the WM, however lesions which are appearing in the subcortical GM can still
be segmented. In our database no lesion in the main deep GM structures (basial gan-
glia, thalami) has been found. However, in order to segment a lesion in this area, the
method must create an artefactual rim of WM around such lesions to satisfy the geo-
metric constraints. The proposed method may not entirely segment the dirty-appearing
WM completely, which in FLAIR images typically appears as a smooth hyper-intense
region in the periventricular WM, Figure 6.17 (second row). Because the boundaries of
these regions are difficult to detect, they may be partially segmented as healthy WM.
This limitation might be overcome by lowering the value of λL,WM. Since the training
set did not contain extended regions of dirty-appearing-WM, the learning process could
not take this effect into account.

The lesion load of the in-house database (0.9 cm3 – 24 cm3) showed that the proposed
method performs robustly in the presence of mild, moderate and severe lesion loads.
The robustness of the method against noise has been tested for three representative
patients with low, moderate and high lesion loads, respectively. In moderate and low
lesion loads the performances of the proposed method are slightly affected at low noise
levels, while at a noise level of 9% the Dice coefficient D has a drop of 20%. In this
case most of the lesions are still detected, but the number of FP increases, indicating
an over-segmentation, Figure 6.20. A possible explanation of this behaviour is that the
λ values are estimated on data without artificially added noise, therefore they are not
optimal for noisy images.

To increase the robustness of the proposed method with respect to small changes along
the borders of the segmentations, a new metric Dθ has been introduced (Section 6.6).
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The method has been tested on the MS grand challenge [133] and on an in-house dataset.
The in-house datasets have a different image quality and contrast as compared to the
challenge data, which may be due to more modern hardware and optimised acquisition
protocols. Consequently, a better performance of the proposed method, of LST [123]
and of Lesion-TOADS [118] for the in-house database has been observed. The results
on the MS grand challenge, Table 6.1, show that our method is competitive with state
of the art methods and outperforms all methods tested with respect to the FPR. On the
other hand, the number of TPR is lower compared to the other methods, which is in
compliance with the low values of the FPR as usually a low score in one of these measures
corresponds to a low score in the other. Note that for the proposed method only two
image modalities have been used, i.e. T1-w and FLAIR, while the other methods compute
the lesions segmentation using also the T2-w image. An additional image contrast may
help to improve performances. The results for the in-house database, Table 6.2, show
that the propose method produces the best results for most metrics and that in general
the Dθ scores improved with respect to D for all methods.
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Chapter 7

Quantification of Tumour Vessel

Abnormality

Glioblastomas are one of the most frequent, and aggressive, kinds of brain tumour. In
order to be able to maintain its aggressive proliferation pattern, glioblastomas initiate
the formation of new blood vessels (neo-angiogenesis). Neo-angiogenesis is characterised
by the expression of molecular growth factors such as vascular endothelial growth factor
(VEGF), which cause the rapid formation of arterial blood vessels in and around the
tumour. These newly formed vessels are often characterised by an increased number
and size, an irregular shape, immature vessel organisation, and, in particular, by a high
vascular permeability. Many anti-angiogenic therapeutic approaches attempt to inhibit
the formation and maturation of these blood vessels, and thus to disconnect the growing
tumour from its vascular supply of nutrients. Unfortunately, the therapeutic success
of anti-angiogenic therapies depends on many factors, and thus, an early detection and
quantification of changes in the vascular architecture before and under therapy would
be highly desirable to improve and stratify anti-angiogenic therapies. An example of an
axial slice of a glioblastoma tumour is shown in Figure 7.1.

In this chapter we present our method to quantify vessel abnormality in glioblastoma
tumours, which has been published in [128, 129, 130] and is here reported in an extended
format. We define two different measures that, based on the local vessel orientations,
are able to quantify the extent of vascular abnormality.

(a) (b) (c)

Figure 7.1: An axial slice of a typical glioblastoma tumour. In (a) the T2-weighted (T2-w)
image, in (b) the TOF and in (c) the maximum intensity projection calculated for TOF image.
The red contour identifies the tumour.
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7.1 Related Work

One of the first problems encountered when dealing with these aggressive tumours
is to create an image in which the vessels are visible. Typically MR images are used,
contrast-enhanced MR angiography (CE-MRA) being currently the most widely used
imaging method to assess vascular anatomy. In CE-MRA, a contrast agent is used to
increase the signal of the blood flow, yielding an excellent vessel-to-background contrast.
Unfortunately, in neo-angiogenic blood vessels CE-MRA often cannot be used, as the
high vessel permeability leads to a rapid extravasation of the administered contrast agent
so that the required concentration gradient between vessel and surrounding tissue cannot
be achieved. Time-of-flight (TOF) MR angiography is an alternative to CE-MRA, which
uses the inherent signal difference between the inflowing unsaturated arterial blood and
the reduced signal intensity of the surrounding tissue during steady state imaging. In the
past, several studies have attempted to demonstrate that it is possible to use TOF-MRA
for the detection of tumour vessels in glioblastomas; however, this technique is still not
routinely used in clinical glioblastoma MR protocols. Recently, Bock et al. [12] have
shown that TOF-MRA can delineate tumour blood vessels at a field strength of 7 Tesla,
where an isotropic spatial resolution of up to 300µm could be achieved. Therefore in our
method TOF-MRA data have been used to localise the tumour vessels.

A major limitation of all vascular imaging studies of malignant tumours is the lack
of adequate quantification methods to assess the amount of neo-angiogenic vasculature,
and its possible changes under therapy. The methods proposed in the literature for the
quantification of vessel abnormality follow some common steps. Initially a vessel seg-
mentation is performed, subsequently certain discriminative features are extracted both
from the tumour vessels and from selected normal appearing vessels. The comparison
with healthy or normal appearing vessels can be performed based on the same patients
or by comparing with healthy volunteers. In the first case the healthy vessels can be
taken from the contralateral hemisphere where the tumour is not present, and a normal
vasculature is expected. In case the vessel comparison is made with healthy volunteers
then usually the vessels which are in the same location as the tumour are taken. This
procedure, however, is generally undesirable since it requires a registration step between
the healthy volunteers’ images and the patient data, which can be complicated due to
the high brain deformation typical of glioblastoma patients.

Bullitt et al. [24] proposed to discriminate between healthy and tumour vessels using
several features such as the distance metric, inflection count metric, and the tortuosity
Sum Of Angular Moments (SOAM). The distance metric gives the ratio between the path
length of a curve or vessel skeleton and the Euclidian distance between the start and end
points of the skeleton. The second measure is defined as the number of inflection points
of a curve times the distance metric. Therefore it is more sensitive to sinuous curves. The
tortuosity SOAM is calculated from in- and through-plane, or torsion, angles between
three points along the vascular skeleton; it was reported to be the most discriminative
measure for vessel abnormality quantification [23].
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The approach proposed by Radbruch et al. [111], first enhances the brain vessels in
TOF images with the Frangi filter [47], and subsequently a manual threshold is selected
to remove noisy voxels and to determine the final vessel segmentation mask. As second
step, the authors extract several features such as vessels length, surface and volume of
the vessels, diameter, and number of branches. The latter was identified as the most
discriminative abnormality measure.

In a recent review [39] several morphometric abnormality measures are compared.
The most promising are, for example, vessels density, vasculature area, number of ram-
ifications, and fractal dimension. The latter is presented as the most discriminative,
even though tumour vasculature may not be successfully represented a fractal due to its
complex morphological structure [6].

In the following section our novel measures, based on local vessel direction, are pre-
sented. These measures aim at differentiating normal mature blood vessels in the brain
from neo-angiogenic arterial vessels in gliomas. Based on TOF-MRA data sets acquired
in glioma patients, the method is tested, Section 7.4, by comparing vessel structures at
the perimeter of the tumour against normal appearing vessels.

7.2 Method

The quantification of vascular abnormality in TOF-MRA data involves as a first step
the vessels segmentation, followed by the identification of the vessel directions. The
abnormality measures proposed in this thesis are based on the local (in)coherency of the
vessels directions, namely the normalised dot product D and the two spherical angles Φ
and Θ.

In order to quantify vessel abnormality for each patient both a TOF-MRA and a T2-
weighted (T2-w) image are used. The TOF-MRA image is used to visualise the vascu-
lature and the T2-w image provides a very good contrast between the healthy tissues
and the tumour region, Figure 7.2(a)-(b). In the following the TOF-MRA is denoted as
ITOF : Ω → R, where Ω is the image domain and x ∈ Ω where x = (x1, x2, x3) is a voxel
in the image, and the T2-w image is denoted as IT2.

7.2.1 Pre-processing and Vessel Segmentation

As a first step a brain extraction on the IT2 is performed with the BET tool [121]
to eliminate vessels in the non-brain regions. This tool also provides a binary brain
mask which has positive values in the regions corresponding to brain tissues. The IT2

is subsequently used to manually delineate the tumour region, which results in a binary
mask, i.e. tumour (Figure 7.2(a)). For local comparison, a normal-appearing region, i.e.
nac, is also manually defined on the contralateral side of the tumour Figure 7.2(a). In
addition a region is defined over the total brain volume without the tumour region, i.e.
natotal. This last region is computed from the brain mask provided with the BET tool
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(a) (b) (c) (d)

Figure 7.2: Axial slices of a glioblastoma patient. In (a) the IT2, in (b) ITOF , in (c) the
maximum intensity projection calculated for ITOF , and in (d) the three regions tumour (red),
nac (blue), and natotal (blue + white).

where the tumour region is subtracted. The IT2 is then rigidly registered to ITOF with
the default parameters of the ITK library [62], and the same registration is also applied
to the tumour, nac, and natotal regions, Figure 7.2(b)-(d).

To quantify the abnormality of the tumour vessels, it is essential first to identify the
location of the vessels. Therefore a segmentation of the vasculature in the ITOF is
performed with the Efficient Monte-Carlo Image-analysis for the Location Of Vascular
Entity (EMILOVE) method [120]. EMILOVE is a probabilistic method based on simu-
lated annealing. The vessels are modelled locally with particles which are connected to
create tubular structures. The segmentation is formulated as a minimisation problem
that consist of an external and an internal energy:

E{I,M} = Eext{I,M}+ Eint{M} (7.1)

where I is the input image, and M = (P, E) is the used model to represent the segmen-
tation composed by a set of particles P and a set of edges E . The external energy term
depends on the location of the particles, their scale and their orientation:

Eext{I,M} =
∑

v∈P

CP{I}(v) (7.2)

with

CP{I}(v) = −α1V {I}(v)
︸ ︷︷ ︸

vesselness

+ α2s
2
v

︸︷︷︸

particle costs

+ α3GV {I}(v)
︸ ︷︷ ︸

gradient length
in particle direction

+ α4GV ⊥{I}(v)
︸ ︷︷ ︸

gradient length perpendicular
to particle direction

+c.

(7.3)
The model parameter α1 controls the location of the particles in background regions or
in vessels with irregular shape, and is set to α1 = 2. The particle scale parameter is set
to α2 = 4. The α3 and α4 parameters penalise particles with an orientation which is
inconsistent with the vessel direction or diverging from vessel centrelines; they are set to
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7.2 Method

(a) (b) (c)

Figure 7.3: Reference ITOF slice of a glioblastoma patient in (a). Vessel segmentation at an
intermediate temperature in (b) and at the final temperature in (c).

100 and 20, respectively. The particle likeliness c controls the total number of particles
and is set to c = 40.

The internal energy enforces topological constraints on the particles and controls the
particles interactions:

Eint{M} = Cmodel(M) +
∑

u∈E

CL
edge(u) (7.4)

with
CL
edge(u) = β1Ccon(u) + β2Cscale(u) + L (7.5)

where L controls the reward for edges. The Cmodel ensures absence of intersections, loops,
and direct connection between parallel vessels. The particle interaction CL

edge controls
the length of the edges between particles (β1) and the difference in orientation and scale
of neighbouring particles (β2); these parameters have been set to β1 = 2 and β2 = 1.
For more details the reader is referred to [120].

EMILOVE is an iterative method where the segmentation is updated by adding a new
vessel or modifying the current ones until an equilibrium state is reached. Then, the
temperature T (a surrogate parameter for the energy) is decreased and a new equilibrium
state is reached. The method converges when T cannot be lowered further.

In this thesis, the EMILOVE algorithm has been applied on ITOF resulting in a
vascular skeleton and a binary vessels mask. The surface reconstruction of the binary
mask is shown for an intermediate temperature level in Figure 7.3(b) and the final
temperature in Figure 7.3(c). To find the optimal segmentation, the temperature level
is automatically decreased until no change in segmentation is detectable; this resulted
in T < 0.01 for all the analysed patient data.

Following the vessel segmentation the Frangi filter [47] is applied to ITOF data at
the locations defined by the vessels binary mask. The filter computes voxel-wise a
Hessian matrix, using different scale values s to cover all the possible vessel sizes. This
parameter s is the standard deviation of the Gaussian used to approximate the second
order derivatives. In our method the parameter s has been set to s = {1, 2, ..., 5}.
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Figure 7.4: Reference ITOF slice of a glioblastoma patient. Vessels orientation in tumour (red
box) and in nac (blue box).

The filter then computes the eigenvectors and eigenvalues, i.e. λ1, λ2, λ3, of the Hessian
matrix. Assuming that λ1 < λ2 < λ3, then a voxel that belong to a vessel would
have a small value for λ1 (ideally zero), and a large value for the other two eigenvalues.
The eigenvector that corresponds to λ1 points in the direction of minimum intensity
variation, therefore along the vessel direction, while the other two eigenvectors point
into orthogonal directions. The method proposed by Frangi et al. provides a ‘vesselness’
measure which depends on the eigenvalues values:

V (s) =

{

0 if λ2 > 0 or λ3 > 0
(

1− exp
(

− R2
A

2α2
F

))

exp
(

− R2
B

2β2
F

)(

1− exp
(

− S2

2c2
F

))

where RA and RB are two geometric ratios. RB accounts for the deviation of the vessels
from a blob-like structure, while RA is able to distinguish between plate-like and line-
like structures. The vesselness measure also depends on two filter parameters which are
empirically estimated in [47], and are kept constant for all data: αF = 0.5, βF = 0.5. In
addition, the intensity parameter cF , which depends on the grey scale range of the input
image, has been set to cF = 500. For more details the reader is referred to [47].

After computing the filter over all the vessels, in each voxel, the Hessian matrix with
the highest vesselness response V (s) is selected, and the eigenvector corresponding to
the lowest eigenvalue, i.e. λ1, is stored as the local vessel direction ~d(x). The vector field
~d(x) at each location is then normalised to unit length, as the subsequent calculations
only require this directional information. An example of vessel directions in the tumour
and a contralateral normal-appearing region nac is shown in Figure 7.4, where is seen
that the vessels in the tumour region have incoherent orientations compared to those in
the nac region.

7.2.2 Measures of Vessel Abnormality

This section describes the abnormality measures introduced in this thesis. To quantify
the abnormality of the vessels in the tumour, regional vascular parameters are calculated
from the field of vessel orientations ~d. The abnormality measures that are here proposed
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are based on the local (in)coherency of the vessels direction, namely the normalised dot
product D between a pair of nearby vessel directions and the spherical angles Φ and Θ.
The polar angle Θ and the azimuthal angle Φ are defined as:

Θ(x) = arccos

(

dx3
(x1, x2, x3)

||~d(x1, x2, x3)||

)

Φ(x) = arctan

(
dx2

(x1, x2, x3)

dx1
(x1, x2, x3)

)

. (7.6)

Note that both the polar angle Θ and the azimuthal angle Φ can assume values over the
range from 0◦ to 180◦.

To define the first abnormality measure, the polar angle variation ∆Θ(x) is computed
in a 3× 3× 3 neighbourhood:

∆Θ(x) =
1

33 − 1
·
√∑

(Θ(x1 ±∆x1, x2 ±∆x2, x3 ±∆x3)−Θ(x1, x2, x3))2. (7.7)

This measure is computed for each location x. Similarly, the variation ∆Φ(x) is defined
as:

∆Φ(x) =
1

33 − 1
·
√∑

(Φ(x1 ±∆x1, x2 ±∆x2, x3 ±∆x3)− Φ(x1, x2, x3))2. (7.8)

From these variations, the mean values over the defined ROIs, where ROI ∈ {tumour,
nac,natotal}, are calculated as the first abnormality measures:

∆ΘROI =
1

NROI
·
∑

x∈ROI

∆Θ(x) ∆ΦROI =
1

NROI
·
∑

x∈ROI

∆Φ(x) (7.9)

whereNROI is the number of voxels in each ROI. In a ‘coherence location’, that is, where
the orientation vectors are pointing in similar directions, the variation of the spherical
angles is expected to be lower than in a ‘incoherence location’ such as the tumour region.
In addition to the mean values, the standard deviations are also computed for each ROI:

σ(∆ΘROI) =

√

1

NROI
·
∑

x∈ROI

(∆Θ(x)−∆ΘROI)2

σ(∆ΦROI) =

√

1

NROI
·
∑

x∈ROI

(∆Φ(x)−∆ΦROI)2. (7.10)

To define the second abnormality measure, the average of the dot product between
the orientation vector ~d(x) within each of the 3 × 3 × 3 neighbouring vectors ~d(x1 ±
∆x1, x2 ±∆x2, x3 ±∆x3) is calculated as:

D(x) =
1

33 − 1

∑
~d(x1, x2, x3) · ~d(x1 ±∆x1, x2 ±∆x2, x3 ±∆x3). (7.11)

The dot product of two unit vectors equals the cosine of the relative angle between
the vectors; thus, the maximum value is one (for parallel vectors), and lower values are
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Figure 7.5: Plots of ∆Φ in (a) and ∆Θ in (b), for the three regions, i.e. tumour (blue), nac
(red), and natotal (green) and for each patient. The error bars represent σ(∆Φ) and σ(∆Θ),
respectively.

expected for incoherent directions. Again, the mean value over the defined ROIs is
calculated as the second abnormality measure:

DROI =
1

NROI

∑

x∈ROI

D(x). (7.12)

Similarly also the standard deviation of the dot product is computed as:

σ(DROI) =

√

1

NROI

∑

x∈ROI

(D(x)−DROI)2. (7.13)

The two abnormality measures {∆Θ,∆Φ} and D are calculated in the three defined
ROIs. For comparison, the tortuosity measure SOAM, initially proposed by [24], is
calculated from the vessel centrelines that are available as an output of the EMILOVE
segmentation. A self-implementation of the SOAM algorithm has been performed. Each
vessel is analysed independently, looping through triplets of points along the vessels.
These points can be regarded as two consecutive vectors, and for which both the cor-
responding in- and through-plane angles are computed. The SOAM is given by the
average, over the entire vessels, of a combination of the two angles. The standard devi-
ation σ(SOAM) has also been computed.

For statistical analysis, a Student t-test is applied to all tumour-related parameters
versus the parameters from both the normal-appearing contralateral side and the total
brain volume excluding the tumour.

7.3 Comparison to Histology

Patients diagnosed with this type of malignant tumour undergo brain surgery within
24 hours of diagnosis. During the removal of the tumour several samples are analysed to

106



7.4 Results

Figure 7.6: Plot, for each patient, of D for the three regions, i.e. tumour (blue), nac (red), and
natotal (green). The error bars represent σ(D).

determine the type of the tumour and additionally several histological and gene markers
are extracted.

The following histological parameters are determined (Table 7.1): the proliferation
marker Ki-67 MIB, and the endothelial proliferation marker ep. The MIB is the percent-
age of all tumour cells in a mitotic state [87], while ep gives the percentage of vessels
in the specimen showing endothelial proliferates [109]. In a healthy subject the MIB
should be close to zero and the number of ep = 0.
These histologic markers are plotted against the D measure. The D as a function of
MIB and ep for both the tumour, and the nac regions. Note that MIB and ep values
are not calculated in any nac since the tissue sample is extracted only from the tumour,
therefore these values are plotted with the Dnac as a reference.

7.4 Results

The proposed method has been tested on 12 patients with an age range between 40
and 77 years, Table 7.1. A retrospective evaluation of the histology has been done on
a database collected in the Dept. of Neurosurgery, University Medical Centre Freiburg,
between 2012 and 2013. All except one patient underwent tumour resection at the
Dep. of Neurosurgery. On the intraoperative tumour samples histopathological analysis
was performed with the following results: 10 glioblastoma multiforme, and 1 anaplastic
oligodendroglioma.

The study has been approved by the local review board, and the glioma patients gave
informed consent for the acquisition and analysis of the MRA data. Brain images have
been acquired as part of a pre-operative MR imaging assessment using a 3T Siemens Trio
MRI scanner. The acquisition protocol consists of a 3D T2-w sequence with TR/TE/FA
= 4390 ms / 99ms / 140◦, with a matrix size = 448× 512× 23, and with a resolution of
0.43×0.43×6mm3 ; and a 3D TOF MRA sequence with TR/TE/FA = 23 ms / 4.12ms /
18◦, with a matrix size = 438× 512× 84, and with a resolution of 0.39× 0.39× 0.55mm3.
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Chapter 7 Quantification of Tumour Vessel Abnormality

Figure 7.7: Plot of SOAM measure for the three regions, i.e. tumour (blue), nac (red), and
natotal (green), for each patient. The error bars represent σ(SOAM).

Abnormality quantification could be successfully performed on all 12 patient datasets.
The results for the abnormality measures ∆Θ and ∆Φ for each patient are shown in
Figure 7.5. In all patients, the mean values in the tumour, i.e. ∆Θtumour and ∆Φtumour,
are larger than those in the nac and in the natotal regions. For ∆Θ, its average value
in tumour regions over all patients is about 34% higher than in the nac, and about 20%
higher than in the natotal region. For ∆Φ, even higher increases of 49% of the tumour
region over the nac region and of 32% over the natotal region are seen. Both results
indicate that in the tumour the orientation vectors are less coherent in comparison to
normal appearing regions, as shown in Figure 7.4. It is also observed that the mean
value of both ∆Θ and ∆Φ in natotal regions is in general higher than in nac regions,
since in the brain there are also normal appearing small and tortuous vessels which are
segmented.
The Student t-test shows a statistically significant difference, with p-value < 0.005,
between ∆Θ and ∆Φ in the tumour against corresponding values in the nac and natotal
regions.

The results of the second abnormality measure, i.e. the dot product, are shown for
every patient in Figure 7.6. When averaged over all patients, the value of D in the
tumour is between 24% and 50% lower than in the nac region, and between 22% and 48%
lower than in the natotal region. Again, Student’s t-test shows a statistically significant
difference, with p-value < 0.001, between Dtumour and Dnac, and between Dtumour and
Dnatotal.

The results of the tortuosity measure SOAM are shown in Figure 7.7. For all patients,
the SOAM values in the tumour are higher than or equal to those found in the nac.
However, for certain patients the SOAM values in the natotal region are higher than
those in the tumour region, whereas for other patients the situation is opposite. This
unclear trend has been confirmed by the statistical analysis. The Student t-test found a
significant difference between tumour and nac values, with p-value < 0.03, whereas no
statistically significant difference has been found between tumour and natotal values.
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(a) (b)

Figure 7.8: D as a function of MIB (a), and of endothelial proliferation (ep) (b). A negative
trend is seen between Dtumour and MIB, and a positive correlation is seen between Dtumour and
ep. The nac values are reported only for comparison.

The comparison of the dot product with histology shows a slight negative linear,
but not statistically significant, correlation between MIB and Dtumour, i.e. Dtumour =
(0.43± 0.03) + (−0.003± 0.001) ·MIB, Figure 7.8(a). Note that for the nac region, only
the mean value of Dnac over the patients is plotted as a constant value. The comparison
between Dtumour and the endothelial proliferation ep shows a weak positive correlation
which is significant at p-value < 0.05, i.e. Dtumour = (0.23± 0.03) + (3.1± 1.1)10−3 · ep,
Figure 7.8(b).

7.5 Summary and Discussion

In this thesis, novel abnormality quantification measures have been presented to dis-
criminate between tumour and normal-appearing vessels in TOF-MRA data. The pro-
posed method has been tested on 12 glioma patients, for all of which a statistically
significant discrimination between tumour and normal-appearing vessels has been found.
One patient did not undergo surgery, hence a glioma diagnosis could not be histolog-
ically confirmed. Nevertheless, the patient showed all imaging signs of a glioma and
image data has been thus included in the abnormality calculations.

The first step of the proposed method is to perform a vessel segmentation with the
EMILOVE algorithm of Skibbe et al. [120]. EMILOVE is based on simulated annealing
and provides highly consistent vessel structures. A major advantage of this algorithm is
that, once an initial estimate of the parameters has been obtained, it is able to compute
the segmentation for the whole patient dataset without additional interaction on the
part of the user. This is in contrast with the pipeline proposed in [111] where a manual
threshold has to be set for every patient data in order to get a vessel segmentation. Ad-
ditionally, in their original work Skibbe and co-workers, already applied the EMILOVE
algorithm to TOF-MRA data of the brain. Thus, their parameter values could be di-
rectly used in this study to segment vessels in normal brain regions. Even though the
algorithm has not been trained on the abnormal vasculature in the periphery of gliomas,
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Table 7.1: Overview of relevant patients information: age, tumour size and location, histological
result (Histo), tumour grade, MIB and endothelial proliferation (ep) values. GBM stands for
glioblastoma, and aOG for anaplastic oligodendroglioma.

Patient Age Tumour Tumour location Histo Tumour MIB[%] ep
size [cm3] grade

Pat. 01 64 11.52 Precuneus left GBM 4 15 24.7

Pat. 02 72 57.06 Frontal right GBM 4 25 14.8

Pat. 03 65 32.62 Frontal left aOG 3 30 14.1

Pat. 04 48 31.73 Fronto-medial right GBM 4 30 35.9

Pat. 05 73 7.31 Precentral right GBM 4 35 28

Pat. 06 77 49.44 Temporal left GBM 4 30 33.3

Pat. 07 77 14.35 Occipital right GBM 4 20 9.9

Pat. 08 63 24.11 Temporal right GBM 4 60 13

Pat. 09 40 59.97 Frontal right GBM 4 30 29.1

Pat. 10 63 4.56 Parahippocampal gyrus GBM 4 40 18.8

Pat. 11 59 7.85 Temporal left GBM 4 30 18.8

Pat. 12 67 20.17 Temporal occipital right n.a. n.a. n.a. n.a.

the results of the segmentation in all patients show that the same algorithm parameters
can also be used to extract tumour vasculature.

After the step of vessel segmentation, a vector field has been created, based on the
main vessels direction extracted from the output of the Frangi filter. Based on this vector
field, local angular variations have been estimated, i.e. ∆Θ, ∆Φ, and D. Both the polar
angular variation ∆Θ and the azimuthal variation ∆Φ show significantly higher values in
the tumour region compared to both nac and natotal regions. The second abnormality
measure proposed here is the dot product, i.e. D. This measure is also clearly able to
discriminate between tumour and normal-appearing vessels, and this result is in line with
the angular measures. In general, the dot product is advantageous over the individual
angular measures, as it is rotationally invariant, and it is represented by a single value.

All the results are consistent with the observation that tumour vessels are less or-
ganised and less coherent in their direction than normal brain vessels, and thus should
show a higher directional variation. Interestingly, both the angular variational measures
and the dot product not only provide a good relative discrimination between tumour
vessels and normal-appearing vasculature, but the values of the normal brain vessels are
also very coherent over all patients. This constancy of the values for the normal vessels
indicates that the proposed method is robust against variations in the acquisition pa-
rameters, and image background from different local receive coil sensitivities. Thus, the
variational measures in the normal vasculature might serve as reference values for a later
vessel classification. Unfortunately no data from healthy controls was available to quan-
tify a baseline for normal-appearing vessels in volunteers. However, it is expected that

110



7.5 Summary and Discussion

the values computed in the nac and natotal regions of a patient data are not statistically
different than the one computed in volunteers.

The proposed abnormality measures have been compared to the tortuosity measure
SOAM [24], where a self-implementation has been used. The SOAM measure has been
calculated in the tumour, nac and natotal regions of the same patient data. The statis-
tical analysis revealed that there is a statistically significant difference between tumour
and the nac regions, whereas no difference has been found between tumour and the
natotal regions. The latter result may be related to the fact that tortuous vessels are,
on average, also present in normal-appearing vasculature. A difference between SOAM
and the dot product is the dependence on the choice of the coordinate system: SOAM
values are not rotationally invariant, and thus depend on the orientation of the local slice
coordinate system, whereas the dot product is defined by the relative angle between two
vectors in space, which does not change under rotation.

A connection between microvascular malformation and high MIB values has already
been published [134]. The variation in D with MIB found in the present analysis, al-
though not statistically significant, agrees qualitatively with the results of that study.

The positive, although weak, correlation with the endothelial proliferation marker
ep and D, is, however, unexpected. With decreasing ep values, Dtumour should increase
towards Dnac which would result in a negative correlation. However, ep does not account
for the direction of the vessels. Therefore, this correlation should be further investigated.
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Chapter 8

Conclusion

This chapter summarises the research conducted in this thesis, its main contributions
as well as known limitations and suggestions for potential future work. The major
contribution of this thesis is the development of segmentation techniques for two specific
brain pathologies, namely focal cortical dysplasia and multiple sclerosis. Additionally,
novel measures for the quantification of abnormality in the brain vasculature have been
developed for patients affected by glioblastoma tumours.

8.1 Summary of Contributions

After a brief introduction to the topic of medical imaging post-processing, the most
relevant segmentation techniques have been reviewed (Chapters 3, 4). These include a
simple thresholding approach as well as more advanced algorithms, such as the level-set
method and atlas-based techniques.

An initial contribution based on the combination of level-set and atlas-based methods,
has been presented (Chapter 3) that improves the segmentation of the brain grey matter
compared to pure atlas-based approaches. The MR brain images used for this approach
have been acquired at a 7T MR scanner. These images have a higher spatial resolu-
tion compared to 3T images, but on the other hand they present a stronger intensity
inhomogeneity. Therefore, a multi-resolution approach has been developed to cope with
the high computational costs of the bias-field estimation and with the large number of
basis functions. The output of the atlas-based initial segmentation is used to initialise a
level-set approach to find the grey matter boundaries.

Chapter 5 presented our contribution to the detection of focal cortical dysplasia. After
performing an atlas-based pre-processing of the input T1-w and FLAIR images, several
novel features that represent shape, intensity and texture of focal cortical dysplasia le-
sions are extracted. Due to the complexity in the detection of this kind of lesions, a
baseline for normal-appearing tissue is created based on a database of healthy individ-
uals. This is encoded in a probabilistic formulation, the probability of lesion being the
complement of the probability of normal tissue. The proposed method has been tested
on 11 patients and in all cases the performance of the detection was found to have a
high specificity.

The detection of multiple sclerosis lesions is presented in Chapter 6 with our novel
method based on graph-cuts. The main contribution is the use of a multi-labelling
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approach to model the main brain tissue types and to constrain the lesion segmentation
to the white matter. A novel connectivity constraint has been incorporated that forces
the grey matter to remain a connected region. This resulted in lesions in white matter
being correctly segmented that might otherwise be wrongly classified as grey matter
due to their similar intensities. A second prior, namely a minimum lesion size, has
been integrated to avoid potential noisy lesion segmentations. The proposed method
has been tested on two different databases, the MICCAI and an in-house database with
15 patients. For both databases competitive results have been achieved with respect to
state-of-the-art methods.

The more clinical oriented study concerning quantification has been presented in Chap-
ter 7. Specifically, the vasculature of glioblastoma tumours was analysed. After per-
forming an initial segmentation of the brain vasculature, two novel measures have been
defined to represent the (in)coherency of vessel orientations, i.e. the dot product and
the spherical angular variations. In order to quantify the abnormality/incoherency of
tumour vessels, normal-appearing vessels were considered for comparison. In all tested
cases, all the proposed measures were able to discriminate normal-appearing from tu-
mour vessels. Additionally the correlation found between the dot product metric and
histologic markers may hint to its potential use as marker for histologically determined
vessel creation and constitution.

8.2 Limitations and Future Work

A main feature of all existing segmentation methods is their strong dependence on the
quality of MR images. Therefore, the correct MR sequence parameters must be chosen so
as to achieve highest contrast-to-noise and intensity-to-noise ratios. However, if during
a measurement a patient moves, this results in strong artefacts in the acquired images.
These artefacts corrupt image intensities, texture and structure, so that it may no longer
be possible to correctly identify the boundary of the lesions or of the tumours. Another
main limitation is that of data availability, which is usually limited to few patient data.
This poses a strong limitation to method validation. To help remedy this situation, a
publicly available database containing a large number of patient data instances will be
created incorporating a number of brain diseases.

The probabilistic model for the detection of focal cortical dysplasia, presented in
Chapter 5, strictly relies on the accuracy of the probability of normal-appearing tissue.
This probability was computed via an initial registration of several healthy volunteers’
data to a common space, followed by the combination of the extracted features. The
registration can be inaccurate at the tissue boundaries, due to the high inter-brain
variability. Moreover, the accuracy of the normal tissue probability depends on the
amount of healthy data used. Therefore, in the future, the quantification of potential
registration misalignment should be evaluated, as well as it impact on the quality of the
results. In addition, larger databases should be used that embody more comprehensively
the brain inter-subject variability.
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In this thesis, the choice of extracted features has been based on the visual inspection
of patient data. Thus, a quantification of the discriminant effectiveness of each single
feature should be performed, thereby potentially leading to a higher performance and
shorter computation time. The probability map for focal cortical dysplasia has been
compared to the available resection volume which, for most patients, is much larger
than the actual lesion. Therefore, the specificity of the proposed method, for some
patients, has a low value. Consequently, comparison with a manual segmentation only
of the lesion can help to have a more precise quantitative evaluation.

The geometric brain model developed for the segmentation of multiple sclerosis lesions,
Chapter 6, is biased towards the lesions appearing in the white matter. This may result in
lesions located close to the grey matter being erroneously segmented. Additionally, this
geometric model is anatomically incorrect around the ventricles, and the segmentation of
the lesions adjacent to them may be under-estimated, thus having some false negatives.
A more anatomically accurate model may result in a performance increase.
The performance of the proposed method depends on the accuracy of the initial brain
segmentation, which provides hard constraints: if at this step some relevant voxels are
misclassified, the final lesion segmentation may be inaccurate. As future work, the
robustness of the proposed method against incorrect initial segmentations may be per-
formed. Moreover, an investigation of alternative algorithms, or procedures, is required
in order to define initial hard constraints that are able to handle more flexibly variations
in data quality and acquisition parameters.

The quantification of abnormality in the vasculature of brain tumour patients, pre-
sented in Chapter 7, starts with a segmentation of the vasculature. This is a funda-
mental step, as a poor segmentation can lead to incorrect results. Moreover, different
methods for vessel segmentation may give different quantitative values. Future work may
investigate the impact of the initial vessel segmentation on the quantification of vascular
abnormality. Another point to note is that the proposed method relies on the manual
identification of both the tumour regions and their contralateral counterparts. This time
consuming process demands a lengthy training of the physicians. In future, this man-
ual task could be replaced with either semiautomatic or fully automatic algorithms for
region identification.
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[60] Höllig, K. and J. A. Nohel (1983). A diffusion equation with a nonmonotone con-
stitutive function. Springer.

[61] Huppertz, H.-J., J. Wellmer, A. M. Staack, D.-M. Altenmüller, H. Urbach, and
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[138] Tošić, I. and P. Frossard (2011). Dictionary learning. IEEE Signal Processing
Magazine 28 (2), 27–38.

[139] Tsiotsios, C. and M. Petrou (2013). On the choice of the parameters for anisotropic
diffusion in image processing. Pattern recognition 46 (5), 1369–1381.

[140] Tzourio-Mazoyer, N., B. Landeau, D. Papathanassiou, F. Crivello, O. Etard,
N. Delcroix, B. Mazoyer, and M. Joliot (2002). Automated anatomical labeling of
activations in SPM using a macroscopic anatomical parcellation of the MNI MRI
single-subject brain. Neuroimage 15 (1), 273–289.

[141] Unger, M., T. Pock, W. Trobin, D. Cremers, and H. Bischof (2008). Tvseg-
interactive total variation based image segmentation. BMVC 31, 44–46.

[142] Van der Lijn, F., T. den Heijer, M. M. Breteler, and W. J. Niessen (2008). Hip-
pocampus segmentation in MR images using atlas registration, voxel classification,
and graph cuts. Neuroimage 43 (4), 708–720.

[143] Van Leemput, K., F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens (2001).
Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE
Transactions on Medical Imaging (TMI) 20 (8), 677–688.

127



Bibliography

[144] Van Leemput, K., F. Maes, D. Vandermeulen, and P. Suetens (1999). Automated
model-based tissue classification of MR images of the brain. IEEE Transactions on
Medical Imaging (TMI) 18 (10), 897–908.

[145] Van Rikxoort, E. and B. van Ginneken (2011). Automatic segmentation of the
lungs and lobes from thoracic CT scans. Fourth international workshop on pulmonary
image analysis, 261–268.

[146] Vicente, S., V. Kolmogorov, and C. Rother (2008). Graph cut based image seg-
mentation with connectivity priors. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 1–8.

[147] Wang, S. and J. M. Siskind (2001). Image segmentation with minimum mean cut.
IEEE Int. Conf. on Computer Vision (ICCV), 517–524.

[148] Weickert, J. (1998). Anisotropic diffusion in image processing, Volume 1. Teubner
Stuttgart.

[149] Weiss, N., D. Rueckert, and A. Rao (2013). Multiple sclerosis lesion segmentation
using dictionary learning and sparse coding. Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 735–742.
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