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Deutsche Zusammenfassung

Aktuelle mikroskopische Bildgebungsverfahren, die 3D-Aufnahmen biologischer Proben mit Auf-
lösung im Submikrometerbereich (über die Zeit) ermöglichen, eröffnen völlig neue Wege Signal-
prozesse in lebenden Organismen zu untersuchen und zu verstehen. Obwohl diese Fortschritte in
mikrospischer Hardware theoretisch aufregende neue Studien ermöglichen, wird dieses Potential
nur selten genutzt. Einer der Hauptgründe für diese “Verschwendung” ist ein Mangel an Werkzeu-
gen um die Terabytes an aufgenommenen Bildern auf die wenigen Größen zu reduzieren, die zur
Beantwortung einer biologischen Fragestellung benötigt werden. Die Datenmenge verhindert eine
manuelle Auswertung, und viele Fragen, die durch mikroskopische Bilddaten beantwortet werden
könnten, werden gar nicht erst gestellt.

Um mikroskopische Analysen im großen Maßstab zu ermöglichen, werden Algorithmen benö-
tigt, die interessante Ereignisse detektieren, sie anatomischen Strukturen zuordnen und automatisch
quantitative Messungen mit statistischen Sicherheiten ausgeben.1 Auch wenn diese Beschreibung
vage ist, enthält sie schon sehr wichtige Schlüsselwörter, nämlich “detektieren”: Wir benötigen all-
gemeingültige Detektoren, die mithilfe manuell annotierter Trainingsbeispiele, auf die Erkennung
bestimmter Strukturen trainiert werden können; “zuordnen”: Wir müssen die Anatomie modellieren
und Wege finden den Strukturen eindeutige anatomische Koordinaten zuzuordnen; “quantitativ”:
Wir wollen unverfälschte Strukturparameter oder Verteilungen von Ereignissen messen; “Sicherhei-
ten”: Wir müssen in der Lage sein die statistische Signifikanz dieser Messungen zu belegen.

In dieser Arbeit werden wir am Beispiel der Modellierung der Wurzelspitzenstammzellregion von
Arabidopsis thaliana ein System beschreiben, das diese Spezifikation erfüllt. Wir werden eine voll-
ständige Bildanalysepipeline präsentieren, die automatisch Lichtverluste in konfokalen Aufnahmen
mit mehreren Ansichten korrigiert, Zellkerne mithilfe eines trainierbaren allgemeingültigen Detek-
tors, der speziell für diese Aufgabe trainiert wurde, detektiert, detektierte Ereignisse in ein wurzel-
spezifisches Koordinatensystem abbildet und automatisch statistische Daten über Zellteilungsver-
teilungen verschiedener Mutantenpopulationen extrahiert.

Um diese Ziele zu erreichen, müssen verschiedene Techniken aus der Bildverarbeitung und dem
machinellen Lernen kombiniert werden.

Auf die gemessenen Bildintensitäten wenden wir eine auf Variationsrechnung basierende Ener-
gieminimierung an, um die den aufgenommen Bildern zugrundeliegende Fluorophorverteilung zu
schätzen. Dafür haben wir ein auf Strahlenoptik basierendes physikalisch motiviertes Bildgebungs-
modell entworfen, das in der Lage ist gewebeabhängige örtliche Signalabschwächung, Photoblei-
chung und durch den Detektor hervorgerufenes Rauschen zu simulieren. Basierend auf einem Ver-
gleich der gemessenen Intensitäten mit den durch dieses Modell vorhergesagten Intensitäten werden
ein dichtes Abschwächungsfeld und die zugrundeliegenden wahren Intensitäten geschätzt. Zusätz-
liches Vorwissen kann problemlos in das Modell aufgenommen werden. Um das schlecht gestellte
Rekonstruktionsproblem zu stabilisieren, haben wir verschiedene Glattheitsnebenbedingungen an

1Dieser Satz ist oft die vollständige Spezifikation, die ein Informatiker, der solch ein System entwickeln soll, von einem
Biologieexperten bekommt.
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das Abschwächungsfeld eingeführt, die auf synthetischen Daten zu ausgezeichneten und auf echten
biologischen Proben zu sehr guten Rekonstruktionen führt.

In der Wurzelmodellierung wurden verschiedene Techniken kombiniert. Zunächst werden Zellkerne
als anatomische Referenzstrukturen mit einem auf allgemeinen rotationsinvarianten Merkmalen ba-
sierenden Detektor erfasst. Dann wird die Wurzelachse mithilfe einer variationsbasierten Energiemi-
nimierung mit robustem Datenterm verfolgt und ihre örtlich variable Dicke bestimmt. Abschließend
wird jeder erfasste Zellkern, mithilfe einer weiteren diskriminativen Klassifikation, einer Zellschicht
zugeordnet.

Wir schließen die Arbeit mit einem statistischen Vergleich der Verteilungen von Zellteilungen in
verschiedenen Arabidopsis Mutanten mit sehr subtilen Unterschieden im Phänotyp. Unser Modell
ist in der Lage mit hoher statistischer Signifikanz bisher unbekannte Unterschiede in diesen Vertei-
lungen zu finden, die bei Betrachtung einzelner Wurzeln der verschiednenen Populationen in der
natürlichen Variabilität untergehen.
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Abstract

Current microscopic imaging techniques allow to record biological specimen with sub-micrometer
resolution in 3-D (over time). They open completely new ways to observe and understand signaling
in living organisms. Although these advances in microscopic hardware provide means to perform
exciting new studies that have not been possible so far, their potential is rarely exploited due to a lack
of tools for reducing the terabytes of recorded images to the small number of meaningful quantities
required to answer an underlying biological question. The pure amount of data precludes manual
analysis, and many questions, microscopic images could answer, will never be asked.

To allow large scale microscopic image analysis, algorithms are required that detect events of inter-
est, relate them to the anatomical structure under investigation and automatically output quantita-
tive measurements with statistical confidences.2 Although vague, this description already contains
very important key words, namely “detect”: we need general detectors that can be trained for spe-
cific structures using manually annotated sample data; “relate”: we have to model the surrounding
anatomy and give means of uniquely assigning anatomically relevant coordinates to these structures;
“quantitative”: we want to be able to get an unbiased quantification of structure parameters or event
distributions; “confidence”: we must be able to measure statistical significance.

Within this thesis we will develop a system that fulfills this specification at the example of modeling
the root apical meristem of Arabidopsis thaliana. We will present an end-to-end image analysis
pipeline that is able to automatically correct light attenuation in confocal multiview recordings, de-
tect nuclei using a trainable general-purpose detector specifically trained for that task, map detected
events to a root specific coordinate system and automatically extract statistical data of mitosis dis-
tributions in different mutant populations.

To reach all these goals different techniques from image processing and machine learning have to
be combined.

On the measured image intensities we apply a variational energy minimization to estimate their un-
derlying fluorophore distribution. We designed a physically motivated image formation model based
on ray optics which is able to simulate the effects of tissue dependent local signal attenuation, photo
bleaching and noise introduced by the detector. Based on a comparison of the measurements to the
intensities predicted by that model a dense attenuation field and the underlying intensities are esti-
mated. Additional prior information can be easily included in the model. To stabilize the ill-posed
reconstruction problem we introduced different smoothness priors on the attenuation field leading
to excellent results on synthetic data and very good reconstructions on real biological samples.

For modeling the root, several techniques are combined. First nuclei as anatomical reference struc-
tures are detected using a trainable detector framework based on rotation-invariant general purpose
features. Then a variational energy minimization with robust data term is employed to trace the root
axis and give a spatially varying root thickness estimate. Finally cell layer labels are assigned to the
detected nuclei using another supervised classification.

We conclude the thesis with a statistical comparison of mitosis distributions in different Arabidopsis
mutants with very subtle phenotypic differences. Our model was able to find formerly unknown

2Often this sentence is the full specification an expert in biology gives to a computer scientist developing such a system.

iii



differences in these distributions with high statistical significance that are hidden by natural variation
when only considering single roots of each population.

iv



Acknowledgments

I want to thank the many people who helped me in several ways during my time as undergraduate
and PhD student at the University of Freiburg finally leading to the publication of this thesis.

First of all I want to thank my parents for always supporting me in my decision of studying computer
science and taking care of so many things during my time as undergraduate student. You allowed
me to concentrate on my studies without being troubled of how to afford daily life.

I was in the very comfortable situation of profiting from the experience of three great senior re-
searchers in one place during my time at the pattern recoginition lab in Freiburg, namely my super-
visor Prof. Olaf Ronneberger, Prof. Hans Burkhardt and Prof. Thomas Brox who all influenced my
research by adding their specific expertize and ideas.

I want to thank Prof. Ronneberger for supervising me already during the student’s research project,
the diploma thesis and finally my PhD. Thank you for always bringing up great new ideas of how
to successfully handle problems I might have called unsolvable in the first place. You always found
motivating words when they were needed and pushed me in the right direction when required. It
was a great time working for and together with you. You always gave me the feeling of being a
valuable colleague, not a student that needs supervision.

I also want to thank Prof. Burkhardt, who introduced me to the world of invariant features. You
believed in me when offering me my initial PhD position at the chair for pattern recognition in
Freiburg. Thank you for allowing me to freely choose my direction of research and providing many
valuable hints on how to reach my scientific goals.

Thank you, Prof. Brox for fascinating us for the field of variational energy minimization. I learned a
lot for myself when supervising students in the new courses you offered and you managed to push us
to the bleeding edge of research. Thank you for your open ear in scientific but also in administrative
questions and the opportunity to continue working on biological image analysis while profiting from
your basic research in computer vision.

I also want to acknowledge my many colleages at the chair of pattern recognition and the botany
department for many fruitful discussions. Thank you Alex Teynor and Lokesh Setia for offering me
such a warm welcome in our office when I started my PhD and Maja Temerinac-Ott and Margret
Keuper for another nice office clique. Especially the coffee breaks with you, Margret, were a great
source of inspiration. You always had an open ear for my ideas and our invalueable discussions lead
to many great works. You always backed me up when I thought I was stuck and encouraged me to
get the final experiment done. I also want to thank Marco Reisert and Henrik Skibbe who provided
me with the required background for invariant 3-D detection and Kun Liu for his appreciation of my
work and the great extensions of the iRoCS Toolbox he provided. Then I want to thank Dominic
and Robert for their tireless work on the many projects of our small image analysis group. You gave
me the freedom to put some of the daily work aside to finally write up this thesis. I couldn’t imagine
a better team for keeping the image analysis lab in Freiburg running. I am looking forward to an
exciting time with you.

Thanks to our system administration team, Stefan, Patrick and Felix for keeping our systems run-
ning. It was a pleasure working with you as interface between research and system administration

v



which added some extra-spice to my life as researcher.

I also want to thank Cynthia and Jasmin our secretaries for managing the many different projects
and always providing good advice in the many administrative processes I faced during my work at
the image analysis lab. Thank you for always having an open ear for our concerns.

Then I want to thank my friends who always back me up in stressful times and help me keeping bal-
ance between work and leisure time. I want to especially thank Jörg Fischer, for always reminding
me of the right time for reaching the next milestone and his wife Martina Fischer for always having
an open ear for any concern. I couldn’t imagine better friends.

My greatest thanks, however, belong to my wife, Steffi. You always support any of my decisions
and help me to not lose my way. With you, I feel like being able to manage everything. Thank you
for doing uncountable small things and endure the stressful times when I work on the weekend or at
night. Your support is invaluable and your belief in me cannot be rewarded enough. I love you.

vi



Contents

1. Introduction 1
1.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Variational attenuation correction 7
2.1. Image Formation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1. Photo bleaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2. Energy formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1. MAP energy formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2. Gaussian noise model: ViBE-Z two-view attenuation correction . . . . . . 14
2.2.3. Zero order bleaching estimation . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4. Approximate Poisson noise model (Anscombe) . . . . . . . . . . . . . . . 18
2.2.5. Approximate Poisson-Gaussian noise model (Generalized Anscombe) . . . 19
2.2.6. Approximate Poisson-Gaussian noise model (Direct estimate) . . . . . . . 20
2.2.7. Wavelength dependent attenuation . . . . . . . . . . . . . . . . . . . . . . 22
2.2.8. Structured Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.9. Edge-preserving regularization . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.10. Sparsity Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3. Sample Data for Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1. Synthetic Data for wavelength-independent absorption and zero order bleach-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2. Synthetic Data for wavelength-dependent absorption and realistic bleaching 30
2.3.3. Real world examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1. Discrete cone integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2. Discrete spatial derivatives of the attenuation field . . . . . . . . . . . . . 36
2.4.3. Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.1. Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.2. Danio rerio (Zebrafish) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.3. Arabidopsis thaliana (Thale cress) . . . . . . . . . . . . . . . . . . . . . . 52
2.5.4. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vii



3. The intrinsic Root Coordinate System (iRoCS) 59
3.1. The Arabidopsis root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1. Developmental zones (longitudinal) . . . . . . . . . . . . . . . . . . . . . 61
3.1.2. Tissue types (transversal) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.3. Root growth control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2. Detection and segmentation of cells and nuclei . . . . . . . . . . . . . . . . . . . 64
3.2.1. Nucleus detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2. Cell segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3. Continuous coordinate system fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.1. Basic axis fit using Gaussian kernel smoothing . . . . . . . . . . . . . . . 75
3.3.2. Variational tube tracing using coupled curves on sparse surface points . . . 76

3.4. Layer label assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.1. Nucleus classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4.2. Cell classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5. The effect of PIN2/4 knockout on proliferation in the Arabidopsis thaliana root tip . 91
3.6. Implementation: The iRoCS Toolbox . . . . . . . . . . . . . . . . . . . . . . . . 94

4. Summary 97

A. Variational attenuation correction 99
A.1. Energy derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.1.1. General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.1.2. Gâteaux derivatives of the basic simulation equation . . . . . . . . . . . . 102
A.1.3. Explicit polynomial solution of the approximate Poisson noise model . . . 102
A.1.4. Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2. Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2.1. Integration along thin rays . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.2.2. Interpolation along conic rays . . . . . . . . . . . . . . . . . . . . . . . . 105

A.3. Numerical differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.4. Data conditioning for direct L-BFGS-B optimization . . . . . . . . . . . . . . . . 106

B. Arabidopsis sample preparation 109
B.1. Nucleus-based analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.2. Cell boundary-based analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.3. Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

viii



Preface

. . . who doubtless will proceed in making and imparting more Observations, the better
to evince the goodness of these his Glasses.

Dr. Regenerus de Graaf (1673) about Leewenhoeck’s microscopes

Since the first stunning discoveries by Anton van Leewenhoeck (1632-1723) using his hand-crafted
microscopes (Leewenhoeck and de Graaf, 1673), microscopy is an invaluable tool for the under-
standing of sub-cellular structure and interactions of and within biological specimen. The quality
of Leewenhoeck’s microscopes with up to 270× magnification was unreached for the following 200
years, till in the 1850s the physicist and optician Ernst Abbe laid the foundations for today’s un-
derstanding of wave optics. In cooperation with the engineer Carl Zeiss and the glass manufacturer
Otto Schott he substantially improved the image quality of microscopes based on his theoretical find-
ings (Lummer and Reiche, 1910). In 1886 they produced the first apochromatic objectives without
chromatic (color-dependent) aberrations and with substantially reduced spherical aberrations. The
combination of these objectives with the illumination method developed by Köhler (1893) mark the
current standard for trans-illumination microscopy.

Next to trans-illumination and incident light, fluorescence and auto-luminescence effects opened a
new way of observing biological structures. Many biological samples exhibit natural auto-fluores-
cence, but the success of fluorescence microscopy stems from the possibility to selectively mark
specific structures with appropriate fluorescent dyes. Fluorescence is very specific and allows clear
distinction of marked structures from each other and the background. Prerequisites are a band-
limited light source that is adjusted to the excitation spectrum of the fluorophore and an emission
filter that is adjusted to the fluorophore’s emission spectrum. Ideally, the spectra of the involved
band-pass filters are disjoint which allows to only view the relevant emission.

The isolation and purification of the green fluorescent protein by Shimomura et al. (1962) allows
in-vivo studies using fluorescence microscopy. Almost any protein can be augmented by the small
GFP construct (and its variants with different excitation and emission light spectra), thus allowing
to observe signaling processes on sub-cellular resolution in living specimen over time.

Another cornerstone was the development of the confocal point-scanning microscope which was
first patented by Minsky (1957). The confocal principle increases the resolution especially along
the optical axis by effectively suppressing out-of-focus light at two confocal pinholes. The confocal
point spread function (PSF) tails off within few micrometers and can be well approximated by an
anisotropic Gaussian function (Zhang et al., 2007; Cole et al., 2011). Confocal microscopy allows to
image deep into thick tissues and record successive optical sections with varying depth which can be
reconstituted into 3-D volumetric images of the specimen with high resolution along all dimensions.
Davidovits and Egger (1969) replaced the classical full-spectral illumination by a Helium-Neon
(He-Ne) laser that was rastered over the specimen. His vision were in-vivo studies using confocal
microscopy, which till today are only possible in rare special cases.





1. Introduction

Modern microscopes equipped with digital capture devices produce huge amounts of 3-D(+t) data.
Unbiased quantitative evaluation of these data requires automated image analysis techniques able
to map the measured intensity distributions to physical quantities and to the anatomy of the imaged
specimen. Several effects hinder the direct use of the measured intensities for quantification tasks.
They include physically well-understood effects like light absorption, refraction and scatter and sig-
nal dispersion due to the point spread function (PSF) of the optical system. However, also random
elements in the photon counting process leading to Poisson distributed intensity measurements su-
perimposed by Gaussian read-out noise have to be considered when designing algorithms to process
and analyze microscopic data.

Deconvolution techniques to estimate and reduce artifacts introduced by the point spread function
are well established for microscopic 3-D data. They can be subdivided into approaches that assume
knowledge of the point spread function and blind deconvolution approaches that simultaneously es-
timate the point spread function and the real signal (Sarder and Nehorai, 2006; Keuper et al., 2013).
Both approaches implicitly assume that the effect of the point spread function is spatially invariant,
i.e. the PSF shape is always the same independent of the recording position. Usually these ap-
proaches are iterative and non-linear to also reconstruct missing frequencies given appropriate prior
knowledge. More sophisticated reconstruction algorithms drop the assumption of spatial invariance.
They estimate local deconvolution kernels and blend the local reconstructions using appropriate in-
terpolation functions. Especially for single plane illumination microscopy (SPIM) the imperfect
light sheet geometry requires the assumption of locally varying signal degradation (Temerinac-Ott
et al., 2012).

Although the confocal principle reduces the domain of the point spread function, the obtained res-
olution is anisotropic with high resolution within the image plane and lower resolution along the
optical axis. Its effect can be well approximated by a convolution with an anisotropic Gaussian
(Zhang et al., 2007; Cole et al., 2011).

In thick specimen spatial invariance of the point spread function is certainly violated since light
refraction and scatter locally change its geometry. Imagine the simple case of one interface be-
tween two perfectly transparent media with different refractive indices perpendicular to the optical
axis. Light hitting the surface in a 90◦ angle just changes its speed, but rays in the periphery of
the illumination cone change their angle. With increasing depth the point spread function elongates
accompanied by a focal shift. This effect is known as spherical aberration (Egner and Hell, 2006).
Spherical aberrations are of specific interest, since they are one of the major sources of signal loss
when the refractive indices of immersion and embedding media differ. Some microscope manufac-
turers solve this problem in hardware by adapting the focus with respect to imaging depth given the

1



1. Introduction

known refractive indices, but if possible the media should be chosen to match each other and the
specimen as well as possible.

Modeling of light scatter at interfaces within the specimen is harder because it depends on the
specimen’s geometry and the different media contained in its volume. For fixed samples clearing
procedures that replace the liquid content of the specimen by liquids matching the refractive index
of the embedding medium are most promising. Ideally all media are adjusted to the refractive index
of the specimen’s membranes.

Assuming we did all to reduce the discussed effects there is still the problem of light absorption
which will be tackled in detail in chapter 2.

With the possibility to selectively knock-out specific genes, analyses of the downstream effects are
required to understand their purpose. Knocking out a gene in coding DNA, can lead to drastic
changes in phenotype that are easily observed by eye, others lead to very subtle differences that
require averaging over populations to distinguish them from natural variation. In both cases the
changes are described as deviations from the wild type, which itself shows natural variation. Instead
of directly comparing individuals of a population with altered phenotype to individuals of the wild
type population, comparison to an abstract atlas of the wild type is desired. Such atlases are well
established for many model organisms in zoology like the mouse (Mus) (Lein et al., 2007; Dorr et al.,
2008), fruit fly (Drosophila) (Fowlkes et al., 2008), nematode (Caenorhabditis elegans) (Long et al.,
2009; Liu et al., 2009) and zebrafish (Danio rerio) (Ronneberger et al., 2012). But they are lacking
for model organisms from botany, e.g. Arabidopsis thaliana. Laibach (1943) promoted Arabidopsis
for genetic and proteomic studies. Its relatively small genome consists of 157 Mbp (Megabase
pairs) grouped in ten Chromosomes which are fully sequenced. Its fast life cycle allows to quickly
generate and cultivate genetically modified lines.

The plasticity of plants precludes the definition of whole plant atlases, but plants show recurring
patterns in individual organs that can be well described. However, atlases on a single-cell scale can
only be defined in very few exceptional cases. In chapter 3 we approach the goal of providing an
Arabidopsis root tip atlas. The simple root geometry allows to map all measurements to a common
bent cylinder coordinate system, which we refer to as intrinsic Root Coordinate System (iRoCS).
The resulting unified description of key events in iRoCS allows to analyze not only single recordings
of roots, but to pool over plant populations and anatomically compare them among each other.
We will show that pooling allows to find subtle differences which are normally masked by natural
variation.

1.1. Contributions

We embedded the basic variational formulation of the attenuation estimation and correction devel-
oped for the Virtual Brain Explorer in Zebrafish (ViBE-Z) (Ronneberger et al., 2012) into a proba-
bilistic maximum a-posteriori probability (MAP) framework based on an extended image formation
model. The extended model includes wavelength-dependent attenuation, photo bleaching and a
more realistic mixed Poisson-Gaussian noise assumption. We will show, that already a rough zero-
order approximation to photo bleaching significantly improves the estimated attenuation fields and

2



1.1. Contributions

the corresponding reconstructions of the intensities. Additionally we experimented with the prior
assumption of piece-wise constant attenuation using total variation to allow for local discontinuities
in the attenuation field, e.g. at the outer sample boundaries. Furthermore, introduction of a spar-
sity prior enforces zero attenuation in areas where an estimate is not supported by measurements.
Finally, we present a way to obtain many different views of a sample using a standard confocal
microscope and thereby better constrain the problem with additional measurements. This allows
extensions to more general image formation models. We give preliminary results on synthetic data
that show the general applicability of our idea.

Large parts of the presented extensions are published in Schmidt et al. (2013b,a).

The development of algorithms to fit the intrinsic root coordinate system to confocal microscopic
3-D images involves many small innovations ranging from image processing to abstract high level
analysis using continuous models. Based on the spherical tensor filter framework of Reisert (2008),
we developed a rotation-invariant trainable detector to detect cell nuclei in confocal recordings of
the root tip (Skibbe et al., 2012). To register the bent cylinder coordinate system to pre-classified
epidermis nuclei we developed a variational tube tracing algorithm (Schmidt et al., 2012) which is
described in detail in section 3.3.2. In contrast to other tube tracing approaches, it requires only
sparsely distributed surface points and is very robust to noise. A final classification extends the
continuous cylinder coordinates by a discrete biologically meaningful dimension: the cell layer.

We published the full iRoCS toolbox in The Plant Journal (Schmidt et al., 2014). The also contained
cell-boundary-based pipeline was developed by Kun Liu (Liu et al., 2013).
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1. Introduction

1.2. Glossary

Basic linear algebra

ı The imaginary unit (ı2 = −1)
x ∈ R,C Scalar real or complex value
x ∈ Rn,Cn Column vector of real or complex values
X ∈ Rn×m,Cn×m Matrix of real or complex values
x, x,X Complex conjugate for scalars, vectors (element-wise)

and matrices (element-wise)
x>,X> Vector-, Matrix transpose
X? := X> Adjoint of X
〈x, y〉 =

∑
i

xiyi The dot product of x and y

Tensorfields

I ∈
[
Rd → R

]
Scalar field (e.g. the image function)

I ∈
[
Rd → Rk] Vectorial field (e.g. the image gradient or image fea-

tures)

∇I =

(
∂I
∂x1

, . . . ,
∂I
∂xd

)>
∈
[
Rd → Rd] Gradient of I

∆I =

d∑
i=1

∂2I
∂x2

i
∈
[
Rd → R

]
Laplacian of I

I · J Element-wise multiplication of two scalar fields
I · J Element-wise multiplication of the scalar field I with

the vectorial field J (element-wise scalar multiplica-
tion)

Biological notation

DAPI 4’,6-diamidino-2-phenylindole (dye binding adenine-
thymine bonds in DNA)

PI Propidium iodide (dye marking cellulose in cell walls)
PIN / PIN / pin The pinformed gene / protein / knock out mutant
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2. Variational attenuation correction

Approaches for quantifying the amount of proteins or metabolites within a specimen are well estab-
lished in western blots and mass spectrometry. They allow very accurate integrative molecule quan-
tification but are not able to localize molecules in the specimen. For this task confocal microscopy
is the state-of-the art. Its high spatial resolution allows 3-D sub-micron localization of fluorescently
marked proteins. The measured intensities are not proportional to the amount of marked molecules,
i.e. confocal microscopy allows binary decisions on the existence or absence of a fluorecent dye, but
its direct quantification in thick samples is currently impossible.

Photon loss along the excitation and emission light paths by absorption or random scatter lead
to attenuation of the recorded intensities. Both effects result in a multiplicative reduction of the
number of collected photons by a local tissue specific factor, and can therefore be modeled by the
Beer-Lambert’s law. In this chapter, we will present efficient physically motivated algorithms to re-
construct the attenuation-free intensities leading to measurements which are closer to the underlying
marker distributions.

Single view approaches try to estimate both, the unknown real intensity (proportional to the number
of photons) and the attenuation coefficient for each recording position from one recording. This
requires strong prior assumptions to constrain the solution space. Egner and Hell (2006) and Booth
et al. (1998) assume an exponential signal decay with increasing depth. The resulting models can be
used to correct images of samples with constant attenuation throughout the cubic recording volume.
Spherical aberration induced attenuation and attenuation within homogeneous samples after proper
preparation as e.g. cut tissue samples follow this assumption quite well (Guan et al., 2008). However,
these models cannot resolve local attenuation changes in the recording volume. In contrast, Čapek
et al. (2006) and Stanciu et al. (2010) estimate the attenuation from the per-slice intensity statistics.
The overall intensity distribution is adapted towards a reference maximizing the overall coherence.
These statistically motivated approaches can only globally adjust the intensity distribution of whole
image slices but are not able to incorporate spatial context neither within nor accross slices.

Contributions: We will first introduce a general image formation model for confocal microscopy
with ideal point-spread function and pure absorption. We will briefly recall the variational two-
view attenuation correction developed in Ronneberger et al. (2012) for the ViBE-Z zebrafish brain
atlas. Then we will extend it in several directions, including more realistic noise statistics, photo
bleaching, wavelength-dependent attenuation, and excitation light shaping. We will present a new
prior assumption improving the reconstruction quality for sparse samples and analyze the effect of
different loss functions in the smoothness prior. Finally, the effect of different numerical integra-
tion schemes on the approximation accuracy will be analyzed and alternative optimization schemes
presented leading to lower energy solutions.
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2. Variational attenuation correction

z

x

y

Immersion medium

Embedding medium

Specimen

Lens

Cover slip

Cover slip

Figure 2.1.: Imaging setup. The specimen is embedded between two cover slips to allow recordings from both sides.
Incident light in the aperture cone with opening angle ϕ focused at position x leads to fluorescence emission
(green). The light path for one sample emission ray with direction r is shown.

Parts of the following extensions were presented at the International Symposium on Biomedical
Imaging (ISBI 2013) (Schmidt et al., 2013b) and in BMC Bioinformatics (Schmidt et al., 2013a).

2.1. Image Formation Model

We use the simplified refraction-free discrete ray model described by Ronneberger et al. (2012) to
simulate a confocal microscope.

According to Beer-Lambert’s law the light transmission T [α] ∈ [0, 1] of a homogeneously absorbing
medium for monochromatic light is given by

T [α] :=
I
I0

= e−α·L

where I0 ∈ R
+ is the initial intensity and I ∈ R+ is the intensity after traveling a distance of

L ∈ R+ through a medium with absorption coefficient α ∈ R+. The superscript [α] indicates that the
transmission depends on absorption coefficient α. We will use this notation throughout to distinguish
different models. In general, the absorption α is a function of the light’s wavelength λ ∈ R+. This
will be discussed later.

In inhomogeneous media with space-variant attenuation α : R3 → R+ we get the attenuation along
the light ray originating in x with direction r as the integral over infinitesimally short homogeneous
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2.1. Image Formation Model

absorption path segments
T [α]

r (x) := e−
∫ ∞

0 α(x+`·r) d` .

Assume a point light source at position x emitting light equally distributed in all directions. The
fraction of light reaching the surface of the sphere centered at x with radius R after space-variant
absorption is then given by

C[α,R] (x) =

∫
S

e−
∫ R

0 α(x+`·r) d` dr (2.1)

where S is the unit sphere surface.

A microscope lens only captures light in a cone defined by the numerical aperture (NA) of the lens
and the refractive indices of the media the light travels through. Assuming a medium with constant
refractive index n, results in the opening angle ϕ

ϕ = 2 · asin
NA
n

of the cone, as shown in Fig. 2.1

We model the aperture by a mask s : S → {0, 1} on the unit sphere that is one for rays captured by
the lens and zero otherwise. We assume that the object is small and the medium around the object is
perfectly transparent. Therefore we can again integrate along infinite rays leading to the final cone
transmission function

C[α] (x) :=
∫

S
s (r) e−

∫ ∞
0 α(x+`·r) d` dr . (2.2)

If light with intensity I0 was emitted at the focal point x (and only there) we measure an intensity of

I (x) = I0 (x) ·
∫

S
s (r) e−

∫ ∞
0 α(x+`·r) d` dr .

The aperture mask s (r) can also describe more complicated aperture geometries allowing to model
structured illumination approaches without changing the general framework. We will employ this
in section 2.2.8.

We will now follow a burst of photons on their way through a confocal microscope:

Assume a monochromatic point light source emitting I0 photons per second. The total number of
photons emitted during excitation time ∆t > 0 is M0 = I0 · ∆t. Only the fraction given by the
excitation cone transmission function C[αex] (x) reaches the focal point x. At x photons are absorbed
with probability phit : R3 → [0, 1] which is proportional to the spatio-temporally variant fluorophore
concentration1 and lower energy photons emitted in equally distributed directions. The ratio of
emitted to absorbed photons is described by the quantum efficiency q ∈ [0, 1] of the fluorophore.
Emitted photons get again absorbed on their way through the sample according to the emission
transmission function C[αem] (x). The remaining photons reach the photo multiplier leading to a
Poisson distributed read-out. The readout is linearly scaled by the detector gain a ∈ R+ and the

1Even for fixed samples the fluorophore concentration changes with the absorbed photon dose due to bleaching.
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2. Variational attenuation correction

Figure 2.2.: 2D sketch of the bleaching regions. Excitation light focused in pink regions leads to bleaching at x, or
equivalently, excitation light focused at x leads to bleaching in the purple area. Purple regions with dashed outline
indicate positions altering phit (x) before it is scanned.

detector offset b ∈ R to optimally use the dynamic range of the data type storing the measurements.
Finally, thermal effects add Gaussian noise with standard deviation σ ∈ R+.

The Poisson mean λP (x) is given by the expected number of photons reaching the detector for scan
position x, therefore

λP (x) = M0 ·

∫
S

sex (r) e−
∫ ∞

0 αex(x+`r) d` dr︸                                ︷︷                                ︸
C[αex](x)

·phit (x) · q ·
∫

S
sem (r) e−

∫ ∞
0 αem(x+`r) d` dr︸                                 ︷︷                                 ︸

C[αem](x)

. (2.3)

The image formation model is then given by

I (x) = a · ρ (x) + η (x) (2.4)

where ρ (x) ∼ PλP(x) (ξ) =
(λP (x))ξ

ξ!
e−λP(x) and η (x) ∼ Gb,σ (ξ) =

1
√

2πσ2
e−

(ξ−b)2

2σ2 .

The detector offset b was included as mean of the Gaussian noise component η (x). In practice, we
remove b in a pre-processing step and will drop it in further derivations. For sparse samples b can be
easily determined as the most frequent intensity occurring in the recordings. The Gaussian standard
deviation σ ∈ R+ is a free parameter that has to be adjusted to match the noise statistics for each
recording setup.

2.1.1. Photo bleaching

Absorption of photons by fluorophores can already lead to out-of-focus fluorescence and irreversibly
damage affected fluorophores, known as photo bleaching. We will ignore the out-of-focus emission
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2.1. Image Formation Model

because its bulk is blocked by the collection pinhole, but bleaching steadily reduces phit (x) (and
therefore the measured intensity) in regions exposed to excitation light (Fig. 2.2).

Let’s assume a fluorophore gets destroyed by a hitting photon with probability p << 1. The proba-
bility phit (x) of hitting an intact fluorophore at position x is steadily reduced during bleaching. The
random process involved has the following urn equivalent: Assume a box containing N coins (pos-
sible photon paths) of which initially K (x) show heads (active fluorophores). The bleaching process
corresponds to a random experiment in which for each photon a random coin is drawn from the box.
If it shows tails, we just put it back into the box, but if it shows heads we turn it with probability
p before putting it back. The probability of hitting an intact fluorophore after M (x) photons equals
the proportion of coins showing heads after M (x) coin draws. This can be expressed as

phit (x) =

K(x)∑
k=0

P (k|N,M (x) , p) ·
k
N

P (k|N,M (x) , p) =


δ (K (x) − k) if M (x) = 0
0 if k > K (x)

P (k|N,M (x) − 1, p)
(
1 − p

N · k
)

+P (k + 1|N,M (x) − 1, p) · p
N · (k + 1) otherwise

The marginalization over the number of fluorophores leads to the compound interest formula with
interest rate

(
1 − p

N

)
over M (x) time intervals with given base value of phit

0 (x) := K(x)
N

phit (x) = phit
0 (x) ·

(
1 −

p
N

)M(x)
=

K (x)
N
·

(
1 −

p
N

)M(x)
.

We are interested in the initial probabilities phit
0 : R3 → [0, 1] which are proportional to the initial

fluorophore concentration. Given the known scanning order and excitation attenuation field, we
can correct for bleaching even though all measurements (except measurements in the first plane)
are distorted by prior out-of-focus exposure. When neglecting the boundary, the overall number
of photons reaching x = (x, y, z) linearly increases with depth z. When recording voxel x, it has
been already bleached by approx. M (x) := (z − 1) · M0 ·Cex (x) photons, reducing the fluorescence
probability to

phit (x) = phit
0 (x) ·

(
1 −

p
N

)M(x)
= phit

0 (x) ·
(

1 −
p
N

)(z−1)·M0·C[αex](x)
.

Plugging this into equation 2.3 we get the final average number of detected photons

λP (x) = M0 ·C[αex] (x) · phit
0 (x) ·

(
1 −

p
N

)(z−1)·M0·C[αex](x)
· q ·C[αem] (x) . (2.5)

In the upcoming sections we will present several simplifications of the general model that allow effi-
cient and accurate estimation of the attenuation fields and the “real intensities” we would have mea-
sured without the modeled signal degradation. We will give explicit schemes to solve the problem
given discrete measurements and show the efficacy of the approach on synthetic and real biological
data.
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2. Variational attenuation correction

2.2. Energy formulation

Within this section we derive energy functionals to estimate the local attenuation in multiple mi-
croscopic recordings of biological specimen. We will employ the calculus of variations to obtain
the energy derivatives needed to solve the attenuation estimation problem using gradient-based nu-
merical solvers. Where easily possible we also give analytic solutions to sub-problems or second
derivatives to be able to also employ approaches using higher order derivative information to speed
up the computations using e.g. Newton’s method.

2.2.1. MAP energy formulation

Let Î : Ω→ R+ , Î (x) := a · M0 · phit (x) · q be an estimate of the “real” attenuation-free intensities,
where Ω ⊂ R3 is the recording volume. Further, let αex : Ω→ R+ be the attenuation coefficients for
the excitation wavelength, αem : R3 → R+ the attenuation coefficients for the emission wavelength,
and θ ∈ Rn a set of scalar parameters we want to estimate. Our goal is to maximize the posterior
probability P

(
Î, αex, αem, θ

∣∣I1, . . . , Ik
)

given k independent microscopic recordings Ii : Ω→ R , i =

1, . . . , k of the sample.

We assume that the noise is independent for every voxel. Within this thesis we restrict ourselves to
Gaussian statistics with per-voxel mean µi (x) := f (Fi (x)) and standard deviationσ (x) := g (Fi (x)),
where we define Fi : Ω → R+ , i = 1, . . . , k to be simulated intensities according to a specific
simplification of the general image formation model. f : R → R and g : R → R+ are arbitrary
intensity transformations. The dependency of both functions on Fi allows to also approximately
model non-Gaussian noise statistics, as will be seen in the concrete models.

With the Gaussian noise assumption we can formulate the probability of the measurements given
the underlying model parameters and obtain

P
(
I1, . . . , Ik

∣∣αex, αem, Î, θ
)

=

k∏
i=1

∏
x∈Ω′

1√
2π (g (Fi (x)))2

e
−

( f (Ii(x))− f (Fi(x)))2

2(g(Fi(x)))2 (2.6)

where Ω′ is the discrete image domain.

To obtain the posterior probability for our model parameters, we apply Bayes’ rule

P
(
αex, αem, Î, θ

∣∣I1, . . . , Ik
)

=
P
(
I1, . . . , Ik

∣∣αex, αem, Î, θ
)

P
(
αex, αem, Î, θ

)
P (I1, . . . , Ik)

. (2.7)

We want to find the parameter set maximizing the posterior probability

arg max
αex,αem,Î,θ

P
(
αex, αem, Î, θ

∣∣I1, . . . , Ik
)

= arg max
αex,αem,Î,θ

P
(
I1, . . . , Ik

∣∣αex, αem, Î, θ
)

P
(
αex, αem, Î, θ

)
.

Therefore the prior probability of the measurements P (I1, . . . , Ik), that are independent of the op-
timization variables, could be dropped. P

(
αex, αem, Î, θ

)
allows to add any prior information that
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2.2. Energy formulation

may guide the optimization. For the moment we will just leave it as a place-holder and give specific
priors in the corresponding concrete models.
Instead of maximizing the posterior we minimize its negative logarithm, leading to the general
(continuous) energy minimization problem

arg min
αex,αem,Î,θ

E
(
αex, αem, Î, θ

)
=

k∑
i=1

∫
Ω

(
f (Ii (x)) − f (Fi (x))

g (Fi (x))

)2

+ ln (g (Fi (x))) dx + Eprior

subject to ∀x ∈ Ω : αex (x) ≥ 0 ∧ αem (x) ≥ 0 (2.8)

where constant terms were removed and Eprior = − ln P
(
αex, αem, Î, θ

)
.

We will use gradient-based optimization to minimize the energy. In sloppy notation we obtain the
derivative w.r.t. an arbitrary parameter θ ∈

{
αex (x) , αem (x) , Î (x) , θ1, . . . , θn

}
∂E
(
αex, αem, Î, θ

)
∂θ

= −

k∑
i=1

∫
Ω

2Di (x) f ′ (Fi (x)) +
(
2D2

i (x) − 1
)

g′ (Fi (x))
g (Fi (x))

·
∂Fi (x)
∂θ

dx +
∂Eprior

∂θ

(2.9)
where Di (x) := f (Ii(x))− f (Fi(x))

g(Fi(x)) , f ′ (Fi (x)) =
∂ f (Fi(x))
∂Fi(x) and g′ (Fi (x)) =

∂g(Fi(x))
∂Fi(x) . We also compute the

second derivative

∂2E
(
αex, αem, Î, θ

)
∂θ2 =

k∑
i=1

∫
Ω

(
2 ( f ′ (Fi (x)) + 2Di (x) g′ (Fi (x)))2

−
(
2D2

i (x) + 1
)

g′2 (Fi (x))
g2 (Fi (x))

−
2Di (x) f ′′ (Fi (x)) +

(
2D2

i (x) − 1
)

g′′ (Fi (x))
g (Fi (x))

)(
∂Fi (x)
∂θ

)2

−
2Di (x) f ′ (Fi (x)) +

(
2D2

i (x) − 1
)

g′ (Fi (x))
g (Fi (x))

∂2Fi (x)
∂θ2 dx +

∂2Eprior

∂θ2 .

(2.10)

Detailed step-by-step derivations are given in Appendix A.1.1.
The specific energy minimization problems presented in the following sections are fully specified by
the microscope simulation Fi and the gray value transformations f and g modeling different noise
statistics. In practice we only employ terms which are linear in Fi for second order optimization.
Therefore, terms involving the second derivative ∂2Fi

∂θ2 are never evaluated. The pre-factors of the
first derivative

D
[ f ,g,Fi]
i (x) :=

2Di (x) f ′ (Fi (x)) +
(
2D2

i (x) − 1
)

g′ (Fi (x))
g (Fi (x))

D
[ f ,g,Fi]
i

′
(x) :=

2 ( f ′ (Fi (x)) + 2Di (x) g′ (Fi (x)))2
−
(
2D2

i (x) + 1
)

g′2 (Fi (x))
g2 (Fi (x))

−
2Di (x) f ′′ (Fi (x)) +

(
2D2

i (x) − 1
)

g′′ (Fi (x))
g (Fi (x))

and the derivative ∂Fi(x)
∂θ of the simulation equation fully characterize the derivatives needed in the

different practical implementations we will describe in the following.
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2. Variational attenuation correction

Figure 2.3.: The attenuation correction work flow. (a) zy-sections of raw confocal stacks from two views (top/bottom).
(b) Estimated real intensities and attenuation coefficients in low processing resolution. (c) Independently recon-
structed intensities (high resolution) of the top- and bottom-views. (d) Final result after fusion of the reconstructed
views. Scale bars: 200µm. Shown intensities are clipped to the [0, 500] range.

2.2.2. Gaussian noise model: ViBE-Z two-view attenuation correction

As introduction, we will briefly describe the first variational approach developed and implemented
by Ronneberger et al. (2012) to recover the attenuation-free intensities given two spatially registered
recordings of the same sample from opposite sides (Fig. 2.3).

Assumptions:

Wavelength independent attenuation (α := αex = αem) Only one attenuation field needs to be
estimated. Besides other effects, this implies that absorption of excitation light at the fluo-
rophores is ignored, which is approximately true for small fluorophore concentrations.

Equal excitation and emission cone geometries (s := sex = sem) Given also wavelength inde-
pendent attenuations, we obtain identical cone transmission functions in both light paths
(C := C[αex] = C[αem]).

No bleaching (p = 0) The distribution of active fluorophores is constant over time.

Pure Gaussian noise The measured intensities are only affected by additive Gaussian noise with
fixed standard deviation. The Poissonian part of the noise statistics is not modeled.

The corresponding simplified image formation model is

I (x) ≈ Î (x)
(∫

S
s (r) · e−

∫ ∞
0 α(x+`r) d` dr

)2

+ n (x) . (2.11)

To solve for attenuation coefficients α (x) and true intensities Î (x) two independent and noise-free
measurements per recording position are required. To get these two independent measurements
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2.2. Energy formulation

the sample volume is recorded twice, once from top giving I1 (x) and the second time after a 180◦

rotation giving I2 (x).

Can et al. (2003) already exploited the idea of two-view recordings to increase the signal to noise
ratio (SNR) of intensities in the reconstructed volume. They directly relate the absorption to the
observed fluorophore distribution. This model is applicable for perfectly transparent samples ab-
sorbing excitation light only during the fluorescence process. Absorption not related to fluorescence
is ignored. We go the opposite way and assume that fluorescence-induced attenuation is negligible
compared to the overall absorption in the tissue. The confocal image formation allows to recover
attenuation in not fluorescently marked areas as long as they cast “shadows” through the sample
along the excitation and emission cones of the different views (Visser et al., 1991; Ronneberger
et al., 2012). Only in regions where the light hits no fluorophores at all or in the case of full absorp-
tion an estimation is impossible.

Both recordings have to be accurately registered to a common coordinate system. When turning the
sample holder, specimen may deform in liquid media. Due to these deformations, rigid registration
may be insufficient to align the different views. We therefore use an elastic registration to refine
the initial euclidean transformation and warp I2 according to the deformation field to the coordinate
system of I1. The overall transformation is still very close to a pure 180◦ rotation. Plugged into our
image formation model we obtain the simulation equations

F[α,Î]
i (x) := Î (x) ·

(∫
S

si (r) · e−
∫ ∞

0 α(x+`r) d` dr
)2

=
(

Î ·C[α]
i

2
)

(x) , (2.12)

where i = 1 for the top and i = 2 for the bottom recording. s2 (r) is simply rotated by 180◦ relative
to s1 (r). F[α,Î]

i (x) are the expected noise-free intensity measurements at x. Their variations w.r.t. α
and Î are given by

d
dε

F[α+εh,Î]
i (x)

∣∣∣∣
ε=0

= −2
∫

S
si (r)

∫ ∞
0

(
Î ·C[α]

i · T
[α]
r

)
(x) · h (x + `r) d` dr

d
dε

F[α,Î+εh]
i (x)

∣∣∣∣
ε=0

= C[α]
i

2
(x) · h (x) .

We have to add prior knowledge to also solve the ill-posed problem with noisy measurements. Our
prior assumption is a smooth attenuation field w.r.t. the L2-norm of its gradient (Tikhonov, 1963)
leading to the prior probability

P
(
α, Î
)
∼ e−

λ
2

∫
Ω‖∇α(x)‖22 dx .

The constant normalization factor only depending on λ and the number of measurements was omit-
ted since it does not alter the optimum.

The negative logarithm of the full MAP problem is given by

E[G] (α, Î) =

2∑
i=1

∫
Ω

(
Ii (x) − F[α,Î]

i (x)
)2

dx +
λ

2

∫
Ω

‖∇α (x)‖22 dx (2.13)

with ∀x ∈ Ω : α (x) ≥ 0
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2. Variational attenuation correction

where the constant term + ln (σ) was omitted, because it only affects the magnitude of the energy.

To model pure Gaussian noise we can choose the gray value transformations f [G] (s) := id (s) = s
and g[G]′ (s) := σ. Scaling the energy does not change the position of the optimum, therefore, we
remove the dependency on σ and set g[G] (s) := 1 instead. The corresponding factors D[id,1,F[α,Î]

i ]

andD[id,1,F[α,Î]
i ]

′

simplify to

D
[id,1,F[α,Î]

i ]
i (x) = 2

(
Ii (x) − F[α,Î]

i (x)
)

and D
[id,1,F[α,Î]

i ]
i

′

(x) = 2 . (2.14)

We plug D[id,1,F[α,Î]
i ] and the variations of F[α,Î]

i into (2.9) and get the functional derivatives of the
energy w.r.t. α and Î

δE[G]
(
α, Î
)

δα (x)
= 2

2∑
i=1

∫
S

si (r)
∫ ∞

0

(
D

[id,1,F[α,Î]
i ]

i · Î ·C[α]
i · T

[α]
r

)
(x − `r) d` dr − λ · ∆α (x)

δE[G]
(
α, Î
)

δÎ (x)
= −

2∑
i=1

(
D

[id,1,F[α,Î]
i ]

i ·C[α]
i

2
(x)
)

where ∆ is the Laplacian operator.

The required Gâteaux derivatives of the simulation are given in Appendix A.1.2. In the derivatives
w.r.t. the attenuations we additionally change h (x + `r) to h (y) using the substitution y := x + `r.
Afterwards we rename y to x to get the final functional derivative. This is possible due to the
integration over infinitely long rays. In practice we always integrate until we reach the image border
and assume zero attenuation outside the image domain.

Given an estimate of α we can analytically find the optimal Î for that estimate by solving δE[G](α,Î)
δÎ(x) =

0 which has the unique solution

Î (x) =

∑2
i=1

(
Ii ·C

[α]
i

2
)

(x)∑2
i=1 C[α]

i
4

(x)
. (2.15)

Ronneberger et al. (2012) exploit this explicit intensity update to significantly improve the conver-
gence speed of the optimization in the final implementation.

2.2.3. Zero order bleaching estimation

The described model ignores bleaching effects. In the following extensions we want to at least
account for it in a zero order approximation, in which we assume that the intensities of the second
recording are globally lower than the intensities of the first recording. We model this as constant
factors βi ∈ (0, 1] which are applied to the simulated intensities

F[α,Î,βi]
i := βi · F

[α,Î]
i = βi · Î (x) ·

(∫
S

si (r) · e−
∫ ∞

0 α(x+`r) d` dr
)2

(2.16)
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2.2. Energy formulation

before comparing them to the measured intensities Ii. We set the intensity scaling β1 := 1 for the
first recording.

For the model of Ronneberger et al. (2012) bleaching slightly changes the energy to

E[G] (α, Î, β2
)

=

2∑
i=1

∫
Ω

(
Ii (x) − F[α,Î,βi]

i (x)
)2

dx +
λ

2

∫
Ω

‖∇α (x)‖22 dx

with β1 = 1 ∧ β2 ∈ (0, 1] ∧ ∀x ∈ Ω : α (x) ≥ 0 (2.17)

where β2 has to be optimized alongside with α and Î. The characteristic pre-factors

D
[id,1,F[α,Î,βi]

i ]
i (x) = 2

(
Ii (x) − F[α,Î,βi]

i (x)
)

and D
[G,α,Î,βi]
i

′

(x) = 2

are identical to (2.14), only the simulations have been replaced by the ones including βi. The vari-
ations of the simulation are simply scaled by the new factor. Also including the additional partial
derivative w.r.t. βi we obtain

d
dε

F[α+εh,Î,βi]
i (x)

∣∣∣∣
ε=0

= −2βi

∫
S

si (r)
∫ ∞

0

(
Î ·C[α]

i · T
[α]
r

)
(x) · h (x + `r) d` dr

d
dε

F[α,Î+εh,βi]
i (x)

∣∣∣∣
ε=0

= βiC
[α]
i

2
(x) · h (x)

∂

∂βi
F[α,Î,βi]

i (x) =
(

Î ·C[α]
i

2
)

(x) . (2.18)

PluggingD[id,1,F[α,Î,βi]
i ]

i and the variations/partial derivatives of F[α,Î,βi]
i into (2.9) gives the new set of

functional/partial derivatives

δE[G]
(
α, Î, β2

)
δα (x)

= 2
2∑

i=1

βi

∫
S

si (r)
∫ ∞

0

(
D

[id,1,F[α,Î,βi]
i ]

i · Î ·C[α]
i · T

[α]
r

)
(x − `r) d` dr − λ · ∆α (x)

δE[G]
(
α, Î, β2

)
δÎ (x)

= −

2∑
i=1

βi

(
D

[id,1,F[α,Î,βi]
i ]

i ·C[α]
i

2
)

(x)

∂E[G]
(
α, Î, β2

)
∂β2

= −

∫
Ω

(
D

[id,1,F[α,Î,β2]
2 ]

2 · Î ·C[α]
2

2
)

(x) dx . (2.19)

We can speed up the optimization with a coordinate descent on the sub-space spanned by Î and β2
using Newton’s method in an inner iteration. The required second derivatives are

δ2E[G]
(
α, Î, β2

)
δÎ (x)2 =

2∑
i=1

β2
i

(
D

[id,1,F[α,Î,βi]
i ]

i

′

·C[α]
i

4
)

(x)

∂2E[G]
(
α, Î, β2

)
∂β2

2
=

∫
Ω

(
D

[id,1,F[α,Î,β2]
2 ]

2

′

·

(
Î ·C[α]

2
2
)2
)

(x) dx . (2.20)
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2. Variational attenuation correction

In this specific case Î and β2 can even be optimized analytically in an alternating inner iteration
given an estimate for α. This requires to solve the linear equations

Î (x) =

∑2
i=1 βi

(
Ii ·C

[α]
i

2
)

(x)∑2
i=1 β

2
i C[α]

i
4

(x)
and β2 =

∫
Ω

(
I2 · Î ·C

[α]
2

2
)

(x) dx∫
Ω

(
Î ·C[α]

2
2
)2

(x) dx
.

Equations (2.18) – (2.20) hold for all noise models using the simulation F[α,Î,βi]
i when inserting their

specific characteristic factors D[ f ,g,F[α,Î,βi]
i ]

i and D[ f ,g,F[α,Î,βi]
i ]

i

′

. Therefore, we will often refer to these
equations instead of writing them down, to avoid redundancy.

2.2.4. Approximate Poisson noise model (Anscombe)

If the noise statistics is dominated by the Poisson distributed photon counting process, the Gaus-
sian noise model is not appropriate. We therefore present an alternative model approximating pure
Poisson noise using Anscombe transformed data and simulations. As shown by Anscombe (1948)
Poissonian statistics are well approximated by Gaussian statistics of the square root of the continuity
corrected random variables. The Anscombe transform is defined as

A (x) :=

{
2
√

x + 3
8 x > −3

8

0 otherwise

approximating the discrete Poisson distributed random variable x ≥ 4 by the Gaussian random
variableA (x) with approximate unit variance. We exploit this idea in Schmidt et al. (2013b), where
we input gamma corrected input images (γ = 2) and gamma correct the simulations accordingly for
comparing measurements and simulations in the data term. Here, we slightly extend the model also
incorporating the continuity correction constant 3

8 which has the nice side-effect of stabilizing the
solutions compared to the “pure” gamma correction.

The Anscombe transform allows to transfer the Poisson model to the Gaussian framework by mini-
mizing the energy

EA
(
α, Î, β2

)
=

2∑
i=1

∫
Ω

(
A (Ii (x)) −A

(
F[α,Î,βi]

i (x)
))2

dx +
λ

2

∫
Ω

‖∇α (x)‖22 dx

with β2 ∈ (0, 1] ∧ ∀x ∈ Ω : α (x) ≥ 0 (2.21)

Put into the general framework we now apply the gray value transformation fA (s) := A (s) with
derivative fA′ (s) = 2

A(s) , and second derivative fA′′ (s) = − 4
A3(s) . The standard deviation is again

constant gA (s) := 1.

The pre-factorsD[A,1,F[α,Î,βi]
i ]

i andD[A,1,F[α,Î,βi]
i ]

i

′

are given by

D
[A,1,F[α,Î,βi]

i ]
i (x) = 4

 A (Ii (x))

A

(
F[α,Î,βi]

i (x)
) − 1

 and D
[A,1,F[α,Î,βi]

i ]
i

′

(x) = 8
A (Ii (x))

A3
(

F[α,Î,βi]
i (x)

) .
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2.2. Energy formulation

To obtain the final energy derivatives, we simply replaceD[id,1,F[α,Î,βi]
i ] byD[A,1,F[α,Î,βi]

i ] in (2.19) and
(2.20).

As before it is possible to analytically solve for Î given an estimate for α and β2. However, instead
of a linear equation, now the roots of a polynomial of degree four have to be determined. The
corresponding derivation is given in Appendix A.1.3. An analytic solution for β2 cannot be given
any more.

In practice an inner fixed-point iteration alternating between iteratively computing Î and iteratively
computing β2 for fixed α using Newton’s method proved to be very stable. In most cases it converges
within less than ten iterations to an accuracy of seven significant digits. To also capture more
complicated cases we set the maximum number of iterations to twenty, although an exact solution
is not required to continue the outer optimization.

2.2.5. Approximate Poisson-Gaussian noise model (Generalized Anscombe)

Starck et al. (1998) present an extension of the classical Anscombe transform to also approximate
the sum of a scaled Poisson random variable and a Gaussian random variable. This generalized
Anscombe transform

APG (x) :=

{
2
a

√
ax + 3

8 a2 + σ2 − ab x > − 3
8 a − σ2

a + b

0 otherwise

approximates the Poisson-Gaussian random variable x = aρ + η where a ∈ R+, ρ ∼ P[λ] and
η ∼ G[b,σ] by the Gaussian random variableAPG (x) with approximate unit variance.

In accordance with Mäkitalo and Foi (2013) we apply the affine transforms x̃ = x−b
a and σ̃ = σ

a to
obtain the simplified formulation

APG (x̃) :=

{
2
√

x̃ + 3
8 + σ̃2 x̃ > −3

8 − σ̃
2

0 otherwise .

The energy for this model can be written as

EAPG
(
α, Î, β2

)
=

2∑
i=1

∫
Ω

(
APG

(
Ii (x)

a

)
−APG

(
F[α,Î,βi]

i (x)
a

))2

dx +
λ

2

∫
Ω

‖∇α (x)‖22 dx

with β2 ∈ (0, 1] ∧ ∀x ∈ Ω : α (x) ≥ 0 (2.22)

Note the identity of the generalized Anscombe model with the pure Poissonian Anscombe model
from the previous section when setting a := 1 and σ := 0.
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2. Variational attenuation correction

Besides the division by the detector gain the derivations strictly follow the basic Anscombe model
s.t.

D
[APG,1,F

[α,Î,βi]
i ]

i (x) =
4
a

 APG

(
Ii(x)

a

)
APG

(
F[α,Î,βi]

i (x)
a

) − 1

 and D[APG,1,F
[α,Î,βi]
i ]

i

′

(x) =
8
a2

APG

(
Ii(x)

a

)
APG

3
(

F[α,Î,βi]
i (x)

a

) .

(2.23)

The final derivatives are obtained by replacing D[id,1,F[α,Î,βi]
i ] by D[APG,1,F

[α,Î,βi]
i ] in (2.19) and (2.20)

as before.

2.2.6. Approximate Poisson-Gaussian noise model (Direct estimate)

In this section we recapitulate our findings published in Schmidt et al. (2013a).

As already discussed, the measured image intensities are dominated by the Poisson distributed pho-
ton counting process but they also contain additive Gaussian distributed read-out noise. The re-
sulting noise model is the convolution of a scaled Poisson distribution with a zero-mean Gaussian
distribution (assuming the offset is subtracted beforehand) with standard deviation σ ∈ R+. To al-
low practical computation, we approximate the Poisson distribution by a Gaussian distribution with
variance proportional to its mean (which is a quite good approximation for Poisson mean > 20).
With this simplification we can exploit the linearity of the Gaussian distribution approximating the
Poisson distribution and simply scale its mean and variance by detector gain a. We further assume,
that the measured intensities are close to the scaled Poisson mean value and directly use them as
variance estimate. The convolution of the two Gaussian distributions results in the combined Gaus-
sian distribution

P
(
Ii (x)

∣∣α, Î, βi, σ
)
≈

1
√

2πIi (x)
e−

(
Ii(x)−F

[α,Î,βi]
i (x)

)2

2Ii(x) ∗
1

√
2πσ2

e−

(
Ii(x)−F

[α,Î,βi]
i (x)

)2

2σ2

=
1√

2π
(
Ii (x) + σ2

)e
−

(
Ii(x)−F

[α,Î,βi]
i (x)

)2

2(Ii(x)+σ2) .

In Schmidt et al. (2013a) we also introduced a Poisson standard deviation scaling factor m ∈ R+

which allows to weight the noise components against each other

P
(
Ii (x)

∣∣α, Î, βi,m, σ
)
≈

1√
2π
(
m2Ii (x) + σ2

)e
−

(
Ii(x)−F

[α,Î,βi]
i (x)

)2

2(m2 Ii(x)+σ2) . (2.24)

For m = 0 and σ = 1 the Poisson-Gaussian model coincides with the pure Gaussian model presented
in section 2.2.3.
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2.2. Energy formulation

The actual values for m and σ have to be determined in a microscope calibration phase. If unknown
one of them can be fixed to an arbitrary value (we always fixed σ = 1), and the other one adjusted
to qualitatively obtain the optimum result. If additional sample information is available, e.g. the
recordings consist of large homogeneous regions of different intensities, one can also try to estimate
the parameters from the images themselves as done by Foi et al. (2008) for photographs. However,
for sparsely marked biological samples this is rarely the case.

The final energy formulation is again obtained by replacing the maximization of the posterior prob-
ability by a minimization of its negative logarithm resulting in

E[PG] (α, Î, β2
)

=

2∑
i=1

∫
Ω

(
Ii (x) − F[α,Î,βi]

i (x)√
m2Ii (x) + σ2

)2

dx +
λ

2

∫
Ω

‖∇α (x)‖22 dx

with β2 ∈ (0, 1] ∧ ∀x ∈ Ω : α (x) ≥ 0 (2.25)

The assumption that the measured intensities are a good estimate of the Poisson mean make the
denominator g[PG]

(
F[α,Î,βi]

i (x)
)

:=
√

m2Ii (x) + σ2 independent of the optimization variables. For
each voxel it is only a scalar weighting factor making the derivatives particularly easy to compute.
The factor is proportional to the measured intensity, giving the contribution of differences in high
intensity regions a lower weight compared to low intensity regions in the energy. This is intuitive,
since higher intensities carry higher uncertainty. As in the Gaussian case the intensities are not
transformed s.t. f [PG] (s) := id (s) = s.

The characteristic factorsD

[
id,
√

m2Ii+σ2,F[α,Î,βi]
i

]
i andD

[
id,
√

m2Ii+σ2,F[α,Î,βi]
i

]
i

′

are very similar to the pure
Gaussian case and given by

D

[
id,
√

m2Ii+σ2,F[α,Î,βi]
i

]
i (x) = 2

Ii (x) − F[α,Î,βi]
i (x)

m2Ii (x) + σ2 and D

[
id,
√

m2Ii+σ2,F[α,Î,βi]
i

]
i

′

(x) =
2

m2Ii (x) + σ2

which are plugged into (2.19) and (2.20) to get the final derivatives.

Given an estimate of α and β2 the intensities can be optimized analytically, likewise given α and Î,
β2 can be optimized analytically using the linear equations

Î =

∑2
i=1

βi

(
Ii·C

[α]
i

2)
(x)

m2Ii(x)+σ2∑2
i=1

β2
i C[α]

i
4
(x)

m2Ii(x)+σ2

and β2 =

∫
Ω

(
I2·Î·C

[α]
2

2)
(x)

m2I2(x)+σ2 dx∫
Ω

(
Î·C[α]

2
2)2

(x)

m2I2(x)+σ2 dx

which will be exploited to solve these sub-problems in an inner fixed-point iteration as before.

Dynamic mean adjustment

What if the measured intensities are no good estimator for the mean of the Poisson-Gaussian dis-
tributions? In low-intensity areas this assumption is quite accurate, but in high-intensity areas with
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2. Variational attenuation correction

linearly increasing Poisson variance the error can become large. An alternative is to base the noise
variance estimate on the simulated (noise-free) intensities F[α,Î,βi]

i . The resulting formulation be-
comes slightly more complicated since the weights now dependent on the optimization parameters.
The probability of measuring intensity Ii (x) (without priors) becomes

P
(
Ii (x)

∣∣α, Î, βi,m, σ
)
≈

1√
2π
(

m2F[α,Î,βi]
i (x) + σ2

)e

−

(
Ii(x)−F

[α,Î,βi]
i (x)

)2

2

(
m2F

[α,Î,βi]
i (x)+σ2

)
.

The Gaussian normalization factor now changes with the intensity estimate, and has to be considered
in the energy

EPG2
(
α, Î, β2

)
=

2∑
i=1

∫
Ω

 Ii (x) − F[α,Î,βi]
i (x)√

m2 · F[α,Î,βi]
i (x) + σ2

2

+ ln
(√

m2F[α,Î,βi]
i (x) + σ2

)
dx

+λ

∫
Ω

‖∇α (x)‖22 dx

with β2 ∈ (0, 1] ∧ ∀x ∈ Ω : α (x) ≥ 0 . (2.26)

As in the previous simplified variant of the Poisson-Gaussian model, this model reduces to the pure
Gaussian model when setting m = 0 and σ = 1.

As before f [PG2] (s) := id (s) = s, but the standard deviation g[PG2]
(

F[α,Î,βi]
i

)
:=
√

m2F[α,Î,βi]
i + σ2

now depends on the simulated intensity making the characteristic factors D

[
id,g[PG2],F[α,Î,βi]

i

]
i and

D

[
id,g[PG2],F[α,Î,βi]

i

]
i

′

a little more complicated

D

[
id,g[PG2],F[α,Î,βi]

i

]
i (x) =

2
(

Ii (x) − F[α,Î,βi]
i (x)

)
+ m2

((
Ii(x)−F[α,Î,βi]

i (x)
)2

m2F[α,Î,βi]
i (x)+σ2

− 1
2

)
m2F[α,Î,βi]

i (x) + σ2

D

[
id,g[PG2],F[α,Î,βi]

i

]
i

′

(x) =

2

(
1 + m2

(
Ii−F[α,Î,βi]

i

)
(x)

m2F[α,Î,βi]
i (x)+σ2

)2

− m4

2
(

m2F[α,Î,βi]
i (x)+σ2

)
m2F[α,Î,βi]

i (x) + σ2
(2.27)

which, when plugged into (2.19) and (2.20), yield the final derivatives.

2.2.7. Wavelength dependent attenuation

Up to now our model only allowed for wavelength-independent attenuation. When dropping this
assumption, different attenuation coefficients for excitation and emission wavelength have to be es-
timated at each recording position. With two recordings this generalized problem cannot be solved.
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2.2. Energy formulation

The generalization however allows us to model absorption of excitation light in fluorophores. In
this special case we know the sites of additional attenuation along the excitation path, which are just
the measured emission sites and we know that the attenuation at these sites is proportional to their
expected intensity. This can be modeled as a wavelength-independent absorption α as before which
is modified in the excitation path by adding the intensity estimate scaled with a constant γ ∈ R, s.t.
αex (x) := α (x) + γÎ (x).

The simulation of the noise-free intensities therefore changes to

F[α,Î,βi,γ]
i (x) := βi Î (x) ·

∫
S

si (r) · e−
∫ ∞

0 (α+γÎ)(x+`r) d` dr︸                                    ︷︷                                    ︸
=:C[α,Î,γ]

i (x)

·

∫
S

si (r) · e−
∫ ∞

0 α(x+`r) d` dr︸                              ︷︷                              ︸
=:C[α]

i (x)

with Gâteaux/partial derivatives

d
dε

F[α+εh,Î,βi,γ]
i (x)

∣∣∣∣
ε=0

= −βi

∫
S

si (r)
∫ ∞

0

(
I ·
(

T [α,Î,γ]
r ·C[α]

i + C[α,Î,γ]
i · T [α]

r

))
(x)

·h (x + `r) d` dr

d
dε

F[α,Î+εh,βi,γ]
i (x)

∣∣∣∣
ε=0

= βi

(
C[α,Î,γ]

i ·C[α]
i

)
(x) · h (x)

−γβi

∫
S

si (r)
(

Î · T [α,Î,γ]
r ·C[α]

i

)
(x)
∫ ∞

0
h (x + `r) d` dr

∂

∂βi
F[α,Î,βi,γ]

i (x) =
(

Î ·C[α,Î,γ]
i ·C[α]

i

)
(x)

∂

∂γ
F[α,Î,βi,γ]

i (x) = −βi

(
Î ·C[α]

i

)
(x) ·

∫
S

si (r) T [α,Î,γ]
r (x)

∫ ∞
0

Î (x + `r) d` dr .

We again use the Poisson-Gaussian noise approximation leading to the almost unchanged energy

EPG2
(
α, Î, β2, γ

)
=

2∑
i=1

∫
Ω

(
Ii (x) − F[α,Î,βi,γ]

i (x)
)2

m2F[α,Î,βi,γ]
i (x) + σ2

+ ln
(√

m2F[α,Î,βi,γ]
i + σ2

)
dx

+
λ

2

∫
Ω

‖∇α (x)‖22 dx

with β2 ∈ (0, 1] ∧ γ ∈ R+ ∧ ∀x ∈ Ω : α (x) ≥ 0 . (2.28)

Plugging the variations/partial derivatives of the simulation equation into (2.9) we obtain the func-
tional/partial derivatives

δEPG2
(
α, Î, β2, γ

)
δα (x)

=

2∑
i=1

βi

∫
S

si (r) ·
∫ ∞

0

(
D

[
id,g[PG2],F[α,Î,βi ,γ]

]
i · Î

·

(
T [α,Î,γ]

r ·C[α]
i + C[α,Î,γ]

i · T [α]
r

))
(x − `r) d` dr − λ∆α (x)
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δEPG2,γ
data

(
α, Î, β2, γ

)
δÎ (x)

= −

2∑
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βi

(
D

[
id,g[PG2],F[α,Î,βi ,γ]

]
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i ·C[α]
i

)
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+γ
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si (r)
∫ ∞
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D
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id,g[PG2],F[α,Î,βi ,γ]

]
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·T [α,Î,γ]
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)
∂β2

= −

∫
Ω

(
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2 · Î ·C[α,Î,γ]

2 ·C[α]
2
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(x) dx

∂EPG2,γ
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(
α, Î, β2, γ

)
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βi

∫
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(
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[
id,g[PG2],F[α,Î,βi ,γ]

]
i · Î ·C[α]

i

)
(x)

·

∫
S

si (r) T [α,Î,γ]
r (x)

∫ ∞
0

Î (x + `r) d` dr dx .

where the pre-factors D

[
id,g[PG2],F[α,Î,βi ,γ]

]
i for this noise model are the same as (2.27) when replac-

ing the cone and ray transmissions accordingly. When inserting the pre-factors (2.23) instead, the
generalized Anscombe model is obtained.

The per voxel intensity derivatives are not independent any more, therefore the up-to-now employed
explicit coordinate descent in the sub-space spanned by Î cannot be easily applied. In our current
implementation we solve the whole problem using L-BFGS-B making the optimization quite slow
and the approach hardly applicable in practice.

2.2.8. Structured Illumination

To generalize the model to arbitrary wavelength dependent attenuation fields not only modeling ab-
sorption at the fluorophores we need to estimate three quantities per voxel, the expected intensity,
and the attenuation fields for excitation and emission wavelengths. To solve this problem, at least
three independent measurements for each voxel are required. One possibility to obtain arbitrarily
many recordings is to change the sample holder geometry allowing recordings from arbitrary an-
gles as done in single plane illumination microscopy (SPIM, Keller and Stelzer (2006)). However,
the required specialized hardware is not yet available in standard laboratory environments. The
preparation effort is quite high compared to slide-based microscopy and sample storing for later
re-recording is hardly possible. The required registration of the different recordings to one common
coordinate system further complicates the processing.

Instead we propose an approach that allows to employ conventional slide-based sample preparation.
To obtain the required additional recordings we modify the excitation light geometry by changing
the properties of the excitation aperture diaphragm. One easily applicable change is to narrow
the aperture cone of the excitation light. This can be easily achieved in any standard confocal
microscope by closing the aperture diaphragm to a specified area fraction of the open aperture. In
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2.2. Energy formulation

lens

aperture diaphragm

Figure 2.4.: 2D sketch of the excitation light path using an arbitrarily patterned aperture diaphragm. The diaphragm
is inserted in the Fourier plane, where rays are parallel. When passing the lens the pattern becomes proportionally
smaller till the rays converge at the focal point. sex′ : R2 → {0, 1} is the planar mask at distance d ∈ R from
the focal point. Both, mask and distance, are inputs to the simulation. The ray mask sex : S → {0, 1} is the
corresponding mask projected to the unit sphere surface which is used in the optimization. Purple arrows indicate
sample excitation light rays.

many cases one can replace the diaphragm and insert a structured aperture mask instead. Both
cases can be modeled when modifying the aperture mask functions sex

i (x) accordingly as shown in
Fig. 2.4.

Theoretically, shaping the excitation cone even allows to estimate the attenuations and reconstruct
the real intensities using recordings from one side only. However, in practice this requires very pre-
cise approximations of the integrations over the masked light cones. The disadvantage of additional
recordings is increased recording time and loss of light due to the aperture mask leading to decreased
signal to noise ratio. With our zero-order bleaching approximation we now estimate factors βi for
all recordings i = 2 . . . k (we again set β1 := 1 for the first recording).

The simulation equation for recording i changes to

F[αex,αem,Î,βi]
i (x) := βi Î (x) ·

∫
S

sex
i (r) e−

∫ ∞
0 αex(x+`r) d` dr︸                                ︷︷                                ︸

=:C[αex]
i (x)

·

∫
S

sem
i (r) e−

∫ ∞
0 αem(x+`r) d` dr︸                                 ︷︷                                 ︸

=:C[αem]
i (x)
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with Gâteaux/partial derivatives

d
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i

)
(x) .

Any of the presented approaches can be easily extended to multiple views with different light ge-
ometries by plugging the new image formation model and the appropriate noise functions f and g
into (2.9) and (2.10). We exemplary give the corresponding equations for the direct MAP Poisson-
Gaussian approximation.

The energy formulation for the MAP model becomes

EPG2
(
αex, αem, Î,β

)
=

k∑
i=1

∫
Ω

(
Ii (x) − F[αex,αem,Î,βi]
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i + σ2

)
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2

∫
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∥∥∇αex (x)
∥∥2

2 +
∥∥∇αem (x)

∥∥2
2 dx (2.29)

with βi ∈ (0, 1], i = 1, . . . , k ∧ ∀x ∈ Ω : αex (x) ≥ 0 ∧ αem (x) ≥ 0 .

The corresponding functional/partial derivatives are given by
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δÎ (x)

= −

k∑
i=1

βi

(
D

[
id,g[PG2],F[αex ,αem ,Î,βi]
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)
∂βi

= −

k∑
i=1

∫
Ω

(
D

[
id,g[PG2],F[αex ,αem ,Î,βi]
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and

δ2EPG2
(
α, Î, β2,β
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δÎ (x)2 =
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2.2.9. Edge-preserving regularization

The assumption of smooth attenuation fields enforced by the quadratic penalizer on the gradient
of the attenuation field effectively avoids noisy solutions. However, sharp edges between tissue
boundaries or at the outer specimen boundary violate the smoothness assumption and cannot be
recovered with strong regularization which is required to suppress noise amplification. In varia-
tional image denoising, edge-preserving techniques replace the quadratic Tikhonov regularizer (loss:
ψTM

(
s2
)

= s2) by the total variation (loss: ψTV
(

s2
)

=
√

s2 = |s|) leading to piece-wise constant
regions with sharp boundaries. The strict TV regularization is not differentiable at 0, therefore we

slightly relax it to ψ′TV

(
s2
)

=

√
s2 + ε2

TV, with a small constant εTV ∈ R+. Charbonnier et al. (1997)
introduced this relaxed TV loss function and showed its edge preservation properties on simulated
tomography data.

To allow for different loss function we generalize the formulation of the smoothness term to

Esmooth (α) :=
∫

Ω

ψ
(
‖∇α (x)‖2

)
dx

where the choice of loss function ψ decides for the smoothness properties of the result.

The corresponding generalized functional derivative is then given by

δEsmooth (α)
δα (x)

= 2 · div
(
ψ′
(
‖∇α (x)‖2

)
∇α (x)

)
which simplifies for Tikhonov regularization to the up-to-now used Laplacian term

δETM (α)
δα (x)

= 2 · ∆α (x)

and for the relaxed total variation to

δETV (α)
δα (x)

= div

 ∇α (x)√
‖∇α (x)‖2 + ε2

TV

 .

The functional derivatives are derived in appendix A.1.4.
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2. Variational attenuation correction

2.2.10. Sparsity Prior

In confocal microscopy we only have sparse measurements where fluorophores accumulate. There-
fore, the dense attenuation field and the real intensities have to be estimated given only few cues. For
some positions no measurements might be available and any attenuation estimate would perfectly
explain the measured signal. Estimated attenuations in those regions are only defined by image
noise, leading to arbitrarily high and unrealistic attenuations. To avoid such outliers we introduce
the sparsity prior

Esparse (α) :=
∫

Ω

√
α2 (x) + ε2

sp dx

where εsp ∈ R
+ is again a small constant to stabilize its derivative

δEsparse (α)
δα (x)

=
α (x)√

α2 (x) + ε2
sp

.

This prior enforces the attenuations to be as small as possible while still explaining the measured
signal leading to zero attenuation estimates in regions, where no measurements are available for a
reconstruction. Additionally the influence of artifacts introduced by the simplified image formation
model is reduced and only affects small local areas.

2.3. Sample Data for Evaluation

2.3.1. Synthetic Data for wavelength-independent absorption and zero order
bleaching

To quantitatively evaluate the presented methods for attenuation correction, we generated two dif-
ferent synthetic datasets. The first consists of a solid sphere with constant absorption coefficients of
0.006 per voxel. The interior 60% of the sphere were set to an intensity value of 4094. We added a
smooth random texture with a variance of approximately 30% of the maximum of the corresponding
quantity. This corresponds to the “well-posed” case when intensity and absorption information is
available in the whole domain. The second dataset is the well-known Shepp-Logan phantom (Shepp
and Logan, 1974) consisting of a set of overlapping ellipsoids with homogeneous intensities. We
assigned absorption coefficients to the different regions avoiding direct correlation with the intensi-
ties. Some regions were assigned equal attenuations independent of their intensity difference. In the
simulation we applied an anisotropic Gaussian smoothing to model the band-limiting effect of the
microscope’s point spread function and ensure Nyquist sampling. For both datasets two recordings
I1 and I2 from opposite sides were simulated using equation (2.16) modeling absorption and photo
bleaching (β1 := 1.0, β2 := 0.8, meaning 20% signal loss between the recordings). Then Poisson
noise with scaling m = 0.05 (Detector gain a ≈ 4.5) and Gaussian noise with mean µ = 0 and
standard deviation σ = 10 were applied. The datasets are shown in Fig. 2.5.
For these simulations the cone integrations were normalized so that zero attenuation coefficients lead
to unit cone transmission given a fixed numerical aperture as in Ronneberger et al. (2012); Schmidt
et al. (2013b,a).
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2.3. Sample Data for Evaluation

Figure 2.5.: Synthetic ground truth and top/bottom simulations using the simplified simulation equation (2.16) with
constant bleaching factor. (a) dense data with smooth random texture added to attenuations and intensities (well-
posed reconstruction problem); (b) sparse phantom with large constant areas (ill-posed reconstruction problem).
All views show orthographic slices through the corresponding 3D volumes. First row: ground truth intensities I
(left) and absorption coefficients α (right). Second and third row: Confocal simulations from top/bottom without
noise (left) and with applied Poisson-Gaussian noise with m = 0.05 and σ = 10 (right). PSNR: peak signal to
noise ratio compared to the noise free simulation.
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2. Variational attenuation correction

2.3.2. Synthetic Data for wavelength-dependent absorption and realistic
bleaching

To also evaluate how well the zero-order approximation copes with more realistic bleaching and
wavelength-dependent absorption, we generated different synthetic attenuation coefficient fields for
excitation and emission wavelengths. Using these fields, two top and two bottom views were simu-
lated using the general image formation equation (2.5) (Fig. 2.6). Sim 1 and Sim 2 were simulated
with the full aperture cone given by the combination of lens (NA = 0.8) and immersion medium
(nImmersion = 1.4729). For Sim 3 and Sim 4 the aperture was partially closed giving a net lens
numerical aperture of NAclosed = 0.4. This allows to also test the multi-view case that poses no
further assumptions on the attenuations in the excitation and emission light paths. We again ap-
plied Poisson-Gaussian noise to the simulated recordings with parameters: M0 = 109, N = 105,
p = 10−6, q = 0.25, a = 3, b = 0 and σ = 10 using dense rays. The number of fluorophores per
voxel K : Ω → N is in the [0, 1000] range, the attenuation range is [0, 0.013] at a voxel size of
4 × 4 × 4µm with a final volume of 300 × 300 × 300µm (= 75 × 75 × 75vx).

To allow for variable cone geometries we changed the normalization of the cone integrations to
match the point light source setting described in section 2.1. Within that model the aperture itself
already leads to a strong base signal attenuation which is proportional to the fraction of the surface of
the sphere segment captured by the (masked) aperture to the full sphere surface. The real intensity
estimate is increased by the product of these surface fractions for excitation and emission cones.
As seen in Fig. 2.6, this scaling results in different dynamic ranges of ground truth intensities and
simulations.

2.3.3. Real world examples

Danio rerio (Zebrafish)

To show that the approach also copes well with real world data, we tested it on samples of the
ViBE-Z database consisting of confocal recordings of whole zebrafish embryos, which were fixed
72h after fertilization (Fig. 2.7). Sample preparation, recording setup and image pre-processing
are described in detail by Ronneberger et al. (2012). The datasets contain two channels, a reference
channel with marked nuclei and a second channel containing a gene expression pattern for which the
attenuation correction should yield quasi-quantitative reconstructions. Processing was performed on
sub-sampled data with isotropic voxel extents of 8µm.

Arabidopsis thaliana (Thale cress)

Finally we tested the approach on two-channel recordings of the root tip of the model plant Ara-
bidopsis thaliana (Fig. 2.8). The first channel shows cell membranes marked using an Alexa488
antibody stain. The second channel shows DAPI stained nuclei. The samples were fixed 96h after
germination. They were embedded in SlowFade Gold Antifade (Invitrogen) (nembedding = 1.42) and
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Figure 2.6.: Orthographic views of synthetic ground truth and top/bottom simulations using the general simulation
equation (2.5). Top panel: textured sphere, bottom panel: Shepp-Logan phantom. Top row (left to right): In-
tensities without attenuation; attenuation fields for excitation and emission wavelengths. Bottom row: Simulated
confocal recordings; Sim 1: from top, open aperture; Sim 2: from bottom, open aperture; Sim 1* - Sim 3*: differ-
ence of [0, 1] normalized simulations with open and 50% closed aperture (Sim 3); Sim 2* - Sim 4*: from bottom,
difference of [0, 1] normalized simulations with open and 50% closed aperture (Sim 4). Intensity and attenuation
ranges are indicated. PSNR is the peak signal to noise ratio of the corresponding simulation compared to a noise
free simulation. Colored lines indicate positions of the slices shown in the correspondingly colored boxes.
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2. Variational attenuation correction

Figure 2.7.: Orthographic views of a sample zebrafish recording from the ViBE-Z database. Left: Reference nucleus
stain; right: Gene expression pattern. Top row: Dorsal recording direction; bottom row: Ventral recording direction.
Colored lines indicate positions of the slices shown in the correspondingly colored boxes. Scale bars: 200µm.

recorded from top and bottom using a confocal microscope equipped with a 25× Glycerol immer-
sion objective (NA 0.8, nimmersion = 1.4716). We registered the bottom view to the top view using
thin-plate spline interpolation on point correspondences obtained through local normalized cross
correlation. Finally we performed a background subtraction prior to applying the attenuation cor-
rection. The attenuation correction was performed on sub-sampled data with isotropic voxel extents
of 2µm.

2.4. Implementation

2.4.1. Discrete cone integration

For the cone transmission functions C[αex/em]
i (x) and in the data term derivatives we need to com-

pute integrals over all excitation and emission light rays. We approximate them as the sum over a
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2.4. Implementation

Figure 2.8.: Orthographic views of a sample Arabidopsis root tip recording. Left: Cell membrane antibody stain;
right: DAPI (nucleus stain). Top row: Recorded from top direction; bottom row: Recorded from bottom. Colored
lines indicate positions of the slices shown in the correspondingly colored boxes. Scale bars: 100µm.

Figure 2.9.: Cone sampling with incrementally widening rays using bilinear interpolation (a) compared to densely
sampled thin rays (b). Both panels show x-y and z-y sections through the simulated emission cone of a point light
source. The intensities shown are gamma corrected (γ = 5) to allow visualization of the quadratically decreasing
intensities over a large depth range. Simulation parameters: voxel shape: 0.6µm × 0.6µm × 1µm, NA = 0.8,
nimmersion = 1.4729, (a) ray spacing = 6◦. Scale bars: 20µm.
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discrete subset of rays in a fixed angular grid and divide the sum by the number of rays (approx-
imately the fraction of the cone volume each ray descibes). The integral along each ray is again
discretized matching the plane-spacing. In-plane sub-pixel positions are interpolated using bilinear
interpolation in the incremental scheme described in Appendix A.2.2. With this scheme “rays” get
wider with increasing distance from the focal point, which can be regarded as a model for positional
uncertainty with increasing distance to the focal point. As desirable side-effect every voxel in the
(masked) cone contributes to the integral given only a small number of rays. The widening is angle
dependent leading to not perfectly homogeneous cone sampling as shown in Fig. 2.9. This is most
prominent where the rays always exactly hit the image voxels, leading to no ray widening.

We also did experiments with an alternative ray integration scheme that uses thin rays instead of
the widening conic rays of Ronneberger et al. (2012). To still capture all positions within the cone
the ray spacing was reduced to get a dense sampling at the largest cone diameter with respect to the
volume grid (Fig. 2.9b). To obtain thin rays, we first shear the attenuation field so that the integration
direction is the z-direction. We only interpolate twice: once in the shearing transform and once to
get the sub-pixel accurate cone origin in the sheared volume. This alternative dense integration
scheme with thin rays is still an approximation but should yield better reconstructions. However,
the required additional integration directions make it infeasible in practice.

For all experiments we initialized the optimization variables with

∀x ∈ Ω : Îinit (x) := min {I1 (x) , I2 (x)}

∀x ∈ Ω : αinit
ex (x) := αinit

em (x) := 0

∀i = 1, . . . , k : βinit
i := 1 .

In Fig. 2.10 we compare reconstructions using sparse widening rays to dense thin rays on a noise-
free dataset. In the simulation we used dense ray integration to compute the cone transmissions
from the ground-truth attenuations. As baseline we used exactly the same dense integration scheme
for the reconstruction which is shown in the leftmost column of Fig. 2.10. Even in this ideal case
stripe artifacts in the attenuations are visible and a peak signal to noise ratio (PSNR) of 38.99 for
the intensities and 23.10 for the attenuation field was measured. The fast approximation using
incremental interpolations further reduces the PSNR. The reconstruction of the attenuation field
shows cross-shaped artifacts and elongation of structures along the optical axis. Imposing a sparsity
prior improves the reconstruction dramatically in both cases (Figure 2.10 3rd and 4th column).

Fig 2.11 shows the course of the energy, the norm of the gradients projected to the feasible direction,
and the root mean squared errors (rms) of intensities and attenuations using a quasi Newton solver
(L-BFGS-B) for the α update and an analytic coordinate descent in Î direction (Details follow). The
dense ray model did not converge within 1000 iterations. The rms of intensities and attenuations,
however, changed only marginally after 200 iterations. The sparsity prior yields higher energies
that reach the same energy plateau after only 50 iterations for both integration schemes. The strong
changes in the rms of both intensities and attenuations up to the 150th iteration show that a large
range of possible solutions lead to similar energies, which underlines the ill-posedness of the inverse
problem.
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Figure 2.10.: Effects of the integration scheme on the reconstruction of intensities and attenuations. Each column
corresponds to one optimization setup, consisting of the indicated integration strategy. “Dense Rays”: Accurate
cone integration using densely sampled thin rays; “Fast Approx”: The proposed fast approximation using sparse
sampling with conic rays. “sparse”: (µ = 106). PSNR: peak signal to noise ratio compared to the ground-truth
intensities/attenuation fields. Intensities: [0, 65535], intensity differences: [-20000, 20000], attenuations: [0, 0.01],
attenuation differences: [-0.01, 0.01].
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2. Variational attenuation correction

Figure 2.11.: Effects of the integration scheme on (a) energy, (b) norm of the energy gradient projected on the
closest feasible direction, (c) root mean squared error (rms) of reconstructed intensities, and (d) of reconstructed
attenuations. “Dense Rays”: Accurate cone integration using densely sampled thin rays; “Fast Approx”: The
proposed fast approximation using sparse sampling with cone-shaped rays; “sparsity”: µ = 106.

2.4.2. Discrete spatial derivatives of the attenuation field

For Tikhonov-Miller regularization we approximated the gradient of the attenuation field using first
order forward differences ∂α(x)

∂xd
≈

α(x+ed)−α(x)
hd

and the Laplacian as the sum of second order differ-

ences ∆α (x) ≈
∑D

d=1
−α(x−ed)+2α(x)−α(x+ed)

h2
d

.

For total variation regularization we approximated the gradient of the attenuation field using first
order central differences ∂α(x)

∂xd
≈

α(x+ed)−α(x−ed)
2hd

. The discrete numerical approximation to the diver-
gence is an extension of the scheme used by Brox (2005) to 3-D and is given in Appendix A.3.

2.4.3. Optimization

Low memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

Ronneberger et al. (2012) employ the low memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
quasi Newton optimizer contained in the GNU scientific library2 to minimize the energy. They itera-
tively optimize the attenuations α only. At each iteration the corresponding Î is explicitly computed
using (2.15). Negative attenuations are re-projected to the positive half-space of valid solutions in
each iteration.

2http://www.gnu.org/software/gsl
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2.4. Implementation

Figure 2.12.: Comparison of reconstruction results on the textured sphere phantom at convergence of L-BFGS and
L-BFGS-B without regularization (λ = 0) and with strong regularization (λ = 1011). x-y and x-z sections through
the reconstructed intensities (upper rows), and attenuations (lower rows) at convergence are shown. PSNRI/α:
peak signal to noise ratio compared to the real intensities/attenuations.

L-BFGS with box constraints on the variables (L-BFGS-B)

The re-projections can be avoided when using a variant of L-BFGS that internally maintains box
constraints on the optimization variables. They can then already be considered for suppressing
strong gradients pointing out of the positive half-space during the approximate Hessian update. With
L-BFGS-B, Zhu et al. (1997) provide a FORTRAN implementation of the L-BFGS solver including
this extension. When managing the constraints within the optimizer, the energy drops quicker in the
beginning of the optimization but tails off more slowly to finally reach a very similar energy as with
explicit subspace projections (see Fig. 2.12).

Looking at the reconstructions without regularization (λ = 0), strong noise amplification with in-
creasing iteration count becomes visible. With high regularization this effect can be reduced leading
to convincing reconstructions. This small example already shows that even in this comparably well-
posed inverse problem low noise levels require strong priors to reach good reconstruction results.

If not explicitly written, we use L-BFGS-B for all optimizations of α. Linear sub-problems are
solved analytically resulting in an alternating coordinate descent approach. If analytic solutions
require to find polynomial roots we however found that it is more efficient to iteratively solve the
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2. Variational attenuation correction

sub-problem using Newton’s method directly on the derivative instead of computing the polynomial
coefficients and then run a polynomial root solver.

In theory all optimization strategies yield the same optimal solution. However, in practice the re-
sulting reconstructions can differ quite a lot. An extreme case is a full optimization of attenuations
and intensities using L-BFGS-B. Without proper pre-conditioning of the optimization variables the
numerical optimization will not even find an approximate solution to the problem while running
virtually forever. If only the optimization of the attenuations is given to the L-BFGS-B optimizer
in an alternating coordinate descent scheme all variables of each sub-problem are in the same order
of magnitude and the energy minimum is quickly found especially if sub-problems can be solved
analytically or with quadratic convergence order using Newton’s method.

The corresponding algorithm with explicit coordinate descent in the sub-space spanned by Î and β
using Newton’s method is given in Alg. 1.

We analyzed the optimization times of the direct Poisson-Gaussian approximation approach using
L-BFGS-B to optimize the attenuation coefficients and iterative intensity and β update using inner
Newton iterations. We ran the optimization on an Intel Xeon E5-2680 (2.7GHz) Dual-Processor
system with Ubuntu 12.04 operating system. One iteration for data sub-sampled to 75 × 75 × 75
voxels needed on average 1.8 seconds, so a full reconstruction can be computed in the range of a few
minutes. The complexity scales linearly with the number of voxels to process within each iteration
(Fig. 2.13). The memory complexity also scales linearly with the raw data volume (not shown). Both
quantities can be limited by sub-sampling the high resolution raw data. This has two advantages:
First, less computational resources are needed and second, the weighted averaging during the sub-
sampling already considerably reduces image noise. The cone transmission is computed in parallel
for all ray directions leading to a significant speed-up of the confocal microscope simulation if
multiple CPU cores are available. Depending on the random computation order introduced by the
scheduling, the results can slightly deviate from the numbers reported in section 2.5. For real-
world data we observed deviations of the estimated intensities of up to 3% after convergence of the
algorithm. However, these differences are visually not recognizable.

We did not try to compute the polynomial roots analytically, because the computation of the coef-
ficients of the quartic function requires already more operations than twenty times computing first
and second derivatives which are required for the numerical solution using Newton’s method. The
same argument also disqualifies the iterative root solving strategy. We assume (without proof) that
Newton’s method is numerically more accurate compared to direct polynomial root computation,
because the numerical range spanned by the coefficients is huge leading to large round-off errors in
practical computations.

Parameter setup

We want all terms in the energy to have approximately the same influence on the optimization
process. This leads to rough rules of thumb for the selection of λ and µ for the different approaches.
For all models the choice is independent of the number of voxels because all terms in the energy
integrate over the whole image domain.
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2.4. Implementation

Input : I1, . . . , Ik, λ, µ, m / a, σ
Output : α∗ex, α∗em, Î∗, β∗

Î ← min {I1, . . . , Ik}, α← 0, ∀i = 1, . . . , k : βi ← 1, ε ← 10−14 ;
while ¬converged do

Compute E
(
αex, αem, Î,β

)
and δE(αex,αem,Î,β)

δα(x) ;
Do L-BFGS-B step ; // Updates αex and αem

// Coordinate descent in Î and β directions
i← 0 ;
repeat

Eold ← E
(
αex, αem, Î,β

)
;

foreach x ∈ Ω do
// Iteratively compute Î (x) using Newton’s method
j← 0 ;
repeat

δ←
δ

δÎ(x)
E(αex,αem,Î,β)

δ2

δÎ(x)2
E(αex,αem,Î,β)

;

Î (x)← Î (x) − δ ;
j← j + 1 ;

until j = 20 ∨ |δ| < ε ·
∣∣Î (x)

∣∣;
end
for ` ← 1 to k do
// Iteratively compute β` using Newton’s method
j← 0 ;
repeat

δ←
∂
∂β`

E(αex,αem,Î,β)
∂2
∂β`

E(αex,αem,Î,β)
;

β` ← β` − δ ;
j← j + 1 ;

until j = 20 ∨ |δ| < ε · |β`|;
end
Enew ← E

(
αex, αem, Î,β

)
;

i← i + 1 ;
until i = 10 ∨ |Eold − Enew| < ε · |Enew|;

end

Algorithm 1 : Variational attenuation correction with coordinate descent in Î and β2 directions
using Newton’s method.
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2. Variational attenuation correction

Figure 2.13.: The effect of increasing volume sizes on the running time of the algorithm using the fast approximate
cone integration scheme. Measurements (blue circles) were performed on a workstation equipped with two Intel
Xeon E5-2680 CPUs. The linear fit (red line) confirms the theoretical linear complexity of the algorithm in practice.

The Tikhonov Miller (TM) smoothness term contributes the sum of squared gradient magnitudes
of the attenuation field to the energy. On our synthetic datasets the average attenuation gradient
magnitude is approximately ten times smaller than the average attenuation. Using the factor ten as
rule of thumb a choice of λ ≈ 100µ leads to similar contributions of both terms to the overall energy.
For TV regularization, with absolute gradient magnitude contribution in the smoothness term, the
corresponding choice is λ ≈ 10µ.

We know how to choose λ given µ, but we still need to determine a rough estimate for µ. Its choice
depends on the image formation model, but for all models it is the expected residual noise variance
multiplied by the number of recordings k divided by the expected mean attenuation.

For the Poisson-Gaussian model with Poisson weighting m the energy contribution of the data term is
in the order of the squared expected intensity differences between recording and simulation divided
by the Poisson weights. E.g. for intensity data with an expected residual intensity difference of
5 (the standard deviation of the residual noise) and pure Gaussian noise with expected attenuation
coefficients of 0.005 and gradient magnitudes of 0.0005 initial choices of λ = 52

0.00052 = 4 · 108

and µ = 52

0.005 = 5000 (TM), resp. λ = 52

0.0005 = 5 · 104 and µ = 5000 (TV) are appropriate. The
approximate estimates for the expected attenuations and their gradients were empirically confirmed
on real world samples. For higher Poisson weighting m the factors have to be decreased accordingly.
The optimal values depend on the image content and should be optimized for specific types of data.

2.5. Results and Discussion

We first apply all two-view attenuation correction approaches to the synthetic phantoms shown in
Fig. 2.5 generated using the simplified image formation model (2.16) which were already used in
Schmidt et al. (2013a). For all approaches we show the result for the combination of parameters λ,
µ, a/m and σ maximizing the sum of the peak signal to noise ratios (PSNR) of intensities and atten-
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uations. The parameters were empirically determined with an exponential grid search over the pa-
rameters λ ∈

{
0, 100, . . . , 1014

}
and µ ∈

{
0, 100, . . . , 107

}
, a/m ∈ {0, 0.02, 0.05, 0.07, 0.1, 0.5, 1.0}

and σ ∈ {0, 1}. For the real world samples we used a conservative parameter set of λ = 107, µ = 0
and m = 0.1 (Arabidopsis) or λ = 108, µ = 104 and m = 0 (zebrafish) for all experiments with
TM regularization. For the zebrafish experiments with TV regularization we set λ = 5 · 104, µ = 0,
and m = 0. For the real world samples we stopped the iterative process when the visually optimal
reconstruction of the intensities was reached, which was after between 3 to 20 iterations. All results
reported for the synthetic datasets were reached at convergence of the algorithm.

Fig. 2.14 summarizes the influence of the different extensions to the original model of Ronneberger
et al. (2012). If no prior knowledge about the attenuations is introduced, the approach is already
able to reasonably reconstruct the original intensities (Fig. 2.14c). However, the attenuation field
is coarse and cannot be applied to the reconstruction of secondary channels. With regularization
(Fig. 2.14d and e) the attenuation field is much smoother, but especially with Tikhonov Miller regu-
larization strong spurious attenuations outside the sample are estimated. Application of the sparsity
term reduces these attenuation estimates (Fig. 2.14f and g). The residual apparent “bleeding” of the
attenuation coefficients below the sample are the effect of different mean intensities in the top and
bottom recordings, as e.g. introduced by photo bleaching. When additionally estimating β2 during
the optimization, the lower boundary becomes much clearer.

2.5.1. Synthetic Data

Simplified image formation model

As a first baseline measure we computed the best possible outcome of the optimal “one-factor-per-
slice method” using the ground truth intensities of the synthetically generated phantoms. I.e. no
method that assumes that the correction factors are a function of the z-position in the recorded vol-
ume can perform better. The optimal correction factor for each slice was computed by minimizing
the root mean squared error (rmse) of the estimated intensities compared to the true intensities. The
reconstruction error for slice Ωz ⊂ Ω is given by

Ez (c1, c2) :=
2∑

i=1

∑
x∈Ωz

(
ci · Ii (x) − Î (x)

)2
, (2.30)

where the ci ∈ R are the correction factors for the top- and bottom-view and Î are the true intensities.
The corresponding optimal correction factors c1 and c2 can be computed analytically to

ci =

∑
x∈Ωz

Î (x) Ii (x)∑
x∈Ωz

I2
i (x)

. (2.31)

The reconstructions are shown in the second column of table 2.1 and 2.3. In both cases the one-
factor-per-slice model was not able to reconstruct the interior intensities even though the true inten-
sities were given.
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2. Variational attenuation correction

Figure 2.14.: Overview over the extensions to Ronneberger et al. (2012) given two views. (a-b) zy- and xz-sections
of raw confocal stacks (top/bottom); (c) optimal reconstruction without regularization; left: (d) with Tikhonov Miller
regularization (λ = 107); (e) with sparsity (µ = 1000); (f) with bleaching correction (est. β = 0.64); right: (g) with
total variation regularization (λ = 104); (h) with sparsity (µ = 1000); (i) with bleaching correction (est. β = 0.63).
Parts shaded in gray are already implemented in Ronneberger et al. (2012). Scale bars: 200µm.
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Table 2.1.: Reconstruction quality after variational attenuation correction on the textured sphere phantom generated
using the simplified image formation assuming constant bleaching-induced intensity reduction. Best results over
all parameter sets. PSNR = Peak signal to noise ratio compared to the ground truth.

Method Reg. m / a σ λ µ #iter β2 PSNRI PSNRα

Ronneberger et al. (2012) TM 0 1 1011 0 72 1.0 21.26 15.42

Gaussian (2.2.3) TM 0 1 1010 104 115 0.80 34.54 26.20
Anscombe (2.2.4) TM 1 0 107 102 78 0.80 38.54 27.14
Gen. Anscombe (2.2.5) TM 1 1 107 102 70 0.80 39.44 27.12
Poisson-Gaussian (2.2.6) TM 0.07 1 109 103 78 0.80 33.54 27.91
Poisson-Gaussian dyn. (2.2.6) TM 0.5 1 108 102 61 0.80 34.63 28.31

As second baseline we applied the attenuation correction of Ronneberger et al. (2012) to all datasets
and empirically determined the best regularization parameter λ for each of them using the same
parameter range.

The peak signal to noise ratios and corresponding estimated intensities and attenuations of the best
reconstructions for each approach are given in tables 2.1 and 2.3.

Using L-BFGS-B for the optimization in combination with the zero-order bleaching estimation that
perfectly matches the used simplified image formation model clearly outperforms the baseline of
Ronneberger et al. (2012). The models among each other perform very similar with slight preference
for models including Poisson noise statistics. However, the small remaining differences might be
introduced by the parameter sampling. The reconstructions look equally convincing for the Gaussian
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2. Variational attenuation correction

Table 2.2.: Reconstruction quality after variational attenuation correction on the textured sphere phantom generated
using the simplified image formation assuming constant bleaching-induced intensity reduction. Best results with
partial parameter fixation using the generalized Anscombe model. PSNR = Peak signal to noise ratio compared
to the ground truth.

Method Reg. m / a σ λ µ #iter β2 PSNRI PSNRα

Ronneberger et al. (2012) TM 0 1 1011 0 72 1.0 21.26 15.42

Anscombe (2.2.4) TM 1 0 108 0 64 1.0 28.79 15.14
Gen. Anscombe (2.2.5) TM 1 1 108 0 58 1.0 28.80 15.16
Anscombe (2.2.4) TM 1 0 107 0 98 0.80 28.43 27.85
Gen. Anscombe (2.2.5) TM 1 1 107 0 77 0.80 29.05 28.02
Gen. Anscombe (2.2.5) TM 0.5 1 107 0 72 0.80 32.20 26.89
Anscombe (2.2.4) TM 1 0 107 100 78 0.80 38.54 27.14
Gen. Anscombe (2.2.5) TM 1 1 107 100 70 0.80 39.44 27.12

Anscombe (2.2.4) TV 1 0 0 0 36 1.0 27.84 3.28
Gen. Anscombe (2.2.5) TV 1 1 5 · 104 0 590 1.0 18.90 13.65
Gen. Anscombe (2.2.5) TV 0.1 1 104 0 32 1.0 25.56 12.09
Gen. Anscombe (2.2.5) TV 1 0 5 · 104 10 321 1.0 18.76 14.40
Gen. Anscombe (2.2.5) TV 0.1 1 104 0 32 1.0 25.60 12.09
Anscombe (2.2.4) TV 1 0 103 0 201 0.80 32.40 20.78
Gen. Anscombe (2.2.5) TV 1 1 500 0 20 0.80 32.02 21.23
Gen. Anscombe (2.2.5) TV 0.5 1 500 0 40 0.80 37.31 21.03
Gen. Anscombe (2.2.5) TV 1 0 103 100 198 0.80 38.96 20.62
Gen. Anscombe (2.2.5) TV 0.5 1 500 10 33 0.80 38.41 21.31

the Poisson and the Poisson-Gaussian noise models using appropriate parameters.

Including Poisson statistics in the model slightly improves the reconstructions but does not explain
the big gap between the reconstructions obtained using the baseline approach of Ronneberger et al.
(2012) and the proposed extensions. To further investigate the reasons, we systematically enabled
only parts of the extensions. The corresponding results for the generalized Anscombe noise model
are shown in table 2.2 and 2.4.

For both synthetic datasets bleaching estimation significantly increases the PSNR of the estimated
attenuation field. This is obvious, because, if not modeled explicitly, bleaching must be explained
by (at least locally) increased absorption.

Sparsity increases the PSNR of the estimated intensities. We explain this due to the preference
for lower absolute attenuation which suppresses extreme over-estimates in the attenuation field and
therefore stops the optimization if noise amplification becomes too strong. The effect is stronger
for the Shepp-Logan phantom in which background attenuation estimates are actively suppressed.
Therefore, large sparsity factors µ give the best results. The choice of the loss function in the smooth-
ness prior is not as important as expected. However, L2 smoothness leads to the best reconstructions
of the smoothly varying attenuation field of the textured sphere phantom, whereas TV regulariza-
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Table 2.3.: Reconstruction quality after variational attenuation correction on the Shepp-Logan phantom generated
using the simplified image formation model assuming constant bleaching-induced intensity reduction. PSNR =
Peak signal to noise ratio compared to the ground truth.

Method Reg. m / a σ λ µ #iter β2 PSNRI PSNRα

Ronneberger et al. (2012) TM 0 1 109 0 386 1.0 34.30 20.12

Gaussian (2.2.3) TV 0 1 107 107 371 0.80 45.19 24.12
Anscombe (2.2.4) TV 1 0 103 103 424 0.80 43.94 26.08
Gen. Anscombe (2.2.5) TV 0.5 1 104 104 359 0.80 45.91 23.48
Poisson-Gaussian (2.2.6) TV 0.5 1 104 104 231 0.80 45.86 24.42
Poisson-Gaussian dyn. (2.2.6) TV 0.5 1 104 104 312 0.80 45.27 24.89

tion is well-suited for reconstructing the piecewise constant attenuation fields of the Shepp-Logan
phantom.

We evaluated the reconstruction quality with respect to the three parameters λ, µ, and m (TM:
Fig. 2.15a and b, TV: Fig. 2.16a and b). As quality measure we used the root mean squared error
(rmse) of the estimated intensities. We found that the results are stable over a wide range of param-
eters. The parameter having the highest impact on the result is the smoothness weight λ, followed
by the sparsity weight µ and finally the Poisson scaling factor m. We also evaluated the evolution
of the rmse during the optimization process for different choices of the parameters (TM: Fig. 2.15c
and d, TV: Fig. 2.16c and d). For all parameter choices the rmse first decreases rapidly reaching
a very good reconstruction after 30 to 60 iterations (From practical observations we found that for
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2. Variational attenuation correction

Table 2.4.: Reconstruction quality after variational attenuation correction on the Shepp-Logan phantom using the
simplified image formation model assuming constant bleaching-induced intensity reduction. Best results with
partial parameter fixation using the generalized Anscombe model. PSNR = Peak signal to noise ratio compared
to the ground truth.

Method Reg. m / a σ λ µ #iter β2 PSNRI PSNRα

Ronneberger et al. (2012) TM 0 1 109 0 386 1.0 34.30 20.12

Anscombe (2.2.4) TM 1 0 106 0 417 1.0 32.69 17.05
Gen. Anscombe (2.2.5) TM 1 1 106 0 368 1.0 32.02 17.82
Gen. Anscombe (2.2.5) TM 0.02 1 109 0 17 1.0 38.83 17.81
Anscombe (2.2.4) TM 1 0 108 104 246 1.0 40.63 19.49
Gen. Anscombe (2.2.5) TM 1 1 108 104 252 1.0 40.65 19.49
Gen. Anscombe (2.2.5) TM 0.1 1 10 104 24 1.0 42.87 19.23
Gen. Anscombe (2.2.5) TM 1 0 106 0 292 0.82 33.84 22.21
Gen. Anscombe (2.2.5) TM 1 0 106 103 256 0.80 42.94 26.32
Gen. Anscombe (2.2.5) TM 0.5 1 107 104 41 0.80 45.95 23.41

Gen. Anscombe (2.2.5) TV 1 0 5 · 104 0 2764 1.0 38.38 17.93
Gen. Anscombe (2.2.5) TV 1 1 5 · 104 0 818 1.0 38.82 18.03
Gen. Anscombe (2.2.5) TV 1 0 5 · 103 103 171 1.0 43.24 19.58
Gen. Anscombe (2.2.5) TV 0.5 1 104 104 97 1.0 44.34 20.50
Gen. Anscombe (2.2.5) TV 1 0 100 0 269 0.81 36.28 24.05
Gen. Anscombe (2.2.5) TV 1 0 103 103 424 0.80 43.94 26.08

real world data the optimum is reached earlier). Beyond that point image noise amplification and
boundary effects lead to an increase in the rmse for TM regularization. For high TV regularization
the attenuations are well localized within the sample volume and therefore no significant attenua-
tions are estimated at the boundaries. This results in monotonically decreasing rmses with small
local fluctuations.

Full image formation model

We applied all approaches (besides the one-factor-per-slice model) to the phantoms that were gener-
ated using the full image formation model with different attenuation fields for excitation and emis-
sion wavelength and more realistic bleaching. The best results from the grid-search are shown in
table 2.5 and 2.6. Again, modeling of Poisson noise statistics slightly improves the reconstruc-
tions. The overall difference to the baseline is not as big, though, because the modeled bleaching is
comparably mild with an average intensity reduction of only 5%.

With the full model we simulated two recordings from both sides, therefore we could also apply
the multi-view approach with structured illumination. We expected an improvment especially in the
reconstruction of the attenuation fields which was confirmed in the reconstructions of the Shepp-
Logan phantom. However, the overall reconstructions of the intensities are slightly worse compared
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Table 2.5.: Reconstruction quality after variational attenuation correction on the textured sphere phantom generated
using the full image formation model. PSNR = Peak signal to noise ratio compared to the ground truth; G. A.:
Generalized Anscombe; P-G: Poisson-Gaussian; +fl: structured illumination approach estimating two indepen-
dent attenuation fields.

Method Reg. m / a σ λ µ #iter β2 PSNRI PSNRαex PSNRαem

Ronneberger et al. (2012) TM 0 1 1012 0 78 1.0 37.66 18.76 16.61

Gaussian (2.2.3) TM 0 1 1011 106 131 0.93 40.75 19.64 17.63
Anscombe (2.2.4) TM 1 0 108 103 67 0.94 41.47 20.63 18.69
Gen. Anscombe (2.2.5) TM 5 10 107 100 75 0.94 40.76 20.59 18.48
Poisson-Gaussian (2.2.6) TM 5 10 107 100 62 0.94 41.28 20.38 18.84
Poisson-Gaussian dyn. (2.2.6) TM 5 10 107 100 55 0.94 41.22 20.37 18.84

Gen. Anscombe (2.2.8) TM 1 0 109 104 59 0.94 38.56 19.69 17.87
Poisson-Gaussian dyn. (2.2.8) TV 5 10 10 100 24 0.94 38.51 18.70 17.43
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2. Variational attenuation correction

Table 2.6.: Reconstruction quality after variational attenuation correction on the Shepp-Logan phantom generated
using the full image formation model. PSNR = Peak signal to noise ratio compared to the ground truth; G. A.:
Generalized Anscombe; P-G: Poisson-Gaussian; +fl: structured illumination approach estimating two indepen-
dent attenuation fields.

Method Reg. m / a σ λ µ #iter β2 PSNRI PSNRαex PSNRαem

Ronneberger et al. (2012) TM 0 1 1010 0 283 1.0 41.69 18.55 18.27

Gaussian (2.2.3) TM 0 1 1010 106 200 0.96 45.27 20.91 18.97
Anscombe (2.2.4) TV 1 0 103 100 100 0.96 47.19 20.71 19.17
Gen. Anscombe (2.2.5) TM 5 10 106 100 109 0.95 45.70 21.34 19.37
Poisson-Gaussian (2.2.6) TV 5 10 50 10 629 0.94 45.56 21.47 19.37
Poisson-Gaussian dyn. (2.2.6) TV 5 10 50 1 366 0.96 47.58 21.00 19.31

Gen. Anscombe (2.2.8) TV 1 0 103 103 400 0.94 46.28 22.25 19.75
Poisson-Gaussian dyn. (2.2.8) TV 5 10 50 10 725 0.95 42.86 22.84 20.09
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Figure 2.15.: Effects of different choices for λ, µ, and m on the rmse of the reconstructed intensities of the textured
sphere using TM regularization. (a) Effect of different combinations of λ and µ on the reconstruction. Residual
parameters: m = 0.05, nIter = 50. (b) Effect of different combinations of λ and m on the rmse of the reconstruction.
Residual parameters: µ = 0, nIter = 50. (c) Evolution of the rmse of the intensities during the iterative process for
different choices of λ. Residual parameters: µ = 0, m = 0.05. (d) Evolution of the rmse of the intensities during
the iterative process for different choices of m. Residual parameters: λ = 107, µ = 0.

to the two-view approaches, which only assume one wavelength-independent attenuation field. For
the textured sphere neither the results for intensities nor attenuation fields could be improved. One
explanation is, that the added measurements with partially closed aperture contain redundant infor-
mation and they are much noisier compared to the primary recordings with fully opened aperture
diaphragm. Additionally, changing the aperture geometry requires very fine cone sampling. We
decreased the angular spacing to two degrees and used thin rays for the reconstructions. Dense
sampling would further improve the results but is, as already discussed, infeasible in practice.

2.5.2. Danio rerio (Zebrafish)

Additionally to the result shown in Fig. 2.3, we applied our method to other zebrafish samples
with varying staining quality. The reconstructions with Tikhonov Miller regularization are shown in
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Figure 2.16.: Effects of different choices for λ, µ, and m on the rmse of the reconstructed intensities of the textured
sphere phantom using TV regularization. (a) Effect of different combinations of λ and µ on the reconstruction.
Residual parameters: m = 0.05, run to convergence. (b) Effect of different combinations of λ and m on the
reconstruction. Residual parameters: µ = 0, run to convergence. (c) Evolution of the rmse of the intensities
during the iterative process for different choices of λ. Residual parameters: µ = 0, m = 0.05. (d) Evolution of the
rmse of the intensities during the iterative process for different choices of m. Residual parameters: λ = 5 · 104,
µ = 0.

Fig. 2.17 and for total variation regularization in Fig. 2.18. The estimated attenuation coefficients
clearly resemble the shapes of the embryos. The bright spots in the eyes stem from strong refraction
in the eyes’ lenses showing the modeling limitations of the presented approach. However, due to the
imposed priors the artifact is localized in a small region and affects the surrounding reconstruction
only marginally.

Fig. 2.19 shows a comparison of the proposed direct Poisson-Gaussian approach to the one-factor-
per-slice model and the baseline approach of Ronneberger et al. (2012) for one fish. For the baseline
of Ronneberger et al. (2012) we set λ = 107, for the proposed approach we used λ = 107, µ = 103

and m = 0. The one-factor-per-slice model is not able to recover the intensity spectrum since it can-
not change the ratio between the boundary and interior intensities. In the brain region of the fish the
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2.5. Results and Discussion

Figure 2.17.: Result of the application of the proposed method to four challenging samples of the ViBE-Z database
(TM regularized, λ = 108, µ = 104, m = 0). Each panel shows: top: yz- and xz-cuts through zebrafish recordings
from top and bottom; middle: Reconstructed intensities; bottom: Estimated attenuation coefficients. Colored lines
indicate cut positions of the corresponding views. Scale bars: 200µm.

baseline and the proposed approach estimate the same intensities, whereas the proposed approach
emphasizes the tissue layers in the zebrafish eyes stronger. The proposed approach shows slightly
smaller intensity overshoots at the eyes’ surfaces and around the nose but overall both reconstruc-
tions are convincing. The apparent ventral “bleeding” of the attenuation coefficients is reduced. The
stair-casing artifacts along the back of the fish in the baseline approach which were introduced with
the orthogonal subspace projections are effectively removed.
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2. Variational attenuation correction

Figure 2.18.: Result of the application of the proposed method to four challenging samples of the ViBE-Z database
(TV regularized, λ = 5 · 104, µ = 0, m = 0). Each panel shows: top: yz- and xz-cuts through zebrafish recordings
from top and bottom; middle: Reconstructed intensities; bottom: Estimated attenuation coefficients. Colored lines
indicate cut positions of the corresponding views. Scale bars: 200µm.

2.5.3. Arabidopsis thaliana (Thale cress)

The mismatch in refractive indices of immersion and embedding media in the Arabidopsis sample
preparation leads to an aberration induced signal loss, that is not modeled in the presented approach.
However, Fig. 2.20 shows that our method still accurately reconstructs the intensities of the root tip
datasets.

Fig. 2.21 shows a comparison of the proposed approach to the one-factor-per-slice model and the
baseline approach of Ronneberger et al. (2012) for one root tip. Again the one-factor-per slice
model cannot reconstruct the interior intensities. Both, the approach of Ronneberger et al. (2012)
and the proposed direct Poisson-Gaussian model significantly enhance the root-internal contrast.
However, an intensity gradient towards the root center remains visible. We assume, that it is induced

52



2.5. Results and Discussion

Figure 2.19.: Comparison of the proposed direct Poisson-Gaussian estimate with Ronneberger et al. (2012) and the
one-factor-per-slice model on one zebrafish dataset. Each panel shows xy-, xz- and zy-cuts through the volume.
The cut positions are indicated by colored lines. (a) Raw recording with scaled intensities to match the intensities
of the reconstruction on the eye surface. (b) Averaged intensity and attenuation profiles along the y-direction
of the xy cuts. Cut positions and averaging width are indicated by colored bars. (c) Baseline reconstruction
Ronneberger et al. (2012). (d) Proposed method. Scale bars: 200µm.
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2. Variational attenuation correction

Figure 2.20.: Attenuation Correction on Arabidopsis thaliana images. Result of the application of the proposed
direct Poisson-Gaussian model to four Arabidopsis root tip samples (TM regularized, λ = 107, µ = 0, m = 0.1).
Each panel shows: top: yz- and xz-cuts through Arabidopsis root tip recordings from top and bottom; middle:
Reconstructed intensities; bottom: Estimated attenuation coefficients. Colored lines indicate cut positions in the
corresponding views. Scale bars: 100µm.
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2.5. Results and Discussion

Figure 2.21.: Comparison of the direct Poisson-Gaussian model with Ronneberger et al. (2012) and the one-factor-
per-slice model on one Arabidopsis root tip dataset. Each panel shows xy-, xz- and zy-cuts through the volume.
The cut positions are indicated by colored lines. (a) Raw recording with scaled intensities to match the intensities
of the reconstructions at the root boundary. (b) Averaged intensity profiles along the y-direction of the xy cuts.
Cut positions and averaging widths are indicated by colored bars. (c) Baseline reconstruction Ronneberger et al.
(2012). (d) Proposed method. Scale bars: 100µm.
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2. Variational attenuation correction

by imperfect marker distributions due to incomplete tissue penetration and the properties of the
inner cell membranes. The estimated attenuation field closely resembles the root’s shape and is
homogeneous compared to the baseline approach. The baseline approach shows strong variation
within the root and additionally estimates strong attenuation outside the root volume to cope with
bleaching effects. Such erroneous attenuation estimates may lead to reasonable reconstructions of
the intensities of the channel they were estimated on, but they will fail in reconstructing secondary
channels containing the markers to quantify like protein patterns.

2.5.4. Limitations

The exponential decay model along a ray is only strictly valid for pure absorption. In most cases
local random light scatter can also be described by this model. However, in areas with clearly
structured refraction, as e.g. in the eyes of the zebrafish, where the light is actively bundled, the
model is violated and localized errors in the attenuation estimates are introduced. We minimize the
influence of these errors with high regularization, however, a better modeling of refraction would be
a desirable – though practically very challenging – extension.

Another source of error is the limited recording volume. Samples exceeding this volume introduce
the problem of sensibly guessing the outside attenuations the rays pass before entering the recording
volume. Boundary effects can lead to solutions with low energies which are qualitatively far away
from the optimum, especially when performing many iterations. In our image formation model
we assume zero outside attenuations (natural boundary conditions), while for the regularization we
assume Neumann boundary conditions. If possible, the recording volume should be increased to
contain more background in cases of boundary problems. If this is not possible TV regularization
with its sharp boundaries is to prefer over TM regularization. Additionally a high weight on the
sparsity term alleviates effects that lead to extreme attenuation estimates. This can be the case
when outside attenuations are explained by a thin highly absorbing region at the image boundary.
An alternative, that leads to visually good, but energetically suboptimal results, is to restrict the
number of iterations (less than ten iterations usually lead to qualitatively good results). This has the
additional advantage of very low computation times.

2.6. Conclusions

We could significantly improve the results of the variational attenuation correction of Ronneberger
et al. (2012) by additionally modeling photo bleaching in a zero-order approximation. The mod-
eled Poisson-Gaussian noise statistics had only minor impact on the reconstructions. While in the
phantoms a small quality increase is still measurable in practice the Gaussian model leads to equally
plausible results. The choice of the loss function in the smoothness term allows to choose between
smoothly varying (TM) or piece-wise constant (TV) attenuation fields. The appropriate choice is
application dependent. In our case both regularization strategies lead to equally plausible results in
the rather inhomogeneous biological samples analyzed. TV regularization is more stable in prac-
tice because the attenuation is much better localized, and therefore less boundary artifacts – that
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may lead to convergence to undesired solutions – are introduced. For both regularization strategies
the sparsity term also actively avoids boundary errors, by keeping the attenuation field compact.
However, high sparsity weights lead to an underestimation of the attenuation volume and should be
avoided.

As we could observe in Fig. 2.15 lower energy results do not guarantee good reconstructions. The
energy first rapidly drops while properly estimating attenuations and intensities. In these first it-
erations the model is accurate enough to point the optimization in the right direction. Later in the
optimization imperfections of the model and numerical inaccuracies may dominate, leading to con-
vergence to undesired solutions. Therefore limiting the number of iterations often leads to better
reconstructions. Similar behavior can be observed for other inverse problems as well (e.g. Keuper
et al. (2013) in image deconvolution). For the presented synthetic data fifty iterations were a good
compromise to reach high PSNR results, whereas, for our real world examples reconstructions after
less than ten iterations were visually most convincing.

We showed the efficacy of the presented method on highly complex real world examples, where it
was able to significantly increase the homogeneity of the measured signal and attenuation fields.
This is crucial if the attenuation field is used to correct secondary channels containing sparse struc-
tures within the anatomy. Based on these findings, we conclude that the presented attenuation
correction approach is an important step towards the quantification of confocal microscopic data.
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3. The intrinsic Root Coordinate System
(iRoCS)

Most current approaches for the analysis of the Arabidopsis root architecture and development are
restricted to the central longitudinal 2-D root slice (Santuari et al., 2011; Federici et al., 2012). For
many analyses this is sufficient, assuming perfect rotational root symmetry. Even with slight imper-
fections many valid conclusions can be drawn from analyzing one plane only. However, obtaining
an image of the central root slice without imaging the whole 3-D root geometry is a challenge in
itself. Very careful preparation is required to mechanically fix the root perpendicular to the opti-
cal axis without pressing it. To circumvent the mechanical fixation problem, Santuari et al. (2011)
recorded full 3-D stacks of roots, then manually fitted a B-spline surface to the central longitudinal
plane of each of them and rendered 2-D images of those planes for further analysis. Although all
data for a full 3-D analysis were available 90% of the recorded data were not analyzed due to a lack
of tools to perform such 3-D analyses. Besides this waste of valuable data, manual choice of the
plane may introduce an experimental bias, e.g. when analyzing the distribution of cell divisions in
the root tip, sections containing many divisions are selected. When analyzing the whole root vol-
ume instead, all events are captured, and especially in the case of rare events, like mitoses, statistical
conclusions drawn are of much higher significance given the same number of root samples.

In this chapter we will present our approach to the automatic analysis of confocal 3-D image
stacks of the Arabidopsis root tip to quantify key events in the root context. For this we de-
scribe the root geometry in the intrinsic Root Coordinate System (iRoCS) which maps any Eu-
clidean recording position p = (p1, p2, p3) ∈ Ω to a unique anatomic coordinate (z, r, ϕ, layer,file) ∈
R × R+ × [0, 2π) × N × N, where z is the signed distance to the quiescent center along the root
axis, r is the radial distance perpendicular to the axis, ϕ is the angle around the axis, layer is the
cell layer index and file is the cell file index (Fig. 3.1). The model enables pooling of detected key
events in individual roots of different plant populations and compare those populations to each other.
We developed automated image processing pipelines to compute this mapping (except for cell file
classification) based on different anatomical reference structures: cell nuclei and cell boundaries
(walls/membranes) (Fig. 3.2).

Outline

In section 3.1 we give a brief description of the Arabidopsis root tip anatomy and of the signaling
process we analyze in section 3.5. We will compare different approaches to detect nuclei in 3D
images of fixed, DAPI-stained root samples in section 3.2 and present a general approach allowing
to adapt the detector to different tasks by supervised training. There we also briefly introduce the
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3. The intrinsic Root Coordinate System (iRoCS)

QC

Figure 3.1.: The intrinsic Root Coordinate System (iRoCS). Gray: 3D rendering of a DAPI stained root tip cut along
a bent longitudinal plane; Colored spheres: Sample nuclei; Colored Shells: Cell layers; White annotations: The
bent cylinder coordinate system fitted to the root.

cellular segmentation which is the first step in the cell boundary based pipeline that was developed
by Kun Liu. Then, in section 3.3.2 we will describe a variational approach to fit a bent cylinder
with varying thickness to measured sparse and noisy surface points. This fit, in conjunction with
the manually given quiescent center position, form the continuous coordinate axes of iRoCS. A
description of the root in cylinder coordinates was already introduced by Sena et al. (2011), who
analyzed nuclear motion in Arabidopsis root tips. Based on appearance cues and its normalized
position in the root, the discrete dimension “cell layer” is finally assigned to each cell. Additional
manual annotations are possible which allow to further distinguish cell files and if required even
single cells.

3.1. The Arabidopsis root

The root tip architecture is depicted in Fig. 3.3. The segmentation and layer labels in Fig. 3.3b-c
result from applying the iRoCS pipeline to a propidium iodide (PI) stained root. Classification errors
(less than 10% of all cells) were manually corrected and cell sub-types (initial cells, columella/lateral
root cap, T/AT cells and the different cell types in vasculature) were labeled manually.

The used terminology and definition of the Arabidopsis root architecture in the upcoming sections
mainly follow Scheres et al. (2002); Cederholm et al. (2012).
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3.1. The Arabidopsis root

Cell/Nucleus detection Axis fitting Classification

Figure 3.2.: The iRoCS pipelines. Top: Nucleus-based pipeline; bottom: cell-boundary based pipeline. Both
pipelines consist of three steps: Structure detection/segmentation; registration of a bent cylinder coordinate
system; assignment of discrete layer labels to the individual cells/nuclei. The only required input is the position of
the root’s quiescent center, marking the coordinate origin of iRoCS.

3.1.1. Developmental zones (longitudinal)

The origin of all root cells is the quiescent center (QC) consisting of four rarely dividing initial
cells (short: initials) at the apex of the root apical meristem. In the further course of this theses all
measures will be given relative to the QC position.

The main root can be subdivided into different longitudinal zones. Starting from QC, these are the
root apical meristem (MZ or RAM) (≈ 350µm), a transition zone (TZ), the elongation zone (EZ),
the differentiation zone (DZ) and the mature root.

MZ (Meristematic zone (RAM)) The meristematic zone consists of a few thousand short undiffer-
entiated cells. Within the RAM new cells are produced via patterned cell divisions. Nuclei
within the RAM can be visually clearly distinguished from nuclei of differentiated cells. Their
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3. The intrinsic Root Coordinate System (iRoCS)
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Figure 3.3.: The Arabidopsis thaliana root architecture. (a) Longitudinal section through a DAPI stained Arabidopsis
root tip. The developmental zones are marked with colored bars. MZ = meristematic zone, EZ = elongation zone,
DZ = differentiation zone, STN = Stem cell niche. (b) Sketch of a longitudinal section showing the different cell
types. (c) Sketch of a transversal section. Black lines indicate cell membranes. Epidermis is subdivided into cells
that potentially produce root hairs (Trichoblasts T) and cells that cease this possibility (Atrichoblasts AT).

chromosomes are almost completely unfolded into a homogeneous distribution of chromatine
within the nuclear volume. Besides the chromatine they contain, with few exceptions, one
big nucleolus, which is roughly centered in the nucleus. With DNA stain this gives the nu-
clei a characteristic appearance of bright roughly ellipsoidal shells containing a centered dark
sphere, the nucleolus. Especially towards the root center the nuclear appearance changes
slightly. Nuclei become elongated and in few cases multiple nucleoli can be observed.

EZ (Elongation zone) Rapid longitudinal elongation of cells in the elongation zone is the main
factor of root growth. Within EZ no further cellular divisions can be observed and the cells
start to take on their final fate. DNA is still copied in many cells, leading to polyploid nuclei,
which loose their ability to divide. Cells elongate from initial lengths of 10 to 15µm up to
100µm and more upon maturation.
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3.1. The Arabidopsis root

DZ (Differentiation zone) Within the differentiation zone cells change their architecture to fulfill
their final purposes, which are anchorage of the plant in soil, water and nutrient uptake and
transport towards the shoot, and sugar and photosynthesis product transport towards the root
tip. For this, several different cell types are produced which are detailed in the following
subsection. Visually the starting point of the DZ can be clearly determined by the outgrowth
of root hairs. During maturation, cells do not reproduce any more. Only parts of the DNA
need to be read-out, therefore mature nuclei contain compact chromosomes and unfolded
DNA (chromatine), giving the nuclei an inhomogeneous appearance. The nucleoli become
very small. Sometimes their size drops below the resolution limit of optical imaging methods
and therefore they seem to disappear completely. Only few cells in the DZ are still potent to
divide for the purpose of secondary lateral root formation. Lateral roots – once their stem cell
niche is established – show the same architecture as the primary root. All experiments within
this thesis were performed on the primary root.

3.1.2. Tissue types (transversal)

The root cap consists of two parts, the columella distal from QC and the lateral root cap which
acts as a protecting shell around the RAM. Adjacent to the four QC cells are the initial cells for
the inner root tissues and the root cap. One can distinguish three types of initial cells, the col-
umella initials apical to the QC, the root cap/epidermis initials, forming the outer cell layers and
the cortex/endodermis initials, forming the inner cell layers, the so-called ground tissue. Root
cap/epidermis and cortex/endodermis intials first perform an anticlinal cell division resulting in
two adjacent cell layers, namely lateral root cap and epidermis, resp. cortex and endodermis. All
subsequent divisions are periclinal and produce two daughter cells in longitudinal direction. This
stereotypic division pattern leads to single strings of cells originating from the same initial cell.
These strings, during the rest of the thesis called files, make up the cell layers which fulfill different
tasks upon differentiation. As already enumerated layers are the lateral root cap, epidermis, cortex,
endodermis, and pericycle. The residual interior cells are the (pro-)vasculature. The lateral root cap
peels off at a distance of approximately 350µm from QC, marking the transition zone.

A closer look at the epidermis allows to further refine the model and distinguish two groups of cells.
In the mature root some of the files produce root hairs (trichoblasts), and the others do not. Cells
potentially producing trichoblasts are called trichoblast cells (T) the others atrichoblast cells (AT).
The higher cell density in T cell files compared to AT cell files allows to distinguish them already
in the RAM prior to root hair formation. Trichoblasts fulfill two purposes, first they anchor the
plant in soil, and secondly they lead nutrients and water into the root. Overall the epidermis consists
of around 20 cell files, eight of them having the potential to produce trichoblasts. The signaling
pathways leading to these distinct fates are not fully understood, but T cells always attach to cortex
cells of two cell files, whereas AT cells only attach to one.

In the wild type, the cortex cell layer is made up of eight cell files. It consists of very large cells,
allowing to easily distinguish this layer from others in transversal root sections.

The endodermis also consists of eight cell files. In DAPI stained root tips this layer sometimes
pops out due to strong cytoplasmic fluorescence emission. Whether this signal increase is a result
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of higher cell organelle density, of which some have their own DNA content, or an effect of lower
rinsing efficiency due to lower permeability of the membranes, is not clear. The latter assumption
is strengthened by the fact that the root-internal flux is inverted at the inner membrane of this layer.
More details on the flux within the root apical meristem will be given in section 3.1.3.

The pericycle cell layer consists of approximately 15 cell files of comparably small cells. In contrast
to the other cell layers some cells of this layer keep their stem cell property even in the MZ. This is
important for root branching, since differentiated cells cease their ability to divide.

The number of cell files in the inner root tissue, the vasculature, is variable. However, it shows
a clear two-fold symmetry. A small number of vasculature files produce the medial xylem sheet
dividing the vasculature into two halves. In the RAM they pop out because of their large cell and
nucleus size compared to the surrounding procambial cells. During maturation they elongate to
thin tubules which are responsible for rapid water and nutrient transport towards the shoot. At the
vascular poles perpendicular to the xylem sheet are the phloem files, which upon differentiation
lead photosynthetic products like sugars, RNA, proteins and others towards the root tip. Before
maturation phloem cells are small with very condensed nuclei with tiny nucleoli, which allows to
easily distinguish them from the surrounding cell files.

3.1.3. Root growth control

Root growth requires first, production of new cells via cell division in the RAM and secondly,
cellular elongation in the EZ. Whether a cell is dividing or elongating is controlled by different
factors of which only some are known. One very important factor is the plant hormone auxin
(mostly lndole-3-acetic acid (IAA)) forming a longitudinal concentration gradient in the Arabidopsis
root tip. This gradient is maintained by auxin influx and efflux carriers which are membrane-bound
proteins regulating cell-to-cell auxin flux in the RAM. The maximum auxin concentration is found
apical to QC in the columella initials where the influx from stele is redirected (inverted) to the
ground tissue. One known auxin influx carrier is AUX1 which carries auxin directly from the shoot
towards the root through the vascular parenchyma. Known auxin efflux carriers are the family of
pinformed proteins (PINs) of which eight types can be found in Arabidopsis at different locations in
the root tip. Four PINs, 1, 3, 4 and 7, are located in the stele and act redundantly (Friml et al., 2002;
Teale et al., 2006), whereas another, PIN2, mediates the epidermal flow of auxin away from the root
tip to influence the root’s gravitropic response (Müller et al., 1998).

3.2. Detection and segmentation of cells and nuclei

One important task in the analysis of biological image data is the detection of structures of interest.
These may be simple geometric structures like planes, plane intersections or spots, but also more
abstract ones like cell outlines, nuclei or organelles. The kind of detector to apply depends on the
type of structure to extract. The quality of the results mainly depends on the proficiency of the expert
in selecting the right pre-processing steps and detector. Often this choice is not straight forward and
requires some creativity to cope with the different visual appearances of high-level structures.
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Figure 3.4.: Cross-section through a DAPI stained Arabidopsis root tip after colchicine treatment (left), and examples
of nuclear morphologies (right). Cell boundaries are manually annotated. There are five prominent classes of
nuclear appearance. Each panel shows one volume rendering and three orthographic views of a typical nucleus.

3.2.1. Nucleus detection

Nuclear morphology varies depending on the cell’s developmental state and final fate. This is al-
ready visible in the RAM and becomes clearer with cell differentiation. Therefore giving a uniform
description of how a cell nucleus looks like is not straight forward. Figure 3.4 gives an impression
of this variation restricted to the RAM which is of special interest for developmental studies.

If not indicated otherwise, results reported within this thesis were obtained on fixed root tip samples
recorded using confocal microscopy. To make the nuclei emit fluorescent light under UV excitation
they were marked with 4’,6-diamidino-2-phenylindole (DAPI) (Kapuscinski, 1995). DAPI directly
binds to DNA and targets regions with high adenine-thymine (A-T) bond density. For undifferenti-
ated nuclei within the RAM this leads to the characteristic appearance of bright spherical structures
enclosing a dark roughly concentric dark sphere – the nucleolus. An exception are dividing cells
that can have very different nuclear appearances depending on their mitotic state. In section 3.5 we
will use iRoCS to compare mitosis distributions. To allow such a comparison with comparably few
roots we treated the plants with colchicine one hour before fixation. Colchicine inhibits the chro-
mosome separation in anaphase by degrading the microtubules responsible for proper chromosome
transport. This has two nice effects for the analysis. First, mitoses become trapped in metaphase and
accumulate over the incubation period leading to many more samples for the statistical analysis, and
secondly the dense unorganized “chromosome balls” that are formed can be easily distinguished
from surrounding stem cells. Only differentiated root cap nuclei show similar appearance and can
be confused with mitoses in regions with low signal to noise ratio. Compared to the entire duration
of the cell cycle (approx. 24h) the incubation period was chosen very short to avoid side-effects.
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3. The intrinsic Root Coordinate System (iRoCS)

The almost perfectly spherical nucleolus of interphase nuclei in stem cells seems to be a very robust
feature for nucleus detection and there exist several detectors that are able to robustly recognize
spheres in dense gray value data. In this section we will introduce two specific approaches explic-
itly designed for the detection of spherical structures. First, a matched filter approach is examined,
namely the Laplacian of Gaussian (LoG) blob detector as e.g. used by Lowe (2004) in the popular
SIFT detector. Secondly, 1-point vectorial invariants which are specifically designed to detect con-
centric spheres with two strong intensity changes (Schulz et al., 2006) are evaluated. Finally we will
present a more general filtering approach, that can be adapted to the detection of arbitrary structures
after supervised training.

Matched filter-based nucleus detection

To obtain the nuclear positions one can try to optimally fit a nuclear model to the observed gray
values. A very simple model for a dark sphere on light background is the isotropic second derivative
of a Gaussian function (Laplacian of Gaussian)

LoGσ (x) :=
D∑

d=1

∂2

∂x2
d
Nσ (x) (3.1)

where D is the dimensionality (e.g. 3 for a sphere detector) and Nσ : RD → R is the mean-
free D-dimensional normal distribution with isotropic standard deviation σ ∈ R+. The LoG is
the trace of the Hessian matrix of a normal distribution. In the literature the normal distribution
is often replaced by a Gaussian function without unit integral normalization. Blob-like structures
of matching radius lead to local maxima in the filtering result. Variation of the standard deviation
allows to adapt the filter to structures with different radii. Alternatively, σ can be fixed and the
filter applied to scaled images. Lowe (2004) employ this in their well-known difference of Gaussian
(DoG) approximation to the multi-scale LoG. Instead of explicitly computing the LoG filters, they
simply apply Gaussian filters with increasing standard deviation to the input image, leading to a
Gaussian scale-space. Then, they approximate the LoG by the difference of subsequent image scales.
To increase performance they gradually reduce the image size which is possible without loss of
significant information after applying a Gaussian filter with sufficiently high standard deviation.

The LoG filter is the sum of axis-aligned second derivatives of a Gaussian, therefore the structure
radius can be given analytically as the distance of the zero-crossing of the linear combination of the
corresponding degree two Hermite polynomials to the origin.

The (scale-normalized) Hermite polynomials are recursively defined as

H̃0 (x) := 1

H̃1 (x) :=
1
σ2 x

H̃n+1 (x) :=
1
σ2

(
xH̃n (x) − nH̃n−1 (x)

)
.
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3.2. Detection and segmentation of cells and nuclei

The n’th Gaussian derivative is the n’th Hermite polynomial weighted by a Gaussian envelope with
alternating sign:

dn

dxnNσ (x) =
dn

dxn
1
√

2πσ
e−

x2

2σ2 = (−1)n H̃n (x) · Nσ (x) . (3.2)

Since the envelope does not change the zero-crossing position, we can disregard it in the following
calculations. We also exploit the rotational symmetry of the LoG and restrict our search for the zero-
crossing to the direction of the first unit vector. With these simplifications the problem becomes

D∑
d=1

1
σ2

(
1
σ2 x2

i − 1
)
∀i,1:xi:=0

=
1
σ4 x2

1 −
D
σ2 = 0 . (3.3)

r := x1 =
√

Dσ fully defines the zero level set of the function and corresponds to the structure
radius leading to maximum filter response.

To make the “Laplacian of Gaussian” functions comparable among different scales their responses
are scale-normalized by multiplying the variance of the underlying Gaussian.

Vectorial invariants

In Schulz et al. (2006) we developed features directly adapted to nucleus detection in confocal
recordings of DAPI stained tissue. They are based on haar features that are invariant against rotations
by integrating over the rotation group O3 which is represented by rotation matrices R ∈ R3×3. The
vectorial invariant F (I, x0, r) ∈ R at position x0 for structure radius ‖r‖ ∈ R+ in the recorded
intensity image I is computed as

F (I, x0, r) :=
∫

O3

R−1 (∇I) (Rr − x0)
‖(∇I) (Rr − x0)‖

·
r
‖r‖

dR .

Due to the integration over O3 the direction of r is irrelevant and we always choose r := (‖r‖ , 0, 0)>.
Large feature magnitudes indicate that the majority of gradients on the sphere surface with radius ‖r‖
around position x0 point in radial direction away or towards x0. If pointing towards x0 feature values
are negative and when pointing away from x0 they are positive. Starting from the nucleolus center,
DAPI stained stem cell nuclei contain a dark-to-bright transition from nucleolus to chromatine and
a bright-to-dark transition from chromatine to cytoplasm. We exploit this structural knowledge by
computing the minimum and maximum feature values F−, F+ and corresponding radii R−,R+ for a
fixed set of search radii ‖r‖ ∈ {0.5, 1.0, . . . , 6.0} µm

F− (I, x0) := min
‖r‖

F (I, x0, r)

R− (I, x0) := arg min
‖r‖

F (I, x0, r)

F+ (I, x0) := max
‖r‖

F (I, x0, r)

R+ (I, x0) := arg max
‖r‖

F (I, x0, r) . (3.4)
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3. The intrinsic Root Coordinate System (iRoCS)

In the concrete implementation, we approximate the image gradients with central differences after
application of a Gaussian filter with standard deviation σ = 0.5µm for noise suppression.

The described invariants are closely related to the generalized Hough transform for spheres (Ballard,
1981). However, the gradient-based voting allows much faster computation and is very memory
efficient due to the lower-dimensional hough space. We could show that these features are able to
successfully detect many nuclei. Besides nuclear localization, R+ (I, x0) also gives a rough estimate
of the radius of a nucleolus located at x0. Schulz et al. (2006) interpreted F− and F+ as independent
probabilities. The joint probability of both voting directions leads to high precision and recall for
stem cell nuclei, however for differentiated nuclei and in vasculature the detection rate drops quickly
(Fig. 3.5, blue line).

Trainable filters for nucleus detection

Both introduced approaches to nucleus detection allow to detect a majority of nuclei in the RAM,
however they only allow to successfully detect roundish nuclei. They perform bad in the detection
of elongated nuclei, e.g. in provascular tissue or the lateral root cap.

We therefore developed a trainable approach that learns nuclear morphologies from manually anno-
tated roots, resulting in an optimally adapted filter for nucleus detection in the Arabidopsis RAM.
The basic idea is to extract a set of invariant features for positive and negative samples and then
train a discriminative classifier that is applied to all voxels of a dataset. For classification we use a
soft-margin support vector machine (SVM) with RBF kernel (Vapnik, 1998; Schölkopf and Smola,
1998). We map the SVM decision values to probabilities according to Platt (2000) and perform a
non-maximum suppression with 3µm radius on the resulting probability map.

Positive samples are provided by manual annotation of nuclei in few sample roots, while negative
samples are randomly sampled from the same root images with a pre-defined distance (we used
3µm) from the annotated nucleus center positions. This approach has the drawback that all nuclei of
the training roots must be annotated to avoid inclusion of positive nucleus samples in the background
class. Since full manual root annotation is tedious we restricted ourselves to two training roots giving
approximately 12000 positive nucleus annotations. The positions of 100.000 background samples
were drawn from a uniform distribution over the respective image domain and another 100.000 from
a Gaussian distribution with parameters estimated from the expert annotations.

To get a rich feature set we employ Gauß-Laguerre features (Skibbe et al., 2012; Liu et al., 2014)
which are based on the spherical harmonic transform (SHT, Edmonds (1957)).

The SHT transforms a spherical function to frequency space, similar to the Fourier transform for
Euclidean coordinates. To apply the SHT, Euclidean positions r = (x, y, z)> are transformed to
spherical coordinates (θ, ϕ, r), where

θ = arccos
(

z
‖r‖

)
ϕ = atan2 (y, x)

r = ‖r‖ .
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3.2. Detection and segmentation of cells and nuclei

For one fixed radius r the spherical function f : S 2 → R defined by the gray values on the cor-
responding spherical shell is then mapped onto the Schmidt semi-normalized orthogonal spherical
harmonic basis functions Y`

m : S 2 → C

Y`
m (θ, ϕ) :=

√
(` − m)!
(` + m)!

P`m (cos θ) eımϕ

where P`m : R → R denotes the associated Legendre polynomial with band ` ∈ N0 and order
m ∈ Z, −` ≤ m ≤ ` and ı denotes the imaginary unit.

With this normalization the SHT is defined as

f (θ, ϕ) =

∞∑
`=0

∑̀
m=−`

f̃ `mY`
m (θ, ϕ) =

∞∑
`=0

〈
f̃`,Y` (θ, ϕ)

〉
where f̃` :=

(
f̃ `−`, . . . , f̃ ``

)T
∈ C2`+1 is the SHT coefficient vector and Y` :=

(
Y`
−`, . . . ,Y

`
`

)T
∈

S 2 → C2`+1 is the vector of spherical harmonic basis functions of band `. Y indicates the complex
conjugate of Y .

The coefficients can be computed by means of dot products of the spherical function with the basis
functions

f̃` =
2` + 1

4π

〈
f ,Y`

〉
.

The coefficient vectors are co-variant with respect to rotations, i.e. for any rotation of the original
spherical function exists an isomorphic matrix operation that can be applied to the coefficients.
Therefore, the coefficients form a set of spherical tensors (one for each band of corresponding rank
`). The representations of rotations in the Euclidean and the SH domain differ though. While a
rotation g ∈ SO(3) in 3D Euclidean space is represented by an orthonormal rotation matrix Rg ∈

R3×3 acting on the domain of the function, the dual representation in the SH domain is given by
band-specific Wigner-D matrices D`

g ∈ C
(2`+1)×(2`+1) acting directly on the SH coefficients. Let

r′ := Rgr be the rotated Euclidean position with spherical representation (θ′, ϕ′, r), then

f (θ′, ϕ′) =

∞∑
`=0

〈
D`

gf̃`,Y` (θ, ϕ)
〉
.

The spherical harmonics can be extended to solid harmonics for the transformation of 3D volumes
by additionally introducing radial functions. We employ Gaussian-weighted Laguerre polynomials
leading to the Laguerre Gaussian-type functions (Chiu and Moharerrzadeh, 1999)

L`n,m (r) e−
r2

2σ2 := L
`−n+ 1

2
n

(
r2

2σ2

)
e−

r2

2σ2 r`−nY`−n
m (θ, ϕ)

where n ∈ N0, n ≤ `. Lαn : R → R denotes the Laguerre polynomial of order n associated with
α ∈ R≥0. The standard deviation of the Gaussian function is given by σ ∈ R.
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3. The intrinsic Root Coordinate System (iRoCS)

Let I : R3 → R be a tensor field of rank 0. The solid harmonic coefficients a`n,m (x) ∈ C for band `,
Laguerre order n and harmonic order m around the center of expansion x ∈ R3 are given by

a`n,m (x) :=
∫

r∈R3
I (r + x)L`n,m (r) e−

‖r‖2

2σ2 dr .

Each (`, n)-combination yields a spherical coefficient tensor a`n :=
(

a`n,−(`−n), . . . , a
`
n,`−n

)T
∈ C2(`−n)+1.

Similar to the energy of the Fourier transform coefficients, the L2-norms of these tensors are rotation
invariant. So each choice of ` and n provides one independent invariant feature describing different
aspects of the local gray value distribution around the rotation center. By varying the parameter σ,
the size of the neighborhood can be adjusted, to capture either fine local details or coarser geometric
cues.

We compute the solid harmonic coefficients for each voxel position within the 3D image. This can
be done very efficiently using local spherical derivative filters within a Gaussian scale-space (Skibbe
et al., 2012).

As features we use the L2-norms of all coefficient tensors up to ` + n = 5{∥∥ã0
0

∥∥ ,∥∥ã1
0

∥∥ , ∥∥ã2
0

∥∥ ,∥∥ã3
0

∥∥ , ∥∥ã4
0

∥∥ ,∥∥ã5
0

∥∥ , ∥∥ã1
1

∥∥ ,∥∥ã2
1

∥∥ , ∥∥ã3
1

∥∥ ,∥∥ã4
1

∥∥ , ∥∥ã2
2

∥∥ ,∥∥ã3
2

∥∥}
on eight exponentially increasing scales (σ ∈ {0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0} µm).

Overall this leads to 96 invariant features.

We augment this base feature set by appending F−, F+, R− and R+ (3.4) of Schulz et al. (2006).
This finally leads to 100-dimensional feature vectors for each voxel that are used for training and
classification. The dynamic ranges of the Gauß-Laguerre features are image intensity dependent
and their magnitudes drop quickly with increasing band, whereas the vectorial invariants are very
robust to intensity changes. Redundancy among the features is very low by construction, and mainly
stems from oversampling at very small scales. However, to maximize classification performance the
individual features should be weighted according to their discriminative power.

Assume, that during image stack recording, the microscope is setup to optimally use the available
dynamic range (12 bit, [0, 4096]). We first map this range to the [0, 1] interval prior to feature
computation. After this global normalization, the nucleus detection algorithm still needs to be robust
with respect to local illumination changes which are unavoidable when imaging thick tissues via
optical sectioning. For reasons of flexibility, we do not assume attenuation corrected image data. To
achieve robustness against global intensity variations we first normalize the Gauß-Laguerre feature
vectors to unit norm and then normalize each individual feature (including the vectorial invariants)
to zero mean and unit standard deviation during training. The found normalization parameters are
stored alongside with the SVM models and applied to new features prior to classification.

Results

A comparison of the discussed approaches for nucleus detection is given in figure 3.5. The proposed
learned detector clearly outperforms the simple filter-based detectors as expected. The LoG blob
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Figure 3.5.: Precision-Recall graph of nucleus detection performance of the proposed trained detector, the Laplacian
of Gaussian blob detector (LoG) and vectorial 1-point invariants (Spherical hough). LoG and Hough: Responses
for bright and dark blobs/spheres on 12 scales (0.5µm to 6.0µm with 0.5µm step) were multiplied making up
the final detection score to exploit the nuclear appearance consisting of the dark nucleolus surrounded by bright
chromatine.

detector has pretty high recall when taking into account many detections, but its precision is bad. The
top-ranked detection is already a false positive and with decreasing filter response approximately one
out of three to four detections is a true positive. False positives with high filter response mostly stem
from dark areas between the nuclei which also fulfill the blob property of being homogeneously
dark regions surrounded by bright regions.

The spherical hough transform shows different behavior. Round nuclei making up approximately
60% of nuclei in the root tip are very well detected with very good precision, but as soon as all of
them are found the precision rapidly drops and only very few further nuclei are detected.

For detector training we determined good parameters (kernel width γ and outlier cost C) for the RBF
kernel in a cross-validation experiment in which one wild type root with expert annotations was used
for training and another for testing. We applied the resulting detector to a set of 6 further wild type
roots for which the detection result was manually corrected. The augmented set containing eight
roots was then used to train the final detector.

An example of a probability map obtained through voxelwise classification of a root tip recording
using the described feature set and classifier is given in Fig. 3.6a. Fig. 3.6b shows the precision and
recall of the final detector on that root. Using a threshold of 50% (curve endpoints) we could achieve
an overall recall of over 99% at a precision of approximately 70% (black curve). The precision-
recall curves for the individual layers assume that nuclei of other layers are false positive detections,
therefore the reduced performance. From the plots one can see that first epidermis and cortex nuclei
are detected, then root cap and the inner tissues follow. The small gap to 100% recall is almost
only due to missing detections in the provascular tissue containing very hard cases of elongated
nuclei. For many provascular nuclei the nucleolus partitions the chromatine into two disjoint parts,
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Figure 3.6.: Nucleus detection performance with a detector trained on annotated sample roots using Gauß-Laguerre
features and 1-point vectorial invariants. (a) per-voxel nucleus center probability normalized to the [0, 1] range
for one sample dataset; (b) the corresponding precision-recall curve (probability threshold: 1 - 0.5). Scale bar:
100µm.

of which each shows very similar appearance to differentiated root cap nuclei. Therefore instead
of one central detection in the nucleolus two very confident detections in each of the chromatine
segments were generated which suppress the true positive detection in the center.
For a comparison of the trainable filter approach using other state of the art feature sets we refer to
(Skibbe et al., 2012).

3.2.2. Cell segmentation

Cell boundaries are a very interesting alternative anatomical reference structure that allow to uniquely
relate measured events to the cell they originate from. Instead of detecting sparse point positions as
in the nucleus detection described earlier, we want to obtain a cellular segmentation of the root that
partitions the input 3-D image into segments that represent cells or background. Each segment is
identified by a unique label, where background is labeled as zero and cells are labeled with succes-
sive numbers starting from two. The label one is reserved for root-internal voxels which cannot be
uniquely assigned to a cell, i.e. one indicates cell boundaries.
The cell segmentation approach presented in this section was developed by Kun Liu. I recapitulate
it briefly to give the complete picture of the iRoCS toolbox.

Implementation

To alleviate attenuation and irregular staining effects a local intensity variance normalization is per-
formed using a Gaussian kernel with standard deviation 20µm for mean and variance computation.
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3.2. Detection and segmentation of cells and nuclei

(a) (b)

(c)
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(d)

Figure 3.7.: Result of an automatic cell wall-based segmentation. (a) Raw data, (b) enhanced image after
anisotropic diffusion, (c) Segmented cells with random color coding. (d) Surface rendering of cells of half of
the root cut along an axial plane. Colored lines indicate orthoview cut planes. Scale bars: 100µm.

To stabilize the variance of the apparent Poisson noise a gamma correction with γ = 2 is performed
(Anscombe, 1948). Residual detector spikes are removed using a small median filter (edge length =

3 voxels).

Finally planar structures are enhanced using coherence-enhancing anisotropic diffusion (Weickert,
1998). The general diffusion equation is given by

∂I(x)
∂t

= div (D(x)∇I (x)) (3.5)

where I : Ω→ R is the image/volume the diffusion is applied to. ∇ and div indicate the gradient and
divergence operators respectively. Diffusion is controlled by the diffusion tensor D and the result for
diffusion time t is computed by explicit time integration. To obtain optimal plane enhancing behavior
we base the diffusion tensor on the second derivatives of the image intensities. Let λ1 > λ2 > λ3
be the eigenvalues of the local Hessian matrix with corresponding eigenvectors v1, v2, v3, then we
construct the diffusion tensor as

D = e−(min(λ1,0)/κ)2
v1vT

1 + e−(min(λ2,0)/κ)2
v2vT

2 + e−(min(λ3,0)/κ)2
v3vT

3 . (3.6)
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Figure 3.8.: Automatic cell membrane-based segmentation. (a) Raw data; (b) enhanced image after anisotropic
diffusion; (c) Segmented cells with random color coding. (d) Surface rendering of cells of half of the root virtually
cut along an axial plane. Colored lines indicate orthoview cut planes. Scale bars: 100µm.

The parameter κ is chosen s.t. weak edges are still emphasized and determined experimentally to
0.3. The minimum operation in the exponential ensures that the diffusion tensor stays in the [0, 1]
range, while actively enhancing bright structures only. This choice leads to strong diffusion along
bright structures, while diffusion across those structures is suppressed. In dark areas we obtain
isotropic diffusion. Therefore edges are enhanced, noise along bright structures and in areas of low
contrast is reduced and the overall structural coherence is significantly increased which can be seen
in Fig. 3.7b and 3.8b. To extract the cell boundaries we use the inverse of the third eigenvalue −λ3.
After choosing an appropriate threshold (We used −0.2) the cell walls are separated from cell bodies
and background. Finally a standard watershed algorithm is applied (Meyer, 1994) to the thresholded
edge image twice. After the first watershed segmentation pass very small fragments are removed.
To fill the gaps from segment removal the watershed is applied again using the new smaller set of
seed regions.

A majority of cell fragments can thereby be correctly assigned to their “mother cell”, however for
large fragments, e.g. a cell is split in two equally sized parts, this approach fails. Liu et al. (2013)
propose an energy minimization approach to automatically fix this kind of over-segmentation and
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3.3. Continuous coordinate system fit

also slight under-segmentation using prior knowledge on the distribution of cell shapes in Arabidop-
sis root tips. Remaining over-segmentations can be easily corrected in a manual post-processing
step by simply marking the segments to merge and re-running the watershed algorithm. Manual
correction of under-segmentations requires to annotate missing cell boundaries in 3D, which is very
time consuming and error prone. In practice under-segmented cells should be removed from the
segmentation to not harm the later analysis.

If possible, the segmentation parameters should be adjusted to get a slight over-segmentation if no
perfect segmentation can be achieved by any parameter setup.

3.3. Continuous coordinate system fit

Parallel line structures or tubes in 3D are of high importance in detection and classification tasks.
Their accurate tracing and segmentation is required to solve problems coming from medicine, bi-
ology, robotics, or aerial and satellite image analysis. Especially for biological and medical ap-
plications, with their wide spectrum of imaging methods, geometric modeling is an important step
towards data abstraction and quantification.

In this section we introduce the heart-piece of iRoCS, the continuous bent cylinder coordinate sys-
tem that is fitted to the detected nucleus positions. In section 3.3.1 we first introduce a basic model
of which parts will be used to initialize and validate the variational coupled curves model which
is described in section 3.3.2. The variational coupled curve fitting was presented at the German
conference on pattern recognition in Schmidt et al. (2012).

3.3.1. Basic axis fit using Gaussian kernel smoothing

Given straight roots and a perfect detector, all detections could be used for the task of fitting the
axis to the distribution of nucleus positions by just computing the covariance matrix of the point
distribution and choosing the main axis of this distribution. Although roots are never perfectly
straight in practice, their rigidity does not allow arbitrary bending. In most cases it is possible to
find a functional relationship between the bent root axis and the straight main axis of the point
distribution. This functional relationship allows to convolve the residual coordinates orthogonal to
the main axis with a Gaussian kernel to estimate the real bent axis.

Let X = {x1, . . . , xn}, where xi ∈ R
3 be the point set obtained from the detector. We estimate the

mean and covariance matrix of X as

µX :=
1
n

n∑
i=1

xi

CX :=
1
n

n∑
i=1

(
xi − µX

) (
xi − µX

)>
.
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3. The intrinsic Root Coordinate System (iRoCS)

Using its eigenvalue decomposition CX = UΛU> we obtain the transformation matrix U that rotates
the main axes of the point distribution to the canonical Euclidean coordinate axes. Applying U and
µX to the points gives their normalized positions

x̂i := U
(
xi − µX

)
.

W.l.o.g. let the main axis of the transformed point distribution be e1 = (1, 0, 0)> (this can be easily
fulfilled by sorting eigenvalues and eigenvectors s.t. the largest eigenvalue is λ1). The bent axis of
the normalized points can then be approximated by locally averaging their remaining dimensions
with a sufficiently wide Gaussian kernel Gσ

â (u) :=


u∑n

i=1 Gσ(u−x̂i,1)∗x̂i,2∑n
i=1 Gσ(u−x̂i,1)∑n

i=1 Gσ(u−x̂i,1)∗x̂i,3∑n
i=1 Gσ(u−x̂i,1)

 .

We will refer to this approach as point-based kernel smoothing (PKS) in the following.

The PKS approach requires very good detection results to give proper axis estimates. However,
signal loss and the resulting lower signal to noise ratio in the part of the root distal to the microscope
objective can result in many false positive detections and missed nuclei. To overcome this problem
and to also allow for strong bending we developed an alternative robust variational model that esti-
mates the root axis from detected epidermis nuclei only. To distinguish nuclei of different cell layers
we manually labeled all detections in the 8 training roots as root cap, epidermis, cortex, endodermis,
pericycle vasculature or background. We additionally distinguished nuclei in interphase from nuclei
of dividing cells and trained a multi-class support vector machine for the resulting 13 classes. A
typical classification result is given in table 3.1. We choose epidermis for the axis estimation task
due to its good detection performance and its availability over the whole root length. Additionally
it contains a large fraction of the roots nuclei with comparably high cell density.

For the epidermis detection task we are not interested in the fine distinction of tissues or mitotic
states, therefore we can combine classifications for root cap, cortex, endodermis, pericycle and
vasculature to a common “other nucleus” class resulting in the simplified confusion table 3.2.

3.3.2. Variational tube tracing using coupled curves on sparse surface points

The detected epidermis nuclei are sparse and noisy samples from the tube formed by the epider-
mal tissue layer. Starting from this basic observation we will now develop a general tube tracing
approach that is not restricted to iRoCS. Our variational tube tracing can model any simple (no
branching, circular profile) and smooth tubular structure with thickness variations given sufficiently
dense surface points.

The model consists of a vector-valued tube axis function a : R→ RD (D ∈ {2, 3}) and a scalar tube
thickness function t : R→ R+. Both functions are coupled by a common curve parametrization into
a combined tubular model which is fit to surface points in a robust variational energy minimization
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3.3. Continuous coordinate system fit

Table 3.1.: Classification accuracy of the layer assignment based on invariant gray-value features on one sample
root tip. The confusion matrix shows the number of nucleus candidates classified as either root cap, epidermis,
cortex, endodermis, pericycle, vasculature (in interphase or mitosis) or background. Rows indicate the real label
(manually annotated), columns show the label predicted by a soft-margin SVM with RBF kernel. The overall
precision excluding the background class is given in the lower right corner.
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� Background 2055 89 58 16 19 21 161 2 1 1 1 2424 84.8

� Root Cap 98 1370 23 6 7 4 6 7 5 3 1 1 3 1534 89.3
� Epidermis 142 21 1410 56 12 6 1647 85.6
� Cortex 45 9 96 563 263 59 25 1060 53.1
� Endodermis 114 103 97 44 436 264 36 3 1097 39.7
� Pericycle 84 15 46 24 120 424 158 1 2 874 48.5
� Vasculature 658 21 16 13 69 122 735 1 2 4 1641 44.8

� Root Cap (M) 1 1 2 50.0
� Epidermis (M) 2 9 13 13 4 4 1 46 28.3
� Cortex (M) 1 1 1 1 1 5 0.0
� Endodermis (M) 2 5 2 9 4 5 4 3 34 14.7
� Pericycle (M) 11 3 10 4 3 5 6 13 55 10.9
� Vasculature (M) 4 1 1 1 2 4 3 8 24 33.3

Σ 3215 1647 1746 722 926 900 1131 15 37 27 21 22 34
Recall [%] 63.9 83.2 80.8 78.0 47.1 47.1 65.0 6.7 35.1 0.0 23.8 27.3 23.5 62.0

Table 3.2.: Classification accuracy of epidermis labeling on a sample root tip. The confusion matrix shows the
number of nucleus candidates classified as epidermis, other nucleus or background. Rows indicate the real label
(manually annotated), columns show the label predicted by a soft-margin SVM with RBF kernel. The overall
accuracy excluding the background class is given in the lower right corner.
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� Background � Epidermis � Other Σ Precision [%]

� Background 2055 58 311 2424 84.8

� Epidermis 142 1410 95 1647 85.6
� Other 1018 286 5025 6329 79.4

Σ 3215 1746 5431
Recall [%] 63.9 80.8 92.5 80.7
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3. The intrinsic Root Coordinate System (iRoCS)

scheme. The model is designed to work solely on the sparse point positions, without the need for
surface normal estimation. We will show that it leads to very accurate fits even in the case of high
noise and missing surface points.
A key benefit of the proposed model is that it “grows” into arbitrarily long tubular structures from
a very small local initialization, i.e. it solves the tracing and accurate fitting problem within a single
energy minimization.

Related Work

In medical applications various approaches exist to analyze images of vascular and neuronal net-
works based on different imaging methods ranging from low resolution CT and MRT, through light
microscopy down to electron microscopy (Kirbas and Quek, 2004; Meijering et al., 2004; Friman
et al., 2010). Independent of the actual source of data, all approaches have in common that they rely
on densely imaged interfaces between the structures of interest and mainly depend on the gray val-
ues and their derivatives to guide the model fitting. One possibility of robustly finding the axis of a
tubular structure is a symmetry analysis around the potential axis (Pock et al., 2005). Morphology-
driven approaches try to find the axis by structure thinning leading to a skeletonization. Filter
based approaches first try to emphasize the structures using filter banks or steerable filters and apply
thresholding and thinning afterwards.
In the field of robotics, approaches to fit parametric tubular structures to point cloud data recorded
using laser range scanners are of high interest (Bauer and Polthier, 2009). Most existing approaches
exploit the scanned dense mesh structure to estimate local surface normals guiding the model fitting
process. These approaches have to cope with noisy data and therefore estimate the normals for each
surface position from relatively large neighborhoods. Others try to detect shapes using Hough-like
voting based approaches (Schnabel et al., 2007). These are especially suited to detect man-made
rigid objects, but don’t perform well on deformable objects as they are common in biological and
medical applications.
In Laptev et al. (2000) the coupling of two evolving splines describing the center-lines and thick-
nesses of roads and rivers in aerial and satellite images was introduced. Although the noise level
in images of that kind is very high, the gradients are still a valuable piece of information to guide
the snake evolution. A different approach using two coupled splines to describe the outlines of the
biologically highly interesting model organism C-Elegans was introduced in Q.Wang et al. (2009).
In Lee (2000) a non-self-intersecting 1-D line from unstructured and noisy 3D point data was recon-
structed using moving least-squares interpolation. For homogeneously distributed tube-surface data
around its circumference this approach is also applicable to solve the tube axis fitting task, although
it does not determine the tube thickness.
Our setting is different from the above-mentioned, since our approach has to perform the task of
simultaneously estimating the axis and variable thickness of a tubular structure based on sparse
surface points only. The low point density and high data noise preclude the extraction of reliable
surface normals. We formulate the task of fitting the model to a point cloud as one closed energy
minimization problem, which incorporates all available points and a set of tubular models to which
on demand new models can be added.
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3.3. Continuous coordinate system fit

Figure 3.9.: A 2-D sketch of the tube model fit to a point set depicted as black circles. Bold blue line: Axis; stippled
blue lines: estimated tube surface; red: tube thickness at curve parameter ui; green: distance minimized during
optimization.

Variational formulation

We define a tube as a function mapping a curve parameter u ∈ R to the (D + 1)-dimensional vector(
a> (u) , t (u)

)>, where a : R → RD is the tube axis function and t : R → R is the corresponding
tube thickness function. Fig. 3.9 sketches the tube model. To optimally map the model to a set of
tube surface points X = {x1, . . . , xn} , xi ∈ R

D we minimize the energy

Edata (a, t) :=
n∑

i=1

ψ
(
(‖a (ui) − xi‖ − t (ui))2) (3.7)

where ui := arg minu ‖xi − a (u)‖ is the curve parameter projection of xi and ψ
(
ρ2
)

is a robust
distance measure.

To cope with sparse surface points and high data noise, we additionally introduce smoothness terms
penalizing axis curvature and tube thickness variations

Ea (a) =

∫ ∞
−∞

∥∥∥∥ d2

du2 a (u)
∥∥∥∥2

du and Et (t) =

∫ ∞
−∞

(
d
du

t (u)
)2

du . (3.8)

The full energy minimization problem is then given by

(
a∗>, t∗

)>
= arg min

a,t

n∑
i=1

ψ
(
(‖a (ui) − xi‖ − t (ui))2) +

∫ ∞
−∞

λ

∥∥∥∥ d2

du2 a (u)
∥∥∥∥2

+ µ

(
d
du

t (u)
)2

du

where ui = arg min
u
‖xi − a (u)‖ (3.9)

where λ, µ ∈ R+ weight the influence of the smoothness terms.
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3. The intrinsic Root Coordinate System (iRoCS)

Parametrization Using B-Splines

We approximate the curves with open B-Splines of degree p, therefore the nodes at the spline end-
points are repeated p+1 times. In the theoretic derivation we will w.l.o.g. restrict the spline parameter
u to the [0, 1]-range. In practice the curve length in micrometers is used. We obtain the B-Spline
approximation of the general axis and thickness functionals

a (u) :=
m−1∑
j=0

ca
jb j,p,s (u) and t (u) :=

m−1∑
j=0

ct
jb j,p,s (u) (3.10)

where Ca =
{

ca
0, . . . , c

a
m−1

}
and Ct =

{
ct

0, . . . , c
t
m−1

}
are the spline control points, and b j,p,s are the

recursively defined basis functions

b j,p,s (u) :=


1 p = 0 ∧ u ∈ [si, si+1[
0 p = 0 ∧ u < [si, si+1[

u−s j
s j+p−s j

b j,p−1,s (u) +
s j+p+1−u

s j+p+1−s j+1
b j+1,p−1,s (u) otherwise

with node-vector s =
(

s0, . . . , sm+p
)>.

Lemma 1 (B-Spline derivative (de Boor, 1978)). Let f (u) :=
∑m−1

j=0 c jb j,p,s (u) be a B-Spline
of degree p ∈ N0, with control points c j, j = 0, . . . ,m − 1 defined over the knot vector s =(

s0, . . . , sm+p
)>. Then the derivative

f ′ (u) =
d
du

f (u) =

m−2∑
j=0

c′jb j,p−1,s′ (u)

is another B-Spline of degree p − 1 defined over the knot vector s′ =
(

s1, . . . , sm+p−1
)

with control
points c′j =

p
s j+p+1−s j+1

(
c j+1 − c j

)
.

For the proof we refer to de Boor (1978).

The general energy from (3.9) changes to

Edata (a, t) =

n∑
i=1

ψ
(
(‖a (ui) − xi‖ − t (ui))2) (3.11)

+λ ·

D∑
d=1

∫ 1

0

m−3∑
j=0

c′′aj,db j,p−2,s′′ (u)

2

du + µ ·

∫ 1

0

m−2∑
j=0

c′tj b j,p−1,s′ (u)

2

du .

where ui = arg min
u
‖xi − a (u)‖

The primed variables are obtained by applying Lemma 1 (twice for the axis) to the original splines.
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3.3. Continuous coordinate system fit

To minimize the energy using gradient descent we need to compute the partial derivatives with
respect to the control points ca

j and ct
j

∂

∂ca
j,d

E (a, t) = 2
n∑

i=1

ψ′
(
(‖a (ui) − xi‖ − t (ui))2)(1 −

t (ui)
‖a (ui) − xi‖

)(
ad (ui) − xi,d

)
b j,p,s (ui)

+2λ
m−1∑
j′=0

ca
j′,d

∫ 1

0

d2

du2 b j′,p,s (u)
d2

du2 b j,p,s (u) du (3.12)

∂

∂ct
j
E (a, t) = −2

n∑
i=1

ψ′
(
(‖a (ui) − xi‖ − t (ui))2) (‖a (ui) − xi‖ − t (ui)) b j,p,s (ui)

+2µ
m−1∑
j′=0

ct
j′

∫ 1

0

d
du

b j′,p,s (u)
d
du

b j,p,s (u) du , (3.13)

finally leading to the following update rules for moving the control points in a gradient descent
manner when introducing an artificial discrete evolution time k with step τ ∈ R+:

ca
j,d

k+1
= ca

j,d
k
− τ

∂

∂ca
j,d

E (a, t) and ct
j
k+1

= ct
j
k
− τ

∂

∂ct
j
E (a, t) . (3.14)

Since all dimensions come into play during the control point updates in each iteration, first the
derivatives are computed for each control point, then the update is applied and finally the ui for each
point in the point cloud are recomputed.

For computing the closest axis position ui for sample xi we must solve

ui = arg min
u
‖a (u) − xi‖ . (3.15)

Only orthogonal projections of xi onto the axis tangent d
du a (u) are possible candidates for ui, which

reduces the continuous search space to the discrete set of axis positions which fulfil(
d
du

a (u)
)>

(a (u) − xi) = 0 .

When plugging in the spline definition we obtain

(
d
du

a (u)
)>

(a (u) − xi) =

D∑
k=1

m−1∑
j=0

m−1∑
j′=0

ca
j,kca

j′,k

(
d
du

b j,p,s (u)
)

b j′,p,s (u) −
m−1∑
j=0

ca
j,k

d
du

b j,p,s (u) xi,k


which is a degree 2d − 1 polynomial in u for each spline segment S i, where i = p, . . . ,m + p. Then
ui is the root minimizing (3.15) from this discrete set.
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3. The intrinsic Root Coordinate System (iRoCS)

Input : Point set X, Initial cylinder (q1,q2, tinit), parameters λ, µ, τ, spline degree p
Output : Nodes and control points of coupled B-Spline model (a (u) , t (u))

// Initialize tube model
k ← 2 (p + 1), m← p + 1, ε ← 10−7 ; // k = #knots, m = #control points
s1, . . . , sp+1 ← 0, sp+2, . . . , sk ← ‖q2 − q1‖ ;
for j← 1 to m do

ca
j ← q1 +

j−1
p · (q2 − q1) ; // equidistant control points on cylinder axis

ct
j ← tinit ;

end
repeat

Eouter ← E (a, t) ; // (3.11)
repeat
// Compute orthogonal projections of points to current axis
for i← 1 to n do

ui ← arg minu ‖xi − a (u)‖ ;
end
Eold ← E (a, t) ; // (3.11)
// Do gradient descent step
for j← 1 to m do

for d ← 1 to D do
ca

j,d ← ca
j,d − τ

∂
∂ca

j,d
E (a, t) ; // (3.12) in (3.14)

end
ct

j ← ct
j − τ

∂
∂ct

j
E (a, t) ; // (3.13) in (3.14)

end
Enew ← E (a, t) ; // (3.11)

until |Eold − Enew| < ε · |Enew|;
Insert knot and reparametrize model ;
m← m + 1 ;

until Eouter − Enew < ε · |Enew|;
Algorithm 2 : The Coupled B-Spline fitting algorithm

Tube tracing

Up to now we mainly concentrated on the case, when the model is already close to the solution
and all points are more or less well explained by the tube model. But in practice we will start
from a local initialization and want the model to grow along the tube. To stay close to the curve
length parametrization while allowing local growth of the tube, we want to restrict the influence
of points on the model evolution to the local surrounding of the current tube model and define the
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3.3. Continuous coordinate system fit

outlier-robust loss function

ψ
(

s2) :=

{
s2 s < η
η2 s ≥ η

(3.16)

with user-defined threshold η ∈ R. Its derivative with respect to s2 is

ψ′
(

s2) =

{
1 s < η
0 s ≥ η

(3.17)

therefore only points within a certain distance range defined by η will contribute to the derivatives
which allows to adapt the model fitting to surface point density and data noise. We additionally
linearly decrease λ and µ with increasing arc length of the current axis estimate to avoid a bias
towards short curves and update the thickness function only with points mapping orthogonally onto
the axis to avoid a thickness over- and length under-estimation at the tube end points.

For the upcoming evaluation we initialize the fit with a manually chosen short cylinder segment
represented by its end points q1 and q2 and radius tinit. To initialize the tube model, the correspond-
ing B-spline with 2 (p + 1) knots is generated. Its p + 1 control points are equidistantly placed on
the cylinder main axis, and the control points for the thickness spline all set to the initial thickness.
During the optimization the number of control points remains constant. The model will evolve until
no more data points can be described by one single degree p polynomial. To also allow for more
complex tube shapes, we alternate between fitting the model using a fixed number of control points
till convergence and a re-gridding step in which an additional knot is inserted. In the re-gridding
step we re-distribute the knots equidistantly along the curve leading to an intermediate curve length
parametrization. The whole fitting process is summarized in Alg. 2.

In the iRoCS pipelines we use the central 20% of the main axis of the point distribution obtained
from the nucleus detector to automatically initialize the model (see section 3.3.1). The initial thick-
ness is chosen as the average point distance to the straight axis estimate in that root section.

Extension to multiple tubes

To simultaneously trace multiple tubes, for each a seeding cylinder can be placed. In each iteration
the point set is partitioned into subsets, so that the points in subset Xi are best described by the ith
tube model according to the data term of the energy. The evolution of tube i is computed on its
corresponding subset Xi only. The overall energy then becomes the sum over all tube energies.

Results on synthetic data

We compared the proposed model to axis estimates obtained through Gaussian point cloud kernel
smoothing (PKS) as presented in section 3.3.1, which resembles the drawbacks of averaging tech-
niques for curve fitting. For this we synthetically generated data sets consisting of point clouds
highlighting specific cases. We used trigonometric functions to model the axis and thickness func-
tions and generated 1000 equally distributed tube surface points around the axis. The point positions
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3. The intrinsic Root Coordinate System (iRoCS)
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Figure 3.10.: Sample fit to synthetically generated noisy surface points of a curved tube with constant thickness.
Synthesis parameters: a (u) = (50 sin(2πu/300), 70 sin(2πu/800), u)>, t (u) = 10, noise σ = 4. Left: point cloud
(blue) and estimated axis using coupled curves (red); right: error of fit for each model dimension of point based
kernel smoothing (PKS, green) and coupled curves model (CCM, red).
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Figure 3.11.: Sample fit to synthetically generated noisy surface points of a straight tube with variable thickness.
Synthesis parameters: a (u) = (0, 0, u)>, t (u) = 20 + 10 sin(2πu/200), noise σ = 1. Left: point cloud (blue) and
estimated axis using coupled curves (red); right: error of fit for each model dimension of point based kernel
smoothing (PKS, green) and coupled curves model (CCM, red).
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3.3. Continuous coordinate system fit
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Figure 3.12.: Sample fit to synthetically generated noisy surface points of a curved tube with variable thickness.
Synthesis parameters: a (u) = (50 sin(2πu/300), 70 sin(2πu/800), u)>, t (u) = 10 + 5 sin(2πu/1000), noise σ = 4.
Left: point cloud (blue) and estimated axis using coupled curves (red); right: error of fit for each model dimension
of point based kernel smoothing (PKS, green) and coupled curves model (CCM, red).
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Figure 3.13.: Sample fit to synthetically generated noisy surface points of a curved tube with variable thickness
and simulated self-occlusion. Synthesis parameters: a (u) = (50 sin(2πu/300), 70 sin(2πu/800), u)>, t (u) = 10 +

5 sin(2πu/1000), noise σ = 4. Left: point cloud (blue) and estimated axis using coupled curves (red); right: error
of fit for each model dimension of point based kernel smoothing (PKS, green) and coupled curves model (CCM,
red).
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3. The intrinsic Root Coordinate System (iRoCS)

were then randomly displaced. The displacement was drawn from an isotropic Gaussian distribution
with standard deviation σ leading to the synthetic ground truth (Fig. 3.10 – 3.13 left panels). The
kernel width of the kernel smoothing approach was empirically chosen to minimize the fitting error.
The errors of fit of PKS and the proposed coupled curve model (CCM) with cubic splines (p = 3)
are shown in the right panels. For constant tube thickness (Fig. 3.10) the axis error of CCM in
each direction stays below 20% of the tube thickness whereas the smoothing in PKS already leads
to undershoots. The thickness is over-estimated by on average 5%. Pure thickness variations as in
Fig. 3.11 do not influence the axis localization accuracy, but they are reflected in the thickness error,
because the model favors constant thickness. However, the error stays below 10% for low noise and
small µ (here µ = 0). Moderate thickness variations on a bent model as shown in Fig. 3.12 affect
the quality of fit only marginally. Finally, the robustness to biased point cloud distributions on the
tube surface is highlighted in Fig. 3.13. For this all sample points from Fig. 3.12 which are occluded
when assuming a solid tube and a fixed view angle were removed from the set. This resulted in an
axis position bias for PKS, whereas CCM still reliably estimates tube localization and thickness.

Results on the Arabidopsis root tip

Finally we show the applicability and robustness of our approach on our original problem of tracing
Arabidopsis root tips based on detected epidermis nuclei. Orthogonal views of three sample roots
with super-imposed axis fits are shown in Fig. 3.14(a-c) (panels 2 and 3). Despite an applied gamma
correction, the signal attenuation in z direction is clearly visible.

To evaluate the accuracy of the axis fits, two experts manually annotated axis points of ten root tips.
For this the data sets were first rotated to roughly align the root axis with the Euclidean x-axis, This
avoids elliptic distortions of the visible root cross-sections during annotation. Both experts picked
the root center at every 100th x-section of the data set guided by a circle of appropriate diameter.
The average annotation difference between the experts is 3µm, which is in the order of an average
nucleus radius.

We again compared CCM to Gaussian kernel smoothing approaches, this time incorporating either
the gray values directly (GKS) or the positions of the nuclei (PKS) that are also used in the CCM.
We chose a kernel width of 40µm to obtain smooth curves, that show good localization properties.
The estimated axes on sample roots are shown in Fig. 3.14. Especially in Fig. 3.14(a) the bias of
GKS towards regions with higher gray values is clearly visible. As already seen in the synthetic
results PKS relies on homogeneously distributed points, and therefore on the detector quality. In
Fig. 3.14(a) and (b) the detector reported many false positives in parts of the recordings with low
SNR, leading to extreme deformations of the axis towards these points. CCM was also affected by
the large proportion of false positives in the root volume (Fig. 3.14(b) (xz panel)) which results in a
shift of the model axis in z direction, but the effect is less severe compared to PKS.

A quantitative comparison of all approaches on the manually annotated root axis points is given in
table 3.3.

The described model is not restricted to axis tracing using sparse nucleus positions. We also applied
it to the dense outer boundaries of the cellular segmentation. To obtain high performance we reduced
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3.3. Continuous coordinate system fit
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Figure 3.14.: The coupled curves model fit to sample root tip data sets. Gray: gamma corrected DAPI signal; red
line (left panels): estimated root axis; yellow mesh: estimated center of the epidermal cell layer; cyan spheres:
noisy epidermis nucleus positions. Right panel: Orthogonal cuts through the data sets and axis fits using gray
value-based kernel smoothing (GKS), point-based kernel smoothing (PKS) and the proposed coupled curves
model (CCM); White crosses: expert annotation.

Table 3.3.: Minimum/Maximum/Average root mean squared axis fitting errors between expert annotations and the
fitting approaches on ten sample roots. (GKS = gray value-based kernel smoothing, PKS = point-based kernel
smoothing, CCM = the proposed coupled curves model)

Expert 2 GKS PKS CCM
min/max/avg [µm] min/max/avg [µm] min/max/avg [µm] min/max/avg [µm]

Expert 1 1.78/5.32/3.09 5.52/17.30/10.68 3.69/16.94/8.46 3.18/11.22/6.07
Expert 2 N/A 6.38/14.66/11.38 3.37/17.36/8.65 4.55/12.65/7.32

the number of root surface points by factor four, in practice further reduction is easily possible
without changing the resulting axis fit. Sample results for long root tip samples for either nucleus
marker or cell boundary marker are given in figure 3.15.
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3. The intrinsic Root Coordinate System (iRoCS)

(a) (c)(b)

Figure 3.15.: The coupled curves model fit to up to 1mm long root tips. Gray: DAPI signal; Cyan: (a) Detected
epidermis nuclei; (b-c) Cell segmentation; solid yellow lines: estimated root axis; dotted yellow lines: (a) estimated
epidermis layer; (b-c) estimated root surface. Scale bars: 500µm.

3.4. Layer label assignment

Continuous description of the root geometry and the possibility to map any recorded marker pattern
to a unique absolute bent cylinder coordinate within a normalized reference coordinate system is
already a valueable tool in itself. However, this mapping does not yet allow to relate events to tissue
layers or cell files which is the basis for a descriptive atlas.
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3.4. Layer label assignment

Table 3.4.: Classification accuracy of the layer assignment. The confusion matrix shows the number of nucleus can-
didates classified as either root cap, epidermis, cortex, endodermis, pericycle, vasculature (either in interphase
or in mitosis) or background. Rows indicate the real label (manually annotated), whereas columns show the label
predicted by a soft-margin SVM with RBF kernel. The overall precision excluding the background class is given
in the lower right corner.
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� Background 2619 38 95 22 18 53 164 2 1 1 3013 86.9

� Root Cap 97 1546 31 5 21 5 4 10 4 1723 89.7
� Epidermis 113 32 1611 80 8 3 3 2 1852 87.0
� Cortex 34 9 4 605 210 4 2 868 69.7
� Endodermis 56 5 605 99 2 1 768 78.8
� Pericycle 35 1 56 710 118 5 925 76.8
� Vasculature 253 2 5 5 8 26 833 1 8 1141 73.0

� Root Cap (M) 5 19 5 14 43 11.6
� Epidermis (M) 14 7 21 66.7
� Cortex (M) 14 14 100.0
� Endodermis (M) 1 18 2 21 85.2
� Pericycle (M) 1 15 1 17 88.2
� Vasculature (M) 3 10 24 37 64.9

Σ 3215 1647 1746 722 926 900 1131 15 37 27 21 22 34
Recall [%] 81.5 93.9 92.3 83.8 65.3 78.9 73.7 33.3 37.8 51.9 85.7 68.2 70.6 80.8

3.4.1. Nucleus classification

In section 3.3.1, we already showed a layer classification based on our feature set that successfully
distinguished nuclei of different cell layers with an accuracy of approx. 62% (3.1). With the contin-
uous cylinder coordinates we now have a new strong cue for the cell layer label which can be easily
incorporated by appending the coordinates z and r to the feature vector. The angle ϕ around the
root axis can be left out because it does not give extra information for the layer labeling. As already
mentioned in the previous section the radial component of the coordinates could be normalized to
the root thickness. This normalization is only meaningful if the thicknesses of all layers are pro-
portionally reduced or increased which would allow to define the different cell layers independent
of global root thickness. However, this model fails if the change in root thickness is induced by a
change in the number of cells in the inner root tissues. We therefore decided to trust in the ability
of the classifier to distinguish nuclei based on their appearance and do not include root thickness
normalization. As shown in table 3.4 we could achieve good results with the raw micrometer radius.
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3. The intrinsic Root Coordinate System (iRoCS)

Classification errors now concentrate around the diagonal of the matrix, indicating that the residual
errors are mainly due to an erroneous one-layer shift. The spurious second diagonal in the upper-
right quadrant shows that some interphase nuclei were classified as mitoses, whereas especially for
the root cap many mitoses were missed by the classification. The high error rate in the root cap class
can be explained by the nuclear morphology of the differentiated root cap nuclei that show similarly
dense DNA as mitoses trapped in metaphase by colchicine.

Due to the direct use of the bent cylinder coordinates the layer assignment only works accurately for
mild phenotypes, and needs to be re-trained for more severe phenotypes. However, one can use the
initial output as starting-point and manually correct erroneous layer assignments instead of doing a
full annotation. The corrected samples can then be directly used for re-training if more roots of that
specific phenotype have to be analyzed which is very likely in the case of population studies. All
roots used for the statistical evaluations presented in section 3.5 were classified using only a single
model trained on the wild type.

Even with a model trained on the correct phenotype some manual post-processing is required to
achieve expert-level data quality. For the detection of subtle differences as e.g. in the upcoming
analysis of mitosis distributions, the fully automatic classification result must be manually corrected.
But manual annotation time is drastically reduced with the achieved halving of the number of mis-
classifications when incorporating the cylinder coordinates in the classification.

3.4.2. Cell classification

The final assignment of cells to their layer is also done using a discriminative classifier. Instead of
gray value-based invariants we extract cell shape features from the segmentation masks. The fea-
tures consist of the cell extents in 26 directions starting from the cell’s center of gravity. Directions
are computed relative to the roots axis orientation and angle ϕ. The approach is thus a normalization
approach in contrast to the invariant approach used in the nucleus classification. As in the nuclear
layer assignment, the features are augmented by the cylinder coordinates of the cell’s center of grav-
ity with radial normalization to the [0, 1] range. Due to the available dense root surface we could
use elliptical cross-sections in the iRoCS fit making the radial normalization very accurate even in
elongation zone.

We trained a random forest with 200 trees on three manually annotated roots on the classes back-
ground, root cap, epidermis, cortex, endodermis, pericycle, vasculature and quiescent center. The
final layer assignment accuracy of a leave-one-root out cross-validation experiment is shown in
table 3.5.

As in the nucleus-based layer assignment, the outer tissues are easily assigned to the correct layer.
Especially in stele the distinction of pericycle and vasculature is less accurate. There are several
reasons for this: first, the pericycle layer is comparably thin and cells have very similar appearance
to the adjacent pro-vascular tissue, and secondly pericycle is furthest away from any clear reference
(axis, root surface). An expert could only distinguish pericycle from adjacent cell layers by counting
the layers. This could also be implemented but has not been done so far.
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3.5. The effect of PIN2/4 knockout on proliferation in the Arabidopsis thaliana root tip

Table 3.5.: Layer assignment accuracy on the cell segmentation. The confusion matrix shows the number of cell
candidates classified as either quiescent center, root cap, epidermis, cortex, endodermis, pericycle, vasculature
or background. Columns indicate the real label (manually annotated), rows show the label predicted by a random
forest classifier with 200 trees. The overall precision excluding the background class is given in the lower right
corner.
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� Background 3535 155 35 14 16 76 499 4330 81.6

� Root Cap 190 1309 23 1 1523 85.9
� Epidermis 18 9 1773 7 1 1808 98.1
� Cortex 7 1 1 701 1 2 713 98.3
� Endodermis 20 5 861 2 888 97.0
� Pericycle 147 12 1039 37 1 1236 84.1
� Vasculature 490 1 24 1279 1794 71.3
� QC 4 23 27 85.2

Σ 4407 1474 1832 731 891 1141 1815 28
Recall [%] 80.2 88.8 96.8 95.9 96.6 91.1 70.5 82.1 87.4

The overall classification with a precision of 87.4% is very good. However data were generated on
PI stained roots with pseudo-Schiff staining that requires to rinse the root multiple times. Besides
the cell walls this rinsing severely damages the cell content and is therefore not suited for studies
that require intact cell content. When instead marking the cell membranes with an antibody stain
the signal to noise ratio of the images is visibly worse. The image pre-processing using coherence-
enhancing diffusion helps, but we could not achieve perfect segmentations on cell-membrane data
even after attenuation correction and fusion of two views.

3.5. The effect of PIN2/4 knockout on proliferation in the
Arabidopsis thaliana root tip

Cell divisions are rare events in the Arabidopsis root (only 1-3% of root tip cells are in a mitotic
phase of the cell cycle at any time point) and are restricted to the RAM (exception: lateral root
initiation). To draw statistically significant conclusions on differences in the mitosis distributions
among different populations large sample sizes have to be fully recorded and analyzed in 3D.

We applied the iRoCS pipeline to samples from three populations: a wildtype control, pin4 and
pin2. For each group we recorded at least ten samples, marked their QC positions and manually
corrected classification errors of a random subset of 10 samples of each population with respect to
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3. The intrinsic Root Coordinate System (iRoCS)

Figure 3.16.: Example nucleus maps and mitosis distribution histograms from semi-automatic analysis. Dots =
nucleus positions; encircled dots = mitosis positions; RC = root cap; Epid = epidermis; Cor = cortex; Endo =
endodermis; Peri = pericycle; Vasc = vasculature. (a) wild type (n = 10); (b) pin2 (n = 10); (c) pin4 (n = 10);
(d) Non-parametric statistical comparison of the obtained mitosis distributions. Median values (bar), interquar-
tile range (IQR) (box), lowest and highest data within 1.5 IQR of lower and upper quartiles (lines) and outliers
(open circles). Notches indicate significance of differences of the distribution medians using the non-parametric
Kruskall-Wallis test. Non-overlapping notch-intervals indicate significantly different medians with a p-value of
0.95.

tissue layer and mitotic state to ensure maximum quality results. Since the auxin flux controlled by
the PIN proteins affects the different layers differently we estimated the mitosis distributions along
the root axis for each layer independently leading to the box plots shown in Fig. 3.16d. iRoCS
allows to “virtually unroll” the roots and depict the nucleus positions for each individual layer in
nucleus maps. Fig. 3.16a-c shows such nucleus maps of typical sample roots for each population.
The histograms on the left in each layer panel show the cumulated mitosis distribution of all ten
sample roots per population.

As expected pin4 shows no significant differences in the distribution of mitoses compared to the
wildtype. This is attributed to the high redundancy of the PIN network in the stele. However, our
detailed analysis reveals significant differences in the mitosis distributions in vasculature for the
pin2 mutant. Its mitosis distributions in stele are shifted towards the quiescent centre, whereas the
outer layers show no significant changes. However, one can also observe a slight distribution shift in

92



3.5. The effect of PIN2/4 knockout on proliferation in the Arabidopsis thaliana root tip

Figure 3.17.: Fully automatic mitosis distributions analysis. RC = root cap; Epid = epidermis; Cor = cortex; Endo =
endodermis; Peri = pericycle; Vasc = vasculature. (a) wild type (n = 21); (b) pin2 (n = 11); (c) pin4 (n = 26); (d)
Axial mitosis distributions for the different cell layers. Median values (bar), interquartile range (IQR) (box), lowest
and highest data within 1.5 IQR of lower and upper quartiles (lines) and outliers (open circles).

the cortex layer in basal direction. The reasons for these differences have to be further analyzed, but
the reduced auxin efflux in the epidermis of the pin2 mutant seems to significantly alter the auxin
gradient in the stele.

As shown in section 3.4 the fully automatic pipeline has an approximate classification accuracy of
approximately 80% for interphase and 60% for mitoses from raw data to final model (Table 3.4).
To anaylze, whether the classification accuracy is sufficient to still see the subtle differences without
manual corrections of classification errors, we produced the same nucleus maps and distributions
without manual corections. The results are shown in Figure 3.17, where we included all recorded
root samples (numbers given in the corresponding panels).

As already seen in the manually post-processed smaller populations the pin2 mitosis distribution
median in pericycle and vasculature is closer to the QC than in the wild type and pin4 populations.
The noise induced by wrong mitosis classifications damps the effect and significant differences
cannot be detected, but the trend remains visible, showing that no systematic bias is introduced by
the pipeline.
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3. The intrinsic Root Coordinate System (iRoCS)

Figure 3.18.: The iRoCS Toolbox labelling GUI. Background: Cell/Nucleus editor based on three orthogonal
views of the 3-D dataset. Foreground: 3D surface rendering for visual control. The shown cell segmentation was
virtually cut along the root axis revealing the cells of different tissues.

3.6. Implementation: The iRoCS Toolbox

We provide all approaches discussed in this chapter to the scientific community as open source
software in the iRoCS toolbox1. The toolbox is implemented in C++ based on the QT4 framework2

(The Qt Company Ltd., Valimotie 21, FI-00380 Helsinki, Finland), which in principle allows to
build it on Linux, Windows and Mac platforms without code adaptations. It is licensed under the

1http://lmb.informatik.uni-freiburg.de/lmbsoft/iRoCS/
2http://www.qt.io/
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3.6. Implementation: The iRoCS Toolbox

GNU general public license (GPL)3 permitting free use, distribution, extension and modification.
For 64Bit Linux we also provide pre-built binaries. It consists of a set of libraries that can be
easily included to use the proposed methods in other projects. Additionally it consists of a set of
command line tools and the graphical user interface labelling (Fig. 3.18) that allows to control
the individual root analysis steps including manual annotation, error correction and training of new
detector and layer assignment models for the nuclear pipeline. The toolbox is designed in a modular
fashion separating algorithms from visualization and actual tools for data processing. This allows to
implement command line tools and plugins for labelling on the same code base. When following
this model the toolbox can be easily extended and adapted to a wide range of applications.

3http://www.gnu.org/
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4. Summary

Different approaches to extract quantitative data out of confocal microscopic recordings on different
abstraction levels were described and their utility discussed. Despite the fact that the measured in-
tensities are by no means quantitative we developed ways to extract relevant quantitative information
from that data source.

With our variational attenuation correction framework we presented a physically motivated ap-
proach to pre-process microscopic images mapping the raw intensities to approximate attenuation-
free intensities well suited for further processing. We presented a realistic image formation model
that allows to simulate a confocal microscope including wavelength-dependent attenuations, photo
bleaching and Poisson-Gaussian distributed noise as it occurs in photon counting processes. The at-
tenuation problem was formulated in a Bayesian framework leading to a well-motivated variational
energy minimization formulation. Especially the modeling of bleaching, although up-to-now only
implemented as zero-order approximation, improves the reconstructions significantly on simulated
and real world data. The edge-preserving TV prior on the attenuation fields allows to obtain crisp
sample boundaries and is especially well-suited for the description of samples consisting of large
homogeneous tissues at lower imaging resolutions. As a positive side-effect, it keeps the attenua-
tion fields compact leading to less boundary artifacts. In combination with the presented sparsity
prior the algorithm overcomes limitations of the approximative model, leading to stable results at
convergence of the optimization.

With the presented iRoCS pipeline we could show that quantification on the abstract model level
is not precluded by imperfect measurements, although the correction of degradations during imag-
ing or in a pre-processing step helps to extract relevant structures. iRoCS allows to describe the
Arabidopsis root tip in a standardized way and provides a basic cellular atlas of that plant organ in
which localized discrete events can be quantified and related to the cellular root context.

We employed Gauß-Laguerre features to encode local appearance and global positional cues within
the organ context for nucleus detection and classification. They are embedded in an intuitive
learning-by-example approach which allows to extend its application to other detection tasks in
3-D volumetric data.

The variational approach to tube tracing is also not restricted to the modeling of plant roots. It
can in principle be equally well applied to laser-range scan data of tubular structures or for vesicle
tracking in MRT images (not shown). The intrinsic smoothness of the underlying four-dimensional
B-Spline allows to trace tubes based on very few surface points only. The model automatically
adapts its complexity to the available data by automatic addition of further spline control points.
This allows to descibe arbitrarily complex tubes with circular cross-sections and simple topology
(i.e. without branches). Additional smoothness and thickness constancy priors further constrain the
solution space if required.
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4. Summary

Future work

In the attenuation correction problem, next steps involve a validation of the multi-view model with
structured illumination on real biological samples and a rigourous analysis of the two-view model
including fluorescence-induced attenuations on synthetic data.

In future research the image formation model should be extended to also include light scatter and
refraction. Combining attenuation correction with multiview fusion and deconvolution techniques
is another interesting direction of research. Ideally the ray model is replaced by a model for wave
optics in this course.

A draw-back of the variational tube tracing approach is its restriction to circular tube cross-sections.
Although it makes the approach extremely robust to noise and outliers, it restricts its applicability.
In the cell boundary-based root modeling we could exploit the dense almost noise-free surface of
the segmentation to allow for elliptic cross-sections. A combination of both approaches that embeds
fitting of bent elliptic cylinders into a well-motivated variational energy minimization framework
with robust data term is an interesting extension for the near future. Another very interesting exten-
sion would be to allow for topological changes, e.g. branching which is very important to analyze
complex vascular structures or whole root systems.

Especially in the cell-boundary based root modeling only basic cues were exploited. The direct
availability of cell adjacency and the area of cell interfaces allows to refine the model beyond the
cell layer dimension to also model cell files and possible partners in cell-to-cell signaling.

Another orthogonal approach is to build parametric or example-based generative models of root
architecture and growth that can be matched against real root samples. Mai et al. (2014) recently
presented a promising first approach for simultaneous cell detection and segmentation from learnt
cell geometries.
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A. Variational attenuation correction

A.1. Energy derivatives

A.1.1. General framework

The general energy formulation is given by

E
(
αex, αem, Î, θ

)
=

k∑
i=1

∫
Ω

(
f (Ii (x)) − f (Fi (x))
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)2
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g(Fi(x)) .

Its first derivative with respect to an arbitrary variable θ is
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)
∂θ

=

k∑
i=1

∫
Ω

∂

∂θ

(
f (Ii (x)) − f (Fi (x))

g (Fi (x))

)2

+
∂

∂θ
ln (g (Fi (x))) dx +

∂Eprior

∂θ

=

k∑
i=1

∫
Ω

2Di (x)
∂

∂θ

(
f (Ii (x)) − f (Fi (x))

g (Fi (x))

)
+

∂g(Fi(x))
∂θ

g (Fi (x))
dx +

∂Eprior

∂θ

=

k∑
i=1

∫
Ω

2Di (x)

(
−

∂ f (Fi(x))
∂θ

g (Fi (x))
−

Di (x) ∂g(Fi(x))
∂θ

g (Fi (x))

)
+

∂g(Fi(x))
∂θ

g (Fi (x))
dx +

∂Eprior

∂θ

= −

k∑
i=1

∫
Ω

2Di (x) f ′ (Fi (x)) +
(
2D2

i (x) − 1
)

g′ (Fi (x))
g (Fi (x))

∂Fi (x)
∂θ

dx +
∂Eprior

∂θ
.

99



A. Variational attenuation correction

and the second derivative is
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A.1. Energy derivatives
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A. Variational attenuation correction

A.1.2. Gâteaux derivatives of the basic simulation equation

The Gâteaux derivatives of the basic image formation equation are given by
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Î · T [αex]

r ·C[αem]
i

)
(x) · h (x + `r) d` dr

d
dε
(
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A.1.3. Explicit polynomial solution of the approximate Poisson noise model

The analytic solution for Î given α and β2 is given by one solution of the quartic function
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A.1. Energy derivatives

where we omitted the “of x” and introduced the shorthandAi :=
√

Ii + 3
8 to shorten the notation.

A.1.4. Regularization

Tikhonov Regularizer

Given a scalar field u : Ω ⊂ Rd → R. During a variational optimization, the field can be forced to
be smooth using the Tikhonov regularizer
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We compute its functional derivative using the calculus of variations to
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∂h (x)
∂xd

dx

= −λ

∫
Ω

div
(
ψ′
(
‖u (x)‖2

)
∇u (x)

)
h (x) dx

+λ

D∑
d=1

[
ψ′
(
‖∇u (x)‖2

) ∂u (x)
∂xd

h (x)
]
∂Ωxd

TM
= −λ

∫
Ω

∆u (x) h (x) dx + λ
[
n> (x)∇u (x) h (x)

]
∂Ω

where ∆u is the Laplacian of u.

With Neumann boundary conditions (boundary derivative is zero) we obtain the Euler-Lagrange
equation

δETM (u)
δu (x)

= −λ∆u (x) .
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Total variation relaxation

Given a scalar field u : Ω ⊂ Rd → R. During a variational optimization, the field can be forced to
be locally constant using a total variation regularizer with loss function

ψ
(

s2) :=
√

s2 with derivative ψ′
(

s2) =
1

2
√

s2
.

The derivative is not defined at 0, therefore we relax the strict TV regularization according to Char-
bonnier et al. (1997) using the differentiable loss function

ψ
(

s2) :=
√

s2 + ε2 with derivative ψ′
(

s2) =
1

2
√

s2 + ε2

where ε ∈ R+ is a small constant.

The last step of the Gâteaux derivation from above changes to

d
dε

ETV (u (x) + εh (x))
∣∣∣∣
ε=0

= −
λ

2

∫
Ω

div

(
∇u (x)√

‖∇u (x)‖2 + ε2

)
h (x) dx

+
λ

2

[
n> (x)

∇u (x)√
‖∇u (x)‖2 + ε2

h (x)

]
∂Ω

With Neumann boundary conditions we obtain the Euler-Lagrange equation

δETM (u)
δu (x)

= −
λ

2
div

(
∇u (x)√
‖u (x)‖2 + ε2

)
.

A.2. Numerical integration

We use the trapezoidal rule between adjacent image planes∫ b

a
f (x) dx ≈ (b − a)

f (a) + f (b)
2

to estimate the continuous derivative along each ray.

Assume we want to compute the line integral along the ray with direction r ∈ S . The main cone
direction is the optical axis, i.e. the z-direction of the recorded volume. We only have measurements
at discrete z-planes, therefore we rescale r′ := cr = (x′, y′, hz)> so that its z-component equals the
distance hz between two adjacent recording planes to avoid unnecessary inter-plane interpolation.
The approximation for the integral up to plane z then becomes∫ z

0
f
(
x + `r′

)
d` ≈

∥∥r′
∥∥ z∑
`=1

f (x + (` − 1) · r′) + f (x + ` · r′)
2

.
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A.3. Numerical differentiation

We formulate two different integration strategies, first a scheme for thin rays, and secondly a scheme
with conic rays obtained through incremental interpolation during the integration. To obtain efficient
algorithms, the schemes must be able to compute all line integrals for direction r simultaneously for
all voxels in the recording volume. We assume that values outside the recorded volume do not
contribute to the integral (zero-padding).

A.2.1. Integration along thin rays

Within this scheme the recording volume is first sheared according to the plane-offset − (x′, y′)>

using a backwarp transformation and bilinear interpolation to obtain values at sub-pixel positions.
The integration direction becomes the z-direction of the sheared volume. Then the line integration is
performed along (0, 0, hz)>. To obtain the integral for the original voxel positions, the integral vol-
ume is sheared by (x′, y′)> to the original coordinate system requiring a second backwarp transform
with bilinear interpolation.

A.2.2. Interpolation along conic rays

In this alternative scheme both the previous integral and the previous plane are sheared according
to the plane-offset (x′, y′)> using a backwarp transformation and bilinear interpolation. After the
shearing they match the discrete positions of the voxels in the current plane and are simply added
according to the trapezoidal rule. The incremental interpolation of the previous plane integral leads
to a natural widening of the rays. This scheme was proposed by Ronneberger et al. (2012) in the
ViBE-Z zerafish atlas.

A.3. Numerical differentiation

We define the 2nd order central differences of a discrete function f : Z3 → R as

∆c
x fx,y,z :=

fx+hx,y,z − fx−hx,y,z

2hx
, ∆c

y fx,y,z :=
fx,y+hy,z − fx,y−hy,z

2hy
, ∆c

z fx,y,z :=
fx,y,z+hz − fx,y,z−hz

2hz
,

the first order forward differences as

∆ f
x fx,y,z :=

fx+hx,y,z − fx,y,z

hx
, ∆ f

y fx,y,z :=
fx,y+hy,z − fx,y,z

hy
, ∆ f

z fx,y,z :=
fx,y,z+hz − fx,y,z

hz
,

and the first order backward differences as

∆b
x fx,y,z :=

fx,y,z − fx−hx,y,z

hx
, ∆b

y fx,y,z :=
fx,y,z − fx,y−hy,z

hy
, ∆b

z fx,y,z :=
fx,y,z − fx,y,z−hz

hz
.
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A. Variational attenuation correction

The gradient norms for the faces of the voxel at position x = (x, y, z)> are then given by

∥∥∥∇αx+ hx
2 ,y,z

∥∥∥ ≈

√(
∆

f
xαx,y,z

)2
+

(
1
2
(
∆c

yαx+hx,y,z + ∆c
yαx,y,z

))2

+

(
1
2
(
∆c

zαx+hx,y,z + ∆c
zαx,y,z

))2

∥∥∥∇αx− hx
2 ,y,z

∥∥∥ ≈

√(
∆b

xαx,y,z
)2

+

(
1
2
(
∆c

yαx,y,z + ∆c
yαx−hx,y,z

))2

+

(
1
2
(
∆c

zαx,y,z + ∆c
zαx−hx,y,z

))2

∥∥∥∇αx,y+
hy
2 ,z

∥∥∥ ≈

√(
∆

f
yαx,y,z

)2
+

(
1
2
(
∆c

xαx,y+hy,z + ∆c
xαx,y,z

))2

+

(
1
2
(
∆c

zαx,y+hy,z + ∆c
zαx,y,z

))2

∥∥∥∇αx,y− hy
2 ,z

∥∥∥ ≈

√(
∆b

yαx,y,z
)2

+

(
1
2
(
∆c

xαx,y,z + ∆c
xαx,y−hy,z

))2

+

(
1
2
(
∆c

zαx,y,z + ∆c
zαx,y−hy,z

))2

∥∥∥∇αx,y,z+ hz
2

∥∥∥ ≈

√(
∆

f
z αx,y,z

)2
+

(
1
2
(
∆c

xαx,y,z+hz + ∆c
xαx,y,z

))2

+

(
1
2
(
∆c

yαx,y,z+hz + ∆c
yαx,y,z

))2

∥∥∥∇αx,y,z− hz
2

∥∥∥ ≈

√(
∆b

zαx,y,z
)2

+

(
1
2
(
∆c

xαx,y,z + ∆c
xαx,y,z−hz

))2

+

(
1
2
(
∆c

yαx,y,z + ∆c
yαx,y,z−hz

))2

and the divergence can be computed to

div
(
ψ′
(∥∥∇αx,y,z

∥∥2
)
∇αx,y,z

)
= ψ′

(∥∥∥∇αx+ hx
2 ,y,z

∥∥∥2
)

∆ f
xαx,y,z − ψ

′

(∥∥∥∇αx− hx
2 ,y,z

∥∥∥2
)

∆b
xαx,y,z

+ ψ′
(∥∥∥∇αx,y+

hy
2 ,z

∥∥∥2
)

∆ f
yαx,y,z − ψ

′

(∥∥∥∇αx,y− hy
2 ,z

∥∥∥2
)

∆b
yαx,y,z

+ ψ′
(∥∥∥∇αx,y,z+ hz

2

∥∥∥2
)

∆ f
z αx,y,z − ψ

′

(∥∥∥∇αx,y,z− hz
2

∥∥∥2
)

∆b
zαx,y,z .

A.4. Data conditioning for direct L-BFGS-B optimization

If direct optimization of the intensities is not possible as in the case of fluorescence-induced ab-
sorption, we have to condition the optimization problem to allow direct optimization of intensities
and attenuations using L-BFGS-B. Without reconditioning the gradient along the α-dimensions is
extremely steep compared to a very shallow gradient along the Î-dimensions. This leads to severe
problems in the numerical optimization due to a very narrow ridge-like energy function. Changes in
the attenuation field are over-emphasized leading to strong oscillation along those dimensions while
at the same time the intensities do not change at all. The attenuations may not be changed without
severely affecting the resulting model but the intensities can be easily scaled. A suitable scaling
factor ν ∈ R+ that rescales the dynamic range of the intensities to match the dynamic range of the
attenuations makes the problem more well-behaved.

We insert the scaled estimated intensity Î′ (x) := 1
ν Î (x) into the simulation equation with fluores-
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cence absorption and obtain

F[α,Î′,βi,γ]
i (x) := βiνÎ′ (x) ·

∫
S

si (r)

=:T [α,Î′ ,γ]
r (x)︷                     ︸︸                     ︷

e−
∫ ∞

0 (α+γνÎ′)(x+`r) d` dr︸                                     ︷︷                                     ︸
=:C[α,Î′ ,γ]

i (x)

·

∫
S

si (r)

=:T [α]
r (x)︷             ︸︸             ︷

e−
∫ ∞

0 α(x+`r) d` dr︸                             ︷︷                             ︸
=:C[α]

i (x)

with Gâteaux/partial derivatives

d
dε

F[α+εh,Î′,βi,γ]
i (x)

∣∣∣∣
ε=0

=

−βiνÎ′ (x) ·
∫

S
si (r)

(
T [α,Î′,γ]

r ·C[α]
i + C[α,Î′,γ]

i · T [α]
r

)
(x)
∫ ∞

0
h (x + `r) d` dr

d
dε

F[α,Î′+εh,βi,γ]
i (x)

∣∣∣∣
ε=0

= βiν
(

C[α,Î′,γ]
i ·C[α]

i

)
(x) · h (x)

−βiγν
2 Î′ (x) ·

∫
S

si (r)
(

T [α,Î′,γ] ·C[α]
i

)
(x)
∫ ∞

0
h (x + `r) d` dr

∂

∂βi
F[α,Î′,βi,γ]

i (x) = ν
(

Î′ ·C[α,Î′,γ]
i ·C[α]

i

)
(x)

∂

∂γ
F[α,Î′,βi,γ]

i (x) = −βiν
2 Î′ (x) ·

∫
S

si (r)
(

T [α,Î′,γ]
r ·C[α]

i

)
(x)
∫ ∞

0
Î′ (x + `r) d` dr .

Finally we plug the new simulation equation and its derivative into the Poisson-Gaussian models.
For the generalized Anscombe model we obtain

EAPGdata

(
α, Î′, β2, γ

)
:=

k∑
i=1

∫
Ω

(
APG

(
Ii (x)

a

)
−APG

(
F[α,Î′,βi,γ] (x)

a

))2

dx
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with derivatives

δEAPGdata

(
α, Î′, β2, γ

)
δα (x)

=

ν

k∑
i=1

βi

∫
S

si (r)
∫ ∞

0

(
D

[α,Î′,βi,γ]
i · Î′ ·

(
T [α,Î′,γ]

r ·C[α]
i + C[α,Î′,γ]

i · T [α]
r

))
(x − `r) d` dr

δEAPGdata

(
α, Î′, β2, γ

)
δÎ′ (x)

= −ν

k∑
i=1

βi

(
D

[α,Î′,β2,γ]
i ·C[α,Î′,γ]

i ·C[α]
i

)
(x)

+γν2
k∑

i=1

βi

∫
S

si (r)
∫ ∞

0

(
D

[α,Î,β2,γ]
i · Î′ · T [α,Î′,γ] ·C[α]

i

)
(x − `r) d` dr

∂EAPGdata

(
α, Î′, β2, γ

)
∂β2

= −ν

∫
Ω

(
D

[α,Î′,β2,γ]
2 · Î′ ·C[α,Î′,γ]

2 ·C[α]
2

)
(x) dx

∂EAPGdata

(
α, Î′, β2, γ

)
∂γ

=

ν2
k∑

i=1

βi

∫
Ω

(
D

[α,Î′,βi,γ]
i · Î′ · T [α,Î′,γ]

r ·C[α]
i

)
(x)
∫

S
si (r)

∫ ∞
0

Î′ (x + `r) d` dr dx
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B. Arabidopsis sample preparation

All root samples were prepared and recorded by our colleagues from the Biology II department
Taras Pasternak, Dorothée Aubry-Hivet, Thomas Blein and Jasmin Dürr following this protocol.

B.1. Nucleus-based analysis

Seeds were surface-sterilized and sown on square Petri dishes of 1/2 Murashige and Skoog (MS)
medium containing vitamins, 0.5% saccharose and 1% (w/v) agar (Sigma). The dishes were kept at
room temperature for four hours before transfer to 4◦C for 12 hours. Dishes were then transferred
to 22◦C under long days (16h) of white light for the next 60 hours. To avoid an impact from the
circadian cycle, all operations where performed in identical day-time periods. After scanning the
dishes with a Canon F950 scanner, the primary root length was measured with Scion Image (Scion
Corporation). To ensure a comparable developmental age, all seedlings showing a root length differ-
ence greater than 10% from the average (8mm) were not kept for the following steps. The remaining
seedlings were transferred to a 12-well plate containing liquid 1/2 MS medium (containing vitamins,
and 0.5% saccharose) for 12 hours. Colchicine was then added (final concentration 0.1% (w/v)) and
plants were incubated for either 30, 60 or 90 minutes. After incubation the plants were fixed under
vacuum in 2% (w/v) paraformaldehyde in MTSB for 30 minutes. Then, the plants were washed
twice with distilled water for 10 minutes, incubated in DAPI (20µg/l) for 20 minutes, washed again
with distilled water and mounted on slides using a 120 µm spacer and FluoromountG (Southern
Biotechnology Inc.) as embedding medium.

The DAPI-stained root tips were recorded using a confocal laser scanning microscope (LSM 510
Duo Live) at an excitation wavelength of 405nm with a C-Apochromat 40x/1.2 W corrected UV-
VIS-IR objective. Serial optical sections were reconstituted into 3D image stacks to a depth of 100
µm, with an in-plane sampling of 0.15 µm and a section spacing of 1µm. Two or three partially
overlapping image stacks were recorded for each root.

B.2. Cell boundary-based analysis

The cell wall propidium staining was adapted from that of Truernit et al. (2008) as following. Plants
were fixed in (50% methanol and 10% acetic acid) and stored at 4◦C until use. After a progressive
rehydration, an overnight amylase treatment at 37◦C (phosphate buffer 20mM pH7 with NaCl 2mM,
CaCl2, 0.25mM, 0.01% amylase) was done as previously described (Wuyts et al., 2010). After
rinsing in water the roots were incubated for 40 minutes in 1% periodic acid at room temperature.
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B. Arabidopsis sample preparation

After another rinse in water the seedlings were incubated in Schiff reagent with propidium iodide
(100 mM sodium metabisulphite and 0.15 N HCl; propidium iodide to a final concentration of 0.1
mM was freshly added) for 15 minutes. The samples were then rinsed in water before incubation
for 1h in 10% glycerol and then 1h in mounting solution (80g of chloral hydrate in 27ml H2O, 3ml
of glycerol). After an overnight incubation in new mounting solution, the samples were mounted on
slides with a 120µm spacer.

The PI-stained roots were recorded using a confocal laser scanning microscope (LSM 510) at an
excitation wavelength of 488nm with a Plan-Neofluar 40×/1.3 oil objective. Serial optical sections
were reconstituted into 3D image stacks to a depth of 100µm, with an in-plane sampling of 0.4µm
and a section spacing of 0.4µm.

B.3. Pre-processing

Consecutive images were stitched to a total length of 500 µm from the quiescent centre (QC) using
xuvTools (Emmenlauer et al., 2009). The liquid embedding may induce small root rotations that
cannot be resolved with the strict translational model of xuvTools; therefore datasets with errors
exceeding 10 µm at the stitching boundary were discarded. The stitching error does not influence
the mitosis distributions, because the proliferation zone was fully included in the first tile. The
goal of the stitching was to ensure that no mitoses in the distal part from QC were missed. For the
description of more distal events the root should be mechanically fixed to the cover-slip.

For all recordings the microscope was setup to optimally use the available dynamic range of 12 bit
(Gray values: [0, 4096]).
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