
Processing Information about Biomolecules with Text Mining
and Machine Learning Approaches

INAUGURALDISSERTATION

zur Erlangung des Doktorgrades
der Fakultät für Chemie und Pharmazie

der Albert-Ludwigs-Universität Freiburg im Breisgau

vorgelegt von

Kersten Döring
aus Staaken, jetzt Berlin-Spandau

Oktober 2015

Vorsitzender des Promotionsausschusses: Prof. Dr. Stefan Weber

Referent: Jun.-Prof. Dr. Stefan Günther

Korreferent: Prof. Dr. Paul Wrede

Datum der mündlichen Kollegialprüfung: 06.11.2015

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich diese Arbeit allein und ausschließlich unter Nutzung
der direkt oder sinngemäß gekennzeichneten Zitate geschrieben habe. Weiterhin
versichere ich, dass diese Arbeit in keinem anderen Prüfungsverfahren eingereicht
wurde.

Kersten Döring
Freiburg, Oktober 2015

Zusammenfassung

Text Mining umfasst eine Vielzahl von Methoden zur Extraktion von Informationen
aus Sammlungen von Texten. Der größte frei zugängliche Suchdienst für biomedi-
zinische Forschungsergebnisse ist PubMed. Die Programmbibliothek PubMed2Go
wurde im Rahmen dieser Arbeit entwickelt um beliebige Datensätze der PubMed zu
indexieren und durchsuchbar zu machen. Desweiteren ermöglicht die Verwendung
eines speziellen Dateiformats die einheitliche Nutzung weiterführender Anwendungen
zur Wissensgewinnung. Mit Hilfe der geeigneten Infrastruktur konnten Modelle zur
Vorhersage von funktionellen Beziehungen zwischen chemischen Kleinstrukturen und
Proteinen in Sätzen von Texten der PubMed entwickelt werden. Der gewählte Ansatz
des maschinellen Lernens wurde auf Grundlage eines eigens neu annotierten Daten-
satzes evaluiert. Die erfolgreiche Verwendung einer Support Vector Machine mit zwei
verschiedenen Kernel-Funktionen resultierte in einem kreuzvalidierten F-Maß von
ca. 80 %. Text Mining ermöglicht die effiziente Verknüpfung von Informationen aus
der Literatur mit strukturellen oder sequenzbasierten Information aus spezifischen
Datenbanken. Eine Plattform, die auf diese Weise miteinander verbundene Quellen
über Annotationen von Experten bereitstellt, ist ChemIDplus. Die Toxizität darin
enthaltener chemischer Kleinstrukturen wurde hinsichtlich der mittleren letalen Dosis
auf Grundlage von molekularen Deskriptoren mit einer kreuzvalidierten Genauigkeit
von bis zu 91 % vorhersagt. Die vier verwendeten algorithmischen Klassifierungsan-
sätze lauten Entscheidungsbaum, Random Forest, künstliches neuronales Netz und
Support Vector Machine. Der Random Forest erzielte das beste Ergebnis mit einem
Area Under Curve-Wert von ca. 97 %. Das Synchronisieren annotierter Daten ist eine
komplexe Aufgabe, die in dieser Arbeit im Zusammenhang mit der StreptomeDB
beschrieben wird, einer Datenbank basierend auf verschiedenen Informationsquellen
der Bakteriengattung Streptomyces. Es wurde ein Workflow zur Aktualisierung der
Datenbank entwickelt, mit Hilfe dessen ca. 1600 neue Strukturen von ca. 600 ver-
schiedenen Organismen in StreptomeDB integriert werden konnten, inklusive einer
Fülle von Synthesewegen und Aktivitäten. Die hier vorgestellten Ergebnisse zeigen,
dass die Nutzung von maschinellem Lernen in Kombination mit automatisiertem
Text Mining und manueller Annotation zur Neuverknüpfung und Generation von
Wissen führt.

Abstract

Text Mining approaches cover a range of methods to extract information from usually
unstructured literature resources. The largest freely available repository to search for
this information is PubMed. Within the amount of different software solutions to gain
knowledge from texts, the newly developed software library PubMed2Go provides a
unified approach to index abstracts and their meta information on a local computer,
thus making them easily searchable for the user. With an appropriate infrastructure,
sophisticated approaches like machine learning can be used to learn and predict
patterns in texts. Such models were built within this thesis for extracting functional
compound-protein relationships from sentences of PubMed abstracts, applying two
different kernels with support vector machines. The approach reached an F1 score
of around 80 %, based on a newly developed and annotated benchmark data set.
Text mining enables the efficient connection of textual information to other sources,
like structures of chemical substances and sequences of proteins, by mapping their
synonyms in texts to unique identifiers in specific databases. ChemIDplus is such
an information repository including expert annotations. It was used for toxicity
prediction of small molecules based on their median lethal dose. The machine
learning classifiers decision tree, random forest, artificial neural network, and support
vector machine reached an accuracy of up to 91 % with different sets of molecular
descriptors. The best result was achieved by the random forest approach with
an area under curve value of around 97 % on a clearly separated data set. The
synchronisation of user-annotated data with information sources like textual and
structural identifiers is a complex task, described in this thesis for the StreptomeDB,
a database containing different information about the bacteria genus Streptomyces.
Around 1,600 structures were included to the new database version via the presented
update pipeline, produced by around 600 Streptomyces strains and containing a
range of curated synthesis pathways as well as activities. The presented results prove
that a combination of machine learning with automated text mining and manual
curation is a valuable approach, leading to linkage of published information and
generation of new knowledge.

Contents

1. Introduction 1

2. Methods 9
2.1. Text Mining-related Methods . 9

2.1.1. Extensible Markup Language 9
2.1.2. Structured Query Language 11
2.1.3. Xapian Full Text Index . 14
2.1.4. Entities . 15

2.1.4.1. Genes and Proteins 16
2.1.4.2. Small Molecules and Drugs 16
2.1.4.3. Co-occurrences and Relationship Verbs 17

2.2. Machine Learning Approaches . 18
2.2.1. Evaluation Parameters . 18

2.2.1.1. Sensitivity . 19
2.2.1.2. Specificity . 19
2.2.1.3. Precision . 19
2.2.1.4. F1 Score . 19
2.2.1.5. Area Under Curve 20
2.2.1.6. Binary and Multi-class Classification 21

2.2.2. Cross-validation . 22
2.2.3. Artificial Neural Networks . 23
2.2.4. Kernel Methods . 27

2.2.4.1. Linear Support Vector Machines 27
2.2.4.2. Gaussian Kernel . 30
2.2.4.3. Shallow-Linguistic Kernel 32
2.2.4.4. All-Path-Graph Kernel 33
2.2.4.5. Sparse Regularised Least Squares Classifier 36

i

2.2.5. Entropy-based Methods . 37
2.2.5.1. Decision Trees . 37
2.2.5.2. Random Forests . 40

2.2.6. Normalisation . 41
2.2.7. Dimensionality Reduction . 41

2.2.7.1. Forward Selection . 42
2.2.7.2. BestFirst Filter . 42
2.2.7.3. Principal Component Analysis 43

2.2.8. The WEKA Library . 45
2.3. Cheminformatics . 47

2.3.1. Simplified Molecular Input Line Entry Specification 47
2.3.2. SMiles ARbitrary Target Specification 49
2.3.3. Toxicity Data Set . 50

3. Results 53
3.1. PubMed2Go . 53

3.1.1. Related Work . 53
3.1.1.1. Providing Software Interoperability 53
3.1.1.2. Processing PubMed 54

3.1.2. Basic Workflow . 56
3.1.3. Use Case: BioC Applications 57
3.1.4. Use Case: Querying PubMed2Go Data Sets 59
3.1.5. Performance . 65

3.2. Prediction of Functional Compound-Protein Relationships 66
3.2.1. Related Work . 66
3.2.2. Functional Compound-Protein Interactions 68

3.2.2.1. Sentences with Interaction verb 68
3.2.2.2. Sentences without Interaction verb 69
3.2.2.3. Co-Occurrences . 70

3.2.3. Annotation of Functional Relationships 70
3.2.3.1. Interaction . 71
3.2.3.2. No Interaction . 71
3.2.3.3. False Positive Example 72

3.2.4. Generation of Data Sets . 73

3.2.5. Shallow Linguistic Kernel Pipeline 75
3.2.5.1. Preprocessing of the Curated Data Set 76
3.2.5.2. Generation of Training Instances 76
3.2.5.3. Lemmatisation and Tokenisation 77
3.2.5.4. Results . 79

3.2.6. All-Paths Graph Kernel Pipeline 81
3.2.6.1. Preprocessing . 83
3.2.6.2. Results . 84

3.2.7. Summary . 86
3.3. Toxicity Prediction . 87

3.3.1. Related Work . 87
3.3.2. Data Sets . 88
3.3.3. Results . 89

3.3.3.1. Workflow . 89
3.3.3.2. Selected Descriptors 91
3.3.3.3. Data Sets with 10 Descriptors 92
3.3.3.4. Data Sets with 324 Descriptors 94
3.3.3.5. QikProp Data Set 96
3.3.3.6. Summary . 98
3.3.3.7. Principal Component Analysis 98

3.4. StreptomeDB . 100
3.4.1. Related work . 100
3.4.2. StreptomeDB Back End . 100

3.4.2.1. Compound Research System Curator Database . . . 102
3.4.2.2. Canonical SMILES 104

3.4.3. Data Integration to StreptomeDB Back End 106
3.4.4. StreptomeDB Web Page . 109

4. Discussion and Future Prospects 111
4.1. Development and Usability of PubMed2Go 111
4.2. Model Integration of Functional Relationships in Texts to the Web . . 112
4.3. Towards Understanding Toxicity Prediction 117
4.4. A Compound-centralised View on Streptomycetes 120
4.5. Conclusion . 122

A. Appendix 123
A.1. Toxicity-related BestFirst Descriptor Overlaps 123
A.2. OpenBabel Descriptors . 125
A.3. QikProp Descriptors . 127
A.4. WEKA Toxicity Decision Tree . 129

Bibliography 131

Acknowledgements 141

List of Figures

1.1. Prolific heat map. 2
1.2. XOR problem. 5

2.1. PubMed XML format. 10
2.2. PosgreSQL queries in PGAdmin. 12
2.3. Xapian full text index. 14
2.4. Xapian full text search. 15
2.5. Area under curve. 20
2.6. Three-class confusion matrix. 22
2.7. Perceptron. 23
2.8. XOR multilayer perceptron. 24
2.9. Artificial neural network. 25
2.10. Sigmoid function. 25
2.11. XOR output space. 26
2.12. Kernel-induced feature space. 27
2.13. Linear separating hyperplane. 28
2.14. Maximal margin hyperplane. 28
2.15. Gaussian kernel. 30
2.16. Gaussian kernel XOR classification. 31
2.17. Syntax tree representation. 33
2.18. Dependency graph representation. 34
2.19. Shortest path. 35
2.20. Branching features. 39
2.21. Decision tree. 40
2.22. WEKA decision tree. 40
2.23. Eigenvectors. 43
2.24. WEKA Explorer Environment. 46
2.25. Cyclohexane. 47

v

2.26. Isobutyric acid. 48
2.27. 1-Methyl-3-bromo-cyclohexene-1. 48
2.28. Carboxylic acid SMARTS. 49
2.29. SMARTS legend. 50
2.30. ChemIDplus selection. 51
2.31. Mitomycin on ChemIDplus. 51
2.32. ChemIDplus search result. 52
2.33. Lethal dose of mytomycin. 52

3.1. PubMed2Go workflow. 56
3.2. Text mining applications. 57
3.3. BioC workflow. 58
3.4. Part of a BioC XML document. 60
3.5. Genes, proteins, drugs, and diseases related to pancreatic cancer. . . . 61
3.6. Most frequently co-occurring terms with gemcitabine. 61
3.7. PubMed2Go timelines for the publications of different genes. 63
3.8. Countries which pancreatic cancer-related journals come from. 65
3.9. Protein-compound interactions in STITCH. 67
3.10. Direct interaction with interaction verb. 69
3.11. Indirect interaction with interaction verb. 69
3.12. Direct interaction without interaction verb. 70
3.13. HTML data set annotation. 71
3.14. No interaction. 72
3.15. False positive example. 72
3.16. Shallow linguistic kernel workflow. 75
3.17. Extraction of HTML sentences. 76
3.18. Extraction of HTML sentences. 77
3.19. GENIA tagger. 77
3.20. Sentence in jSRE format with GENIA chunks and without punctuation. 78
3.21. Complete sentence in jSRE format. 78
3.22. All-paths graph kernel workflow. 81
3.23. Sentence with tab-separated functional interaction pairs. 82
3.24. XML format before preprocessing. 82
3.25. Tokenisation. 83
3.26. Syntactic tree parse. 83
3.27. Dependency tree parse. 84

3.28. WEKA KnowledgeFlow. 89
3.29. WEKA text result. 90
3.30. Overlap of all BestFirst selections from 10 descriptors. 91
3.31. Decision tree J4.8 with BestFirst selected features from 10 descriptors. 93
3.32. Principal component analysis. 99
3.33. CoRSCurator user interface. 101
3.34. Chloramphenicol. 105
3.35. Chloramphenicol with dative bonds. 106
3.36. StreptomeDB update workflow. 107
3.37. Chloramphenicol in StreptomeDB. 110

A.1. BestFirst selection for the data sets with 324 descriptors. 123
A.2. BestFirst selection for the data sets with QikProp descriptors. 124
A.3. OpenBabel descriptors 1/4. 125
A.4. OpenBabel descriptors 2/4. 125
A.5. OpenBabel descriptors 3/4. 126
A.6. OpenBabel descriptors 4/4. 126
A.7. QikProp descriptors 1/3. 127
A.8. QikProp descriptors 2/3. 127
A.9. QikProp descriptors 3/3. 128
A.10.Three-class decision tree J4.8 based on 10 descriptors. 129

List of Tables

2.1. Download of PubMed XML files. 11
2.2. PostgreSQL query to select journals published before 1950. 13
2.3. Results for query in Table 2.3. 13
2.4. Confusion matrix. 18
2.5. Weather data set. 37

3.1. PostgreSQL query to select MeSH term-related journals. 64
3.2. Results for the query in Table 3.1. 64
3.3. Compound-protein interaction prediction with co-occurrences. 70
3.4. PostgreSQL query to select all PubMed IDs from 2009 ascending. . . 73
3.5. NoSQL query to select database entries from MongoDB. 74
3.6. Results for NoSQL query in Table 3.5. 74
3.7. Data set 1 results with chunk tags and without punctuation. 79
3.8. Data set 1 results including all words of a sentence and punctuation. . 80
3.9. Data set 2 results with chunk tags and without punctuation. 80
3.10. Data set 2 results including all words of a sentence and punctuation. . 80
3.11. Data set 1 results for the all-paths graph kernel pipeline. 85
3.12. Data set 2 results for the all-paths graph kernel pipeline. 85
3.13. Toxicity classes. 88
3.14. Toxicity class sizes. 88
3.15. Decision tree J4.8 results on data sets with 10 descriptors. 92
3.16. Random forest results on data sets with 10 descriptors. 93
3.17. Artificial neural network results on data sets with 10 descriptors. . . . 94
3.18. Support vector machine results on data sets with 10 descriptors. . . . 94
3.19. Decision tree J4.8 results on data sets with 324 descriptors. 95
3.20. Random forest results on data sets with 324 descriptors. 95
3.21. Artificial neural network results on data sets with 324 descriptors. . . 95
3.22. Support vector machine results on data sets with 324 descriptors. . . 96

viii

3.23. Decision tree J4.8 results on data sets with QikProp descriptors. . . . 96
3.24. Random forest results on data sets with QikProp descriptors. 97
3.25. Artificial neural network results on data sets with QikProp descriptors. 97
3.26. Support vector machine results on data sets with QikProp descriptors. 97
3.27. PubMed ID query to data_project_article_entity_term. 103
3.28. Term query to data_project_article_entity_term. 103
3.29. PostgreSQL query to select connected entities for PubMed ID 25267678.103
3.30. Part of the result for the query in Table 3.29. 104
3.31. PostgreSQL query to select connected entities for PubMed ID 23143535.104
3.32. Part of the result for the query in Table 3.31. 104
3.33. Part of the molecules table with canonical SMILES. 106
3.34. PostgreSQL query to select a compound ID. 108
3.35. PostgreSQL query to select organism names and IDs. 109
3.36. Results for the query in Table 3.35. 109

1. Introduction

Publications are the most relevant information source for scientists to communicate
their research findings. PubMed1 is the largest open biomedical literature repository.
It can be used for information retrieval, the technical term marking the process
of searching for specific articles, and for the application of text mining methods.
Such methods aim at information extraction from unstructured texts. This involves
restructuring textual information, e.g. in relational databases, automatised text
annotations with entities, such as chemical substances, proteins, diseases, etc., and
conclusions about relations in the text. The process of annotating entities in texts
is referred to as named entity recognition. Besides other approaches of analysing
texts, it enables the possibility of counting how often different entities co-occur. This
concept was applied in the Web services Compounds In Literature2 (CIL) [1] and
protein-literature investigation for interacting compounds3 (prolific) [2].

The publication of CIL can be considered as the initiation for the work on two
of the herein presented projects. The Web service CIL automatically finds names,
structures, and similar structures with their co-occurring proteins in PubMed articles.
The names of the chemical structures are normalised to PubChem Compound IDs [3]
and the gene or protein synonyms are assigned to UniProt IDs [4]. The most similar
chemical substances for a given compound are found by comparing their internally
stored fingerprints4 with the Tanimoto coefficient5. The basic idea of not only
searching for a molecule, but also for all similar structures, to include molecules
with potentially the same or similar function, is called structure-activity relationship
(SAR) [5]. Prolific is similar to CIL, but it searches for protein and gene names with
all co-occurrences of chemical substances. Most similar proteins are provided with
the Basic Local Alignment Search Tool (BLAST) search [6] and mapped to UniProt

1http://www.ncbi.nlm.nih.gov/pubmed
2http://www.pharmaceutical-bioinformatics.de/cil
3http://www.pharmaceutical-bioinformatics.de/prolific
4http://openbabel.org/docs/dev/Features/Fingerprints.html
5http://www.daylight.com/dayhtml/doc/theory/theory.finger.html

1

http://www.ncbi.nlm.nih.gov/pubmed
http://www.pharmaceutical-bioinformatics.de/cil
http://www.pharmaceutical-bioinformatics.de/prolific
http://openbabel.org/docs/dev/Features/Fingerprints.html
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html

Chapter 1 Introduction

gene symbols. All co-occurrences in CIL and prolific are shown in a heat map as
illustrated in Figure 1.1.

Figure 1.1.: Prolific heat map. The query protein Cytochrome P450 3A4
(CYP3A4) and all co-occurring chemical substances are shown in the first column.
The most similar proteins are other CYPs. The colours illustrate the number of
co-occurrences per abstract of each compound-protein pair. While the compounds
with high frequencies will be metabolised by CP3A4 with a high probability, this
cannot be automatically implied for the other CYPs.

CIL and prolfic are based on a PostgreSQL relational database schema6. The named
entity recognition of PubChem compounds stored in this database was performed by
searching a Xapian full text index7 and the protein annotation was performed by the
Web service Whatizit [7]. Large progress has been made in the biomedical domain
of text mining and natural language processing [8]. This includes the identification
of protein-protein interactions [9], compound-protein interactions [2, 10], drug-drug
interactions [11, 12], and the overall connection to diseases [13]. Nevertheless, research
efforts are still hindered by a lack of standardised ways to process the vast amount
of data. This matter can be divided into two subjects. First, there is the problem
of interoperability between different natural language processing tools for named
entity recognition and relation extraction. Second, literature-related data needs to

6http://www.postgresql.org
7http://xapian.org

2

http://www.postgresql.org
http://xapian.org

Introduction

be prepared for large-scale applications. Both topics have been approached with
the first project described in this thesis, named PubMed2Go. The software library
builds a PostgreSQL relational database and a Xapian full text index on PubMed
citations using Python. It can be applied either to the complete PubMed data set or
an arbitrary subset of downloaded PubMed XML files. The issue of using different
natural language processing tools with a literature repository like PubMed without
much programming effort is approached by the implementation of an interface to a
standardised interchange format, called BioC. Therefore, PubMed2Go presents an
ideal starting point for the development of more sophisticated text mining methods
as described in Section 3.1.

The linkage of PubMed, PubChem, and UniProt in CIL and prolific offers several
possibilities to connect text mining, cheminformatics, and bioinformatics. Genes
and proteins can be grouped by their molecular function as annotated in Gene
Ontology8 (GO) [14, 15] and chemical substances can be investigated in terms of
their druglikeness [16]. If a chemical substance and a protein are co-occurring with
a high frequency, they will probably have a functional relationship, although the
type is not known [17]. If a compound occurs frequently together with a protein
and a similar compound does not, this molecule might be interesting as well. This
statement can be refined by restricting the co-occurrence principle to sentences and
furthermore, to enclose a relationship verb [2]. Nevertheless, co-occurrences are not
reliable in the case of rarely mentioned relationships. This fact motivated the second
project described in this thesis. Machine learning models were developed to extract
functional compound-protein relationships from sentences of PubMed abstracts as
described in Section 3.2. In theory, such a classifier can be imagined similarly to
a simplified human brain, parsing the structure of given information and learning
to put emphasis on specific words and their contexts [18]. The implementation of
compound-protein relationship models involved different natural language processing
steps to restructure considered sentences into model-specific formats. Furthermore,
two data sets were curated to train the machine learning models, with and without
enclosed relationship verbs. The selected methods for the applied types of machine
learning models were already benchmarked by Tikk et al. on different text corpora
for the extraction of protein-protein interactions. It will be shown that these models
can be particular useful in the process of searching for compound-protein relationships
in texts as well (Section 4.2).

8http://geneontology.org

3

http://geneontology.org

Chapter 1 Introduction

The machine learning approaches applied in this thesis are not only related to
texts, but also to the research area of toxicology as described within the third
project in Section 3.3. Toxicity predictions were performed which deal with the
amount of a substance that has to be consumed to be potentially lethal. These
predictions are made with a data set containing annotated levels of toxicity, based
on intravenous application in mice. (Section 2.3.3). That the dose makes the poison,
was already stated by Paracelsus (1493 to 1541), but the question why a substance
is actually toxic can be particularly difficult to answer due to the complex issues of
pharmacokinetics and pharmacodynamics [5]. Pharmacodynamics are referred to as
what the chemical does to the body [5]. These effects can be modelled with methods
from molecular biology and biochemistry [19, 20]. Pharmacokinetics, describing what
the body does to the chemical, deals with the question how the molecule reaches the
target tissue and in which concentration. In physiologically based pharmacokinetic
models, this question is approached by solving the issues of absorption, distribution,
biotransformation, and elimination (ADME) mathematically [5]. Considering the
process of drug development, many candidate substances fail because of a lack of drug
efficacy and presence of dose-limiting toxicity [5, 21]. Therefore, improving in silico
toxicology models will save time, money, and animal lives [20, 22, 23, 24]. While drug
development issues are related to the United States Food and Drug Administration
(FDA) agency, the research area of toxicology in general is important for the United
States Environmental Protection Agency (EPA) as well [5]. Using machine learning
models on a simplified distinction of toxicity classes to find biomolecular patterns for
the prediction of toxicity has led to substantially good results within this thesis, but
leaves the interpretation of identified descriptors open. Part of this topic is discussed
in Section 4.3.

Machine learning can be divided into supervised learning and unsupervised learn-
ing [25]. The latter approach is able to group given examples with a similar pattern
into the same class, without knowing their class assignment. This can be done
with clustering methods or principal component analysis. In the case of supervised
learning, the algorithm is taught which training examples belong to which class. Sub-
sequently, the model is able to predict unknown examples by applying the extracted
pattern it had learned in the training period. A pattern is a group of mathematically
encoded features which might not be directly clear for the user by visual inspection
of the data set. If parents teach their child the difference between a cup and a glass,
they will probably use features like material, colour, shape, or the presence of a

4

Introduction

handle. In case of the algorithm, these features can be entered into a table with the
class labels cup or glass and different examples given. Nominal features like colours
can also be encoded with numbers.

Figure 1.2.: XOR problem [20]. In the XOR problem, one of the two classes
is defined by the criterion x1 == x2. This class is illustrated with green dots
on red background. The other class (x1 6= x2) is displayed with blue dots on
blue background. The artificial neural network classifier used in this case learned
to distinguish between green dots and blue dots as training examples. The red
background colour displays the area in which the model still classifies a pixel as
belonging to the group of green dots. Everything shown in blue will be predicted
as the other class. The scatter plots were generated as two-dimensional Gaussian
distributions. Due to the random initialisation, the discriminative function will
lead to different results for each repetition.

Classical machine learning examples are email spam filter or face recognition in
cameras. Supervised machine learning classifier examples in bioinformatics are e.g.
the prediction of major histocompatibility protein I (MHC-I) binding peptides [26],
cell penetrating peptides [27], and membrane proteins [28]. In these cases, features are
amino acid-related descriptors, e.g. their distribution, net charge, or hydrophobicity.

5

Chapter 1 Introduction

A classification problem can also be displayed graphically as shown in the two-
dimensional exclusive OR function (XOR problem) in Figure 1.2. This figure also
represents a problem of non-linear separability, because there is no possibility to
separate the green dots and the blue dots with a single linear line. High-dimensional
classification problems are difficult to display, but the principle remains the same,
dealing with hyperplanes and coordinates in space.

The machine learning approaches used in this thesis to separate toxicity classes are
artificial neural networks, support vector machines, decision trees, and random forests.
The features are physico-chemical properties, functional groups, and substructures of
the molecules. In case of the prediction of functional compound-protein relationships,
the two approaches in comparison are the support vector machine and the sparse
regularized least squares classifier. Computed features are terms in the sentences and
their part-of-speech tags. In machine learning, the quality of the model is dependent
on the data set. Especially in the case of toxicity prediction, different descriptor sets
are evaluated to try to find explanations for the patterns used by the classifier.

The fourth project within this thesis, named StreptomeDB, covers data which cannot
yet be annotated automatically by text mining and pattern matching methods,
because the reliability would not be as high as it is by involving expert knowledge.
The core of StreptomeDB is based on curated Streptomyces strains and the chemical
compounds produced by them, possibly with annotated activities and synthesis
routes. The process of text curation and drawing of annotated structures that do
not yet exist in PubChem is time-consuming, but of high benefit. The project was
published first in 2013 [29] and is also connected to PubMed2Go. Until September
2015, StreptomeDB was already cited several times. Therefore, the data can be used
with a range of different research focuses, as discussed in Section 4.4.

Streptomyces belong to the Gram-positive actinobacteria and contain a high content
of guanine and cytosine DNA bases [30]. This genus is of so much interest for the
scientific community, because it occupies a range of different terrestrial and aquatic
habitats. Furthermore, they produce more than 60 % of all known antibiotics [31].
This includes approved drugs, such as tetracycline [32], daptomycin [33], and chloram-
phenicol [34]. The probably most popular drug isolated from Streptomyces is also the
first one, named streptomycin and identified by Albert Schatz in 1943 [35]. Natural
compounds from Streptomyces can also be produced as semi-synthetic drugs [36], as
in the case of griselimycin [37]. Beside antibiotics, there are also biologically active

6

Introduction

and therapeutically important drugs, like the anti-parasitic agent avermectin [38], the
immunosuppressant rapamycin [39], and the lipase inhibitor lipstatin [40]. There is
still a range of possibilities to discover new drugs from Streptomyces [41]. Considering
this excerpt of drugs related to Streptomyces, there is the requirement of an update
pipeline supporting the process of computer-assisted curation of new publications
to keep the centralised knowledge about these versatile bacteria up-to-date. The
steps involved in this workflow are described in Section 3.4. There are several new
features to further explore the chemical diversity of compounds and the phylogeny of
Streptomyces strains in the new update version of StreptomeDB, but these functions
will be presented in detail in the follow-up publication [42].

While the next chapter illustrates methods used in one or several of the results’
sections, Section 3.1 to Section 3.4 describe the projects PubMed2Go, functional
compound-protein relationship prediction, toxicity prediction, and StreptomeDB in
an enclosed way. Thereby introduced related work and future prospects are discussed
in the last chapter.

7

2. Methods

2.1. Text Mining-related Methods

2.1.1. Extensible Markup Language

The Extensible Markup Language (XML) is a commonly used text-based data ex-
change format. It is used to structure text fragments with key-value pairs, describing
a kind of categorisation for each block it is belonging to. These categorisation
or structure types are defined in a document type definition (DTD) file such as
the PubMed DTDs1. The documents that are freely available via the PubMed
search engine are mostly database entries from Medical Literature Analysis and
Retrieval System Online (MEDLINE). Within this thesis, they will be referred to as
PubMed XML files. The complete XML data set of PubMed can be downloaded
from the NLM FTP server, including example data sets2,3. An example for XML
elements in PubMed articles enclosing blocks of text is shown in Figure 2.1. These
key-value elements can be processed with an XML parser. The Python4 parser used
in the PubMed2Go project (Section 3.1) uses the ElementTree XML application
programming interface5 (API) which is similar to a Simple API for XML (SAX)
interface6.

A more specific format is described with the BioC XML format for biomedical
annotations (Section 3.1.3). In general, the text fragments themselves are still
unstructured, but they can be selected by their categorisation type. The reason not
to use Office documents for automated text processing tasks is that these files are

1http://www.nlm.nih.gov/databases/dtd
2http://www.nlm.nih.gov/databases/journal.html
3ftp://ftp.nlm.nih.gov/nlmdata/sample/medline
4https://www.python.org
5https://docs.python.org/2/library/xml.etree.elementtree.html
6http://stackoverflow.com/questions/192907/xml-parsing-elementtree-vs-sax-and-dom

9

http://www.nlm.nih.gov/databases/dtd
http://www.nlm.nih.gov/databases/journal.html
ftp://ftp.nlm.nih.gov/nlmdata/sample/medline
https://www.python.org
https://docs.python.org/2/library/xml.etree.elementtree.html
http://stackoverflow.com/questions/192907/xml-parsing-elementtree-vs-sax-and-dom

Chapter 2 Methods

Figure 2.1.: PubMed XML format. The whole example data set is enclosed
with a MedlineCitationSet XML tag. Every article contains an opening and closing
MedlineCitation tag. The PubMed ID is represented with the key PMID and the
value 12255379. Other XML elements are shown, e.g. publication date, journal,
title, and text.

10

2.1 Text Mining-related Methods

Table 2.1.: Command to download of PubMed XML files. The tool wget
can be used in the command-line of Linux systems to download files, e.g. from
File Transfer Protocol (FTP) servers. In this case, the NCBI EFetch interface is
used. The output file medline_00000000.xml will contain the XML documents
with the PubMed IDs 25006566 and 25005174.

Command
wget -O medline_00000000.xml

“http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&
id=25006566,25005174&
retmode=xml”

encoded in a binary format which cannot be read directly by programming languages
like Python or Java7. The parsing step (reading XML documents) can be used for
storing the sub-categorised text fragments in a relational database as described in
the next subsection.

The XML files can be downloaded via the NCBI interface EFetch8. An example as
applied with PubMed2Go9 is shown in Table 2.1.

2.1.2. Structured Query Language

Structured Query Language (SQL) commands and tables are used in all projects
described in this thesis except the toxicity prediction. Considering the XML example
in the last subsection, every key-value pair of XML elements can be processed
and stored in a relational database, e.g. by using PostgreSQL. Therefore, the
data can be queried with SQL commands instead of parsing the text file again.
Different approaches exist, such as building SQL statements directly in an SQL
script or using a programming language like Python. Text elements can be processed
with Python and the module Psycopg10 can be used to execute an SQL query.
PubMed2Go uses a different approach in which the SQL tables and their dependencies
are implemented as Python classes (Section 3.1). This approach is called object-
relational mapping. It is implemented in the Python module SQLAlchemy11. With
this software, elements can be pushed to SQL tables with Python functions that

7http://www.oracle.com/technetwork/java/javase/downloads/index.html
8http://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch
9https://github.com/KerstenDoering/PubMed2Go/tree/master/data

10http://initd.org/psycopg
11http://www.sqlalchemy.org

11

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch
https://github.com/KerstenDoering/PubMed2Go/tree/master/data
http://initd.org/psycopg
http://www.sqlalchemy.org

Chapter 2 Methods

implicitly use SQL statements in Psycopg. An SQL query example is shown in
Table 2.2 and its result in Table 2.3. This SQL statement can also be executed with
the PostgreSQL Open Source administration and development platform PGAdmin
(Figure 2.2).

Figure 2.2.: PosgreSQL queries in PGAdmin. The PGAdmin platform can be
configured to connect to a database in the network, e.g. pancreatic_cancer_db
(Section 3.1). A part of the different tables in the schema pubmed is shown on the
left side. The SQL code to generate the selected table is shown on the right side.
The magnifying glass symbol can be clicked to run queries like the one shown in
Table 2.2.

Another approach of storing textual data is to use a NoSQL database like MongoDB12,
e.g. with the Python interface PyMongo13. The name relational databases implies
that the concept of SQL tables is to use different tables which are connected with
foreign keys. In the case of NoSQL tables, the usage commonly relies on one large
table containing all information. One motivation to use this technology is that it can
still be applied where an SQL join of different entity types and their references is too
slow. An example for a NoSQL query is illustrated in Section 3.2.4. It is referring to

12https://www.mongodb.org
13https://api.mongodb.org

12

https://www.mongodb.org
https://api.mongodb.org

2.1 Text Mining-related Methods

a case in which the MongoDB is needed too store a huge number of small molecules
and proteins that were joined within the back end of the Web service prolific [2].

Table 2.2.: PostgreSQL query to select journals published before 1950.
This query selects PubMed IDs, publication titles, and journal names, based on the
PubMed2Go pancreatic cancer data set (Section 3.1). The information is located
in two different tables. Therefore, the selection includes a join of two tables via
the PubMed ID as a foreign key.

SQL command
SELECT mc.pmid, mc.article_title, mj.pub_date_year, mj.title
FROM pubmed.tbl_medline_citation mc
INNER JOIN pubmed.tbl_journal mj
ON mj.fk_pmid = mc.pmid
AND mj.pub_date_year < 1950
ORDER BY mj.pub_date_year;

Table 2.3.: Results for query in Table 2.3. There are six publications from
the time before 1950, related to pancreatic cancer. Pancreaticoduodenectomy is
the medical term for a surgery removing the pancreas and part of the surrounding
organs. Today, it is still practised similarly to the procedure successfully published
first.

PubMed ID Title Year Journal
17856333 PANCREATIC CANCER AND ITS 1934 Annals of surgery

TREATMENT BY IMPLANTED
RADIUM.

20267924 The present status of 1947 The Journal of the
pancreaticoduodenectomy for International
carcinoma of the ampulla of College of
Vater and of the head of the pancreas. Surgeons

20259580 [Pancreatic cancer]. 1947 Cincinnati journal
of medicine

20242992 The diagnosis of pancreatic cancer. 1947 Medical times
18149952 Exfoliated pancreatic cancer cells 1949 Cancer

in duodenal drainage; a case report.
15396889 [Radical treatment of pancreatic 1949 Gazette des

cancer]. hôpitaux civils
et militaires de
l’Empire ottoman

13

Chapter 2 Methods

Figure 2.3.: Xapian full text index. These steps are important to index text
documents with Xapian, e.g. parsed text files, entries from a relational database, a
list of names, etc. In case of PubMed2Go, the document IDs are PubMed IDs and
the indexed fields are titles, abstract texts, MeSH terms, keywords, and chemical
substances.

2.1.3. Xapian Full Text Index

In this thesis, the Xapian Python interface Xappy14 is used. The library is easy
to use, because an index can basically be built in a few steps, as provided in
Figure 2.3. An appropriate search example is illustrated in Figure 2.4, with the result
shown as text that was commented out. More advanced examples with conditional
queries like AND or NEAR can be found in the PubMed2Go documentation15. One
important concept of Xappy is to directly index fields and to set up documents with
a customised document ID. The prefix in the search result of Figure 2.4 is an XA,
which corresponds to a user-defined field X with the index specification A. If there
was another field such as title in addition to the field text, the second query would

14https://pypi.python.org/pypi/xappy
15https://github.com/KerstenDoering/PubMed2Go/wiki

14

https://pypi.python.org/pypi/xappy
https://github.com/KerstenDoering/PubMed2Go/wiki

2.1 Text Mining-related Methods

show an XB. The Z in the query syntax represents the search for a stemmed version
of the term16.

Figure 2.4.: Xapian full text search. The output of this search, based on the
index built in Figure 2.3, is shown below the programme code. The Xapian
documents “hello world” and “hello user” are matched exactly. The matched
document “used” is resulting from the common word stem “us” in “using”.

2.1.4. Entities

An entity describes a type or class of words in a text, e.g. genes and proteins, small
molecules and drugs, or diseases. Different approaches exist that identify synonyms
of these categories, e.g. with dictionaries or by using machine learning.

16http://xapian.org/docs/omega/termprefixes.html

15

http://xapian.org/docs/omega/termprefixes.html

Chapter 2 Methods

2.1.4.1. Genes and Proteins

Whatizit [7] is a Web service that provides named entity recognition of genes and
proteins, gene ontology terms, diseases, organisms, and chemical substances. It
can be accessed via a Simple Object Access Protocol (SOAP) with programming
languages or via a Web page17. Whatizit uses a dictionary-based approach using
UniProt synonyms [4]. Therefore, it offers a fast protein-tagging service.

A more sophisticated approach is used by GeneTUKit [43]. The software uses condi-
tional random fields (CRF) [44], a machine learning technique which considers the
word neighbourhood of a candidate synonym, an Entrez Gene-based dictionary [45],
and ABNER [46], another named entity recognition software. If two of these three
approaches vote for a possible gene or protein, the synonym will be further processed
by a ranking algorithm, considering different features like the local context and the
global text, e.g. the whole abstract or full text article. Therefore, it is possible to
perform gene normalisation, which means mapping an organism-specific gene ID to a
synonym. Finally, a support vector machine generates a confidence score specifying
a level of certainty for each gene ID prediction. Unfortunately, the GeneTUKit
source code is not available, but the software can be executed as a Java Archive
(JAR) application [43]. There is a prototype implementation18 using PubMed2Go
for downloading relevant articles and getting the Entrez Gene IDs with GeneTUKit.
The result is a set of annotated abstracts in which the Entrez Gene IDs are mapped
to UniProt IDs. In a test run with 20,000 abstracts, the average runtime for 1,000
abstracts was around 1 h. E. Abasian worked on this project during her Master
Thesis under my supervision [47]. GeneTUKit and GNAT [48] are the most com-
monly known and best performing tools for gene normalisation. One difference is
that GNAT is restricted to 20 common model organisms like human, mouse, rat,
and E. coli.

2.1.4.2. Small Molecules and Drugs

The Web service CIL [1] processes PubChem compounds [3] applying the Hettne-
Rules [49]. These rules were defined to filter synonyms which will probably result in
false positive hits. This includes eight rules, e.g. the short token filter rule, excluding
17http://www.ebi.ac.uk/webservices/whatizit
18https://github.com/ElhamAbbasian/GeneTUKit-Pipeline

16

http://www.ebi.ac.uk/webservices/whatizit
https://github.com/ElhamAbbasian/GeneTUKit-Pipeline

2.1 Text Mining-related Methods

synonyms that result in a single letter or number after removing stop words19, and the
dosage rule, basically removing units or measurements. After the complete PubMed
XML data set was searched for PubChem compounds with Xapian, a frequency table
was build in which it was counted in how many abstracts each chemical substance
synonym was found. PubChem synonyms are particularly useful to map named entity
recognition terms to real structures, but a lot of synonyms are not useful. Considering
the list of matched structure names, the first synonym was “(or)” with a frequency
of 5,777,083. This phenomenon has got two reasons. Xapian does not take care for
brackets and other special characters. The search engine replaces these parts with
wildcards, trying to match the overall term. The second reason for such a result is
that the Xapian search is case-insensitive. The synonym identified here is “(OR)” and
belongs to the molecule methyl 2-[4-(4-chlorobutanoyl)phenyl]-2-methylpropanoate20.
The whole list contained around 302,046 identified terms matched with a with a
PubChem synonym list21, both from October 2014. The first 7,000 synonyms were
checked in a semi-automatic way by O. Thomas22. All terms following afterwards
occurred with a frequency of around 1,000 and less. Considering the length of the
list, structure names with less occurrences will less likely show false positive hits.

2.1.4.3. Co-occurrences and Relationship Verbs

If two biomolecules appear together in a text, they will be referred to as co-occurring.
A comparably high number of such pairs of biomolecules can be use to predict a
relationship, e.g. between proteins or proteins and chemical compounds (Section 3.2).
This is commonly known and e.g. mentioned by Tikk et al. [9] or Jensen et al. [17].
Furthermore, Tikk et al. refer to the idea to refine this concept by including
relationship words and verbs [50]. This was independently done in the publication of
prolific [2]. A list of potentially important verbs was created and iteratively searched
in all PubMed abstracts with an enclosing structure of a chemical compound and a
protein. Every verb which did not seem to lead to appropriate results after inspecting
a few examples was removed. After completion, verb forms in all tenses were created
and saved in a PostgreSQL relational database. Therefore, the Web service prolific
contains an additional search option to enclose a relationship verb [2]. Nevertheless,
19http://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords
20https://pubchem.ncbi.nlm.nih.gov/compound/10062338
21ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/Extras/CID-Synonym-filtered.gz
22http://www.pharmaceutical-bioinformatics.de/main/members

17

http://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords
https://pubchem.ncbi.nlm.nih.gov/compound/10062338
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/Extras/CID-Synonym-filtered.gz
http://www.pharmaceutical-bioinformatics.de/main/members

Chapter 2 Methods

these verbs were not annotated with part-of-speech tags, such that some examples
might be nouns, especially in the case of the gerund with the suffix -ing. The quality
of this approach in relation to functional compound-protein relationships is analysed
in Section 3.2.

2.2. Machine Learning Approaches

The methods described in this section were applied in the toxicity prediction project
(Section 3.3) and the extraction of functional relationships between chemical com-
pounds and proteins from sentences in PubMed abstracts (Section 3.2). Part of the
presented figures and explanations are related to my Bachelor Thesis in 2009 [20]
and L. M. Grüger’s Bachelor Thesis [51], supervised by me.

2.2.1. Evaluation Parameters

A machine learning classifier needs to be evaluated by measuring its amount of
correct and wrong predictions. This can be done with a confusion matrix (Table 2.4).
Summarising the rows and columns in this table leads to a range of evaluation
parameters, described in this subsection.

Table 2.4.: Confusion matrix. The column headers show the positive and negative
predictions. The rows represent the actual class with the gold standard annotation.
Therefore, the falsely positive predicted instances are positioned in the lower left
part of the table (FP) and the false negatives can be found in the upper right part
of the table (FN). True positives are abbreviated with TP and true negatives with
TN.

Actual class / predicted class Positive Negative
Positive TP FN
Negative FP TN

Predictions that are correct can be true positives or true negatives. All true negatives
that were classified positive are called false positive. Therefore, positive instances
that were classified incorrectly are false negatives. In case of functional relationships
(Section 3.2), a positive example refers to a true relationship. Considering the
toxicity prediction project (Section 3.3), the positive class is the more toxic class.

18

2.2 Machine Learning Approaches

2.2.1.1. Sensitivity

Sensitivity, also called recall or TP rate, measures how many of the really true
examples in the data set were identified as positive cases. Based on Table 2.4, the
following formula refers to the first row.

R = TP

TP + FN

2.2.1.2. Specificity

The specificity measures how many of the really negative examples were recognised as
such. Therefore, it can also be considered as the sensitivity of the negative class. By
convention, this measurement refers to the second row in Table 2.4. In the WEKA
confusion matrix (Section 2.2.8 and Section 3.3), there is only the recall of class
a and the recall of class b given. In case of named entity recognition tasks, this
measurement is usually not considered, because the number of negative examples
refers to the rest of the terms given in a text. The FP rate is defined as 1− S.

S = TN

TN + FP

2.2.1.3. Precision

In contrast to the recall, the precision measures how many of the positive predictions
are actually really positive examples. This evaluation parameter is important for
text mining-related topics. The precision of the negative class is not considered,
because a classifier is commonly judged by its ability to find the positive cases. The
value is calculated with the entries in the first column of Table 2.4.

P = TP

TP + FP

2.2.1.4. F1 Score

This evaluation parameter can be considered as the weighted average of precision
and recall. Its value ranges from zero to one.

F1 = 2 · P ·R
P +R

19

Chapter 2 Methods

Figure 2.5.: Area under curve [52]. The table shows all probabilities for each
prediction beginning with the largest score in a descending order. The column
“True” shows a “p” for a really positive instance and “n” otherwise. The classifier’s
output for a positive prediction (“Y”) is based on the decision whether a value is
larger than a threshold of 0.5. This threshold is not optimal, because it results in
two false positive predictions. Each cross in the ROC plot corresponds to a new
threshold. The circled crosses illustrate the thresholds with suboptimal accuracies,
which are 80 % and 90 % respectively. The optimal threshold value would be
around 0.7, resulting in an accuracy of 100 %. Neverthelss, the AUC of this
classifier is 100 %, which means that all examples were ranked in the correct order.
Therefore, the ROC curve can be used to tune the classifier’s relative performance
by changing the classification threshold. Another approach is to calibrate the
probability scores [52, 53].

2.2.1.5. Area Under Curve

The area under curve (AUC) can be illustrated with a receiver operating characteristic
(ROC) curve. The descriptions presented in this subsection are based on a good
introduction to ROC analysis by Tom Fawcett [52]. The calculation of an ROC curve
is based on the fact that most classifiers do not only provide the decision whether a
prediction is positive or negative, but also a probability or probability score. Sorting
these scores descending and shifting a threshold over all output scores leads to a
different confusion matrix for every new prediction example. Therefore, the TP and
FP rates can be plotted for every threshold that changes the values in the confusion
matrix, as shown in Figure 2.5.

20

2.2 Machine Learning Approaches

The AUC corresponds to the percentage that is covered by the ROC curve. The
maximum value is 100 %, but this performance is rarely achieved. The ROC values
in the upper left area of the plot correspond to the best classification results with
the highest TP rate and the lowest FP rate. A classifier with an ROC that relatively
covers the diagonal cannot be considered better than random. Figure 2.5 also shows
that the highest thresholds correspond to the lowest left region of the ROC curve,
resulting in a very low FP rate, but also a low number of TPs. The lower the
threshold, the higher the TP rate will be, probably also resulting in a higher FP
rate. Therefore, the former approach is called conservative and the latter approach
liberal. In case of toxicity prediction, a higher number of FPs might be a good choice.
Although the resulting number of TN examples will be rather low, the number of
unrecognised really toxic examples (FN) will also remain comparably low. In case of
applying text mining filter options, the better approach can be using a conservative
threshold, such that the user will not have to read through many FP examples.
The AUC can be calculated by summing up the area below the ROC curve or by
summing up the number of positively ranked examples that have a higher score
than all negative examples, divided by the total number of comparisons [54]. This
turns out to result in the same meaning. The AUC is defined as the probability that
the classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative example. Another way than optimising for the highest accuracy
is to find the decision threshold with the best F1 score [54]. This might shift the
threshold into the lower left area of the ROC plot, which is the already mentioned
interesting case for text mining-related tasks. In general, the F1 score can be affected
by class skews, because it is only based on part of the confusion matrix, while the
AUC calculation covers both columns in this matrix.

2.2.1.6. Binary and Multi-class Classification

There are classifiers that are able to learn multi-class models, such as artificial
neural networks and decision trees. In case of binary classifiers like support vector
machines, there are implementations that train a model for each class against all
other classes, also called the one-against-all method [25]. If e.g. three classes are
given, as illustrated in Figure 2.6, the evaluation parameters explained in the last
subsections can be calculated by explicitly building three two-class confusion matrices
from the three-class matrix or by using the two-class matrices provided by the three

21

Chapter 2 Methods

Figure 2.6.: Three-class confusion matrix [51]. The three classes A, B, and C
can be combined in three different two-class data sets.

one-against-all models.

2.2.2. Cross-validation

In case of k-fold cross-validation, the data set is divided into k equally sized subsets. A
model is trained k times with k-1 subsets, such that each of the k subsets is predicted
once. Therefore, the confusion matrix can be built from all subsets to calculate the
evaluation parameters on all instances from the data set. Cross-validation ensures
that a possible effect of more easy or difficult examples and more similar or diverse
instances is averaged [55]. Therefore, the classifier’s performance and ability to
generalise patterns from a data set can be evaluated. In this thesis, all experiments
were performed with 10-fold cross-validation.
In the case of classifying relations in sentences, it is recommended to perform
document-level cross-validation instead of instance-based cross-validation [54]. The
difference is that in a sentence with

(
n
2

)
binary entity pairs, these instances will

remain in the same data set split, using the document-level cross-validation. The
reason not to separate instances from the same sentence or document is that they
cannot be considered as independent examples. Therefore, a split on an instance-
based level would lead to information leakage and non-representative evaluation

22

2.2 Machine Learning Approaches

results [54, 56, 57].

2.2.3. Artificial Neural Networks

The XOR problem mentioned in the introduction of this thesis is a non-linearly
separable problem. The artificial neural network classifier is able to solve such
problems by combining single neurons which can be referred to as perceptrons. This
analogy of the algorithmic approach and real neurons in the brain was introduced by
Hodgkin and Huxley in 1952 [58]. The concept of combining weighted excitatory
and inhibitory input edges with a threshold function, deciding to fire or not, was
mathematically introduced as the perceptron by Frank Rosenblatt in 1958 [59] and
further refined by Minsky and Papert in 1969 [58]. Such a single perceptron is shown
in Figure 2.7.

Figure 2.7.: Perceptron [58]. The left and the right perceptron can be considered
as equal, because the only difference is a constant input of +1. With this bias, the
right perceptron is normalised to a threshold of 0.

Mathematically, any logical function can be computed by a perceptron network [58].
The perceptron is able to solve a linearly separable problem by multiplying each
input value with a certain weight and computing the sum of all products. This is
equal to the vector product of an n-dimensional weight and input vector.

f(x) =
n∑
i=1

wixi + b

f(x) = 〈w · x〉+ b

In the two-dimensional input space, this refers to standard linear function with the

23

Chapter 2 Methods

Figure 2.8.: XOR multilayer perceptron [58]. If both inputs are equal, e.g.
x1 = 1 and x1 = 1, the input for the first layer of perceptrons is equal to 0.
Therefore, the units do not fire. Subsequently, the sum of the products with 0 as
the input for the last neuron is also smaller than the threshold 0.5. For unequal
inputs, e.g. x1 = 1 and x1 = 0, the network generates the output 1.

slope a and the bias b.

f(x) = ax+ b

In case of the XOR problem a multilayer perceptron with three units can be con-
structed in an analytical way [58], as shown in Figure 2.8.

In general, a multilayer perceptron consists of an input layer, a hidden layer and an
output layer (Figure 2.9). A network can consist of multiple hidden layers.

All neurons except the input nodes contain an activation function, e.g. a sigmoid
function (Figure 2.10).

The output neuron also contains an error function. It measures the squared distance
of the value computed by the output function and the true label y of each of the p
training instances in the data set S [58].

S = {(x1, y1), . . . , (xp, yp)}, Y = {0, 1}

E = 1
2p ·

p∑
i=1

(f(xp)− yp)2

The aim is to train the network to compute the correct output function f(x). This
can be achieved by minimising the error function E. The network function f(x) is
not explicitly given, but represented as training data points in some input space.

24

2.2 Machine Learning Approaches

Figure 2.9.: Artificial neural network [60]. In this generalised network structure,
the input dimension is n = 6. There are three hidden layer neurons and one output
layer neuron for binary classification.

Figure 2.10.: Sigmoid function [58]. The sigmoid function f(x) = 1
1+exp−cx is

shown with c = 1, c = 2, and c = 3. The largest parameter c refers to the curve
with the steepest slope for x = 0.

The best approximation is computed by function composition of single neurons with
sigmoid output functions. The function changes by altering the weights in every
neuron layer. All weights ` can be changed by computing their partial derivatives to
make use of the gradient descent in the error space. This is the reason for choosing
a sigmoid activation function. It ensures that there are no plateau regions with
gradient zero. The derivatives can be computed until a local or global minimum

25

Chapter 2 Methods

is found in the error space [58]. The partial derivatives are represented with the
greek symbol nabla (O). As commonly known from two-dimensional derivatives, the
derivative of the error function is set to zero.

OE = 0

∆wi = −γ ∂E
∂wi

, for i = 1, . . . , `

wt = wt−1 − γOE

Considering again the linear, two-dimensional space (f(x) = ax+ b), with bias zero,
this can be imagined as a quadratic function with the amount of error displayed on
the y-axis and the value of the weight a on the x-axis. The slope of the tangent line
(from the derivative of the quadratic function) determines the amount of change for
the weight value a. This slope needs to be followed iteratively until the minimum
is reached. If the slope is negative, the value of the weight grows, moving from left
to right on the x-axis. If it is a positive gradient, the weight will shrink, moving
from right to left on the x-axis. If the step width γ is not too large, this results in a
minimum value of the error function after t steps.

Figure 2.11.: XOR output space [58]. The value s equals the output of the
network function f(x). This value is computed for a range of x1 and x2 values
from zero to one.

26

2.2 Machine Learning Approaches

After the training procedure, the output function can be explicitly computed. In case
of the analytical network from Figure 2.8, this results in a three dimensional plot,
showing the output on the z-axis (Figure 2.11). All pairs of x1 and x2 generating an
output above 0.5 belong to class 1 and all other points to class 0. Remembering that
Figure 1.2 was computed with two-dimensional Gaussian distributions, it can be
imagined that the separating line between the blue and the red area is a variation of
the line of intersection with the hyperplane for f(x) = 0.5 in Figure 2.11.

2.2.4. Kernel Methods

While the artificial neural network makes its decision using a threshold based on
approximating a probably non-linear function, approaches using kernel functions
try to solve their classification problems in a linear space using the kernel trick [61].
A kernel function is used to map the input data into a (high-dimensional) feature
space, in which the problem can be solved with a linear function (Figure 2.12),
but the feature space is not explicitly computed. Given a trained model with a
valid kernel function, the trick is that every new data point can be predicted by
computing its vector product with the feature vector [62]. As well as in the case of
toxicity prediction (Section 3.3), this works for the text classification task of finding
functional relationships between chemical compounds and proteins (Section 3.2).

Figure 2.12.: Kernel-induced feature space [62]. Every input vector is trans-
formed into a feature space to simplify the classification task.

2.2.4.1. Linear Support Vector Machines

In case of a linear SVM, the kernel function is just the identity function, similar to the
perceptron function. Given a linearly separable problem, a function f(x) = 〈w ·x〉+b

27

Chapter 2 Methods

needs to be trained, which classifies instances positively, if f(x) ≥ 0. All other
instances will be classified as negative examples. Figure 2.13 shows that this function
can be understood as a hyperplane.

Figure 2.13.: Linear separating hyperplane [62]. The two-dimensional example
illustrates that that the linearly separating hyperplane can be described with its
normal vector w and a bias b.

For all given instances, the Euclidean distance to this linear function can be calculated,
referred to as the margin. This margin is restricted to be positive. Furthermore,
the problem can be refined by normalising the weight vector w. From all possible
separating hyperplanes, the maximal margin hyperplane needs to found. It is defined
to contain the largest margin to all training instances with a minimised norm ‖ w ‖
(Figure 2.14).

Figure 2.14.: Maximal margin hyperplane [62]. The margin of the points
which are lying closest to the hyperplane (smallest distance) is maximised.

The length of a normalised normal vector is equal to one. The points which are closest

28

2.2 Machine Learning Approaches

to the maximal margin hyperplane are called support vectors and have the functional
margin of one, +1 for all positive examples and −1 for all negative examples. The
maximal margin hyperplane is located exactly in the middle of them.

+1 = {w · x+}+ b

−1 = {w · x−}+ b

γ = 1
2({ w

‖ w ‖2
· x+} − { w

‖ w ‖2
· x−})

γ = 1
2 ‖ w ‖2

({w · x+} − {w · x−})

γ = 1
‖ w ‖2

Considering again a training set with p n-dimensional instances and Y = {−1, 1},
the weight vector can be expressed as a linear combination of the given examples.
The task is to find non-zero values α for the training instances that were introduced
as the support vectors. Subsequently, new instances can be classified by computing
their sum of inner products with all support vectors and the bias. The classification
of positive examples f(x) ≤ 0 can be expressed with the sign or signum function.

w =
p∑
i=1

yiαixi

f(x) = 〈w · x〉+ b, w ε Rn, x ε Rn

h(x) = sgn(f(x))

h(x) = sgn(〈w · x〉+ b)

h(x) = sgn(〈
p∑
i=1

αiyixi · x〉+ b)

h(x) = sgn(
p∑
i=1

αiyi〈xi · x〉+ b)

Regarding this definition, finding the support vectors with non-zero α values results in
a standard quadratic programming problem which can be solved with the sequential
minimal optimisation algorithm (SMO) [62]. The calculation of the inner product
with a new input vector can be imagined as computing its similarity to the support
vectors. In case of using a linear kernel for classification, this is implicitly defined by

29

Chapter 2 Methods

the inner product.

a · b =‖ a ‖‖ b ‖ cosθ

cosθ = a · b
‖ a ‖‖ b ‖

Geometrically, the inner product of two normalised vectors represents their cosine
similarity. Orthogonal vectors result in a cosine equal to zero, because of an angle of
90◦. The cosine of angles smaller than 90◦ is a value between zero and one, where one
corresponds to collinear vectors. Angles larger than 90◦ are generated by a negative
cosine. A value of −1 corresponds to opposite vectors.

2.2.4.2. Gaussian Kernel

While the linear kernel was just the inner product of two vectors, the Gaussian kernel
measures the similarity between two vectors by generating a score directly from their
distance. This score follows a normal distribution.

φ : X → F

K(xi, x) = 〈φ(xi), φ(x)〉

K(xi, x) = exp(−‖ x− xi ‖
2

2σ2) = exp(−

n∑
i=j

(xj − x(i)
j)2

2σ2)

f(x) =
p∑
i=1

αiyiK(xi · x) + b

The training instances can be imagined as landmarks. A new data point which is

Figure 2.15.: Gaussian kernel. Some two-dimensional training instance is defined
with the position

(
3
5

)
. The closer a new data point is located to this landmark,

the higher its Gaussian score will be.

30

2.2 Machine Learning Approaches

positioned close to a training instance will result in a low numerator in the exponential
function. Therefore, the similarity function will be close to one (Figure 2.1523,24).
The parameter σ influences the width of the kernel. A small value results in a more
narrow shape. The first step is to compute all Gaussian similarities to the training
data points for a new example. Subsequently, the decision of the classification
(f(x) ≥ 0) is made by calculating the inner product of the weight vector w and the
new feature vector f with a bias b.

f(x) = 〈w · f〉+ b, w ε Rp, f ε Rp

The weight vector of the maximal margin hyperplane using the linear kernel is
n-dimensional, because it represents a linear combination of the support vectors
(f(x) = 〈w ·x〉+b). In case of the Gaussian kernel, this weight vector is p-dimensional,
if all training instances are considered as landmarks. The SVM classification with
this kernel is illustrated in Figure 2.16.

Figure 2.16.: Gaussian kernel XOR classification [20]. In comparison to the
classification boarder in Figure 1.2, the Gaussian kernel leads to the round shape
of the maximal margin hyperplane surrounding the scatter plots of the two classes.

23https://www.coursera.org/instructor/andrewng
24https://www.coursera.org/learn/machine-learning

31

https://www.coursera.org/instructor/andrewng
https://www.coursera.org/learn/machine-learning

Chapter 2 Methods

2.2.4.3. Shallow-Linguistic Kernel

Giuliano et al. published this kernel to perform relation extraction from biomedical
literature [63]. It is defined as the sum of a global context kernel and a local
context kernel. These customised kernels were implemented to be executable with
the LIBSVM package25 [64]. Both kernels are explicitly described to work with the
inner product of normalised feature vectors.

K(x1, x2) = 〈φ(x1), φ(x2)〉
‖ x1 ‖‖ x2 ‖

The global context kernel works on unsorted patterns of words up to a length of n = 3.
These n-grams are implemented using the bag-of-words approach. This method
counts the number of occurrences of every word in a sentence including punctuation,
but excluding the candidate entities. The patterns are computed regarding the phrase
structures fore-between (FB), between (B), and between-after (BA) the considered
entities. An example for a protein-protein interaction fore-between pattern is “binding
of [P1] to [P2]” [63]. Therefore, three row vectors φP have to computed based on a
given training set, one for each of the structures.

φP (R) = (tf(t1, P), tf(t2, P), . . . , tf(tl, P)) ε Rl

The function tf(ti, P) counts the number of occurrences of a token ti in a pattern
P . The three l-dimensional vectors will be extremely sparse, because only a few
of all available tokens l will be represented in a new classification example. The
global context kernel with its three phrase structures was inspired by Bunescu and
Mooney [56]. It is implemented by summarising the kernels of the three row vectors.

KGC(R1, R2) = KFB(R1, R2) +KB(R1, R2) +KBA(R1, R2)

The local context kernel considers tokens with their part-of-speech tags, capitalisation,
punctuation, and numerals [9, 63]. The left and right ordered word neighbourhoods

25http://www.csie.ntu.edu.tw/~cjlin/libsvm

32

http://www.csie.ntu.edu.tw/~cjlin/libsvm

2.2 Machine Learning Approaches

up to window size w = 3 are considered in two separated kernels ψ.

L = t−w, . . . , t−1, t0, t+1, . . . , t+w

ψL(R) = (f1(L), f2(L), . . . , fm(L)) ε {0, 1}m

KLC(R1, R2) = Kleft(R1, R2) +Kright(R1, R2)

The two vectors contain a value L = 1, if a feature is active in the specified position,
where m denotes the number of different extracted patterns from the training set.
The left hand and right hand side similarity of a new classification example are
summed up and added to the result of the global context kernel.

KSL(R1, R2) = KGC(R1, R2) +KLC(R1, R2)

Therefore, the shallow linguistic kernel measures the similarity of a classification
example by computing its feature vectors, calculating all similarities as defined with
inner products, and summing them up.

2.2.4.4. All-Path-Graph Kernel

This kernel works on dependency graph representations of sentences, which are gained
from constituent or syntax trees [9]. A simple syntax tree for the sentence “SsgG
transcription also requires the DNA binding protein GerE.” is given in Figure 2.17.

Figure 2.17.: Syntax tree representation [9]. The nodes in the graph represent
phrases, namely NP (noun phrase), ADVP (adverb phrase), and VP (verb phrase).
NN respresents a singular noun, RB and adverb, and VBZ a verb in the third
person singular.

In general, the nodes in the dependency graph representation, also called vertices, are

33

Chapter 2 Methods

Figure 2.18.: Dependency graph representation [54]. The first subgraph
shows the dependencies between the tokens. PROT1 is the subject and the tokens
“PROT2 filaments” represent the (direct) object. The shortest path between them
is shown in bold and connected by the verb disassemble. Therefore, these tokens
are marked with the special tag IP. The phrase between PROT1 and the VP_IP
token is described with the label xcomp, representing an open clausal complement.
Therefore, the label xsubj represents the controlling subject of the whole sentence,
while nsujb names the nominal subject of the complementary phrase. The weights
within the shortest path receive the value 0.9 and all other values are set to 0.3.
The second subgraph represents the linear order of the sentence. The labels of
the tokens also show part-of-speech tags and the text itself, but they additionally
contain a positional tag (B)efore, (M)iddle, or (A)fter. These tags are always
related to the positions of the considered binary relation of the highlighted entities
PROT1 and PROT2. All weights in this subgraph are set to 0.9.

the tokens in the text and the labels show the term itself with a part-of-speech tag.
The edges connect the nodes with a weight. The highest weights are given to edges
which are part of the shortest path connecting the interaction partners. In this case,
the nodes receive a special tag. Furthermore, the text of the tokens representing the
candidate entities is replaced with a generic term, e.g. PROT1 and PROT2. A third
term PROT can be used for all other potentially related entities. This is also called
entity blinding [9]. Each binary example in a sentence is represented by two graphs
(Figure 2.18) determining the dependencies26 and the structure of the phrases. If
the pair of selected entities changes, only the labels and the weights will change, not
the structure of the graph. All words in the graph are possibly important for the
correct prediction of the related entities. Therefore, it can be problematic to omit
the words which are not part of the shortest path (Figure 2.19) [54, 56].

Mathematically, all relations in a graph can be represented in an adjacency matrix A.
26http://www.mathcs.emory.edu/~choi/doc/clear-dependency-2012.pdf: Guidelines for the

CLEAR Style Constituent to Dependency Conversion

34

http://www.mathcs.emory.edu/~choi/doc/clear-dependency-2012.pdf

2.2 Machine Learning Approaches

Figure 2.19.: Shortest path [54]. The information that P1 and P2 are actually not
interacting is not part of the shortest path. Without considering the complementary
phrase shown in grey, this phrase can be considered as “collapsed”.

The entries in this matrix determine the weights of the connecting edges. The
interesting thing with this representation is that the multiplication of the matrix
with itself leads to a matrix with all summed weights of length two27 [54]. Therefore,
all possible paths of all lengths can be calculated by computing the powers of the
matrix. Matrix addition of all these matrices results in a final adjacency matrix W ,
which consists of the summed weights of all possible paths [54]. Paths of length zero
are removed by subtracting the identity matrix. This is also called the Neumann
Series [54].

A ε R|V |×|V |

(I − A)−1 = I + A+ A2 + . . . =
∞∑
k=0

Ak

W = (I − A)−1 − I

All labels L as shown in Figure 2.18 are represented as a feature vector. This feature
vector is encoded for every vertex, containing the value 1 for labels that are presented
within this particular node. This results in a label allocation matrix L.

L ε R|L|×|V |

The feature matrix G is defined by Gärtner et al. [65], summing up all weighted paths
with all presented labels. This calculation combines the strength of the connection
between two nodes with the encoding of their labels (formula (1)). Another possibility
is to take the maximum over all weighted paths connecting to labels (formula (2)).
Both approaches were implemented by Airola et al.28 [54]. In general, it can be
stated that the dependency weights are the higher the shorter their distance to the

27https://1stprinciples.wordpress.com/2008/03/30
28http://mars.cs.utu.fi/PPICorpora/errata.pdf

35

https://1stprinciples.wordpress.com/2008/03/30
http://mars.cs.utu.fi/PPICorpora/errata.pdf

Chapter 2 Methods

shortest path between the candidate entities is [9].

Gi,j =
n∑
k=1

n∑
l=1

Li,kWk,lLj,l (1)

Gi,j = max
1≤k,l≤n

{Li,kWk,lLj,l} (2)

The kernel computes the similarity of two matrix representations G′ and G′′ by
summing up the products of all their entries [54].

k(G′, G′′) =
|L|∑
i=1

|L|∑
i=1

G′i,jG
′′
i,j′

2.2.4.5. Sparse Regularised Least Squares Classifier

The regularised least squares classifier algorithm is similar to a standard support
vector machine, but the basic mathematical problem does not need to be solved
with quadratic programming. Considering the learning problem formulation, the
weight vector is not explicitly defined as a linear combination of training vectors [54].
Instead, a set of basis vectors B is selected in advance from the training data set
with m instances.

m∑
j=1

(yj −
∑

iεB
aik(xj, xi))2 + λ

∑
i,jεB

ajaik(xj, xi)

This results in a single system of linear equations which can be solved with the
Conjugate Gradient algorithm29 [66]. The formula contains two terms. The first
term represents the squared error or squared loss function [54]. This can be imagined
as the function of the output neuron in Section 2.2.3. The second term is important
for regularisation. Artificial neural networks and support vector machines can also
make use of such a term, but this depends on their implementation. In the case
of regularised least squares classification, it is part of the algorithm. The aim is to
minimise the given function. If the value λ grows, the weights ai have to shrink
to minimise the output value of this function, iterating over all training instances
m. Therefore, a larger value λ provides better generalisation of the classifier. This
reduces the risk of memorising the training data set, also called overfitting. The

29http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf: An Introduc-
tion to the Conjugate Gradient Method Without the Agonizing Pain

36

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

2.2 Machine Learning Approaches

classifier was only used for the sparse matrices G of the all-paths graph kernel, but it
can be applied to other kernels, too. The implementation used in this thesis [9, 54]
selects the decision threshold by computing the weight vector with a given λ, sorting
the output scores, and selecting the one with the highest F1 score. Tikk et al.
applied the λ values 0.25, 0.5, 1.0, and 2.0, which are also compared in this thesis
(Section 3.2).

2.2.5. Entropy-based Methods

Information can be measured with the entropy formula and interpreted as a a value
describing the purity of a group of instances [25]. If almost all instances in a data
subset belong to one class, the entropy will be close to zero. If both classes are equally
represented, the entropy will maximise. This can be illustrated with a decision tree
based on the WEKA weather data set [25].

2.2.5.1. Decision Trees

Table 2.5.: Weather data set [25]. The features in this table are outlook,
temperature, humidity, and windy. The decision class is play with the binary
decision yes or no.

outlook temperature humidity windy play
sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no

overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no

Table 2.5 contains four different features and the binary class to play or not to play.
The aim is to build a decision tree that splits the sets of nominal attributes for each

37

Chapter 2 Methods

feature in a way that there is only one class represented in each leaf (pure level).
Leaves are the last nodes in the tree. All decisions where to split the tree can be
made by calculating the entropies for each new node.

H =
I∑
i=1
−|Si|
|S|
· log2

|Si|
|S|

For each subtree, the logarithm has to be computed for the total number of instances
S, divided by the number of instances Si that encode each class. In the case of a
binary classification problem, the information can be measured in bits. The minimum
entropy is equal to zero and the maximum value is one, as illustrated in Figure 2.20.
Therefore, the logarithm with base 2 is calculated. Considering Table 2.5, the first
subtree is the overall tree without any branches. It contains nine times the decision
yes and five times the decision no.

H =
I∑
i=1
−|Si|
|S|
· log2

|Si|
|S|

H = −1 · ((9
14) · log2(9

14) + (5
14 · log2(5

14))

H = 0, 940 bits

The first branching step is calculated by computing the information gain G. The root
of the tree will be selected by calculating the entropy of each feature and subtracting
it from the overall tree without the new branch. Therefore, the subtree with the
smallest entropy will achieve the largest information gain. Considering the branches
in Figure 2.20, the feature outlook shows the smallest entropy with 0.693 bits. This
number is based on averaging the three entropies of the outlook subtrees. The result
is an information gain of 0.247 bits.

H1 = −1 · ((2
5) · log2(2

5) + (3
5 · log2(3

5)) = 0, 971 bits

H2 = 0.0 bits

H3 = −1 · ((3
5) · log2(3

5) + (2
5 · log2(2

5)) = 0, 971 bits

Houtlook = 5
14 · 0, 971 bits + 4

14 · 0.0 bits + 5
14 · 0, 971 bits

Houtlook = 0.694 bits

Goutlook = H −Houtlook = 0, 940− 0, 694 = 0, 246 bits

38

2.2 Machine Learning Approaches

These steps of averaging the entropies and calculating the information gain are
repeated for all attribute nodes of the feature outlook, except the leaf overcast, which
is already pure. The total entropies for the subsequent calculations and information
gain comparisons are 0.971 bits for both attributes, sunny and rainy. The reason
is that the sunny node contains two times yes and the rainy node three times yes,
but both show a total number of 5 instances. The final decision tree is shown in

Figure 2.20.: Branching features [25]. All features have to be considered with
their averaged entropy. The feature outlook (a) is selected as the root, because its
averaged entropy is 0.694 bits. Subtree (b) contains an entropy of 0.911 bits, (c)
0.788 bits, and (d) 0.892 bits. The entropy in the overcast leaf is 0.0 bits and the
entropy in the hot leaf is 1.0 bits.

Figure 2.21. One important fact is that all leaves are pure, which is shown in the
WEKA output text file (Figure 2.22). Nevertheless, the height of the tree should be
considered critically. The aim of reaching pure leaves leads to a risk of overfitting.
This process can be controlled with a technique called pruning [25]. The example
presented here is calculated with the Iterative Dichotomiser 3 (ID3) algorithm,
developed by J. R. Quinlan [25]. While the example shown here is nominal, most
classification problems are numerical problems. Therefore, J. R. Quinlan expanded

39

Chapter 2 Methods

Figure 2.21.: Decision tree [25]. The final decision tree contains the attributes
outlook, humidity, and windy. The feature temperature was not selected as relevant
from Table 2.5. This is a toy example and the decision to play or not to play
cannot be interpreted, because the type of game is not known. The outcome is
yes if it is sunny with normal humidity, rainy and not windy, or if the outlook is
overcast.

Figure 2.22.: WEKA decision tree [25]. The WEKA tree in text format can
be processed with programming approaches and shows the amount of instances in
the leaves. The wrongly classified instances are displayed with a slash (not shown
here).

his algorithm to deal with numeric attributes, missing values, noisy data, and
pruning [25, 67]. It is called C4.5 algorithm30 and uses binary splits. If there are
only binary branches in the tree, it is called a binary decision tree. WEKA uses its
own implementation of the C4.5 algorithm, named the J4.8 decision tree. There is
also a commercial implementation, called C5.0 [25].

2.2.5.2. Random Forests

A group of random decision trees is called a random forest. These trees perform
the branching step at each node, based on a random feature subset of defined size.
30http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html

40

http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html

2.2 Machine Learning Approaches

Furthermore, every random tree is built with a training data set constructed by
bootstrap aggregating (drawing with replacement), also called bagging. The reason
for this approach is that slight variations in the training data set can change the
selected nodes in the tree. Bagging is the attempt to neutralise this instability [25].
All trees are fully constructed with the feature subset (no pruning). This algorithm
was invented by L. Breiman [25, 68]. It is implemented in WEKA with the parameters
number of features to select, maximum depth of the tree, and number of trees31.
The decision is made by averaging the output of all trees being zero or one, which
represents a majority vote.

2.2.6. Normalisation

There are two different kinds of normalisations, namely scaling features to the same
range (formula (1)) and scaling them to unit variance (formula (2)) [69].

x̃1 = x− l
u− l

(1)

x̃2 = x− µ
σ

(2)

The difference can be illustrated with an example data set x = {200, 300, 400}.
Considering formula (1), u refers to the upper bound of 400 and l to the lower bound
of 200. This results in the values x̃1 = {0, 0.5, 1}. Using the second formula with
the standard deviation σ = 100, the result is x̃2 = {−1, 0,+1}. Therefore, the first
approach scales the values to the range [0, 1]. The second approach results in the
range [−1,+1], which represents a distribution with zero mean and unit variance.

2.2.7. Dimensionality Reduction

In classification problems, the question arises which features can be considered as
most important for the prediction. There are several approaches to select a subset
of features from the original data set. WEKA uses two fundamentally different
approaches, called filter and wrapper methods. The filter method selects a subset of
features, before the training period of the classifier is started. Examples for filter
methods are the BestFirst filter and the principal component analysis (PCA). An
31http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html

41

http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html

Chapter 2 Methods

example for a wrapper method is the forward selection. The application of these
methods reduces the data set complexity and influences the computation time of the
classifier’s training process positively.

2.2.7.1. Forward Selection

This approach starts with applying the classifier once for each single attribute. The
feature with the best prediction result is selected and the whole procedure starts
again, combining each attribute once with the feature selected first. The algorithm
terminates if the performance stops to increase [25]. This procedure is also called a
greedy search. It is able to find a global minimum in the optimisation process, but it
can also stop in a local minimum. The risk of local minima can be reduced by using
cross-validation, starting multiple runs of a forward selection, or combining it with a
backward elimination. This approach of starting with the complete feature set and
reducing it by one feature at a time can be considered as the opposite of the forward
selection. The combination of forward selection and backward elimination is called
a bidirectional search [25]. Another approach is to not only set the increase in the
performance as a criterion, but also its amount by a certain percentage [25]. The
disadvantage of these wrapper methods is that they are computationally expensive.
This effect can increase if the classifier tends to have a longer training period than
others, e.g. comparing artificial neural networks and support vector machines.

2.2.7.2. BestFirst Filter

Instead of using the classification algorithm within the feature selection process, the
BestFirst filter combines Correlation-based Feature Selection (CFS) with a greedy
search, similar to the forward selection presented in the last subsection. WEKA offers
the direction options forward, backward, and bidirectional [25]. It also supports
a backtracking facility to further evaluate other subsets after a (local) minimum
was reached. The algorithm computes the worth or merit of each feature subset by
calculating a matrix with all feature-feature and feature-class correlations. The aim
is to find subsets of attributes that have a low feature-feature and a high feature-
class correlation. As most classification tasks are nominal, e.g. with a positive or
negative outcome, the feature-class correlation cannot be measured with the Pearson
correlation coefficient. M. Hall shows that discretisation of all continuous features

42

2.2 Machine Learning Approaches

can be combined with different measurements, similar to the Pearson correlation
coefficient [70]. One of the presented ways is to compute the information gain based
on entropy calculations. Therefore, the worth of a feature subset S with k features
is defined as the heuristic “merit” of the average feature-class correlation rcf divided
by the average feature-feature correlation rff .

Merits = krcf√
k + k(k − 1)rff

2.2.7.3. Principal Component Analysis

One of the most popular approaches to reduce the dimension of a feature set is
principal component analysis. The idea is to calculate a subset of feature vectors on
which the scatter plots can be projected, such that most of the variance in the data set
is still covered. This can be illustrated with two-dimensional example (Figure 2.23).
The question is how much of the variance can be covered by how many eigenvectors.

Figure 2.23.: Eigenvectors [71]. The vectors ~u1 and ~u2 represent the eigenvectors
of this scatterplot. The first vector shows the largest variance.

This can be calculated with the covariance matrix Σ. It contains all covariances

43

Chapter 2 Methods

between the features. Therefore, the variances are located on the diagonal.

V ar(x) =

n∑
i=j

(xi − x̄)(xi − x̄)

n− 1

Cov(x, y) =

n∑
i=j

(x− x̄)(y − x̄)

n− 1 = Σ

An eigenvector u is defined as a vector that can be multiplied with a matrix (here Σ),
resulting in a vector with the same direction. The length of this output vector
represents the variance of the data set in this direction. The factor or scalar λ
by which the length of this vector differs from the eigenvector is called eigenvalue.
Therefore, it is important to perform feature scaling before computing the principal
components, if the feature ranges are divers.

Σu = λu

The eigenvectors and eigenvalues can be found by diagonalising the covariance matrix,
a method called eigenvalue decomposition [71]. Considering the n × n covariance
matrix Σ, the resulting matrix U contains n eigenvectors as columns and the matrix
S contains all eigenvalues sorted by size on its diagonal. The overall amount of
variance, that is covered by taking a subset of k eigenvectors to form the n×k matrix
Ureduce, can be calculated by computing the projection vectors z and the squared
distances of the orthogonally projected coordinates of xapprox to the input vectors x
over all instances p. If the output value is smaller than 0.01, it means that above
99 % of the variance is covered32.

z = Ureducex

xapprox = Ureducez

0.01 ≥
1
p

p∑
i=j
‖ x(i) − x(i)

approx ‖2

1
p

p∑
i=j
‖ x(i) ‖2

One of the commonly used explanation examples is Fisher’s Iris data set, e.g.
implemented with visualised principal components in the Python machine learning

32https://www.coursera.org/learn/machine-learning

44

https://www.coursera.org/learn/machine-learning

2.2 Machine Learning Approaches

library scikit33. The Iris flowers were categorised by R. A. Fisher in 1936 with sepal
and petal lengths and widths [72]. The data set can be visualised as separated scatter
plots by computing the principal components.

2.2.8. The WEKA Library

WEKA is an open source software “workbench” from the University of Waikato,
New Zealand (Waikato Environment for Knowledge Analysis)34. The evaluation
approaches, preprocessing methods, and machine learning algorithms explained in
this chapter, including several more, are implemented in WEKA. The Explorer
Environment can be used to perform calculation steps presented in this chapter
one after the other [25]. The start menu of the WEKA Explorer user interface
shows basic information, such as the number of instances and the names of the
descriptors, illustrated in Figure 2.24. In this case, the selected descriptors refer
to molecular substructures of chemical substances. The data set referred to here is
further explained in Section 3.3, where it is shown how single workflow steps can
be connected to a pipeline using the KnowledgeFlow Environment. All selected
components can also be computed and combined by using the Java open-source
library with the command-line interface [25].

33http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_iris.html
34http://www.cs.waikato.ac.nz/ml/index.html

45

http://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_iris.html
http://www.cs.waikato.ac.nz/ml/index.html

Chapter 2 Methods

Figure 2.24.: WEKA Explorer Environment. The data set presented here was
converted from CSV format to the WEKA specific ARFF format. The amount of
instances of each class and the names of the descriptors are shown. Preprocessing
can be applied by clicking the Choose button, e.g. to apply a principal component
analysis. In this case, a BestFirst selection was already performed with the select
attributes register card. The computation step of classification can be chosen
analogously. All available parameters for each classifier in WEKA can be changed
by clicking the submenus.

46

2.3 Cheminformatics

2.3. Cheminformatics

This section covers a small part of methods from the research area of cheminformatics.
The distinction from the area of bioinformatics is fuzzy, but it can be said that
“Chem(o)informatics is a generic term that encompasses the design, creation, orga-
nization, management, retrieval, analysis, dissemination, visualization, and use of
chemical information”35 and that “Chemoinformatics is the application of informatics
methods to solve chemical problems” [73].

2.3.1. Simplified Molecular Input Line Entry Specification

Information about the structure of a molecule can be saved in Structure Data Format
(SDF) files36 or in a SMILES string, the abbreviation for Simplified Molecular Input
Line Entry Specification37. The SDF file contains atomic coordinates with types of
bonds and probably some meta information like in the PubChem SDF files38. A
SMILES string consists of atoms and bonds with numbers or brackets39. Numbers
are used to close a ring structure like the one shown in Figure 2.25. Round brackets
open and close a branched substructure shown in Figure 2.26. A combination of
numbers and brackets in a SMILES structure is shown in Figure 2.27. The figures
were generated with MarvinSketch40. The conversion of SDF files to the SMILES
format and vice versa is illustrated in Section 3.4.

Figure 2.25.: Cyclohexane. This structure was generated with the SMILES
C1CCCCC1. The number after the first C atom determines the start of the ring
structure and the number after the sixth C atom closes this structure.

35G. Paris, August 1999, ACS meeting
36http://www.epa.gov/ncct/dsstox/MoreonSDF.html
37http://www.daylight.com/meetings/summerschool98/course/dave/smiles-intro.html
38https://pubchem.ncbi.nlm.nih.gov/pc_fetch/pc_fetch-help.html
39http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
40https://www.chemaxon.com/products/marvin/marvinsketch

47

http://www.epa.gov/ncct/dsstox/MoreonSDF.html
http://www.daylight.com/meetings/summerschool98/course/dave/smiles-intro.html
https://pubchem.ncbi.nlm.nih.gov/pc_fetch/pc_fetch-help.html
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.chemaxon.com/products/marvin/marvinsketch

Chapter 2 Methods

Figure 2.26.: Isobutyric acid. The SMILES CC(C)C(=O)O was used to display
this structure. The first round pair of brackets represents the branched methyl
group and the second pair contains the double-bonded oxygen.

Figure 2.27.: 1-Methyl-3-bromo-cyclohexene-1. Numbers as well as brackets
are contained in the SMILES CC1=CC(Br)CCC1. The generated structure shows
the order of atoms in this pattern, starting with the methyl group. The ring
structure is opened with the first number. The C atom after the double bond of
the hexene is followed by a bromine atom in brackets, because it branches from the
ring structure. After another three carbon atoms, this ring is closed with the last
number. The SMILES CC1=CC(CCC1)Br leads to the same structure. Therefore,
the ring closure can also be considered as the explicitly branched structure. This
can be useful in case of an ongoing chain, replacing the Br branch.

48

2.3 Cheminformatics

2.3.2. SMiles ARbitrary Target Specification

This format is based on SMILES and abbreviated with SMARTS. It is used to search
databases for substructures. Almost all SMILES strings are also SMARTS strings,
because both cover atoms and bonds in their format. The SMARTS format is extended
with symbols to generalise the string representation, allowing e.g. two different atoms
at a position41. The SMARTSviewer server42 offers a good visualisation of SMARTS
and their meaning in a detailed legend as shown in Figure 2.28 and Figure 2.29.
SMARTS patterns can be generated with OpenBabel43. In combination with physico-
chemical properties, also supported by OpenBabel, these molecular descriptors can
be used as machine learning features, described in Section 3.3. Other features used
in this thesis were generated with the Schrödinger’s Maestro software QikProp in
combination with LigPrep44.

Figure 2.28.: Carboxylic acid SMARTS [51].
The SMARTSviewer displays a detailed view on the SMARTS pattern
[CX3;$([R0][#6]),$([H1R0])](=[OX1])[$([OX2H]),$([OX1-])] from two different
views in space. This SMARTS string includes carboxylate anions.

41http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
42http://smartsview.zbh.uni-hamburg.de
43https://github.com/openbabel/openbabel/blob/master/data/SMARTS_InteLigand.txt
44http://www.schrodinger.com/Maestro

49

http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://smartsview.zbh.uni-hamburg.de
https://github.com/openbabel/openbabel/blob/master/data/SMARTS_InteLigand.txt
http://www.schrodinger.com/Maestro

Chapter 2 Methods

Figure 2.29.: SMARTS legend [51]. The SMARTSviewer legend gives explana-
tions about the different views shown in Figure 2.28.

2.3.3. Toxicity Data Set

ChemIDplus45,46 is free Web search system which provides information about the
toxicity of substances and partially also about their effects. This thesis focusses on
LD50 data, based on intravenous application in mice. LD is the abbreviation for
lethal dose and the value 50 defines the probability with which an organism will get
killed by a single dose of a substance [74]. The LD50 values are provided in mg per kg
body weight (mg/kg bw). ChemIDplus offers a menu for data selection (Figure 2.30).
A set of molecules is displayed with links providing detailed information as shown
in Figure 2.31 and Figure 2.32. In many cases, there are also references to other
types of experiments (Figure 2.33). A substance can be identified with its Chemical
Abstracts Service (CAS) number47. The corresponding SMILES pattern can be
downloaded from ChemIDplus and processed as indicated in Section 2.3.2.
45www.chem.sis.nlm.nih.gov/chemidplus
46http://www.nlm.nih.gov/pubs/factsheets/chemidplusfs.html
47https://www.cas.org/content/chemical-substances/faqs

50

www.chem.sis.nlm.nih.gov/chemidplus
http://www.nlm.nih.gov/pubs/factsheets/chemidplusfs.html
https://www.cas.org/content/chemical-substances/faqs

2.3 Cheminformatics

Figure 2.30.: ChemIDplus selection. The selection menu on the ChemIDplus
start page can be used to specify organism, applied test, and dose of the substance.

Figure 2.31.: Mytomycin on ChemIDplus. A molecule can be searched directly
with the CAS number (here 50-07-7).

51

Chapter 2 Methods

Figure 2.32.: ChemIDplus search result. Mytomycin, as shown in Figure 2.31,
can be downloaded as a SMILES structure from ChemIDplus.

Figure 2.33.: Lethal dose of mytomycin. Different routes of administration are
shown for this chemical substance, including the source of information. LDL0
is the lowest dose of a substance reported to have caused death in humans or
animals.

52

3. Results

3.1. PubMed2Go

Parts of this section are similar or identical to a recently submitted publication in
BMC Bioinformatics, Softare articles, with me as first author [75].

3.1.1. Related Work

3.1.1.1. Providing Software Interoperability

Several proposals have been made to deal with the problem of interoperability
between different software solutions for natural language processing. Only a few
of them can be considered as used by the community, namely the Unstructured
Information Management Architecture (UIMA) [76, 77], the General Architecture
for Text Engineering (GATE) [78], and the BioC XML data format [79].

UIMA supports Text Analysis Engines (TAEs), the text processing software modules,
and a common analysis structure (CAS), the XML-based input and output format
for TAEs [79]. U-Compare is a Java Web Start application that offers drag-and-
drop construction of workflows for UIMA-compatible natural language processing
tools [80].

The GATE Developer is an integrated development environment in Java similar to
U-Compare [76]. GATE provides an interface to UIMA as well [79].

BioC uses a minimalistic approach, as only the structure of BioC XML files is defined
in a document type definition (DTD) file and the user-specific semantics of data and
annotations, which are described in a key file. The interoperability is ensured within
the BioC workflow, defining an Input Connector to read and an Output Connector

53

Chapter 3 Results

to write BioC XML data. The interface to these BioC classes is implemented in
several programming languages [79, 81].

Rak et al . claimed that there is a tendency towards workflow construction platforms,
but that their software dependencies on a source platform can restrict the development
process [76]. Therefore, Web services became popular to solve natural language
processing tasks, especially because of the Representational State Transfer (REST)
architecture. This was their motivation to develop Argo, an online text mining
workbench combining different data formats like CAS and BioC, with the ability to
use other Web services in a workflow [76]. There are advantages and disadvantages
for choosing UIMA or BioC, but the integration of UIMA-compatible modules can
be considered as a more complex process than extending the standard XML format
to the BioC XML DTD structure [81]. The aim of PubMed2Go is to enable users
to develop text mining applications and to generate use cases with a very basic
programming knowledge. This is understood in terms of a stand-alone application
without dependency on Web services, but with the possibility to query them if desired.
Therefore, the software implements a BioC interface. Any tool in a customised
workflow supporting the BioC input and output modules can be used to perform
natural language processing tasks independently, as shown in Section 3.1.3.

3.1.1.2. Processing PubMed

At the beginning of 2015, PubMed consisted of more than 24 million records containing
13.1 million abstracts, and the number increases quickly. Considering the issue of
how to deal with this large amount of data and to apply natural language processing
methods effectively, quite a few published as well as unpublished approaches exist.

There are efforts to simplify literature searches in PubMed and to support text
annotation. Two of the most recent Web service developments are OntoGene [13]
and PubTator [82], which provide a BioC interface.

Working with PubMed publications on a local machine is possible after downloading
the XML files described in Section 2.1.1. The uncompressed size of the complete
PubMed XML data set is 114 GB1. The user can apply the NCBI interface introduced
in Section 2.1.1 to download a set of PubMed XML files related to a specific search
term. Biopython2 can be used to connect to this interface, named EFetch. It also

1http://www.nlm.nih.gov/bsd/licensee/2015_stats/baseline_doc.html
2http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc120

54

http://www.nlm.nih.gov/bsd/licensee/2015_stats/baseline_doc.html
http://biopython.org/DIST/docs/tutorial/Tutorial.html#htoc120

3.1 PubMed2Go

contains a library to parse PubMed XML files. Mining XML files can be time-
consuming if the parsed results are not saved in a database, such that they have
to be processed multiple times. The LingPipe project3 is implemented in Java
and offers a library to parse XML files and build a full text index with Lucene4.
The documentation contains a short tutorial about loading the abstract and title
texts into a MySQL relational database in a version from 2010. It is noteworthy
that the PubMed XML schema is updated annually. Biopython and LingPipe are
considered as sophisticated frameworks, but this also means that it is a complex
task to modify existing and develop new functions to process and index all recently
available PubMed XML attributes.

There are also finished implementations building a relational database from XML
files. According to the tendency towards Web services as mentioned by Rak et al
. [76], these approaches were published around 10 years ago [83, 84]. Yoo et al .
describe a complex system for downloading PubMed and PMC articles in XML
format, storing them in a MySQL relational database, and searching the documents
with a Lucene full text index [84]. Unfortunately, their service is not hosted anymore.
In 2004, Oliver et al . compared different approaches for loading PubMed XML
files into a relational database [83]. It took 196 hours to run a Java SAX parser
on 396 XML files with an uncompressed size of 40.8 GB and to load them into
the relational database Oracle 9i. Their second effort was to use PERL code in
combination with Oracle with parallelised batches of 50 XML files, which resulted in
a runtime of 132 hours. They also used a Java parser in combination with IBM’s
DB2 database on 500 XML files (number of PubMed IDs unknown), which took
76 hours. The reason they chose to use Oracle or DB2 instead of an open-source
PostgreSQL relational database was that they experienced a faster data upload with
these technologies and a more effective keyword search engine at that time [83].
There is an unpublished update version from 2010 using Java 6 and MySQL 5.15. In
this version, the upload SQL statements for processed XML elements still can be
executed separately or included in the Java code. In PubMed2Go, this SQL schema
is completely adapted and slightly modified, but combined with object-relational
mapping (ORM, Section 2.1.2) in Python to generate a PostgreSQL database from
PubMed XML files. That means, changes of SQL tables or columns can be introduced

3http://alias-i.com/lingpipe-3.9.3/demos/tutorial/medline/read-me.html
4http://lucene.apache.org
5https://simtk.org/home/medlineparser

55

http://alias-i.com/lingpipe-3.9.3/demos/tutorial/medline/read-me.html
http://lucene.apache.org
https://simtk.org/home/medlineparser

Chapter 3 Results

directly in the parser itself, and the whole uploading process can be upscaled to
the number of desired CPU cores with multiprocessing. Meanwhile, a text search
engine has been developed for PostgreSQL6. PubMed2Go implements a Xapian full
text index, similar to Yoo et al. [84], as any PostgreSQL column can be indexed
with this technology using only a few functions. Currently, abstract titles and
texts, MeSH terms, keywords, and chemical substances are indexed in the standard
implementation. There is also a modified version only indexing abstract titles and
texts. Using a Xapian index offers fast and straight forward keyword and context
search, as shown by the use cases described in Section 3.1.4. By combining the given
approaches, it becomes easy to develop text mining applications based on a local
version of PubMed without additional programming efforts.

While PubMed2Go was tested in Ubuntu and Fedora, there is also a one-click-
solution based on Docker7, a system similar to a virtual machine, so that the
relational database and the full text index can be used in many more operating
systems. Therefore, PubMed2Go helps to standardise the way of processing large
literature data sets locally to apply natural language processing models via the BioC
interface.

3.1.2. Basic Workflow

The basic requirements are standard installation of Python, Xapian, and PostgreSQL,
as well as a minimum of 282 GB free disk space in case of processing all downloadable
XML files from PubMed. Figure 3.1 shows the general workflow for loading PubMed
XML files into a PostgreSQL relational database and generating a full text index
with Xapian.

Figure 3.1.: PubMed2Go workflow. 1) Download XML files from PubMed. 2)
Parse and upload data into a PostgreSQL relational database. 3) Build a Xapian
full text index. 4) Develop text mining applications (use cases in Figure 3.2)

6http://www.postgresql.org/docs/9.4/static/textsearch-intro.html
7http://docs.docker.com/installation

56

http://www.postgresql.org/docs/9.4/static/textsearch-intro.html
http://docs.docker.com/installation

3.1 PubMed2Go

PubMed2Go is usable via a command-line interface and requires PubMed XML
files as input. A PostgreSQL database needs to be created and configured at first.
The tables are built based on user-provided data. The SQL schema can be seen
in the Supplemental Material. All PubMed XML attributes are transformed into
PostgreSQL tables and columns with an object-relational mapping approach using a
SAX parser (Section 2.1.2). After processing the PubMed XML files, a Xapian full
text index is built by querying titles, abstracts, MeSH terms, keywords, and chemical
substances from PostgreSQL. These installation steps can also be executed at once
using the virtual container Docker without installing additional software packages.
This system is similar to a virtual machine and easy to deploy.

Based on this data environment, a phrase search can be executed with user-defined
terms. Furthermore, there is the possibility to send conditional queries to the full
text index with AND, OR, NOT, and NEAR. The identified keywords and PubMed
IDs are stored in a CSV file. Installation instructions, scripts performing BioC
annotations and the generation of graphical plots, or SQL queries as shown in
Table 3.1 illustrate how to use the PubMed2Go framework. They are precisely
described on the GitHub project page8.

Figure 3.2.: Text mining applications. PubMed2Go can be extended with
use cases such as HTML pages with highlighted search terms, word clouds as
shown in Figure 3.5 and Figure 3.6, and a bar chart or pie chart as displayed in
Figure 3.7 and Figure 3.8. Furthermore, the framework offers the possibility to
be extended with natural language processing tools by applying the BioC workflow,
as illustrated in Figure 3.3.

3.1.3. Use Case: BioC Applications

The PubMed2Go BioC XML interface can be used to build and interconnect natural
language processing models and methods, e.g. the BioC natural language processing
pipeline from Comeau et al . (right part of Figure 3.2) [85]. As mentioned in the

8https://github.com/KerstenDoering/PubMed2Go

57

https://github.com/KerstenDoering/PubMed2Go

Chapter 3 Results

introduction, the requirements for BioC are a DTD file9 to define the XML document
structure and a key file10 to explain which structural elements are used in a particular
BioC XML document. The infon elements are used to differentiate between distinct
XML elements. Every infon element contains a key and a value. This basic element
can refer to the document sections title or text, to token IDs, or to named entity
recognition annotations.

Figure 3.3.: BioC workflow. The minimalistic approach from Comeau et al. [79]
is modified with the example how to add MeSH terms to BioC PubMed titles
and abstracts from the PubMed2Go PostgreSQL database or e.g. to a PubTator-
annotated abstract.

By exporting the BioC XML format from the PubMed2Go PostgreSQL database for
abstract titles and texts, it becomes possible to use the Web service PubTator [82],
the named entity recognition stand-alone tools from the tmBioC package [81], or
the BioC natural language processing pipeline [85], as illustrated in Figure 3.2.
By applying these tools, named entity recognition of chemicals, diseases, genes,
mutations, and species will be included as well as tokenisation, part-of-speech tagging,
and sentence parsing. Based on these methods, even more sophisticated natural

9https://github.com/KerstenDoering/PubMed2Go/blob/master/BioC_export/BioC.dtd
10https://github.com/KerstenDoering/PubMed2Go/blob/master/BioC_export/Explanation.

key

58

https://github.com/KerstenDoering/PubMed2Go/blob/master/BioC_export/BioC.dtd
https://github.com/KerstenDoering/PubMed2Go/blob/master/BioC_export/Explanation.key
https://github.com/KerstenDoering/PubMed2Go/blob/master/BioC_export/Explanation.key

3.1 PubMed2Go

language processing approaches can be applied such as kernel methods used for the
identification of PPIs [9]. In case of PubTator and tmBioC, the plain text input
format can be combined with a BioC XML output, too. Thereby, the BioC workflow
as shown in Figure 3.3 implies that any tool supporting this input and output format
can add annotations to a document, supporting the idea of interoperability. The
example shows that MeSH terms are added to a PubMed2Go XML document or an
article that was annotated with disease terms by PubTator before. Considering the
latter case, the XML annotation elements can be merged as shown in Figure 3.4. In
this XML schema, a collection consists of PubMed articles with their PubMed ID as
document ID. The basic document consists of a title and the abstract text, if given.
The original creation source is the PubTator Web service with a document creation
date. The file PubTator.key describes the semantics used by this Web service. As
named entity recognition tools provided by PubTator are based on the tmBioC
package [81], their file tmBioC.key can be used as well. In Figure 3.3, the PyBioC
library enables the usage of BioC classes in Python [86], but programming languages
such as C++, Java, or Ruby can be used as well11. Comeau et al . intend that only
one type of annotation should be used with one BioC XML file consisting of several
documents [79], but they can also be merged as shown here. The only limitation is
that the PubTator key file differs slightly from the PubMed2Go key file in terms of
semantics, but this can be modified easily by joining the explanations in the key file.

More BioC-related software and text corpora can be found in the overview of the
BioCreative IV interoperability track [87]. These approaches illustrate how the
BioC interoperability can be used for fast development of prototypic text mining
applications in terms of software modularity.

3.1.4. Use Case: Querying PubMed2Go Data Sets

This section describes ideas how to analyse PubMed2Go data sets (left part of
Figure 3.2). The PubMed2Go documentation refers to a small data set of 272 MB12,
related to pancreatic cancer, which can be processed in a few minutes. Pancreatic
cancer is one of the most dangerous cancer types. Currently, the only way to cure
a patient is surgery, beside several therapeutic strategies that cannot significantly
increase survival rates [88]. The research progress in this area can be supported with
11http://bioc.sourceforge.net
12https://github.com/KerstenDoering/PubMed2Go/wiki, 16 April 2015

59

http://bioc.sourceforge.net
https://github.com/KerstenDoering/PubMed2Go/wiki

Chapter 3 Results

Figure 3.4.: Part of a BioC XML document. The document ID 100475 is its
PubMed ID. PubTator annotations are shown with infon elements that contain
the key type with the value Disease and the key MEDIC referring to a MeSH ID,
like D010190 for the given disease pancreatic carcinoma. The PubMed2Go MeSH
term annotations are shown with the annotation IDs 0_MeSH and 1_MeSH to
make them distinguishable from the normally iterating PubTator annotation IDs.

text mining methods, e.g. by covering findings about gene-disease and compound-
protein relationships.

To get a first impression of important genes or proteins, drugs, and diseases re-
lated to pancreatic cancer, selected search terms13 were manually extracted from
DrugBank [89] and OMIM14. These databases are focused on human diseases, their
interrelated gene mutations, and how to treat them. If e.g. specific oncogenes like
KRAS are presented in OMIM, a Xapian search should result in a reasonable number
of publications. The relative frequencies of such search terms are displayed in a word
cloud in Figure 3.5. The numbers of abstracts identified for each synonym were
transformed to a logarithmic scale to smooth differences in word sizes. Pancreatic
ductal adenocarcinoma is the most frequently appearing type of pancreatic cancer
13https://github.com/KerstenDoering/PubMed2Go/blob/master/full_text_index/

synonyms
14http://omim.org

60

https://github.com/KerstenDoering/PubMed2Go/blob/master/full_text_index/synonyms
https://github.com/KerstenDoering/PubMed2Go/blob/master/full_text_index/synonyms
http://omim.org

3.1 PubMed2Go

Figure 3.5.: Genes, proteins, drugs, and diseases related to pancreatic
cancer. This word cloud shows selected search terms from DrugBank and OMIM
with their relative frequencies in a logarithmic scale.

and the most common lethal cancer [90]. Therefore, it is reasonable to see this term
displayed as the largest word in Figure 3.5 together with gemcitabine, a nucleoside
analogue commonly used in chemotherapy15. Indeed, KRAS is the largest displayed
gene beside p53. Figure 3.5 also illustrates that texts referring to pancreatic can-
cer are also related to breast, colon, ovarian, and lung cancer, as well as diabetes,
pancreatitis, and other diseases.

Figure 3.6.: Most frequently co-occurring terms with gemcitabine. These
are the 50 most commonly used words surrounding the search term gemcitabine
in the pancreatic cancer data set. The identified texts were tokenised. These
word frequencies were transformed to a logarithmic scale. No word stemming was
performed.

15http://www.drugbank.ca/drugs/DB00441

61

http://www.drugbank.ca/drugs/DB00441

Chapter 3 Results

The word cloud in Figure 3.6 was generated by processing all abstracts and titles
which were found with the drug name gemcitabine to reveal part of the vocabulary
related to pancreatic cancer. A whitespace tokeniser was used that separates words
as tokens and removes punctuation. After excluding stop words16 from the data set,
the first 50 terms that occurred most frequently were extracted and their frequencies
were transformed to a logarithmic scale. The word cloud in Figure 3.6 is related
to pancreatic cancer and to cancer in general. This can be seen by considering
synonyms like therapy, dose, survival, metastatic, tumor, etc. The word clouds were
generated with the software PyTagCloud17.

According to the OMIM review about pancreatic cancer18, three substantially in-
volved genes are KRAS, BRCA2, and CDKN2A. While Figure 3.5 shows their
relative frequencies in comparison to other search terms, the timelines in Figure 3.7
illustrate the absolute number of publications per year. The KRAS timeline shows
an exponential growth until 2013. The slopes of the BRCA2 and CDKN2A timelines
are rather low compared to KRAS, but start much earlier in both plots. There is
even a decrease shown for the last three years in the pancreatic cancer data set. One
reason for this outcome is the role of KRAS in the regulation of cell proliferation and
its higher specificity to pancreatic cancer than in case of BRCA2 and CDKN2A [91].
These examples present approaches to visually inspect the number of publications of
specific entities.

One way to investigate the context of selected search terms is to use the PubMed2Go
function to generate an HTML page with highlighted entities. The Xapian full text
index can be searched with conditional queries for this purpose, e.g. using the Python
API. The PubMed2Go documentation describes examples such as a query for the
drug R11577719 in combination with the term pancreatic, excluding the words lung,
colon, and ovarian. There is also a query for the drug erlotinib20 next to the term
pancreatic within a range of three words. These drugs are not only applied in case
of pancreatic cancer. As already mentioned, it is difficult to cure this type of cancer
with what is known so far about therapies using pancreatic cancer-specific drug
targets. Therefore, conditional searches can increase the specificity of the search
results, focussing on the word neighbourhood and excluding closely related findings.
16http://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T43
17https://github.com/atizo/PyTagCloud
18http://omim.org/entry/260350?search=%22pancreatic%20cancer%22
19http://www.drugbank.ca/drugs/DB04960
20http://www.drugbank.ca/drugs/DB00530

62

http://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T43
https://github.com/atizo/PyTagCloud
http://omim.org/entry/260350?search=%22pancreatic%20cancer%22
http://www.drugbank.ca/drugs/DB04960
http://www.drugbank.ca/drugs/DB00530

3.1 PubMed2Go

Figure 3.7.: PubMed2Go timelines for the publications of different genes.
The Xapian full text index was queried with the gene names KRAS, BRCA2,
and CDKN2A. Publication years until 2014 were selected from the PostgreSQL
database.

The usage of such HTML pages with highlighted search terms also demonstrates a
way to simplify text curation and annotation.

The selective search in Xapian can also be combined with PostgreSQL queries to
identify the number of articles published by which authors. Subsequently, their
investigated topics can be compared to the entities in Figure 3.5 (described in the
GitHub documentation21).

Oliver et al . showed a rather complex SQL query, selecting the ten journals that
published the most articles with the MeSH term “Leukemia” [83]. The slightly
modified query to the PubMed2Go database schema pubmed is shown in Table 3.1.
The result is displayed in Table 3.2, with the outcome that the order of top range
journals did not change a lot within the last ten years. In contrast to the other
use cases described here, this selection was applied to the complete PubMed data
set. Oliver et al . described a difference between warm and cold cache, which is
recognised in the PubMed2Go query, too. The query as shown in Table 3.1 took

21https://github.com/KerstenDoering/PubMed2Go/wiki#postgresql-and-xapian

63

https://github.com/KerstenDoering/PubMed2Go/wiki#postgresql-and-xapian

Chapter 3 Results

Table 3.1.: PostgreSQL query to select MeSH term-related journals. The
ten journals with the highest number of publications containing the MeSH term
“Leukemia” were selected from the complete PubMed data set.

SQL command
SELECT mj.medline_ta, count(mj.fk_pmid) as num_of_publications
FROM pubmed.tbl_medline_journal_info mj
JOIN pubmed.tbl_mesh_heading msh
ON mj.fk_pmid = msh.fk_pmid
WHERE msh.descriptor_name = ’Leukemia’
GROUP BY mj.medline_ta
ORDER BY count(mj.fk_pmid) desc
FETCH first 10 rows only;

almost nine minutes until the result appeared. A resubmission of this query directly
afterwards only took half a minute because of a warm cache22.

Table 3.2.: Results for the query in Table 3.1.

Journal Number of publications
Blood 1,469
Cancer 748
Leukemia 746
Leuk Res 723
Cancer Res 718
Bone Marrow Transplant 710
Br J Haematol 677
Rinsho Ketsueki 671
Lancet 582
Haematologica 486

Similar to the query in Table 3.1, it can be investigated in which countries the most
journals are located, in reference to the pancreatic cancer data set (Figure 3.8). It is
shown that the largest number of journals related to pancreatic cancer are located in
the United States and England. This does not mean that the authors’ institutions
are located in these countries.

All examples shown here illustrate approaches how PubMed2Go can be applied to
user-specific data sets. For instance, the word cloud in Figure 3.5 and the timeline
in Figure 3.7 refer to a manually selected set of search terms, but this can be easily
extended to an automatic search pipeline using the proposed BioC named entity
22http://stackoverflow.com/questions/22756092

64

http://stackoverflow.com/questions/22756092

3.1 PubMed2Go

Figure 3.8.: Countries which pancreatic cancer-related journals come
from. The percentages were calculated based on a query to the PostgreSQL
table pubmed.tbl_medline_journal_info. Fractions below 2 % are summarised as
others.

recognition tools. It depends on the user’s aim, what kind of data analysis should be
included in a text mining application.

3.1.5. Performance

For the complete XML data set with a size of 114 GB, it takes 10.5 days to build
the PostgreSQL relational database and another 27 hours to generate the full text
index with multiprocessing using a 2 GHz quad-core processor. The time of the
indexing process and the size of the index depend on the range of fields in use. A
modification of the PubMed2Go scripts, including only abstract titles and texts, but
not MeSH terms, keywords, and substances, speeds up this process to 10 hours. The
size of the full text index also decreases from 154 GB to 124 GB. It is difficult to
compare the runtime to the results from Oliver et al . due to different hardware and
software system requirements, but increasing computational resources will speed up
this process directly by using more CPU cores for multiprocessing.

65

Chapter 3 Results

3.2. Prediction of Functional Compound-Protein
Relationships

Parts of this project will be published following this thesis in a similar or identical
way.

3.2.1. Related Work

Protein-protein interactions are substantial for cellular processes, involving metabolism,
signalling, regulation, and proliferation [9]. Information about interactions can be
extracted from databases with experimental and curated data, or identified with text
mining approaches [9, 92]. Tikk et al . compared nine kernel methods to predict
protein-protein interactions in sentences of different text corpora [9]. The best results
were achieved by applying the shallow linguistic kernel and the all-paths graph kernel.
The all-paths graph kernel represents a deep parsing approach, considering all syn-
tactic connections in a sentence based on a graph structure. Furthermore, the kernel
makes use of weighted connections in a so called dependency graph (Section 2.2.4.4).
In contrast, the shallow linguistic kernel considers only small word neighbourhoods
around the candidate interaction partners. The shallow linguistic kernel was also
applied in the area of drug-drug interactions [12]. Other kernel based methods
investigated by Tikk et al ., e.g. approaches considering only syntax trees, showed
an inferior performance.

Small molecules can be metabolised or serve drugs, e.g. inhibiting target proteins [10].
Therefore, compound-protein interactions are essential for the processes in the cell
as well, but fewer available approaches exist to characterise them in texts. The
search tool for interacting chemicals, abbreviated STITCH, was published in its
4th version in 2013 and connects several information sources of compound-protein
interactions. This includes experimental data, e.g. from ChEMBL [93], and data
derived from text mining methods, based on co-occurrences and natural language
processing [10, 17, 94]. These methods are based on and conntected to the STRING
9.1 database (Search Tool for the Retrieval of Interacting Genes), which contains
algorithmic approaches to identify protein-protein interactions [95]. Figure 3.9 shows
how STITCH visualises compound-protein interactions, but it can also be used to
visualise protein-protein interactions.

66

3.2 Prediction of Functional Compound-Protein Relationships

Figure 3.9.: Protein-compound interactions in STITCH [10]. This picture
was generated by choosing the example provided by the STITCH start page. The
view is centralised for the query protein prostaglandin G/H synthase 1 (PTGS1),
also known as Cyclooxygenase-1 (COX-1). The confidence view displays strong
associations (high confidence score) with thicker lines. In this case, only the
highest confidence scores were selected with a a threshold of 0.9. The view can be
changed to include protein-protein interactions as well (blue lines). The red lines
show interactions of chemicals. All information sources, including experiments,
databases, text mining, etc., are included in this graph.

67

Chapter 3 Results

OntoGene is a text mining Web service for the detection of proteins, genes, drugs,
diseases, and chemicals, including their relationships [13]. The relationship iden-
tification methods contain on rule-based and machine learning approaches, which
were successfully applied in the BioCreative challenges, e.g. in the triage task in
201223 [96]. Unfortunately, STITCH and OntoGene do not provide exact statistical
measures of their protein-compound interaction prediction methods. Furthermore,
no published gold standard corpus of annotated compound-protein interactions could
be found for evaluation purposes. In this section, the results of the shallow linguistic
and all-paths graph kernel classification will be compared, based on a completely new
compound-protein interaction data set. M. Becer was supervised by me to annotate
these data sets and to apply the shallow linguistic kernel within his Bachelor The-
sis [97]. Furthermore, I supervised E. Abbasian to preprocess textual data for the
all-paths graph kernel and to apply the pipeline implemented by Tikk et al. during
her Master Thesis [47].

3.2.2. Functional Compound-Protein Interactions

The definition of a compound-protein interaction in this thesis includes the direct
interaction of a compound and a protein, as shown in Figure 3.10, and indirect
functional relations, like the one displayed in Figure 3.11. Furthermore, two types
of data sets are distinguished as described in the next two subsections. Data set 1
consists of sentences in which an interaction verb is enclosed by a chemical compound
and a protein (Section 2.1.4.3). Data set 2 does not contain such a sentence structure.
Every compound-protein pair in a sentence is considered as a potential interaction.
If a biomolecule exists as a long form synonym and an abbreviated form in brackets,
both terms are considered as individual classification examples.

3.2.2.1. Sentences with Interaction verb

Data set 1 consists of 1,259 sentences. The coloured biomolecules in Figure 3.10, with
the interaction verb shown in orange, illustrate a part of an HTML document that
was used for compound-protein interaction annotation. Furthermore, this example
refers to a direct interaction. In contrast, Figure 3.11 shows an example in which the
actual interaction is not inferred by the interaction verb and it illustrates an indirect
23http://www.biocreative.org/tasks/bc-workshop-2012/Triage

68

http://www.biocreative.org/tasks/bc-workshop-2012/Triage

3.2 Prediction of Functional Compound-Protein Relationships

Figure 3.10.: Direct interaction with interaction verb. The orange-coloured
verb is enclosed by the PubChem compound 7-ketocholesterol, shown in blue, and
the protein interleukin-6, shown in green. The curated status of this sentence is
Interaction. The protein tumor necrosis factor is annotated as a non-interacting
protein in an extra CSV table. This example refers to PubMed ID 18515973,
sentence ID 3.

Figure 3.11.: Indirect interaction with interaction verb. The PubChem
compound diallyl sulfide and the protein IL-1beta enclose an interaction verb, but
these two biomolecules are not in a functional relation. The curated status of
this sentence is Interaction, because it is stated that diallyl sulfide is influencing
cyclooxygenase 2 indirectly by inhibiting its expression. This example refers to
PubMed ID 18573688, sentence ID 277.

relationship. Therefore, sentences from data set 1 and their interactions do not
necessarily depend on the interaction verb. Both examples contain a non-interacting
protein. The status of both sentences is Interaction and the non-interacting proteins
are annotated in an extra CSV file. Within the preprocessing of data set 1, no
part-of-speech tagging was performed. It is possible that interaction words appear
which are highlighted as verbs although they are nouns. These cases have been
annotated in the CSV file, too. Before annotation of false positive examples, this
data set consisted of 2,964 sentences.

3.2.2.2. Sentences without Interaction verb

Data set 2 can be considered analogous to data set 1 with the difference that no
interaction verb is allowed to appear between the first and last compound or protein
in a sentence. This data set consists of 1,494 sentences. Part of an example sentence
is shown in Figure 3.12. Originally, this data set consisted of 5,365 sentences, but it
contained many false positive examples.

69

Chapter 3 Results

Figure 3.12.: Direct interaction without interaction verb. This figure shows
the second part of a curated sentence in DS2. The small molecule cholesterol is
metabolised to pregnenolone by CYP11A. Therefore, this example was annotated
with the status Interaction. The word conversion can be considered as an interaction
word, but it is not a verb. The example refers to PubMed ID 18768916, sentence
ID 385.

3.2.2.3. Co-Occurrences

The method of compound-protein co-occurrences can be considered as a prediction
method for functional compound-protein relationships (Section 2.1.4.3). Table 3.3
shows the evaluation of this approach.

Table 3.3.: Compound-protein interaction prediction with co-occurrences.
Using the concept of co-occurrences as a prediction method means that all pairs of
compounds and proteins in a sentence are interaction partners (positive instances).
Therefore, the sensitivity is 100 % and the specificity is 0 % by definition. In
this case, the precision value equals the accuracy, because there are no true and
false negative predictions. In both data sets, the F1 score is above 70 %, but the
interaction verbs in DS1 lead to a higher number of true CPIs. Evaluation results
are shown in percent (Sent. - Sentences, Sens. - Sensitivity, Spec. - Specificity,
Prec. - Precision, Acc. - Accuracy, F1 - F1 score).

DS # Sent. # CPIs # No-CPIs Sum Sens. Spec. Prec. (Acc.) F1
DS1 1259 2042 1264 3306 100 0 61.8 76.4
DS2 1494 1682 1408 3090 100 0 54.4 70.5

3.2.3. Annotation of Functional Relationships

All annotations in data set 1 and data set 2 were assigned manually by working on
two large HTML pages with entities highlighted automatically in advance. The colour
blue is used for PubChem compounds and entities highlighted in green show UniProt
proteins. There are also terms shown in yellow, which refer to GO terms describing
cellular processes [14], but these entities were not further analysed within this
project. In prolific, GO terms are used as an additional filter criterion in relationship
sentences [2]. Data set 1 shows interaction verbs in orange (Section 3.2.2.1). Opening

70

3.2 Prediction of Functional Compound-Protein Relationships

Figure 3.13.: HTML data set annotation. The interaction verbs are coloured
in orange, chemical compounds in blue, and proteins in green. The curated status
of each sentence can be assigned as Interaction, No Interaction, or False positive
example. Clicking the Push button changes the type of interaction.

the HTML page for text annotation the first time shows the status Pretagged for
each sentence. The curator can select between the three different states Interaction,
No Interaction, or False positive example (Figure 3.13), as further explained in the
next subsections.

3.2.3.1. Interaction

The non-interacting biomolecules in sentences with direct or indirect functional rela-
tionships are annotated in an extra CSV file, as already mentioned in Section 3.2.2.1
and Section 3.2.2.2. Therefore, the CSV file contains the columns non-interacting
compound (NI-C) and non-interacting protein (NI-P). Nevertheless, there is the
case in which the sentence contains interactions, but the non-interacting partners
cannot be determined by the algorithm. If there are two interacting pairs C1 − P1

and C2−P2 in the same sentence, but C1 is not interacting with P2 and C2 not with
P1, the parser is not able to find the correct relationships with the annotations in
the CSV file. The reason is that a biomolecule cannot be entered as non-interacting
and actually interact the same time in one sentence. Therefore, such a sentence has
to receive the status False positive example. However, this is a very rare case.

3.2.3.2. No Interaction

The examples in Section 3.2.2.1 and Section 3.2.2.2 show non-interacting biomolecules,
because nothing is stated about a relationship. The other case would be the explicit

71

Chapter 3 Results

use of a word like no or did not as shown in Figure 3.14.

Figure 3.14.: No interaction. This figure shows a sentence from data set 1 in
which the status No Interaction is induced by the terms did not. This example
also belongs to the abstract with the PubMed ID 18515973, like the one given in
Figure 3.10. It has got the sentence ID 6, as shown in Figure 3.13.

3.2.3.3. False Positive Example

False positive examples can occur in many sentences, but only if there are no
interacting or non-interacting biomolecules left, the status remains False positive
example. Otherwise, the molecule will be added to the columns false positive
compound (FP-C) or false positive protein (FP-P) in the CSV file to be ignored by
the classifier. In the example shown in Figure 3.15, two false positive examples can
be seen. Dopamine is not a compound in this sentence, because it is part of the
protein dopamine transporter. In this case, the word transporter is added to an extra
blacklist to improve the named entity recognition algorithm that currently annotates
compounds in a sense of wrong word neighbourhoods. PCR is a false positive
example, because it refers to the polymerase chain reaction. This word was identified
by Whatizit. Therefore, only a blacklist of typical false positive abbreviations can
improve the quality or alternatively, using another algorithm.

Figure 3.15.: False positive example. PCR is not a protein, because it abbre-
viates the technology polymerase chain reaction. Dopamine is highlighted as a
compound, but it is part of the transporter protein. Therefore, this is a false
positive example, too. DNA methylation is highlighted in yellow, because it was
recognised as a GO term by Whatizit. The example refers to PubMed ID 18768916,
sentence ID 385.

If a compound or a protein consists of multiple terms, but the parts of the synonym
were recognised as different entities, the words will be considered as false positive
hits, too. Compounds and proteins that were not recognised as biomolecules at all,
are not further considered in this section.

72

3.2 Prediction of Functional Compound-Protein Relationships

3.2.4. Generation of Data Sets

Usually compounds are referred to as small molecules up to a molecular weight
of 1,000 kDa for which a synonym and a structure is contained in PubChem [3].
Similarly, gene and protein names refer to UniProt IDs, to be able to map a synonym
to its protein sequence from UniProt [4]. PubChem synonyms were annotated with
the approach used in the Web services CIL [1] and prolific [2], applying the Hettne-
Rules [49]. Proteins were annotated using the Web service Whatizit [7] also used in
CIL and prolific.

Table 3.4.: PostgreSQL query to select all PubMed IDs from 2009 ascend-
ing. The column pub_date_year was queried with the publication year 2009 and
fk_pmid with the PubMed ID (no “;” character). This query was sent to the
PostgreSQL database phabidb, which contains all PubMed articles until January
2015, based on the PubMed2Go framework.

\copy (
SELECT fk_pmid
FROM pubmed.tbl_journal
WHERE pub_date_year = 2009
ORDER BY fk_pmid ASC
) to ’pmids_2009.csv’ delimiter ’,’

The two data sets were generated by selecting the first 40,000 abstracts from PubMed,
ordered by PubMed ID from the prolific PostgreSQL database and based on the
PubMed2Go framework. The SQL command is shown in Table 3.4. The first 20,000
publications were used for data set 1 and the second 20,000 for data set 2. The
MongoDB (Section 2.1.2) of the Web service prolific was queried for all existing
compound-protein pairs for the given PubMed IDs with a NoSQL command like
in Table 3.5. The result is shown in Table 3.6. The selected UniProt ID and the
PubChem parent compound ID in this example query refer to Figure 3.10. Similarly,
a MongoDB query for data set 2 would contain the condition ’verb_metric’: false.
All IDs for these selections are generally stored in the code of each HTML page to
be used in ongoing preprocessing steps after text annotation.

The sentences in the HTML files contain misplaced spaces, e.g. in case of words in
round brackets. The reason is that the sentences are extracted from preprocessed
abstracts and titles that were generated with a parser for Whatizit by another
developer. For the new data set used in the pipeline of the all-paths graph kernel
(Figure 3.23 in Section 3.2.6), most of these characters could be properly arranged

73

Chapter 3 Results

Table 3.5.: NoSQL query to select database entries from MongoDB. With
this syntax, all available fields will be shown that match the criteria of containing
the PubMed ID 18515973, the PubChem parent compound ID 91474, and the
UniProt ID P41693 in a sentence with a verb enclosed. This is ensured by the
boolean statement ’verb_metric’: true.

db.docs.find(
{’pmid’: {’$exists’ : true},
’cid’: {’$exists’ : true,’$ne’:”},
’pcid’: {’$exists’:true},
’pid’: {’$exists’ : true,’$ne’:”},
’verb_metric’: true,
’pmid’: 18515973,
’pid’: ’P41693’,
’pcid’: 91474})

Table 3.6.: Results for NoSQL query in Table 3.5. As no limitation of selected
fields to display is given, part of the queried fields will be shown, too. It can be
seen, that the PubChem compound ID and the parent ID are identical and that
this compound-protein pair appears with several other interaction verbs in the
same abstract. Every database entry contains an object ID that is provided by
the MongoDB engine itself while insertion of new data.

{ ’_id’ : ObjectId(’5285f189735df7f69d9c100d’),
’cid’: 91474,
’pcid’: 91474,
’pid’: P41693,
’sentence_metric’ : true ’verb_metric’: true,
’pmid’: NumberLong(18515973),
’pid’: ’P41693’,
’verbs’: [’enhanced’, ’impaired’,

’increased’, ’release’, ’upregulates’] }

with regular expressions. If a sentence contained a highlighted protein, an algorithm
analysed whether there is also a PubChem compound synonym. In this case, the
parent compound ID was inserted into a surrounding XML tag. If there was a verb,
it was highlighted, too. The algorithm did not insert a compound tag if a protein
tag already appeared around the selected position and always inserted the XML tag
around the longest matching compound name. Therefore, no nested or overlapping
XML tags were produced, except for some GO terms, because these XML tags were
excluded later anyway. Every new sentence received a sentence ID such that multiple
sentences in an abstract could be considered as individual instances to classify. For

74

3.2 Prediction of Functional Compound-Protein Relationships

the HTML page, XML tags were replaced with mark tags to highlight the entities
in different colours. Furthermore, a simple JavaScript button was implemented to
store the status of each sentence directly in the HTML page (Figure 3.13). After
all sentences were curated, the HTML document could be parsed to generate the
classifier-specific input format as described in the next sections. The prerequisites
for the shallow linguistic kernel and the all-paths graph kernel approach are different
such that the workflow to process the curated data sets also differ.

3.2.5. Shallow Linguistic Kernel Pipeline

Figure 3.16.: Shallow linguistic kernel workflow. This workflow shows which
steps are involved in preprocessing the data for the jSRE software, running it
with a parameter selection, and evaluating the 10-fold cross-validation results.
The workflow starts with processing the HTML file and thereby considering the
annotations in the extra CSV file. The shallow linguistic kernel can be applied
with different values for window size and n-gram (Section 3.2.5). The cross-
validation runs are averaged and summarised for the different shallow linguistic
kernel parameters in the file results_all_parameters.csv.

The workflow in Figure 3.16 illustrates the basic steps in the application of the

75

Chapter 3 Results

shallow linguistic kernel to data set 1 and data set 2 with the software jSRE24 (java
Simple Relation Extraction) [63], which will be explained within the next subsections
in more detail.

3.2.5.1. Preprocessing of the Curated Data Set

The script parser.py extracted sentences with the status Interaction or No Interaction.
All sentences with the status False positive example were ignored. For each of both
data sets one file with interaction sentences and without interaction sentences was
generated. An example is shown in Figure 3.17.

Figure 3.17.: Extraction of HTML sentences. This sentence refers to the
example given in Figure 3.10 and shows how the coloured HTML sentence is
encoded with mark tags and biomolecule IDs from PubChem and UniProt.

3.2.5.2. Generation of Training Instances

The script build_training_set.py processes interactions.txt and no_interactions.txt
in a way that it generates one new instance of a sentence for each interacting or
non-interacting compound-protein pair in a sentence. Therefore, an incremental
index is needed for every pair in a sentence. Furthermore, this step involves excluding
all remaining false positive examples by parsing the annotations in the extra CSV
file. Figure 3.18 shows that the mark tags from Figure 3.17 have been converted to
the jSRE format. This format consists of a token ID, the token or term itself, its
lemmatised form or base form, a part-of-speech tag, the entity type, and whether it
is the target T or the agent A, as explained in the jSRE user guide. All other terms
receive an O for other entity. As all relationships are undirected, the entity type
Comp for compound is always the agent and the type Prot (for protein) the target.
The elements of the jSRE format are separated by the doubled character ’&’ and each
leading token ID is separated by a space character. These token IDs are added to
24https://hlt-nlp.fbk.eu/technologies/jsre

76

https://hlt-nlp.fbk.eu/technologies/jsre

3.2 Prediction of Functional Compound-Protein Relationships

the already processed biomolecule synonyms after the GENIA tagger preprocessing
steps of all other sentence elements, as described in the next subsection.

Figure 3.18 displays the part-of-speech tags NN and NNP. The difference is that
NNP refers to a proper noun. Such terms are special, because they start with a
capital letter. This example sentence also contains an interaction pair which means
that a second instance is contained in training_dataset.txt that is marked with class
1 and in which the target is changed to interleukin-6.

Figure 3.18.: Extraction of HTML sentences. This sentence shows a non-
interacting pair as indicated by the number zero in the beginning of this training
instance. The target is the protein tumor necrosis factor and the agent the
compound 7-ketocholesterol as indicated by the capital letter T and A.

3.2.5.3. Lemmatisation and Tokenisation

The GENIA tagger is used to generate the base or dictionary form of all terms,
referring to the process of lemmatisation. The script build_data_set.py inserts

Figure 3.19.: GENIA tagger. This example from the GENIA homepage shows
from left to right for each term in the sentence the tokenised words, lemmatised
words, part-of-speech tags, text chunks, and identified proteins. Chunks are se-
mantically connected text fragments (Section 2.2.4.4), e.g. noun phrases (NP) like
Inhibition, NF-kappaB activation, the anti-apoptotic effect, and isochamaejasmin.
Each character ’B’ represents the start of a new chunk. Other phrases are PP
(prepositional phrase) and VP (verb phrase). IN respresents a preposition, JJ and
adjective, DT a singular determiner, and VBD a verb in past tense.

spaces between punctuation signs and the rest of the terms such that brackets for

77

Chapter 3 Results

abbreviations or phrases are already tokenised. Normally, the GENIA tagger uses its
own tokeniser25, but it can be called with the paramter ’-nt’ to perform whitespace
tokenisation, which was done in this case. Furthermore, so called chunk tags are
generated by the GENIA tagger [98], e.g. to recognise noun phrases (Figure 3.1926).
However, part of the tokens in a sentence possibly will not be tagged as part of a
chunk. This approach is used in several information extraction systems [99].

Figure 3.20.: Sentence in jSRE format with GENIA chunks and without
punctuation. This example refers to the sentence ID 11 from the abstract with
the PubMed ID 18515973. Only words inside chunks, as generated by the GENIA
tagger, were included to this training instance.

Figure 3.21.: Complete sentence in jSRE format. This sentence shows a
similar structure as in Figure 3.20, but the words were not reduced to GENIA
chunks and punctuation is included. The word “not” contains the part-of-speech
tag RB, which represents an adverb.

The jSRE pipeline was first tested only with words inside a chunk excluding punc-
tuation and then with all terms including punctuation. The outcome differs and is
described in the next subsection. Depending on the inclusion of all words or just parts
of chunks, the concatenated tokens result in a different sentence or phrase structure
in complete_data_set.csv as shown in Figure 3.20 and Figure 3.21 (generated with
the script svm_input.py). The complete sentence displayed in these figures is “IL-6
release by 7-ketocholesterol, although significant, was not as remarkable as that
induced by TNF-alpha.” Comparing the two figures, the word “not” and the three
punctuation signs are not included in the chunking model.
25http://www.cis.upenn.edu/~treebank/tokenizer.sed
26http://www.nactem.ac.uk/tsujii/GENIA/tagger

78

http://www.cis.upenn.edu/~treebank/tokenizer.sed
http://www.nactem.ac.uk/tsujii/GENIA/tagger

3.2 Prediction of Functional Compound-Protein Relationships

3.2.5.4. Results

The total runtime for the workflow as illustrated in Figure 3.16 on data set 1 and
data set 2 is 1.25 h for the version using chunk tags from the GENIA tagger and
without punctuation as well as for the version using all words of a sentence and
punctuation. The size of the complete development folder is also quite similar. The
version with more words is around 7 MB larger, resulting in 490 MB.

All parameter combinations in the range 1-3 for window size and n-gram were
evaluated (Section 3.2.5). For both data sets, with and without using chunks, the
parameter selection window size 3 and n-gram 3 shows the highest accuracy and
highest F1 score. Therefore, this selection will be focussed in the comparison of the
jSRE results. Nevertheless, the results within the models are close to each other. For
all models shown here, it can be seen that a lower value of n-gram leads to a higher
specificity and a lower recall.

In all of the following four tables, the best two results per column are marked in
bold letters. The first number in the first column refers to the parameter window
size, the second one represents the parameter n-gram (Section 3.2.5). Results are
shown in percent.

Considering data set 1, the version without chunking shows a very similar, but slightly
lower F1 score with an around 3 % lower recall, but an around 2 % higher precision.
Although the accuracy is only slightly better in the version without chunking, its
specificity is clearly higher with a difference of 7.4 %. This can be seen by comparing
Table 3.7 and Table 3.8.

Table 3.7.: Data set 1 results with chunk tags and without punctuation.

Parameter Sensitivity Specificity Precision Accuracy F1 score
11 75.3 51.9 71.9 66.4 73.4
12 79.3 49.4 72.0 67.9 75.4
13 81.9 47.9 72.0 68.9 76.5
21 76.1 51.7 72.0 66.8 73.9
22 79.9 48.5 71.8 67.9 75.5
23 82.2 47.1 71.8 68.8 76.5
31 74.5 53.1 72.2 66.3 73.1
32 78.9 50.6 72.4 68.1 75.4
33 81.9 48.7 72.3 69.2 76.7

79

Chapter 3 Results

Table 3.8.: Data set 1 results including all words of a sentence and punc-
tuation.

Parameter Sensitivity Specificity Precision Accuracy F1 score
11 75.1 58.7 75.0 68.8 74.9
12 77.0 56.5 74.4 69.2 75.5
13 78.0 55.2 74.0 69.3 75.8
21 75.0 58.8 74.9 68.8 74.7
22 76.5 57.2 74.5 69.2 75.4
23 77.9 56.7 74.6 69.8 76.1
31 75.2 59.0 75.1 69.0 75.0
32 76.8 57.4 74.7 69.4 75.6
33 78.6 56.1 74.5 70.0 76.4

Table 3.9.: Data set 2 results with chunk tags and without punctuation.

Parameter Sensitivity Specificity Precision Accuracy F1 score
11 76.3 66.5 73.3 71.8 74.6
12 80.2 65.0 73.5 73.3 76.6
13 82.1 62.1 72.3 73.0 76.8
21 75.2 67.5 73.6 71.7 74.2
22 78.9 66.2 73.8 73.1 76.1
23 80.9 63.7 72.9 73.1 76.5
31 75.1 68.6 74.3 72.1 74.5
32 78.9 67.3 74.5 73.6 76.5
33 80.7 65.7 73.9 73.8 77.0

Table 3.10.: Data set 2 results including all words of a sentence and
punctuation.

Parameter Sensitivity Specificity Precision Accuracy F1 score
11 78.5 71.2 76.6 75.2 77.4
12 79.6 70.9 76.7 75.7 78.0
13 81.5 68.9 75.9 75.7 78.5
21 78.2 72.1 77.1 75.4 77.6
22 79.1 73.2 78.0 76.4 78.5
23 80.8 71.6 77.4 76.6 79.0
31 78.1 72.2 77.2 75.4 77.5
32 79.0 72.4 77.6 76.0 78.2
33 81.4 71.2 77.3 76.8 79.2

In case of data set 2, all results in the model without chunking in Table 3.10 are
better than the values shown in Table 3.9. The F1 score is around 2 % better because

80

3.2 Prediction of Functional Compound-Protein Relationships

of a 0.7 % higher sensitivity and a 3.4 % higher precision. The accuracy is 3.0 %
better because of the 5.5 % higher specificity.

The inclusion of all words in a sentence and the punctuation increased the values of
specificity and precision. While the sensitivity was slightly better in case of data set
2, it decreased by 3.3 % in the model of data set 1. In general, the jSRE performance
on data set 2 reaches a remarkably higher specificity and a slightly better value of
precision. The recall of data set 1 and data set 2 shows similar results.

3.2.6. All-Paths Graph Kernel Pipeline

Figure 3.22.: All-paths graph kernel workflow. After extracting all annotated
sentences in a tab separated format with the script get_relations.py, several XML
preprocessing steps are needed to generate the all-paths graph kernel learning
format [9]. The 10-fold cross-validation results are generated, transformed into
SQL format, and uploaded to a PosgreSQL database by using a makefile.

81

Chapter 3 Results

The first step in the workflow shown in Figure 3.22 is the same as in Figure 3.16
(shallow linguistic kernel workflow) and refers to the extraction of annotated sentences
from the HTML files for data set 1 and data set 2. The script get_relations.py
is similar to the shallow linguistic kernel implementation build_training_set.py
described in Section 3.2.5.2, but it does not have to generate the ’&&’-structure,
which is required for the jSRE software. Instead, it directly exports a CSV file with
tab-separated interaction and no-interaction pairs as shown in Figure 3.23. The
complete sentence displayed in this figure is “7-Ketocholesterol also enhanced IL-6
release from VSMC.”

Figure 3.23.: Sentence with tab-separated functional interaction pairs.
This example refers to PubMed ID 18515973 (sentence ID 10) from data set
1. As shown in Figure 3.10, the compound 7-ketocholesterol is interacting with
the protein IL-6. The biomolecules and the status itself are connected with two
underscores and every compound-protein interaction pair is separated with a tab
character. The list of UniProt IDs is not fully displayed here. VSMC is the
abbreviation for vascular smooth muscle cells.

The generation of the all-paths graph kernel learning format will be performed by
executing several jar files. The input for these conversion steps is an XML file which
is built by using annotatesen_xml.py. The format of this XML file is shown in
Figure 3.24. While this XML format is used by all kernels in the protein-protein

Figure 3.24.: XML format before preprocessing. This sentence refers to the
example shown in Figure 3.23 and shows the XML structure of documents with
sentences that have compound and protein entities containing a boolean interaction
status. As in Figure 3.23, the list of UniProt IDs is not fully displayed here.

interaction software package from Tikk et al . [9], the all-paths graph kernel learning
format needs an XML file enriched with a dependency tree for each sentence as
explained in the next subsection.

82

3.2 Prediction of Functional Compound-Protein Relationships

3.2.6.1. Preprocessing

The sentences have to be tokenised at first and every token needs a part-of-speech
tag, a token ID, and a character offset starting at zero for every sentence. This is
done by the Charniak-Lease tokeniser as shown in Figure 3.25.

Figure 3.25.: Tokenisation. This sentence refers to the example shown in
Figure 3.23 and shows the Charniak-Lease tokenisation with part-of-speech tags.

Afterwards, a syntax tree can be build by the Charniak-Johnson-McClosky parser27

(Section 2.2.4.4) [100]. The structure is determined by brackets around the terms
and their part-of-speech tags as shown in Figure 3.26. The character offsets of the
original text are aligned with the new offsets of the sentence after bracketing.

Figure 3.26.: Syntactic tree parse. The tree structure can be read by following
every pair of brackets separated by a space with a leading part-of-speech tag from
left to right.

The syntax tree parse in Figure 3.26 can be converted to a dependency tree
(Section 2.2.4.4) with the Stanford conversion tool28. The result in Figure 3.27
shows that every token is connected to another one with a directed description of
their type of dependency.
27https://github.com/BLLIP/bllip-parser
28http://nlp.stanford.edu/software/lex-parser.shtml

83

https://github.com/BLLIP/bllip-parser
http://nlp.stanford.edu/software/lex-parser.shtml

Chapter 3 Results

Figure 3.27.: Dependency tree parse. This tree structure shows a directed de-
pendency between every pair of tokens, built with the Charniak-Johnson-McClosky
parser.

Putting together all these XML elements with the original sentence shown in
Figure 3.24, the presented sentence is completely transformed to the all-paths graph
learning format. Finally, the number of documents is randomly split to 10 equally
sized parts. As the number of sentences per document differs, these parts do not
have to be absolutely equal in size. The packages are zipped and copied to the
appropriate folders in the main project directory such that the parameter evaluation
can start. All these steps including the final part in Figure 3.22 are automatically
executed with a shell script. The software package from Tikk et al . has got a
complex structure and a detailed PDF29 describing how to perform the different
steps for each kernel. Therefore, many folders and files from this package could be
removed as they were not directly needed for the all-paths graph kernel pipeline.
Furthermore, some special configurations and debugging steps were performed to
isolate the mandatory preprocessing steps for the all-paths graph kernel learning
format and to reduce the unzipped size of the main folder from 107.1 MB to 27.3
MB.

3.2.6.2. Results

The two main make commands shown in Figure 3.22 as well as the single cross-
validation results can be found in the Tikk et al. software documentation. The first
make command runs the steps of training the sparse regularized least squares (RLS)
model for every cross-validation after generating a linearised feature representation
and normalising the data. Four chosen values of the regularisation parameter ’c’
are tested, namely 0.25, 0.50, 1.00, and 2.00 (Section 2.2.4.5). The second make
29https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/ppi-benchmark/

ppi-benchmark-tar.gz

84

https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/ppi-benchmark/ppi-benchmark-tar.gz
https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/ppi-benchmark/ppi-benchmark-tar.gz

3.2 Prediction of Functional Compound-Protein Relationships

command inserts the prediction results for every compound-protein pair and every
parameter selection into the PostgreSQL table ppicvoutput. Another table ppicvfolds
determines an ID for every corpus-parameter combination which is inserted to the
PostgreSQL table ppicv. Considering one corpus with four regularisation parameter
values and 10 cross-validation runs, 40 rows will be inserted into the PostgreSQL
table ppicv. The average for every 10 rows for data set 1 and data set 2 are given in
Table 3.11 and Table 3.12. The runtime for each of the two preprocessing steps was
between 30 and 60 min. The main calculation with the first make command lasted
around 4.5 h for data set 1 and around 4 h for data set 2.

In the following two tables, the best two results per column are marked in bold
letters. The first number in the first column refers to the sparse RLS regularization
parameter ’c’. Results are shown in percent.

Table 3.11.: Data set 1 results for the all-paths graph kernel pipeline.

Parameter Sensitivity Specificity Precision Accuracy F1 score AUC
0.25 82.6 56.3 76.2 73.1 79.1 79.1
0.50 82.7 56.8 76.8 73.5 79.4 79.3
1.00 86.0 50.9 74.9 73.3 80.0 79.3
2.00 84.2 56.3 76.7 74.2 80.2 79.0

Table 3.12.: Data set 2 results for the all-paths graph kernel pipeline.

Parameter Sensitivity Specificity Precision Accuracy F1 score AUC
0.25 78.7 71.2 77.7 75.5 78.0 82.0
0.50 78.0 72.8 78.5 75.6 78.0 82.0
1.00 78.6 70.5 77.5 75.0 77.8 81.8
2.00 79.5 69.4 77.0 75.0 78.0 81.5

The specificity is generally higher for a lower value of ’c’ while the sensitivity shows
better values for a larger regularization parameter. The value 2.00 showed the best
F1 score on data set 1, although the difference to the result for value 1.00 is only
0.2 %. In case of data set 2, the values 0.25, 0.50 and 2.00 showed the same F1 score,
but specificity, precision, and recall were slightly higher for the first two parameter
selections. The specificity on data set 2 was around 15 to 20 % better than on data
set 1 and precision as well as accuracy were also slightly higher than in data set
1. The F1 score on data set 1 was 1 to 2 % better because of the 4 to 8 % higher
sensitivity. As all results in data set 2 are close to each other, the best overall result

85

Chapter 3 Results

is shown for the regularisation parameter value 2.00. However, the AUC values for
data set 1 are all around 79 % and in data set 2 around 82 %.

3.2.7. Summary

The jSRE implementation reaches the same F1 score on data set 1 as the co-
occurrences approach, but with much better specificity. The precision is also higher
and the recall is in a good range of around 80 %. Comparing the shallow linguistic
kernel results on data set 2 with the co-occurrences, the jSRE implementation reaches
an around 9 % better F1 score of 79.2 % in the model without chunks.
Considering the all-paths graph kernel implementation and the co-occurrences results,
the all-paths graph kernel models reach a 4 % better F1 score in case of data set 1
and 8 % better F1 score in case of data set 2. Therefore, the best all-paths graph
kernel runs perform better than the jSRE models in terms of the F1 score on the data
set with interaction verbs, but slightly worse on data set 2. For data set 2, this is only
true for the shallow linguistic kernel model without chunking. In general, the shallow
linguistic kernel model with chunking on data set 2 shows slightly lower values.
Although the all-paths graph kernel model outperforms the jSRE implementation
without chunking on data set 1, the shallow linguistic kernel model shows around
the same specificity in case of the model with the best F1 score and even better
specificity values for the parameter selections with a slightly lower F1 score (n-gram
value 1).
To summarise, the jSRE implementation shows better results on data set 2 using the
model without chunks and the all-paths graph kernel model shows better results on
data set 2 in all cases. The runtime of the all-paths graph kernel implementations is
up to four times slower than the jSRE pipeline.

86

3.3 Toxicity Prediction

3.3. Toxicity Prediction

This work has not yet been published in a journal.

3.3.1. Related Work

Many freely available and commercial tools exist that perform toxicity prediction in
terms of physico-chemical properties, biological effects, and toxicological endpoints
in an organism [5, 101]. Toxicological endpoints are acute oral toxicity, genotoxicity,
carcinogenicity, reproductive toxicity, hepatotoxicity, neurotoxicity, or cytotoxicity [5].
Software examples are Toxtree30 and Lazar31 (freely available) or TOPKAT32 and
HarzardExpert33 (commercial). The range of applied methods varies a lot. Toxtree is
based on decision tree approaches, whereas Lazar combines statistical algorithms with
regression [101]. TOPKAT uses statistical analysis of substructures which are associ-
ated with toxicity and applies QSAR equations [5]. HazardExpert makes use of expert
knowledge-derived mathematical rules and artificial neural network predictions [5].
There are also tools specialised on ecotoxicity, focussing environmental effects, e.g.
the Estimation Program Interface (EPI) Suite34 and the Organisation for Economic
Co-operation and Development (OECD) QSAR Application Toolbox35 [101]. In
connection to this issue, the Registration, Evaluation, Authorisation, and Restriction
of Chemicals (REACH) legislation provides the freely available Reach-Serv tool
for the prediction of chemical toxicology and environmental fate36. The data set
analysed in this section only contains information about the lethal dose value LD50

(Section 2.3.3). Therefore, it is difficult to compare the approaches in this thesis
with toxicological endpoint-related software solutions.

The focus of this project is the evaluation of the machine learning approaches
decision tree, random forest, artificial neural network, and support vector machine
in combination with different molecular descriptor sets. The main motivation for
these investigations is based on the first results in my Bachelor Thesis [20]. A small
30http://toxtree.sourceforge.net
31http://lazar.in-silico.de
32http://accelrys.com/products/collaborative-science/biovia-discovery-studio/

qsar-admet-and-predictive-toxicology.html
33http://compudrug.com/hazardexpertpro
34http://www.epa.gov/oppt/exposure/pubs/episuite.htm
35http://www.oecd.org/env/existingchemicals/qsar
36www.reach-serv.com/index.php

87

http://toxtree.sourceforge.net
http://lazar.in-silico.de
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/qsar-admet-and-predictive-toxicology.html
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/qsar-admet-and-predictive-toxicology.html
http://compudrug.com/hazardexpertpro
http://www.epa.gov/oppt/exposure/pubs/episuite.htm
http://www.oecd.org/env/existingchemicals/qsar
www.reach-serv.com/index.php

Chapter 3 Results

descriptor set was identified, leading to particularly good prediction results on part
of an in-house database referring to intravenously applied substances. This outcome
was confirmed, compared, and refined in L. M. Grüger’s Bachelor Thesis [51] under
my supervision.

3.3.2. Data Sets

For my Bachelor Thesis in 2009, a data set of around 1,000 very toxic and 1,000 non-
toxic substances was generated with 324 molecular descriptors from OpenBabel [20].
The descriptor generation was done by B. Grüning37 and is based on SMILES patterns
of molecules referenced in the ChemIDplus search system (Section 2.3.3). This
includes many different SMARTS patterns and several physico-chemical properties
(Section 2.3.2). This two-class system was extended to a three-class system as shown
in Table 3.14. The definition of toxicity classes was performed with the aim of
simplifying the prediction model and generating equally sized classes.

Table 3.13.: Toxicity classes. LD50 values were splitted to three classes of around
850 molecules.

LD50 in mg/kg bw toxicity class
0.0 ≤ x < 5.5 very toxic
300 ≤ x < 500 toxic
850 ≤ x non-toxic

Each toxicity class contained around around 850 molecules. Furthermore, a new
descriptor set of 51 features was generated with QikProp (Section 2.3.2). For several
structures, it was not possible to export descriptor values. Therefore, the QikProp
data set contained less molecules (Table 3.14) at the end.

Table 3.14.: Toxicity class sizes. Due to unsolved conversion problems, the
number of substances in the data set with QikProp descriptors was smaller than
the one in the data set with 324 descriptors.

Toxicity class 324 descriptors data set QikProp data set
Very toxic 850 458
Toxic 888 653
Non-toxic 875 320

37http://www.bioinf.uni-freiburg.de/team.html

88

http://www.bioinf.uni-freiburg.de/team.html

3.3 Toxicity Prediction

3.3.3. Results

3.3.3.1. Workflow

Figure 3.28.: WEKA KnowledgeFlow. The workflow starts with loading an
input data set in the WEKA ARFF format with the ArffLoader. The classes to
be predicted, e.g. very toxic and non-toxic, are selected with the Class Assigner
element. The decision tree J4.8 can be built on the complete data set with the
TrainingSetMaker and visualised with the GraphViewer element. The 10-fold
cross-validation splits are performed with the CrossValidatonFoldMaker. The
trainingSet and testSet data is classified with the decision tree classifier J4.8. Each
single cross-validation tree can be visualised with the GraphViewer element. The
results are summarised with the ClassifierPerformanceEvaluater. If a user wants
to change the classifier, the decision tree J4.8 element needs to be replaced by
another classifier element.

Every machine learning approach was applied to each data set with the WEKA
KnowledgeFlow environment [25]. Figure 3.28 shows one of these workflows for the
decision tree classifier. The CSV data sets were saved as WEKA-specific ARFF
files with the Explorer environment (Section 2.2.8) and loaded into the machine
learning workflow. The results are summarised in a text file and accessible via the
TextViewer element. A Part of this output is shown in Figure 3.29. The most
important evaluation parameters compared in this section are sensitivity, specificity,
precision, recall, and AUC (Section 2.2.1). The specificity can be expressed as 100 %

89

Chapter 3 Results

minus false positive rate (FP rate). With this knowledge, the user can easily extract
the results from the text file, also in the case of a three-class model. For all three-class
models, the presented evaluation parameters correspond to the toxicity class very
toxic. The other two classes are represented as a summarised class. A detailed
calculation how to transfer a three-class confusion matrix to a two-class confusion
matrix is explained in Section 2.2.1.6.

Figure 3.29.: WEKA text result. This is the result file of the BestFirst decision
tree on the 10 descriptors data set. The accuracy is 62.5 %. Considering the very
toxic class as the reference class, the sensitivity (recall) has got a value of 65.8 %
and the precision a value of 72.9 %. The specificity can be calculated from the
FP rate and equals 87.7 %. These values and the corresponding graphical tree
can be found in Table 3.15 in Section 3.3.3.3. They are based on the confusion
matrix, which shows the predictions as columns and the actual class (gold standard
annotation) in the rows. The three classes are encoded as a (nontoxic), b (very
toxic), and c (toxic).

90

3.3 Toxicity Prediction

3.3.3.2. Selected Descriptors

The 10 descriptors from my Bachelor Thesis in 2009 [20] are called Carboxylic_acid,
Annelated_rings, Halogen_on_hetero, Hetero_N_basic_no_H, Sulfonic_acid, Pri-
mary_alcohol, Salt, Alkene, Tertiary_carbon, and CH-acidic_strong. Short expla-
nations for all 10 descriptor names can be found in the Appendix (Section A.2).
They were identified by a forward selection (Section 2.2.7.1) with the artificial neural
network classifier on the data set with 324 descriptors, consisting only of very toxic
and non-toxic instances. No cross-validation was performed.

Figure 3.30.: Overlap of all BestFirst selections from 10 descriptors [51].
The figure is divided into four models, namely three two-class models and one
three-class model. The two-class models are abbreviated with t_nt for toxic/non-
toxic, vt_nt for very toxic/non-toxic, and vt_t for very toxic/toxic. For each circle,
the descriptors contained in one or more class-models are shown. The descriptor
carboxylic acid is contained in all models.

Given the subsets of instances for each toxicity class, a BestFirst search was per-
formed on each two-class model and the three-class model to select descriptors
that have a low feature-feature correlation and a high feature-class correlation

91

Chapter 3 Results

(Section 2.2.7.2). Figure 3.30 shows descriptors contained in one or more classes.
From the 10 descriptors, the three features Annelated_rings, Halogen_on_hetero,
and CH-acidic_strong, were not selected by BestFirst. The overlaps of the BestFirst
selection on 324 descriptors and the QikProp descriptors are shown in the Appendix
(Section A.1). Considering the BestFirst selection from 324 OpenBabel descriptors,
Halogen_on_hetero and CH-acidic_strong were neither selected by any model. Ev-
ery two-class model and the three-class model were tested on the data sets with
10, 324, and all QikProp descriptors, as well as their BestFirst subsets. Each of
the presented prediction results was evaluated with 10-fold cross-validation. The
two-class models are abbreviated as described in Figure 3.30.

3.3.3.3. Data Sets with 10 Descriptors

Table 3.15.: Decision tree J4.8 results on data sets with 10 descriptors.
The model with the best AUC value is highlighed.

10D J4.8 Accuracy Specificity Sensitivity Precision AUC
T/nt All 69.7 62.7 76.5 68.2 70.4

BestFirst 67.7 61,1 74.1 66.5 68.5
Vt/nt All 84.0 85.2 82.9 85.2 88.3

BestFirst 81,7 87.3 76.3 86.1 86.8
Vt/t All 76.8 83.0 70.5 80.3 79.7

BestFirst 74.5 82.3 66.7 78.7 77.5
All All 63.7 88.8 67.9 67.9 84.3

BestFirst 62.5 87.7 65.8 72.9 83.4

The decision tree classifier accuracy ranges from around 70 % to 84 % (Table 3.15).
The results with all descriptors are generally 2-3 % higher. The very toxic/non-
toxic class shows the best results and the toxic/non-toxic class has got the worst
performance. The three-class BestFirst model reflects the results in Figure 3.29.
The tree can be seen in Figure 3.31. The decision tree model based on 10 descriptors
is shown in the Appendix (Section A.4). In comparison, the BestFirst model uses
five descriptors less (CH-acidic_strong not selected by the tree model based on 10
descriptors), but its performance is almost the same (Table 3.15).

On this descriptor set, the random forest approach shows a performance similar to
the decision tree classifier, but with around 1-2 % better AUC values (Table 3.16).

92

3.3 Toxicity Prediction

Figure 3.31.: Decision tree J4.8 with BestFirst selected features from 10
descriptors [51]. This tree belongs to the prediction result in Figure 3.29 and
Table 3.15 for the BestFirst 10D data set. The descriptor carboxylic acid shows
the root of the tree and is used several times to deal with an exact number of
carboxyl groups (the left part of this figure).

Table 3.16.: Random forest results on data sets with 10 descriptors. The
model with the best AUC value is highlighed.

10D RF Accuracy Specificity Sensitivity Precision AUC
T/nt All 69.4 62.0 76.5 67.8 72.9

BestFirst 68.5 62.5 74.3 67.4 70.9
Vt/nt All 84.7 86.4 83.1 86.2 90.1

BestFirst 82.3 87.8 76.9 86.6 89.5
Vt/t All 77.0 82.7 71.2 80.2 81.6

BestFirst 75.0 82.5 67.4 79.2 79.1
All All 64.1 88.1 70.1 74.8 85.5

BestFirst 62.8 87.3 66.3 72.5 84.2

Artificial neural networks and support vector machiens also show a better performance
with 10 descriptors. Their results are similar to the tree classifiers. In case of the
support vector machine classifier, a diverse effect is shown. The specificity drops with
less descriptors and the sensitivity increases. Although, the SVM classifier reaches
the best accuracy value with 85.0 %, its AUC value is worst in this group. Therefore,
the artificial neural network and random forest classifiers show be best performance.
In general, the very toxic/non-toxic class shows the highest AUC values.

93

Chapter 3 Results

Table 3.17.: Artificial neural network results on data sets with 10 descrip-
tors. The model with the best AUC value is highlighed.

10D ANN Accuracy Specificity Sensitivity Precision AUC
T/nt All 69.7 63.9 75.3 68.5 73.3

BestFirst 69.0 63.3 74.5 68.0 70.5
Vt/nt All 84.3 85.3 83.3 85.4 90.0

BestFirst 83.0 82.7 83.2 83.2 89.3
Vt/t All 76.1 83.6 68.4 80.4 81.9

BestFirst 75.0 85.6 64.3 81.5 79.4
All All 64.5 87.9 71.3 74.7 86.3

BestFirst 63.6 87.3 68.3 73.1 84.4

Table 3.18.: Support vector machine results on data sets with 10 descrip-
tors. The model with the best AUC value is highlighed.

10D SVM Accuracy Specificity Sensitivity Precision AUC
T/nt All 69.2 62.9 75.2 68.0 69.1

BestFirst 68.1 62.4 73.6 67.1 68.0
Vt/nt All 85.0 86.2 83.8 86.2 85.0

BestFirst 80.6 74.1 86.9 77.6 80.5
Vt/t All 77.3 86.5 67.9 83.2 77.2

BestFirst 75.2 82.3 68.0 79.1 75.2
All All 64.2 89.6 67.5 76.6 78.6

BestFirst 63.2 87.6 66.6 73.0 77.1

3.3.3.4. Data Sets with 324 Descriptors

The decision tree model with 324 descriptors shows a better performance than the
model with 10 descriptors, especially on the complete descriptor set (no BestFirst
selection). The two-class model accuracies range from 72.5 % to around 90 %. The
three-class model on all descriptors reaches an 8.8 % higher accuracy (Table 3.19).

The random forest classifier shows the best performance of all models with 324
descriptors. The AUC value of the very toxic/non-toxic model is 97.1 %. The
accuracy values range from around 80 % for the toxic/non-toxic model to 91.3 % for
the very toxic/non-toxic class and the three-class model reaches an AUC value of
94.4 % (Table 3.20).

The accuracy of the artificial neural network and support vector machine models is
slightly worse than the one of the tree classifiers. Nevertheless, the BestFirst artificial
neural network is superior to the decision tree in the AUC value as in the case of

94

3.3 Toxicity Prediction

Table 3.19.: Decision tree J4.8 results on data sets with 324 descriptors.
The model with the best AUC value is highlighed.

324D J4.8 Accuracy Specificity Sensitivity Precision AUC
T/nt All 75.1 74.7 75.5 75.7 78.8

BestFirst 74.0 74.7 73.3 75.2 80.0
Vt/nt All 90.1 90.2 89.9 90.5 90.1

BestFirst 86.8 91.5 82.3 90.9 91.8
Vt/t All 81.9 82.9 80.9 82.3 83.5

BestFirst 76.9 92.9 60.7 89.3 77.9
All All 72.5 89.0 81.4 78.8 86.9

BestFirst 65.8 91.8 68.3 80.8 86.8

Table 3.20.: Random forest results on data sets with 324 descriptors. The
model with the best AUC value is highlighed.

324D RF Accuracy Specificity Sensitivity Precision AUC
T/nt All 80.3 81.3 79.4 81.6 87.7

BestFirst 74.6 74.8 74.4 75.5 82.0
Vt/nt All 91.3 93.4 89.3 93.3 97.1

BestFirst 87.2 89.6 84.8 89.4 93.8
Vt/t All 85.6 85.5 85.8 85.3 93.3

BestFirst 79.4 91.6 67.0 88.7 85.2
All All 77.0 92.2 82.5 84.1 94.4

BestFirst 65.6 91.1 68.1 79.3 87.7

Table 3.21.: Artificial neural network results on data sets with 324 de-
scriptors. The model with the best AUC value is highlighed.

324D ANN Accuracy Specificity Sensitivity Precision AUC
T/nt All 49.7 99.9 0.16 93.3 65.6

BestFirst 73.4 72.2 74.5 73.7 80.8
Vt/nt All 82.0 74.8 89.0 78.4 88.8

BestFirst 87.5 87.8 87.3 88.0 94.0
Vt/t All 58.4 34.5 82.7 55.4 61.6

BestFirst 79.5 93.5 65.3 90.8 85.5
All All 51.0 58.6 75.7 47.9 77.0

BestFirst 66.4 93.1 68.6 83.3 88.4

10 descriptors (Section 3.3.3.3). Compared to artificial neural network and support
vector machine, the tree classifiers show the best performance with all available
descriptors.

95

Chapter 3 Results

Table 3.22.: Support vector machine results on data sets with 324 descrip-
tors. The model with the best AUC value is highlighed.

324D SVM Accuracy Specificity Sensitivity Precision AUC
T/nt All 70.3 76.0 64.9 73.8 70.4

BestFirst 70.4 62.7 77.7 68.5 70.2
Vt/nt All 81.7 86.1 77.5 85.2 81.8

BestFirst 86.7 88.2 85.1 88.2 86.7
Vt/t All 74.5 75.9 73.1 74.9 74.5

BestFirst 76.6 94.0 58.9 90.7 76.4
All All 63.0 88.1 64.7 73.3 76.4

BestFirst 65.2 95.6 63.8 88.0 79.7

3.3.3.5. QikProp Data Set

The decision tree classifier shows lower AUC values with 51 QikProp descriptors
than with 324 descriptors, although the difference within the very toxic/non-toxic
model is only around 3 %. The sensitivity and precision values in the three-class
model are considerably lower than the specificity values.

Table 3.23.: Decision tree J4.8 results on data sets with QikProp descrip-
tors. The model with the best AUC value is highlighed.

QP J4.8 Accuracy Specificity Sensitivity Precision AUC
T/nt All 74.3 70.1 77.3 78.6 71.4

BestFirst 75.3 70.3 78.8 79.1 76.5
Vt/nt All 87.8 89.5 85.3 85.0 88.4

BestFirst 83.9 81.2 87.8 76.6 89.8
Vt/t All 81.3 86.0 71.6 71.6 78.4

BestFirst 79.3 90.3 56.9 74.3 78.5
All All 67.7 91.4 65.3 68.5 79.8

BestFirst 64.9 92.1 59.1 68.2 79.6

The performance of the random forest approach is the best in the group of QikProp
data set models. The AUC values are 1-3 % lower than in the model with 324
descriptors, but clearly higher than with 10 descriptors. In this case, not only the
sensitivity in the three-class model, but also in the very toxic/toxic model drops in
comparison to a specificity of around 93-95 %. Nevertheless, the AUC values are in
high range.

The results of the artificial neural network approach show a similar effect as the
decision tree classifier, but its AUC values are clearly higher. The performance of the

96

3.3 Toxicity Prediction

Table 3.24.: Random forest results on data sets with QikProp descriptors.
The model with the best AUC value is highlighed.

QP RF Accuracy Specificity Sensitivity Precision AUC
T/nt All 77.4 74.0 79.8 81.4 83.9

BestFirst 76.1 72.5 78.7 80.3 84.2
Vt/nt All 89.7 92.1 86.3 88.5 95.2

BestFirst 85.6 89.1 80.6 83.8 91.8
Vt/t All 84.2 95.6 60.9 87.1 89.4

BestFirst 81.4 93.1 57.5 80.3 84.8
All All 73.1 95.9 65.9 82.4 91.2

BestFirst 70.1 95.7 59.1 79.7 89.6

Table 3.25.: Artificial neural network results on data sets with QikProp
descriptors. The model with the best AUC value is highlighed.

QP ANN Accuracy Specificity Sensitivity Precision AUC
T/nt All 75.3 69.7 79.2 78.8 80.5

BestFirst 76.9 68.1 83.1 78.8 81.3
Vt/nt All 88.9 91.5 85.3 87.5 94.0

BestFirst 83.5 81.6 86.1 76.5 90.7
Vt/t All 83.1 90.2 68.8 77.5 86.1

BestFirst 80.1 94.3 51.3 81.6 81.6
All All 69.3 92.8 65.3 72.3 86.6

BestFirst 66.6 95.4 45.3 74.0 84.6

toxic/non-toxic BestFirst Model is only 1 % worse than the random forest approach.
In comparison of AUC values between the QikProp and 324 descriptor models, the
artificial neural network shows similar results.

Table 3.26.: Support vector machine results on data sets with QikProp
descriptors. The model with the best AUC value is highlighed.

QP SVM Accuracy Specificity Sensitivity Precision AUC
T/nt All 60.1 4.4 99.2 59.6 51.8

BestFirst 61.7 8.3 99.2 60.6 53.8
Vt/nt All 59.9 99.8 2.8 90.0 51.3

BestFirst 81.7 88.2 72.5 81.1 80.4
Vt/t All 67.7 100.0 1.9 100.0 50.9

BestFirst 67.9 97.1 8.4 58.7 52.8
All All 46.9 99.9 2.8 90.0 51.4

BestFirst 49.6 99.3 6.3 71.4 52.8

97

Chapter 3 Results

With the exception of the BestFirst very toxic/non-toxic model, the SVM did not
learn an appropriate model of the classes showing specificity and sensitivity values
below 10 % and an AUC value of around 50 %. Models with an AUC value in this
range are considered as random classifiers (Section 2.2.1.5).

3.3.3.6. Summary

Random forests showed the overall best performance in the models with all 324
descriptors. Comparing all AUC values, the artificial neural network performed
second best. In some cases, the artificial neural network accuracy values were inferior
to decision trees, but this value can be optimised within the AUC computation
(Section 2.2.1.5). In general, the QikProp very toxic/toxic models showed a tendency
towards a lower sensitivity with a higher specificity in comparison to other descriptor
sets. All classifiers performed best on the data sets with 324 descriptors and the
QikProp models were superior to the models with 10 descriptors. The very toxic/non-
toxic data set resulted in the best AUC values in each case. The tree models showed
better results with more descriptors on the data set with 324 descriptors, while
artificial neural networks and support vector machines showed a better performance
with the lower number of descriptors in the BestFirst subset. The 10 descriptors were
the result of a forward selection on the very toxic/non-toxic model. Nevertheless,
the cross-validated model with the BestFirst selection from 324 descriptors showed
better results than the cross-validated model with 10 descriptors. The support vector
machine model showed good results as well, but it turned out to be the worst classifier
in an overall comparison.

3.3.3.7. Principal Component Analysis

Every two-class and three-class model was exported with the first two principal
components in WEKA and plotted in Python with Matplotlib. The data was not
normalised. There was no graphical result showing a relatively complete separation
of the scatter plots. Therefore, only the QikProp very toxic/non-toxic BestFirst
model is displayed. In comparison, it showed the best separation (Figure 3.32).

98

3.3 Toxicity Prediction

Figure 3.32.: Principal component analysis [51]. The first two principal
components based on the QikProp very toxic/non-toxic BestFirst model are
shown.

99

Chapter 3 Results

3.4. StreptomeDB

This section is related to a recently submitted publication in NAR Database Is-
sues [42].

3.4.1. Related work

StreptomeDB was first published in 2013 [29]. This version contained more than 2,400
unique and diverse compounds from more than 1,900 different Streptomyces strains
and sub strains. It turned out to be the largest database of natural products isolated
from streptomycetes [29]. Furthermore, it contains information about compound
activities and synthesis routes. The structures are freely available as downloadable
SDF files. The in-house software Compound Research System Curator (CoRSCura-
tor) was used to annotate these entities from thousands of automatically collected
abstracts. The compound names were mapped to structures from PubChem [3] or
drawn manually if not available. While the focus in the first version of StreptomeDB
was on annotation of abstracts, the curators working on the new version always read
the full texts of the article, if available. This approach results in a much higher
proportion of read abstracts and extracted compound names with a source organism.
Furthermore, there are new features such as an interactive phylogenetic tree for all
available source organisms with sequences and information about annotated gene
clusters [42]. The new Scaffolds Browser represents an advancement to the recently
used most common substructure search (MCSS). It enables the user to explore the
chemical space by displaying compounds with selected scaffolds and by composing
them to higher-level ring systems [42]. The focus of my work in this new publication
was on the creation, manipulation, and synchronisation of tables in the database back
end. Therefore, this section focusses on the implementation of an update pipeline to
include new information in StreptomeDB.

3.4.2. StreptomeDB Back End

The CoRSCurator is a standalone software written in Java, which provides a graphical
user interface (Figure 3.33) to annotate abstract titles and texts with entities like
compound name, source organism, activity, and synthesis route. This software

100

3.4 StreptomeDB

Figure 3.33.: CoRSCurator user interface. The user can select a PubMed
article in the left upper window to display it in the right upper window. In this
case, there is no abstract given for the PubMed ID 15406937. Nevertheless, the
article title already contains a compound (vitamin B12) highlighted in green and
the source organism (Streptomyces griseus) in yellow. In the bottom window,
the user can enter annotations manually or by right-clicking the words directly
in the given text. More windows can be displayed, layered, or resized as desired
by the user. Every organism name will be coloured in yellow after annotating
it as the entity source organism. The bottom window shows other types of
entities which were not used by the curators in the recent version. It is possible
to change the user praktikant1 to another user and to directly synchronise the
appropriate user repository by fetching information from the PostgreSQL database
corscurator_2013.

101

Chapter 3 Results

pushes its annotations to the PostgreSQL database corscurator_2013. All relations
described in this database need to be processed, merged with non-redundant structural
information, and uploaded to the PostgreSQL database streptomedb_2013. After
synchronising the newly curated entites from corscurator_2013 with the data from
the first StreptomeDB version, new PostgreSQL tables could be created to enable
the storage of the features mentioned in the beginning. The official StreptomeDB
homepage38 provides a link to the new Web page39, which shows the current front
end of the features under development.

3.4.2.1. Compound Research System Curator Database

The CoRSCurator back end is based on 40 different tables. It was developed by C.
Senger40. The few main tables which need to be processed by the update pipeline
are explained here. Before a user can start to curate abstracts and to enter entity
synonyms identified in the full text article, a data set needs to be uploaded to the
corscurator_2013 database. This is done by the virtual user admin. A list of new
PubMed IDs can be inserted into a special CoRSCurator window to be uploaded into
the PostgreSQL database. This list can be fetched with PubMed2Go by selecting the
non-intersecting PubMed IDs from the IDs that have already been uploaded. The
search term for the list of PubMed IDs identified in NCBI41 in the StreptomeDB
project is Streptomyces in quotations.
The bottom window in Figure 3.33 shows a white box referred to as Main Term.
In case of several organisms, each compound needs to be connected to its organ-
ism by right-clicking the selected terms. If there is more than one compound
given and every compound has got an activity or a synthesis route, these enti-
ties also need to be connected manually. Therefore, two important tables exist
in the corscurator_2013 database, named data_project_article_entity_term and
data_project_article_entity_term_relationship. All entries that were not connected
by the user will show up in the former table while the connected entities will be
shown in both tables. A combination is also possible, e.g. one source organism and
different molecules with different activities. In this case, the organism does not have
to, but can be connected by the user. The following example tables illustrate this
38http://www.pharmaceutical-bioinformatics.de/streptomedb
39http://132.230.56.145/streptomedb2
40http://www.pharmaceutical-bioinformatics.de/main/members
41http://www.ncbi.nlm.nih.gov/pubmed/?term=%22streptomyces%22

102

http://www.pharmaceutical-bioinformatics.de/streptomedb
http://132.230.56.145/streptomedb2
http://www.pharmaceutical-bioinformatics.de/main/members
http://www.ncbi.nlm.nih.gov/pubmed/?term=%22streptomyces%22

3.4 StreptomeDB

issue in more detail. Table 3.27 shows a query to select PubMed IDs for which
the compound chloramphenicol was annotated. The first PubMed ID from this
query is taken to select the source organism as shown in Table 3.28. Table 3.29
and Table 3.31 show queries to find connected entities. Their results are shown in
Table 3.30 and Table 3.32.

Table 3.27.: PostgreSQL query to select PubMed IDs from the table
data_project_article_entity_term. This table contains all annotated enti-
ties that were not connected by the user. The query selects all references to the
molecule chloramphenicol (part of the output shown).

SQL command
SELECT pmid
FROM data_project_article_entity_term
WHERE lower(term) = ’chloramphenicol’;
- - OUTPUT: 23659856, 25267678, 23143535

Table 3.28.: PostgreSQL query to select terms from the table
data_project_article_entity_term. This query shows all annotated enti-
ties with PubMed ID 23659856. The source organism Streptomyces venezuelae is
shown, but there are no annotated activities and pathways.

SQL command
SELECT term
FROM data_project_article_entity_term
WHERE pmid = 23659856;
- - OUTPUT: chlorampenicol, Streptomyces venezuelae

Table 3.29.: PostgreSQL query to select connected entities for PubMed
ID 25267678. The article belonging to this PubMed ID contains the annotated
entities activity and synthesis route for the molecule chloramphenicol as shown in
Table 3.30.

SQL command
SELECT child_term, parent_term
FROM data_project_article_entity_term_relationship
WHERE pmid = 25267678;

103

Chapter 3 Results

Table 3.30.: Part of the result for the query in Table 3.29. The relation-
ship between the child_term and the parent_term is not directed. In this case,
the antibiotic activity of chloramphenicol and its synthesis route, the shikimate
pathway, were annotated. Their explicit connection by the user can be considered
as optional. The source organism Streptomyces venezuelae is specified with the
strain description ATCC 10712.

child_term parent_term
Chloramphenicol Streptomyces venezuelae ATCC 10712
bacteriostatic Chloramphenicol
shikimate pathway Chloramphenicol

Table 3.31.: PostgreSQL query to select connected entities for PubMed
ID 23143535. The article belonging to this PubMed ID contains many different
source organisms as shown in Table 3.32.

SQL command
SELECT child_term, parent_term
FROM data_project_article_entity_term_relationship
WHERE pmid = 23143535;

Table 3.32.: Part of the result for the query in Table 3.31. This table shows
that chloramphenicol is also produced by Streptomyces coelicolor. Furthermore,
this is one of the source organisms of the compound actinorhodin. Several other
source organisms and compounds are shown in this article.

child_term parent_term
Actinomycin Streptomyces antibioticus
Actinomycin Streptomyces parvulus
Actinorhodin Streptomyces coelicolor
Actinorhodin Streptomyces lividans
Chloramphenicol Streptomyces coelicolor
Erythromycin Streptomyces erythraea
Streptomycin Streptomyces griseus

3.4.2.2. Canonical SMILES

One major problem in the development of a synchronisation pipeline with old and
new compound synonyms was their mapping to unique identifiers. This was achieved
by using canonical SMILES. The curators had to work with a tabular file (Office
sheet), containing the columns PubMed ID, molecule’s name, PubChem ID (if avail-
able), and SMILES code. If a chemical synonym from an article is contained in

104

3.4 StreptomeDB

Figure 3.34.: Chloramphenicol. After downloading the PubChem SDF file
with PubChem ID 5959, the picture was generated by pasting the SMILES code
‘OC[C@H]([C@@H](c1ccc(cc1)[N+](=O)[O-])O)NC(=O)C(Cl)Cl” into Marvin-
Sketch. In contrast to Figure 3.35, this SMILES pattern was generated using
OpenBabel without the parameter “-b”.

PubChem42, the user just needs to add a PubChem ID and the SMILES pattern will
be generated later. This is the case for chlorampenicol43. If this molecule would not
be matched by name, the curator had to draw the structure manually from the figure
in the paper and export its SMILES code, e.g. with MarvinSketch (Section 2.3.1), a
software also used in this section. If there is no figure available in any publication, the
molecule needs to be skipped. The compound chloramphenicol from Table 3.27 can
be drawn as shown in Figure 3.34 or Figure 3.35. The appropriate SMILES patterns
are shown in the figure subscriptions. Searching PubChem44 with these SMILES
codes will lead to the same molecule with the ID 5959. Using the downloadable SDF
structure from PubChem, OpenBabel45 [102] produces the canonical SMILES pattern
“OC[C@H]([C@@H](c1ccc(cc1)N(=O)=O)O)NC(=O)C(Cl)Cl” with the command
“babel -isdf ’infile’.sdf -ocan ’outfile’.smi -b”. PubChem does not take care of stereo-
chemistry. Therefore, Dr. Xavier Lucas46 generated canonical SMILES codes for all
drawn molecules by using a Galaxy pipeline47 from the ChemicalToolBoX [103] and
by visual inspection. The output of his mapping from synonyms to unique identifiers
is a list of all curated PubMed IDs, chemical synonyms, PubChem IDs (if available),
and canonical SMILES, exemplarily shown in Table 3.33.
42https://pubchem.ncbi.nlm.nih.gov
43https://pubchem.ncbi.nlm.nih.gov/compound/5959
44https://pubchem.ncbi.nlm.nih.gov/search/search.cgi#
45http://openbabel.org/wiki/Main_Page
46http://www.pharmaceutical-bioinformatics.de/main/members
47https://wiki.galaxyproject.org/Admin/GetGalaxy

105

https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov/compound/5959
https://pubchem.ncbi.nlm.nih.gov/search/search.cgi#
http://openbabel.org/wiki/Main_Page
http://www.pharmaceutical-bioinformatics.de/main/members
https://wiki.galaxyproject.org/Admin/GetGalaxy

Chapter 3 Results

Figure 3.35.: Chloramphenicol with dative bonds. Refer-
ring to Figure 3.34, this picture was generated with the SMILES
OC[C@H]([C@@H](c1ccc(cc1)N(=O)=O)O)NC(=O)C(Cl)Cl. The Open-
Babel option “-b” for enabling dative bonds was used. Therefore, the nitro group
differs in comparision to Figure 3.35.

Table 3.33.: Part of the molecules table with canonical SMILES. Synonyms
only differ in a lowercase and uppercase letter. In general, database entries will
contain several different synonyms for the same molecule.

PubMed ID Synonym PubChem ID Canonical SMILES
23659856 chloramphenicol 5959 ...(c1ccc(cc1)N(=O)=O)O)...
25267678 Chloramphenicol 5959 ...(c1ccc(cc1)N(=O)=O)O)...
23143535 Chloramphenicol 5959 ...(c1ccc(cc1)N(=O)=O)O)...

3.4.3. Data Integration to StreptomeDB Back End

The new structures summarised as shown in Table 3.33 needed to be integrated
into the PostgreSQL database streptomedb_2013 and merged with the entities
in corscurator_2013. The StreptomeDB back end works with structure files in
mol format, stored in the PostgreSQL database via the plugin PGChem48. Each
mol file contains a single structure saved in SDF format, without additional meta
information. The development version was built with an older PGChem version49

for PostgreSQL 8.4. This database can be stored as a PostgreSQL dump and
reloaded to an empty database in PostgreSQL 9.4. SDF files can be generated from
SMILES files with the OpenBabel command “babel ’infile’.smi ’outfile’.sdf”. The
PubChem parser developed for the web service CIL [1] also needs the meta information

48https://github.com/ergo70/pgchem_tigress
49http://pgfoundry.org/projects/pgchem

106

https://github.com/ergo70/pgchem_tigress
http://pgfoundry.org/projects/pgchem

3.4 StreptomeDB

Figure 3.36.: StreptomeDB update workflow. From the summarised SMILES
file, the database phabidb_pubchem_schema with the structures can be built and
synchronised. Subsequently, the synonyms in stretomedb_2013 can be updated.
After a semi-automatic update of organism synonyms, activitiy descriptions, and
pathway names, these entities can be joined with the references in an iterative
procedure until no more useful mappings can be performed. Activities and pathways
are saved in the same table with a different attribute_type_id value.

“><PUBCHEM_COMPOUND_CID” which can be added with string concatenation.
For structures without a PubChem ID, a negatively incrementing ID was generated
(not shown on the Web page). A third database phabidb_pubchem_schema was
built, containing all new structures and their PubChem synonyms50. This is the
starting point for the automatic update steps as shown in Figure 3.36. The new
50ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/Extras/CID-Synonym-filtered.gz

107

ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/Extras/CID-Synonym-filtered.gz

Chapter 3 Results

structures are uploaded to the streptomedb_2013 table web.compound with new
compound IDs and all given compound synonyms are synchronised. All entity
synonyms that could not be mapped automatically by the script import_data.py
have to be mapped in an iterative way.
In case of new entity synonyms, the curator Dennis Klementz51 was provided with a
list of already existing parent IDs for each of the three entities organism, activity,
and synthesis route. For the latter mentioned synonyms, a programme showed the
new text elements one by one to type in the appropriate parent ID or an ’n’ to skip
the example. Considering the organism names, regular expressions are used to map
part of a given synonym to existing strains in the database and to remove special
characters that possibly hinder this process. If the basic strain is already known,
the curator can commit the new strain and the parent ID of the base organism
will be added automatically. If the synonym shows a completely new strain, it will
be entered as such with the overall parent Streptomyces. An example is shown in
Table 3.36, based on the queries in Table 3.34 and Table 3.35.

Table 3.34.: PostgreSQL query to select a compound ID. The compound ID
of the molecule chloramphenicol can be queried by searching the compound table
for the PubChem Compound ID 5959.

SQL command
SELECT compound_id
FROM web.compound
WHERE cid = 5959;
- - OUTPUT: 15

This update procedure resulted in the following new numbers of entities. The old
number of 2,429 molecules increased by around 1,600 structures to 4,041 molecules.
From the new data set, 853 molecules were drawn, which means they do not contain
a PubChem ID. From 2,172 newly analysed articles, around 1,000 articles contained
at least a mappable compound structure and a source organism. Furthermore, 1,732
new activity-compound relationships, 458 new pathway-compound relationships, and
599 new organisms were curated52. In the first version of StreptomeDB, around
10,000 abstracts were curated and 2,429 molecules could be found in around 3,700
abstracts.

51http://www.pharmaceutical-bioinformatics.de/main/members
52http://132.230.56.145/streptomedb2/statistics

108

http://www.pharmaceutical-bioinformatics.de/main/members
http://132.230.56.145/streptomedb2/statistics

3.4 StreptomeDB

Table 3.35.: PostgreSQL query to select organism names and IDs.
The query in Table 3.34 returned the compound_id for the molecule chlor-
amphenicol. The following query selects all organism IDs from the table
web.compound_organism to find all organism names in the table web.organism
and their IDs. The result is shown in Table 3.36.

SQL command
SELECT *
FROM web.organism
WHERE organism_id ;
IN (
SELECT organism_id
FROM web.compound_organism
WHERE compound_id = 15)
ORDER BY organism_name ASC;

Table 3.36.: Results for the query in Table 3.35. Every basic strain has
got the parent Streptomyces with the organism_id 15. It can be seen that
the Streptomyces venezuelae sub strains have the parent ID 97. The parent of
Streptomyces venezuelae ISP 5230-SVM1 is the strain Streptomyces venezuelae
ISP 5230.

organism_id organism_name parent_organism_id
15 Streptomyces
270 Streptomyces 3022a 15
62 Streptomyces coelicolor 15
1727 Streptomyces M-17633 15
137 Streptomyces phaeochromogenes 15
97 Streptomyces venezuelae 15
2084 Streptomyces venezuelae ATCC 10712 97
1372 Streptomyces venezuelae ATCC 15068 97
179 Streptomyces venezuelae ISP 5230 97
2639 Streptomyces venezuelae ISP 5230-SVM1 179

3.4.4. StreptomeDB Web Page

Information as provided in this section is summarised and displayed as shown in
Figure 3.37, using the example of chloramphenicol53. The user receives details about
the molecule itself, but is also able to compare these details with other molecules,
e.g. by selecting other structures with the same scaffold. The new features of the
StreptomeDB front end will be described in detail in the update publication [42].

53http://132.230.56.145/streptomedb2/get_drugcard/15

109

http://132.230.56.145/streptomedb2/get_drugcard/15

Chapter 3 Results

Figure 3.37.: Chloramphenicol in StreptomeDB. Several compound activities,
two synthesis routes, and a link to the gene cluster are provided. The most similar
molecule in the database is 1-deoxychloramphenicol with a Tanimoto coefficient
of 92.6 %. Another part of the compound view not shown in this figure refers to
molecular descriptors, such as number of atoms (#Atoms) and the topological polar
surface area (TPSA). Furthermore, the canonical SMILES pattern is provided.
This molecule only contains the benzene ring as a level-0 scaffold, which can be
combined with other scaffolds by clicking the displayed structure.

110

4. Discussion and Future Prospects

4.1. Development and Usability of PubMed2Go

The selection of Python, PostgreSQL, and Xapian is based on the requirement to
provide a framework that is easy to install, independent from a Web service, and
usable with only a few lines of code. Using another type of database management
system such as Oracle or MySQL with the object-relational mapping approach is
possible (Section 2.1.2), as well as using the Xapian interfaces for Java or C++
instead of Python. PubMed2Go enables the user to directly create individual queries
and to extend this framework with sophisticated approaches from natural language
processing such as part-of-speech tagging [85] and named entity recognition with
BioC [81, 82] or dependency parsing [9]. The PubMed2Go database can be used
as a centralised repository, which is updated weekly. This also offers the possibility
to monitor changes in a data set over time by executing a workflow repeatedly.
Furthermore, PubMed2Go can be extended to use BioC XML PMC documents1.
The combination of a relational database and a full text index can also be integrated
in a web server, as shown in previous publications [1, 2, 29]. In these projects, the
PubMed2Go framework was extended with named entity recognition for gene or
protein names from UniProt, PubChem synonyms for small molecules, and organism
names. The web servers are based on the combination of the object-relational
mapping approach from PubMed2Go with a Django interface in Python. This
emphasises as well that PubMed2Go can be used in a modular way depending on the
user’s needs. Therefore, PubMed2Go can be helpful in future BioCreative challenges2,
too.

The mapping of chemical structures and protein sequences to synonyms of biomolecules
enables the possibility of linking knowledge from publications to specific models built

1ftp://ftp.ncbi.nlm.nih.gov/pub/wilbur/BioC-PMC
2http://www.biocreative.org/events/biocreative-v/CFP

111

ftp://ftp.ncbi.nlm.nih.gov/pub/wilbur/BioC-PMC
http://www.biocreative.org/events/biocreative-v/CFP

Chapter 4 Discussion and Future Prospects

on data sets of biomolecules and vice versa. Synonyms can be redundant. So far,
curators are needed for high quality data sets as in the case of StreptomeDB. Models
improved a lot, e.g. comparing Whatizit and GeneTUKit [43]. With PubMed2Go,
one more step into the process of bridging the gap between a large amount of data
in PubMed and plenty of available recognition and relation extraction approaches
has been made. The software library offers a ready-to-start solution for developing
large-scale text mining applications by generating an in-house database from PubMed
articles. The resulting data environment supports complex relational database queries
and fast full text search. The BioC interface and the possibility to use Docker provide
interoperability to apply NLP approaches in different programming languages and
to run queries on several operation systems without much programming effort. All
software and included methods are open-source and free to be modified for further
refinements and improvements within the community.

4.2. Model Integration of Functional Relationships in
Texts to the Web

In the Tikk et al. benchmark of different kernel methods on different protein-protein
interaction corpora, the F1 score ranged from 54.5 % to 74.5 % in case of the shallow
linguistic kernel and from 56.2 to 78.1 % in case of the all-paths graph kernel, without
notable drops in specificity or recall [9]. Segura-Bedmar et al. showed recall values
from 69.6 % to 78.6 % and precision values from 42.4 % to 52.1 % on a newly created
drug-drug interaction corpus [12]. The resulting F1 scores were in a range from
54.9 % to 59.6 % for the same shallow lingustic kernel parameter selections as in
this thesis. The drug-drug interaction corpus was automatically built from a set
of 579 documents. Subsequently, it was annotated with drug-drug interactions by
a researcher with pharmaceutical background. Similar to the compound-protein
interaction corpus in this thesis, Segura-Bedmar et al. did not determine an explicit
type of interaction. In case of the protein-protein interaction corpora, part of the
data sets is based on affinity values and directed interactions [54].

It is important to know the baseline of the co-occurrences in the corpus, which is
defined as the number of positive examples diveded by all available instances. This is
one main criterion to select or decline machine learning approaches, because the F1

score can be calculated for the concept of co-occurrences with this number (precision)

112

4.2 Model Integration of Functional Relationships in Texts to the Web

and a recall of 100 % (Section 3.2.2.3). In case of the drug-drug interaction corpus,
only 10.3 % of all 30,757 candidate interactions were annotated as positive examples.
With this precision, an F1 score of 18.6 % is calculated. While the co-occurrences
approach on the compound-protein interaction corpus shows an F1 score of 76.4 % on
data set 1 (with interaction verbs) and 70.5 % on data set 2 (without an interaction
verb enclosed), as shown in Table 3.3, the F1 scores in the five protein-protein
interaction corpora are 30.1 %, 41.7 %, 55.4 %, 57.6 %, and 70.3 % [9]. Although it
is not reasonable to select an approach with a low precision and a recall of 100 %,
that always classifies functional relations as positives by definition, it is important to
compare these F1 scores with the ones of the machine learning approaches.

The shallow linguistic models showed different results for the models choosing so called
GENIA chunk tags and models considering all words in a sentence with punctuation.
These chunks represent a possibility to connect terms to short phrases, e.g. “NF-
kappaB activation” or “the anti-apoptotic effect” (Figure 3.19 in Section 3.2.5).

The parameters window size 3 and the n-gram value 3 for shallow linguistic kernel
resulted in the same F1 score as in the co-occurrences approach on data set 1 (0.3 %
better model with chunking). Therefore, the shallow linguistic kernel approach
reached a clearly better precision than the co-occurrences, and a good recall of
81.9 % using chunk tags and 78.6 % without. Therefore, less of the actual true
interactions are recognised by the model with the lower recall, but its specificity and
precision are a few percent higher than in the other model. The precision reflects
how many of the positively predicted values are real interactions. The specificity
describes how many of the negative examples were predicted as no interactions.
Therefore, the model using all words of a sentence and punctuation with the lower
sensitivity can be preferred over the model using chunks. Unfortunately, the AUC
values cannot be provided in this version to make a clear model selection. The
reason is that the standard implementation of LIBSVM does not return a probability
score [64]. This can be solved easily by using the modified Tikk et al. implementation.
Furthermore, the Tikk et al. pipeline makes use of document-level cross-validation,
which was not encoded for the shallow linguistic kernel preprocessing within this
thesis (Section 2.2.2).

Considering the shallow linguistic kernel results on data set 2 in detail, the decision
whether to take the model with or without chunking is obvious, because the prediction
including all words of a sentence and punctuation shows a better performance for

113

Chapter 4 Discussion and Future Prospects

all evaluation parameters. This fits to the statement of Giuliano et al. that their
results turned out to be worse in case of excluding stop words and punctuation [63].
Comparing this model to the co-occurrences approach, the precision is around 23 %
higher and the F1 score around 9 %. One main difference between the shallow
linguistic kernel results on data set 1 and 2 is that the specificity on the data set
without interaction verbs is around 15 % higher than in the data set containing
interaction verbs.

Considering all evaluation parameters, the shallow best linguistic model on data set
2 without chunking performed up to around 2 % better than the all-paths graph
model with the regularisation parameter value 2. In general, the high co-occurrence
baseline and the comparably low specificity values on data set 1 for both kernels
indicate that sentences with an interaction verb are more difficult to classify than
sentences without this structure. On data set 1, the all-paths graph kernel reaches
an around 6 % higher sensitivity and 2 % better precision value than the shallow
linguistic kernel, resulting in a 4 % higher F1 score. Therefore, the all-paths graph
kernel approach is able to make use of the interaction verbs as a deep parser. One
reason for the lower sensitivity of the shallow linguistic model on data set 1 could be
that it is restricted to a word neighbourhood of up to three words around the target.
Therefore, distant relationships in sentences with different and not directly dependent
substructures are more difficult to predict for this kernel. Nevertheless, the all-paths
graph kernel’s specificity of 56.3 % is only 0.2 % higher than the one of the shallow
linguistic kernel model without chunking. The higher number of positive examples
in data set 1 also represents a possible reason for the relatively high sensitivity, but
low specificity in both models.

Segura-Bedmar et al. stated that a higher value of n-gram led to a higher precision
and a lower recall. In contrast, the window size parameter did not show a visible
effect within the different results. In case of classifying functional relationships
between compounds and proteins, the window size also does not seem to have a
strong influence on the performance, although in general the best results are achieved
with both parameters set to the value 3. Except for the data set 1 model without
chunking, the precision even increases slightly. In the results part, it was already
mentioned that the lower n-gram values lead to a higher specificity on the compound-
protein interaction corpus, but this finding cannot be compared with the drug-drug
interaction corpus, because this information is not provided in the article. One reason
why changing the window size did not really show an influence on the classifier’s

114

4.2 Model Integration of Functional Relationships in Texts to the Web

performance is that this parameter was especially used to provide information about
the direction of a relationship [63].

The AUC values within both all-path graphs kernel models for all four regularisation
parameter selections do not differ by more than 0.5 %. A higher regularisation
parameter generally represents a lower risk of overfitting (Section 2.2.4.5), but in
this case, no clear conclusion can be drawn for the selection of this value. The
all-paths graph kernel implementation of Airola et al. optimises the threshold
for the highest F1 score. In general, this might result in a rather high threshold
selection, which is reasonable for the classification of functional relationships in
texts (Section 2.2.1.5). However, the F1 score is also known to be sensitive for class
skew [9, 54]. Therefore, the optimal threshold should be further evaluated by directly
comparing the evaluation parameters of F1 score and accuracy.

The Tikk et al. benchmark also showed, that the best performing kernel methods
cannot be considered as significantly better than a simple rule-based approach as
implemented in RelEx [104]. This is an important finding, because a rule-based
approach does not need any extensive training and no parameter tuning as well. As
future prospects, this approach can also be compared to the applied kernel methods
on the compound-protein interaction data set.

To conclude, it is important to compare the runtime of the models and the proportion
of sentences with and without an interaction verb structure in PubMed. The former
topic was already mentioned in the results part with the outcome that the all-paths
graph kernel is up to four times slower than the shallow linguistic approach. These
runtime measurements refer to a 10-fold cross-validation model. The limiting step is
not the prediction, but the preprocessing of the sentence structures. The question of
how many sentences exist in PubMed that contain the verb structure defined here,
cannot yet be answered. This number will be computed for the planned publication of
the evaluated models. The assumption is that the number of sentences without such
a structure is much higher, because the original size of data set 1 was 2,964, reduced
to 1,259, and in case of data set 2, there were 5,365 sentences, reduced to 1,494. The
reason for this rather large decrease in the amount of used sentences is that there were
so many false positive protein examples from the Whatizit pipeline (Section 3.2.2.1
and Section 3.2.2.2). Therefore, the original number of sentences in data set 2 was
twice of the amount in data set 1, but the final number of sentences turned out to be
quite similar. It is not possible to estimate the number of false positive examples in

115

Chapter 4 Discussion and Future Prospects

the complete PubMed data set, but it is reasonable to assume a more reliable number
from the new prolific version. In the new database version, GeneTUKit will be used
to identify gene and protein synonyms in an organism-specific way. The tool reached
a performance among the best results in the BioCreative III gene normalization
task [43]. A prototype implementation for the prolific update already exists, making
use of the PubMed2Go infrastructure. This also means, that the applied compound
named entity recognition approach, which is based on the Hettne-Rules [49], has to
be evaluated, e.g. on the SCAI corpus3. Furthermore, the approach in prolific has
to be compared to other chemical compound named entity recognition approaches,
e.g. ChemSpot [105]. During the annotation process of data set 1 and data set
2, several words were identified which usually lead to a false positive hit, when
following compound names. An example of such a blacklist word was already shown
in Figure 3.15 in Section 3.2.3.3.

Considering all results, different scenarios are possible for an integration of the
prediction models to the Web service prolific. It is possible to use the all-paths graph
kernel for sentences as they occur in data set 1 and the shallow linguistic kernel for
sentences as they are contained in data set 2. An alternative is to create a stratified
data set from data set 1 and data set 2, sampling the ratio of sentences with and
without interaction verb, as they appear in PubMed. This model can be further
evaluated on a newly selected data set from PubMed of another 1,000 sentences,
also consisting of the structure with and without interaction verb in a stratified way.
The performance of the best classifier can be the criterion to apply its generalised
model to the whole PubMed under consideration of the complete runtime including
all preprocessing steps.

Cross-validation results with an F1 score of around 80 % represent a good performance
within the research area of text mining. Nevertheless, the new model to predict
functional relationships between compounds and proteins should be considered as
a filter option in the prolific Web service to significantly decrease the amount of
sentences, a user has to read through after sending a specific query. The aim is
to simplify and speed up the selection of correct functional interactions. Another
question that can be answered with this approach is whether a user can directly
search for rare compound-protein relationships that have a low frequency. This

3http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/
research-development/information-extraction-semantic-text-analysis/
named-entity-recognition/chem-corpora.html

116

http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/research-development/information-extraction-semantic-text-analysis/named-entity-recognition/chem-corpora.html
http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/research-development/information-extraction-semantic-text-analysis/named-entity-recognition/chem-corpora.html
http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/research-development/information-extraction-semantic-text-analysis/named-entity-recognition/chem-corpora.html

4.3 Towards Understanding Toxicity Prediction

problem cannot be solved with the approach of co-occurrences. The issue can be
refined by using the BioInfer relationship ontology from Pyysalo et al. [106]. In
connection to this, it can be evaluated how many verbs of each type have been
used in data set 1, data set 2, and the overall PubMed data set. In either case,
the selection of the model to be implemented has to be made between the protein-
protein interaction benchmark implementation, the shallow linguistic kernel pipeline
implementation, and a new pipeline implementation from scratch, e.g. with the BioC
interchange format. Within the project time, the work on the all-paths graph kernel
pipeline started almost a year after the code refinements of the shallow linguistic
kernel pipeline. This is the reason for the quite different implementation of the
preprocessing steps. In general, the selected procedure of training a model with the
shallow linguistic and all-paths graph kernel can also be tested on annotated data
sets with other types of relationships, e.g. gene-disease relations.

Although the performance of machine learning models in text mining approaches
is still worse than the ones in other research areas, such as toxicity prediction, the
application of sophisticated algorithms like kernel methods can be considered as
beneficial for users from the life sciences. The approach presented herein is restricted
to single sentences. It is known, that language can build complex structures, but
only the simple cases are easy to recognise. At the moment, prediction models are
strongly dependent on accurate training data set annotation and test data curation,
but there is a continuously growing support for large-scale text mining and natural
language processing applications within the community. A rather new approach in
this research direction is called distant supervision [107]. It is based on annotating
only part of a huge data set, learning graph-based patterns, using an ontology, and
applying the patterns to the rest of unstructured data with machine learning. Other
approaches to support the process of text processing and analysis are clustering,
especially using topic models [108], or crowdsourcing [109]. Possibilities are manifold.
The task of enhancing natural language processing models and applying them to the
vast amount of available data is a challenging, but feasible aim.

4.3. Towards Understanding Toxicity Prediction

A prediction accuracy of around 80-90 % is a very good result, but it still cannot be
used to give advice for the consumption of a possibly very toxic substance, even in a

117

Chapter 4 Discussion and Future Prospects

low dose. Therefore, in silico approaches will not replace animal tests, but they can
be used to generate warnings in the process of drug development or the research area
of ecology in an early stage to save animal lives. The AUC value of 97.1 % for the
very toxic/non-toxic model of the random forest classifier is outstanding. One reason
why the other evaluation parameters of this model are in a range of around 91 %
to 93 % is probably the standard decision threshold of 0.5 to separate two classes.
Given the distribution of probability scores with the AUC, this threshold can be
optimised for a higher accuracy, as explained in Section 2.2.1.5. Another important
step is to further evaluate the set of descriptors that was chosen within the random
trees of this classifier and to compare it with the BestFirst selected descriptors. The
random forest classifier also performed best on the other three models with 324
descriptors, reaching an AUC of 87.7 % on the toxic/non-toxic model, 93.3 % on the
very toxic/toxic model, and 94.4 % on the three-class model.

Several technical alterations in the models will possibly lead to refined results. First
of all, none of the machine learning algorithm was varied in the range of specific
parameters. Furthermore, the selection of descriptors with the filter method BestFirst
for the data sets with 324 descriptors led to better results in case of the artificial
neural network and support vector machine classifiers, but to worse results in the
case of decision trees and random forests. The 10 descriptors used in this thesis were
selected by a forward selection (Section 2.2.7.1) with an artificial neural network
without cross-validation [20]. This approach is referred to as a wrapper method,
because the selection of descriptors depends on the performance of the classifier
(Section 2.2.7). The procedure should be repeated with the settings in this thesis and
combined with a backward elimination (Section 2.2.7.1). This procedure counteracts
the problem of local minima. The BestFirst filter tries to find the best descriptor
set for all classes (Section 2.2.7). Therefore, the classifiers’ performance should
be evaluated with the BestFirst feature set of the three-class data set, applied to
all two-class models. Another question is how similar the compounds in a cross-
validated training and test data set are. One approach to ensure diversity is to
cross out every molecule from a pair of most similar chemical substances until a
certain threshold. Machine learning algorithms should be trained with a minimum of
instances that maximally represent the different features in the data set. An approach
to randomise the selection of training instances is bootstrapping, directly used
within the algorithm of random forests (Section 2.2.5.2). The problem of selecting
descriptors with filter and wrapper methods will probably change by extending and

118

4.3 Towards Understanding Toxicity Prediction

changing the different toxicity classes. More descriptors need to be generated, e.g.
with RDKit4 or the Chemistry Development Kit5 (CDK). The features used in this
thesis were not normalised, because the range of physico-chemical descriptor values
did not show large divergences. Using a principal component analysis as shown
in Figure 3.32 did not lead to a clear class separation in the scatter plot, but this
might change with different descriptors. Normalisation will also have an effect on
the selection of principal components. A rather different approach is to transform
the classification problem into a regression problem [25]. The QikProp descriptors
also led to promising results, but a further evaluation requires the fixing of technical
problems in the feature generation process for several substances. An approach
different to the selection of functional group and physico-chemical descriptors is
the consideration of the topological information about a molecule. This includes
structural features from 2D fingerprints [110] and a range of other descriptors, e.g.
topological pharmacophore (CATS) descriptors6 or Molecular Operating Environment
(MOE) descriptors7 [111, 112, 113]. Furthermore, self-organising maps can be used
to learn a structurally active pattern and display it in 3D [114, 115]. With these
descriptor sets, not only the information about the existence of a functional group is
considered, but also its position and its neighbourhood within the molecule. These
changes probably lead to the identification of new patterns from different descriptors
to be used for classification. Therefore, extensive testing of new models is needed to
elucidate the recent findings.

Although the presented results are promising, it has to be mentioned that the
prediction model is strongly simplified. The outcome needs to be discussed in a
follow-up project meeting with toxicology experts to find explanations for the findings.
The BestFirst selection identified the carboxyl group as the overlapping descriptor in
all models, considering the data sets with 324 descriptors and the QikProp descriptors.
A rather old publication from 1892 states that if an oxygen satured carboxylic acid
group is introduced to a toxic, aromatic substance, it will be relatively less toxic due
to the ability of not being reducible in the organism [20, 51, 116]. Furthermore, the
10 selected descriptors from the forward selection [20], shown in Section 3.3.3.2, are
polar functional groups. Xenobiotics are defined as foreign substances or molecules
in an unusual high concentration in the organism. It is known, that lipophilic

4https://github.com/rdkit
5https://github.com/cdk
6http://gecco.org.chemie.uni-frankfurt.de/cats_light/index.html
7https://www.chemcomp.com/MOE-Medicinal_Chemistry_Applications.htm

119

https://github.com/rdkit
https://github.com/cdk
http://gecco.org.chemie.uni-frankfurt.de/cats_light/index.html
https://www.chemcomp.com/MOE-Medicinal_Chemistry_Applications.htm

Chapter 4 Discussion and Future Prospects

xenobiotics tend to be less toxic after a Phase I reaction with the Cytochrome P450
enzyme system (CYPs) mainly provided by the liver. In a Phase I reaction, e.g.
a hydroxyl (-OH) can be added to a molecule such that it becomes more water-
soluble [117]. Therefore, the question arises whether the descriptors found in the very
toxic/non-toxic data set are actually encoding for toxicity or non-toxicity. A possible
explanation is that substances with polar functional groups can be classified easier as
non-toxic because of renal excretion. There are effects described in ChemIDPlus for
certain substances, but these toxicological endpoints have not yet been considered.
Another approach is to directly use software predictions of how the molecule is
metabolised by CYPs, e.g. with SMARTCyp [118]. This might lead to a clarification
of toxic effects by experts. The TOXNET search system8 can be useful in this
process, too. TOXNET covers a range of literature and structure repositories related
to toxicology, e.g. HSDB9. Finally, this question leads to the requirement of recurrent
collaborations with chemists and pharmacists to interconnect the different working
fields and data sources in life sciences. Therefore, it is especially reasonable to aim
for the integration of the developed models to the OpenTox community10.

4.4. A Compound-centralised View on
Streptomycetes

The process of manual text annotation and assigning of structures has led to a
considerable amount of newly structured information about Streptomyces strains
and sub strains. Nevertheless, this process can be error-prone. The only possibility
to keep a good quality in the database is to turn this procedure into a peer-review
process. All computationally supporting steps are provided within this thesis.

The recognition of chemical structures in publications, e.g. with the Open-Source
Chemistry Analysis Routines software (OSCAR) [119], is not yet on a level to be used
in a fully automated way. Therefore, this approach was not used in StreptomeDB.
Furthermore, the results of the update pipeline showed that the outcome of reading
the paper is much higher than of the procedure used in the past, focussing on
abstract texts and looking only partially for information in the full texts (if available).

8http://toxnet.nlm.nih.gov
9http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm

10http://www.opentox.org

120

http://toxnet.nlm.nih.gov
http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
http://www.opentox.org

4.4 A Compound-centralised View on Streptomycetes

Considering the first version of StreptomeDB, there are around 5,000 PubMed IDs,
which have not yet been curated. Another 5,000 PubMed IDs were not selected
in this first version, because their PubMed database entries did not contain an
abstract. On average, every second full text contained at least a source organism
and a chemical compound. In the database version from 2013, this ratio was slightly
more than one third. Currently, it can be assumed that up to 1,000 new articles
need to be curated per year, based on a search for “Streptomyces” in PubMed with
the restriction of publications from 2014. Furthermore, it can happen that PubMed
IDs change over time. In the local database, they are still available, but in PubMed
these articles have to be searched via title, not via PubMed ID.

Every new update data set can be processed with the pipeline shown in Figure 3.36,
if there is a summarised SMILES file containing all new synonyms and references.
Despite the supporting usage of ChemicalToolBoX, the task of judging the uniqueness
of a molecule’s structure and its mapping to a canonical SMILES pattern will probably
be realised by experts with a chemical or pharmaceutical background. Every curator
can check whether a possibly new molecule is already in the database by searching the
canonical SMILES pattern in a simple text file with all 4041 old and new molecules
contained in the recent version of StreptomeDB. The results show, that many new
structures can be found by carefully reading all full texts matched by the abstract
search, but this process is also much more time-consuming than only considering
abstracts.

The new features on the StreptomeDB Web page represent a completely new data
repository about streptomycetes. Users with a chemical or pharmacological back-
ground can use the scaffold search system to group molecules based on different levels
of ring systems. Biologically interested researchers can identify Streptomyces strains
in relation to a phylogenetic tree of all so far curated organisms that could be mapped
to a genome. This information can be connected to the available gene clusters linked
in StreptomeDB. A detailed discussion will be found in the update publication of
StreptomeDB [42]. The process of further developments will be community-driven,
which means that the user should actively propose new ideas for features to be
implemented. Furthermore, it will be interesting to see how scientists make use
of this project. Hagan et al. took a subset of compounds from StreptomeDB and
several other repositories to compare their similarity to known metabolites from
the community reconstruction of the human metabolic network (Recon2 [120]) [121].
Lucas et al. collected more than 68 million unique molecules and studied there

121

Chapter 4 Discussion and Future Prospects

physico-chemical properties, stating which compounds are natural products-like,
fragment-like, inhibitors of protein-protein interactions like, and drug-like [122].
StreptomeDB metabolites were also part of this analysis. F. Ntie-Kang investigated
the drug-likeness of all StreptomeDB compounds with Lipinski’s rule of five [123]
and predicted their absorption, distribution, metabolism, elimination, and toxicity
(ADMET) with physico-chemical properties and molecular descriptors [124]. Further
scientific findings will follow by studying these versatile organisms within different
life sciences.

4.5. Conclusion

This thesis shows that the combination of methods from text mining, cheminformatics,
and machine learning with curation and annotation leads to reasonable applications
and findings. Nevertheless, this progress can still be considered to be in an early
stage. PubMed2Go can be considered as the basic element in this thesis, because it
generates the necessary infrastructure to connect the large amount of data available in
PubMed to the research area of text mining, including machine learning approaches
and cheminformatics methods. All ongoing parts in this thesis are related to small
molecules. The part of the StreptomeDB project which is described here covers the
annotation and synchronisation of curated data sets. The toxicity prediction project
successfully investigates high-dimensional representations of chemical compounds
with molecular descriptors, based on reliable data, which was also extracted from
literature by scientists. These dose-related models can be further evaluated and
applied to other data sets, e.g. the natural compounds annotated in Streptomyces
strains. The prediction of functional relationships between small molecules and
proteins can be used to support the completion of metabolic networks. Considering
the metabolites in StreptomeDB, this approach will find the proteins mainly related
to the identified natural products. The presented results and ideas show that there
is a need for further interconnection of the research areas of pharmacy, chemistry,
molecular biology, and computer science. It is the task of computer scientists to
process huge amounts of data in a manageable time, to incorporate new technologies,
and to take care for the users’ needs. At the same time, computational findings need
to be considered and evaluated regularly by specialists from the life science areas.
Thus, research will make large progress in the near future.

122

A. Appendix

A.1. Toxicity-related BestFirst Descriptor Overlaps

Figure A.1.: BestFirst selection for the data sets with 324 descriptors [51].
The figure is divided into four models, namely three two-class models and one three-
class model. The two-class models are abbreviated with t_nt for toxic/non-toxic,
vt_nt for very toxic/non-toxic, and vt_t for very toxic/toxic. The descriptors
contained in one or more class models are shown directly within the circles or with
arrows. The descriptor carboxylic acid is contained in all models.

123

Chapter A Appendix

Figure A.2.: BestFirst selection for the data sets with QikProp descriptors
[51]. The figure is divided into four models, namely three two-class models and one
three-class model. The two-class models are abbreviated with t_nt for toxic/non-
toxic, vt_nt for very toxic/non-toxic, and vt_t for very toxic/toxic. The descriptors
contained in one or more class models are shown directly within the circles or with
arrows. The descriptors #acid and IP(eV) are contained in all models.

124

A.2 OpenBabel Descriptors

A.2. OpenBabel Descriptors

Figure A.3.: OpenBabel descriptors 1/4. First of four parts showing OpenBabel
descriptors selected by BestFirst from the the overall amount of 324 descriptors.

Figure A.4.: OpenBabel descriptors 2/4. Second of four parts showing Best-
First selected OpenBabel descriptors. LogP is one of the two selected physico-
chemical properties beside all the SMARTS patterns.

125

Chapter A Appendix

Figure A.5.: OpenBabel descriptors 3/4. Third of four parts showing Open-
Babel descriptors based on the BestFirst search.

Figure A.6.: OpenBabel descriptors 4/4. Remaining part showing BestFirst
selected OpenBabel descriptors. TPSA represents the second BestFirst selected
physico-chemical property.

All SMARTS patterns can be further evaluated in OpenBabel and with the SMARTSviewer
as described in Section 2.3.2.

126

A.3 QikProp Descriptors

A.3. QikProp Descriptors

All ranges presented within the QikProp descriptor set are related to what was found
in 95 % of all known drugs (Section 3.3). However, the data set, this investigation
is based on, is not further refined1.

Figure A.7.: QikProp descriptors 1/3. First of three parts showing QikProp
descriptors selected by BestFirst from the the overall amount of 51 descriptors.

Figure A.8.: QikProp descriptors 2/3. This descriptor assigns metabolic reac-
tions and functions to a given molecule.

1http://helixweb.nih.gov/schrodinger-2013.3-docs/qikprop/qikprop_user_manual.pdf

127

http://helixweb.nih.gov/schrodinger-2013.3-docs/qikprop/qikprop_user_manual.pdf

Chapter A Appendix

Figure A.9.: QikProp descriptors 3/3. Last of three parts showing BestFirst
selected QikProp descriptors.

128

A.4 WEKA Toxicity Decision Tree

A.4. WEKA Toxicity Decision Tree

Figure A.10.: Three-class decision tree J4.8 based on 10 descriptors [51].
In contrast to Figure 3.31, this is the complete decision tree based on 10 descriptors.

129

Bibliography

[1] B.A. Grüning, C. Senger, et al. Compounds In Literature (CIL): screening for
compounds and relatives in PubMed. Bioinformatics, 27, 2011.

[2] C. Senger, B.A. Grüning, et al. Mining and evaluation of molecular relationships
in literature. Bioinformatics, 28, 2012.

[3] E. Bolton et al. Chapter 12 - PubChem: Integrated Platform of Small Molecules
and Biological Activities. In Wheeler RA and Spellmeyer DC, Annual Reports
in Computational Chemistry, Oxford, 2008.

[4] UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids
Res, 43, 2015.

[5] S. Ekins. Computational Toxicology - Risk Assessment for Pharmacetical and
Environmental Chemicals. In Wiley Series on Technologies for the Pharmaceu-
tical Industry, 2007.

[6] S.F. Altschul et al. Basic local alignment search tool. J Mol Biol, 215, 1990.

[7] D. Rebholz-Schuhmann et al. Text processing through Web services: calling
Whatizit. Bioinformatics, 24, 2008.

[8] R. Khare et al. Accessing biomedical literature in the current information
landscape. In Biomedical Literature Mining, Springer Protocols, Methods Mol
Biol, 2014.

[9] D. Tikk et al. A comprehensive benchmark of kernel methods to extract
protein-protein interactions from literature. PLoS Comput Biol, 6, 2011.

[10] M. Kuhn et al. STITCH 4: integration of protein-chemical interactions with
user data. Nucleic Acids Res, 42, 2014.

[11] L. Tari et al. Discovering drug-drug interactions: a text-mining and reasoning
approach based on properties of drug metabolism. Bioinformatics, 26, 2010.

131

Bibliography

[12] I. Segura-Bedmar et al. Using a shallow linguistic kernel for drug-drug interac-
tion extraction. J Biomed Inform, 44, 2011.

[13] F. Rinaldi et al. OntoGene web services for biomedical text mining. BMC
Bioinformatics, 15, 2014.

[14] Gene Ontology Consortium. Gene Ontology Consortium: going forward.
Nucleic Acids Res, 43, 2015.

[15] R. Merkel. Bioinformatik: Grundlagen, Algorithmen, Anwendungen. Wiley-
VCH, 2015.

[16] Bickerton G.R. et al. Quantifying the chemical beauty of drugs. Nat Chem, 4,
2012.

[17] L.J. Jensen et al. Literature mining for the biologist: from information retrieval
to biological discovery. Nat Rev Genet, 7, 2006.

[18] J.R. Anderson. Kognitive Psychologie. Spektrum Akademischer Verlag, 2. Aufl.,
1996.

[19] G. Schneider and K.-H. Baringhaus. Molecular Design, Concepts and Applica-
tions. Wiley-VCH, 2008.

[20] K. Döring. Implementation and application of machine learning approaches for
toxicity prediction. http://bioinformatics.charite.de/main/content/theses.php,
2009. Bachelor Thesis.

[21] D. Schuster et al. Why drugs fail - A study on side effects in new chemical
entities. Curr Pharm Des, 11, 2005.

[22] J. Drews. Die verspielte Zukunft, Wohin geht die Arzneimittelforschung?
Springer, 1998.

[23] H.-J. Böhm. Wirkstoffdesign. Spektrum Akademischer Verlag, 2002.

[24] G. Klebe. Wirkstoffdesign, Entwurf und Wirkung von Arzneistoffen. Spektrum
Akademischer Verlag, 2009.

[25] I.H. Witten et al. Data Mining: Practical Machine Learning Tools and Tech-
niques. In Morgan Kaufmann Publishers, Elsevier, 2011.

[26] C.P. Koch et al. Scrutinizing MHC-I Binding Peptides and Their Limits of
Variation. PLoS Comput Biol, 9, 2013.

132

Bibliography

[27] W.S. Sanders et al. Prediction of Cell Penetrating Peptides by Support Vector
Machines. PLoS Comput Biol, 7, 2011.

[28] S. Hayata et al. All-atom 3D structure prediction of transmembrane β-barrel
proteins from sequences. Proc Natl Acad Sci U S A, 112, 2015.

[29] X. Lucas, C. Senger, et al. StreptomeDB: a resource for natural compounds
isolated from Streptomyces species. Nucleic Acids Res, 41, 2013.

[30] M. Ventura et al. Genomics of Actinobacteria: tracing the evolutionary history
of an ancient phylum. Microbiol Mol Biol Rev, 71, 2007.

[31] D.A. Hopwood et al. Streptomyces in Nature and Medicine: The Antibiotic
Makers. Oxford Univ Pr, 2007.

[32] M.O. Griffin et al. StreptomeDB: a resource for natural compounds isolated
from Streptomyces species. Am J Physiol Cell Physiol, 299, 2007.

[33] J.R. Woodworth et al. Single-dose pharmacokinetics and antibacterial activity
of daptomycin, a new lipopeptide antibiotic, in healthy volunteers. Antimicrob
Agents Chemother, 36, 1992.

[34] N. Nathan et al. Ceftriaxone as effective as long-acting chloramphenicol in short-
course treatment of meningococcal meningitis during epidemics: a randomised
non-inferiority study. Lancet, 366, 2005.

[35] D. Jones et al. CONTROL OF GRAM-NEGATIVE BACTERIA IN EXPERI-
MENTAL ANIMALS BY STREPTOMYCIN. Science, 100, 1944.

[36] M.S. Butler and A.D. Buss. Natural products–the future scaffolds for novel
antibiotics? Biochem Pharmacol, 71, 2006.

[37] A. Kling et al. Antibiotics. Targeting DnaN for tuberculosis therapy using
novel griselimycins. Science, 348, 2015.

[38] M.S. Butler and A.D. Buss. The effects of some avermectins on bovine carbonic
anhydrase enzyme. J Enzyme Inhib Med Chem, 2015.

[39] E.I. Graziani. Recent advances in the chemistry, biosynthesis and pharmacology
of rapamycin analogs. Nat Prod Rep, 26, 2009.

[40] T. Bai et al. Operon for biosynthesis of lipstatin, the Beta-lactone inhibitor of
human pancreatic lipase. Appl Environ Microbiol, 80, 2014.

[41] D. Dhakal and J.K. Sohng. Commentary: Toward a new focus in antibiotic
and drug discovery from the Streptomyces arsenal. Front Microbiol, 6, 2015.

133

Bibliography

[42] D. Klementz, K. Döring, et al. StreptomeDB 2.0 - Centralized knowledge of
secondary metabolites produced by streptomycetes. Nucleic Acids Res, 2016.
Under submission.

[43] M. Huang et al. GeneTUKit: a software for document-level gene normalization.
Bioinformatics, 27, 2011.

[44] R. Leaman and G. Gonzalez. BANNER: an executable survey of advances in
biomedical named entity recognition. Pac Symp Biocomput, 2008.

[45] D Maglott et al. Entrez Gene: gene-centered information at NCBI. Nucleic
Acids Res, 35, 2007.

[46] B. Settles. ABNER: an open source tool for automatically tagging genes,
proteins and other entity names in text. Bioinformatics, 21, 2005.

[47] E. Abbasian. Extraction of Compound-Protein Interactions from
PubMed Using the All-Paths Graph Kernel. http://www.pharmaceutical-
bioinformatics.de/main/theses, 2015. Master Thesis.

[48] J. Hakenberg et al. The GNAT library for local and remote gene mention
normalization. Bioinformatics, 27, 2011.

[49] K.M Hettne et al. A dictionary to identify small molecules and drugs in free
text. Bioinformatics, 25, 2009.

[50] R. Kabilo et al. A realistic assessment of methods for extracting gene/protein
interactions from free text. BMC Bioinformatics, 10, 2009.

[51] L.M. Grüger. Identification of Molecular Descriptors for Toxicity Prediction of
Small Molecules. http://www.pharmaceutical-bioinformatics.de/main/theses,
2013. Bachelor Thesis.

[52] T. Fawcett. An introduction to ROC analysis. Pattern Recognit Lett, 27, 2006.

[53] B. Zadrozny and C. Elkan. Obtaining calibrated probability estimates from
decision trees and naive Bayesian classiers. In Proc. Eighteenth Internat. Conf.
on Machine Learning, 2001.

[54] A. Airola et al. All-paths graph kernel for protein-protein interaction extraction
with evaluation of cross-corpus learning. BMC Bioinformatics, 9, 2008.

[55] G. Görz. Handbuch der künstlichen Intelligenz. Oldenbourg Wissenschaftsverlag
GmbH, München, 4th edition, 2003.

134

Bibliography

[56] R. Bunescu and R. Mooney. Subsequence Kernels for Relation Extraction. In
Advances in Neural Information Processing Systems 18, MIT Press, 2006.

[57] T. Pahikkala et al. Graph Kernels versus Graph Representations: a Case
Study in Parse Ranking. Proceedings of the Fourth Workshop on Mining and
Learning with Graphs, 2006.

[58] R. Rojas. Neural Networks - A Systematic Introduction. Springer-Verlag,
Berlin, 2011.

[59] F. Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychol Rev, 65, 2008.

[60] S. Schneider et al. Peptide design by artificial neural networks and computer-
based evolutionary search. Proc Natl Acad Sci U S A, 95, 1998.

[61] R. Herbrich et al. Learning a Preference Relation in Information Retrieval. In
Proceedings Workshop Text Categorization and Machine Learning, International
Conference on Machine Learning, 1998.

[62] N. Christianini and J.S. Shawe-Taylor. An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge University
Press, 2000.

[63] C Giuliano et al. Exploiting Shallow Linguistic Information for Relation
Extraction from Biomedical Literature. In Proceedings of the 11th Conference
of the European Chapter of the Association for Computational Linguistics
(EACL 2006), 2006.

[64] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[65] T. Gärtner et al. On graph kernels: Hardness results and efficient alternatives.
In Learning Theory and Kernel Machines, Lecture Notes in Computer Science,
2777, 2003.

[66] R. Rifkin et al. Regularized Least-Squares Classification. Advances in Learning
Theory: Methods, Model and Applications NATO Science Series III: Computer
and Systems Sciences, 190, 2003.

[67] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

[68] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

135

Bibliography

[69] S. Aksoy and R.M. Haralick. Feature normalization and likelihood-based
similarity measures for image retrieval. Pattern Recognit Lett, 22, 2001.

[70] M. Hall. Feature Selection for Discrete and Numeric Class Machine Learning.
In Machine Learning. Proc. Seventeenth International conference on Machine
Learning, 2000.

[71] A. Hyvärinen et al. Natural Image Statistics - A probabilistic approach to early
computational vision. In Computational Imaging, Springer-Verlag, 2009.

[72] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7, 1936.

[73] J. Gasteiger and T. Engel. Chemoinformatics: A Textbook. In Wiley-VCH,
2003.

[74] F.-X. Reichl. Taschenatlas Toxikologie. Thieme, 2009.

[75] K. Döring et al. PubMed2Go: A Framework for Developing Text Mining
Applications. BMC Bioinformatics, 2015. Under submission.

[76] R. Rak et al. Processing biological literature with customizable Web services
supporting interoperable formats. Database (Oxford), 2003.

[77] D. Ferruci and A. Lally. UIMA: an architectural approach to unstructured
information processing in the corporate research environment. Nat. Lang. Eng,
10, 2004.

[78] H. Cunningham et al. Processing with Gate. Gateway Press, Murphys, CA.,
2011.

[79] D.C. Comeau et al. BioC: a minimalist approach to interoperability for
biomedical text processing. Database (Oxford), 2013.

[80] Y. Kano et al. U-Compare: share and compare text mining tools with UIMA.
Bioinformatics, 25, 2009.

[81] R. Khare et al. tmBioC: improving interoperability of text-mining tools with
BioC. Database (Oxford), 2014.

[82] C.-H. Wei et al. PubTator: a web-based text mining tool for assisting biocura-
tion. Nucleic Acids Res, 41, 2013.

[83] D.E. Oliver et al. Tools for loading MEDLINE into a local relational database.
BMC Bioinformatics, 5, 2004.

136

Bibliography

[84] D. Yoo et al. UNIT 9.7 PubSearch and PubFetch: a simple management system
for semiautomated retrieval and annotation of biological information from the
literature. In John Wiley & Sons, Inc., Curr Protoc Bioinformatics, 2006.

[85] D.C. Comeau et al. Natural language processing pipelines to annotate BioC
collections with an application to the NCBI disease corpus. Database (Oxford),
2014.

[86] F. Rinaldi and H. Marques. PyBioC: a Python implementation of the BioC
core. Proceedings of the Fourth BioCreative Challenge Evaluation Workshop, 1,
2013.

[87] D.C. Comeau et al. BioC interoperability track overview. Database (Oxford),
2014.

[88] I. Garrido-Laguna and M. Hidalgo. Pancreatic cancer: from state-of-the-art
treatments to promising novel therapies. Nat Rev Clin Oncol, 12, 2015.

[89] V. Law et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic
Acids Res, 2014.

[90] D.P. Ryan et al. Pancreatic adenocarcinoma. N Engl J Med, 371, 2014.

[91] G. Zimmerman et al. Small molecule inhibition of the KRAS-PDEδ interaction
impairs oncogenic KRAS signalling. Nature, 497, 2013.

[92] A. Spirin and L.A. Mirny. Protein complexes and functional modules in
molecular networks. Proc Natl Acad Sci U S A, 100, 2012.

[93] A. Gaulton et al. ChEMBL: a large-scale bioactivity database for drug discovery.
Nucleic Acids Res, 40, 2012.

[94] J. Saric et al. Extraction of regulatory gene/protein networks from Medline.
Bioinformatics, 22, 2013.

[95] A. Franceschini et al. STRING v9.1: protein-protein interaction networks,
with increased coverage and integration. Nucleic Acids Res, 41, 2013.

[96] F. Rinaldi et al. Using the OntoGene pipeline for the triage task of BioCreative
2012. Database (Oxford), 41, 2013.

[97] M. Becer. Automatisierte Identifizierung funktioneller Beziehungen zwis-
chen Kleinmolekülen und Proteinen in Texten. http://www.pharmaceutical-
bioinformatics.de/main/theses, 2014. Bachelor Thesis.

137

Bibliography

[98] Y. Tsuruoka and J. Tsujii. Bidirectional Inference with the Easiest-First
Strategy for Tagging Sequence Data. Proceedings of HLT/EMNLP 2005, 2005.

[99] N. Kang et al. Comparing and combining chunkers of biomedical text. J
Biomed Inform, 23, 2011.

[100] E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and MaxEnt
discriminative reranking. In Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics, 2005.

[101] M.F. Gatnik and A. Worth. Review of Software Tools for Toxicity Prediction.
JRC Scientific and Technical Reports, 2010.

[102] N.M. O’Bolyle et al. Open Babel: An open chemical toolbox. J Cheminform,
3, 2011.

[103] X. Lucas et al. ChemicalToolBoX and its application on the study of the drug
like and purchasable space. J Cheminform, 2014. Poster presentation.

[104] K. Fundel et al. RelEx–relation extraction using dependency parse trees.
Bioinformatics, 23, 2007.

[105] T. Rocktäschel et al. Discovering relations between indirectly connected
biomedical concepts. Bioinformatics, 28, 2012.

[106] S. Pyysalo et al. BioInfer: a corpus for information extraction in the biomedical
domain. BMC Bioinformatics, 8, 2007.

[107] D. Weissenborn et al. Discovering relations between indirectly connected
biomedical concepts. J Biomed Semantics, 6, 2015.

[108] L. Yeganova et al. Retro: concept-based clustering of biomedical topical sets.
Bioinformatics, 30, 2014.

[109] R. Khare et al. Crowdsourcing in biomedicine: challenges and opportunities.
Brief Bioinform, 2015.

[110] H. Geppert et al. Support-Vector-Machine-Based Ranking Significantly Im-
proves the Effectiveness of Similarity Searching Using 2D Fingerprints and
Multiple Reference Compounds. J Chem Inf Model, 48, 2008.

[111] L. Xue and J. Bajorath. Molecular Descriptors for Effective Classification
of Biologically Active Compounds Based on Principal Component Analysis
Identified by a Genetic Algorithm. J Chem Inf Comput Sci, 40, 2000.

138

Bibliography

[112] E. Byvatov et al. Comparison of support vector machine and artificial neural
network systems for drug/nondrug classification. J Chem Inf Comput Sci, 43,
2003.

[113] R. Todeschini and V. Consonni. Molecular Descriptors for Chemoinformatics:
Volume I: Alphabetical Listing / Volume II: Appendices, References. In Wiley-
VCH, Methods and Principles in Medicinal Chemistry, 2009.

[114] M. Schmuker et al. SOMMER: self-organising maps for education and research.
J Mol Model, 13, 2007.

[115] D.P. Hristozov et al. Virtual screening applications: a study of ligand-based
methods and different structure representations in four different scenarios. J
Comput Aided Mol Des, 21, 2007.

[116] M. Nencki et al. Über den Einfluss der Carboxylgruppe auf die Toxische Wirkung
aromatischer Substanzen. In Springer, Archiv für experimentelle Pathologie
und Pharmakologie, 1892.

[117] S.E. Manahan. Fundamentals of Environmental Chemistry. In CRC Press,
Lewis Publishers, 2011.

[118] R. Liu et al. 2D SMARTCyp reactivity-based site of metabolism prediction
for major drug-metabolizing cytochrome P450 enzymes. J Chem Inf Model,
52, 2012.

[119] D.M. Jessop et al. OSCAR4: a flexible architecture for chemical text-mining.
J Cheminform, 3, 2011.

[120] I. Thiele et al. A community-driven global reconstruction of human metabolism.
Nat Biotechnol, 2013.

[121] O. Hagan et al. A ’rule of 0.5’ for the metabolite-likeness of approved pharma-
ceutical drugs. Metabolomics, 2015.

[122] X. Lucas et al. The purchasable chemical space: a detailed picture. J Chem
Inf Model, 2015.

[123] C.A. Lipinski et al. Experimental and computational approaches to estimate
solubility and permeability in drug discovery and development settings. Adv
Drug Deliv Rev, 2001.

[124] F. Ntie-Kang. An in silico evaluation of the ADMET profile of the StreptomeDB
database. Springerplus, 2013.

139

Acknowledgements

First of all, I want to thank my supervisor Stefan Günther. The time in your working
group truly broadened my mind and I am proud of what I could achieve here in my
working time with you. Thank you for this opportunity.

Thank you Prof. Wrede, for having me led to the field of machine learning and for
being my supervisor, even in the time there was no thesis I wanted to write.

I want to thank my family, especially my mother. I cannot remember a single moment
in which you would not have been there for me. Thank you father, thank you Mimi,
and thank you all lovely members in my family. I missed you many times.

With all my heart, I want to thank you for everything, Evelyn, for your love and
your support. I also want to express my gratitude to your family and your friends,
you are amazing.

A few people in and close to my home town showed me the value of being friends.
Thank you all for enriching my life during my time at home and also when I was far
away.

I want to thank a few people here in Freiburg and I guess the persons know who I
mean. My second home town would not have been so lovely without you.

Many kind and interesting people passed my way during the PhD time and I cannot
thank all of them within the few lines that are left in this thesis.

Thank you guys in my working group and all related persons I could laugh, work,
discuss, and celebrate with. Thanks to the students who I was allowed to supervise,
I think we all learned a lot. The time was tough, but full of fun as well. The world
is small and in particular Freiburg. I can assure that we will see each other, again.

This is a fairly good university. Thanks to all the people who supported me.

	Contents
	1 Introduction
	2 Methods
	2.1 Text Mining-related Methods
	2.1.1 Extensible Markup Language
	2.1.2 Structured Query Language
	2.1.3 Xapian Full Text Index
	2.1.4 Entities
	2.1.4.1 Genes and Proteins
	2.1.4.2 Small Molecules and Drugs
	2.1.4.3 Co-occurrences and Relationship Verbs

	2.2 Machine Learning Approaches
	2.2.1 Evaluation Parameters
	2.2.1.1 Sensitivity
	2.2.1.2 Specificity
	2.2.1.3 Precision
	2.2.1.4 F1 Score
	2.2.1.5 Area Under Curve
	2.2.1.6 Binary and Multi-class Classification

	2.2.2 Cross-validation
	2.2.3 Artificial Neural Networks
	2.2.4 Kernel Methods
	2.2.4.1 Linear Support Vector Machines
	2.2.4.2 Gaussian Kernel
	2.2.4.3 Shallow-Linguistic Kernel
	2.2.4.4 All-Path-Graph Kernel
	2.2.4.5 Sparse Regularised Least Squares Classifier

	2.2.5 Entropy-based Methods
	2.2.5.1 Decision Trees
	2.2.5.2 Random Forests

	2.2.6 Normalisation
	2.2.7 Dimensionality Reduction
	2.2.7.1 Forward Selection
	2.2.7.2 BestFirst Filter
	2.2.7.3 Principal Component Analysis

	2.2.8 The WEKA Library

	2.3 Cheminformatics
	2.3.1 Simplified Molecular Input Line Entry Specification
	2.3.2 SMiles ARbitrary Target Specification
	2.3.3 Toxicity Data Set

	3 Results
	3.1 PubMed2Go
	3.1.1 Related Work
	3.1.1.1 Providing Software Interoperability
	3.1.1.2 Processing PubMed

	3.1.2 Basic Workflow
	3.1.3 Use Case: BioC Applications
	3.1.4 Use Case: Querying PubMed2Go Data Sets
	3.1.5 Performance

	3.2 Prediction of Functional Compound-Protein Relationships
	3.2.1 Related Work
	3.2.2 Functional Compound-Protein Interactions
	3.2.2.1 Sentences with Interaction verb
	3.2.2.2 Sentences without Interaction verb
	3.2.2.3 Co-Occurrences

	3.2.3 Annotation of Functional Relationships
	3.2.3.1 Interaction
	3.2.3.2 No Interaction
	3.2.3.3 False Positive Example

	3.2.4 Generation of Data Sets
	3.2.5 Shallow Linguistic Kernel Pipeline
	3.2.5.1 Preprocessing of the Curated Data Set
	3.2.5.2 Generation of Training Instances
	3.2.5.3 Lemmatisation and Tokenisation
	3.2.5.4 Results

	3.2.6 All-Paths Graph Kernel Pipeline
	3.2.6.1 Preprocessing
	3.2.6.2 Results

	3.2.7 Summary

	3.3 Toxicity Prediction
	3.3.1 Related Work
	3.3.2 Data Sets
	3.3.3 Results
	3.3.3.1 Workflow
	3.3.3.2 Selected Descriptors
	3.3.3.3 Data Sets with 10 Descriptors
	3.3.3.4 Data Sets with 324 Descriptors
	3.3.3.5 QikProp Data Set
	3.3.3.6 Summary
	3.3.3.7 Principal Component Analysis

	3.4 StreptomeDB
	3.4.1 Related work
	3.4.2 StreptomeDB Back End
	3.4.2.1 Compound Research System Curator Database
	3.4.2.2 Canonical SMILES

	3.4.3 Data Integration to StreptomeDB Back End
	3.4.4 StreptomeDB Web Page

	4 Discussion and Future Prospects
	4.1 Development and Usability of PubMed2Go
	4.2 Model Integration of Functional Relationships in Texts to the Web
	4.3 Towards Understanding Toxicity Prediction
	4.4 A Compound-centralised View on Streptomycetes
	4.5 Conclusion

	A Appendix
	A.1 Toxicity-related BestFirst Descriptor Overlaps
	A.2 OpenBabel Descriptors
	A.3 QikProp Descriptors
	A.4 WEKA Toxicity Decision Tree

	Bibliography
	Acknowledgements

