
In Silico Prediction of Modular Domain-Peptide

Interactions

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat

der Technischen Fakultät

der Albert-Ludwigs-Universität Freiburg

2015

von

M.Sc. Bioinformatiker (Univ.)

Kousik Kundu



Dekan
Prof. Dr. Georg Lausen
Databases and Information Systems
Department of Computer Science
University of Freiburg

Vorsitz Gutachter
Prof. Dr. Christoph Scholl Prof. Dr. Rolf Backofen
Operating Systems Bioinformatics
Department of Computer Science Department of Computer Science
University of Freiburg University of Freiburg

Beisitz Gutachter
Prof. Dr. Christian Schindelhauer PD Dr. Björn Voß
Computer Networks and Telematics Genetics & Exp. Bioinformatics
Department of Computer Science Institute for Biology III
University of Freiburg University of Freiburg

Datum der Promotion
April 21, 2015



Dedicated to my beloved parents .....

"Janani Janma-bhoomi-scha Swargadapi Gariyasi" 

(Devanagari: "जननी ज�मभूिम� �वगा�दिप गरीयसी")
"Mother and motherland are superior to Heaven"  





Acknowledgements

My sincere thanks to ......

◦ ◦ ◦ ◦ ◦ First and foremost, I would like to express my deepest gratitude to Prof. Dr. Rolf Backofen
for giving me the opportunity to pursue my PhD under his supervision. It was an absolute pleasure to
work under his guidance as he allowed me to engage in exciting scientific discussions, offered me an
excellent working platform, and provided me an extreme research freedom.

◦ ◦ ◦ ◦ ◦ I would like to express my gratitude to PD Dr. Björn Voß for his interest in my thesis and
kindness to review it. I would like to thank Prof. Dr. Christoph Scholl and Prof. Dr. Christian Schin-
delhauer for being a part of my PhD examination committee.

◦ ◦ ◦ ◦ ◦ I would like to extend my gratitude to Dr. Farbizio Costa for helping me in every aspects of my
research work. His expert guidance to understand the machine learning algorithms was invaluable. I
am thankful to Prof. Dr. Michael Huber for his contribution mainly in the biological interpretation of
SH2-peptide interactions.

◦ ◦ ◦ ◦ ◦ I would like to thank my current and former lab members for their various help and providing
an excellent working environment. The time I had spent with you during countless coffee/cake brakes,
dart breaks, and social events will always be remembered. My heartiest thanks to Robert Kleinkauf,
Christina Otto, Martin Mann, Dominic Rose, Omer Alkhnbashi, Andreas Richter, and Reelin Sinha for
their generous help. Their support helped me to adjust in a completely new country, which is thousands
of miles away from my home. They made me feel very comfortable at the lab and ensured me not to feel
like a lonely outsider. And of course, I cannot forget to extend my thanks to Monika Degen-Hellmuth
for her support in administrative stuffs.

◦ ◦ ◦ ◦ ◦ I am very thankful to Deepti, Naveen, and Fabrizio for proofreading this thesis. My special
thanks to Christina for her contribution in writing the “Zusammenfassung” part of this thesis.

◦ ◦ ◦ ◦ ◦ I have been very lucky to have good friends in every stages of my life. They are like oxygen
to me. I would like to take this opportunity to thank them all. My special thanks to those with whom I
had spent my days in Freiburg. You made my life outside academics so easy and enjoyable. I had lot
of fun with you all.

◦ ◦ ◦ ◦ ◦ Last but not least, I would like to thank my beloved parents: Mahua Kundu and Asit Baran
Kundu, my sweet brother: Anirban Kundu, my lovely wife: Deepti Jaiswal, and other family members.
Without their unconditional love, endless support, and non-stop encouragement none of this would have
been possible.

v





Contents

Abstract xi

Zusammenfassung xiii

List of publications xvii

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Cell signaling and signal transduction . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Modular protein domains and their binding specificity . . . . . . . . . . . . . 4

1.5. Cellular and molecular function of the modular protein domains . . . . . . . 15

2. Overview of existing methods and their limitations 21

2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2. High-throughput techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1. High density peptide arrays . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2. Protein microarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3. Phage display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3. Existing computational methods . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1. PWM-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2. Machine learning-based methods . . . . . . . . . . . . . . . . . . . . . 33

2.3.3. Structure and energy-based methods . . . . . . . . . . . . . . . . . . . 37

2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3. New approaches for predicting modular domain-peptide interactions 41

3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2. SH2 modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1. Feature encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2. Predictive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.3. Negative class definition . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



Contents

3.2.4. Model fitting protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3. SH3 modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1. Feature encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2. Graph kernel approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3. Negative class definition . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.4. Modeling with graph kernel features . . . . . . . . . . . . . . . . . . . 56

3.4. PDZ modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1. Clustering of PDZ domains . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.2. Feature encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.3. Predictive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.4. Negative class definition . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.5. Model fitting protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5. Key advantages of the proposed methods . . . . . . . . . . . . . . . . . . . . 61

3.5.1. Non-linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2. Data balancing and confidence negative data refinement . . . . . . . . 62

3.5.3. Alignment-free approach . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.4. Domain coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.5. Regularization technique . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6. Predictive performance estimations . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.1. Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.2. Performance measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4. Applications and performance evaluations 67

4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2. SH2-peptide interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2. Dataset compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3. Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4. Predictive performance evaluation . . . . . . . . . . . . . . . . . . . . 73

4.2.5. Comparison on validated data . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.6. Analysis of existing approaches . . . . . . . . . . . . . . . . . . . . . . 76

4.2.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3. SH3-peptide interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2. Dataset compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.3. Dealing with false negatives . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.4. Single domain model with filtered negatives . . . . . . . . . . . . . . . 80

4.3.5. Single domain model with unfiltered negatives . . . . . . . . . . . . . 82

4.3.6. Single domain one-class model with semi-supervised filtered negatives 83

4.3.7. Multi-domain model and evaluation . . . . . . . . . . . . . . . . . . . 83

viii



4.3.8. Comparison with other predictive methods . . . . . . . . . . . . . . . 85

4.3.9. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4. PDZ-peptide interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.2. Dataset compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.3. Sequence-based data modeling . . . . . . . . . . . . . . . . . . . . . . 91

4.4.4. Contact-based data modeling . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.5. Predictive performance evaluation . . . . . . . . . . . . . . . . . . . . 92

4.4.6. Benchmarking of existing methods . . . . . . . . . . . . . . . . . . . . 92

4.4.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5. Genome-wide predictions and biological insights . . . . . . . . . . . . . . . . . 95

4.5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.2. Genome-wide prediction setup . . . . . . . . . . . . . . . . . . . . . . 95

4.5.3. Functional annotation of predicted proteins . . . . . . . . . . . . . . . 97

4.5.4. Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5. MoDPepInt: an interactive web server 103

5.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3. Application and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1. Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2. Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.3. Processing and output . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4. Meta-web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6. Conclusion 107

A. Supplementary material 111

A.1. SH2 domain data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.2. SH3 domain data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.3. PDZ domain data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B. List of abbreviations 133

Bibliography 135





Abstract

Protein-protein interactions (PPIs) are one of the most essential cellular processes in eu-

karyotes that control many important biological activities, such as signal transduction,

differentiation, growth, cell polarity, apoptosis etc. Many PPIs in cellular signaling are

mediated by modular protein domains. Peptide recognition modules (PRMs) are an impor-

tant subclass of modular protein domains that specifically recognize short linear peptides

to facilitate their biological functions. Hence, it is important to understand the intriguing

mechanisms by which hundreds of modular domains specifically bind to their target pep-

tides in a complex cellular environment. In recent years, an unprecedented progress has

been made in high-throughput technologies to describe the binding specificities of a number

of modular protein domain families. Therefore, given the high binding specificity of PRMs,

in silico prediction of their cognate partners is of great interest.

In the first part of this thesis, we describe the main high-throughput technologies (mi-

croarray, phage display etc.) that are widely used for defining the binding specificity of

PRMs. Currently, several computational methods have been published for the prediction

of domain-peptide interactions. Here, we provide a comprehensive review on these meth-

ods and their applications. We also describe the major drawbacks (e.g., linearity problem,

peptide alignment problem, data-imbalance problem etc.) of these existing tools that are

successfully addressed in our study.

In the second part of this thesis, we present three methods for predicting domain-peptide

interactions mediated by three diverse PRM families (i.e., SH2, SH3, and PDZ domain).

In order to circumvent the linearity problem, our methods use efficient kernel functions,

which exploit higher-order dependencies between amino acid positions. For the prediction

of SH2-peptide interactions, polynomial kernels are used to train the classifiers. In addition,

we show how to handle the data-imbalance problem by using an efficient semi-supervised

technique. For the prediction of SH3-peptide interactions, graph kernels are used for training

the classifiers. Graph kernel feature representation allows us to include the physico-chemical

properties of each amino acid in the peptides, which increases the generalization capacity of

the classifier. By using this kernel function, we were able to eliminate the need of an initial

peptide alignment, since the alignment of proline-rich peptides targeted by SH3 domains is a

hard task and an error-prone alignment can severely affect the predictive performance of the
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Abstract

classifier. Moreover, we developed a generative approach for refining the confidence negative

data. In the case of PDZ-peptide interactions, we cluster hundreds of PDZ domains from

different organisms, i.e., human, mouse, fly, and worm, based on their binding specificity,

and build a single comprehensive model for a set of multiple PDZ domains. In this way, we

show that the domain coverage can be increased by using an accurate clustering technique.

For training the classifier, a Gaussian kernel function is used. Similar to SH2-peptide

interactions, a semi-supervised technique was applied to generate high-confidence negative

data.

In the third part of this thesis, we describe the applications and performance evaluations

of our methods. We compared our methods with several other existing tools and achieved

a much higher performance, which was measured by sensitivity, specificity, precision, AUC

PR, and AUC ROC. Our methods were further evaluated on various experimentally veri-

fied datasets and as a predictive result, they outperformed the state-of-the-art approaches.

To uncover the novel and biologically relevant interactions, we performed a genome-wide

prediction. Furthermore, a term-centric enrichment analysis has been performed to unveil

the novel functionalities of the predicted interactions.

In the last part of this thesis, we introduce a new and efficient web server, which contains

three tools (i.e., SH2PepInt, SH3PepInt, and PDZPepInt), for the prediction of modular

domain-peptide interactions. Currently, we offer 51 and 69 single domain models for SH2

and SH3 domains, respectively, and 43 multiple domain models, which cover 227 domains,

for PDZ domains across several organisms.

In summary, this thesis presents machine learning methods for predicting the binding

peptides of three diverse PRM families where the training data was derived from various

high-throughput experiments. Most importantly, this thesis addresses the major computa-

tional challenges in the field of modular domain-peptide interactions. We offer the largest

set of models to date for the prediction of modular domain mediated interactions.

xii



Zusammenfassung

Protein-Protein-Interaktionen (PPIs) zählen mit zu den wesentlichen Prozessen in Eu-

karyoten, die viele wichtige biologische Vorgänge (wie Signaltransduktion, Differenzierung,

Wachstum, Zellpolarität, Apoptose usw.) kontrollieren. Viele PPIs in der Zellkommunika-

tion werden durch modulare Proteindomänen vermittelt. Peptiderkennungsmodule (PRMs)

sind eine wichtige Unterklasse der modularen Proteindomänen, die spezifisch kurze lin-

eare Peptide erkennen, um ihre biologischen Funktionen zu ermöglichen. Demzufolge ist

es wichtig, die faszinierenden Mechanismen zu verstehen, durch die hunderte modulare

Domänen in einer komplexen zellulären Umgebung spezifisch an ihre Zielpeptide binden.

In den vergangenen Jahren wurde ein noch nie da gewesener Fortschritt in Hochdurchsatz-

Technologien gemacht, um die Bindungsspezifität einer Reihe von Familien modularer Pro-

teindomänen zu beschreiben. Aus diesem Grund sind wegen der hohen Bindungsspezifität

von PRMs in silico Vorhersagen ihrer spezifischen Partner von großem Interesse.

Im ersten Teil dieser Arbeit beschreiben wir die wichtigsten Hochdurchsatz-Technologien

(Microarray, Phagen-Display usw.), die weithin verwendet werden, um die Bindungsspezi-

fität von PRMs zu bestimmen. Gegenwärtig wurden etliche computergestützte Methoden

für die Vorhersage von Domäne-Peptid-Interaktionen veröffentlicht. Wir stellen einen um-

fassenden Überblick über diese Methoden und ihre Anwendungen bereit. Wir beschreiben

auch die bedeutendsten Nachteile (zum Beispiel Linearitäts-Problem, Peptid-Alignment-

Problem, Daten-Ungleichgewichts-Problem usw.) dieser bestehenden Methoden, die wir in

unserer Studie erfolgreich angehen werden.

Im zweiten Teil dieser Arbeit stellen wir drei Methoden zur Vorhersage von Domäne-

Peptid-Interaktionen dar, die durch drei unterschiedliche PRM-Familien (d.h. SH2-, SH3-

und PDZ-Domänen) vermittelt werden. Um das Linearitäts-Problem zu umgehen, verwen-

den unsere Methoden effiziente Kernel-Funktionen, die Abhängigkeiten höherer Ordnung

zwischen Positionen einer Aminosäure ausnutzen. Für die Vorhersage von SH2-Peptid-

Interaktionen werden polynomielle Kernel verwendet, um die Klassifikatoren zu trainieren.

Zusätzlich zeigen wir, wie das Daten-Ungleichgewichts-Problem gehandhabt werden kann,

indem ein effizientes semi-überwachtes Verfahren angewendet wird. Bei der Vorhersage

von SH3-Peptid-Interaktionen werden Graph-Kernel für das Training der Klassifikatoren

verwendet. Die Merkmalsrepräsentation des Graph-Kernels erlaubt es uns physikalisch-
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chemische Eigenschaften jeder Aminosäure in den Peptiden einzubeziehen, was das Ver-

allgemeinerungsvermögen des Klassifikators erhöht. Durch die Verwendung dieser Kernel-

Funktion konnten wir die Erfordernis eines initialen Peptid-Alignments streichen. Dies

ist besonders wichtig, da das Alignment von Prolin-reichen Peptiden, die ein Ziel von

SH3-Domänen sind, eine schwierige Aufgabe darstellt und ein fehlerhaftes Alignment die

Vorhersage-Güte des Klassifikators schwerwiegend in Mitleidenschaft ziehen kann. Darüber

hinaus entwickelten wir einen generativen Ansatz, um die sicher negativen Daten zu ver-

feinern. Im Falle der PDZ-Peptid-Interaktionen gruppieren wir hunderte PDZ-Domänen

unterschiedlicher Organismen, d.h. Mensch, Maus, Fliege und Wurm, basierend auf ihrer

Bindungsspezifität und erstellen ein einziges umfassendes Modell für eine Reihe multipler

PDZ-Domänen. Auf diese Weise zeigen wir, dass die Abdeckung der Domänen durch die

Verwendung eines exakten Clusterbildungsansatzes erhöht werden kann. Um den Klassifika-

tor zu trainieren, wird eine Gauß-Kernel-Funktion verwendet. Ähnlich wie bei SH2-Peptid-

Interaktionen wurde ein semi-überwachter Ansatz eingesetzt, um die sicher negativen Daten

zu generieren.

Im dritten Teil der Arbeit beschreiben wir die Anwendungen und die Leistungsbewertung

unserer Methoden. Wir haben unsere Methoden mit mehreren anderen existierenden Pro-

grammen verglichen und erreichten eine wesentlich höhere Leistungsfähigkeit, die durch Sen-

sitivität, Spezifität, Genauigkeit, AUC PR und AUC ROC gemessen wurde. Unsere Meth-

oden wurden darüber hinaus auf verschiedenen experimentell abgesicherten Datensätzen

ausgewertet und als Vorhersage konnten sie dem Stand der Technik entsprechende Ansätze

übertreffen. Um die neuartigen und biologisch relevanten Interaktionen aufzudecken, führten

wir eine genomweite Vorhersage durch. Zusätzlich wurde eine “term-centric enrichment

analysis” durchgeführt, um die neuartigen Funktionsweisen der vorhergesagten Interaktio-

nen zu enthüllen.

Im letzten Teil dieser Arbeit präsentieren wir einen neuen und effizienten Web-Server,

der drei Tools (d.h. SH2PepInt, SH3PepInt und PDZPepInt) für die Vorhersage von mod-

ularen Domäne-Peptid-Interaktionen beinhaltet. Derzeit bieten wir 51 bzw. 69 einzelne

Domänen-Modelle für SH2- und SH3-Domänen an, und 43 multiple Domänen-Modelle, die

227 Domänen umfassen, für PDZ-Domänen mehrerer Organismen.

Zusammenfassend stellt diese Arbeit maschinelle Lernverfahren für die Vorhersage der

gebundenen Peptide von drei unterschiedlichen PRM-Familien dar, wobei die Trainingsdaten

von zahlreichen Hochdurchsatz-Experimenten stammten. Am Bedeutsamsten ist, dass sich

diese Arbeit mit den großen rechnergestützten Herausforderungen im Bereich der modularen

Domäne-Peptid-Interaktionen befasst. Wir bieten die bislang größte Menge an Modellen für

die Vorhersage von Interaktionen, die durch modulare Domänen vermittelt werden.
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Chapter 1

Introduction

1.1. Motivation

“Arise! Awake! and stop not until the goal is reached” −Swami Vivekananda

It has been more than 30 years since the concept of signal transduction emerged. The

discovery of various signal transduction pathways opened a new door for an in-depth un-

derstanding of cell signaling. Signal transduction is basically the lens through which we

examine all cellular activities. This process is initiated with the acceptance of extracellular

signals by the receptor proteins at plasma membrane, then these signals get transduced

inside the cell interior and finally they take control of numerous multi-protein complexes to

regulate variety of signaling pathways [1]. In the last decade, the fundamental knowledge

of signal transduction has been successfully translated to the clinic. There have been some

remarkable achievements in terms of therapeutic targets, particularly in cancer [2]. Two

drugs, i.e., imatinib and trastuzumab, are widely used for the treatment of chronic myeloge-

nous leukemia (CML) and breast cancers, respectively. Other signal transduction inhibitors

are currently in advanced clinical trials.

The 1980s were an exciting time for cell signaling research. The path breaking discovery

of modular protein domains and their role in the regulation of signaling pathways was an

unprecedented event in biological science that drastically changed our conceptual under-

standing of protein function. Tony Pawson and co-workers first discovered a non-catalytic

conserved modular domain, namely Src homology 2 (SH2), which regulates various signal

transduction pathways, and set the stage for exciting discoveries of other modular domains

in subsequent years [3]. Importantly, modular domains play an important role in the ther-

apeutic development. For example, SH2 domains can serve as biomarkers for normal or

perturbed signaling networks and can be used for personalized medicine [4]. These domains

specifically bind to their cognate partners to facilitate their molecular functions. However,

the detailed mechanism by which thousands of modular protein domains target their binding

partners with high specificity is an open challenge with high relevance.
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The data generated by various high-throughout techniques seems to be a perfect source

for investigating the molecular functions of the modular protein domains. In recent years,

a monumental progress has been made in the field of high-throughput technologies. Large

amount of data is being generated by various high-throughput techniques to address the

binding specificity of modular domains. Now the question is, how to exploit the wealth of

biological information hidden in these huge amount of data. Here, computer science plays a

crucial role to handle these data and to make sense out of it. In modern research, application

of computer science is indispensable to solve several complex biological problems.

Currently, several computational approaches, which use high-throughput data, have been

published for the prediction of modular domain mediated interactions. However, these ap-

proaches have several shortcomings, starting from limited coverage, to restrictive modeling

assumptions, to high computational complexity. The motivation of our work was to address

these shortcomings. Therefore, we have resorted to a machine learning approach to accu-

rately predict modular domain mediated interactions. Moreover, our intention was to build

a tool that can be easily used by the biologists and thus we offer an easy-to-use web server,

which will help biologists to pursue their research.

1.2. General overview

1.2.1. Outline of the thesis

In this thesis, three methods for predicting modular domain mediated interactions have been

described. This thesis also addresses the open questions regarding computational prediction

of domain-peptide interactions. The thesis is divided into six chapters as described below.

• Chapter 1: This introductory chapter describes the biological background of the work.

Detailed description of the modular domains and their roles in cellular signaling will help

the reader to understand the importance of the study.

• Chapter 2: This chapter gives a review on existing methods that includes high-throughput

techniques and computational prediction methods, and their limitations for defining the

specificity of the modular domains.

• Chapter 3: This chapter elucidates new prediction strategies for identifying the modular

domain-peptide interactions for three different domains, i.e., SH2, SH3, and PDZ. These

prediction methods are further divided into subsections.

• Chapter 4: Application and the performance evaluation of the proposed methods, and

predicting novel interactions and their biological insights via genome-wide analysis have

been described in this chapter.

• Chapter 5: This chapter presents MoDPepInt, a simple and easy-to-use web server for

predicting modular domain-peptide interactions.

2



1.2. General overview

• Chapter 6: The final chapter concludes the proposed work and provides ideas that can

open a new gateway for the future research in this field.

Each chapter starts with an overview, which will help readers to understand the gist of

the chapter. A chapter specific (if not otherwise section specific) discussion is included

for summarizing the particular part of the thesis. All supplementary materials, a list of

abbreviations, and a plagiarism declaration have been mentioned in the appendix.

Here, I would like to state that all the work, which has been presented in this thesis, is

my original research work and was published in four peer-reviewed journals [P1], [P2], [P3],

and [P4] where I was the first author or one of the joint first authors. In section 1.2.2,

contribution of other authors are stated. The aforementioned publications are recycled

and/or reused in some parts of this thesis with appropriate references. Note that these

publications were published under the Creative Commons Attribution license where authors

retain the ownership of the copyright of their articles. This license also allows articles to be

reused, modified, and distributed in any format, given that the original author and source

are cited.

1.2.2. Statement of contributions

First, to mention my own contribution, I have done the major and most important parts

of the work, which involve conceiving the work, data collection, designing and performing

experiments, developing models, and writing manuscripts. In some cases, the work was

entirely done by myself, e.g., [P2]. However, scientific collaboration is indispensable in the

modern days of research. With no exception, this thesis also includes various collaborative

works. Although I was the main contributor of the proposed work, scientists from internal

and external groups also contributed by sharing ideas, expert biological knowledge, and

fruitful discussions. In particular, Dr. Fabrizio Costa helped me to understand the ma-

chine learning algorithms, and guided me for [P3] and [P4]. Along with his contribution in

writing some parts of the aforementioned publications, he has also significantly contributed

in the method section of [P3]. Dr. Martin Mann mainly implemented the MoDPepInt web

server [P1]. Prof. Dr. Michael Huber partly contributed to the biological part of the [P4].

Christina Otto has contributed in German translation of the “abstract (Zusammenfassung)”

of this thesis. And all of my work was supervised by Prof. Dr. Rolf Backofen. Therefore,

I have chosen “we” as an appropriate pronoun instead of “I” and have used throughout the

thesis.
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Chapter 1. Introduction

1.3. Cell signaling and signal transduction

Cell signaling is a complex biological mechanism through which a cell receives extracellular

signals, processes those signals, and responds accordingly. By this mechanism, one cell com-

municates with others, and controls numerous cellular activities. The extracellular signal

molecules produced by various cells are the most essential for cell communication. However,

these signal molecules are not sufficient to transfer the information to a specific cell; they

need a set of receptor proteins from each cell that receive the incoming information and

transfer it into the intracellular environment. There are three main families of cell surface

receptors: (i) ion-channel-linked receptors, (ii) G-protein-linked receptors, and (iii) enzyme-

linked receptors, and they all react to the extracellular signals in a different way [1]. Once

these receptor proteins get activated by the extracellular signal molecules, such as hormones,

neurotransmitters etc., they subsequently bind to a series of intracellular signaling proteins

to relay the signals into cell interior (Figure 1.1). The intracellular signaling proteins have a

variety of functions, including distribution and amplification of the signals. Some intracel-

lular proteins also integrate signals from other signaling pathways [1]. This whole process is

known as signal transduction where the extracellular signals are transduced into a cellular

environment by the cell surface receptor proteins; henceforth, activate a cascade of signaling

pathways inside the cell, and eventually, trigger the functional changes of the cell.

Phosphorylation is an important post-translational modification of a protein that plays

a crucial role in the regulation of signal transduction pathways. In this process, an amino

acid is phosphorylated by a protein kinase. Phosphorylation normally occurs on a ser-

ine, a threonine, or a tyrosine residue, although phosphorylation of basic amino acids has

also been observed [5]. Signaling proteins often serve as “molecular switches”, which are

activated by protein phosphorylation. Receptor tyrosine kinases (RTKs) are the largest

kinase family that phosphorylate specific tyrosine residues in a protein and play a vital

role in signal transduction by regulating a variety of essential cellular processes, such as

proliferation, differentiation, growth, migration, apoptosis, and malignant transformation

in metazoans [6–9]. Many of the signaling proteins contain modular protein domains that

mainly control the function of complex protein assemblies and regulate signal transduction

pathways.

1.4. Modular protein domains and their binding specificity

Protein-protein interaction (PPI) is a major area of biological science to understand the

transduction of cellular signals. PPIs take an indispensable role to transfer information in

signal transduction pathways. The regulation of numerous signal transduction pathways are

mainly mediated by the binding of a modular protein domain with a short linear peptide [10].

These peptide recognition modular protein domains are also known as peptide recognition

modules (PRMs). Figure 1.1 is a hypothetical illustration of signal transduction pathways
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Figure 1.1.: A hypothetical illustration of signal transduction processes. In this figure, when a
receptor protein interacts with a growth factor, it gets phosphorylated and then binds to the SH2
domain of signaling protein A. Then the kinase domain of protein A phosphorylates two tyrosine
residues of signaling protein B, which bind to PTB domain of protein A and SH2 domain of an
adaptor protein, respectively. Signaling protein C is then phosphorylated by the kinase domain of
protein B, and its proline-rich region is targeted by the SH3 domain of the adaptor protein. On the
other hand, a phosphorylated co-receptor is targeted by SH2 domain of signaling protein D. A PDZ
domain of a scaffold protein then targets the C-terminal tail of protein D. In both cases, the further
downstream signaling processes proceed with the analogous fashion and eventually, as a result, alter
the function of the cell.

that are mediated by modular protein domains. There are hundreds of PRMs spread into

human proteome, and they have highly specific binding preferences. For example, Src ho-

mology 2 (SH2) and phosphotyrosine binding (PTB) domains recognize peptides containing

a phosphorylated tyrosine (pTyr) residue, 14-3-3 domains bind to phosphoserine (pSer) con-

taining peptides, Src homology 3 (SH3) and WW domains recognize protein-rich peptide

motifs, Eps15 homology (EH) domains bind to the NPF motif containing peptides, and

PSD-95/DLG1/ZO-1 (PDZ) domains recognize the C-terminal peptide tails of the binding

proteins (see Figure 1.2) [11]. In this thesis, we focused on three different modular domains,

SH2, SH3, and PDZ, that are essential in various cellular processes.
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Figure 1.2.: Canonical binding specificity of various well-studied peptide recognition modules. In
the motif, x represents natural amino acids and φ represents hydrophobic amino acids. The “P”
symbol with yellow background represents the phosphorylation.

1.4.1. SH2 domains

SH2 domains are the largest family of peptide recognition modules (PRMs), normally found

in intracellular signal transducing proteins [12–14]. In 1986, Tony Pawson and his col-

leagues first identified the SH2 domain from oncogenic v-FPS/FES cytoplasmic tyrosine

kinase in Fujinami sarcoma virus [3]. In subsequent years, other SH2 domains, such as

v-CRK, PLCγ1, and RasGAP, were discovered [15, 16]. Since then hundreds of SH2 do-

mains have been found across the eukaryotic species, however, they are more abundant in

metazoans [17, 18]. Currently, 122 SH2 domains from 112 unique human proteins have

been reported in the UniProtKB/Swiss-Prot database, release 2015-01 [19]. SH2 domains

are identified in wide range of signaling proteins, including protein kinases, protein phos-

phatases, adaptor proteins, scaffold proteins, transcription factors, signal regulator pro-

teins [6]. Based on the composition of modular domains, SH2 containing proteins were

classified into 11 functional categories by Liu et al. [20]. Figure 1.3 illustrates the phylo-

genetic tree of all SH2 domains with their functional annotation. SH2 domains are known

to specifically recognize phosphorylated tyrosine (pTyr) residues and mediate intracellular

signaling [21, 22]. Researches using the peptide libraries have shown that each SH2 do-

main binds with a specific subset of phosphopeptides [23–26]. Cytoplasmic protein tyrosine

kinases (PTKs) and receptor tyrosine kinases (RTKs) play a central role to facilitate nu-

merous cellular processes by interacting with SH2 domains [6]. For example, a well-studied

receptor tyrosine kinase, namely epidermal growth factor receptor (EGFR), mediates in-

tercellular communication to regulate wide range of cellular activities by interacting with

SH2 domains [6, 7]. There are some evidences that mutations in some SH2 domains can

cause several human diseases, such as XLP syndrome [27], Noonan syndrome [28], X-linked

α-gammaglobulinemia [29], and basal cell carcinoma [30].

Sequence and structure

SH2 domains are approximately 100 amino acids in length, and are structurally conserved

protein domains that comprise a central anti-parallel β sheets flanked by two α helices, and
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Figure 1.3.: Phylogenetic tree of all 122 human SH2 domains available in UniProtKB/Swiss-Prot

database, release 2015-01 [19]. A total number of 11 functional classes derived from [20] are pre-
sented in different colors. The tree was built by ClustalW [31], and iTOL software was used for the
visualization [32].

an additional tripled-stranded β sheets on the C-terminus (see Figure 1.5.A) [33]. Almost

20 years ago, the first SH2-peptide complex structure was solved by Waksman et al., which

unveiled a high affinity interaction between SRC SH2 domain and a phosphorylated peptide

motif, PQ-pY-EEIP [34]. Recent study revealed that there are approximately 70 exper-

imentally validated structures of unique SH2 domains available in the PDB database [35].

SH2 domains contain an evolutionary conserved phosphopeptide binding pocket formed by

some conserved residues, which interacts with their target peptides [12]. Another binding

pocket, namely specificity pocket, has also been observed, which is mainly formed by βD,

βE, and the loop regions of SH2 domains. The sequence and structural organization of

SH2 domains are illustrated in Figure 1.4. Although residues in this specificity pocket are

less conserved than the rest of the domain, it forms a conserved structure that binds to

C-terminal residues of the binding peptides; this structural conservation has been seen from

early invertebrate to human [18].

Binding specificity

Previous studies showed that each SH2 domain distinctly interacts with phosphotyrosine

(pTyr) containing peptides [18, 20]. The negatively charged phosphate moiety on the tyro-

sine residue specifically targeted by the phospho-binding pocket of the SH2 domains. The
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Figure 1.4.: Alignment and structural organization of human SH2 domains. Colored residues
(red and green) are the main specificity determinants for the SH2 domains. They are responsible for
forming the phosphopeptide binding pocket [41]. Residues in green specifically bind to the negatively
charged phosphorylated tyrosine (pTyr) residue of the binding peptide [36]. The MUSCLE program
was used for the alignment [42].

surface residues of the SH2 domains, mainly a highly conserved Arg at position 5 of βB,

an Arg at position 2 of αA, and a His at position 4 of βD play the major role to form

the binding pocket [36]. Figure 1.4 illustrates the surface residues that are responsible for

making contacts with pTyr containing peptides. However, the specificity of a SH2 domain

can be altered by engineering the surface loops [37]. The Arg residue at position 5 of βB is

occurs in most of the SH2 domains (118 out of 121), except RIN2 and TYK, which contain

a His, and SH2D5, which contains a Trp [20]. It has been shown that the mutation of Arg

(βB5) or His (βD4) can abolish the pTyr dependent interactions [38].

A global position system has been induced where the phosphotyrosine (pTyr) residue is

given position 0, N-terminal residues with respect to the pTyr are given position −1, −2,

and so on, and C-terminal residues with respect to the pTyr are given position +1, +2,

and so on. Although the pTyr residue is essential in most of the SH2-peptide interactions,

the binding specificity of a given SH2 domain is determined by the C-terminal residues

to the pTyr, particularly from +1 to +5 [21, 36]. For example, CRK SH2 domains have

a very strong preference for a Leu or Pro residue at position +3 (xx-pY-xx[L/P]x, where

x represents any naturally occurring amino acid) in the binding motifs. Similarly, GRB2

strongly prefers an Asn at position +2 (xx-pY-xNxx) and BRDG1 prefers a Leu at position

+4 (xx-pY-xxxL) [39]. Although C-terminal residues with respect to pTyr are the most

important to define the binding specificity of SH2 domains, N-terminal residues have also

been identified to be targeted by some SH2 domains. For example, a hydrophobic residue

at position −2 (Φx-pY-xxxx, where Φ represents a hydrophobic residue) is preferred by the

SH2 domain from PTPN11 protein [40].

Since SH2 domains have distinct binding preferences, the contextual sequence information

of the binding peptides is the key to discriminate among the binding specificity of different

SH2 domains [43]. Although SH2 domains from the ABL, CRK, BRK, VAV, and RASA1

proteins have a basic preference to interact with a peptide, xx-pY-xx[P/L]x, they bind

to a subset of peptides that contains this motif [36]. The underneath mechanism of this

intriguing nature is due to the presence and absence of permissive and non-permissive amino

8



1.4. Modular protein domains and their binding specificity

(A)

(B) (C)

Figure 1.5.: Domain-peptide complex 3D structures for SH2, SH3, and PDZ domains. (A) SH2-
peptide complex structure (PDB id: 1D4W), (B) SH3-peptide complex structure (PDB id: 2BZ8),
and (C) PDZ-peptide complex structure (PDB id: 4G69). UCSF Chimera was used for the visualiza-
tion [48].

acids in the binding peptides where permissive residues promote the interaction and the non-

permissive residues inhibit or diminish the interaction. For example, while an Arg at +4

to the pTyr is a permissive factor for the CRK interaction, it is non-permissive and thus

rejects the BRK interaction. Similarly, while a Glu at +1 to the pTyr promotes the BRK

interaction, it prohibits the CRK interaction (see Figure 2.3 for details) [36, 43]. Therefore,

accurately identifying the specific binding peptides for a given SH2 domain is indispensable

to determine its biological function.

Interestingly, SH2 domains are also found to interact with non-phosphorylated peptide

motifs, however, the binding affinity is 1000-fold less than the SH2-pTyr peptide interac-

tions [33, 34, 44]. One of the well-studied examples for a phospho-independent interac-

tion is the interaction between the SH2D1A/SAP SH2 domain and the SLAM receptor

protein, albeit the binding affinity was notably low [26]. In this case, the SH2 domain

from SH2D1A protein does not need a pTyr residue for the interaction. Other examples

where SH2 domains, such as TENC1, SHC, and CTEN, bind to their cognate partners in a

phospho-independent manner have also been reported previously [45–47].
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1.4.2. SH3 domains

SH3 domains are characterized as an important class of peptide recognition module (PRM)

that specifically recognize short linear proline-rich peptide sequences and play a pivotal role

in a wide range of cellular processes, such as intracellular signaling, growth, cytoskeletal

rearrangements, cell-communication, cell movement, differentiation etc. [49–51]. In 1988,

SH3 domains were first identified in eukaryotes [52, 53]. It is known that SH3 domains are

most abundant in eukaryotic genomes, but interestingly, the occurrence of these domains

in various genomes corresponds with the genome complexity. For example, 28, 90, and

300 SH3 domains are encoded in yeast, drosophila, and human genomes, respectively [54].

Previous study showed that the binding affinity of SH3 domains can be increased up to 40-

fold by directed evaluation [55]. Along with its occurrence in multiple copies in a protein,

it can also occur with other modular domains, such as SH2, PDZ etc. For example, two

SH3 domains and an SH2 domain are found in GRB2 protein while an SH3 domain along

with three PDZ domains are encoded in DLG1 protein. Moreover, some SH3 domains were

found to bind their physiological partners through tertiary contacts instead of targeting a

defined sequence motif [56].

Sequence and structure

SH3 domains are one of the small modular domains found in signaling proteins that are

mainly involved in signal transduction, membrane trafficking, cytoskeleton organization

etc. [49]. SH3 domains are typically 60-70 amino acids in length. Although the sequence sim-

ilarity of two SH3 domains is only 25%, these domains are structurally very conserved [57].

SH3 domains are composed of a conserved β-barrel fold, which is formed by 5−6 β strands

arranged in two anti-parallel β sheets (see Figure 1.5.B). These β strands are connected

by some structural conformations, such as an RT-loop, an n-Src loop, a 310 helix, and a

distal loop [58]. In most of the SH3 domains, the RT loop and the n-Src loop are generally

18 and 4 amino acids long, respectively. However, the length of these loops can be varied

greatly for some SH3 domains. For example, the length of the RT loop and the n-Src loop

can be ranging from 15−31 and 3−31 amino acids, respectively [59]. These loops are highly

specific to recognize their cognate partners. It has been observed that variations of these

loops can produce a new SH3 domain with a novel binding specificity [60, 61]. Sequence

and structural organization of SH3 domains are depicted in Figure 1.6.

Binding specificity

SH3 domains are probably the most widespread protein domain found in protein databases.

Since 25% of human proteins contain proline-rich regions [62] and SH3 domains recognize

proline-rich peptides, it is an open challenge to understand how the hundreds of SH3 do-

mains achieve a high specificity in selecting their physiological partners to regulate specific

biological functions. The proline-rich peptide motifs recognized by most of the human SH3
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Figure 1.6.: Alignment and secondary structural elements of human SH3 domains. Residues
occur in RT loop and n-src loop are represented in colored background. Variations in these loops
largely determine the binding specificity of SH3 domains. Most conserved residues, that mainly
participate in forming the PPII binding pockets, are shown in green. Residues, which are main
specificity determinants for SH3 domains (occur at the position 19 in the alignment), are shown in
red. They normally bind to a positively charged residue at P−3 in the binding peptides. Domain-
specific determinant residues are shown in blue. For example, EPS8 prevents the interaction in
case of deletion of the Lys residue from the position 38. The MUSCLE program was used for the
alignment [42].

domains contain a PxxP core. A position system has been induced where the first P of

this motif is given P0, upstream positions are given P−1, P−2, and so on, and downstream

positions are given P1, P2, and so on. SH3 binding motifs can be categorized into two main

groups: canonical and non-canonical motifs.

• Canonical motif: The canonical motifs generally contain the ΦPxΦP core formed by

two ΦP dipeptides. These motifs are further classified in two major groups: class I

and class II. The consensus sequences for these two groups are denoted as +xΦPxΦP

(class I) and ΦPxΦPx+ (class II). Here, x represents any naturally occurring amino acid,

Φ represents a hydrophobic amino acid, and + represents a positively charged amino acid

(normally Arg and Lys).

Structural studies of the SH3-peptide complexes with class I and class II motifs suggest

that these two types of peptide ligands bind to an SH3 domain in opposite orientations by

forming a left-handed helix, called the polyproline type II (PPII) [51, 59, 63]. SH3 motifs

contain two XP dipeptides that reside in the core (XP-x-XP). These dipeptide units occupy

two binding pockets of an SH3 domain by hydrophobic interactions. Previous studies rev-

eled that the positively charged residues in the peptide sequence, such as Arg and Lys, play

an important role in the interaction with the respective SH3 domain [64, 65]. Based on the

characteristics of the binding site, the SH3 domains prefer either one or the other peptide

motif. These motifs can be further classified into sub-groups depending on the tolerance for

the substitution of the Lys residue with the Arg residue [58].
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Although most SH3 domains bind to class I and/or class II motifs, a subset of SH3

domains have the ability to recognize non-canonical or atypical peptide motifs. There are

several non-canonical motifs that have been identified previously. Here, we describe a few

of them.

• Non-canonical motif:

– PxxDY: SH3 domains from EPS8 family and the first SH3 domain from NCK1

protein have been reported to bind to a PxxDY motif [66, 67]. EPS8 protein and its

SH3 domain play an essential role in mitogenetic signaling. Over expression of EPS8

increased epidermal growth factor (EGF) dependent transformation and mitogenic

responsiveness to EGF [68, 69].

– ΦxxPxxP: This motif reassembles the class I consensus, which contains a hydropho-

bic residue instead of a positively charged residue at position P−3. These motifs are

known to interact with the SH3 domain of the ABL1 protein [70].

– RxxK: First identified as the binding motif of STAM2 SH3 domain [71]. This motif

was first found in deubiquitinating UBPY enzyme. It was also observed that the

motif can mediate an interaction between the C-terminal SH3 domain of GRAB2

and SLP-62, although the disassociation constant for the interaction was significantly

low, i.e., 1-10 nm [72, 73].

– RxxPxxxP: This motif is similar to class I consensus, and found in cytoplasmic tail

of the BK channel. The SH3 domain of CTTN are known to bind to this motif [74].

– PxxxPR: This motif reassembles the class II consensus, and can interact with the

domains that are known to interact with class II motifs [58]. The SH3 domain from

CIN85/SH3KBP1 proteins is targeted by this motif [75].

– RKxxYxxY: This tyrosine-based motif does not hold a proline residue, and iden-

tified in the adaptor protein SKAP55. This motif is targeted by the SH3 domain of

ADAP/FYB protein [76].

Other non-canonical motifs, such as PPxVxPY, RxxxxY, and RxxRxxS, have also been

identified previously [77]. In our study, we used a peptide array data from [58] and reported

the percentage of all canonical and non-canonical motifs bound by various SH3 domains

(see Table A.2.1).
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1.4. Modular protein domains and their binding specificity

1.4.3. PDZ domains

Scaffold proteins are an important class of proteins that are indispensable for many key

signaling pathways. The main role of these proteins is to assemble the multiple members

of a signaling pathway into functional protein complexes to regulate signal transduction

or localize signaling molecules to a specific compartment of the cell (e.g., cell membrane,

nucleus, cytoplasm, mitochondria etc.) [78]. Scaffold proteins are composed of modular

domains, which are mainly responsible for building the protein complexes by interacting

with other proteins in the cellular space [79].

PDZ domains are one of the most promiscuous modular domains that are predominantly

found in scaffold proteins in multi-cellular organisms, and play an important role in the

establishment of cell polarity, cell signaling, protein trafficking etc. [80–82]. It has also been

reported previously that PDZ domains take a pivotal role in several human diseases, such as

schizophrenia, cystic fibrosis etc. [83]. In early 90’s, the PDZ domain was discovered in three

proteins, namely postsynaptic density protein-95 (PSD-95), disks large tumor suppressor

(DLG1), and zonula occludens-1 (ZO-1) [84–86]. The domains were initially named as

GLGF, since they have a repetitive motif (Gly-Leu-Gly-Phe) in their N-terminal sequences.

Shortly after, the domains were renamed as DHR (Dlg homology region) domains; and

finally, the name PDZ was derived from the acronym of these three proteins (i.e., PSD-

95, DLG1, and ZO-1) for better reflection of the origin and distribution of the domain,

which was then accepted by the scientific community [87]. Interestingly, PDZ domains are

more abundant in multi-cellular organisms (e.g., human, mouse, plant, fly, worm etc.) than

unicellular organisms (e.g., bacteria, archaea etc.), which may be due to the co-evolution of

the PDZ domains [81]. For example, around 270 PDZ domains are found in more than 150

proteins in human proteome (see Section 4.4.2), but on the other hand yeast (Saccharomyces

cerevisiae) proteome has three PDZ domains composed in only two proteins (UniProtKB/-

Swiss-Prot database, release 2015-01 [19]).

PDZ domains can be observed in multiple copies in the proteins that are mainly found

in cytoplasm. However, PDZ domains can also be seen in combination with other mod-

ular domains, such as SH3, PTB etc. Surprisingly, PDZ domains have never been seen

with SH2 domains [82]. Based on the modular organization, PDZ domains are classified

into three families: (i) in the first family, all proteins are entirely composed of PDZ do-

mains (e.g., NHERF1). The number of PDZ domains can vary from 2 to more than 10;

(ii) the second family proteins contain one or three PDZ domains, one SH3 domain, and

one guanylate kinase-like (GK) domain. PDZ domains from this family are observed in

membrane-associated guanylate kinases (MAGUKs), which include PSD-95, DLG1, and

ZO-1; and (iii) the third family comprises proteins (e.g., MPDZ) that contain PDZ domains

in combination with other protein domains (e.g., PH, WW, L27, LIM etc.) [82].
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TIPLIKGPK-GFGFAIADSPTG---------QKVKMILDSQWCQGLQKGDIIKEIYHQNV-QNLTHLQVVEVLKQFPVGADVPLLILR---
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Figure 1.7.: Alignment and structural organization of human PDZ domains. Residues occur
in the ligand binding pocket, which is formed by the second β strand, the second α helix, and a
GLGF loop, are represented with colored background. Residues in red colors are the main specificity
determinants of PDZ domains [88]. The MUSCLE program was used for the alignment [42].

Sequence and structure

PDZ domains are typically 80−90 amino acids in length, containing 5−6 β strands and 2

α helices (see Figure 1.5.C). Figure 1.7 illustrates the sequence and secondary structural

organization of PDZ domains. The overall sequence identity of PDZ domains is about 30%,

and there are more than 300 structures available in PDB database [89]. The structure and

function of a PDZ domain can be affected by an additional secondary structure. For exam-

ple, PDZ3 from PSD-95 has an additional C-terminal α helix that significantly influences

the function of the proteins [90]. It has been observed that the PDZ domains are highly

resistance against extensive mutagenesis [91].

Binding specificity

Most commonly, PDZ domains are known to bind hydrophobic C-terminal residues of target

proteins [92]. The second β strand, the second α helix, and a GLGF loop of the PDZ

domain collectively form the binding pocket, which recognizes C-terminal peptides of their

binding proteins [93, 94]. However, slight deviations of this concept have also been reported

previously [95, 96]. For these C-terminal binding motifs, a global position system has been

induced where C-terminal residue (i.e., last amino acid of a binding peptide) is given position

P0 and going upstream residues are given position P−1, P−2, and so on. Last four residues

of C-terminal motifs are known to be the most important to bind PDZ domains [94, 97],

although there are some PDZ domains that are found to interact with residues up to position

P−7 by an extended β2-β3 [98] loop or an extended α2 [99]. Interestingly, some amino

acids in C-terminal peptides are more preferred than other amino acids in specific position.

Deletion or mutation of an important residue of a binding peptide can drastically reduce

the interaction [92].

Due to high variability in sequences, PDZ domains are highly specific about their binding

partners. In earlier studies, PDZ domains were grouped into three different classes based on

their C-terminal binding motif structures: x[T/S]xΦ-COOH (class I motif), xΦxΦ-COOH

(class II motif), and x[D/E]xΦ-COOH (class III motif), where x represents any natural

amino acid and Φ represents hydrophobic amino acid [92, 100].
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1.5. Cellular and molecular function of the modular protein domains

• Class I motif (x[T/S]xΦ-COOH): In this motif, serine (Ser) and threonine (Thr) are

the most preferred amino acids in position P−2, and a hydrophobic residue is preferred

in position P0. For example, second PDZ domain of PSD-95 interacts with ETDV-

COOH and ESDV-COOH motifs of the Shaker-type K+ channels and NMDA receptor,

respectively [84, 101].

• Class II motif (xΦxΦ-COOH): Here, hydrophobic residues, such as Val, Tyr, Phe,

Leu, Ile etc., are preferred in position P−1 and P−3. For example, PDZ domains from

LAP2/ERBIN and CASK bind to DVPV-COOH and EFYA-COOH motifs of the ErbB2

and Syndecan proteins, respectively [102, 103].

• Class III motif (x[D/E]xΦ-COOH): This motif is comparatively rare. Here, aspartic

acid (Asp) and glutamic acid (Glu) are preferred in position P−2, and a hydrophobic

residue is favorable in position P0. For example, NOS1 PDZ domain recognizes VDSV-

COOH motif of the Melatonin receptor [100].

Nevertheless, this classification system is an oversimplification, since it is known that

every residue in the target peptide contributes to the binding specificity of respective PDZ

domains. Although PDZ domains are most commonly found to interact with C-terminal

tails of their target proteins, other interacting modes, such as interaction with internal

peptides [104, 105], homo and/or hetero dimerization [106, 107], and binding with membrane

phospholipid [108, 109], have also been previously detected.

1.5. Cellular and molecular function of the modular protein

domains

1.5.1. Function of SH2 domains

Various biological processes are executed by SH2 domain mediated interaction. Different

cellular and molecular functions of SH2 domains are described below.

Interaction with receptor tyrosine kinases (RTKs)

One of the main functions of SH2 domains is to bind activated receptor tyrosine kinases

(RTKs) to regulate a series of biochemical pathways [12]. In human proteome, 90 tyrosine

kinase genes were identified; among them 58 genes are responsible for encoding the receptor

tyrosine kinase proteins [110]. An important RTK, i.e., platelet-derived growth factor recep-

tor (PDGFR), recruits several SH2 domains upon its activation and transmits downstream

signals that initiate various cellular processes, such as DNA synthesis, immediate-early-

gene expression [111, 112]. The phosphorylated tyrosine residues in the cytoplasmic tail of

PDGFR are targeted by various SH2 domains. However, the signaling strength differ qual-

itatively and quantitatively, since residues in the close vicinity of phosphotyrosine (pTyr)

are the main determinants of the binding specificity of a SH2 domain [112].
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In signaling process, several adaptor proteins, such as GRB2, SHC, and NCK, are also

recruited to activated RTKs. For example, GRB2 protein uses its SH2 domain to bind RTKs

and uses its two SH3 domains for further interacting with SOS, a Ras guanine-nucleotide ex-

change factor (Ras GEF), which facilitates the downstream signaling for mitogen-activated

protein kinase (MAPK) pathway [112, 113].

Previous research revealed that the lack of epidermal growth factor receptor (EGFR)

signaling in human can cause several neurodegenerative diseases, such as Alzheimer’s disease

and multiple sclerosis [114]. Additionally, it has also been observed that the mutation of

two important tyrosine residues of hepatocyte growth factor receptor (HGFR), which mainly

interacts with PI3K, GRB2, SHC, and SRC SH2 domains, can cause an embryonic lethal

phenotype in mice [112, 115], and altering these tyrosine residues in a way by which only a

subset of SH2 domains can bind will cause complex cell-specific effects [112, 116].

Interaction with cytoplasmic protein tyrosine kinases

The SRC family kinases, e.g., YES, FYN, FGR etc., are a family of non-receptor kinases

that facilitate various signaling activities by interacting many cellular and nuclear proteins.

Previous studies showed that the SH2 domains from SRC family proteins have two main

functions: (i) keeping the kinases in an inactive state. For example, SH2 domain from

SRC protein in the chicken interacts with its own C-terminal pTyr residue (pY527) to

maintain the inactive state; and (ii) play an important role in processive phosphorylation

and substrate targeting [112].

As a negative regulator

SH2 domains are also known to play as a negative regulator in cellular signaling. For

example, SH2 domain from RasGAP is a negative regulator of Ras. By catalyzing, it

converts an active GTP-bound form to an inactive GTP-bound form of Ras and thus plays

a crucial role to control the Ras signaling [112, 113]. Another example of negative regulator is

c-CBL SH2 domain, which interacts with phosphorylated EGFR and degrades the activator

receptor [112].

As an “allosteric switch”

Currently, there are 10 proteins available in UniProtKB/Swiss-Prot [19] database, which

contain two tandem SH2 domains (N-terminal and C-terminal). They are known to in-

teract with multiple phosphorylated ligands. For example, SH2 domains from the ZAP-70

protein bind to the immunoreceptor tyrosine-based activation motifs (ITAMs) [112]. An

appropriate example that explains the function of the tandem SH2 domains is the PTPN11

mediated interactions. In one structural conformation of PTPN11, the N-terminal SH2

domain binds to its protein tyrosine phosphatase (PTP) domain and thus maintains the
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inactive state of the phosphatase. In a different conformation of PTPN11, when the N-

terminal SH2 domain binds to a phosphotyrosine peptide, the phosphatase becomes in an

active state [112, 117]. Therefore, in this case, the N-terminal SH2 domain of PTPN11 acts

as an “allosteric switch” [112].

Association with human diseases

Previous studies showed that the mutations in some SH2 domains are involved in several

human diseases. For example, the X-linked lymphoproliferative (XLP) syndrome can be

occurred by the disruption or a point mutation of SH2D1A/SAP SH2 domain [27]. The

mutation in the N-terminal SH2 domain of the PTPN11 protein can cause the Noonan syn-

drome, which is an autosomal dominant congenital disorder [28]. It has also been observed

that the X-linked α-gammaglobulinemia can be caused by a point mutation in the SH2

domain of Bruton’s tyrosine kinase (BTK) [29, 118].

Importantly, in the last decade, SH2 domains have become one of the important candi-

dates for the drug discovery. SH2 domains from ZAP-70, SRC, GRB2, LCK, and PI3K have

been found as the potential candidates that could be used for several disease treatments, in-

cluding cardiovascular disease, osteoporosis, immune system disorder, and cancer [112, 119].

1.5.2. Function of SH3 domains

For a long time after discovery, the function of SH3 domains in eukaryotes was elusive.

However, subsequent research showed the significant contribution of SH3 domains in a

diverse range of signaling processes, such as regulation of enzymes, altering the subcellular

localization, and controlling the assembly of large protein complexes [49, 120–122]. The

cellular and molecular functions of SH3 domains are discussed below.

Intramolecular interaction

An appropriate example of the SH3 domain mediated intramolecular interaction can be

found in the proteins from the SRC family. It is known that these proteins maintain their

inactive state by an intramolecular interaction where the C-terminal phosphotyrosine pep-

tide interacts with its own SH2 domain [49]. However, the structural studies of SRC and

HCK revealed that SH3 domain binds to a linker region, which contains a PPII helical con-

formation, between the kinase and SH2 domain in the same protein [49, 123, 124]. These

observations have further revealed that the SH3-linker intramolecular interactions are es-

sential for holding the cytoplasmic enzymes in their inactive conformation.

Effect of phosphorylation

Phosphorylation event takes a critical role in SH3 domain mediated interactions. For ex-

ample, the interaction between the SH3 domain of cytoskeletal-associated protein (PST-

PIP) and Wiskott-Aldrich syndrome protein (WASP) is inhibited by phosphorylation of
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PxxP segment of WASP [125]. Phosphorylation of serine/threonine residues in proline-

rich C-terminal region of SOS protein inhibits the interaction with GRB2 protein [126].

Other effects of phosphorylation that regulate SH3 mediated interaction have also been

observed [127, 128].

Interestingly, phosphorylation events can serve as a “molecular switch” for SH3 and SH2

mediated interactions. The CD3epsilon contains an SH3 domain binding motif, i.e., PxxDY,

which also have a tyrosine (Y166) residue and thus upon phosphorylation this motif should

also be capable to bind an SH2 domain. Kesti et al. showed Eps8L1 and NCK-N SH3

domains bind this CD3epsilon containing motif, but phosphorylation of the tyrosine (Y166)

residue enables ZAP-70 SH2 interaction while diminishing SH3 interaction [66]. Here, phos-

phorylation of the tyrosine residue (Y166) acts as a “molecular switch”. Other such examples

of the “molecular switch” have also been reported [129–131].

Maintaining the assembly of large multi-protein complexes

The proteins from membrane-associated guanylate kinase (MAGUK) family are composed

of 1−3 PDZ domains, an SH3 domain, and a guanylate kinase-like (GK) domain. The

MAGUKs facilitate SH3 domain mediated intramolecular and intermolecular interactions

and play an important role in assembly of large multi-protein complexes at specific mem-

brane regions, such as cell-cell junctions, synapses, and neuromuscular junctions [49, 132].

Previous researches showed that SH3 domains of numerous MAGUKs, including PSD-95,

DLG, CASK, and p55, interact with their own GK domains [49, 120, 133]. The intermolecu-

lar interactions occur when an SH3 domain of a MAGUK binds to a GK domain of a second

MAGUK. In Drosophila sp., it has been observed that mutation in SH3 domain in a MAGUK

protein, i.e., DLG, causes malignant transformation and epithelial overgrowth [49, 121].

Controlling actin

The Las17p/Bee1P, a WASP homologue, is an important protein for the assembly of cortical

actin cytoskeleton and endocytosis in yeast [134, 135]. These WASP family proteins are

often targeted by the SH3 domains from myosin proteins. Mutation of the type I myosines,

i.e., Myo3p and Myo5p, results severe defects in the actin polarization [122, 136, 137].

Furthermore, Myo3p and Myo5p are also found to bind the verprolin, a protein-rich protein,

and play a critical role in the actin cytoskeleton organization [122, 138].

1.5.3. Function of PDZ domains

Initially, it was known that PDZ domains are only responsible for assembling the signaling

molecules to regulate signal transduction, but gradually it got clear that they do more than

it was thought. Different cellular and molecular functions of PDZ domains are described

below.
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Regulation of PDZ domains

For understanding the diverse functionality of PDZ domains, one has to acquire knowl-

edge about the regulatory mechanisms of PDZ domain mediated interactions. The post-

translational modification (PTM), allosteric changes, and autoinhibition have been identified

as the reasons for the regulation of PDZ domain mediated interactions [139].

Phosphorylation is a prime example of post-translational modification that takes an im-

portant role in the regulation of PDZ domains. A serine phosphorylation of the NR2B

subunit of NMDA receptor (S1480) disrupts its interaction with the PSD-95 PDZ domain,

which eventually reduces the surface expression of the NR2B in neurons [140]. Interestingly,

is has been observed that phosphorylation of PDZ domain itself can also negatively regulate

the PDZ mediated interactions. A serine phosphorylation of PDS-95 PDZ domain (S73)

negatively regulates the spine growth and synaptic plasticity [141]. More recently, Akiva

et al. showed phosphorylation can serve as a “molecular switch” or “specificity switch”

for PDZ mediated interaction [142]. They showed that PDZ domains have inverse affini-

ties to the phosphorylated and non-phosphorylated peptides. This study indicates that in

a normal state, some potential motifs may interact with their specific PDZ domains, but

upon phosphorylation, they reject those specific PDZ domains and bind to different PDZ

domains [142].

PDZ domains are functionally very dynamic, which can be regulated by the allosteric

behavior of PDZ containing proteins. Van der Brek et al. have shown that the intramolecu-

lar PDZ-PDZ interaction allosterically modulates the binding preferences of PDZ domains.

They found the binding specificity of PTP-BL PDZ2 can be modulated by the presence of

PDZ1 [143]. In this case, the PDZ1 binds to the surface on PDZ2, which is opposite to the

peptide binding groove. A recent genome-wide study revealed that 40% of PDZ domains

have lipid membrane affinity and act as dual-specificity modules, which regulate protein

interactions at the membrane [144].

In a specific structural conformation, intramolecular PDZ mediated interactions can cause

autoinhibition. For example, if a C-terminal tail of a protein interacts with its own PDZ

domain then it is no more accessible for further binding and therefore adopt the auto-

inhibitory conformation [139]. Several examples for autoinhibition of PDZ domains have

been reported for NHERF1, X11 α, and tamalin/GRP1-associated scaffold protein [96, 145,

146].

Adaptor for receptor tyrosine kinases (RTKs)

It has been previously observed that the PDZ domains can play an important role in local-

ization of the signaling molecules, such as receptor tyrosine kinases and glutamate recep-

tors [78, 82]. For example, in Caenorhabditis elegans, the Lin-7-Lin-2-Lin-10 PDZ protein

complex interacts with the Let-23, an epidermal growth factor receptor homologue and can

mislocalize it so that it cannot access its binding ligand, Lin-3 [82, 147]. Furthermore, au-
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tophosphorylation of the platelet-derived growth factor receptor (PDGFR) is also caused

by interacting with a PDZ domain from NHERF [148]. Basically, PDZ domains provide a

versatile option to the RTKs for specifying their functions [82].

Maintaining epithelial polarity

PDZ domain containing proteins are often localized near cell membrane of a polarized cell

and thus take a central role to maintain the epithelial polarity of the cell [82]. Bilder et al.

showed that the Dlg, lgl, and Scrib proteins are required for regulating the epithelial cell

polarity [149].

Roles in synaptic communications and protein networks

PDZ domains play a crucial role in synaptic communication. In mammalian central ner-

vous system, the neurotransmitter receptors, such as glutamate receptors, activate various

signaling pathways by interacting with PDZ domain containing proteins [82]. For example,

N-methyl-D-aspartate (NMDA) receptors bind to the PDZ domains from PSD-95 and play

a key role in synaptic plasticity [101]. Furthermore, it has been observed that the PDZ

domain containing synaptic proteins are important to build a large protein network [82].

Association with diseases

PDZ domains have a large association with numerous diseases. A PDZ domain containing

protein, namely Shroom, is involved in several diseases, such as spina bifida, cleft palate,

acrania etc. [82, 150]. In mice, a mutation in the Dlg genes causes craniofacial dysmor-

phogenesis with cleft palate [151]. Disruption of Scrib protein causes a severe neural tube

defect, and evolutionary high conservation of this protein also suggests it may have an effect

in tumorigenesis [82, 152, 153]. Additionally, previous study suggested that the disruption of

PDZ domains has a deep impact on various signaling pathways that are found in cancer [82].
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Chapter 2

Overview of existing methods and their

limitations

2.1. Overview

Thousands of modular protein domains that recognize linear peptides are spread across

the eukaryotic genomes. Accomplishing large-scale data about binding specificities for all

peptide recognition domains is a very challenging task. However, many high-throughput

methods have been successfully introduced to address the binding specificity of some peptide

recognition modules. The enormous data generated by these high-throughput experiments

have become invaluable to build powerful computational models. In this chapter, we first

discuss about the important high-throughput techniques that have been widely used for

identifying modular domain-peptide interactions along with their limitations. We then

discuss various computational methods that have been developed for predicting modular

domain mediated interactions. Majority of these methods train their prediction models using

the data generated by high-throughput techniques. Finally, we highlight the drawbacks

of existing methods that can severely affect the prediction accuracy. Some parts of the

publication [P4] are presented in this chapter.
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2.2. High-throughput techniques

Over the years several experimental approaches have been employed to identify in vitro bind-

ing specificity of modular protein domains. High-throughput (HTP) analysis of modular

protein domains using peptide arrays (SPOT, OPAL etc.), microarrays, phage display, and

other HTP techniques are invaluable to understand the underlying nature of their binding

specificity, and thus take an important role to define the potential domain-peptide interac-

tions. However, each HTP technique has particular limitations and pitfalls. See Table 2.1

for the outline of pros and cons of established HTP techniques.

In the following sections, we will describe some of the major techniques that have been

widely used for describing the specificity of modular protein domains.

2.2.1. High density peptide arrays

Peptide array technology is a powerful tool that has been successfully used for defining

binding specificity of modular protein domains, screening for cellular interaction partners,

and developing selective protein interaction domains inhibitors [43, 58, 155–157].

In 1983, Roland Frank described the initial concept of simultaneous synthesis of multiple

components on a solid support [158]. Almost a decade later, two techniques of chemically

synthesizing peptide arrays were developed: the SPOT synthesis technique was pioneered

by Frank et al. [159] and light-detected, spatially addressable parallel chemical synthesis

was described by Fodor et al. [160]. The SPOT synthesis technique was widely accepted by

the scientific community, since it is very simple and extremely robust technique for parallel

synthesis of thousands of peptides and subsequently screen them on a solid surface. Over the

years the technique has been reviewed several times and has gradually becomes an impor-

tant tool in biology, particularly in molecular immunology [161]. In SPOT synthesis, when

small droplets of activated amino acids are spotted onto the planar surface of a porous cel-

lulose membrane (see Figure 2.1.A), the droplets are absorbed and form circular spots, and

Table 2.1.: The table contains common high-throughput techniques that determine the binding
specificity of modular protein domains, and their pros and cons. The table is adapted with permission
from John Wiley and Sons: Proteomics [154] (license number: 3558260224349).

Methods Library size Quantitative Pros Cons

Peptide array 10-1000s Semi-quantitative Unnatural and modified

amino acids, PTMs, pro-

duces negative binding

data, and easy to gener-

ate different libraries

Biased libraries, high cost

of materials

Protein microarray 10-100s Quantitative Quantitative Protein stability, limita-

tion in number of pep-

tides

Phage display 1 x 10ˆ10 Not quantitative Random peptides, low

costs for production

Only natural amino

acids, no PTMs, high

cost in DNA sequencing
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therefore efficiently generate an open reactor for synthesis of cellulose-bound peptides [161].

Automation of this technique is also possible with a multiple synthesizer (Intavis AG, Köln,

Germany) in analytical and preparative mode that enable parallel synthesis of upto 6000

and 1000 cellulose membrane-bound peptides, respectively [155].

A variation of synthetic library namely, oriented peptide array library (OPAL) was de-

veloped by Rodriguez et al. in 2004 [156]. The OPAL approach integrates both oriented

peptide libraries and array technologies that allow to synthesize hundreds of pools of ori-

ented peptide libraries and are arranged as scan arrays. OPAL requires less knowledge

about binding preference of domains but generally works best when at least one important

position of the binding peptide is fixed [156]. For example, SH2 domains recognize phospho-

rylated tyrosine (pTyr) residue with high affinity and hence the position of pTyr residue in

the array can be fixed and a randomized mixer of amino acids can be used in other positions.

Some domains target their peptides with relatively lower affinity (e.g., SH3, PDZ etc.) and

in this case, at least two residue positions need to be fixed [154].

More recently, Tinti et al. has proposed a peptide chip technique, which is also a vari-

ation of SPOT synthesis, to study SH2-peptide interactions. This method is capable of

synthesizing a much higher number of peptides (several thousands) in a single experiment

and screen them onto aldehyde-modified glass surface [162].

Peptide array technique has several advantages: (i) it allows the use of unnatural and

modified amino acids as building blocks in the peptide synthesis, which is very useful to

study the interactions that depend on post-translational modification (PTM) of the binding

peptides, (ii) a modified SPOT technique can synthesize membrane-bound peptides with

free C-termini, which allows to study the PDZ mediated interactions [163], and (iii) along

with the capability of producing binding interactions, it also has the ability to identify weak

binding (if weak signal is detected in the array) and non binding (if no signal is detected in

the array) interactions. However, peptide array technique has some disadvantages as well:

(i) it needs some degree of priori knowledge of binding specificity of the modular domains,

(ii) the efficiency of the peptide synthesis on a solid surface is not uniform and may be

difficult to assess, since the peptides on the array do not undergo purification. Hence, the

results could be affected by false negative interactions [154].

2.2.2. Protein microarrays

In protein microarray, the modular proteins are typically immobilized onto a solid surface,

such as a modified glass microscope slide, and probed with enzyme-labeled peptides [164].

The flexible detection methods (fluorescence-based and enzymatic detection) and attach-

ment method are probably the key components behind the success of protein microarrays.

Protein microarray has become a versatile tool, which is suitable for large-scale analysis.

For determining the specificity of the modular protein domains, protein microarray has

been successfully used in the last few years (see Figure 2.1.B). MacBeath and co-workers

developed protein interaction maps using protein microarrays to investigate SH2/PTB pep-
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Modular domain
Detection tag

(A)

Peptide

Peptide array

Modular domain

Detection tag

(B)

Peptide

Protein microarray

Phage

(C)

Peptide

Modular domain

Modular domain

Peptide

Phage

(D)

Phage display

Figure 2.1.: High-throughput techniques to determine the binding specificities of modular protein
domains. (A) Peptide array: a diverse set of peptides are immobilized on a solid surface and probed
with an interacting domain. The binding is detected by fluorescence or antibody based system.
(B) Protein microarray: a set of soluble domains are immobilized on a solid surface and probed
with a labeled peptide. A fluorescence-based system is used for the interaction detection. (C+D)
Phage display: (C) a diverse set of random peptides are expressed on the bacteriophage coat and
incubated with immobilized soluble domains, and (D) in a reverse process, a diverse set of domains
are expressed on the bacteriophage coat and screened to bind peptides. High affinity interactions
are detected using sequencing of phage DNA.
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tide interactions [44, 165]. Stiffler et al. fabricated another protein microarray to identify

the PDZ peptide interactions [164]. These methods calculate the affinity of domain peptide

interactions. To assess the accuracy, an apparent equilibrium disassociation constant (KD)

was used. More recently, a cellulose peptide conjugate microarray (CPCMA) has also been

developed to quantify the specificity of SH2 domains [166].

However, this method also has some disadvantages: (i) the required orientation and

conformation for the peptide binding might be disrupted by immobilization method of the

recombinant proteins. Thus, optimization with meaningful evaluation is required for the

immobilization of a given protein [167], (ii) uses limited number of peptides to identify the

modular domain peptide interactions, and (iii) the protein microarray techniques are often

affected by a high rate of false positive and false negative.

2.2.3. Phage display

In 1985, Smith and co-workers first described the phage display technique [168]. Over

the years, this technique has been improved and has gradually become one of the most

powerful and conventional tools for proteomics screening. Over the years, several variations

of the phage display have been applied to study protein-protein interaction [169, 170]. In

this technique, the DNA are expressed as a protein and subsequently fused with phage

coat protein to make a hybrid fusion protein. Short peptides are expressed as N-terminal

fusions, however, C-terminal fusion is also possible [171]. More than 10 billion random

peptides can be screened by the phage display libraries [97]. High affinity scores can be

detected by the biopanning process that generally includes four steps: (i) phage display

library preparation, (ii) capturing or panning, (iii) washing, and (iv) elution [172]. Phage

libraries that bind to the domains can be easily isolated and sequenced to determine the

binding specificity of modular protein domains. Beside the principle to express the peptide

sequences, modular domains can also be expressed on the phage surface (see Figure 2.1.C

and 2.1.D). Karkkainen et al. expressed SH3 domains on phage surface and showed that

these domains can bind their target peptides with a much higher affinity than previously

reported [54]. Phage display technique has also been used to study the mutational tolerance

and the in vitro evaluation of a modular domain [91]. Phage display has been proven as

a powerful method to investigate modular domain mediated interactions. Tonikian et al.

efficiently employed phage display technique to determine the binding specificity of PDZ

and SH3 domains [97, 173]. A combined strategy, which includes phage display and large

scale yeast two-hybrid methods has also been used to identify the relevant binding partners

of SH3 domains from yeast proteome [77]. Main advantages of this technique are: (i)

a large set of chemically diverse peptide ligands can be produced efficiently [97] and (ii)

inexpensive production costs. However, this method also has some pitfalls: (i) unlike SPOT

synthesis, the phage display technique does not include unnatural amino acids in the phage

library, which makes it difficult to study the PTMs and (ii) it is a bit expensive for DNA

sequencing [154].
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2.3. Existing computational methods

While the enormous amount of data generated by these aforementioned high-throughput

techniques have become very important to describe specificity landscapes of different PRMs,

however, obtaining large sets of such data for all peptide recognition domains is unfeasi-

ble due to some experiment stringencies, such as solubility, expression, common cloning

etc. [174]. Furthermore, these kind of data also have some severe caveats. For example,

data may be rich only for certain domains while it is scarce or completely missing for other

domains. Thus, developing powerful computational methods, which infer binding specificity

from a limited set of experimental evidences is indispensable. Several computational meth-

ods that are based on bioinformatics, statistics, machine learning approaches have been

developed over the years. In this section, we will describe some important computational

models that have been employed to predict binding partners of modular protein domains.

2.3.1. PWM-based methods

The interactions mediated by modular protein domains are highly selective, since these

domains bind to their physiological partners that contain specific sequence patterns. For

example, WW and Class I SH3 domains bind to peptide sequences mainly containing PPxY

and [R/K]xxPxxP sequence motifs, respectively. An alignment of these peptide sequences

for a specific domain could produce consensus sequences that can be used for describing

the binding specificity of that domain. Few databases containing large collection of such

consensus sequences for several modular domains have been reported recently [175, 176].

However, in many cases these consensus sequences are not enough to describe the specificity

of a certain domain, as some less preferable residues in some position are often ignored. It

is known that most of the SH3 domains bind to peptides that contain PxxP core motifs,

however, previous research showed several unconventional motifs can also be targeted by the

SH3 domains with slightly weaker affinity [66, 67, 74, 75]. For example, SH3 domain from

CIN85 protein targets PxxxPR motif, which is slightly different than class II consensus but

missing a PxxP core motif (see Section 1.4.2 for more details) [75]. Moreover, some amino

acids are weakly preferred by the positions denoted with x in the consensus sequences. These

preferences are often crucial to explain the binding specificity of different domains from the

same domain family. To overcome these limitations, Stormo and his co-workers introduced

Position Weight Matrices (PWMs) or Position Specific Scoring Matrices (PSSMs) in early

1980s [177, 178].

The main concept of this method is to compute probability scores for each amino acid

at each ligand position. For a given domain, a verified set of known ligands need to be

aligned. The probability can then be computed as the frequency of each amino acid at each

position and subsequently a probability matrix can be constructed. Finally, a PWM score

of a given peptide can be computed by multiplying the probabilities of different residues in

different positions. The amino acid composition of the binding peptides can be visualized
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Figure 2.2.: This figure represents a sequence logo of class II motif containing peptides that are
bound by SRC SH3 domain. Here, it is clearly observed that position 7, 10, and 12 have preferences
for proline, proline, and arginine/lysine, respectively, and no amino acid preferences are observed in
other positions. WebLogo was used for constructing the sequence logo [180].

using sequence logos [179]. The height of a letter at a certain position in the sequence logo

is proportional to the frequency of the corresponding amino acid. Fully specific positions

can easily be distinguished from a random position. For example, a sequence logo of class

II peptides that are targeted by SRC SH3 domain is depicted in Figure 2.2; where position

7, 10, and 12 have preferences for specific amino acids but other positions do not have any

specific amino acid preferences.

Over the last several years, many computational tools based on PWMs have been de-

veloped to address the specificity of modular protein domains. Most important tools are

discussed in the following sections.

Single PWM-based method

In single PWM-based methods, the specificity of a domain is represented by a single PWM.

One of the most popular tools, Scansite, was introduced by Yaffe and co-workers in

2003 [181]. This tool is typically based on PWMs derived from chemically synthesized

peptide array libraries and phage display experiments [182]. The tool has been widely used

for predicting the peptides that are recognized by modular protein domains, phosphorylated

by protein kinases (Ser/Thr/Tyr kinases), and mediate protein or phospholipid ligand inter-

actions. Currently, 65 sequence motifs are available and each sequence motif is represented

as a PWM. These motifs characterize binding specificities of many families of Ser/Thr/Tyr

kinases, SH2, PTB, SH3, PDZ, and 14-3-3 domains [181].

Few years later, another single PWM-based method, scoring matrix-assisted ligand iden-

tification (SMALI), was developed by Li and colleagues to predict SH2 and PTB domain

mediated interactions [183]. SH2 and PTB domains typically recognize phosphorylated ty-

rosine (pTyr) residue to perform their biological functions. SMALI PWMs were constructed

from screening oriented peptide array libraries (OPAL)[39]. SMALI is similar to Scansite

but it has a few additional advantages: (i) SMALI offers PWMs for 76 SH2 domains in con-

trast to 14 PWM models offered by Scansite, (ii) SMALI uses selectivity information for

six positions (i.e., -2 to +4 amino acids with pTyr in 0th position) of a peptide to construct

the PWMs; where most of the Scansite PWMs for SH2 domains were constructed using
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Chapter 2. Overview of existing methods and their limitations

selectivity information for three positions (i.e., +1 to +3 amino acids with pTyr in 0th

position), and (iii) to achieve more physiologically relevant interactions, SMALI incorporates

additional filters, such as phosphorylated peptides, signal transduction, and subcellular lo-

calization of domain containing and binding proteins. A SMALI score is also normalized

by an experimentally determined cut-off value. To determine the cut-off value, the author

validated the top SMALI predictions for BRDG1 and GRB2 SH2 domains. They achieved

best SMALI scores (cut-off values), based on F-measure, that separate top 3.5% and 5.5% as

confident interactions for BRDG1 and GRB2, respectively. For other domains, they consid-

ered the SMALI scores, which separate top 4.5% (average percentage of BRDG1 and GRB2)

interactions (see PSSM-based SMALI model in Section 3.2.2). Note that every domain has

a different cut-off value. Tonikian et al. employed a single PWM-based model derived

from phage display experiments to accurately map binding specificity for hundreds of PDZ

domains in the human and worm proteome [97].

A multi-domain selectivity model (MDSM) derived from a protein microarray experiment

has been proposed by MacBeath and co-workers [164]. This model is a variation of a PWM,

which was designed to describe the difference in selectivity of many members of PDZ domain

family. Other single PWM-based methods have also been developed to predict the modular

domain mediated interactions [184–186].

Initially, it was assumed that residues in the peptides are independently responsible for

the interaction. More clearly, the presence of an amino acid at a certain position is not

influenced by the presence of other amino acid at other position in the binding peptides.

This also implies that single PWM approaches cannot differentiate between peptide classes.

However, based on this assumption of linearity, over the past years, the aforementioned single

PWM-based approaches have been developed to build powerful computational models for

many high-throughput data, specifically generated by oriented peptide array libraries [187].

Linearity issues: a review on positional dependency problem

In 2010, Liu et al. showed that SH2 domains have distinct selectivity on their binding pep-

tides. The underlying truth of the binding peptides is that they are composed of permissive

and non-permissive amino acids, where permissive amino acids promote the interaction and

non-permissive amino acids inhibit the interaction, and thus allows us to understand the

subtle differences in peptide ligands [43]. This observation prompted that the residues in

the close vicinity of phosphotyrosine are highly predictive for SH2 domain mediated inter-

actions (see Figure 2.3 for details). It is known that the CRK SH2 domain binds peptides

where amino acid Leu or Pro is present in position +3, however, presence of other amino

acids in other positions can prohibit or even diminish the interaction. For example, ba-

sic residues (i.e., His and Arg) are disfavored in position +1 and +2, Ala is disfavored in

position +1 and Pro is prohibited in position +1 and +2. Similarly, GRB2 SH2 domain

interacts peptides with an Asn residue in position +2. Additionally, it also favors Glu in

position +1, +3, and +4 but exhibits a prohibition against Arg and Asp in position +1, +3,
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Figure 2.3.: Contextual binding specificity of the SH2 domains. (A) Left panel: PWM or PSSM
based approaches consider each amino acid independently for each position. Thus, do not allow
the positional dependency among the amino acids. Right panel: contextual specificity of the SH2
domains is shown, which depends on permissive and non-permissive amino acids in the peptide
ligands and therefore indicates positional dependency. (B) SH2 domains from CRK, BRK, RASA1,
VAV, and ABL families prefer a basic peptide motif, pY-xxP. However, sequence context and non-
permissive residues of this motif take a vital role for discriminating the binding specificity of these
domains. (C) Permissive and non-permissive amino acids. Left panel: general motif preference of
CRK and BRK SH2 domains where they bind to a Pro at +3. Middle panel: while an Asp at +1
and an Arg at +4 are permissive and favored by CRK, they are non-permissive and disfavored by
BRK. Right panel: Two Glu at +1 and +3 are favored by the BRK, whereas they are disfavored by
CRK. (D) Contextual sequences of CRK mediated interactions. Left panel: basic binding specificity
of CRK SH2 domain where it binds to a peptide, which contains a Pro or Leu at +3. Middle panel:
an Ala at +1 with a Pro at +3 is favored, but an Ala at +1 with a Leu at +3 is disfavored by CRK.
Right panel: a Pro at +2 with a Leu at +3 is favored, but a Pro at +2 with a Pro at +3 is disfavored
by CRK. The phosphorylated Tyr is indicated by a P symbol with yellow background. The figure is
adapted with permission from Elsevier: FEBS Letters [36] (license number: 3572171346505).

and +4, and rejects Lys at position -1, +1, +3, and +4 [43]. By looking at the examples

mentioned above, it is clear that the selectivity of SH2-peptide interactions are not depend-

ing on physio-chemical property of the amino acids, as GRB2 SH2 domain favors Glu but

rejects Asp (both are acidic amino acids) in the position +1, +3, and +4. This kind of

highly selective nature of SH2 domains creates more difficulty to differentiate between the

ligands having minor differences in their physio-chemical properties along with the struc-
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Figure 2.4.: (A+B) Multiple specificity of SRC SH3 domain. This figure represents the sequence
logos of class I (A) and class II (B) motif containing peptides that are bound by SRC SH3 domain.
WebLogo was used for constructing the sequence logo [180].

ture [43]. PWM-based approaches, such as SMALI and Scansite were appear to perform a

good job for the prediction of binding ligand based on permissive residues. However, they

were failed to recognize the importance of non-permissive residues [43], since they only rely

on positive interaction data (generative approach).

More interestingly, it has been observed that there are positional dependency between

non-permissive and permissive residues in the peptide ligands that interact with SH2 do-

mains [36]. For example, the role (whether as permissive or non-permissive) of an Ala in

position +1 or a Pro in position +2 depends on the occurrence of a permissive residue (Pro

or Leu) in position +3 (see Figure 2.3.D). Highly significant dependencies between the ligand

positions in other modular domains, such as SH3, PDZ, WW, Chromo, and 14-3-3 domains

were also found [188–190]. For example, first PDZ domain from human DLG1 protein binds

with peptides where Ile in the position -1 (C-terminal residue is given position 0) always

appear with Trp or Leu at position 0, but is never found with Val at the same position.

Thus, the local sequence context and the subtle dependency between the amino acids are

highly important to define the binding specificity of a modular protein domain [36, 43, 188].

Recently, several studies have shown that dependencies between different ligand positions

take an important role in binding specificity of modular domains [43, 188, 191]. These kind

of positional dependencies between the amino acids in the binding peptides are completely

ignored by the single PWM-based methods. Moreover, single PWM-based approaches as-

sume that the domains are bound by the single class of peptides, i.e., all domains follow

the same binding mode and hence are unable to describe the multiple specificity binding

mode of modular domains. For instance, peptides that bind to SRC SH3 domain can be

classified into two major classes: (i) class I consists [R/K]xxPxxP motifs and (ii) class II

consists PxxPx[R/K] motifs (see Figure 2.4).

Multiple PWM-based method

To circumvent the limitation of single PWM approach, Gfeller and colleagues proposed a

mixture model that contains multiple PWMs to define the multiple specificity of a modular

domain and showed that the multiple specificity model can predict protein interactions

more accurately than single PWM-based model [188, 192]. They also showed that the same

domain can bind to a set of peptides with distinct sequence patterns and these sequence

patterns can be identified by a set of small number of peptide clusters where each cluster

represents a sequence pattern. Recently, they have introduced a tool, MUltiple Specificity
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---ACFRPPPLLPIRPCC-----
---AEMRARLLPPLPGLE-----
---AFKPPVPPRPQAKVP-----
---AGALARPKVPSRNRV-----
----AKQPPVPPPRKKRIS----
---AKTRPLPPLPPRLEC-----
---CKKLSPPPLPPRASI-----
----CKSLPLPPPRPPLLS----
---CKYRYLPERPHLRRL-----
---CLRPAPPLRPSAALC-----
----CYARRLPPRPTRSPA----
----FRPLLPRRPPGCGQH----
---FSRSLKPVLPHKVAH-----
GNLRCLPLPPRPPAT--------
---GPARGLPSLPLAGFS-----
----HPGGPVPPPRLLHLC----
---LVLPVVPLLPTRLSR-----
----LVPFPPPPPRTPLLW----
---PPARALPFPPPWAMQ-----
---TFRPLPPPPPPPHAC-----

Figure 2.5: This figure illustrates an align-
ment of SRC SH3 domain binding peptides de-
rived from a high density peptide array screen-
ing experiment [58]. The alignment is gener-
ated by MUSI, which uses the MAFFT algorithm.
Internal gaps were eliminated by increasing gap
opening penalty [192, 195]. To make it sim-
ple, a subset of aligned peptides is shown. It
is clearly observed that the alignment is not
optimal even though the core motif (PxxP) is
contained by all the peptides. Some of the pep-
tides aligned correctly (class I and II motifs
are colored as blue) but others aligned incor-
rectly (class I and II motifs are colored as red).
This suboptimal alignment is produced due to
proline-rich property of the peptides and hence
predictive performance of any computational
model that uses an error-prone initial align-
ment will severely be affected.

Identifier (MUSI), to address multiple binding specificities of a modular domain [192]. In

this method, all the peptide sequences for training purpose are first aligned without any

internal gaps and a mixture model is then built to identify multiple PWMs from the aligned

sequences [188]. The parameters for the mixture model are optimized by standard Maximum

Likelihood with the Expectation-Maximization (EM) algorithm [188, 193]. The number of

PWMs (K) is automatically determined by the algorithm.

However, all the PWM-based methods inherently require an initial multiple sequence

alignment of the bound peptides, which is a very hard task for poly amino acid sequences.

Even minor alignment errors typically cause significant noise in the PWMs and eventually

produce error-prone models. Moreover, these complex models for predicting domain-peptide

interaction sometimes provide over-specific results, which do not reflect relevant biological

insights [187, 194].

Alignment issues: a review on proline-rich peptide alignment problem

Since PWM-based methods rely on an error-prone peptide alignment process (especially

aligning proline-rich peptides bound by the SH3 domains), one risks to introduce a significant

amount of noise and therefore obtain under-performing prediction models. SH3 domains

typically recognize proline-rich regions of a binding protein. Alignment of the proline-

rich peptides is a difficult task (see details in Figure 2.5). Unfortunately, no alignment

algorithms are available that can successfully handle this problem. Hence, computational

methods based on pre-alignment of proline-rich sequences produce suboptimal models. For

example, MUSI tool requires an initial alignment of the binding peptides to build multiple

PWM-based models [192]. To see how it affects the predictive performance, we performed

an experiment described below.
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Figure 2.6.: (A, B) Whisker-plot of MUSI score with different test data for two different human
SH3 domains (LCK and SRC). It uses four different test sets for each SH3 domain. In both cases,
the first dataset comprises all the known interactions retrieved from the MINT database and other
three datasets comprise random peptide sequences that are ∼50%, 80%, and 100% proline-rich,
respectively. MUSI produces single PWM for LCK domain and multiple PWMs for SRC domain.
It is clearly observed that MUSI scores are affected by the proline-rich sequences and thus 100%
proline-rich peptides, which are probably all non-binding peptides, achieve highest MUSI scores.

MUSI models have been trained for human SH3 domains from LCK and SRC protein.

The interactions data was derived from a high density peptide array experiment [58]. LCK

training data contained 49.33% class I and 50.47% class II peptides, whereas SRC training

data contained 52.67% class I and 46.68% class II peptides (see Table A.2.1). Thus, observ-

ing multiple specificity (class I and class II) for both domains was expected by the MUSI

algorithm. But with default settings, MUSI produces a single PWM for LCK and multiple

PWMs for SRC. Unfortunately, neither of the PWMs define the correct multiple specificity

of these domains. In the Figure 2.6, the sequence logos indicate the specificity identified

by MUSI. To evaluate the predictive performance, we created four different test sets. The

first test set was taken from the MINT database, which is a high-quality manually curated

database [196]. Other three artificial test sets comprise random peptides with ∼ 50%, 80%,

and 100% proline-rich sequence, respectively. Surprisingly, the peptides achieve higher MUSI

scores as the percentage of proline-rich increases. In both cases, 100% proline-rich peptides,

that are probably all negative data, achieve highest MUSI score (see Figure 2.6). This result

let us conclude that the PWM-based approaches that depend on pre-alignment of binding

peptides always produce suboptimal models, specifically when the binding peptides are rich

in one type of amino acid.
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2.3.2. Machine learning-based methods

Traditional PWM-based methods rely on generative approaches. More specifically, the

probability of a PWM-based model is estimated only on positive interaction data where

the information on the negative interaction data (non-interacting peptides) is completely

ignored. Machine learning algorithms that rely on both positive and negative data to

generate discriminative models have an advantage over generative ones. The ability to use

positive and negative data allows a discriminative model to identify the decision boundary

for the relevant regions of the data space [197]. Previous research showed that the models

generated by good quality interacting (positive) and non-interacting (negative) data achieve

better prediction quality [198, 199]. Machine learning is a computational method that is

widely used for domain-peptide interaction prediction. Mainly supervised machine learning

is used to predict modular domain mediated interactions, though there are other forms

of machine learning approaches available to deal with different problems (e.g., clustering,

affinity prediction etc.). Supervised machine learning methods are separated into two major

steps: (i) training and (ii) testing. In the training phase, the data is systematically encoded

as a set of feature vectors. This encoding then allows machine learning algorithms (e.g.,

SVM, Bayesian network etc.) to model relations between features and their respective

classes. A validation set is used to optimize the parameters. The goal of machine learning

algorithms is to distinguish the positive class from the negative class, and finally apply

this knowledge to classify previously unseen data in the test phase. Although there are

many strategies that have been used for estimating the performance of a predictive model,

cross-validation technique is more commonly used one (see Section 3.6.1 for details).

In the following sections, all the important tools based on machine learning that have

been applied to predict modular domain mediated interactions are discussed.

SVM-based methods

Support vector machine (SVM) is a well-established computational learning method that

recognizes patterns from the training data and builds a discriminant function that separates

binding and non-binding interactions. Over the years, several methods based on SVM have

been used for prediction of domain-peptide interactions. In 2011, Bader and his group pub-

lished a semi-support vector regression (SemiSVR) based framework using quantitative posi-

tive and qualitative negative training data to predict PDZ-peptide binding affinity [198]. Hui

et al. employed support vector machines (SVMs) to predict PDZ-peptide interactions from

multiple organisms [199]. In their study, they tried to improve the quality of negative data.

Recently, an SVM-based method called DomPep has been proposed by Li et al. for predicting

the binding partners of SH2 and PDZ domains. This method applied a nearest neighbor

approach (based on domain sequence identity and ligand binding specificity) to extend the

training set for each domain, achieving higher domain coverage [200]. Other PDZ-peptide

interaction prediction methods based on SVMs are also reported [201, 202]. SVM-based
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predictors that incorporate discriminative features not only from sequence information but

also from structural information have also been proposed by several groups [203, 204]. Hui

et al. developed an SVM-based method that incorporates the structure-based features that

have important roles in protein structure stability and facilitating protein-protein interac-

tions [203]. Hawkins et at. proposed threading techniques that generate structure-based

sequence alignment for contact residue inference, and used a geometric method to encode

the structure of the binding site [204].

ANN-based methods

Artificial neural network (ANN), which is inspired by animal nervous systems, is a ma-

chine learning approach that commonly used to predict numeric quantities, and has been

successfully applied to solve pattern recognition problem.

For predicting domain-peptide interactions, several ANN-based methods have been re-

ported. Miller et al. developed an ANN-based model to build an atlas of consensus sequence

motif of phosphotyrosine dependent binding domains, i.e., SH2 domain [191]. Ferraro et al.

proposed a machine learning method based on neural network to predict SH3 mediated

protein interactions. The features were encoded using the information from known domain-

peptide complex structures [205, 206]. Recently, a combined method with ANN and SVM

based on sequence and structural information has been proposed to build the model for

PDZ domain mediated interactions. ANN was used to make a model that predicts the

probability distribution of the contact residues and subsequently this model was used by

SVM for predicting binding and non-binding interactions [204]. In this study, the authors

showed that the prediction of PDZ domain-peptide interactions can be improved specifically

for low sequence similarity domains. Additionally, their method also achieved a better false

positive rate. One disadvantage of ANN is that the produced structure is opaque and can-

not provide any meaningful information to understand the nature of the solution, although

there are some techniques that can produce understandable insights from the structure of

neural networks [207].

Bayesian model-based methods

Bayesian network is a well established machine learning method that can be used to solve

variety of computational problems. There are two components, which define the construc-

tion of a learning algorithm for Bayesian networks: (i) a function that evaluates the given

network based on the data and (ii) a method that searches through the space of possible

networks [207].

Without any exception, this method has also been used for prediction of modular domain-

peptide interactions. Chen et al. proposed a Bayesian model that incorporated structural

information of a reference PDZ-peptide complex structure (PDB id: 2PDZ) to predict PDZ-

peptide interactions [88]. They identified 38 position pairs involving 16 positions in the
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PDZ domain and 5 positions in the peptide. All the position pairs were then incorporated

as features.

Other machine learning models to address modular domain-peptide interactions have

also been reported previously [208, 209]. However, all the machine learning-based methods

proposed to date have some severe caveats that affect their performances. We will discuss

several of these problems in the following section.

Modeling issues: a review on the imbalanced dataset problem

From an in silico modeling point of view, a key characteristic of the problem at hand is

that the available supervised information on peptide binding induces imbalanced datasets,

i.e., for certain SH2 domains, information on real interactions can be up to 15 times more

abundant than information on the lack of interaction (see Table A.1.1). In literature, it is

known (see [210] for a recent survey) that severe imbalanced class distributions negatively

affect the performance of machine learning approaches. The exponential increase in the

number of publications dedicated to imbalanced data management in the last decade is a

clear indication of the importance of the issue.

The problem arises since mainstream machine learning algorithms are not designed to

compensate for skewed class distributions, and concentrate on being accurate only on the

majority class. Two major causes of problems with class imbalance are: (i) the choice of

an adequate performance measure to guide the selection of the best hypothesis and (ii) the

discrepancy in the data distribution between the model induction (train) and the model

application (test) phase [211].

To illustrate point (i), consider a typical protein interaction prediction problem: while

the number of possible interactions grows quadratically with the number of proteins, the

number of positive interactions grows typically only linearly (i.e., one protein will bind to

a small fixed number of other proteins). In this case, the standard accuracy measure is

not appropriate, since a rational choice based on maximizing the predicted accuracy (in an

equal cost scenario) would inevitably be biased towards the majority case, and hence the

algorithm will almost always predict a negative/no-interaction response. To deal with this

issue, many techniques have been developed that try to explicitly and differently model the

cost of each type of mistake. A major drawback of this approach is that the optimal cost

matrix is unknown and the result is therefore highly dependent on expert knowledge and a

set of arbitrary/heuristic choices.

As for point (ii), it has been recognized that the issue is linked to the within-class imbal-

ance problem and the small disjuncts problem [212]. The phenomenon arises when the class

concept is composed of many sub-concepts/sub-clusters, each represented by relatively few

examples. Standard approaches achieve suboptimal results here, since not enough examples

are available to model an adequate response for these exceptional although significant cases.

Standard approaches are further compromised, if the sampling procedure in the test phase

differs from the one used to collect the training set. This typically happens when a small
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sub-cluster in the training set is over-represented in the test set (e.g., if cellular conditions

or experimental parameters change during data collection).

However, some guidelines are emerging in the machine learning literature on how to

counter-balance the small-disjuncts problem; the main recommendation is to prefer intel-

ligent over-sampling techniques to down-sampling as the latter always implies a loss of

information, which ultimately results in under-performing models. General approaches to

over-sampling, such as the popular synthetic minority oversampling technique (SMOTE) [213],

have the drawback of requiring an explicit instance representation (generally in some vector

space of relatively low dimensionality), and are therefore more difficult to adapt to the type

of data typically encountered in bioinformatics applications (i.e., sequences or graphs).

Learning issues: a review on the semi-supervised problem

The task of estimating when an existing peptide belongs to the non-interaction class can be

viewed as a special instance of the well-studied semi-supervised learning task (SSL) [214],

i.e., learning from a small amount of labeled data and a large amount of unlabeled data.

Here, differently from the general problem formulation, the main idea is to use the unsu-

pervised material to have a better characterization only of the minority class; in our case,

the one representing the absence of protein-peptide interaction.

Several strategies have been developed to deal with the SSL problem, such as self-training,

expectation maximization (EM) with generative mixture models, co-training, transductive

support vector machines, and graph-based methods. In order for SSL methods to use

effectively the small amount of labeled data, strong model assumptions need to be made.

Note that this is a critical step, as it has been observed that if the model assumptions

are not matching the nature of the problem, then using unsupervised material hurts the

predictive performance [215]. Therefore, one should review the assumptions made by each

SSL strategy, matching them to the specific application case.

Expectation maximization techniques with generative mixture models can be used when

data is well clustered according to the class information. In our case, clustering peptides

using a metric that makes use of all amino acid information does not induce a good class

separation, in fact it is believed that binding is the result of the joint presence of only a few

specific amino acids in specific positions.

Co-training is used when features naturally split into two sets, with a different instance

coverage, but this is not the case for our application.

Graph-based methods perform a type of information spreading on unsupervised instances

that is meaningful when two nearby instances (i.e., instances with similar features) tend to

be in the same class. For the same reasons detailed for the EM case, this type of bias is not

appropriate for our application.

Finally, the self-training approach, which relies only on the good discriminative properties

of the base classifier. The method is a simple wrapper scheme around a base classifier: the

initial labeled data is used to train the classifier which then assigns a label to the remaining
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material. This training procedure may continue for several iterations depending on the

dataset. In our application, this is the most suited approach that could successfully handle

the semi-supervised problem, specifically for SH2 and PDZ domains (see Section 3.2.3 and

3.4.4 for details).

Reliable negative data issue: a review on high-confidence negative data problem

Reliable training data is essential to build a good discriminative model. While positive train-

ing data can be obtained from different experiments and/or literature, unfortunately enough

reliable negative data is often unavailable. Datasets derived from the high-throughput exper-

iments usually suffer from the same problem. For example, phage display experiment only

provides positive interaction data. Thus, generating artificial negative data to build powerful

computational models is an open challenge. Previous research showed that proper selection

of artificial negative data increases the performance accuracy of a predictor [216, 217]. In

common practice, random and shuffled peptide sequences have been used for generating

artificial negative instances. However, in the prediction of protein-protein interaction, the

randomly shuffled peptide instances produce models with lower prediction accuracy since

they do not resemble real biological sequences [217], and are not useful for determining

meaningful class boundaries. Lack of high quality and biologically relevant negative (i.e.,

non-interacting) data is therefore one of the biggest drawbacks of most of the available

machine learning models that predict modular domain-peptide interactions.

Overfitting issues: a review on the regularization problem

Instead of capturing underlying trend of the data, overfitting occurs in a machine learning

algorithm, when it captures the noise in the data. More specifically, if a model fits the

data too well, it results in overfitting and produces a poor predictive model. To improve

the predictive performance, an appropriate technique (e.g., regularization, pruning etc.)

should be used that can counter balance the over-training phenomena, i.e., the tendency

to specialize the model on the specific training data idiosyncrasies. A regularized predictor

is more robust to noise and offers guarantees of a better predictive behavior on unseen

instances. It is an unfortunate state of affairs that this aspect is often ignored in the

development of novel bioinformatics systems.

2.3.3. Structure and energy-based methods

While above approaches rely only on sequence information of domain and peptides, sev-

eral other approaches have also been reported that exploit binding information of domain-

peptide complex structures. Structural information of domain-peptide complexes are very

important to understand the binding specificity of respective modular domains and thus us-

ing these features can increase the predictive performance of a method. Moreover, they are
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often capable of distinguishing between the residues that prevent binding and the residues

that are not favored at the binding site, which strengthen the prediction quality.

Over the past several years, plenty of approaches that derive energy models using struc-

tural information of domain-peptide complexes to address the specificity of modular domain

mediated interactions have been reported. The 3D-QSAR based comparative molecular field

analysis (CoMFA) was developed by Lee et al. to investigate the quantitative structural activ-

ity relationship for SH2-binding peptides [218]. Sánchez et al. proposed a method to predict

SH2 domain-peptide interactions using SH2-phosphopeptide complex structures and FlodX

algorithm [219]. In this method, structure-based energy function was used to calculate the

energy of a protein complex. Protein backbone sampling was used by Smith et al. to predict

the sequence space of peptides that are recognized by PDZ domains [220]. Kaufmann et al.

proposed an optimized energy function to predict the binding specificity of 12 PDZ domains

[221]. More recently, Hou et al. proposed a structure-based method that uses molecular

interaction energy components (MIECs) for characterizing residue-residue interaction pat-

tern between SH3 domain and interacting peptides [222]. One structure-based method to

identify the specificity of SH3 domains using in silico mutagenesis has been reported by

Fernandez-Ballester et al. [223]. Other structure-based methods have also been previously

reported to address the specificity of modular domains [224–229]. Unfortunately, these

structure-based approaches essentially rely on solved 3D domain-peptide complex struc-

ture, which are, however, known only for a few cases, and are also computationally very

expensive. Moreover, most of the structure-based methods typically cannot make use of the

available high-throughput data.

One exceptional work proposed by Wunderlich et al. in 2009, who studied the physi-

cal origin of SH2 domain-peptide specificity by integrating structural information with a

quantitative high-throughput domain-peptide interaction dataset and developed an energy

model to accurately predict SH2 domain-peptide interactions [230]. Three different methods

were described to construct an interaction map: (i) information-based, (ii) structure-based,

and (iii) hybrid-based method. They found the amino acid positions in the peptides and

domains that confer specificity of the interactions by using information-based and structure-

based methods. This method can also be applied to the SH2 domains or pY peptides that

are not used in model construction. However, the good performance reported seems to be

due to some over-training issues (see Section 4.2.6 and Figure A.1.4).

Domain coverage issue: a review on lack of domain coverage problem

While the experimental data has become invaluable to build powerful computational models

to describe the specificity landscapes of modular protein domains, this data may be rich

only for certain domains while it is scarce or completely missing for others. Most of the

methods that have been developed till date use domain specific or single domain models,

meaning developing models for those domains that have less or no experimental evidence

is nearly impossible. It is already known that the different domains in the same specificity
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family share their conserved binding properties. Hence, instead of building single domain

models, building multiple domain or family-based models would be a more attractive strat-

egy. Domain coverage of a model can be increased by combining the experimental data for

domains with similar binding preferences, which includes orthologous domains from other

organisms as well.

Such methods have recently been reported for a few modular domain family. For example,

Chen et al. developed a Bayesian model that can predict the interactions for any PDZ

domains [88]. In this model, the PDZ domain-peptide structural information have been

incorporated into the features. Bader and his colleagues have also developed SVM-based

approaches to solve the same problem [199, 203]. A model for all SH2 domains is also

available [230]. But these methods rely on a single domain-peptide complex structure, which

is oversimplification of the diverse specificity problems of modular domains and thus do not

perform well for all domains. Recently, Li et al. published a sequence-based method where

they combined the domain information using nearest neighborhood approach to extend the

training set for each domain. Finally, they built models that cover 174 PDZ domains and

97 SH2 domains [200].

2.4. Discussion

In this chapter, we have discussed several high-throughput techniques that are extensively

used for describing the specificity of modular protein domains, and the computational mod-

els that have been developed for predicting the modular domain mediated interactions. We

have also described the challenges of some important computational methods and their

limitations. There are many computational methods available for the prediction of domain-

peptide interactions but they are mainly affected by the aforementioned problems. Our

methods account for many advantages, as we tried to overcome the limitations of existing

computational methods mentioned in the previous section. In Chapter 3, we will describe

the strategies that have been taken to circumvent these limitations. The key advantages of

our methods are described in Section 3.5.
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Chapter 3

New approaches for predicting modular

domain-peptide interactions

3.1. Overview

It is known that the modular domains are highly specific towards their binding ligands. Due

to a high number of modular domains, one has to resort to high-throughput data to define

the binding specificity of modular domains. Thus, in silico ligand binding prediction of

modular domain mediated interaction is of great interest. Currently, several computational

methods have been proposed to predict modular domain-peptide interactions. However,

they have many shortcomings as described in Chapter 2.

In this chapter, we present three efficient and accurate methods for prediction of SH2,

SH3, and PDZ domain-peptide interactions using machine learning approaches. All methods

are based on support vector machine with different kernel functions ranging from polyno-

mial, to Gaussian, to sophisticated graph kernels. Our methods are successfully capable

of dealing with the most challenging problems in this area of research and in contrast to

other existing methods, our models have several advantages. This chapter is split into five

different sections; first three sections describe the modeling strategies of all three methods,

and last two sections describe the key advantages of our models and performance mea-

sure techniques, respectively. The work presented in this chapter is a part of the following

publications: [P2], [P3], and [P4].
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3.2. SH2 modeling

In this section, we present an efficient machine learning method based on polynomial kernel

for prediction of SH2 domain mediated interactions. A polynomial kernel allows us to exploit

the dependencies between the amino acid positions in the peptide sequences. Additionally,

we used a semi-supervised learning approach to deal with highly imbalanced training data.

Finally, we present the prediction models for 51 human SH2 domains.

3.2.1. Feature encoding

Previous studies showed that residues in the close vicinity of the phosphotyrosine (pTyr)

are highly predictive for SH2-peptide binding [181, 183, 230]. For example, it is known that

the SH2 domain of CRK binds peptides where amino acid Leu or Pro is in position +3,

however, the presence of other amino acids (i.e., His, Arg, Ala, Pro) in position +1 and +2

can inhibit the interaction [43].

Here, we follow the literature and restrict the peptide sequence to 6 specific positions,

namely we extract the amino acids in positions ranging from 2 upstream to 4 downstream

of the phosphotyrosine residue. A peptide is therefore mapped into a binary vector x living

in a 20 × 6 = 120 dimensional (the central amino acid is always a phosphotyrosine and is

therefore not included in the encoding), that is, for each position, we reserve 20 dimensions

(one for each amino acid) and encode the amino acid type with a 1 in the corresponding

dimension and 0 elsewhere.

For each domain Dj , we compile a dataset encoded as a set of pairs (x1,c1),..,(xn,cn)

where, xi is the binary feature vector for peptide Pi with the class label ci ∈ {−1, 1}. The

class label is +1 if the domain Dj interacts with peptide Pi and -1 otherwise.

3.2.2. Predictive model

As a predictive model, we employed a regularized polynomial kernel support vector machine

(SVM) [231]. We used the SVM implementation in C language provided in SVMlight [232].

Polynomial kernel

A polynomial kernel is a kernel function that computes the similarity between training

samples (vectors) in the feature space over polynomials of the variables to learn a non-

linear model. A polynomial kernel function is represented as (〈x, x′〉)d, which computes the

dot product of two vectors: x and x′, and raises the result to the power d. The polynomial

kernel function for degree d is defined in [233] as:

K(x, x′) = (1 + 〈x, x′〉)d, (3.1)

where “1” is a constant, which is needed to consider the effects of all degrees that are less

than d. Choosing the value for d is important for regularization. d = 1, which is a linear
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model would be a good starting value and can be incremented until the estimated error

ceases to improve [207]. Note that for building non-linear model, d > 1 is required as d = 1

only provides linear model. Polynomial kernel of degree 2 (d = 2), which is a quadratic

polynomial function, and a feature space with two inputs x1 and x2 can then be defined as:

K(x, x′) = (1 + 〈x, x′〉)2

= (1 + x1x
′
1 + x2x

′
2)

2

= 1 + 2x1x
′
1 + 2x2x

′
2 + (x1x

′
1)

2 + (x2x
′
2)

2 + 2x1x
′
1x2x

′
2.

(3.2)

One of the main hyper-parameters in SVM is the cost parameter or C, which provides

some flexibility in an enlarged feature space for data separation. Basically, it creates a soft

margin that allows you to penalize misclassification of training instances. A large C value

will create a irregular boundary or a small margin that can lead to an overfitting situation

in the original feature space. Conversely, a small C value will create a large margin even if

that hyperplane misclassifies more points.

Regularized non-linear support vector machine

Predictive systems based on PSSMs are essentially linear classifiers. To see why, we review

the design principles for the state-of-the-art PSSM system SMALI [183].

PSSM-based SMALI model In SMALI, a procedure is employed to compute a weight matrix

Sr,c with r = 6 rows and c = 19 columns (the Cys amino acid is not represented). The

domain-peptide interaction is predicted computing a score value as:

s(x) = wTx, (3.3)

where x is a 114 dimensional vector constructed as specified in Section 3.2.1, w = vec(ST )

where vec is an operator that transforms a matrix Mr,c into a column vector v of size r · c,
by concatenating all columns. Peptides scoring above a predefined threshold are classified

as binding. In SMALI, a relative score is defined in such a way as to have a unit threshold.

The relative score is then the ratio between the original score and a reference score b. The

classifier becomes s(x)/b ≥ 1, which can be rewritten in a canonical linear form as:

wTx− b ≥ 0. (3.4)

From a machine learning perspective, the procedure employed in SMALI to compute S and

b is rather involved and heuristically motivated. The elements in the matrix S are computed

from OPAL [183] experimental results, and essentially correspond to the difference between

the average position specific counts of specific amino acids in the positive examples minus
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the overall average counts.1 These quantities are then transformed so to extract information

theoretic quantities as a proxy of the importance (the weight) of each position specific amino

acid.

The domain specific reference score value b is defined as the value corresponding to the

top q = 4.5% raw SMALI scores over all human proteins in the UniProt database that

contain tyrosine (Tyr). The choice of the fixed value 4.5% was based on two experiments

over the domains BRDG1 SH2 and GRB2 SH2, arbitrarily chosen as representative cases.

The optimal (w.r.t. F-measure) threshold for the raw SMALI score was computed using a

selection of 1488 peptides for BRDG1 (yielding a SMALI value of 1.4) and 720 peptides for

GRB2 (yielding a SMALI value of 1.65). The percentiles corresponding to these thresholds

were 3.5% for BRDG1 and 5.5% for GRB2. The final value q = 4.5% was chosen as their

average. As a result of all these choices, it is hard to identify a clear objective for which the

proposed linear solution should be optimal.

Here, we propose two ways to improve PSSM linear models: (i) upgrading the system from

linear to non-linear and (ii) making the system more robust using regularization techniques.

Regularized non-linear model Non linear models allow to express decision rules that can

differentiate between the joint status of two or more position specific amino acids and the

status of the same elements taken independently. In this way, non additive effects can be

modeled, for example, consider a case whereby the presence of amino acid Asn in position

+2 alone is not sufficient to guarantee the interaction and neither is the presence of amino

acid Lys in position -1. However, if these amino acids are occurring in their respective

positions at the same time, then the binding occurs. Another type of non-linear effect could

raise when the presence of a either one or the other amino acid is sufficient for binding but

when they are both present then they interfere with each other and no binding takes place.

As a non linear model, we choose to upgrade the standard linear SVM via a polynomial

kernel of the type described in Equation 3.1. To see how a kernel allows an otherwise linear

model to become sensitive to multiple interacting amino acids, we briefly review the ideas

behind the “kernel trick”. Given a linear predictive model f(x) = sgn(〈w, x〉 + b), where

〈·, ·〉 represent the dot product operation, one can employ the support vector machine [231]

algorithm to determine the support elements and rewrite the decision function as:

f(x) = sgn(
∑
i

yiαi〈x, xi〉+ b), (3.5)

where the non zero αi select which, among all xi, are the support vectors. The trick con-

sists now in replacing the standard dot product with a “kernel function” K(x, x′) = 〈x, x′〉,
i.e., a function which is symmetric and positive semi-definite [234]. Choosing an appropriate

kernel function allows us to transform a linear classifier into a non linear one. Exploiting re-

1This corresponds geometrically to find the difference vector between the center of mass of the positive set
and of the overall set. Had it been the difference vector between the center of mass of the positive set
and of the negative set, it would have resembled the well known Fisher discriminant model.

44



3.2. SH2 modeling

sults known from the Reproducing Kernel Hilbert Spaces theory, one can equate the choice

of a kernel function to the selection of an appropriate feature mapping function φ : X 7→ Rd

and write K(x, x′) = 〈φ(x), φ(x′)〉. It is often possible to efficiently compute K(·, ·) without

having to compute φ(x), i.e., without having to represent the instances explicitly in the

transformed feature space. This is particularly beneficial when the size of representation

is very large (it can also be infinite in the case of Gaussian kernels). One such case is the

polynomial kernel; to fix the ideas, we provide the explicit mapping of a quadratic kernel

K(x, x′) = 〈x, x′〉2, which in the simple case of two dimensional instances would result in

φ : R2 7→ R3, e.g., (x1, x2) 7→ (x21, x
2
2, x1x2).

In our domain, this means that with a quadratic kernel we can model interactions be-

tween any of two positions in the peptide. Note that in the general case, one can account

for all interactions of order d by employing a polynomial kernel of degree d, without having

to explicitly enumerate all combinations. In our case, with N = 120 and a polynomial of

degree d = 3, we are implicitly working in a vector space with 300K dimensions. Here, the

number of different monomials of degree d for N−dimensional vectors can be computed as:

(
d+N − 1

d

)
=

(d+N − 1)!

d!(N − 1)!
. (3.6)

To further improve the predictive performance, we propose to use regularization tech-

niques to tackle the over-training phenomena, which is often ignored in the development of

novel bioinformatics systems. In practice, a regularized predictor is more robust to noise

and offers guarantees of a better predictive behavior on unseen instances. Among the sev-

eral ways to ensure a regularized solution, we adopt the strategy championed in SVM, i.e.,

we minimize the complexity of the model by constraining the size of w and the degree of

the polynomial d. We do this using a cross-validation procedure in order to achieve a good

compromise with respect to the training misclassification error. In practice, the SVM opti-

mal hyperplane is determined as the solution to a minimization problem where the objective

function combines a term proportional to the training error and a term proportional to the

complexity of the model (computed as the norm of the hyperplane coefficient vector). The

mixing coefficient that weights the importance of the error w.r.t. the model complexity and

the degree of the polynomial kernel are selected from a finite set of alternatives. The best

parameter combination is chosen by evaluating the predictive performance of each specific

model over a held out set of instances (the validation set). Note that the performance of

the selected model is evaluated over a further held out set of instances (the test set) that

has never been used neither in the training phase nor in the validation phase.
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3.2.3. Negative class definition

Using the polynomial kernel, we achieve a higher SH2-peptide interaction modeling flexi-

bility. As a consequence of this increased flexibility, we need a larger number of training

instances. Notwithstanding the availability of dataset derived by high-throughput tech-

niques, we still suffer from a lack of reliable negative data. This is the main cause for the

high imbalance: for some SH2 domains, information on real interactions can be up to 15

times more abundant than information on the lack of interactions (see Table A.1.1). It is

known that in these conditions predictive systems produce suboptimal results [216, 217, 235].

To mitigate these issues, we have employed a semi-supervised learning approach (SSL) [214].

The general strategy of SSL is to learn from a small amount of labeled data and a large

amount of unlabeled data. Our proposed pipeline is depicted in Figure 3.1. The main idea

is to bootstrap from a smaller set of reliable negative instances and only select peptides

that we are highly confident to yield negative interactions. More specifically, the pipeline

works as follows: (i) an initial high quality, experimentally verified dataset is extracted

from high density peptide arrays and micro array results; (ii) data is rebalanced using a

self-training strategy with polynomial SVM; (iii) model selection is performed to select the

best model complexity for each specific SH2 domain. The key points here are: (a) rebalanc-

ing strategy and (b) self-training phase. For rebalancing, we use over-sampling in order to

not throw away valuable information as would be done with under-sampling strategies. In

over-sampling method, the instances from the minority class are duplicated randomly until

the class balance is adjusted. The self-training approach relies only on the good discrimina-

tive properties of the base classifier. The method is a simple wrapper scheme around a base

classifier: the initial labeled data is used to train the classifier which then assigns a label to

the remaining material. The most confident predictions are then iteratively added to the

training set and the classifier is re-trained. The method name derives from the fact that

the classifier uses its own predictions to teach itself. The bias is now adequate if the base

classifier can learn the importance of each combination of amino acids in specific positions.

In our case, the confidence is scored as the distance from the discriminative hyperplane.

3.2.4. Model fitting protocol

The model parameters that can be tuned are the polynomial degree d ∈ {1, 2, 3}, and the

cost parameter C ∈ {0.01, 0.1, 1, 10} used to trade-off generalization for data fitting.

In order to estimate the expected predictive performance for our approach, we computed

the 5 measures: sensitivity, specificity, precision, area under the receiver operating charac-

teristics curve, and area under the precision recall curve (see Section 3.6.2 for details) under

a stratified 5-fold cross-validation scheme.

In particular, all the available data is partitioned into 5 parts ensuring the same pro-

portional distribution of positive and negative instances in each part. Each part is used

in turn as a held out validation set, while the remaining 4 parts are used as training set.
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Figure 3.1.: Flowchart for the iterative negative data filtering. An initial high quality dataset is
extracted from experimental evidence. If the negatives are in excess (right branch), then we simply
duplicate the positive instances. If the positives are in excess (left branch), then we make an initial
model using over-sampled negatives; this model is then used to score all the available peptides.
Those that are more confidently predicted as negatives are added to the dataset. The procedure is
iterated until a balanced dataset is reached. The final model is computed on the balanced dataset.
The figure is taken from [P4].

We determined the optimal parameter configuration (i.e., the pair (d,C)) as the minimum

of a 10-fold cross-validated AUC ROC measure for each of the 5 training sets, indepen-

dently. We then selected the most frequent parameter configuration pair (d,C). This was

the configuration finally used in the stratified 5 fold cross-validation.

We also performed 10 repetitions of a 75% - 25% random split of the available data

to create 10 train/test datasets. We proceeded in an analogous fashion (10-fold cross-

validation) to determine the most frequent parameter configuration pair (d,C). The final

average performance estimate is comparable to that obtained in the 5-fold cross-validation

setting (see Figure A.1.1).
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3.3. SH3 modeling

In this section, we present an effective machine learning method for the prediction of SH3

domain-peptide interactions. The method is based on a graph kernel approach that, in

contrast to the majority of other approaches, does not require the peptide sequences to be

aligned and can, at the same time, exploit higher-order dependencies between amino acid

residues. Furthermore, a generative approach is used for false negative refinements. Finally

we show how to build a model that takes as input both the peptide information and the

(aligned) domain amino-acid sequence. By doing so, we can exploit information from related

SH3 domains and enhance the overall prediction performance.

3.3.1. Feature encoding

For some protein domains, it is possible to identify a key amino acid necessary for a successful

binding of a peptide (e.g., the phosphotyrosine for the SH2 domain). This pivotal amino

acid can then be used to identify an absolute reference system that allows to represent the

peptide as a fixed size vector, i.e., each amino acid is identified as having position +i or

−i starting from the pivotal amino acid. For SH3 domains, the situation is, however, more

complex as the key amino acid (proline) is abundant throughout the peptide sequence. A

unique reference system based on proline cannot, therefore, be easily identified. Commonly,

an initial alignment of the peptide sequences is performed in a pre-processing step. Errors

in this phase can lead to a bad estimate of the model’s parameters and ultimately to bad

predictive performances. To circumvent this issue, we employed a sophisticated kernel

approach, which eliminates the need of an initial peptide alignment for building predictive

models. We built two different predictive models: (i) single domain model and (ii) multiple

domain model.

Single domain feature encoding

Here, we propose a kernel approach defined independently of an absolute reference for

amino acid positions. In this way, we can move from a fixed-size vector type of encoding to

a variable length sequence type encoding while still preserving a high discriminative power.

The shift from a vector based to a sequence based approach can be extended further: if

we move from sequences to graphs, we can then encode any other ancillary information

on specific amino acids. To do so, we have to move from string kernels to efficient graph

kernels. To ensure low run-times, we resort to the recently introduced [236] Neighborhood

Subgraph Pairwise Distance Kernel (NSPDK) (see Section 3.3.2).

In more detail, in order to encode the peptide information, we proceed as follows. Given

the experimental CHIP design constraints in peptide array library, we can only use peptide

sequences of exactly 15 residues in length. We enrich the information available on each

amino acid with their average physico-chemical properties, i.e., charge and hydrophobicity.
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Figure 3.2.: (A) Graph encoding for peptide sequences where amino acid positions do not have
an absolute reference, since we have eliminated the need for an error-prone initial peptide alignment.
(B) Graph encoding for domain sequences where amino acid positions receive an absolute positional
reference according to a consensus domain alignment. Gaps receive a special encoding. In both cases
(A and B), the encoding is enriched with charge, hydrophobicity, and amino acid-type information.
The figure is taken from [P3].

Since the graph kernel approach can deal only with discrete labels, we discretize all prop-

erties. More specifically, as for charge, we have divided all common 20 amino acids into

3 groups as basic (R, K, H), acidic (D, E), and neutral (the remaining amino acids); as

for hydrophobicity, we have identified 4 groups (very low, low, high, and very high) based

on their hydrophobicity scales following [237], obtaining: I, L, V as very high hydrophobic

residues, A, M, C, F as high hydrophobic residues, G, T, S, W, Y, P as low hydrophobic

residues and rest of the amino acids (i.e., R, K, H, D, E, Q, N) are considered as very low

hydrophobic residues.

The peptide is then modeled as a chain of unlabeled vertices: one per amino acid. Each

vertex is then connected with a side chain graph that encodes the ancillary properties,

namely, in order of proximity: the charge, the hydrophobicity, and the amino acid code

(see Figure 3.2.A). In order to generate features that are discriminative of the sequence

direction, we model the peptide as a directed graph.

Multiple domains feature encoding

When developing models for single domains, the input encodes only the information for

the peptide sequence. However, when we want to induce a general model for a subset of

related domains, the input should include also information on how a specific domain relates

to the other ones, so that useful knowledge can be transferred from interactions on similar

domains. To do so, we model the domain amino acid sequence information in a similar

fashion to the peptide encoding with one important difference: since the position of specific

amino acids is relevant to determine the specificity of the domain-peptide interaction, we
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additionally encode the information of an absolute positional reference. In order to do so, we

align the related domains with the MUSCLE [42] alignment software. Note that in contrast to

the peptide alignment, the SH3 domain alignment is highly reliable; mainly the alignment of

n-SRC-loop and RT-loop of the domains. Each domain specific sequence is then projected

onto the alignment and the necessary gaps are finally introduced (see Figure 3.2.B). In this

strategy, we pool all the related domains and their binding peptides into one set to keep the

information for the both peptide and domain sequences (see Multiple Domains Modeling

in Section 3.3.4 for details). The input for the multi-domain model is therefore comprised

of two disconnected components, one for the peptide and one for the domain. In order to

eliminate ambiguity issues, we distinguish the label alphabet for the peptide sequence from

that of the domain sequence by means of appropriate prefixes.

3.3.2. Graph kernel approach

In the past decade, machine learning and data mining community have made progress to

allow more flexibility in the input data type formats, and extended it from fixed size vector

to more flexible and dynamic formats starting from sequences, to trees, and eventually to

graphs. In supervised learning method, one advantage is that a linear model with good

generalization properties can be easily extended to a non-linear model using the kernel

trick [238, 239]. Various kernel functions are available (e.g., polynomial, Gaussian etc.) and

commonly used with support vector machine to implicitly map the input data into a very

high-dimensional feature space expressed by a suitable dot product. Such a kernel function,

namely graph kernel, has been proposed to deal with the entities represented as a graph.

It uses the dot product functions and computes the similarity measure between the graphs.

Although there are several types of graph kernels available, we have resorted to a fast kernel,

namely Neighborhood Subgraph Pairwise Distance Kernel (NSPDK), which has been recently

introduced by Costa et al. [236], because it is suitable for large sets of sparse graphs with

discrete vertex and edge labels.

Notation and definitions

A graph G = (V,E) consists of two sets V and E, where the elements of V are known as

vertices and the elements of E are known as edges. Each edge is associated with a set of two

elements of V , which are called its endpoints. We can denote the endpoints by concatenating

the vertex variables. For example, uv represents the edge between the two vertices, u and

v. When G is not the only graph to be considered, the notation V (G) and E(G) are used.

A graph is called as labeled graph when the vertex and edge labels are assigned into it,

using repetitive symbols from a set of finite alphabet. We denote the function as `, which

maps vertex/edge to the label symbol. Two graphs, G1 = (V1, E1) and G2 = (V2, E2), are

isomorphic, if there is a bijection φ : V1 → V2 and can be denoted by G1
∼= G2. Basically,

an isomorphism is a structure-conserving bijection. Thus, two labeled graphs can also
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capture the dependency between two amino acid at relative distance 5. The sequence information
that is not contained in the neighborhoods is ignored; the effect is equivalent to a don’t care pattern.
The figure is taken from [P3].

be isomorphic, if there is an isomorphism, which preserves the label information too, i.e.,

`(φ(v)) = `(v). A graph invariant or isomorphic invariant is a graph property, which is

identical for two isomorphic graphs.

Graph kernel

The NSPDK is an example of decomposition kernel [240] by which all the possible “parts”,

defined by a given relation, are operated. In this case, each part is a pair of special subgraphs,

which are known as “neighborhood” subgraphs. Here, the key idea is to generate small

neighborhood subgraphs of increasing radii r < rmax by decomposing a graph. All pairs of

such subgraphs are considered as individual features, if their roots are at a distance (d) not

exceeding dmax (d < dmax). We consider the fraction of features in common between two

graphs as the similarity notion. The formal kernel definition is reported here. The relation

between neighborhood subgraphs is defined as:

Rr,d = {(Nv
r (G), Nu

r (G), G) : d(u, v) = d}, (3.7)

where Rr,d (neighborhood pair relation) identifies a pair of neighborhood subgraphs of

radius r, which has root distance exactly equal to d. On this relation Rr,d, one decomposition

kernel κr,d is defined as:
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κr,d(G,G
′) =

∑
A,B ∈ R−1

r,d(G)

A′, B′ ∈ R−1
r,d(G

′)

ξ(A ∼= A′) · ξ(B ∼= B′), (3.8)

where R−1r,d(G) is the inverse of Rr,d(G), which indicates all the possible pairs of neigh-

borhood subgraphs of radius r and the root distance d that exist in the graph G, and

the indicator function and the isomorphism between graphs are denoted by ξ and ∼=, re-

spectively. The isomorphism check is performed with the techniques as detailed in Graph

invariant, later in this section. In our case, amino acid sequences are considered as NSPDK

features (see Figure 3.3). The non-normalized NSPDK is defined as:

K(G,G′) =
∑
r

∑
d

κr,d(G,G
′). (3.9)

For increasing the efficiency, an upper bound on the radius and distance parameters can

be imposed as:

Krmax,dmax(G,G′) =

rmax∑
r=0

dmax∑
d=0

κr,d(G,G
′). (3.10)

Finally, a normalized version of κr,d can be defined, that is:

κ̂r,d(G,G
′) =

κr,d(G,G
′)√

κr,d(G,G)κr,d(G′, G′)
. (3.11)

This ensures that the graph features induced by all values of radii and distances are

equally weighted irrespective of the feature space dimensionality.

Graph invariant

Unfortunately, for solving the graph isomorphism problem (GIP), it is unknown whether

polynomial algorithms exist. However, for special graph classes, polynomial algorithms do

exist [241]. Few algorithms that are exponential have also been developed to solve the GIP

problem previously [242, 243]. Since the exact isomorphism test is computationally very

expensive, Costa et al. proposed a solution, similar to [244], where the exact isomorphism

test is substituted by introducing an efficient graph invariant computation [236]. Here,

the key idea is to produce an identical string from two isomorphic graphs by efficient graph

serialization procedure. Then, the string can be mapped into an integer code by an iterative

hashing technique. Therefore, the isomorphic test can be easily substituted by an equality

test between the integer codes of two graphs. This whole process works in two main steps:

(i) construction of a graph invariant encoding Lg(G) and (ii) using a standard hash function

H(Lg(G))→ N to get the desired identifier. Note that in general, the process is affected by

potential collisions between two non-isomorphic graphs. This can happen either due to the

52



3.3. SH3 modeling

12 23

4 56

14

A B

C C

D

4 12 4 14 12 23 23 56 656712

quasi-canonical
vertex labeling

sorted edge
representation hash

hashaugment with
pairwise distance

sorted vertex
representation

0A 1B

1C 2C

2D

A B

C C

D

0A   1B   1C   2C   2D 12
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computed. Here, the root vertex A is converted to an integer code 12.

non-isomorphic graphs have same encodings or due to a collision introduced by the hashing

technique even though they have different encodings.

In graph invariant computation, the graph encoding Lg(G) was obtained by defining two

label functions: (i) for the vertices (Lv) and (ii) for the edges (Le). For the vertex v, the

function Lv(v) defines a lexicographically sorted sequence, which is a series of pairs composed

of a topological distance, and a vertex label, Lv(v), that returns a sorted series of pairs for

all u ∈ G. By composing the original edge label and the new vertex label, the new edge

label, Le(uv), is produced. Then, the sorted lexicographically series is assigned to the graph

G by Lg(G). Finally, a construction based hashing technique, proposed by Damg̊ard [245],

is used to map the variable length data into various lists of integer codes [236]. The graph

invariant computation process is depicted in Figure 3.4.

Advances of graph kernel

In [246], Heyne et al. extended the work in [236], introducing two enhancements: direct

graph specialization and explicit feature encoding. In this thesis, we have taken the similar

strategy; while in the original formulation only undirected graphs are considered, we em-

ployed directed graphs as they can better model long biomolecules (such as proteins and

DNA) that have a natural direction. To do so, we make sure that the paths used to define

the pairwise distances are directed and then we duplicate the input graph. All the edges

of the copied graph are reversed and its label dictionary is made non overlapping with the

original dictionary. In this way, all the features that are specific for the original and the

inverted direction can be created (see Figure 3.5).

53



Chapter 3. New approaches for predicting modular domain-peptide
interactions

b

b

vl

n

rvh

rI

rb

rvl

rK

rn

rh

rM

rb rn rn

rvl rh

rR rA

rh

rM

rn

rh

rM

rn

rh

rM

vh

I

b

vl

K

n

h

M

b n n

vl h

R A

vh

I

b

vl

K

n

h

M

b n n

vl h

R A

b n n

vl h

R

Figure 3.5.: Illustration of the direction treatment. Upper row: the original directed graph.
Middle row: the original directed graph duplicates into two copies and one copy is used for the
inverse direction. Bottom row: the NSPDK features for r = 1, 2, 3 and d = 0 . Root vertices are
highlighted. Note that the features are direction specific, since different label alphabets are used for
the inverse direction.

Finally, instead of returning only the kernel score, we exposed the hash code of each

feature and its associated value as a sparse vector of high dimensionality (see Figure 3.6).

This allows a flexible manipulation of the resulting instances and the possibility to use fast

stochastic gradient descent methods for model’s parameter estimation.

3.3.3. Negative class definition

High-throughout experiments often provide only positive interaction data (e.g., phage dis-

play) and no or less information regarding negative interaction data. Thus, one of the main

problems of most of the machine learning approaches to predict the binding partners of

modular protein domain is to generate confidence negative data (see Section 2.3.2 for more

details). To tackle this problem, we have developed two different models: (i) a generative

model and (ii) a combined model based on one-class and semi-supervised methods. These

models are describe below.
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Generative model

The key idea here is to employ a generative approach to model each peptide class and select

a subset of instances that is not recognized by any specialized model. We take an approach

similar to [199] and select confidence negative interactions using profile based models (i.e.,

PWMs). In order to better represent the binding specificity of each domain, instead of using

a single model, we resort to multiple PWMs, namely one for each motif class for each SH3

domain.

In more detail, we first used the Fuzzpro pattern search program from the EMBOSS pack-

age [247], which uses optimum searching algorithm for finding the pattern and can be used

for searching the exact pattern or various ambiguities of the sequences. By using Fuzzpro,

we clustered the peptides into eight groups, one for each known motif class. We found that

the majority of the peptides belong to the canonical motifs of class I and/or class II, while

the rest belong to atypical motifs, mainly PxRP, PxxxPR, PxxDY, RxxKP motifs (see Ta-

ble A.2.1). Afterwards, we used the popular EM-based MEME [248] algorithm to generate a

PWM, which describes the probability of each possible amino acid in each position in the

sequence, for each group.

Finally, we used MAST [249], a sequence homology search algorithm, to identify the peptides

matching the MEME generated PWMs. MAST is an efficient tool and was successfully applied

for searching DNA motifs in transcription factor binding sites [250]. MAST ranks the input
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sequences according to an E-value type of score. We consider the peptides with a high

E-value (i.e., those that are not recognized with confidence by the model) as negatives. The

cut-off score was set to the maximum E-value calculated for the known positive instances.

Finally, for each domain, we select those peptides that are not recognized by any of the class

specific PWMs. By doing so, we identify a total of ∼200K (262883) negative interactions

for the whole set of 70 human SH3 domains (see Table 4.4). Note that peptides considered

as negative but that are close to the cut-off-score are in fact structurally quite similar to

positive peptides.

Training and testing a model using only high-confidence negative interactions can in

principle induce a bias. To rule out such a case, we perform an additional experiment (see

Section 4.3.5) where we do not filter in any way the negative data.

One-class semi-supervised model

The key idea here is to use the SVM one-class approach, pioneered by [251], to warm-

start the self-training method for semi-supervised learning [252], restricting the prediction

to negative instances only. In [251], it is shown how, in order to identify a region that

contains with a high probability most of the positive data, one can formulate the classic SVM

optimization problem for binary classification using the origin of the feature space as the

only negative instance. In the case of normalized kernels, this boils down to using negative

instances that are just the symmetric counterparts of the available positive instances. Here,

we follow this latter way given that we can produce the explicit sparse encoding and therefore

can efficiently invert each instance.

The self-training approach to semi-supervised learning [252] is a wrapper method that

iteratively uses the class predictions over the unlabeled data as true labels for a successive

training phase until convergence to a stable state is reached. Here, we use the one-class

model to initially induce the class information on the unsupervised instances, but, rather

than using both positive and negative predictions, we accept only negative predictions. We

select those instances that are predicted with the highest confidence (i.e., that are further

away from the class boundary hyperplane) and use them to iteratively train the SVM model.

For simplicity, we fix the fraction of the accepted negatives to 50% of the total number of

unsupervised instances.

3.3.4. Modeling with graph kernel features

Our approach is based on a graph encoding that allows to model relations between specific

amino acids as well as different amino acid abstractions. This graph is then processed

by the Neighborhood Subgraph Pairwise Distance Kernel (NSPDK) [236], that extracts as

explicit features, the occurrence counts of all the possible pairs of near small neighborhood

subgraphs. The subgraph pairs are characterized by a radius and by a topological distance

parameter (for details see in Section 3.3.2). The final classification task is then performed by
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a support vector machine (SVM) based on the NSPDK. Note that by using an explicit vector

encoding, we gain efficiency since we avoid to compute and store the pairwise similarity

matrix.

Single Domain Modeling

When developing models for each specific domain, we only encode information on the candi-

date peptide sequence as described in Section 3.3.1. Different values for the radius parameter

give rise to the parts illustrated in Figure 3.3.

Given the directed nature of the encoding graph, each neighborhood subgraph includes

only amino acid that are downstream w.r.t. the current root node. With radius 1 and

distance 0, each labeled vertex is considered independently: the corresponding feature rep-

resentation encodes the frequency of each physico-chemical property (either the charge, the

hydrophobicity or the amino acid type) in the single peptide; radius 2 allows properties of

adjacent residues (e.g., hydrophobicity and adjacent charge information) to be modeled; ra-

dius 3 allows all properties for a single residue to be taken into account jointly. Even larger

radius values can capture the joint information for adjacent pairs, triplets etc, of residues.

When pairs of neighborhood subgraphs at different distances are used, the composition of

the sub-sequence between the two root vertices is ignored allowing a don’t care or soft type

of feature matching. Note that the order in which the properties are encoded is chosen

so to avoid generating features that subsume each other (i.e., given a neutrally charged

amino acid, one can have multiple values for the hydrophobicity but not the other way

around). The final descriptors for each peptide contain all features with radii ranging from

0 up to Rmax and distances in [0, Dmax]. The optimal ranges are determined experimentally

via cross-validation techniques. Finally, the training phase allows the determination of the

weight distribution on all feature types (general and specific) to obtain optimal predictive

performance.

Multiple Domains Modeling

Several SH3 domains in the human genome bind strongly with class I and/or class II pep-

tides. SH3 domains for FYN, BTK, HCK, FGR, SRC, and LYN proteins are among them.

The intuition underlying the multiple domains approach is that, if we are able to exploit

the similarities across these domains, we can then increase the predictive performances for

each specific domain. In practice, we would be performing a form of transfer-learning [253]

from one protein domain to another, so that the examples used to induce a model on one

domain would also contribute to form the bias of related models, increasing the effective

number of available training instances.

To do so, we proceed by coupling the peptide information with the encoding for the

domain in a joint feature space; more specifically, we encode the domain amino acid sequence

information via its projection w.r.t. the domain consensus alignment. Here, the backbone
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vertex labels encode the specific position of the amino acid within the reference alignment.

By introducing these absolute reference ids, all features (those describing physico-chemical

properties and those describing the amino acid composition) become position specific. This

absolute reference creates a joint feature space that ultimately allows information about

interactions with different domains to be shared.

Note that we are not trying to model the exact pairs of interacting amino acid residues

(one in the peptide and one in the domain), as done in [205]. To do so, would imply

resorting to resolved protein complexes information, which is not available in large scale.

Rather, we represent the candidate interacting peptide and domain as a pair of disconnected

graphs. The NSPDK procedure alone, does not instantiate features that can directly express

the relationship between parts of the peptide and of the domain sequences. However, we can

take full advantage of the kernel trick and employ non-linear (i.e., polynomial or Gaussian)

kernels. By doing so, the peptide-domain complex is implicitly represented by features that

express combinations of the original features. We then rely on the statistical analysis of

high-throughput experiments to infer the importance of each position specific features in

the domain combined with non-position specific features of the peptide sequence.

3.4. PDZ modeling

In this section, we present a Gaussian kernel-based efficient machine learning method for the

prediction of PDZ domain mediated interactions. Here, we show that the domain coverage

can be increased by applying an accurate clustering technique and thus all the PDZ domains

are clustered based on their binding specificity. The prediction models are available across

several species (i.e., human, mouse, fly, and worm). Class imbalance problem and generating

confidence negative data are handled by the semi-supervised learning technique. Finally, we

build models that allow higher-order dependencies between the amino acids in the binding

peptides. Additionally, we also show how to build the models using PDZ-peptide complex

structure information.

3.4.1. Clustering of PDZ domains

We clustered all the available PDZ domains using Markov clustering algorithm (MCL) based

on their global sequence identity [254]. MCL is a popular and efficient method for clustering

biological sequences and was successfully applied for clustering of protein families [255].

Recently, Li et al. have proposed that PDZ domain pairs with greater than 50% sequence

identity share similar binding specificity [200]. Thus, we defined 50% sequence identity

as a cut-off value to represent similar specificity. We used Needleman-Wunsch algorithm

in order to calculate pairwise sequence identity of all PDZ domains. PDZ domain pairs

with less than 50% sequence identity were discarded to reduce the noise [256]. In the MCL

method, PDZ domain sequence identities can be considered as a weighted graph, where the

domains are the nodes and the identity relationships are the edges. Since the MCL algorithm
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was specifically designed for simple and weighted graphs, clustering of the PDZ domains

using MCL is highly reliable. We applied MCL algorithm with 1.4 inflation parameter. This

parameter was used for controlling the granularity or the tightness of the clusters and we

found 1.4 as the best inflation value for clustering of PDZ domains. Only families with at

least two PDZ domain sequences were considered. Finally, 515 PDZ domains from human,

mouse, fly, and worm were classified into 138 different families.

3.4.2. Feature encoding

Previous studies showed that the C-terminal residues of a peptide are the most important for

PDZ-peptide binding specificity [92]. We followed the literature and restricted the peptide

sequence to 5 C-terminal positions, namely we extracted the amino acids in positions from

P0 to P−4 downstream where P0 is the last C-terminal position. We have developed

two types of feature encoding methods: (i) sequence-based and (ii) contact-based feature

encoding.

In the sequence-based feature encoding, a peptide sequence was mapped into a binary

vector x, living in a 20 × 5 = 100 dimensional space. I.e., for each position, we reserved 20

dimensions (one for each amino acid type) and encoded the amino acid type with a 1 in the

corresponding dimension and 0 elsewhere.

For the contact-based feature encoding, we used an approach similar to the one described

by Chen et al. [88]. Here, the important position pairs (one amino acid from the domain and

another from the peptide) were taken into account. First, we constructed a cluster-based,

PDZ domain, multiple sequence alignments using MAFFT [195]. We then considered the core

position pairs that are in close proximity and extracted only the position pairs with distance

less than 4.5 angstroms using domain-peptide complex structures. Note that we have used

different reference structures for different families. Each position pair was encoded as a

binary vector x, living in a 20 × 20 = 400 dimensional space. All the position pairs were

then encoded in a binary vector of size 400 × n, where n is the number of binding pairs.

Finally, the sequence-based encoding was concatenated with the contact-based encoding,

which produced a binary vector of size 100 + 400 × n.

For each domain D, a dataset encoded as a set of pairs (x1,c1),..,(xn,cn) have been com-

piled where, xi is the binary feature vector for peptide Pi with the class label ci ∈ {−1, 1}.
The class label is +1 if the domain D interacts with peptide Pi and -1 otherwise.

3.4.3. Predictive model

We employed regularized Gaussian kernel support vector machines to build predictive mod-

els [231]. Here, the Gaussian kernel is more suitable than the polynomial kernel, since

more data was available for PDZ-peptide interactions and thus performed better. More-

over, this kernel allows the infinite feature dependency. SVMlight software was used to build

the SVMs [232].
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Gaussian kernel

Gaussian kernel is one of the successful and extensively studied kernel functions used in

support vector machine. It forms the hidden units of a Radial basis function networks

(RBF), and hence it is also known as the RBF kernel [257]. The Gaussian kernel produces

a graph of a characterized symmetric bell curve shape. For a feature space with two inputs

(vectors) x1 and x′, and a σ > 0, the Gaussian kernel can be defined as:

K(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
, (3.12)

where ‖x − x′‖2 represents the squared Euclidean distance between two vectors x1 and

x′. Note that we do not restrict ourselves for using the Euclidean distance in the input

space [257]. For example, if K1(x, x
′) is a kernel corresponding to a feature mapping φ1 into

a feature space F1, the ‖φ(x)− φ(x′)‖2 can be represented as:

‖φ(x)− φ(x′)‖2 = K1(x, x)− 2K1(x, x
′) +K1(x

′, x′). (3.13)

Hence, the Gaussian kernel function can then be defined as:

K(x, x′) = exp

(
−K1(x, x)− 2K1(x, x

′) +K1(x
′, x′)

2σ2

)
. (3.14)

The parameter σ allows the flexibility for the Gaussian kernel, similarly like d parameter

in polynomial kernel. A small value of σ is equivalent to a large value of d. A small value of σ

allows a classifier to fit any labels and therefore caused an overfitting situation. Conversely,

a large value of σ will make the function almost impossible to learn any non-trivial classifier,

since it gradually reduce the kernel to a constant function. Although, for every values of σ,

the feature space has infinite dimensions, however, the weight decays very fast on higher-

order features, if the large values of σ are used [257]. In Equation 3.12, if 1
2σ2 is replaced by

a simpler parameter γ then the kernel can be defined as:

K(x, x′) = exp(−γ‖x− x′‖2). (3.15)

Another important parameter in Gaussian kernel is the cost parameter (C), which works

same way as described in Section 3.2.2.

3.4.4. Negative class definition

Datasets derived from high-throughput experiments usually suffer from a lack of reliable

negative interaction data. In our study, we were only able to obtain the negative interaction

data from a microarray experiment, although the dataset had an imbalance problem. Other

data sources (i.e., phage display and PDZBase) provide only positive interaction data. Previ-

ous studies showed that machine learning methods work poorly when the dataset is highly

imbalanced [216, 217, 235]. In order to generate more negative data, we have employed
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a semi-supervised learning approach (SSL). The general strategy of SSL is to learn from

a small amount of labeled data and a large amount of unlabeled data. Here, differently

from the general problem formulation for SSL, we were interested in using the unsupervised

material to have a better characterization only of the minority class; in our case, the neg-

ative class. Albeit, there are several strategy to deal with SSL problem, we have chosen

the self-raining approach and proceeded in an analogous fashion described in Section 3.2.3.

Since dataset I was only comprising of mouse PDZ-peptide interaction data, we used all the

C-terminal peptides from mouse proteome as unlabeled data.

Finally, the predicted unlabeled peptides having the probability of 0.5 to 0.8 towards the

negative class were considered. We ignored very high scoring (probability more than 0.8)

predicted negative peptides since they might be very far from positive class, and therefore

could produce low quality models. We randomly chose negative data from the pool of

predictive negatives, added them to the training data, and re-trained the classifier. In

general, there was five times more negative data than positive data, which is computationally

feasible [191].

Note that we need both positively and negatively labeled data to apply the described SSL

approach, since we need to train the base classifier with both positive and negative data. In

our study, we could only employ the SSL approach to domains that occur in dataset I as it

contains both classes. For those PDZ domains, where only the positive data was available,

we chose the negative data randomly from C-terminal peptides of the respective organism

from UniProtKB/Swiss-Prot [19]. Note that we only used the negative interaction data

from the semi-supervised learning for the training sets, while our test sets contained only

experimentally verified positive and negative interaction data.

3.4.5. Model fitting protocol

The model hyper-parameters (i.e., γ and the cost parameter C) were chosen by using 5-fold

grid search method to trade-off generalization for data fitting.

We used a 5-fold stratified cross-validation in order to evaluate the predictive performance

of each model. Here, the data is partitioned into 5 parts ensuring the same proportional

distribution of positive and negative instances in each part (see Section 3.6.1 for details).

In the cross-validation step, only the families with at least 10 positive data and 10 negative

data were taken into account so that each test set contains at least 2 positive and 2 negative

interactions. The predictive performance was achieved by using different statistical measures

(see Section 3.6.2 for details) under a stratified 5-fold cross-validation scheme.

3.5. Key advantages of the proposed methods

In Chapter 2, we have discussed several computational methods that have been developed

to predict the modular domain mediated interactions. We have also discussed the major

drawbacks of these methods. In our study, we have tried to circumvent the limitations
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of these existing computational methods. The strategies that we have taken to tackle the

limitations are described in this section.

3.5.1. Non-linear model

Positional dependencies between the amino acids in the binding peptides play an important

role to describe the binding specificities of modular domains [43, 188, 191]. PWM-based

models (e.g., Scansite, SMALI, and MDSM) and linear machine learning models (e.g., DomPep)

completely ignore the higher-order dependencies between the amino acids and thus failed to

explain accurate binding specificities of the modular domains (see Section 2.3.1 for details).

To overcome the linearity problem, we built non-linear models by using appropriate kernel

functions that allow higher-order dependencies between the features for all domains (i.e.,

SH2, SH3, and PDZ). Detailed information about the kernel functions and non-linear models

can be found in Section 3.2.2, 3.3.2, and 3.4.3.

3.5.2. Data balancing and confidence negative data refinement

It is already known that severe data imbalance problem negatively affect the predictive

performances of machine learning methods [210]. Fortunately, in our case, we could cir-

cumvent the data imbalance problem by exploiting a useful property of the datasets we had

at our disposal: instead of creating novel instances, we could make use of a large quantity

of results available from high density peptide array experiments; specifically, we selected

those peptides for which no definitive interaction information was available. In this way, we

did not have to invent plausible biological peptide sequences to populate the neighborhood

of minority class representatives. Rather, we had to perform the easier task of estimating

when an existing peptide is likely to belong to the minority concept.

Data derived from high-throughout techniques often suffer from a lack of reliable negative

data (see Section 2.3.2), and it is already known that high-confidence negative data is

important to build a good machine learning model [216, 217]. In our study, we viewed this

whole problem as semi-supervised learning task (SSL). Although there are several strategies

available to deal with SSL problem, we have resorted to the self-training strategy in order to

get high-confidence negative data, because it was the most suited approach for our methods.

See Section 2.3.2 for details about semi-supervised learning problem. The self-training

approach is a straightforward yet effective wrapper technique that can be applied to any

classifier. It consists an iterative procedure where at each stage the current model predicts

the class label over the unsupervised material. In the next training phase, the class labels

for the most confident predictions are used. The procedure can then be iterated. Note that

this strategy is only applicable when at least a few instances for both classes (positive and

negative) are present. In our case, we could use this self-training strategy for SH2 and PDZ

domains (see Section 3.2.3 and 3.4.4) but not for SH3 domains, since we had only positive

interaction data for SH3 domains. However, for SH3 domains, we also tried to use one-class

62



3.5. Key advantages of the proposed methods

semi supervised technique to achieve high-confidence negative data but unfortunately, we

achieved under-performing models. To get high-confidence negative data for SH3 domains,

we developed a generative approach based on multiple PWMs to model each peptide class

for a specific SH3 domain (see Section 3.3.3). We retrieved a subset of peptides that were

not recognized by any PWMs and considered them as reliable negative instances. These

negative instances along with true positive instances were then used for training the binary

classifier.

3.5.3. Alignment-free approach

An initial multiple alignment of the binding peptides is necessary in existing PWM-based

methods, but this is a hard task for proline-rich SH3-bound peptides. Even minor align-

ment errors typically introduce significant noise in PWMs estimate. For prediction of SH3

domain mediated interactions, a PWM-based tool, namely MUSI, has been developed re-

cently, which can recognize multiple specificities of SH3 domains, but severely affected by

error-prone peptide alignment (see Section 2.3.1 for details). In an other recent publica-

tion, the authors have tried to tackle the peptide alignment problem by performing two

essential tasks simultaneously: alignment and clustering using Gibbs sampling approach

and identifying biologically relevant binding motifs that cannot be described well with a

single PWM [258]. However, this approach cannot fully circumvent this problem since they

anyway rely on an alignment. Our approach sidesteps these issues all together, as we have

completely eliminated the need for an initial peptide alignment in the case of SH3 domains

where the optimal alignment of peptides is almost not possible (see Section 3.3.2 for details).

3.5.4. Domain coverage

Most of the available tools suffer from the domain coverage problem. In Section 2.3.3, we

have discussed this problem in details. To increase the domain coverage, we combined the

interaction data for domains that are similar in substrate specificity, and built a multi-

domain model for a specific domain family. In SH3-peptide interaction, we have shown

that the multi-domain model has better prediction accuracy than a single domain model

(see Section 3.3.4 and Figure 4.6). We effectively applied this strategy in our study and

clustered all PDZ domains from human, mouse, fly, and worm based on their specificity (see

Section 3.4.1). In this way, we could build a single classifier for similar domains across the

organisms.

3.5.5. Regularization technique

Machine learning methods are often affected by overfitting problem (see Section 2.3.2). In

our study, we have successfully handled this problem. Among the several ways to ensure

a regularized solution, we adopted the strategy championed in SVM, i.e., we minimized

the complexity of the model by constraining the size of w and the hyper-parameters, e.g.,
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the degree of the polynomial d. We did this using a cross-validation procedure in order to

achieve a good compromise with respect to the training misclassification error. In practice,

the SVM optimal hyperplane is determined as the solution to a minimization problem

where the objective function combines a term proportional to the training error and a

term proportional to the complexity of the model (computed as the norm of the hyperplane

coefficient vector). The mixing coefficient that weights the importance of the error w.r.t. the

model complexity and the hyper-parameters were selected from a finite set of alternatives.

The best parameter combination was chosen by evaluating the predictive performance of

each specific model over a held out set of instances (the validation set). Note that the

performance of the selected model was evaluated over a further held out set of instances

(the test set) that had never been used neither in the training phase nor in the validation

phase.

3.6. Predictive performance estimations

3.6.1. Cross-validation

For the evaluation of machine learning methods, cross-validation technique is more com-

monly used. More specifically, this technique is used for estimating how accurate a model

will perform in practice. In the cross-validation setup, the dataset is randomly split into n

equal parts where (n − 1) used for training and remaining data is used for validation. This

process is then repeated for n times. 10-fold or 5-fold cross-validation is a standard way

to measure the error rate of a predictive model, however, other types of cross-validation

techniques are also successfully used. One such prevalent technique is leave-one-out cross-

validation, which is also an n-fold cross-validation, where n is the number of instances of

the dataset. These cross-validation techniques are depicted in Figure 3.7.

A stratification procedure is used to maintain approximately the same proportion of

the two types of class labels (positive and negative) in each fold. Cross-validation with

stratification procedure is known as stratified cross-validation.

Final performance is calculated by averaging all the predictions from all runs. The pre-

dictive performance of each problem is measured by different statistical measures (e.g.,

accuracy, recall etc.).

3.6.2. Performance measure

We formulated a learning problem for each modular domain and/or domain family. The

predictive performance for each problem was mainly assessed by computing 5 measures: sen-

sitivity, specificity, precision, area under the receiver operating characteristics curve (AUC

ROC), and area under the precision recall curve (AUR PR).
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Figure 3.7.: (A) 10-fold cross-validation: In this setting, N instances are split into 10 equal parts.
9/10 of the data are used for training and remaining part used for validation. (B) leave-one-out
method: In this setting, N instances are split into n parts where N = n.

Sensitivity: The sensitivity provides the proportion of actual positive instances that are

correctly identified as positive. Sensitivity is also known as Recall:

Sensitivity/Recall =
TP

TP + FN
. (3.16)

Specificity: The specificity provides the proportion of actual negative instances that are

correctly identified as negative:

Specificity =
TN

TN + FP
. (3.17)

Precision: The precision provides the proportion of identified instances that are actually

positive:

Precision =
TP

TP + FP
. (3.18)

Here, TP denotes true positive, FP denotes false positive, TN denotes true negative and

FN denotes false negative, which are the possible outcomes of a two-class prediction (see

Table 3.1).
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In our case, TP means true domain-peptide interactions are correctly predicted as binding

interactions; FP means true non-binding interactions are incorrectly predicted as binding

interactions; TN means true non-binding interactions are correctly predicted as non-binding

interactions; and FN means true binding interactions are incorrectly predicted as non-

binding interactions.

Table 3.1.: Possible outcomes of a two-class prediction.

Prediction class
Positive (P ) Negative (N) Total

Actual class
Positive (P ) True Positive (TP ) False Negative (FN) TP + FN
Negative (N) False Positive (FP ) True Negative (TN) FP + TN

Total TP + FP FN + TN N

AUC ROC: The area under the receiver operating characteristics curve (AUC ROC) is

commonly used for assessing the trade-off between hit rate and false alarm rate over a noisy

channel [207]. In simple terms, the AUC ROC is obtained by plotting the fraction of true

positives out of the positives (TPR = true positive rate) vs. the fraction of false positives

out of the negatives (FPR = false positive rate), at various threshold settings. Note that

AUC ROC shows the performance of a classifier without considering the class distribution

or cost errors [207].

AUC PR: The area under the precision recall curve (AUC PR) is defined as the area under

the curve obtained by plotting precision as a function of recall.

66



Chapter 4

Applications and performance evaluations

4.1. Overview

In this chapter, we describe the application and performance evaluation of all three methods

that have been presented in Chapter 3. This chapter is divided into four sections; first three

sections report the dataset compilation and the application of the three proposed meth-

ods. We show that our methods achieved significantly better predictive performances with

respect to state-of-the-art approaches. Furthermore, we have tested our methods on manu-

ally curated and reliable datasets, and also achieved better performances than other existing

methods. In the last section of this chapter, we have performed a genome-wide prediction

for SH2, SH3, and PDZ domains to uncover novel modular domain-peptide interactions that

have important biological insights. Additionally, we have performed a term-centric analysis,

which identifies enriched biological annotation terms (GO-term, pathways etc.) associated

with input protein list, for the top interactions predicted by our tools to unveil novel func-

tionalities of the interactions. Finally, we make all the top genome-wide predictions freely

available to the scientific community. The work presented in this chapter is a part of the

following publications: [P2], [P3], and [P4].
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4.2. SH2-peptide interactions

4.2.1. Introduction

Previous research showed that the dependencies between different ligand positions take im-

portant role in the binding specificity of the SH2 domains [43]. In recent years, polynomial

kernels have been successfully applied to the prediction of DNA-protein interactions [259].

We used domain specific non-linear models for SH2-peptide interactions that are based on

support vector machines (see Section 3.2.2 for details). As the complexity of the model in-

creases, so does the required number of training instances. While modern high-throughput

techniques seem to be the perfect solution to the data requirements, they have other issues.

The first problem is that the techniques, such as pool oriented peptide arrays [39, 156] do

not test individual peptides but pools of peptides with common properties. In the second

phase, individual peptides are tested with separate methods. Thus, while these approaches

provide information about real interactions (positive data), they cannot be reliably used

to assess the lack of a domain-peptide interaction. A similar situation occurs with many

high-density peptide arrays where affinities are not reported. Other high-throughput ap-

proaches like microarrays do report affinities (e.g., [44] and [165]) and thus can be used to

assess the lack of strong interaction. However, these approaches suffer from a low signal to

noise ratio and produce results that are often inconsistent. For example, in one microar-

ray experiment [165] found that the number of interactions between 11 peptide sequences

extracted from protein ErbB1 and 85 SH2 domains is 37, while under similar settings in

another microarray experiment [44] found three times as many interactions.

This state of affairs leads to a great imbalance between the available information on

positive vs. negative interaction data. Such an imbalance constitutes a severe problem when

fitting a predictive model. For example, for some SH2 domains, the positive interaction data

can be up to 15 times more abundant than the negative interaction data. It is known that

in these conditions predictive systems produce suboptimal results. However, in this thesis,

this data imbalance problem is successfully handled by a semi-supervised iterative approach

as described in Section 3.2.3. Finally, we devise non-linear support vector machine (SVM)

models for 51 human SH2 domains.

We show that our approach performs significantly better than state-of-the art SH2-peptide

interaction prediction tools. Furthermore, when applying it on high quality hand-curated

SH2-peptide interaction data from PhosphoELM database [260], we achieved higher True

Positive Rate (TPR) in comparison to PSSM models (SMALI) and energy model. In addition,

we perform a genome-wide analysis and find interesting insights of biological relevance.
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4.2.2. Dataset compilation

Dataset I (high density peptide array data)

From the NetPhorest database [191], we collected information on 61 SH2 domains and 920

phosphorylated peptides for a total of 14678 interactions. After removing all redundancies,

we obtained 7544 positive interactions.

Note that for high density peptide array experiments, there is evidence only for positive

interactions. One cannot, however, assume that the remaining (61 × 920) − 7544 = 48576

interactions are of the non-binding type (i.e., negative interactions). It can happen that these

domain-peptide interactions were just not observed in the assay due to the experimental

stringency (e.g., consistency among replicates).

Dataset II (microarray data)

From the protein microarray experiments in [165], we have considered the SH2-peptide

interactions data excluding the PTB-peptide interactions. There are 115 SH2 domains and

20 singly phosphorylated peptides from ErbB2, ErbB3, and ErbB4 proteins. Note that there

are 10 cases where a single protein has both a C-terminal and N-terminal SH2 domain. Since

the database does not report the assignment of which peptide specifically binds to which of

the two domains (N and C terminal), we have discarded the interactions related to these

proteins. From this dataset, we have collected 105 × 20 = 2100 interactions, with 160

positive interactions and the remaining 2100 − 160 = 1940 being considered as negative

interactions.

Dataset III (microarray data)

From the protein microarray experiments in [44], we have considered the SH2-peptide in-

teractions data excluding the PTB-peptide interactions. In this study, there are 85 SH2

domains and 41 singly phosphorylated peptides from EGFR, FGFR, and IG1FR proteins.

We have proceeded in an analogous fashion as with dataset II, and we have collected 85

× 41 = 3485 interactions with 314 positive interactions and 3485 − 314 = 3171 negative

interactions.

Dataset IV (curated data)

From PhosphoELM [260], which is a high-quality manually curated database, we have ex-

tracted the interactions for 28 SH2 domains with 339 peptides. This dataset was considered

for testing.

We have combined positive and negative data from two microarray datasets (dataset II

and dataset III) using the measured apparent equilibrium dissociation constant or affinity

constant (KD value) to determine the class label [44, 165]. SH2-peptides interactions with
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KD values lower than 2000 nanomolar (nM) were considered as binding (positive interac-

tions) while all other pairs were considered as non-binding (negative interactions).

The total number of positive interactions was 474 (160 and 314 respectively from dataset II

and dataset III), while the total number of negatives interactions was 5111 (2100 − 160 =

1940 and 3485 − 314 = 3171 respectively).

Dataset I contains 7544 positive interactions and no negative interactions. Among the 474

positive interactions in dataset II and III, 247 (112 and 135) were in common between the

microarray and the peptide array data. After removing the positive interactions of dataset

I from dataset II and III, we obtained 227 (48 and 179) unique positive interactions for

dataset II and III.

Surprisingly, we found 149 interactions for which the microarray data and the peptide

array data are in disagreement, i.e., it is positive for dataset I but negative for dataset II

and III. We have, therefore, discarded those interactions to reduce unreliable and conflicting

information in the training phase. As a consequence, the number of negatives from dataset II

and III is reduced to 5111 − 149 = 4962, and the number of positives in dataset I is reduced

to 7544 − 149 = 7395.

To compose our datasets, we used the positive interactions from the dataset I (7395)

and the available negative interactions from dataset II and III (4962). The non redundant

positive data derived from microarray experiments was kept for validation purposes. For

each of the 61 SH2 domain in dataset I, we compile a separate dataset. We discarded 10

domains that have less than 40 positive interactions, since no complex model can be reliably

fit. Finally, we have 61 − 10 = 51 SH2 domains for which we have 6742 positive and 2523

negative interactions. See Table 4.1 for details.

4.2.3. Modeling

Our approach takes as input peptide sequences that have been previously aligned, and as

it is common in literature, it is based on amino-acid positional features. The alignment

phase induces a global position system where the phosphotyrosine residue is given position

0. Differently from most approaches, we propose to model complex non-linear dependencies

between the amino-acid positional features.

Table 4.1.: Ensemble data from literature and the final data used in this study after compilation.
# D is the number of domains, # P is the number of peptides, # I is the number of interactions,
# Pos is the number of positive data, # Neg is the number of negative data, and # Ukn is the
number of unknown data. The table is taken from [P4].

Data source Original Data Selected Data

# D # P # I #Pos #Neg #Ukn #D #P #I #Pos #Neg #Ukn

Dataset I 61 920 56120 7544 – 48576 51 880 44800 6742 – 38138

Dataset II 105 20 2100 160 1940 – 51 20 1020 48 851 –

Dataset III 85 41 3485 314 3171 – 46 41 1886 179 1672 –

Dataset IV 63 359 – 878 – – 28 197 – 339 – –
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Previous studies showed that residues in the close vicinity of the phosphotyrosine are

highly predictive for SH2 domain-peptide interaction [181, 183, 230]. For example, it is

known that the SH2 domain of CRK binds peptides where amino acid Leu or Pro is in

position +3, however, the presence of other amino acids (i.e., His, Arg, Ala, and Pro) in

position +1 and +2 can inhibit the interaction. [43]. Thus, we followed the literature and

restricted the peptide sequence to 6 specific positions, i.e., we extracted all the amino acids

ranging from 2 upstream to 4 downstream of the phosphotyrosine residue. A peptide is

therefore mapped into a binary vector x living in a 20 × 6 = 120 dimensional space (as the

central amino acid is always a phosphotyrosine, it is not informative and is not included in

the encoding), that is, for each position, we reserved 20 dimensions (one for each amino acid)

and encoded the amino acid type with a 1 in the corresponding dimension and 0 elsewhere

(see Section 3.2.1 for more details).

For the predictive model, many popular approaches, such as SMALI [183], are based on

PSSMs. We note that these methods are essentially linear models and cannot therefore

model arbitrary functional dependencies between amino acid positions.

Here, we propose three ways to improve over the PSSM models: (i) upgrading the model

from linear to non-linear, (ii) making the system more robust using regularization tech-

niques, and (iii) making an effective use of both interaction information (positive examples)

and non-interaction information (negative examples) by dealing with the imbalance issues.

Specifically, non linear models allow to express decision rules that can take into consider-

ation complex functional dependencies between amino acid positions. It could be important

to differentiate between the situation where we have co-occurrence of two or more amino

acids and the situation where one has independent occurrences of the same amino acids in

different peptides. For example, consider a case where the presence of amino acid Asn in

position +2 alone is not sufficient to guarantee the interaction and neither is the presence of

amino acid Lys in position -1. However, if these amino acids are occurring in their respec-

tive positions at the same time, then the binding occurs. Note that there can be different

instances of this situation, such as two or more amino acids can have a non-additive effect

as described in the example, or two or more amino acids can exclude each other etc. In

order to model this non-linear dependencies (but at the same time control the complexity

of the model), we upgrade to polynomial kernels (see Section 3.2.2 for details). Note that

the degree of the polynomial kernel is optimized via cross-validation and hence a simpler

linear model can still be chosen for some SH2 domains when it offers better performance.

The second improvement is to employ regularization techniques to avoid overfitting. Al-

though there are many different ways of dealing with this problem, we adopt the strategy

that has been championed in support vector machines. The basic idea of regularization is

to minimize the complexity of the model by adding a penalty to discount the cumulative

size of the parameters. To be more precise, the complexity of the model depends on the

degree of the polynomial kernel (since this determines the number of parameters) and on

the cumulative size of the parameter vector in the SVM (see Section 3.2.2 for details).
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Figure 4.1.: Comparison of AUC ROC and precision-recall curve of three different approaches.
(A) Showing the comparison of the AUC ROC for the SVM performance (solid red line), the SMALI

performance (dashed green line), and the performance of energy model (dotted blue line). This
figure clearly indicates the SVM performance with 0.83 AUC ROC is significantly higher than the
SMALI and energy model approaches with 0.71 and 0.62 AUC ROC, respectively. (B) Showing the
comparison of the precision-recall curve for the SVM performance (solid red line), the SMALI per-
formance (dashed green line), and the performance of energy model (dotted blue line). In this case,
the SVM performance with 0.93 precision-recall curve is higher than the SMALI and energy model
approaches with 0.87 and 0.81 precision-recall curve, respectively. This figure is taken from [P4].

Finally, to tackle the data imbalance problem, we resort to the self-training approach,

which relies only on the good discriminative properties of the base classifier. In this ap-

proach, the classifier is trained from labeled data, which is then used to test the unlabeled

data. The confidence predictions are iteratively added to the training set until the dataset

is balanced (see Section 3.2.3 for details).

Evaluation

In order to assess the expected predictive performance of our approach, we have performed

two types of experiments: (i) a cross-validation and random splitting on combined data

from three sources: a peptide array library data (dataset I) and two microarray datasets

(dataset II and dataset III); and (ii) we performed a validation experiment using a manually

curated SH2-peptide interaction dataset (dataset IV) (see Section 4.2.2 for details).

We compare the performance against two state-of-the-art approaches: (i) a tool based

on PSSMs, and (ii) an energy model based on interaction maps. The first tool, called

SMALI [183], is available for 76 SH2 domains and is based on the same peptide representation

that we used in our study (i.e., -2 to +4 amino acids with pTyr in 0th position). The second

tool [230] is an energy model based on different types of interaction maps where only the

positions of amino acids found to be in contact are used.
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4.2.4. Predictive performance evaluation

On each SH2 domain, we evaluate the predictive performance of our approach with a strati-

fied 5 fold cross-validation (see Section 3.6.1 for more details about cross-validation settings).

The hyper-parameters, i.e., the polynomial degree, the trade-off between fitting and

smoothing cost parameter C, are determined using a 10-fold cross-validation on the training

set. Using a repeated random split with 75% of the data for training and the remaining

25% for testing, we obtain performance values which are comparable to those obtained in

the cross-validation setting (see Figure A.1.1).

We compute the area under the ROC curve (AUC ROC) and the area under the precision

and recall curve (AUC PR) (see Figure 4.1). Additionally, in Table 4.2, we report sensitivity

and specificity with standard deviation per domain for different treatments of negative data,

where the second column refers to no imbalance treatment, the third refers to a random

re-balancing strategy, and the last refers to the proposed iterative self-training strategy.

To assess the importance of the dependency between the amino acid positions, we also

compared the predictive performance of a linear v.s. a non-linear (i.e., polynomial with

degree 2) kernel. In 42/51 = 82.3% cases, the polynomial kernel outperformed the linear

kernel according to the AUC ROC measure, which increases to 47/51 = 92.2% cases when

we consider the AUC PR measure (see Table A.1.2).

Performance comparison

We compare our results with two state-of-the-art tools: SMALI [183], and an energy model

approach [230]. We apply these tools as well as our approach to all 51 test sets (SMALI could

be applied to 45 test sets, as it does not have model for the other 6 SH2 domains). Our

model achieves an average AUC ROC of 0.83 and average AUC PR of 0.93 (see Figure 4.1),

outperforming the other two approaches: SMALI achieves AUC ROC of 0.71 and AUC

PR of 0.87; the energy model achieves AUC ROC of 0.62 and AUC PR of 0.81. Detailed

information on the AUC ROC and AUC PR for each SH2 domain is available in Figure A.1.2

and Figure A.1.3, respectively.

We note that SMALI achieves a very high specificity (0.95 on average) in all 45 SH2

domains when the proposed threshold is used (i.e., relative SMALI score 1), however, this

comes at the expenses of a very poor sensitivity (0.26 on average). See Table 4.3 for details.

In order to directly compare the sensitivities, we identified the threshold for our model

so to achieve the same specificity as SMALI (and another threshold for the energy model).

The advantage of our approach is evident in this setting too, achieving a sensitivity of 0.45

on average against 0.26 for SMALI and 0.17 for the energy model.

4.2.5. Comparison on validated data

Here, we test our approach with SMALI on a manually curated and reliable database of SH2-

peptide interactions called PhosphoELM [260]. We could not test the energy model, since
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Table 4.2.: Comparison of specificity and sensitivity. We compare the sensitivity and specificity of
each SH2 domain, achieved by using three different datasets (original imbalanced dataset, balanced
dataset with randomly chosen negative data, and balanced dataset with good negative data derived
by self training process). ∗ The average is computed over all domains except domains indicated
with †. The table indicates the datasets generated by the self training strategy perform better. This
table is taken from [P4].

Domains Original Random re-sample Neg Semi-supervised

Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

ABL1 0.54 ±0.08 0.84 ±0.1 0.84 ±0.17 0.45 ±0.09 0.75 ±0.14 0.68 ±0.14

ABL2 0.53 ±0.33 0.88 ±0.09 0.81 ±0.32 0.35 ±0.1 1 ±0 0.55 ±0.17

APS 0.64 ±0.11 0.82 ±0.08 0.88 ±0.13 0.55 ±0.16 0.67 ±0.14 0.74 ±0.13

BCAR3 0.44 ±0.29 0.72 ±0.07 0.7 ±0.1 0.38 ±0.15 0.55 ±0.18 0.56 ±0.09

BLK 0.55 ±0.14 0.92 ±0.04 0.8 ±0.11 0.63 ±0.07 0.7 ±0.19 0.78 ±0.11

BMX † 0.74 ±0.05 0.79 ±0.09 – – – –

BRDG1 † 0.76 ±0.11 0.82 ±0.08 – – – –

BTK 0.54 ±0.11 0.78 ±0.08 0.86 ±0.1 0.36 ±0.16 0.88 ±0.1 0.64 ±0.2

CRK 0.67 ±0.16 0.97 ±0.03 0.96 ±0.1 0.68 ±0.12 0.85 ±0.13 0.89 ±0.05

CRKL 0.63 ±0.17 0.92 ±0.05 0.96 ±0.09 0.71 ±0.13 0.94 ±0.09 0.8 ±0.12

CTEN 0.89 ±0.08 0.7 ±0.08 – – – –

E105251 0.57 ±0.16 0.83 ±0.07 0.92 ±0.08 0.43 ±0.06 0.69 ±0.09 0.75 ±0.06

E109111 0.65 ±0.29 0.89 ±0.04 0.88 ±0.07 0.55 ±0.11 0.81 ±0.13 0.67 ±0.15

E185634 0.8 ±0.11 0.99 ±0.03 0.95 ±0.11 0.54 ±0.2 0.9 ±0.14 0.86 ±0.05

EAT2 0.66 ±0.2 0.94 ±0.05 0.85 ±0.04 0.63 ±0.09 0.83 ±0.1 0.85 ±0.11

FER † 0.92 ±0.06 0.85 ±0.14 – – 0.95 ±0.05 0.69 ±0.12

FES † 0.92 ±0.08 0.82 ±0.11 – – – –

FGR 0.54 ±0.05 0.86 ±0.09 0.78 ±0.13 0.71 ±0.05 0.64 ±0.15 0.85 ±0.09

FRK 0.42 ±0.33 0.96 ±0.04 0.72 ±0.3 0.66 ±0.18 0.65 ±0.25 0.86 ±0.07

GRAP2 0.93 ±0.08 0.97 ±0.03 0.9 ±0.07 0.94 ±0.06 0.95 ±0.08 0.96 ±0.04

GRB10 0.49 ±0.1 0.85 ±0.03 0.85 ±0.05 0.29 ±0.12 0.94 ±0.09 0.43 ±0.16

GRB14 0.48 ±0.23 0.9 ±0.03 0.84 ±0.1 0.47 ±0.11 0.6 ±0.18 0.7 ±0.13

GRB2 0.87 ±0.05 0.91 ±0.06 0.91 ±0 0.91 ±0.06 0.93 ±0.04 0.9 ±0.06

HCK 0.55 ±0.25 0.91 ±0.04 0.82 ±0.13 0.5 ±0.09 0.79 ±0.21 0.75 ±0.08

INPPL1 0.64 ±0.06 0.82 ±0.07 0.84 ±0.15 0.45 ±0.07 0.69 ±0.16 0.8 ±0.07

ITK 0.71 ±0.22 0.85 ±0.06 0.91 ±0.1 0.53 ±0.09 0.95 ±0.06 0.72 ±0.11

LCK 0.55 ±0.09 0.87 ±0.07 0.88 ±0.05 0.5 ±0.07 0.7 ±0.09 0.73 ±0.08

LCP2 0.85 ±0.04 0.76 ±0.07 – – – –

LYN 0.62 ±0.17 0.83 ±0.13 0.75 ±0.16 0.47 ±0.17 0.77 ±0.12 0.67 ±0.18

MATK 0.83 ±0.17 0.79 ±0.07 – – – –

MIST 0.3 ±0.45 0.94 ±0.04 0.9 ±0.22 0.41 ±0.1 0.5 ±0.5 0.77 ±0.07

NCK1 0.63 ±0.11 0.83 ±0.08 0.78 ±0.09 0.51 ±0.17 0.84 ±0.14 0.71 ±0.13

NCK2 0.71 ±0.14 0.86 ±0.1 0.94 ±0.06 0.39 ±0.07 0.96 ±0.06 0.63 ±0.09

PTK6 0.52 ±0.14 0.89 ±0.09 0.93 ±0.07 0.42 ±0.09 0.78 ±0.19 0.68 ±0.1

SH2B 0.51 ±0.25 0.86 ±0.02 0.85 ±0.05 0.59 ±0.1 0.67 ±0.19 0.78 ±0.06

SH2D1A 0.4 ±0.09 0.88 ±0.06 0.68 ±0.12 0.55 ±0.06 0.63 ±0.21 0.66 ±0.08

SH2D2A 0.47 ±0.11 0.87 ±0.08 0.82 ±0.11 0.43 ±0.13 0.73 ±0.18 0.61 ±0.1

SH2D3C † 0.61 ±0.21 0.9 ±0.04 – – – –

SHC1 0.53 ±0.19 0.83 ±0.05 0.92 ±0.04 0.42 ±0.28 0.69 ±0.17 0.71 ±0.12

SHC3 † 0.71 ±0.04 0.79 ±0.08 – – – –

SOCS2 0.45 ±0.27 0.96 ±0.04 0.9 ±0.14 0.52 ±0.1 0.7 ±0.21 0.89 ±0.1

SOCS5 0.6 ±0.42 0.99 ±0.03 0.8 ±0.27 0.51 ±0.17 0.9 ±0.22 0.84 ±0.12

SRC 0.35 ±0.16 0.95 ±0.03 0.85 ±0.16 0.61 ±0.07 0.65 ±0.21 0.73 ±0.08

TEC 0.57 ±0.11 0.9 ±0.09 0.8 ±0.1 0.53 ±0.13 0.72 ±0.08 0.76 ±0.11

TENC1 0.55 ±0.23 0.89 ±0.08 0.85 ±0.08 0.44 ±0.12 0.8 ±0.12 0.66 ±0.07

TENS1 0.58 ±0.23 0.87 ±0.09 0.87 ±0.05 0.49 ±0.12 0.77 ±0.15 0.78 ±0.11

TNS 0.57 ±0.12 0.87 ±0.05 0.73 ±0.13 0.68 ±0.03 0.7 ±0.09 0.83 ±0.04

TXK 0.47 ±0.1 0.86 ±0.07 0.82 ±0.09 0.53 ±0.17 0.65 ±0.12 0.74 ±0.11

VAV1 † 0.86 ±0.12 0.88 ±0.04 – – – –

VAV2 † 0.82 ±0.11 0.83 ±0.14 – – – –

YES1 0.53 ±0.22 0.83 ±0.05 0.75 ±0.2 0.43 ±0.07 0.73 ±0.21 0.69 ±0.12

Avg.∗ 0.57 0.88 0.85 0.53 0.77 0.74
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Table 4.3.: Comparison of sensitivity of three different approaches with fixed specificity. Here, we
used the fixed specificity that is generated by SMALI program and then we used the same specificity to
find the correspondence sensitivity. † SMALI does not have model for these SH2 domains, therefore,
we used high specificity for those domains. ∗ The average is computed over all domains except
domains indicated with †. This table is taken from [P4].

Domains Specificity SMALI Energy-model SVM-model

Sensitivity Sensitivity Sensitivity

ABL1 0.95455 0.21023 0.03409 0.29545

ABL2 0.95238 0.07500 0.02500 0.55000

APS 1.00000 0.15441 0.10294 0.41176

BCAR3 0.96226 0.05435 0.10870 0.28261

BLK 0.90000 0.26271 0.36441 0.52966

BMX 1.00000 0.11250 0.01250 0.06250

BRDG1 1.00000 0.00000 0.01176 0.40000

BTK 0.96491 0.10680 0.03883 0.36893

CRKL 1.00000 0.26718 0.08228 0.57595

CRK 1.00000 0.37975 0.00000 0.64122

CTEN 0.87500 0.53191 0.17021 0.74468

E105251 1.00000 0.04965 0.04255 0.17021

E109111 0.98246 0.00000 0.05941 0.40594

E185634 1.00000 0.27778 0.09722 0.66667

EAT2 0.96610 0.31429 0.05000 0.37857

FER 0.98333 0.56410 0.02564 0.51282

FES 0.88333 0.67273 0.29091 0.87273

FGR 0.88000 0.32117 0.49270 0.52920

FRK 0.94444 0.21212 0.17803 0.20455

GRAP2 0.88136 0.96914 0.61111 0.96914

GRB10 0.98113 0.13889 0.04167 0.38889

GRB14 0.87931 0.28415 0.22951 0.49180

GRB2 0.88889 0.90476 0.80952 0.90476

HCK 0.89474 0.28241 0.32870 0.51389

INPPL1 0.98361 0.12295 0.04918 0.34426

ITK 0.88372 0.30667 0.73333 0.78667

LCK 0.96429 0.23256 0.09302 0.43256

LCP2 † 0.96721 – 0.01695 0.57627

LYN 1.00000 0.11966 0.02564 0.01961

MATK 0.95000 0.11321 0.13208 0.52830

MIST † 1.00000 – 0.19277 0.55422

NCK1 0.94118 0.50459 0.29358 0.44037

NCK2 0.97917 0.31683 0.04950 0.55446

PTK6 0.96667 0.33824 0.00980 0.26961

SH2B 0.96364 0.02198 0.11538 0.42308

SH2D1A 0.92982 0.19162 0.07784 0.22754

SH2D2A 0.88333 0.33036 0.17857 0.47321

SH2D3C † 0.88889 – 0.17105 0.65789

SHC1 0.98039 0.24000 0.07333 0.36000

SHC3 1.00000 0.15517 0.13793 0.12069

SOCS2 † 1.00000 – 0.06250 0.39583

SOCS5 † 1.00000 – 0.18571 0.75714

SRC 0.97500 0.23476 0.16159 0.27744

TEC 0.95918 0.19018 0.28834 0.24540

TENC1 1.00000 0.13990 0.02073 0.24870

TENS1 † 1.00000 – 0.00813 0.14634

TNS 0.94643 0.24876 0.07463 0.49254

TXK 0.94545 0.16541 0.14286 0.43609

VAV1 0.87500 0.35593 0.33898 0.88136

VAV2 0.93878 0.22500 0.15000 0.62500

YES1 0.97500 0.21101 0.08257 0.41284

Avg.∗ 0.95 0.26 0.17 0.45
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Figure 4.2.: Performance evaluation on a manually curated database, PhosphoELM. (A, B) Per-
formance of SMALI and our program on the experimentally validated data. In both (A and B) cases,
the brown bars indicate the actual experimentally validated interactions for different SH2 domains,
whereas the red and green bars indicate the predicted interactions by SVM models and SMALI, re-
spectively. (A) Showing those SH2 domains that have at least 10 interactions in PhosphoELM 9.0
and (B) showing the SH2 domains that have less than 10 interactions in PhosphoELM 9.0 database.
This figure is taken from [P4].

there is no specific threshold that can determine the class. On this dataset the performance

of SMALI (comparable to Scansite [181], although with better accuracy for some SH2 do-

mains) is 112 correct interactions predicted over a total of 335 interactions (26 domains,

SMALI does not have models for LCP2 and SOCS2 domains), while our approach identifies

213 true interactions (see Figure 4.2). In particular, we correctly predicted all the inter-

actions predicted by the SMALI except two interactions for NCK1 and SRC SH2 domain

each.

Note that we have taken care to exclude all the interaction data in the PhosphoELM

database from our training sets (unfortunately this cannot be done for the SMALI tool, since

we could use only the pre-trained version).

4.2.6. Analysis of existing approaches

We further investigate the reliability and the generalization capacity of the two state-of-the-

art methods: SMALI and energy model.

SMALI performance on microarray data

We use dataset II and III to analyze the correlation between the experimental affinity

values and the relative SMALI scores. Dataset II contains 3255 interactions between 105

SH2 domains and 31 pY peptides. The strength of the interaction is measured by the

apparent dissociation constant [165], denoted as KD. KD values are available also for

dataset III (which contains 3485 interactions between 85 SH2 domains and 41 pY peptides).

Interactions are considered reliable when their associated KD values are lower than 2 µm.
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Figure 4.3.: Comparison of the relative SMALI scores with two different microarray experiments.
(A,B) Barplots of relative SMALI score with microarray experiments. It separates the KD (apparent
equilibrium disassociation constant) into five parts, i.e., 1-499, 500-999, 1000-1499, 1500-1999, and
> = 2000 (unit is in nm). Among them, KD values less than 2000 nm were considered as positive
interactions, and considered as negative interactions otherwise. (A) Barplot of relative SMALI score
with dataset II and (B) barplot of relative SMALI score with dataset III. In both cases, it is clearly
observed that there is no correlation between the relative SMALI score and the KD values. This figure
is adopted from [P4].

We compute the relative SMALI score for the SH2-peptide interactions in both dataset

II and III. A relative SMALI score ≥ 1 is considered indicative of a true interaction. In

Figure 4.3, we report a box plot for the distribution of the relative SMALI scores vs. the

KD values. We note that a large fraction of interactions that have KD values lower than

2 µm (experimental evidence for a strong binding case) have also low relative SMALI scores

(no predicted interaction). If we consider only the non binding interactions, we observe

a Spearman rank correlation ρ = -0.12 w.r.t. the SMALI score (we would expect a large

negative value for good predictive capacity). If we consider the binding interactions, we see

that the average SMALI score is 0.53 ± 0.27, significantly below the unit threshold.

An illustrative case is the interaction between domain ABL1 and peptide ErbB2 pY1139,

which has an experimentally KD value of 0.16 µm (indicating a very high affinity and a high

probability of binding) [165]. Here, however, the SMALI tool predicts no interaction, giving

a relative score of 0.84 (below the unit threshold). Our model instead correctly predicts the

binding with a margin of 0.999.

Structure-based energy model performance on microarray data

A structure-based energy model has been developed by Wunderlich et al., which predicts the

interaction energy between the SH2 domains and the peptides [230]. This energy model was

trained on a large scale microarray experiment [165] (our dataset II), and a significant energy
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Figure 4.4.: Binding and non-binding energy comparison with different microarray data. (A)
Plots for the binding and non-binding energies derived from dataset II, indicates there are clear
difference between the binding (red dots) and non-binding interactions (green boxes). (B) With the
data derived from dataset III, surprisingly, we observed that there is no clear differences between
the binding (red dots) and non-binding (green boxes) interactions. The energy calculation program
was kindly provided by Zeba Wunderlich [230]. This figure is taken from [P4].

difference between binding and non-binding interactions was observed [230]. When we apply

this energy model on the dataset II, not surprisingly, we obtain the results reported in [230];

namely TPR 0.90 and FPR of 0.06. More precisely, we could determine the threshold value

that achieves the reported classification results. In Figure 4.4.A, there is a clear energy

difference between the binding and the non-binding pairs. The software was kindly made

available to us by Zeba Wunderlich.

However, when we apply the same energy model (trained on dataset II) on dataset III [44],

we obtain quite a different result. Figure 4.4.B clearly indicates that there are no prominent

energy differences between the binding and non-binding pairs. Moreover, we observed in

this case, there is no threshold that can significantly discriminate between the binding and

the non-binding cases (see also AUC ROC results in A.1.4). This seems to indicate an

over-training issue with a consequent inability of generalization to a different experimental

setup.

4.2.7. Discussion

SH2-peptide interactions are an important component of cell signaling. Because of the lim-

ited availability of experimentally proven interactions, machine learning approaches have to

be used in order to generalize to combinations that have not been experimentally investi-

gated. High-throughput experimental methods seem to be a perfect data source for training

these models. There are, however, two kinds of problems in these data: (i) a significant

noise component and (ii) quite an imbalance between confirmed interactions (positive data)

and experimentally proven non-interactions (negative data). In addition, current state-of-

the-art models for SH2-peptide interaction prediction are based on linear models, which are

not capable of handling complex interactions patterns.
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In our work, we propose a model that tackles these issues. On the one hand, we propose

an iterative re-balancing strategy to compensate the imbalance problem. On the other hand,

to model complex interaction patterns, we use a polynomial kernel support vector machine,

and we avoid overfitting issues employing a regularization scheme.

We used three high-throughput data: two derived from microarray experiments and one

from a peptide array library experiment. We carefully compared our approach with state-of-

the-art tools, namely SMALI and an energy based structural model, achieving a significantly

better generalization performance (measured as cross-validated AUC ROC and AUC PR).

This result was additionally confirmed on a manually curated database (PhosphoELM) of

experimentally validated SH2-peptide interactions. Finally, we performed a genome-wide

prediction of human SH2-peptide interactions and report some novel interactions between

SH2 domains and tyrosine-phosphorylated proteins (see Section 4.5.2 for details).

4.3. SH3-peptide interactions

4.3.1. Introduction

For predicting SH3 mediated interactions, we presented a graph kernel-based machine learn-

ing approach (see Section 3.3.2 for details). This graph-kernel technique, differently from

the PWMs, does not require an initial peptide multiple alignment. Furthermore, by virtue

of its non-linearity assumptions, it can adequately capture all types of peptide classes. We

build specialized models for the 70 human SH3 domains and achieve much better predictive

performance compared to the state-of-the-art method [192]. We show that better models

can be obtained when we use information on the non-interacting peptides (negative ex-

amples), which is currently not used by the state-of-the art approaches based on PWMs.

Moreover, we show how we can leverage the information contained in related domains by

building a single comprehensive model for a set of 6 SH3 domains (see Section 3.3.4), which

further improve the predictive performance. Although high-throughput datasets are avail-

able to train statistical based learning approaches, we note that the presence of spurious

interactions in the experimental data (either false negatives or false positives) can severely

affect the quality of the induced model. However, in Section 3.3.3, we proposed two methods

to generate high-confidence negative interaction data. These negative class instances were

then used to train a model in a setting with reduced noise to signal ratio.

4.3.2. Dataset compilation

Dataset I (high density peptide array data)

In our study, we use the large scale human SH3-peptide interaction data from a high density

peptide array experiment [58]. A total of 9192 peptides of length 15 were used in the

CHIP experiment. The SH3-peptide interactions that gave a positive signal in peptide chip

experiment have been stored in the newly developed interaction database PepspotDB [58].
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Table 4.4.: Summary of the whole data for 70 human SH3 domains. Data available from the
high density peptide array experiment of [58]. In brackets, the interactions evidence available in
MINT [196]. The table is taken from [P3].

# Positive # Negative # Unknown

Peptides 2802 9188 9188

Interactions 16032 (478) 262883 627177

From PepspotDB, we have retrieved 16032 non-redundant interactions for 70 human SH3

domains and 2802 peptides. Among them, a total of 478 interactions were also supported

by the literature as reported by the MINT database [196] (see Table 4.4).

4.3.3. Dealing with false negatives

Traditional methods for peptide characterization rely on generative approaches where the

probability of the model (often represented as a motif) is estimated from positive data

alone. A typical approach is represented by position weight matrices (PWMs) [192] where

the multinomial probability distribution for each position in the sequence is estimated in-

dependently via frequency counts. In the machine learning community, it is known that

discriminative models have an advantage over generative ones, since they can rely on both

positive and negative data; this allows them to better identify the decision boundary for

the relevant region of the data-space. While generative methods often require less training

examples, they do not achieve quite the same performance [197]. However, when nega-

tive data is assumed to be severely affected by noise, or even when the negative data is

overly represented, one-class models can exhibit an advantage over discriminative ones. A

typical scenario is when dealing with high-throughput experimental results, such as phage

display [261], SPOT synthesis [262], or peptide array screening [130]. Here, in order to

increase the confidence on the measurements, the experimental protocol makes use of strin-

gent thresholds (e.g., requiring agreement on several replicated experiments). In these cases,

a large part of what would be labeled as a lack of interaction (negative example), is in fact

just a weaker true interaction (positive example). To deal with these cases, we developed

two approaches. The first one is a generative approach that makes use of multiple PWMs

to model each peptide class. We then select a subset of instances that are not recognized by

any specialized PWMs and use those as reliable negative instances to train a binary classi-

fier. The second approach is based on a combination of a one-class and a semi-supervised

method.

4.3.4. Single domain model with filtered negatives

As detailed in Section 3.3.3, we induced PWMs to model several known classes of binding

peptides for each SH3 domain. We used these models to select and filter away all peptides

that were experimentally identified as non-interacting but that are recognized by the PWMs

as belonging to one of the known classes of binding peptides. In this way, we obtain a total
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of 262883 confident negative interactions for all 70 SH3 domains (the full list of positive and

negative interaction data along with the class balance is given in Table A.2.2). We encode

the peptide sequences as described in Section 3.3.1, and induce a support vector machine

(SVM) to model each SH3 domain based on the graph kernel. Note that even if here we use

a linear SVM, we are in fact inducing a non-linear model w.r.t. the sequence of amino acid

residues, i.e., the linear model is aware of higher-order features that capture the dependency

between pairs, triplets, etc, of amino acids.

We used a 10-fold stratified cross-validation (see Section 3.6.1) in order to evaluate the

predictive performance of each model. The hyper-parameters of the method were optimized

in each fold by using a 5 fold cross-validation over the training set. Specifically, we optimized

the radius parameter r ∈ {1, . . . , 8} and the distance parameter d ∈ {1, . . . , 8} for the graph

kernel. The SVM model is induced using the Stochastic Gradient Descent (SGD) approach

championed by [263]. The optimal values are achieved at r = 6 and d = 8 for most of the

domains. We report the performance measures in Table A.2.3, and on an average, we obtain

a remarkable 0.73 AUC PR and 0.94 AUC ROC.

As for run times, since the NSPDK has essentially a linear complexity when dealing with

bounded degree graphs, we report the estimated average time per instance: 0.07 sec/instance

on an ordinary 2.33GHz Intel Core2 Duo CPU. This time includes the file upload in main

memory, the graph feature generation, and the parameters fitting of the model via the SGD.

In practice, this means that we can generate a model given 1K peptides in one minute, or

equivalently, a model for a proteome-scale 100K peptides dataset in less than two hours on

a desktop machine.

We note that at times, we suffer from the high imbalance problem. For certain domains

(e.g., CSK, DLG1, FISH, GRAP2-1, RUSC1, STAM2 etc.), the ratio between the available

information for positive interactions and negative interactions is above 100. It is known in

the machine learning literature that severely imbalanced class distribution negatively affects

the performance of adaptive predictors [210], since the tuning algorithms are generally biased

towards the majority class. In our case, the majority class is the negative class, which implies

a low sensitivity (true positive rate).

Comparison with state-of-the-art PWM approach

We have compared our results with a recently developed tool based on PWMs called Multiple

Specificity Identifier (MUSI) [192]. Even if the tool tries to increase the modeling complexity

by replacing a single PWM with multiple PWMs, it remains in essence a linear model,

and therefore still suffers from the issues detailed in the Chapter 2, namely the inability

to model dependency between features and the fact that it requires an initial error-prone

peptide alignment phase. We have used exactly the same experimental setup as in our

approach. In Figure 4.5, we report the comparative results w.r.t. AUC PR and AUC

ROC performance measures for all 70 human SH3 domains. On average, MUSI achieves a

non-competitive 0.27 AUC PR and 0.69 AUC ROC.
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We were curious to see how our method performs on the same experimental dataset used

by Kim et al., and hence we collected the interaction data reported in the paper [192]. A

total 2457 unique positive interactions were available for the SH3 domain from SRC protein.

Since the interaction peptides were identified by the phage display experiment, we could only

get the positive interaction data. For preparing the negative interaction data, we have taken

three different strategies: (i) we considered the filtered negative data used in our study, (ii)

we prepared random negatives automatically generated by rand() function in Perl, and

(iii) we prepared the random negatives generated by the same strategy as described above

with PxxP core, since SH3 domain binding peptides normally contain this core motif (see

Section 1.4.2 for binding specificity of SH3 domains). Finally, we have performed a stratified

10-fold cross-validation using same parameter ranges (r ∈ {1, . . . , 8} and d ∈ {1, . . . , 8}) for

optimization and report AUC PR and AUC ROC performance measures for all these three

datasets. In this experiment, our approach achieved a much higher performance than MUSI

tool. This would add another layer of confidence to the performance of our models. We also

compare the performances of our graph kernel approach and MUSI on our original dataset

along with these three datasets (see Figure A.2.1).

Note that the problem of generating the initial alignment was also tackled in a recent

publication by [258]. They identify multiple specificities in peptide data by performing

two essential tasks simultaneously: alignment and clustering, and therefore find biologically

relevant binding motifs that cannot be described well with a single PWM. Our approach

sidesteps these issues altogether, as we just make a model based on all available peptide

features (achieving, at the same time, a speed up of several orders of magnitude in run

times).

4.3.5. Single domain model with unfiltered negatives

Training and testing systems using only high-confidence negative interactions can, in princi-

ple, induce a bias that alters the comparison between methods. To rule out such a case, we

perform an additional experiment where we do not filter in any way the negative data. We

employ the same setup as in previous experiments (i.e., stratified 10-fold cross-validation)

using the same parameter ranges (r ∈ {1, . . . , 8} and d ∈ {1, . . . , 8}) for optimization.

In Figure 4.5, we report the comparative results w.r.t. AUC PR and AUC ROC perfor-

mance measures for all 70 human SH3 domains. The graph kernel approach achieves an

average AUC PR 0.35 and 0.90 AUC ROC. Under the same conditions, MUSI achieves a

non-competitive AUC PR 0.04 and AUC ROC 0.58. This result confirms the advantages

of the proposed discriminative graph-based method. Note that the large difference in the

performance w.r.t. the filtered case is due to (i) the imbalanced class distribution (some are

more than 1:100) and (ii) the presence of a possibly large portion of false negatives.
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Figure 4.5.: A 10-fold cross-validation performance. (A + B) Comparison when using filtered
negative interactions for Graph Kernel (GK) and MUSI. (C + D) Comparison with non-filtered
negative interactions for binary class Graph Kernel (GK), one-class Graph Kernel, and MUSI. The
error bars represent respective standard deviation. The domains are sorted by increasing average
performance for the Graph Kernel method. The figure is taken from [P3].

4.3.6. Single domain one-class model with semi-supervised filtered negatives

In order to test how important the precise information on true negatives (i.e., peptides

that do not interact with the domain) is, we employed the one-class and semi-supervised

technique described in Section 3.3.3. The key idea here is to make use of information based

primarily on the positive interactions to characterize the binding peptides; instances that

are not well recognized by the model are then assumed to be negative. Once again we

operate in the same setup as for the unfiltered negatives experiment. In Figure 4.5, we

report the comparative results w.r.t. AUC PR and AUC ROC performance measures for all

70 human SH3 domains. The one-class approach achieves an average AUC PR 0.063 and

0.61 AUC ROC. Although this result is statistically significant (according to a Wilcoxon

Matched-Pairs Signed-Ranks Test, with p-value = 0.0003), the magnitude of the result

lets us conclude that using a generative approach to model protein-peptide interactions is

non-competitive w.r.t. discriminative approaches.

4.3.7. Multi-domain model and evaluation

As detailed in Multiple Domains Modeling in Section 3.3.4, we aligned six domains (SH3

domains for FYN, BTK, HCK, FGR, SRC, and LYN proteins) with the MUSCLE tool [42].

We used the SVMlight [232] software to train a Gaussian SVM over the explicit sparse feature
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Figure 4.6.: (A) Precision-recall curves and (B) AUC ROC curves for the Multi-Domain Gaus-
sian Graph Kernel (MD-G-GK), the Single Domain Graph Kernel (GK), and the MUSI tool for 6
related SH3 domains. The error bars represent respective standard deviation. The figure is adopted
from [P3].

encoding of peptide and domain sequence pairs. We evaluated the predictive performance

using a 10-fold cross-validation over the six domain sets using the filtered negatives as

specified in Section 3.3.3. The value for the Gaussian width was optimized on an inter-

nal 20% validation set over the range γ ∈ {.001, .01, .1, 1} and the trade-off parameter

C ∈ {1, 10, 100}, while the values of r and d for the graph kernel were fixed at the optimal

value obtained in the previous experiments of r = 6 and d = 8. In Figure 4.6, we report

the AUC PR and the AUC ROC, achieved by single domain model, multi-domain model,

and MUSI, for each of six SH3 domain. It is clearly observed that the multi-domain model

performs better than the single domain models. As a baseline, we trained (and evaluated

in an analogous setting) the six models independently on each domain, both using a lin-

ear kernel and a Gaussian compounded kernel. In Figure A.2.2, we report the sensitivity

and the specificity, respectively. The experimental result confirms our intuitions: sharing

information across related domains increases the predictive performance, mainly due to an

increase in sensitivity. We also note that the difference between models trained over single

domains when using the linear kernel or the Gaussian one is statistically not significant.

This result is also in line with our expectations, since the dependency between features is

fully captured by the pairwise neighborhood subgraph features, leaving no margin of im-

provement to the non-linearity implemented by the kernel trick. With radius r = 6 and

distance d = 8, in fact, the kernel generates features spanning the whole sequence.

Finally, we report the performance of the joint model when trained over the six domains,

but tested over a novel albeit related LCK dataset. In this experiment, we are asking to

predict the specificity for a novel domain given only the information about the alignment

of this domain to the overall consensus alignment. The model achieves an average AUC

PR 0.85 and AUC ROC 0.96, with a very high sensitivity 0.91 and specificity 0.96. The

interesting finding is that the results are better than those obtained by training a model on

the LCK protein alone; in this case, in fact, we obtain an average AUC PR 0.86 and AUC

ROC 0.94, with a quite low sensitivity 0.55 and a high specificity 0.99. To understand the

result, note that in the case of the LCK domain, we have experimental evidence only for 150

positive interactions, while the dataset for the six domains has a total of 910 non-redundant
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peptides involved in positive interactions. Thus, the experimental results support the hy-

pothesis that, at least in the LCK case, the domain alignment is sufficient to characterize

the peptides binding model and to achieve, therefore, a higher overall sensitivity.

4.3.8. Comparison with other predictive methods

We have shown our method performs better than the state-of-the-art approach. However, we

thought that there are a few questions which still need to be answered. Thus, we performed

additional experiments to answer two questions: (i) how well does a classical string kernel

fair on this task? and (ii) how important is the alignment phase?

To answer the first question, we have used a k-mer string kernel on the amino acid sequence

information only without any “abstract information” (like charge or hydrophobicity) in the

feature encoding. The k-mer kernel simply extracts all substrings up to size k and compares

the resulting histograms between two sequences. We identified the optimal k value via an

internal 10-fold cross-validation on a validation set (30% of the training set). As for the

evaluation, we tested the range of values k ∈ {1, . . . , 8} and obtained the best performance

for k = 2. Predictive performance is reported as the average AUC PR and AUC ROC for

all 70 SH3 domains (see Figure A.2.4) on a stratified 10-fold cross-validation.

To answer the second question, we aligned the peptides with two methods and thus ob-

tained a fixed size vector encoding. Afterwards, we have fair linear and Gaussian predictive

models under the SVM loss. For the alignment, we used (a) the MAFFT [195] tool allowing

“gaps” within the sequences; and as a second strategy we used (b) the MUSI approach [192]

which enforces “zero gaps” within the peptide sequences (internal gaps are supposed to be

biologically not very plausible).

Model hyper-parameters (γ for Gaussian kernel and the trade-off parameter C for both

Gaussian and linear kernel) have been selected once again by internal 10-fold cross-validation

over a 30% validation set, in the range γ ∈ {.001, .01, .1, 1} and C ∈ {1, 10, 100}, respectively.

The average AUC PR and AUC ROC for all 70 SH3 domains over a 10-fold cross-validation

are reported in Figure A.2.4.

As a result of the first question, the k-mer string kernel is outperformed by our approach,

AUC PR = 0.60, AUC ROC = 0.92 vs AUC PR = 0.73 and AUC ROC = 0.94. This

confirms the intuition that using physico-chemical properties in the feature definition can

adequately model cases that would otherwise be poorly covered by a sufficient number of

sequences.

The result of the second question indicates that the Gaussian model with “zero gaps”

aligned sequences performed better than other methods, although not as well as our ap-

proach. This confirms the intuition that higher-order dependencies are useful for a better

modeling of binding specificities. The importance of the “zero gaps” approach is also con-

firmed. We note, however, that when we compare the simple k-mer string kernel and the

Gaussian model, they perform similarly, achieving AUC PR 0.60, AUC ROC 0.92 and AUC

PR 0.63, AUC ROC 0.89, respectively.
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We conclude that in order to achieve top performance, we need to consider systems that

are alignment free and that can exploit dependencies between amino acid positions.

4.3.9. Discussion

SH3-domain are probably the most widespread class of protein recognition modules, which

constitute a very important class of protein-protein interactions, involved in many cellular

processes. We presented a computational approach to predict domain-peptide interactions

using available high-throughput data. The method is an alignment-free approach based on

an efficient graph kernel.

Current methods for protein-peptide interaction often require an initial multiple alignment

of the bound peptides. Since this is an error-prone process (especially in the case of SH3-

domains, where peptides are proline-rich), one risks to introduce a significant amount of

noise and obtain under-performing models (sec Section 2.3.1). In addition, current methods

are often linear models (e.g., PWMs) and are, therefore, not able to represent higher-order

dependencies between amino acid residues. Non-linear methods exist but have to deal with

the high model complexity resulting from exponential number of higher-order dependencies

achievable even for relatively short peptide sequences. If one uses the full alphabet of 20

amino acids, it becomes hard to gain sufficient data for a correct estimation of these complex

models. One common solution is to use a reduced alphabet where each letter represents

an entire amino acid class. This strategy, however, leads to inferior performance, especially

when specific amino acids are indeed preferred at specific positions. An alternative approach

is to determine important interaction first by using resolved 3D domain-peptide structures.

The major obstacle for the wide-spread application of this approach, however, is the limited

availability of such structural data.

In our work, we employ a different approach. We consider an alignment-free approach

based on a graph representation of the peptide sequence where different abstraction levels

are available in a unified way. By applying an efficient graph-kernel method, we were able to

model higher-order dependencies that span different abstraction levels (e.g., a feature could

represent a specific residue that has to be three positions to the right of a hydrophobic

residue). The regularization provided by the SVM optimization scheme finally ensures

that the model complexity is appropriately controlled, and that only the features relevant

for the task at hand are selected. Discarding the abstraction information, i.e., using only

the amino acid code information, leads to a statistically significantly lower sensitivity (see

Figure A.2.4). This confirms the intuition that using physico-chemical properties in the

feature definition can build better predictive model. It was also important to optimize the

encoding order, therefore, we performed an experiment with different encoding order and

proposed the best order to represent our graph (see Figure A.2.3).

Although NSPDK graph kernel approach has been previously used for clustering RNA-

structures [246], here differently from the RNA or molecular case, we do not have an obvious

and natural way to encode the information as a graph. The guiding principle behind the
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choice of the proposed feature encoding, is to add “abstract information” (like charge or

hydrophobicity) in a somewhat “soft” and incremental way. Rather than using an extended

alphabet and maintaining a sequence encoding, the proposed graph encoding allows us to

obtain features that are increasingly specialized. We have experimental evidence that a

different choice in the ordering of the abstract information would yield suboptimal results,

which becomes evident in the presence of imbalanced data (see Figure A.2.3). Additionally,

we have investigated the performance of a string kernel (the k-mer kernel) along with other

types of kernels, applied to the pure amino-acid sequences (i.e., without any additional

information). Also in this case, there is an evident drop in the performance (see Section 4.3.8

and Figure A.2.4).

Interestingly, the experimentally cross-validated optimal parameter values (r = 6, d = 8)

suggest that very higher-order amino acid dependencies are indeed required to obtain the

best predictive performance and therefore linear models are inadequate. Another common

practice is to employ generative models, i.e., models that try to capture the density dis-

tribution of the interacting peptides only. We showed that using one-class approaches is

suboptimal, even when considering models more expressive than the commonly used linear

PWMs. The average predictive performance of a graph kernel based domain specific model

that is trained in a discriminative fashion is 0.35 AUC PR compared to 0.06 AUC PR when

trained in a one-class way (see Figure 4.5).

We tried to address the problem of selecting high quality negative data. The issue is

known in literature [216, 217]. In the application of domain-peptide interaction, it has been

shown that the common practice of generating negative instances by randomly shuffling

peptide sequences, simply leads to a decreased predicted performance, as these instances

do not resemble real biological sequences, and are not therefore useful to determine useful

class boundaries [217]. We note, however, that a decreasing performance is proportional to

the level of class imbalance. When the ratio of negative instances versus positive ones is

within 10 fold, we maintain an AUC PR 0.8, but for ratios greater than 100, performance

drops to AUC PR 0.4 and lower (see Figure A.2.5 and A.2.6).

We showed how the flexible graph kernel approach allows the induction of multi-domain

models. These models can leverage experimentally verified binding interactions on related

domains and achieve high predictive performance even on domains for which no training

data was available. Finally, we have performed a genome-wide analysis for uncover novel

SH3 mediated interactions (see Section 4.5.2 for details). As for the future work, given the

computational efficiency of these models (a single domain model can be trained on 100K

sequences in less than two hours), we plan to provide a comprehensive set of predictors for

all protein domains for which high-throughput data is available.
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4.4. PDZ-peptide interactions

4.4.1. Introduction

In this section, we present a cluster-based prediction of PDZ-peptide interactions for hu-

man (Homo sapiens), mouse (Mus masculas), fly (Drosophila melanogaster), and worm

(Caenorhabditis elegans) using a machine learning approach. The importance of our method

is five fold: (i) clustering of a very large set of PDZ domains based on their sequence identity.

This comprehensive study allowed us to construct specialized models for 43 PDZ families,

covering 226 PDZ domains, which are more accurate compared to the state-of-the-art and

offers models for the largest set of PDZ domains to date; (ii) the data obtained from high-

throughput experiments are often found to a lack of non-interacting data (i.e., negative data)

and thus lead to a great class imbalance problem. We already know that the performance

of many machine learning methods are significantly poorer on highly imbalanced data [235].

To deal with this issue, we employed a semi-supervised machine learning approach to iden-

tify high-confidence negative interactions in an analogous fashion, described in Section 3.2.3;

(iii) we allowed the dependency between the amino acid positions in the binding ligand; (iv)

we built two types of models, one sequence-based and one based on contact information

from reference structures, and compared the performance of these models; and (v) finally,

we performed a genome-wide analysis for 101 and 102 PDZ domains from human and mouse,

respectively, and uncovered novel and biologically meaningful PDZ-peptide interactions.

4.4.2. Dataset compilation

For retrieving all the annotated PDZ domains from human, mouse, fly, and worm pro-

teomes, we used UniProtKB/Swiss-Prot database, which is a well known manually curated

and reviewed database [19]. At the time of analysis, the UniProtKB/Swiss-Prot database

(release 2013-01) contained 20248 human (H. sapiens), 16597 mouse (M. masculas), 3182 fly

(D. melanogaster), and 3382 worm (C. elegans) proteins. A large set of 548 PDZ domains,

comprising 271 human, 234 mouse, 27 fly, and 16 worm PDZ domains, were derived.

Dataset I (microarray data)

We used a protein microarray screening data to analyze the specificity of PDZ domains,

comprising 157 mouse PDZ domains and 217 fluorescently labeled genome-encoded pep-

tides [164]. The initial interaction data derived from microarray screening was further ana-

lyzed by fluorescence polarization. Apparent equilibrium dissociation constant (KD value)

was applied to determine the positive and negative classes [164]. A total of 731 positive

interactions and 1361 negative interactions were derived that involved 85 mouse PDZ do-

mains and 181 peptides using a KD cutoff of 100 µM. We used the same KD cutoff value as

mentioned in [164].
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Dataset II (phage display data)

For the human phage display experiment, we considered a total of 1389 interactions that

involved 54 human PDZ domains and 1211 peptides [97]. Note that this experiment provides

only positive interaction data. Thus, we did not have any negative interaction data for this

dataset.

Dataset III (curated data)

From PDZBase [264], which is a high quality known PDZ-peptide interaction database, we

extracted non-redundant 201 interactions, comprising 94 domains and 115 peptides. We

considered interaction data only from human, mouse, fly, and worm. Note that PDZBase

also contains only positive interaction data and hence no negative interaction data was

available in this database.

Domain-peptide complex structures

For retrieving all the available PDZ-peptide complex structures, we used Protein Data

Bank (PDB), which contains experimentally solved protein structures [265]. At the moment of

analysis, PDB contained 55 PDZ-protein and/or PDZ-peptide complex structures comprising

47, 5, and 3 structures from human, mouse, and fly, respectively. Note that we were unable

to find any PDZ-peptide complex structure for worm. After filtering according to available

interaction data, we were left with 21 human, 5 mouse, and 3 fly PDZ-peptide complex

structures.

We have combined all the positive and negative interaction data from dataset I, dataset

II, and dataset III. Five C-terminal residues of the peptides were considered, since they are

the most important for determining PDZ domain specificity [92, 97]. Finally, we retrieved

a total of 3592 interactions involving 194 domains and 1437 peptides.

Tree of PDZ domains

In recent years, enormous amounts of interaction data have been generated by various

high-throughput experiments and thus computational methods are invaluable to analyze

these data. One of the major problems while analyzing these data is sufficient amounts of

data may be available for certain domains, but completely missing or much less available for

another domain. For example, there are only two positive interactions for PDZ 1 and PDZ 2

domains of human DLG2 and DLG4 available in the literature. To overcome this limitation,

our first goal was to combine the PDZ domains that are similar in substrate specificity and

therefore build a single classifier for these similar domains. Hence, this approach enables us

to make separate models for each domain family.

First, we aligned all available PDZ domains (human, mouse, fly, and worm) annotated

in UniProtKB/Swiss-Prot by using MAFFT and built a phylogenetic tree [195]. We then
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Figure 4.7.: Clustering of PDZ domains. Phylogenetic tree of all available PDZ domains from
human, mouse, fly, and worm. The MCL clustering output was mapped onto the phylogenetic tree. A
total number of 138 PDZ families are presented by 138 colors. iTOL was used for the visualization [32].
This figure is taken from [P2].

clustered all the similar PDZ domains based on their sequence identity by using Markov

clustering algorithm (MCL), which is a fast and powerful algorithm for clustering biological

sequences [254]. 50% sequence identity was set for the cutoff value, as previous research

showed that the PDZ domains with more than 50% sequence identity have similar binding

specificity [200] (see Section 3.4.1 for details). All the available PDZ domains (548) were

classified into 138 families. Out of all 548 domains, we were unable to classify 33 PDZ

domains since the sequences are too diverse. The biggest family consists of 20 PDZ domains

from human, mouse, and fly. Finally, we have mapped the 138 families on the phylogenetic

tree of all PDZ domains for better visualization (see Figure 4.7). Additionally, we have

described the peptide preferences for each PDZ domain family. Amino acid composition

of the binding peptides was visualized using sequence logos [179], showing the amino acid

enrichment at each position in the binding peptides. See Figure A.3.2 for the ligand binding

specificity of each PDZ domain family.
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Figure 4.8.: PDZ-peptide complex structure. Representative PDZ-peptide complex structure
(PDB-id: 4G69) for PDZ family 1. 2nd PDZ domain from human DLG1 binds to the C-terminal
peptide of human APC protein. Green lines indicate the binding pairs with distance less than 4.5
angstroms. UCSF Chimera was used for the visualization [48]. This figure is taken from [P2].

Modeling

We used two strategies for modeling our data: (i) a purely sequence-based approach and

(ii) a contact-based modeling that uses structural information.

4.4.3. Sequence-based data modeling

For the sequence-based modeling approach, we followed the literature and considered five C-

terminal residues of peptide sequences as an input, where the position of C-terminal residue

is given at P0 and going upstream P−1, P−2, and so on. To define the positional features,

we extracted amino acids from peptides and mapped them into a binary vector x living in

a 20 × 5 = 100 dimensional space (see Section 3.4.2 for details). Families with at least 10

positive interaction data were considered for modeling. In summary, we built models for 43

families covering 226 PDZ domains.

4.4.4. Contact-based data modeling

The contact-based modeling approach combines the peptide sequence information with

PDZ-peptide complex structure information. We followed a similar approach taken by Chen

et al. in 2008 [88]. However, we did not use only one reference structure for all domains.

Instead, we used a specific reference structure for each family by selecting one representative

domain-peptide complex structure for each family from the PDB database [265]. For these

domain-peptide structures, we considered only the position pairs (one amino acid from the

domain and another from the peptide) with a distance less than 4.5 angstroms (see Fig-

ure 4.8). The important position pairs were separately derived for each PDZ domain family.
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Figure 4.9.: (A) The AUC-ROC and (B) the AUC-PR curve obtained by sequence-based feature
encoding method. This figure is taken from [P2].

All position pairs were then encoded in a binary vector of size 400 × n, where n is the

number of binding pairs (see Section 3.4.2 for details). We concatenated sequence-based

features with contact-based features and finally, we built models for 10 families covering 70

PDZ domains.

4.4.5. Predictive performance evaluation

For the sequence-based approach comprising models for 43 families covering 226 PDZ do-

mains, only 22 families covering 136 PDZ domains met this criteria and therefore were used

in cross-validation. The hyper-parameters (i.e., γ and the cost parameter C) for each fold

were optimized using 5-fold grid search method over the training sets. See Table A.3.1

for the performances of all 22 families. We computed area under the ROC curve (AUC

ROC) and area under the precision and recall curve (AUC PR) for the 22 families. Using

sequence-based feature encoding, we achieved a very good average AUC ROC of 0.92 and

AUC PR of 0.94 (see Figure 4.9).

For the contact-based feature encoding method comprising of initially 10 families with

70 PDZ domains, only 6 PDZ families covering 39 PDZ domains met the selection criteria

for the cross-validation. Surprisingly, no significant differences were observed when we

compared the performances (AUC ROC and AUC PR) of sequence-based and contact-

based approaches (see Table A.3.1, A.3.2, and Figure A.3.1). Therefore, we can conclude

that the peptide sequence information is sufficient to define the binding specificity of a PDZ

domain on the current available data.

4.4.6. Benchmarking of existing methods

We compared our results with two state-of-the-art tools, namely MDSM (multi-domain selec-

tivity model) [164] and DomPep [200], on an independent test set. The independent test set
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Figure 4.10.: Performance comparison of three different tools on an independent test set. Red,
green, and blue bars indicate the predicted performances by our tool (SVM), DomPep, and MDSM,
respectively. The figure clearly shows that our tool (SVM) achieved better performance. This figure
is taken from [P2].

contained 493 positive interactions and 3059 negative interactions that involved 74 mouse

PDZ domains and 48 peptides [164]. Among them, we used interactions for 50 PDZ do-

mains that were common in all three methods (MDSM, DomPep, and our method). We make

sure that the peptides were not included in our training sets. Our models achieved a true

positive rate (TPR) of 0.67, false positive rate (FPR) of 0.14, and AUC ROC of 0.85 with a

true-positive/false-positive (TP/FP) ratio of 0.87 outperforming the other two approaches:

MDSM achieved TPR of 0.55, FPR of 0.17, and AUC ROC of 0.74 with TP/FP ratio of 0.55;

the DomPep achieved TPR of 0.66, FPR of 0.15, and AUC ROC of 0.84 with TP/FP ratio

of 0.79 (see Figure 4.10).

In an another experiment, we tested our method with MDSM on a validated dataset. In this

case, we could not test DomPep since many of the test instances were present in the DomPep

training set, and hence a fair comparison was not possible. The test data was retrieved

from an experimentally validated database, called PDZBase [264]. We compared 20 mouse

PDZ-peptide interactions derived from PDZBase that were neither included in MDSM nor in

our training set. Out of these 20 interactions, we successfully predicted 14 interactions with

a true positive rate (TPR) of 0.70, compared to only 4 interactions predicted by MDSM with

a true positive rate (TPR) of 0.20. For calculating MDSM score, a unit threshold was defined

as the ratio of the original prediction score (φ) over a scoring threshold (τ), specific for

each domain [164]. A peptide was then predicted to bind to a PDZ domain i, if φi/τi > 1.
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Table 4.5.: SVM and MDSM scores for experimentally validated interactions derived
from PDZBase [264]. A peptide is predicted to bind to a PDZ domain, if the score is more than
0 for SVM and more than 1 for MDSM. Bold numbers indicate true positive interactions. This table
is taken from [P2].

PDZ domain Peptide SVM score MDSM score Pubmed Ref.

Cipp-(3/10) IESDV 0.44 -0.7 9647694

Cipp-(3/10) LESEV 0.30 -0.62 9647694

Cipp-(3/10) QQSNV 0.29 -0.78 9647694

Cipp-(3/10) KEYYV 0.51 -0.34 9647694

Dvl1-(1/1) SETSV -1.27 -0.74 12490194

Pdlim5-(1/1) DITSL -0.24 -0.15 10359609

Erbin-(1/1) LDVPV 0.99 0.61 10878805

Magi-2-(5/6) KESSL 1.76 0.19 10681527

MUPP1-(10/13) IATLV 1.00 0.46 11000240

MUPP1-(10/13) GKDYV 1.00 1.68 11689568

NHERF-1-(1/2) FDTPL 1.06 0.01 10980202

LIN-7A-(1/1) IESDV 0.33 0.29 10341223

Lin7c-(1/1) IESDV 0.33 1.00 10341223

ZO-3-(1/3) GKDYV 0.99 0.09 10601346

a1-syntrophin-(1/1) VLSSV -1.47 0.16 11571312

PSD95-(1/3) LQTEV 0.38 1.41 11937501

PSD95-(1/3) NETVV -1.35 1.19 12067714

PSD95-(1/3) GETAV -1.32 1.23 12067714

PSD95-(1/3) EESSV -2.23 0.77 11134026

PSD95-(1/3) RTTPV 1.00 0.61 12359873

Table 4.5 lists the scores for all 20 validated interactions as calculated by MDSM and by our

method.

The advantages of our approach compared to the aforementioned tools are threefold:

(i) using an accurate clustering approach allows our method to achieve a higher domain

coverage, (ii) we have employed a powerful semi-supervised learning technique to identify

high-confidence negatives, which increases the model quality, and (iii) our approach is based

on a non-linear model to address the issue of the dependency between amino acid positions.

4.4.7. Discussion

In our comprehensive study, we propose a cluster-based computational method to accurately

predict the binding partners of PDZ domains using the support vector machine (SVM).

First, we used an efficient MCL algorithm to cluster all PDZ domains from different organ-

isms and thereafter, built prediction models for each PDZ family found by our clustering

technique. Our method offers the largest number of prediction models for PDZ domains

to date. We showed that our clustering method maximizes the size of training datasets,

which is important to build powerful prediction models. In the clustering method, we com-

bined all the PDZ domains that share high sequence identity and therefore have similar

binding specificity. There are, however, additional cases where the binding preference is
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very similar despite a low sequence identity. For example, MAGI1-5 and MAGI3-4 domains

share similar specificity despite of low sequence identity (24% in mouse) [200]. Since these

cases are hard to detect automatically, we used a conservative approach by considering a

threshold of 50% sequence identity. Even using this conservative threshold, we were able to

achieve a very good prediction accuracy. We also applied semi supervised learning (SSL)

strategy for selecting high-confidence negative data to re-balance our training sets. In our

study, we have developed models based on two feature encoding methods: (i) sequence-

based and (ii) contact-based methods. Since the sequence-based approach does not depend

on domain-peptide complex structures, it covers more PDZ domains, but may fail to predict

the binding peptides of a mutated domain with completely different specificity. For mutated

domains, we can efficiently use our contact-based approach, which considers binding pairs

of domain and peptide, and thus should be able to more precisely evaluate the effect of

mutations. Our method is also able to predict the binding peptides of newly characterized

PDZ domains. We compared our tool with published state-of-the-art methods and achieved

better performance. Finally, we performed a genome-wide analysis to predict several novel

interactions for human and mouse PDZ domains (see Section 4.5.2 for details).

4.5. Genome-wide predictions and biological insights

4.5.1. Introduction

Genome-wide prediction is often used to uncover unknown protein-protein interactions.

We have performed a genome-wide analysis for modular protein domains that have been

used in our study. Our aim was to identify the novel interactions that have important

biological roles. In this section, we describe the setup for genome-wide analysis of three

different modular protein domains (e.g., SH2, SH3, and PDZ) and the required prediction

filters, which are important to avoid any unlikely interactions. Furthermore, we discuss the

possible biological insights of the top interactions predicted by each domain.

4.5.2. Genome-wide prediction setup

Genome-wide analysis of human SH2 domains

In this setup, we have made use of prior domain knowledge to remove peptides that are

not likely to interact. Specifically, we have considered three criteria for the eligibility of a

given pair domain-peptide: (i) presence of the tyrosine (Tyr) residue in the peptide, (ii)

experimentally verified phosphorylation of the tyrosine in the peptide, and (iii) co-cellular

localization of the mature protein that contains the peptide and the protein that expresses

the domain.

We have extracted a set of peptides from the UniProtKB/Swiss-Prot database [19],

which is a well known manually curated and reviewed database. At the moment of analysis,

the UniProtKB/Swiss-Prot database, release 2012-06, contained 20,225 human proteins
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with ∼300,000 (298,637) tyrosine containing peptides. The first filter will check whether

there is any Tyr residue present in the peptide. The second filter has been implemented

using the annotated information from the PhosphoSitePlus database [266]; in this way, we

have selected only those phosphotyrosine peptides whose phosphorylation has been exper-

imentally verified. At the moment of analysis, the PhosphoSitePlus database contained

30,228 phosphorylation sites from 10,688 human proteins. We have ignored those pep-

tides that were not present in the UniProtKB/Swiss-Prot database, and finally obtained

a total 27,481 phosphorylation peptides out of 9,621 proteins. The third filter was im-

plemented considering the terms relative to the sub-cellular localization hierarchy in the

controlled vocabulary of the Gene Ontology (GO) database [267]. In case of multiple cellu-

lar locations (e.g., GRB2 protein can be found in nucleus, cytoplasm, endosome, and golgi

apparatus [268]), we consider a peptide viable for interaction, if it shares at least one of the

terms with the domain. Finally, we ignored proteins (such as SHD/E105251) for which no

localization annotation is available.

Genome-wide analysis for SH3 domains

In order to perform a genome-wide analysis of SH3 domains, we used the manually cu-

rated UniProtKB/Swiss-Prot database [19]. We retrieved 20,225 human proteins from

UniProtKB/Swiss-Prot database, release 2012-06. For retrieving the peptide sequences,

we scan all the available proteins with a window size of 15 and step size of 5. In this way,

we have extracted a total number of ∼2M (2,209,474) peptide sequences.

In this analysis, we implemented two different filters: (i) proline-rich and (ii) co-cellular

localization. Since SH3 domains are known to interact with proline-rich peptides, we im-

plemented our first filter, namely proline-rich filter, that allows to use several regular ex-

pressions to select proline-rich peptides. As a second filter, we implemented co-cellular

localization filter in an analogous fashion described earlier in this section to avoid unlikely

interactions.

Genome-wide prediction of PDZ domains

Here, we performed a genome-wide prediction of PDZ domains. In order to do so, we

extracted a set of peptides from the manually curated UniProtKB/Swiss-Prot database,

release 2013-01 [19]. We retrieved 20,248 and 16,597 proteins from human and mouse

proteomes, respectively. The last 5 C-terminal residues were taken from each protein to

build the peptide sets separately for human and mouse. In this analysis, we have used

prior knowledge to avoid peptides that are not likely to interact with their respective PDZ

domains. Therefore, we considered two filters for selecting the probable binding peptides for

a given PDZ domain: (i) structural location of the peptides and (ii) co-cellular localization

of domain and peptide containing proteins.

Previous study showed that PDZ domains have a tendency to interact with intrinsically
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unstructured proteins (IUPs) [142], and thus we considered only those peptides that reside

in a disordered segment of a protein. For determining the structural disorder of a protein

region, we ran the IUPred algorithm over the full-length protein sequence to get a disorder

score between 0 and 1 for each residue of a protein [269]. Finally, an average score for the

last 5 residues (peptide sequence in our study) was obtained to determine putative candidate

regions for interaction. A cutoff value of 0.4 was chosen based on the analysis done by Akiva

et al. [142]. To this end, we ignored all the peptides having the IUPred score less than 0.4.

As a second filter, co-cellular localization was applied to avoid unlikely interactions in an

analogous fashion described earlier in this section.

4.5.3. Functional annotation of predicted proteins

For SH2 domains, all eligible domain-peptide pairs were scored by the trained models and

ranked according to the SVM scores. Considering the top ranked and most reliable 50

predictions (see Section 4.5.4), we offer the following hypothesis:

(a) The SH2-domain of ABL1 is predicted to bind to Y307 of the adaptor protein GAB1.

ABL1 is part of the oncogenic protein BCR-ABL, which is generated by a (9;22) translo-

cation resulting in the so-called Philadelphia chromosome and is found in CML (chronic

myelogenous leukemia) [270]. BCR-ABL has been shown to be dependent on GAB adaptor

proteins, in particular GAB2. It has been demonstrated that GAB2 in CML cells confers

resistance to multiple BCR-ABL inhibitors [271]. The known interaction between BCR-

ABL on one side and GAB adaptor proteins on the other side can be described as following:

the small adaptor protein GRB2 binds to phosphorylated Y177 on BCR-ABL via its cen-

tral SH2-domain, and via its SH3-domains it interacts with proline-rich sequences within

both GAB proteins, GAB1 and GAB2 [272]. Our finding would suggest a second, so far,

unknown mode of BCR-ABL/GAB1 interaction that is GRB2-independent and based on a

direct interaction between the BCR-ABL (ABL1) SH2-domain and tyrosine-phosphorylated

GAB1.

(b) Our model indicates that the SH2-domain of the adaptor protein CRKL interacts

with phosphorylated Y215 of ABL1. Interestingly, CRKL has been found to be one of

the predominant substrates of the oncogenic kinase BCR-ABL [273]. This suggests that

CRKL is not only a substrate, but also an interaction partner of BCR-ABL. Most likely,

the interaction promotes phosphorylation.

(c) TEC-family kinases are multi-domain cytoplasmic tyrosine kinases, which comprise,

among others, an N-terminal PH-domain. This PH-domain interacts with the phospho-

lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3), which is generated by PI3K enzymes

upon receptor activation [274]. PI3K class IA, which is activated downstream of multiple

receptors, such as immune receptors and cytokine receptors, comprises various catalytic and

regulatory subunits [275]. Interestingly, our model found that different TEC-family kinases

(BTK, ITK, and TEC) via their SH2-domains can interact with various regulators subunits

of PI3K class IA: BTK interacts with Y74 of p85β; ITK interacts with Y464 of p85β, with
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Y467 and Y556 of p85α, and with Y199 of p55γ; TEC interacts with Y74 of p85β and Y556

of p85α. Since the regulatory subunits of PI3K are necessary to guide the catalytic PI3K

subunits to their substrate in the plasma membrane, interaction of TEC kinases with the

regulatory subunits would enable them to be close to the newly generated PIP3, which then

is necessary for their activation. Using such a mechanism, TEC kinases always could be

close to newly generated PIP3 enabling immediate activation.

(d) The inositol-5-phosphatase SHIP1 has been shown to interact with TEC via TEC

SH3-domain binding to a proline-rich sequence in the C-terminus of SHIP1 [276]. Our

model suggests that there is a second mode of interaction between SHIP1 and TEC, namely

between the SH2-domain of TEC and the phosphorylated Y221 of SHIP1. Such a mode

of interaction would be called “bidentate” and has already been found for the interaction

between SHIP1 and one of its main interaction partners, the adaptor protein SHC. In that

case, the PTB-domain of SHC binds to a phosphorylated tyrosine within the C-terminus of

SHIP1 and the SH2-domain of SHIP1 binds to a phosphorylated tyrosine within SHC [277].

Using such a bidentate mode would clearly strengthen the interaction between the two

partners.

(e) The inositol-5-phosphatase SHIP1 counteracts PI3K signaling via its centrally located

catalytic domain, hydrolyzing the phospholipid PIP3 [277]. Moreover, it has been demon-

strated to negatively regulate p21Ras signaling via complex formation with the adaptor

protein DOK1 and the p21Ras GTPase activating protein RASGAP [278]. So far, such

an interaction or function has not been described for the second family member, SHIP2.

Interestingly, our model suggests the interaction of the SH2-domain of SHIP2 (INPPL1)

with phosphorylated Y650 of another p21Ras GTPase activating protein, RASA2. This

would suggest that both SHIP proteins can realize comparable functions, however, using

different modules. The qualitative outcome might be the same, although regulation might

be differentially accomplished.

(f) Induction and regulation of calcium mobilization downstream of the B-cell antigen

receptor is crucial for differentiation and activation of B-lymphocytes. It was shown that

the tyrosine-phosphorylated adaptor protein DOK3 interacts with the SH2-domain of the

adaptor protein GRB2. Stork et al. have demonstrated that this DOK3/GRB2 module

negatively influences the assembly of the calcium initiation complex and/or inhibits the

enzymatic activity of the tyrosine kinase BTK, which is crucial for calcium mobilization

to occur [279]. Our data indicated that the SH2-domain of BTK directly interacts with

DOK3 phosphorylated on Y398. Though our analysis was performed in the human system

and the study by Stork et al. was making use of the chicken DT40 B-cell system, sequence

comparison suggests that the same tyrosine (Y398 in human and Y331 in chicken [279] could

bind to GRB2 and BTK. This would add another layer of complexity to the regulation of

calcium mobilization in B-lymphocytes.

We performed a second type of analysis on the same top 50 predictions in order to uncover

novel functionalities using the DAVID tool [280]. The tool offers the possibility to perform
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Table 4.6.: Predicted peptides that can potentially interact with more than 40 SH2 domains. The
table information is taken from [P4].

UniProt-id Position Peptide

P05067 755-761 NGYENPT

P61106 12-18 FKYIIIG

P09211 48-54 CLYGQLP

P25788 103-109 FGYNIPL

P29350 562-568 DVYENLH

Q05397 923-929 KVYENVT

P08865 137-143 ASYVNLP

P13533 552-558 KLYDNHL

P56945 10-16 ALYDNVA

O15530 374-380 GNYDNLL

a term-centric enrichment analysis, which identifies enriched annotation biological terms

associated with the predicted proteins, on more than 40 different annotation categories.

The smaller p-values indicate higher enrichment. Analyzing the highly enriched results we

found, for example, that CRKL interacts with a group of proteins (UniProt-id: Q13480,

P42684, Q9UQM7, Q13555, P00519, P42345, Q13554, and Q13557) that play an important

role in ErbB signaling pathway (p-value 3.03 × 10−8), as reported in the KEGG pathway

database [281]. We note that the SMALI tool misses all these associations (see Section 4.5.4).

Finally, we found that some peptides (see Table 4.6) are predicted to interact a-specifically

with more than 40 SH2 domains. In addition, we observed 3-phosphoinositide-dependent

protein kinase 1 (UniProt-id: O15530) targeted by the most number (34 domains) of SH2 do-

mains that share the same cellular compartment and functions annotated in Gene Ontology

(GO) database.

For SH3 domain, after filtering the eligible peptides, we scored them by the trained

models and ranked them according to the SVM scores. Finally, we report the top 50

predictions by each SH3 domain (see Section 4.5.4). Among the predictions, we observed a

peptide (CKKLSPPPLPPRASI, position 151-165) from Phosphatidylinositol 4-phosphate

3-kinase C2 domain-containing subunit beta (UniProt-id: O00750) was targeted by many

SH3 domains (21 domains) that also share the same cellular compartment as annotated in

Gene Ontology (GO) database. There are also evidences of interactions between PIK3C2B

with GBR2 and PLCγ-1 reported in STRING database [282]. In addition, we took 478 real

interactions reported in the MINT database [196], discarded them from our training set and

could recover 397 interactions (i.e., a recall 0.83).

Furthermore, we performed an analysis on these top 50 predictions for each SH3 domain

to uncover the novel interaction functionalities using DAVID tool [280]. The tool allows the

possibility to perform a term-centric enrichment analysis on more than 40 different anno-

tation categories. DAVID functional annotation chart, which identifies enriched annotation

terms associated with the predicted proteins are reported. The smaller p-values indicate
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higher enrichment (see Section 4.5.4).

Applying the term-centric analysis we have observed some biologically meaningful inter-

actions. For example: (i) SH3 domains from human P85-α binds to a potential group of

proteins (UniProt-id: P21854, Q08209, Q07890, O00459, and Q6ZUJ8) that play an im-

portant role in B cell receptor signaling pathway; and (ii) among the top predictions by

the SH3 domain from human BTK protein, more than 50% proteins take a vital role in

alternative splicing.

For PDZ domains, the eligible peptides were scored by the trained models and sorted

according to their SVM scores. We have observed C-terminal peptide (IETHV) from Con-

nector enhancer of kinase suppressor of ras 2 protein (Q8WXI2-human, Q80YA9-mouse)

was targeted by 40 PDZ domains, representing 16 families, in human and mouse. See Ta-

ble A.3.3 and Table A.3.4 for top five peptides targeted by most number of human and

mouse PDZ domains. See Section 4.5.4 for the top predictions for each human and mouse

PDZ domains.

4.5.4. Availability

All the top genome-wide prediction data and term-centric analysis are freely available for

the scientific community.

Genome-wide prediction for SH2 domains

Top genome-wide prediction data and term-centric analysis for SH2 domains can be found

under the URL:

http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.

tar.gz

Genome-wide prediction for SH3 domains

Top genome-wide prediction data and term-centric analysis for SH3 domains can be found

under the URL:

http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.

tar.gz

Genome-wide prediction for PDZ domains

Top genome-wide prediction data for PDZ domains can be found under the URL:

http://www.bioinf.uni-freiburg.de/Software/PDZPepInt/Genome-wide-predictions.

tar.gz
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4.5.5. Discussion

We performed a genome-wide analysis of modular domain-peptide interactions and report

some novel interactions: as an example, we find that oncogenic protein BCR-ABL (ABL1)

may directly bind (not dependent on GRB2) with pY307 of the adaptor protein GAB1.

The specificity or false positive rate (FPR) of interaction predictions has been improved

by implementing appropriate filters. Furthermore, as for run times, our methods are effi-

cient, since the time complexity is linear. Thus, the genome-wide interaction predictions of

modular domains can be achieved with a higher accuracy and in less time.
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Chapter 5

MoDPepInt: an interactive web server

5.1. Overview

In this chapter, we describe MoDPepInt (Modular Domain Peptide Interaction), which is

a new and easy-to-use web server for the prediction of binding partners for modular pro-

tein domains. Currently, we offer models for SH2, SH3, and PDZ domains via the tools

SH2PepInt, SH3PepInt, and PDZPepInt. More specifically, our server offers predictions for

51 SH2 human domains and 69 SH3 human domains via single domain models, and predic-

tions for 226 PDZ domains across several species, via 43 multi-domain models. All models

are based on support vector machines with different kernel functions ranging from polyno-

mial, to Gaussian, to advanced graph kernels. In this way, we model non-linear interactions

between amino acid residues. Results were validated on manually curated datasets achieving

competitive performance against various state-of-the-art approaches. The work presented

in this chapter is a part of the [P1].
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Chapter 5. MoDPepInt: an interactive web server

5.2. Introduction

In this thesis, we have used state-of-the-art machine learning approaches to build support

vector machine (SVM) models that can accurately predict binding specificity. We have

integrated our three different tools: SH2PepInt [P4], SH3PepInt [P3], and PDZPepInt [P2],

for three different modular domains, namely SH2, SH3, and PDZ, into a unified web-based

system called MoDPepInt [P1]. Currently, we offer single domain models for 51 SH2 human

and 69 SH3 human domains, and multi-domain models for 226 PDZ domains across hu-

man, mouse, fly, and worm. To assess the quality of our models, we have used manually

curated interaction data achieving competitive performance against various state-of-the-art

approaches (see Chapter 4 for details).

In summary, the unique features of MoDPepInt include (i) a domain-peptide prediction

system for SH2, SH3, and PDZ in a single platform and (ii) the largest number of modeled

domains (see Table 5.1).

Availability

The MoDPepInt server is available under the URL: http://modpepint.informatik.uni-

freiburg.de/

5.3. Application and functionality

5.3.1. Input

All tools have a unified input format. Query sequences (up to a maximum number of 500)

can be supplied either in a FASTA format or using UniProt database accession numbers.

PDZPepInt offers predictions also for domains that are newly developed and/or not com-

prised in the original 226 PDZ domains; the unknown query domain should be supplied in

FASTA format. Multiple query domain sequences can also be provided.

Table 5.1.: Domain coverage of the available tools. The table clearly shows that the MoDPepInt

has higher domain coverage than other tools. This table is taken from the supplementary materials
of [P1].

Tools Domains Total Pubmed Ref.
SH2 SH3 PDZ

Scansite 14 13 - 27 12824383 [181]
SMALI 76 - - 76 18424801 [183]
DomPep 97 - 189 286 22003397 [200]
SH3Hunter - 16 - 16 16870929 [206]
MoDPepInt 51 69 226 346 24872426 [P1]
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5.3. Application and functionality
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Figure 5.1.: Schematic representation of the MoDPepInt pipeline. This figure is taken from [P1].

5.3.2. Filters

Several filters are available to increase the predictive accuracy. SH2 domains generally rec-

ognize phosphotyrosine (pY) residues of binding proteins. For this reason, in SH2PepInt,

we offer a phosphotyrosine filter that only considers those peptides whose tyrosine phos-

phorylation has already been experimentally verified and reported in PhosphoSitePlus

database [266].

As SH3 domains mainly bind to proline-rich peptides, in SH3PepInt, we offer a proline-

rich filter that uses 31 regular expressions to select proline-rich peptides [58].

PDZ domains have the tendency to bind the unstructured C-terminal regions of binding

proteins, hence in PDZPepInt, we offer a filter to select for intrinsically unstructured/disordered

regions based on the IUPred algorithm [269], which selects 5 C-terminal residues with IUPred

scores above 0.4 [142].

Finally, a cellular localization filter is available for all tools. This filter considers only

those interactions where both the protein containing the peptide and the protein containing

the modular domain have the same cellular localization according to the Gene Ontology

(GO) database [267].

5.3.3. Processing and output

An internal queuing system (which currently uses 40 computation nodes) balances the sub-

mitted jobs in parallel. MoDPepInt is implemented in C++, Perl, and shell scripting with

runtimes typically ranging in the order of a few minutes.

The output for all three tools is formatted as a downloadable table. We report for each

domain-ligand protein interaction pair: (i) the sequence ID, (ii) the ligand binding position,

(iii) the ligand binding sequence, and (iv) the ligand binding domains. See Figure 5.1 for

the schematic representation of the MoDPepInt pipeline.
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Chapter 5. MoDPepInt: an interactive web server

5.4. Meta-web server

In addition to the three specialized servers for SH2, SH3, and PDZ, we implemented the

meta-web server MoDPepInt. This meta-web server is to be used in a non-expert mode:

(i) no parameters need to be set, (ii) the output comprises predictions for all available

domains for SH2, SH3, and PDZ, and (iii) only the five most confident predictions for each

domain will be reported. However, the user can easily select one of the dedicated tools

for the same input to access the full prediction results and have a finer control over its

parametric setting.

5.5. Results and discussion

MoDPepInt collects three protein-protein interaction predictive models that can be efficiently

tuned using data derived from various high-throughput experimental techniques and thus

do not require structural information as in [222, 283, 284]. The resulting models exhibit

significant performance improvement in comparison with other existing tools. The main

sources of performance improvement are due to: (i) non-linear modeling, where we allow

higher-order dependencies between the amino acid positions in the binding peptides, and

therefore has an advantage over linear PWM models; (ii) balanced discriminative training

where we tackle the class imbalance problem and derive high-confidence negative data; and

(iii) dataset pooling where we combine all domains that are similar in substrate specificity.

Note that the dataset pooling technique is only implemented in PDZPepInt.

SH2PepInt uses polynomial kernels and it is trained on additional high-confidence nega-

tives obtained via semi-supervised techniques.

SH3PepInt uses graph kernels on a complex representation of both the peptide sequences

and of the aligned domains. The adoption of a graph-type representation allows the inclu-

sion of the physico-chemical properties of amino acids, which increases the generalization

capacity of the models. Furthermore, the method does not need any prior alignment of the

peptides. This is a big advantage since polyproline-rich peptides are hard to align.

PDZPepInt uses Gaussian kernels to train the classifier on the interaction data from highly

related domains. In this method, efficient clustering and building multi-domain models help

us to leverage the domain-peptide binding information from a limited set of experimental

data and extrapolate that information to define specificity for other unseen, but alignable,

novel domains.

Once trained, all models can be used to efficiently scan entire proteomes to identify novel

interactions with typical runtimes of a few minutes. In addition, we offer a meta-web server

to be used in non-expert mode that submits the input simultaneously to all tools and

displays a summary of the main results. Overall, MoDPepInt contains largest number of

domain-peptide prediction models to date, and allows biologist to investigate the binding

specificity of modular protein domains.
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Chapter 6

Conclusion

Modular protein domains regulate numerous signal transduction pathways by interacting

with short linear peptides. In this thesis, we have introduced three different machine

learning-based methods for the prediction of modular domain-peptide interactions. The

main aim of this work was to build efficient models that can accurately predict the modular

domain mediated interactions and can circumvent the limitations of existing methods.

In Chapter 1, we have provided a general introduction of modular protein domains and

their relationship to different cellular processes. We have mainly concentrated on three

different modular domains, namely SH2, SH3, and PDZ. The sequence and structural orga-

nization of the modular domains, their ligand binding specificity, and their molecular and

cellular functions have been thoroughly described in this chapter.

The Chapter 2 is initiated with the description of various high-throughput techniques

that are being widely used for determining the binding specificity of modular protein do-

mains. Several computational methods have been developed that use these large-scale data

for training their prediction models. We have described these computational methods in the

second part of the chapter. Other computational methods that do not use the large-scale

data have also been discussed. Although there are several methods available to predict mod-

ular domain-peptide interactions, they have several drawbacks, such as restrictive modeling

assumption, limited coverage, pre-alignment problem etc., which can severely affect the pre-

diction accuracy. Therefore, we have also highlighted these problems for better understand-

ing the existing limitations for the computational prediction of the modular domain-peptide

interactions.

In Chapter 3, we introduced efficient methods for predicting modular domain mediated

interactions for three diverse modular domains, i.e., SH2, SH3, and PDZ. In addition, we

showed how to tackle the various problems, which have been discussed in Chapter 2. We

were able to handle the following major problems: (i) data-imbalance problem, (ii) model

linearity, (iii) initial alignment of proline-rich peptides, (iv) generation of high-confidence

negative data, and (v) lack of domain coverage.

In our study, we have used large-scale data that was derived from various high-throughput

techniques, such as peptide array, microarray, and phage display [44, 58, 97, 164, 165, 191].
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Chapter 6. Conclusion

Although the large-scale data from these high-throughput techniques seemed to be a perfect

data source for training the models, they have at least two types of problems: (i) a significant

noise component and (ii) data imbalance between confirmed interactions (positive data)

and experimentally proven non-interactions (negative data). For example, domain-peptide

interaction data derived from microarray experiments contain both positive and negative

data while the data derived from peptide array and phage display experiments contain only

positive data. Furthermore, the interaction data may be rich for some domains while for

other domains, either it is less or completely missing. To circumvent this limitation, we

have taken two different strategies: (i) when at least a few negative examples are available,

we have proposed an iterative data re-balancing strategy by introducing a semi-supervised

learning approach. We have used this strategy for balancing the SH2 and PDZ domain-

peptide interactions; and (ii) when there is no negative data available, in case of SH3

domain-peptide interactions, we have used a generative approach to balance the training

dataset. Note that these techniques balance the training data by generating high-confidence

negative data and thus are able to reduce the noise (false negatives) from the input data.

One of the major problems of existing approaches is that they are essentially linear models,

which are not capable of handling complex interaction patterns. To overcome this limitation,

we employed efficient kernel functions ranging from polynomial, to Gaussian, to advanced

graph kernels, which can model complex interaction pattern by exploiting the positional

dependency between the amino acids in the binding peptide.

An optimal alignment of proline-rich peptides, targeted by the SH3 domains, is a hard

task. A minor error in the peptide alignment step can severely affect the performance of

the predictive models (see Section 2.3.1). All the PWM-based methods rely on an initial

peptide alignment for predicting SH3 domain mediated interactions and therefore produce

suboptimal models. We have eliminated the need for an error-prone initial peptide alignment

by introducing an advanced graph kernel approach.

In SH3-peptide interaction prediction, we have shown that the multi-domain models per-

form better than the single domain models. We extended this strategy for predicting PDZ

domain mediated interactions across several organisms. In order to make a single model

for multiple PDZ domains, we have clustered all the available PDZ domains from human,

mouse, fly, and worm according to their binding specificity. Here, we have shown how we can

leverage the information contained in related domains by building a single comprehensive

model for a set of multiple modular domains. This strategy led us to provide the largest

number of prediction models for PDZ domain to date. Moreover, these multi-domain models

are easily applicable to the alignable novel domains where no training data is available.

In Chapter 4, all the applications and predictive performances of our three different meth-

ods have been reported. We have compared our methods with existing methods and achieved

a much better performance in all three cases. The predictive performance was measured in

terms of sensitivity, specificity, precision, AUC PR, and AUC ROC. Additionally, we have

tested our all three methods on several manually curated databases of experimentally val-
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idated domain-peptide interactions and also achieved a better performance than the other

existing approaches. At the end of this chapter, we have performed a genome-wide prediction

for SH2, SH3, and PDZ domains to unveil the novel and biological insightful interactions.

We have made all the top predictions freely available to the research community.

In Chapter 5, we have integrated our all three methods, i.e., SH2PepInt, SH3PepInt, and

PDZPepInt, and developed a new and easy-to-use web server, namely MoDPepInt, for pre-

dicting modular domain-peptide interactions. The MoDPepInt web server has two different

modes: (i) non-expert and (ii) expert mode. For non-expert use, a meta-web server has

been implemented where users do not need to set any parameters. In this mode, the jobs

are simultaneously submitted to all three tools and the top five predictions for each domain

are reported. In the expert mode, the detailed parameter settings are available, however,

user can easily access this mode from the non-expert mode. We believe biologists will be

benefited by this web server and it will be very useful to pursue their research in this field.

In summary, this thesis has introduced a framework for the prediction of modular do-

main mediated interactions using high-throughput experimental data, which was applied

to three diverse PRM families (i.e., SH2, SH3, and PDZ domain). Importantly, in this

thesis, we have shown how to tackle the major computational problems to identify the mod-

ular domain mediated interactions. Finally, we introduce a new and efficient web server,

namely MoDPepInt, which contains largest number of models to date for predicting modular

domain-peptide interactions.
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Appendix A

Supplementary material

A.1. SH2 domain data

Figure A.1.1.: Averaged AUC ROC and AUC PR achieved by random train-test splitting method.
(A, B) Showing the AUC ROC and AUC PR for the SVM performance, respectively. We achieved
AUC ROC 0.9 and AUC PR 0.96. The figure is taken from the supplementary materials of [P4].
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Appendix A. Supplementary material

Table A.1.1.: Imbalanced level for confirmed presence or absence of peptide interactions for 51 SH2
domains. #int is the total number of interactions, #pos is the total number of positive interactions,
#neg is the total number of negative interactions, and ratio of the positive and negative interactions.
The table is taken from the supplementary materials of [P4].

SH2 domain # Interaction # Positive # Negative Ratio

ABL1 222 178 44 4:1

ABL2 61 40 21 2:1

APS 194 136 58 2:1

BCAR3 145 92 53 2:1

BLK 278 238 40 6:1

BMX 137 80 57 1:1

BRDG1 146 85 61 1:1

BTK 160 103 57 2:1

CRKL 177 131 46 3:1

CRK 204 158 46 3:1

CTEN 103 47 56 1:1

E105251 204 143 61 2:1

E109111 156 99 57 1:1

E185634 93 73 20 4:1

EAT2 200 141 59 2:1

FER 99 39 60 1:2

FES 115 55 60 1:1

FGR 328 278 50 6:1

FRK 284 266 18 15:1

GRAP2 223 164 59 3:1

GRB10 126 73 53 1:1

GRB14 243 185 58 3:1

GRB2 247 193 54 3:1

HCK 275 218 57 4:1

INPPL1 184 123 61 2:1

ITK 120 77 43 2:1

LCK 273 217 56 4:1

LCP2 120 59 61 1:1

LYN 154 102 52 2:1

MATK 113 53 60 1:1

MIST 93 83 10 8:1

NCK1 160 109 51 2:1

NCK2 149 101 48 2:1

PTK6 266 206 60 3:1

SH2B 237 182 55 4:1

SH2D1A 394 337 57 6:1

SH2D2A 172 112 60 2:1

SH2D3C 130 76 54 1:1

SHC1 202 151 51 3:1

SHC3 114 58 56 1:1

SOCS2 116 96 20 5:1

SOCS5 80 70 10 7:1

SRC 373 333 40 8:1

TEC 214 165 49 3:1

TENC1 252 197 55 4:1

TENS1 177 124 53 2:1

TNS 261 205 56 4:1

TXK 188 133 55 2:1

VAV1 115 59 56 1:1

VAV2 89 40 49 1:1

YES1 149 109 40 3:1
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A.1. SH2 domain data

Table A.1.2.: Comparison of linear and non-linear kernel. We compare the AUC PR and AUC
ROC of linear and non-linear kernel for each SH2 domain. The better performers are in bold. The
table indicates that the non-linear (i.e., polynomial in our case) kernel performs better than the
linear kernel. The table is taken from the supplementary materials of [P4].

Domain AUC PR AUC ROC

Linear Non-linear Linear Non-linear

ABL1 0.916 0.934 0.757 0.781

ABL2 0.885 0.914 0.761 0.798

APS 0.909 0.923 0.801 0.823

BCAR3 0.785 0.786 0.642 0.636

BLK 0.965 0.972 0.833 0.857

BMX 0.885 0.912 0.834 0.859

BRDG1 0.925 0.942 0.886 0.907

BTK 0.872 0.906 0.773 0.826

CRK 0.982 0.985 0.943 0.947

CRKL 0.970 0.976 0.921 0.931

CTEN 0.841 0.910 0.865 0.903

E105251 0.923 0.926 0.824 0.825

E109111 0.903 0.912 0.855 0.846

E185634 0.988 0.985 0.954 0.940

EAT2 0.944 0.953 0.895 0.918

FER 0.874 0.928 0.914 0.956

FES 0.953 0.966 0.958 0.970

FGR 0.948 0.959 0.802 0.820

FRK 0.976 0.976 0.761 0.767

GRAP2 0.981 0.987 0.961 0.972

GRB10 0.845 0.879 0.783 0.808

GRB14 0.878 0.905 0.710 0.739

GRB2 0.979 0.987 0.937 0.956

HCK 0.939 0.952 0.810 0.838

INPPL1 0.902 0.922 0.835 0.857

ITK 0.955 0.961 0.903 0.919

LCK 0.947 0.943 0.822 0.804

LCP2 0.872 0.892 0.851 0.879

LYN 0.856 0.890 0.792 0.825

MATK 0.870 0.846 0.868 0.846

MIST 0.974 0.966 0.788 0.739

NCK1 0.903 0.923 0.818 0.853

NCK2 0.924 0.949 0.857 0.894

PTK6 0.909 0.935 0.771 0.803

SH2B 0.934 0.939 0.804 0.824

SH2D1A 0.931 0.938 0.725 0.737

SH2D2A 0.843 0.878 0.742 0.777

SH2D3C 0.865 0.887 0.825 0.832

SHC1 0.902 0.915 0.763 0.781

SHC3 0.866 0.870 0.866 0.855

SOCS2 0.969 0.980 0.873 0.915

SOCS5 0.989 0.991 0.921 0.936

SRC 0.959 0.959 0.756 0.740

TEC 0.907 0.922 0.781 0.791

TENC1 0.930 0.941 0.794 0.810

TENS1 0.923 0.935 0.842 0.852

TNS 0.938 0.954 0.807 0.848

TXK 0.889 0.905 0.784 0.793

VAV1 0.946 0.947 0.942 0.930

VAV2 0.902 0.903 0.891 0.904

YES1 0.885 0.924 0.721 0.800
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Figure A.1.2.: AUC ROC comparison. AUC ROC curves achieved by SVM (red lines), SMALI
(green dashed lines), and energy model (blue dotted lines) for each SH2 domain. The figure is taken
from the supplementary materials of [P4].
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Appendix A. Supplementary material

Figure A.1.3.: AUC PR comparison. AUC PR curves achieved by SVM (red lines), SMALI (green
dashed lines ), and energy model (blue dotted lines) for each SH2 domain. The figure is taken from
the supplementary materials of [P4].
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Appendix A. Supplementary material

Figure A.1.4.: Binding and non-binding energy comparison with different microarray data. AUC
ROC of the dataset II and dataset III derived by the energy model [230]. Indicating the AUR ROC of
the experiments and clearly showing the AUR ROC of dataset II, 0.97 (red line) is much higher than
AUR ROC of dataset III, 0.56 (green dashed line). This result is probably due to some over-training
issues. The figure is taken from the supplementary materials of [P4].
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Figure A.2.1.: Precision-recall curves and AUC ROC curves for the Single Domain Graph kernel
(GK) and the MUSI tool for different datasets of SRC SH3 domain. The error bars represent respective
standard deviation. This figure clearly shows the GK performs much better than the MUSI tool. The
figure is taken from the supplementary materials of [P3].
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Figure A.2.2.: Sensitivity and specificity for the Multi-Domain Gaussian Graph Kernel (MD-G-
GK), the Single Domain Gaussian Graph kernel (SD-G-GK), and the Single Domain Linear Graph
Kernel (GK) for 6 related SH3 domains. The error bars represent respective standard deviation.
The figure is adapted from the supplementary materials of [P3].
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Table A.2.1.: Experimental data derived from [58]. Here, we report the binding specificity of each domains. We found seven peptide motifs to
describe the whole dataset. Majority of the human SH3 domains found to be bound with class I and/or class II peptides. The numbers represent the
sharing percentage value of a motif with respective SH3 domains. Numbers in parenthesis indicate the sharing percentage value of a peptide motif
after removing all class I and class II peptides. The table is taken from the supplementary materials of [P3].

SH3 domain # Positive Class I Class II Class I & II PxRP PxxPR PxxDY RxxKP PPPPP

(%) (%) (%) (%) (%) (%) (%) (%)

ABL-61-121 202 40.59 36.63 7.92 15.84(6.44) 8.91(1.98) 0(0) 3.47(1.49) 15.84(6.44)

AMPHIPHYSINI-622-695 322 20.19 50 9.63 49.38(36.02) 34.47(10.87) 0(0) 3.42(1.55) 2.48(0.93)

AMPHIPHYSINII-520-592 215 20 65.12 12.09 22.79(16.74) 49.3(14.42) 0(0) 4.19(0.93) 4.19(1.4)

ARGBP1-451-510 134 31.34 52.24 11.94 16.42(9.7) 10.45(5.97) 0(0) 6.72(5.22) 2.99(2.24)

ARGBP2a-1041-1100 72 29.17 30.56 8.33 52.78(30.56) 13.89(4.17) 0(0) 4.17(2.78) 12.5(6.94)

ARGBP2a-863-922 321 29.28 40.81 6.23 40.5(19.31) 18.07(3.43) 0(0) 4.05(2.8) 9.66(4.98)

ARGBP2a-938-999 307 37.79 59.28 13.68 11.4(6.51) 23.78(2.61) 0(0) 4.56(2.61) 5.86(0.33)

ARHGAP12-12-74 122 40.98 32.79 6.56 18.85(8.2) 13.11(2.46) 0(0) 2.46(1.64) 21.31(6.56)

ARHGEF16-629-689 88 34.09 39.77 10.23 15.91(12.5) 10.23(4.55) 0(0) 13.64(9.09) 0(0)

BOG25-55-114 368 34.24 33.7 5.43 11.41(8.42) 7.07(2.45) 0.82(0.82) 3.53(2.45) 2.99(1.36)

BTK-214-274 264 61.36 37.88 10.61 16.67(6.06) 18.18(1.52) 0(0) 1.52(0.38) 6.82(1.52)

CAP-1049-1108 133 24.06 39.1 6.02 45.86(21.8) 23.31(2.26) 0.75(0.75) 3.76(0.75) 16.54(8.27)

CAP-1123-1184 92 29.35 43.48 4.35 23.91(14.13) 9.78(1.09) 0(0) 4.35(2.17) 7.61(4.35)

CIN85-1-58 130 21.54 39.23 12.31 20(13.08) 55.38(37.69) 0(0) 4.62(1.54) 0.77(0.77)

CIN85-267-328 305 21.64 47.54 12.79 16.39(10.49) 62.62(38.36) 0(0) 3.93(2.95) 0.98(0.33)

COOL1-P85-184-243 353 32.86 45.61 9.07 20.4(10.76) 18.41(4.82) 0.85(0.85) 4.53(2.83) 3.12(0.85)

CSK-9-70 43 41.86 44.19 6.98 9.3(2.33) 6.98(0) 0(0) 2.33(0) 4.65(0)

DDEF2-944-1006 336 32.74 34.52 11.01 32.14(25.89) 21.13(10.42) 0.3(0.3) 8.63(5.95) 4.46(2.08)

DLG1-581-651 42 47.62 21.43 4.76 4.76(4.76) 4.76(0) 0(0) 7.14(7.14) 2.38(2.38)

DOCK1-9-70 323 35.6 32.2 7.12 19.81(13.62) 11.15(3.41) 0.31(0.31) 5.88(4.33) 6.19(3.41)

ENDOPHB1-305-365 122 39.34 37.7 8.2 10.66(9.84) 9.02(4.1) 0(0) 6.56(4.92) 0(0)

ENDOPHILIN1-290-349 181 31.49 38.67 8.84 55.8(31.49) 19.34(7.18) 0(0) 3.31(2.21) 6.63(1.66)

ENDOPHILIN2-306-365 387 37.98 37.47 11.89 37.47(23.26) 16.28(5.68) 0(0) 5.43(4.13) 3.88(0.78)

ENDOPHILIN3-285-344 357 35.29 36.41 10.08 47.62(27.73) 17.93(6.44) 0(0) 4.76(3.64) 3.64(1.12)

EPS8-531-590 48 18.75 6.25 2.08 2.08(2.08) 2.08(2.08) 68.75(64.58) 0(0) 8.33(8.33)

EPS8L2-492-551 236 31.36 22.03 4.66 13.14(9.75) 5.08(2.12) 5.93(5.08) 3.39(2.54) 2.12(2.12)

Continued on next page .....
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SH3 domain # Positive Class I Class II Class I & II PxRP PxxPR PxxDY RxxKP PPPPP

(%) (%) (%) (%) (%) (%) (%) (%)

FGR-77-138 286 62.59 40.91 12.59 17.48(5.94) 17.83(1.05) 0(0) 3.15(0.35) 6.64(1.05)

FISH-166-225 31 41.94 41.94 16.13 35.48(12.9) 19.35(0) 0(0) 3.23(0) 22.58(9.68)

FNBP1L-538-599 188 42.02 40.96 10.64 21.81(7.45) 14.36(2.66) 0(0) 2.66(1.6) 28.19(11.7)

FRK-42-110 281 40.21 43.77 8.9 16.37(7.47) 15.66(1.78) 0(0) 2.85(1.42) 6.41(2.49)

FYN-82-143 187 62.57 37.43 10.7 15.51(3.74) 16.04(1.07) 0(0) 3.21(0) 4.81(1.6)

GRAP2-1-56 72 37.5 37.5 9.72 12.5(11.11) 6.94(2.78) 0(0) 13.89(9.72) 0(0)

GRAP2-271-330 219 28.31 40.18 11.42 28.31(19.18) 18.72(5.48) 0(0) 19.18(15.98) 4.11(2.28)

GRB2-156-215 217 44.24 56.68 10.6 13.36(3.23) 38.71(2.76) 0.46(0) 3.69(0.46) 10.14(2.76)

GRB2-1-58 213 32.39 38.97 12.21 68.54(37.09) 26.76(8.92) 0(0) 4.23(3.29) 7.51(1.41)

HCK-78-138 392 46.94 53.57 10.97 16.58(4.08) 18.11(1.28) 0(0) 1.79(0.51) 4.08(1.53)

INTERSECTIN1-1002-1060 263 44.49 61.98 14.45 34.6(7.22) 34.6(1.52) 0(0) 2.66(0.38) 4.94(0)

INTERSECTIN1-1074-1138 188 31.91 29.26 5.32 11.17(10.11) 7.45(3.72) 1.06(1.06) 3.72(3.19) 0(0)

INTERSECTIN1-1155-1214 108 24.07 71.3 15.74 24.07(10.19) 40.74(3.7) 0(0) 3.7(0) 10.19(3.7)

INTERSECTIN1-740-806 239 32.22 69.87 13.39 21.76(5.44) 31.38(1.26) 0(0) 2.93(0.84) 6.69(1.67)

INTERSECTIN1-913-971 74 41.89 31.08 4.05 10.81(5.41) 6.76(2.7) 0(0) 2.7(1.35) 10.81(6.76)

IRSP53-374-437 362 32.87 36.46 5.8 14.64(7.46) 9.94(2.49) 0.55(0.55) 4.14(3.04) 9.67(6.63)

LCK-61-121 150 49.33 52.67 12 22(4.67) 25.33(2.67) 0(0) 2.67(0) 5.33(1.33)

LYN-63-123 737 41.66 50.34 8.96 18.18(5.56) 19.4(1.63) 0.14(0.14) 2.04(1.09) 6.51(2.04)

MLK3-41-105 131 28.24 60.31 12.21 14.5(8.4) 29.01(4.58) 0(0) 9.16(4.58) 6.11(2.29)

MPP1-158-228 142 38.73 33.8 7.75 16.9(13.38) 11.27(4.23) 0(0) 8.45(5.63) 2.11(0.7)

MYO7A-1603-1672 156 36.54 30.13 4.49 13.46(10.9) 8.33(3.85) 0.64(0.64) 5.77(4.49) 0.64(0.64)

NCF1-226-285 94 36.17 41.49 9.57 15.96(11.7) 10.64(3.19) 0(0) 12.77(7.45) 2.13(0)

NCK2-195-257 137 35.04 48.18 7.3 18.98(13.14) 16.79(3.65) 0(0) 3.65(2.19) 1.46(0)

NPHP1-152-212 308 72.4 22.08 11.04 28.9(15.58) 11.36(1.95) 0(0) 0.32(0) 6.82(0.65)

N-SRC-84-145 181 44.75 38.67 9.94 14.92(7.73) 14.92(2.76) 0(0) 3.31(2.21) 2.76(1.66)

OSTF1-12-71 437 39.59 72.77 18.54 18.76(2.52) 37.07(1.37) 0(0) 2.75(0.92) 16.02(2.06)

P51NOX-399-458 73 32.88 32.88 6.85 13.7(13.7) 4.11(2.74) 0(0) 15.07(12.33) 1.37(1.37)

PAC2-426-486 447 48.55 46.53 17.9 25.06(14.09) 20.13(4.03) 0.22(0.22) 4.47(2.68) 5.82(0.45)

PAC3-363-424 260 52.69 40 14.62 26.15(13.85) 15(2.69) 0.77(0.77) 2.31(1.15) 7.31(1.15)

PIK3R1-3-79 393 48.35 55.22 13.49 34.61(11.45) 24.43(1.78) 0.25(0) 1.78(0.51) 3.82(0)

Continued on next page .....

121



A
p
p
e
n
d
ix

A
.

S
u
p
p
le
m
e
n
ta

ry
m
a
te
ria

l
Table A.2.1 – Continued from previous page

SH3 domain # Positive Class I Class II Class I & II PxRP PxxPR PxxDY RxxKP PPPPP

(%) (%) (%) (%) (%) (%) (%) (%)

PLCG1-791-851 442 30.09 56.33 8.82 27.6(9.28) 39.59(8.82) 0(0) 2.49(1.13) 7.24(0.9)

RASGAP-279-341 315 35.87 35.24 8.57 19.37(15.24) 13.02(4.44) 0(0) 8.57(6.98) 1.59(0.63)

RIMB1-1625-1693 219 66.67 29.68 13.7 15.53(11.42) 8.22(3.2) 0(0) 2.74(1.83) 2.74(1.83)

RIMB1-1764-1831 147 74.15 25.85 12.93 17.69(11.56) 7.48(1.36) 0(0) 2.04(1.36) 4.08(2.72)

RUSC1-844-902 50 46 40 20 12(8) 8(4) 0(0) 6(4) 0(0)

SH3PX3-1-61 286 69.23 28.32 12.24 35.66(14.69) 14.69(1.4) 0.35(0) 0(0) 16.78(1.4)

SNX18-1-61 200 66 36.5 13.5 35.5(7) 17(1) 0(0) 1.5(0.5) 17(1.5)

SNX9-1-62 389 58.1 32.65 13.88 43.44(21.34) 15.68(3.34) 0(0) 1.29(0.26) 13.11(1.54)

SRC-84-145 527 50.47 46.68 11.2 17.65(4.17) 21.25(1.33) 0(0) 2.47(0.57) 9.3(2.66)

STAM1-210-269 259 39.38 47.1 17.37 22.39(13.51) 16.99(4.25) 0(0) 12.36(10.04) 2.32(0.77)

STAM2-202-261 28 32.14 64.29 21.43 7.14(0) 14.29(0) 0(0) 21.43(10.71) 3.57(3.57)

TUBA-145-204 187 51.34 44.92 17.11 24.6(13.37) 21.39(3.74) 0.53(0.53) 2.67(0) 8.02(0.53)

TUBA-1513-1576 414 24.88 42.75 5.31 29.47(17.87) 14.73(3.62) 0.24(0.24) 0.97(0.48) 9.66(5.56)

TUBA-2-61 100 30 42 8 39(22) 10(4) 0(0) 4(2) 4(2)122



A.2. SH3 domain data

Table A.2.2.: The total number of positive and negative data along with the ratio for each SH3
domain used in our study. The table is taken from the supplementary materials of [P3].

SH3 domain # Positive # Negative Ratio

ABL-61-121 202 1633 1:8

AMPHIPHYSINI-622-695 322 2354 1:7

AMPHIPHYSINII-520-592 215 2668 1:12

ARGBP1-451-510 134 5295 1:39

ARGBP2a-1041-1100 72 7680 1:106

ARGBP2a-863-922 321 2174 1:6

ARGBP2a-938-999 307 2949 1:9

ARHGAP12-12-74 122 3199 1:26

ARHGEF16-629-689 88 5114 1:58

BOG25-55-114 368 3401 1:9

BTK-214-274 264 2465 1:9

CAP-1049-1108 133 2509 1:18

CAP-1123-1184 92 6132 1:66

CIN85-1-58 130 6739 1:51

CIN85-267-328 305 3962 1:12

COOL1-P85-184-243 353 1813 1:5

CSK-9-70 43 7403 1:172

DDEF2-944-1006 336 1482 1:4

DLG1-581-651 42 8591 1:204

DOCK1-9-70 323 1224 1:3

ENDOPHB1-305-365 122 7430 1:60

ENDOPHILIN1-290-349 181 1462 1:8

ENDOPHILIN2-306-365 387 3657 1:9

ENDOPHILIN3-285-344 357 2589 1:7

EPS8-531-590 48 9048 1:188

EPS8L2-492-551 236 5991 1:25

FGR-77-138 286 799 1:2

FISH-166-225 31 6918 1:223

FNBP1L-538-599 188 2256 1:12

FRK-42-110 281 2571 1:9

FYN-82-143 187 1650 1:8

GRAP2-1-56 72 7640 1:106

GRAP2-271-330 219 3586 1:16

GRB2-156-215 217 2017 1:9

GRB2-1-58 213 1171 1:5

HCK-78-138 392 2105 1:5

INTERSECTIN1-1002-1060 263 1522 1:5

INTERSECTIN1-1074-1138 188 4301 1:22

INTERSECTIN1-1155-1214 108 3401 1:31

INTERSECTIN1-740-806 239 1679 1:7

INTERSECTIN1-913-971 74 7453 1:100

IRSP53-374-437 362 2540 1:7

LCK-61-121 150 3993 1:26

LYN-63-123 737 804 1:1

MLK3-41-105 131 4683 1:35

MPP1-158-228 142 4855 1:34

Continued on next page .....
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SH3 domain # Positive # Negative Ratio

MYO7A-1603-1672 156 4795 1:30

NCF1-226-285 94 6157 1:65

NCK2-195-257 137 5112 1:37

NPHP1-152-212 308 2770 1:8

N-SRC-84-145 181 4219 1:23

OSTF1-12-71 437 1747 1:3

P51NOX-399-458 73 7732 1:105

PAC2-426-486 447 1731 1:3

PAC3-363-424 260 1354 1:5

PIK3R1-3-79 393 1966 1:5

PLCG1-791-851 442 1804 1:4

RASGAP-279-341 315 3760 1:11

RIMB1-1625-1693 219 4063 1:18

RIMB1-1764-1831 147 6070 1:41

RUSC1-844-902 50 8154 1:163

SH3PX3-1-61 286 1219 1:4

SNX18-1-61 200 1143 1:5

SNX9-1-62 389 1546 1:3

SRC-84-145 527 1268 1:2

STAM1-210-269 259 3241 1:12

STAM2-202-261 28 8775 1:313

TUBA-145-204 187 1586 1:8

TUBA-1513-1576 414 2346 1:5

TUBA-2-61 100 5417 1:54
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A.2. SH3 domain data

Table A.2.3.: The results achieved by the single domain graph kernel (GK) approach for
each human SH3 domain. We report the average sensitivity, specificity, precision, AUC
PR, and AUC ROC for each domain. The table is taken from the supplementary materials
of [P3].

SH3 domain Sensitivity Specificity Precision AUC PR AUC ROC

ABL-61-121 0.63 0.98 0.78 0.76 0.93

AMPHIPHYSINI-622-695 0.75 0.99 0.91 0.9 0.97

AMPHIPHYSINII-520-592 0.64 0.99 0.85 0.81 0.94

ARGBP1-451-510 0.49 1 0.77 0.69 0.95

ARGBP2a-1041-1100 0.15 1 0.75 0.32 0.73

ARGBP2a-863-922 0.73 0.97 0.78 0.83 0.95

ARGBP2a-938-999 0.81 0.98 0.85 0.91 0.98

ARHGAP12-12-74 0.26 0.99 0.6 0.54 0.92

ARHGEF16-629-689 0.53 1 0.75 0.74 0.98

BOG25-55-114 0.75 0.96 0.73 0.81 0.97

BTK-214-274 0.78 0.98 0.8 0.88 0.97

CAP-1049-1108 0.45 0.99 0.78 0.67 0.94

CAP-1123-1184 0.08 1 0.43 0.26 0.82

CIN85-1-58 0.38 1 0.87 0.6 0.94

CIN85-267-328 0.87 0.99 0.84 0.93 0.99

COOL1-P85-184-243 0.7 0.98 0.87 0.89 0.97

CSK-9-70 0.04 1 0.2 0.26 0.87

DDEF2-944-1006 0.81 0.97 0.88 0.91 0.96

DLG1-581-651 0.04 1 0.15 0.26 0.93

DOCK1-9-70 0.79 0.94 0.79 0.88 0.96

ENDOPHB1-305-365 0.44 0.99 0.55 0.54 0.98

ENDOPHILIN1-290-349 0.75 0.98 0.82 0.87 0.96

ENDOPHILIN2-306-365 0.78 0.97 0.77 0.84 0.97

ENDOPHILIN3-285-344 0.73 0.98 0.88 0.87 0.97

EPS8-531-590 0.43 1 0.59 0.56 0.95

EPS8L2-492-551 0.6 0.98 0.54 0.6 0.96

FGR-77-138 0.88 0.97 0.91 0.96 0.98

FISH-166-225 0 1 0 0.01 0.59

FNBP1L-538-599 0.65 0.98 0.72 0.79 0.96

FRK-42-110 0.71 0.99 0.87 0.87 0.96

FYN-82-143 0.63 0.98 0.76 0.73 0.88

GRAP2-1-56 0.19 1 0.46 0.4 0.96

GRAP2-271-330 0.7 0.99 0.85 0.82 0.96

GRB2-156-215 0.66 0.98 0.8 0.8 0.92

GRB2-1-58 0.81 0.98 0.89 0.92 0.98

HCK-78-138 0.87 0.98 0.91 0.95 0.98

INTERSECTIN1-1002-1060 0.86 0.98 0.86 0.92 0.97

INTERSECTIN1-1074-1138 0.61 0.99 0.73 0.72 0.97

INTERSECTIN1-1155-1214 0.45 1 0.78 0.62 0.89

INTERSECTIN1-740-806 0.69 0.99 0.94 0.9 0.97

INTERSECTIN1-913-971 0.09 1 0.38 0.23 0.91

IRSP53-374-437 0.67 0.95 0.69 0.75 0.93

LCK-61-121 0.55 1 0.86 0.72 0.94

LYN-63-123 0.92 0.92 0.91 0.98 0.98

Continued on next page .....
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SH3 domain Sensitivity Specificity Precision AUC PR AUC ROC

MLK3-41-105 0.5 1 0.79 0.68 0.96

MPP1-158-228 0.52 0.99 0.63 0.64 0.97

MYO7A-1603-1672 0.56 0.99 0.67 0.65 0.97

NCF1-226-285 0.47 1 0.75 0.67 0.98

NCK2-195-257 0.56 0.99 0.73 0.72 0.97

NPHP1-152-212 0.83 0.99 0.9 0.92 0.98

N-SRC-84-145 0.64 0.99 0.69 0.72 0.97

OSTF1-12-71 0.83 0.97 0.89 0.93 0.97

P51NOX-399-458 0.2 1 0.54 0.45 0.96

PAC2-426-486 0.83 0.98 0.9 0.95 0.98

PAC3-363-424 0.73 0.97 0.86 0.89 0.96

PIK3R1-3-79 0.86 0.98 0.91 0.95 0.98

PLCG1-791-851 0.79 0.97 0.89 0.93 0.97

RASGAP-279-341 0.8 0.98 0.81 0.89 0.98

RIMB1-1625-1693 0.74 1 0.9 0.87 0.97

RIMB1-1764-1831 0.69 1 0.98 0.82 0.92

RUSC1-844-902 0.1 1 0.45 0.29 0.95

SH3PX3-1-61 0.83 0.98 0.91 0.95 0.98

SNX18-1-61 0.79 0.99 0.93 0.93 0.97

SNX9-1-62 0.86 0.97 0.89 0.93 0.97

SRC-84-145 0.91 0.93 0.85 0.96 0.98

STAM1-210-269 0.84 0.99 0.83 0.91 0.98

STAM2-202-261 0.1 1 0.2 0.26 0.84

TUBA-145-204 0.7 0.98 0.84 0.86 0.96

TUBA-1513-1576 0.65 0.98 0.84 0.81 0.93

TUBA-2-61 0.36 1 0.65 0.53 0.9
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A.2. SH3 domain data
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Figure A.2.3.: Here, we compare the performances (sensitivity, specificity, precision, AUC PR,
and AUC ROC) using different encoding orders, i.e., PC-PHY-PSEQ, PHY-PC-PSEQ, PC-PSEQ,
PHY-PSEQ, and PSEQ (PC = peptide charges, PHY = peptide hydrophobicity, and PSEQ =
peptide sequence). Red bars indicate the performance of the domains having the negative/positive
ratio 1 to 20, green bars indicate the performance of the domains having the negative/positive ratio
21 to 100, and the blue bars indicate the performance of the domains having the negative/positive
ratio more than 100. Overall, the graph indicates PC-PHY-PSEQ encoding order performs better.
The figure is adapted from the supplementary materials of [P3].
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Figure A.2.4.: 10-fold cross-validation performance comparison with Graph Kernel (GK), un-
aligned sequences string kernel (Unaligned-SK), aligned sequences without internal gaps (“zero
gaps”) linear kernel (Aligned-WO-internal-gaps-LK), aligned sequences without internal gaps (“zero
gaps”) Gaussian kernel (Aligned-WO-internal-gaps-RBFK), aligned sequences with internal gaps lin-
ear kernel (Aligned-W-internal-gaps-LK), and aligned sequences with internal gaps Gaussian kernel
(Aligned-W-internal-gaps-RBFK). The average AUC PR and AUC ROC are plotted for all 70 SH3
domains. The domains are sorted by increasing average performance for the Graph Kernel method.
The figure is taken from the supplementary materials of [P3].
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Figure A.2.5.: 10-fold cross-validation performance with filtered negative interactions for Single
Domain Graph Kernel (GK). Area under the PR curve with standard deviation for Graph Kernel for
each SH3 domain. The domains are sorted by increasing negative ratio (left) and positive interaction
data (right). The error bars represent respective standard deviation. The figure is taken from the
supplementary materials of [P3].
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A.2. SH3 domain data
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Figure A.2.6.: Here, we compare the number of positive data and the negative/positive ratio
for each SH3 domain. The domains are sorted by increasing number of positive data. The figure
indicates less imbalanced datasets (low negative/positive ratio) having higher number of positive
data and also provide good performance. The figure is taken from the supplementary materials
of [P3].
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A.3. PDZ domain data

Figure A.3.1.: (A) The AUC ROC and (B) the AUC PR curve obtained by sequence-based
feature encoding (red line) and contact-based feature encoding (green dashed line) method. The
figure is taken from the supplementary materials of [P2].
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Table A.3.1.: Predictive performance of sequence-based approach. The table is taken from the
supplementary materials of [P2].

PDZ cluster Positive int. Sensitivity Specificity Precision AUC PR AUC ROC

1 147 0.94 0.72 0.93 0.97 0.92

2 37 0.77 0.89 0.91 0.95 0.94

4 85 0.91 0.83 0.97 0.98 0.87

5 54 0.69 0.75 0.78 0.85 0.83

6 27 0.75 1 1 0.97 0.95

8 36 0.55 0.93 0.9 0.87 0.87

13 27 0.73 0.95 0.93 0.96 0.96

15 51 0.81 0.93 0.95 0.95 0.95

20 67 0.92 0.71 0.93 0.97 0.91

22 67 0.81 0.94 0.95 0.97 0.95

29 29 0.8 0.65 0.76 0.87 0.78

30 13 0.33 0.9 0.27 0.79 0.83

37 60 0.97 1 1 1 0.99

41 12 0.75 1 1 0.98 0.99

42 37 0.42 0.94 0.79 0.79 0.85

54 53 0.87 0.97 0.97 0.99 0.98

66 36 0.98 0.96 0.98 1 1

68 50 0.96 0.63 0.92 0.98 0.91

87 19 0.62 0.71 0.52 0.82 0.82

96 31 0.9 0.76 0.9 0.89 0.8

98 81 0.9 0.94 0.97 0.98 0.95

120 55 0.78 0.57 0.86 0.88 0.73
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A.3. PDZ domain data

Table A.3.2.: Predictive performances of contact-based approach. The table is taken from the
supplementary materials of [P2].

PDZ cluster Sensitivity Specificity Precision AUC PR AUC ROC

1 0.94 0.79 0.95 0.97 0.92

2 0.76 0.88 0.88 0.95 0.94

20 0.92 0.68 0.92 0.98 0.94

42 0.53 0.9 0.78 0.73 0.79

54 0.88 0.98 0.98 0.99 0.99

120 0.84 0.44 0.84 0.9 0.77

Table A.3.3.: Predicted binding peptides targeted by the highest number of PDZ domain in
human. The table is taken from the supplementary materials of [P2].

UniProt-ID Peptide Targeted by number of PDZ domains

Q8WXI2 IETHV 40

Q14524 RESIV 39

Q14957 LESEV 38

Q9NYB5 KETQL 34

P35354 RSTEL 34

Table A.3.4.: Predicted binding peptides targeted by the highest number of PDZ domain in
mouse. The table is taken from the supplementary materials of [P2].

UniProt-ID Peptide Targeted by number of PDZ domains

Q9ERB5 KETRL 42

Q80YA9 IETHV 40

O08911 KETAL 39

Q01098 LESEV 38

Q9JJV9 RESIV 37
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Figure A.3.2.: Peptide logos for each PDZ domain family. WebLogo [180] was used for constructing
the peptide logos. Different families show different ligand binding specificity. Families with at least
10 positive interactions were used for sequence logo. The figure is taken from the supplementary
materials of [P2].
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Appendix B

List of abbreviations

AUC PR Area under the curve precision and recall

AUC ROC Area under the curve receiver operating characteristic

DAVID Database for annotation, visualization and integrated dis-

covery

EGFR Epidermal growth factor receptor

EH Eps15 homology

FN False negative

FP False positive

FPR False positive rate

GIP Graph isomorphism problem

GO Gene Ontology

HTP High-throughput

ITAM Immunoreceptor tyrosine-based activation motif

IUP Intrinsically unstructured protein

MCL Markov clustering

MINT Molecular interaction

ML Machine learning

Pfam Protein family

PID Protein interaction domain

PRM Peptide recognition module

PDB Protein data bank

PDZ PSD-95/DLG1/ZO-1

PID Protein interaction domain

PPI Protein-protein interaction

PPII Polyproline type II

PTB Protein tyrosine binding

PTK Protein tyrosine kinase
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Appendix B. List of abbreviations

PTM Post-translational modification

PTP Protein tyrosine phosphatase

pTyr Phosphotyrosine

PWM/PSSM Position specific weight matrix/Position specific scoring ma-

trix

RBF Radial basis function

RTK Receptor tyrosine kinase

SGD Stochastic Gradient Descent

SH2 Src homology 2

SH3 Src homology 3

SSL Semi-supervised learning

SVM Support Vector Machine

TN true negative

TP true positive

TPR true positive Rate

w.r.t. with respect to

Standard amino acid abbreviations

Amino acid Three-letter code Single-letter code

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamic acid Glu E

Glutamine Gln Q

Glycine Gly G

Histidine His H

Isoleucine Ile I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V
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