
Optimizing algorithms for the
comparative analysis of

non-coding RNAs

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat

der Technischen Fakultät

der Albert-Ludwigs-Universität Freiburg

von Diplom-Informatikerin (Bioinformatik)

Christina Otto, geb. Schmiedl

Dekan:
Prof. Dr. Georg Lausen

Prüfungskommission:
Prof. Dr. Andreas Podelski - Vorsitz
Prof. Dr. Fabian Kuhn - Beisitz
Prof. Dr. Rolf Backofen - Gutachter
PD Dr. Björn Voß - Gutachter

Datum der Promotion:
14. Juli 2015

Optimizing algorithms for the
comparative analysis of

non-coding RNAs

Christina Otto, geb. Schmiedl

2015

Abstract

Non-coding RNAs (ncRNAs) perform essential functions within the cell, such as the regulation
of gene expression or catalytic functionalities. Until today, however, the function of most
ncRNA molecules is still unknown. As the structure is key to the function of many ncRNAs,
much effort has been devoted to the computational structure prediction of ncRNAs and the
subsequent functional characterization. This thesis makes important contributions to this
field of research by introducing novel fast methods for revealing the functionalities of ncRNA
molecules.

The basis of these methods is a novel sparsification technique, the ensemble-based sparsifica-
tion, which is introduced in the first part of this thesis. Identifying likely structural elements
within the structure ensembles of two RNA sequences allows to drastically reduce the search
space and leads to a significant shorter runtime. We demonstrate the efficiency of this novel
technique for speeding up algorithms for the identification of sequence-structure motifs and si-
multaneous alignment and folding. However, the applicability of ensemble-based sparsification
is not limited to these instances such that this novel technique offers the possibility to speed
up other RNA-related tasks in the future as well.

In the second part of this thesis, we introduce the novel method ExpaRNA-P for identifying
sequence-structure motifs common to two RNAs in entire Boltzmann-distributed structure
ensembles. The core algorithm of the existing approach ExpaRNA solves this problem for a
priori known input structures. However, such structures are rarely known; moreover, predicting
them computationally beforehand is not an option, since single sequence structure prediction is
highly unreliable. In our novel approach ExpaRNA-P, we match and fold RNAs simultaneously,
analogous to the well-known simultaneous alignment and folding of RNAs. While this implies
much higher flexibility compared with ExpaRNA, the novel approach ExpaRNA-P has the same
very low complexity (quadratic in time and space), which is enabled by our novel ensemble-
based sparsification. Furthermore, we devise a generalized chaining algorithm to compute
compatible subsets of ExpaRNA-P’s sequence-structure motifs. We utilize the best chain as
anchor constraints for the sequence-structure alignment tool LocARNA, resulting in the very
fast RNA alignment program ExpLoc-P. ExpLoc-P is benchmarked in several variants and
versus state-of-the-art programs. Across a benchmark set of typical ncRNAs, ExpLoc-P has

iv Abstract

similar accuracy to LocARNA but is on average four times faster, while it achieves a speedup
over 30-fold for the longest benchmark sequences (≈400nt).

In the third part of this thesis, we present the two novel methods PARSE and SPARSE for simul-
taneous alignment and folding. PARSE utilizes a lightweight energy model that is derived from a
full-featured energy model to score structural contributions. In addition, it integrates Sankoff’s
original structure prediction flexibility. By utilizing LocARNA’s base pair filter, a time complex-
ity of O(n4) can be obtained for PARSE. Furthermore, we show how the novel ensemble-based
sparsification can be applied to derive the sparsified variant SPARSE with a significantly re-
duced runtime of O(n2). This means that we introduce the first method with quadratic runtime
for simultaneous alignment and folding that does not resort to sequence-based heuristics that
could corrupt the alignment quality – as for example the tool RAF does. Furthermore, we
demonstrate the effectiveness of our method on benchmarks of real RNA sequences against the
state-of-the-art programs LocARNA and RAF. The low computational complexity of SPARSE
and RAF is reflected in an overall speedup of around 4 over LocARNA. Whereas RAF’s per-
formance drops drastically for instances with low sequence identities, SPARSE benefits from
the structure-based optimization and achieves similar alignment quality as LocARNA. Im-
portantly, both tools produce high-quality alignments even for the hard instances with low
sequence identity. In addition, we demonstrate the advantage of SPARSE’s flexible structure
prediction model in comparison with LocARNA. For all sequence identity regions, SPARSE
improves LocARNA’s structure prediction quality.

In the final part of this thesis, we propose a general theory to describe and implement sparsifi-
cation in dynamic programming (DP) algorithms. So far, sparsification is mostly a collection
of loosely related examples and no general, well understood theory has been developed yet.
Our approach is formalized as an extension of algebraic dynamic programming (ADP), which
makes it applicable to a variety of algorithms and scoring schemes. In particular, this is the
first approach that shows how to sparsify algorithms with scoring schemes that go beyond
simple minimization or maximization – as for example the enumeration of suboptimal solu-
tions. On the basis of Nussinov’s algorithm, we show how to sparsify RNA structure prediction
algorithms.

In summary, this thesis provides novel approaches to decipher the functionalities of ncRNAs.
Particularly, we aim at maintaining high quality output while focusing at the same time on
making our novel approaches most efficient regarding the runtime. Moreover, we demonstrate
in this work the superior performance of our novel methods compared with state-of-the-art
programs on real RNA sequences.

Zusammenfassung

Nichtcodierende RNAs (ncRNAs) führen essentielle Aufgaben innerhalb der Zelle aus, wie etwa
die Regulierung der Genexpression oder katalytische Funktionen. Jedoch ist bis heute die Funk-
tion der meisten ncRNA Moleküle noch immer unbekannt. Da die Struktur entscheidend für
die Funktion vieler ncRNAs ist, wurden große Anstrengungen in die computergestützte Struk-
turvorhersage von ncRNAs und die anschließende funktionelle Charakterisierung investiert.
Diese Arbeit leistet wichtige Beiträge zu diesem Forschungsfeld, indem neue, schnelle Metho-
den präsentiert werden, die die Funktionsweisen von ncRNA Molekülen aufdecken.

Die Basis dieser Methoden ist eine neuartige Sparsifizierungsmethode, die Ensemble-basierte
Sparsifizierung, die im ersten Teil dieser Arbeit eingeführt wird. Die Identifikation wahrschein-
licher struktureller Elemente innerhalb der Strukturensembles von zwei RNA Sequenzen er-
laubt es den Suchraum drastisch zu reduzieren und führt zu einer signifikant kürzeren Laufzeit.
Wir demonstrieren die Effizienz dieser neuen Methode, indem Algorithmen für die Identi-
fizierung von Sequenz-Struktur-Motiven und die simultane Berechnung von Alignment und
Faltung beschleunigt werden. Die Einsetzbarkeit der Ensemble-basierten Sparsifizierung ist
jedoch nicht auf diese Anwendungen beschränkt, so dass diese neue Methode die Möglichkeit
bietet, in Zukunft auch andere RNA-bezogene Aufgaben zu beschleunigen.

Im zweiten Teil dieser Arbeit präsentieren wir die neue Methode ExpaRNA-P, die Sequenz-
Struktur-Motive zwischen zwei RNAs in gesamten Boltzmann-verteilten Strukturensembles
identifiziert. Der Kern-Algorithmus des existierenden Ansatzes ExpaRNA löst dieses Problem
für a priori bekannte Eingabe-Strukturen. Solche Strukturen sind jedoch selten bekannt;
darüber hinaus ist die computergestützte Vorhersage im Voraus keine Lösung, da die Fal-
tung einzelner Sequenzen höchst unzuverlässig ist. In unserem neuen Ansatz ExpaRNA-P
wird der Mustervergleich simultan zu der Faltung der RNAs durchgeführt, analog zu der
bereits bekannten simultanen Berechnung von Alignment und Faltung von RNAs. Während
dies, verglichen mit ExpaRNA, eine viel höhere Flexibilität impliziert, hat der neue Ansatz
ExpaRNA-P die gleiche sehr geringe Komplexität (quadratisch in Zeit und Speicherplatz), die
durch unsere neue Ensemble-basierte Sparsifizierung ermöglicht wird. Zusätzlich entwickeln
wir einen generalisierten Chaining Algorithmus, der kompatible Teilmengen von ExpaRNA-P’s
Sequenz-Struktur-Motiven berechnet. Wir benutzen die beste Auswahl als Ankerpunkte für

vi Zusammenfassung

das Sequenz-Struktur-Alignment Tool LocARNA, was zu dem sehr schnellen RNA Alignment
Programm ExpLoc-P führt. ExpLoc-P wird in verschiedenen Varianten und im Vergleich zu
dem Stand der Technik entsprechenden Ansätzen bewertet. In einem Benchmark typischer
ncRNAs erreicht ExpLoc-P eine ähnliche Genauigkeit wie LocARNA, ist aber im Durchschnitt
vier mal schneller. Darüber hinaus erzielt es einen über 30-fachen Speedup für die längsten
Benchmarksequenzen (≈400nt).

Im dritten Teil der Arbeit stellen wir die zwei neuen Methoden PARSE und SPARSE für
die simultane Berechnung von Alignment und Faltung vor. PARSE verwendet ein leicht-
gewichtiges Energie-Modell welches von einem vollständigen Energie-Modell herrührt, um die
strukturellen Beiträge zu bestimmen. Zusätzlich integriert es Sankoff’s ursprüngliche Flexi-
bilität der Strukturvorhersage. Indem LocARNA’s Basenpaar-Filter verwendet wird, kann eine
Zeitkomplexität von O(n4) für PARSE erreicht werden. Darüber hinaus zeigen wir, wie die
neue Ensemble-basierte Sparsifizierung angewendet werden kann, um die sparsifizierte Vari-
ante SPARSE mit erheblich reduzierter Laufzeit von O(n2) zu erzielen. Das bedeutet, dass
wir die erste Methode für die simultane Berechnung von Alignment und Faltung mit quadra-
tischer Laufzeit vorstellen, welche nicht auf Sequenz-basierte Heuristiken zurückgreift, die die
Alignmentqualität beeinträchtigen können – wie es zum Beispiel das Tool RAF tut. Zusätzlich
zeigen wir die Effektivität unserer Methode auf Benchmarks realer RNA Sequenzen im Ver-
gleich zu den Stand der Technik entsprechenden Ansätzen LocARNA und RAF. Die niedrige
Komplexität von SPARSE und RAF zeigt sich in einem Gesamt-Speedup von ungefähr 4 im Ver-
gleich zu LocARNA. Während jedoch RAF’s Leistungsfähigkeit für Instanzen mit niedriger Se-
quenzidentität drastisch fällt, profitiert SPARSE von der Struktur-basierten Optimierung und
erreicht eine ähnliche Alignmentqualität wie LocARNA. Insbesondere erzeugen beide Tools
hoch-qualitative Alignments sogar für die schwierigen Instanzen mit niedriger Sequenziden-
tität. Wir demonstrieren außerdem den Vorteil des flexiblen Strukturvorhersage-Modells von
SPARSE im Vergleich zu LocARNA. SPARSE verbessert die Qualität der Strukturvorhersage
von LocARNA für alle Sequenzidentitätsbereiche.

Im letzten Teil dieser Arbeit schlagen wir eine allgemeine Theorie vor, um Sparsifizierung
innerhalb von Algorithmen mit dynamischer Programmierung (DP) zu beschreiben und zu
implementieren. Bis jetzt ist Sparsifizierung hauptsächlich eine Sammlung von lose zusam-
menhängenden Beispielen und es wurde noch keine allgemeine, wohlverstandene Theorie ent-
wickelt. Unser Ansatz ist als Erweiterung der algebraischen dynamischen Programmierung
(ADP) formalisiert, wodurch er auf eine Vielzahl von Algorithmen und Bewertungsschemata
anwendbar ist. Insbesondere ist dies der erste Ansatz, der zeigt wie Algorithmen mit Bewer-
tungsschemata, die über die einfache Minimierung oder Maximierung hinausgehen, sparsifiziert
werden können – wie zum Beispiel die Aufzählung von suboptimalen Lösungen. Anhand des
Nussinov Algorithmus zeigen wir, wie Algorithmen zur RNA Strukturvorhersage sparsifiziert
werden können.

vii

Insgesamt stellt diese Arbeit neue Ansätze bereit, um die Funktionsweisen von ncRNAs zu
entschlüsseln. Insbesondere streben wir an, hochwertige Ergebnisse zu erhalten, während wir
uns gleichzeitig darauf konzentrieren unsere neuen Ansätze so effizient wie möglich bezüglich
der Laufzeit zu gestalten. Darüber hinaus zeigen wir in dieser Arbeit die überlegene Leis-
tungsfähigkeit unserer neuen Methoden verglichen mit dem Stand der Technik entsprechenden
Programmen auf echten RNA Sequenzen.

Danksagung

Zuallererst gilt mein Dank Prof. Dr. Rolf Backofen für die Möglichkeit in seiner Gruppe an
einem spannenden Thema zu arbeiten und für die Unterstützung, die er mir über die Jahre
zuteilwerden lies. Zusätzlich möchte ich mich bei PD Dr. Björn Voß dafür bedanken, dass
er als Zweitgutachter meine Arbeit bewertet hat und bei Prof. Dr. Andreas Podelski und
Prof. Dr. Fabian Kuhn, dass sie die Prüfungskommission komplettiert haben.

Forschung ist immer eine Gemeinschaftsarbeit und ich konnte mich glücklich schätzen, In-
spiration von unterschiedlicher Seite zu bekommen und mit vielen verschiedenen Menschen
zusammenarbeiten zu dürfen. Als meine wichtigsten Quellen des Wissens sind Sebastian Will
und Mathias Möhl zu nennen. Vielen Dank für die gute Zusammenarbeit und die vielen pro-
duktiven Diskussionen. Zu nennen sind außerdem Milad Miladi und Steffen Heyne, die durch
ihre Ideen und Impulse maßgeblich zu dieser Arbeit beigetragen haben, sowie Mika Amit und
Gad M. Landau, die für den Blick über den Tellerrand gesorgt haben. Sebastian Will, Torsten
Houwaart, Milad Miladi, Raphael Otto und Felix Schmiedl möchte ich dafür danken, dass sie
Teile meiner Arbeit Korrektur gelesen haben. Mein spezieller Dank gilt außerdem Monika
Degen-Hellmuth für die unermüdliche Unterstützung bei allen organisatorischen Fragen.

Bei allen ehemaligen und gegenwärtigen Gruppenmitglieder möchte ich mich für die schöne
Zeit bedanken und für das ausgezeichnete Arbeitsklima, das durch die tägliche 4 Uhr Kaffee-
Pause und zahlreiche Freizeitaktivitäten abgerundet wurde. Besonders zu nennen sind hier Sita
Saunders, Robert Kleinkauf und Daniel Maticzka, die die Zeit wie im Flug vergehen ließen.

Bedanken möchte ich mich auch bei meiner Familie, die es mir ermöglicht hat, meinen Weg zu
gehen und mich seelisch und moralisch unterstützt hat, und bei meinen Freunden, die immer für
mich da waren und mir über diese stressige Zeit geholfen haben. Zu guter Letzt gilt mein Dank
Raphael Otto, dem wichtigsten Menschen in meinem Leben: für deine Unterstützung während
des gesamten nicht immer einfachen Doktoranden-Daseins, deine bedingungslose Liebe und
deine Geduld, für eine länger als gedachte Zeit in einer Fernbeziehung zu leben.

List of own publications

Basis for this thesis

• Sebastian Will∗, Christina Otto∗, Milad Miladi∗, Mathias Möhl, and Rolf Backofen.
SPARSE: Quadratic time simultaneous alignment and folding of RNAs without sequence-
based heuristics. Bioinformatics, doi:10.1093/bioinformatics/btv185, first published online
April 2, 2015.

• Christina Otto, Mathias Möhl, Steffen Heyne, Mika Amit, Gad M. Landau, Rolf Backofen,
and Sebastian Will. ExpaRNA-P: simultaneous exact pattern matching and folding of RNAs.
BMC Bioinformatics, 15(1):404, 2014.

• Sebastian Will∗, Christina Schmiedl∗, Milad Miladi, Mathias Möhl, and Rolf Backofen.
SPARSE: Quadratic time simultaneous alignment and folding of RNAs without sequence-
based heuristics. In Proceedings of the 17th International Conference on Research in Com-
putational Molecular Biology (RECOMB 2013), volume 7821 of Lecture Notes in Computer
Science, pages 289–290. Springer Berlin Heidelberg, 2013.

• Christina Schmiedl∗, Mathias Möhl∗, Steffen Heyne∗, Mika Amit, Gad M. Landau, Se-
bastian Will, and Rolf Backofen. Exact pattern matching for RNA structure ensembles.
In Proceedings of the 16th International Conference on Research in Computational Molec-
ular Biology (RECOMB 2012), volume 7262 of Lecture Notes in Computer Science, pages
245–260. Springer Berlin Heidelberg, 2012.

• Mathias Möhl∗, Christina Schmiedl∗, and Shay Zakov. Sparsification in algebraic dynamic
programming. In Proceedings of the German Conference on Bioinformatics (GCB 2011),
2011.

∗ joint first authors

xii Further publications

Further publications

• Mika Amit, Rolf Backofen, Steffen Heyne, Gad M. Landau, Mathias Möhl, Christina Otto,
and Sebastian Will. Local exact pattern matching for non-fixed RNA structures. IEEE/ACM
Trans. Comput. Biology Bioinform., 11(1):219–230, 2014.

• Mika Amit, Rolf Backofen, Steffen Heyne, Gad M. Landau, Mathias Möhl, Christina
Schmiedl, and Sebastian Will. Local exact pattern matching for non-fixed RNA struc-
tures. In Proceedings of the 23th Annual Symposium on Combinatorial Pattern Matching
(CPM 2012), volume 7354 of Lecture Notes in Computer Science, pages 306–320. Springer
Berlin Heidelberg, 2012.

Contents

1 Introduction 1
1.1 World of ncRNAs . 1
1.2 General objectives and contributions . 2
1.3 General methods . 3

1.3.1 Dynamic programming . 4
1.3.2 Sparsification . 4

1.4 Thesis overview . 5

2 Fundamental Concepts 7
2.1 RNA structure . 7
2.2 Algorithms for RNA structure prediction . 12
2.3 Sequence and sequence-structure alignment . 17
2.4 Overview of sequence-structure alignment methods 20

3 Framework for ensemble-based sparsification 27
3.1 Restricting the number of base pairs . 28
3.2 Computation of unpaired probabilities in loops 29
3.3 Computation of base pair probabilities in loops 31
3.4 Complexity Analysis . 31
3.5 Implementing ensemble-based sparsification . 32

4 Fast simultaneous exact pattern matching and folding 35
4.1 ExpaRNA-P – Sparsifying the computation of pattern matchings 38

4.1.1 Pattern matchings in RNA structure ensembles 38
4.1.2 Optimizing over significant pattern matchings 43
4.1.3 Recursions on sparsified matrices . 48

4.2 Chaining – Selecting a compatible subset of pattern matchings 52
4.3 Additional constraints on ExpaRNA-P’s sparsified matrices 52
4.4 Results . 55

4.4.1 Impact of EPM selection on the performance 56

xiv Contents

4.4.2 Comparison with other tools . 59
4.5 Discussion . 62

5 Fast and accurate simultaneous alignment and folding 65
5.1 Sankoff’s algorithm and Sankoff-style alignment 66
5.2 Optimizing Sankoff-style alignment . 70

5.2.1 PARSE – Flexible lightweight simultaneous alignment and folding 70
5.2.2 SPARSE – Sparsifying simultaneous alignment and folding of RNA . . . 74
5.2.3 Multiple alignment . 78

5.3 Results . 78
5.3.1 Comparison with other tools . 78
5.3.2 Flexible structure prediction of SPARSE improves folding accuracy . . . 80

5.4 Discussion . 83

6 General extension for sparsification in ADP 85
6.1 A quick overview on ADP . 86
6.2 Sparsified variants of the Nussinov algorithm . 89

6.2.1 OCT sparsification . 91
6.2.2 OCT-STEP sparsification . 91

6.3 A general extension for sparsification in ADP 91
6.3.1 Application to sparsified variants of Nussinov’s algorithm 92
6.3.2 Implementation . 94
6.3.3 Advanced choice functions . 95

6.4 Results . 95
6.4.1 Sparsified variants of Nussinov’s algorithm 96
6.4.2 Enumerating suboptimal solutions . 97

6.5 Discussion . 97

7 Conclusion 99

Bibliography 103

Abbreviations 113

Expressions and symbols 115

CHAPTER 1

Introduction

1.1 World of ncRNAs

It was assumed for a long time that RNA molecules – unlike proteins – do not perform active
functions within the cell, such as the regulation of gene expression or catalytic activities [CS14].
They were thought to be solely passive carriers of genetic information that aid the translation
of DNA into proteins, such as the transfer RNA (tRNA) and ribosomal RNA (rRNA) en-
gaged in the translation of messenger RNA (mRNA) to proteins. All parts of the genome that
do not code for proteins – including the intronic regions that are removed by RNA splicing
from the pre-mRNA to form the mature mRNA – were regarded “junk” DNA without any
specific function [Ohn72]. Initial findings, however, suggest that around 60% of the genome
is actually transcribed whereas only about 2% of the genome are covered by protein-coding
transcripts [FPM05]. Why should a cell bother to transcribe junk DNA into RNA molecules
that do not fulfill any function? A shift in thinking started with the discovery of small nu-
clear RNAs (snRNAs) that serve as a catalyst in splicing of pre-mRNAs, and small nucleolar
RNAs (snoRNAs) that perform rRNA modifications in specific regions that are identified by
intermolecular base pairing [MM06, CS14]. Finally, the situation has changed a great deal
with the discovery of RNA interference (RNAi) in worms by Fire and Mello [FXM+98] where
short double-stranded RNA leads to a silencing of specific genes. RNAi can be induced by
microRNAs (miRNAs) that identify the target mRNA via imperfect base pairing and triggers
suppression of the translation or its decay [KR08]. Another possible RNAi pathway is mediated
by small interfering RNAs (siRNAs) that require perfect complementarity to the target mRNA
to induce its cleavage and degradation [KR08]. The possibility to utilize the RNAi mechanism
to target and control specific genes soon became apparent and, as a logical consequence, the
Nobel prize was awarded to Fire and Mello in 2006. All RNAs that do not code for proteins

2 Chapter 1: Introduction

are called non-coding RNAs (ncRNAs). A special subset are long ncRNAs (lncRNAs) that are
characterized by a length longer than 200 nucleotides. Nowadays, it is understood that the
majority of ncRNAs fulfill important cellular tasks [MTF10] and it is assumed that numerous
new functions of ncRNAs will be determined in the future [CS14].

Consequently, it is hardly surprising that a lot of diseases are related to ncRNA malfunc-
tion [Est11]. Dysregulation of miRNAs, snoRNAs as well as lncRNAs is associated with cancer.
Furthermore, disruption of miRNAs is linked to neurological disorders, such as multiple scle-
rosis, Parkinson’s and Alzheimer’s disease, and cardiovascular disorders [Est11]. Other types
of ncRNAs also play a role in non-cancerous disorders but the analysis is difficult – especially
for lncRNAs due to their complexity. Thus, most research has focused on the role of miRNAs
in cancer. Therapies that up- or down-regulate those miRNAs that are associated to cancer
to restore the original expression patterns have been developed [Est11]. The identification
of functional ncRNAs and their exact functional mechanism is the essential precondition for
proposing novel therapeutic strategies.

Through the formation of base pairs, which define the secondary structure, an ncRNA molecule
can interact with itself, other RNA molecules or proteins. RNA structures guide various cellular
processes, including transcription, translation and splicing [WKS+11] and functional character-
ization was successfully carried out for specific classes of ncRNAs, such as tRNAs, snoRNAs and
miRNAs [WKS+11]. Even though computational screens, e.g. [WHS05, PBS+06, SGSM13],
identified an abundance of evolutionarily conserved structures in mammalian genomes, func-
tional annotation still lags behind. Since the secondary structure of an ncRNA molecule is
key to its function, it is usually more conserved than the primary sequence [TSH+06]. It has
been shown for RNA families with sequence conservation below 60% that sequence information
alone is not sufficient to uncover evolutionary relationships [GWW05].

With the advent of high-throughput sequencing technologies, pervasive transcription of the
human genome was established [CAS+11, The12], which means that “the majority of its bases
are associated with at least one primary transcript” [Con07]. Up to 450,000 ncRNAs have
been predicted in the human genome [RBT+10]. Additionally, a recent genome-wide analysis
in human annotated around 9000 small RNAs and 9500 lncRNA loci [The12]. On top of that,
lncRNAs can be kilobases in length [WWH+12].

1.2 General objectives and contributions

The previous section underlined the importance of ncRNAs in regulatory processes. The main
insights concerning ncRNAs can be summarized as follows

1. ncRNAs carry out important functions in the cell
2. the functional annotation of ncRNAs lags behind

1.3. General methods 3

3. the secondary structure of ncRNAs is key to their function, and
4. a vast amount of ncRNAs that can have a length in the range of kilobases have been

found in the human genome.

Based on these findings, we propose novel approaches that can add to the repertoire of methods
for the functional annotation of ncRNAs. In bioinformatics, various interesting problems can-
not be solved optimally in reasonable time. So algorithm designers have to resort to heuristics
to speed up computation. The challenge lies in finding good heuristics that do not significantly
compromise the quality and still yield relevant speedup. Note that both the runtime and the
quality are essential for designing a useful algorithm. How beneficial is an algorithm that
provides the result rapidly, but the result cannot be trusted? Or, the other way around, can
an algorithm be considered useful that always produces the optimal result but takes ages to
finish and thus can only be applied to very small problem instances?

In the light of these considerations, we always consider the combination of runtime and quality.
We focus on the efficiency of the proposed algorithms with respect to both the theoretical
complexity and the practical speedup that can be obtained on real ncRNA sequences. Crucially,
this provides the possibility to process more sequences in a given time frame or deal with
longer sequences. Furthermore, we ensure that the applied optimization strategies do not
adversely influence the quality, either by proofing the optimality of the results or by showing
high accuracy of the results with respect to established quality measures on benchmarks of
real RNA sequences.

In particular, we introduce:

• a novel optimization strategy, the ensemble-based sparsification (Chapter 3)
• an algorithm for fast simultaneous exact pattern matching and folding (Chapter 4)
• two algorithms for fast simultaneous alignment and folding (Chapter 5)
• a novel sparsification operator to apply sparsification within the algebraic dynamic pro-

gramming (ADP) framework [GMS04] (Chapter 6)

1.3 General methods

The theoretical foundations that form the basis of this thesis will be introduced in this section.
Dynamic programming is a widely used technique in bioinformatics and constitutes the basis
for all novel approaches developed in this thesis. Sparsification was applied to many dynamic
programming algorithms in bioinformatics to further speed up the computations. The novel
ensemble-based sparsification will be introduced in Chapter 3 and subsequently applied in
Chapter 4 and 5 to speed up algorithms for the identification of sequence-structure motifs and
simultaneous alignment and folding. Chapter 6 describes how the two popular concepts of
dynamic programming and sparsification can be combined in a general framework.

4 Chapter 1: Introduction

1.3.1 Dynamic programming

Dynamic programming (DP) is often used as an optimization strategy to efficiently solve
problems with an exponential sized search space. Each DP algorithm is defined by recursions
and an objective function that constitutes the scoring scheme and assigns a value to each
solution. An optimal solution can for example be one that maximizes a given score or minimizes
a given cost. All DP algorithms are based on Bellman’s principle of optimality that was
originally stated as follows:

“An optimal policy has the property that, whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision.” [Bel57]

Thus, DP can be applied if the optimal solution can be computed from optimal solutions
of subproblems. The optimal solutions of all subproblems are stored and consequently there
is no need to recompute them when they are required in a recursion case – thus avoiding
combinatorial explosion. For sequence alignment, for instance, there are exponentially many
possible alignments for two sequences. The DP algorithm, however, combines optimal solu-
tions for subinstances of the problem to find the optimal alignment in polynomial time. DP
algorithms also enjoy great popularity in other areas of bioinformatics, ranging from RNA
structure prediction, over predictions of RNA interactions to protein folding.

1.3.2 Sparsification

Although DP allows to compute solutions for many problems in bioinformatics in polynomial
time, speed is often still the limiting factor in the analysis of large datasets such that even
more efficient approaches are required. Various techniques have been developed to speed
up DP algorithms over sequence data. The techniques used comprise the Four-Russians
method [GHR80, LMWZU09, FG10], Valiant’s approach [Val75, Aku99, ZTZU10], as well as
various sparsification approaches [EGGI92, WZZU07, ZUGVWS08, ZUGVWS10, BTZZU11,
SMW+10, MSW+10]. Among those techniques, sparsification has been most popular, as it is
employable to a wide range of applications, comparably easy to implement, and yields good
speedups in both theory and practice. Sparsification approaches consider the intermediate re-
sults of an algorithm to identify parts of the search space that can be ignored since they cannot
contribute to an optimal solution anymore. As a consequence, the DP tables become sparse
and require less computation time and in some cases also less space. Sparsification has been
recently applied to RNA structure prediction [WZZU07, BTZZU11], simultaneous alignment
and folding [ZUGVWS08, ZUGVWS10], RNA-RNA-interaction prediction [SMW+10], and the
prediction of RNA pseudoknot structures [MSW+10]. In all those applications, sparsification
yielded a significant speedup. For RNA structure prediction, for example, it reduces the com-

1.4. Thesis overview 5

plexity for a sequence of length n from O(n3) to O(n2ψ(n)), where ψ(n) has been shown to be
much smaller than n [WZZU07, BTZZU11].

In contrast, our novel ensemble-based sparsification approach, that we will introduce in Chap-
ter 3, discards subsolutions that are unlikely to occur in the respective structure ensembles of
the input sequences. We will show that ensemble-based sparsification allows much stronger
savings.

1.4 Thesis overview

I contributed fundamentally to all publications that form the basis for this thesis in all phases of
the scientific process. In detail, I was involved in defining the theoretical aspects, implementing
the required algorithms, setting up evaluation pipelines, generating the results, and writing
the manuscripts. This is reflected by the fact that I am a first author for all publications
that constitute the basis for this thesis. In general, research requires active discussion and
teamwork, and thus can be rarely accomplished by one person alone. Also in this case, other
scientists were involved in many stages to make high quality research possible. Thus, “we”
is used throughout this thesis to accommodate for that. To be consistent, it is used even for
those parts that were conducted solely by myself. In the following, an overview of the topics
covered in this thesis is provided.

The current chapter provides the biological background, a first idea about the relevance of the
discussed topics and the basic concepts that are used throughout the thesis.

Chapter 2 introduces the necessary technical background and defines the main concepts,
where the key points are RNA structure and alignment. Furthermore, an overview over well-
established tools for RNA structure and alignment prediction is provided.

In Chapter 3, we introduce a framework for our novel ensemble-based sparsification technique
that is based on identifying probabilities that a base or base pair of an RNA is contained
in a particular loop. Ensemble-based sparsification constitutes the fundamental element for
optimizing algorithms for the identification of sequence-structure motifs (cf. Chapter 4) and
simultaneous alignment and folding (cf. Chapter 5).

Chapter 4 introduces the novel algorithm ExpaRNA-P for simultaneous exact pattern matching
and folding. This means that motifs are identified in whole Boltzmann-distributed ensembles
of two input RNAs. By utilizing the novel ensemble-based sparsification (cf. Chapter 3), we
achieve the same time complexity as the less flexible “predecessor” ExpaRNA [HWBB09] that
requires fixed structures.

In Chapter 5, we present the novel algorithms PARSE and SPARSE for simultaneous align-
ment and folding. PARSE combines for the first time the widely used lightweight energy
model [HBS04] with the original structure prediction flexibility of Sankoff’s algorithm [San85].

6 Chapter 1: Introduction

The quadratic runtime of the sparsified variant SPARSE results from applying the novel
ensemble-based sparsification technique (cf. Chapter 3).

In Chapter 6, we introduce a novel framework that combines the well-established concept of
dynamic programming (DP) with the form of sparsification introduced in [WZZU07]. We
integrate our novel sparsification operator into the algebraic dynamic programming (ADP)
framework [GMS04] – a general framework for defining DP algorithms in a simple and formally
precise way. Furthermore, we demonstrate on prominent examples how to easily incorporate
sparsification criteria into ADP programs.

CHAPTER 2

Fundamental Concepts

In this chapter, the theoretical foundation is provided that is required for the understanding
of the novel approaches discussed in this thesis. A formal definition of RNA structure followed
by a description of the main algorithms for RNA structure prediction is given. Furthermore, a
definition of sequence and sequence-structure alignment and an overview of existent methods
for the computation of sequence-structure alignments is provided.

2.1 RNA structure

A ribonucleic acid (RNA) molecule is a sequence of nucleotides that are linked via phosphodi-
ester bonds. These sugar-phosphate bonds constitute the backbone of the RNA. Nucleotides
are built from a ribose sugar linked to a base and a phosphate group. The four bases found in
nature are adenine (A), cytosine (C), guanine (G) and uracil (U). Just like in deoxyribonucleic
acid (DNA) [WC53], specific bases in the RNA molecule can form hydrogen bonds to create
base pairs. The Watson-Crick standard base pairs are G-C and A-U, where G pairs with C
and A with U, respectively. Other non-standard base pairs (termed wobble base pairs) can be
formed, including the common G-U base pair [Cri66]. Base pairs form between bases of the
same RNA and allow manifold conformations of the molecule. RNA structure can be classified
in three different categories: the primary structure is the sequence of nucleotides, the secondary
structure is defined by the base pairs within the molecule and the tertiary structure considers
the actual atom locations in three-dimensional space.

2.1.1 Primary structure

The primary structure or sequence A of an RNA molecule is a string over the alphabet
{A,C,G,U}. The base at the i-th position of A is denoted by Ai, the substring from posi-

8 Chapter 2: Fundamental Concepts

tion i to j by Ai..j , which is called subsequence in this context. The length of the sequence is
denoted by |A|. If not stated otherwise, |A| = n holds.

2.1.2 Secondary structure

The secondary structure of an RNA is defined by the set of base pairs, with the constraint
that each sequence position can be involved in at most one base pair.

Definition 2.1 (Secondary structure, base pair)
A secondary structure R of sequence A is defined by R ⊆ {(i, j)|1 ≤ i < j ≤ |A|} such that for
all (i, j), (i′, j′) ∈ R: (i = i′ ⇔ j = j′) and i 6= j′. The tuples (i, j) are called base pairs.

Some more necessary definitions and important terms related to RNA secondary structure will
be given in the following. A position i of A is paired with respect to R if it is part of a base
pair, i.e. ∃(i, j) ∈ R or ∃(j, i) ∈ R. Otherwise, position i of A is unpaired. The subsequence
Ai..j is unpaired if k is unpaired for all k ∈ [i..j] where [i..j] denotes the integer interval from
i to j. The span of a base pair (i, j) is j − i + 1. Position i of a base pair (i, j) is called the
left end and position j the right end.

Note that Definition 2.1 does not require that (i, j) is a Watson-Crick or G-U base pair and
allows in general rare non-standard base pairs. In most applications, however, the base pairs
are restricted to A-U, G-C and G-U. The nested or non-crossing property in Definition 2.2 can
be used to classify RNA secondary structures.

Definition 2.2 (Nested)
A secondary structure R of an RNA sequence A is nested or non-crossing if there are no base
pairs (i, j), (i′, j′) ∈ R that are crossing, i.e. with i < i′ < j < j′ or i′ < i < j′ < j.

Secondary structures that do not satisfy the condition in Definition 2.2 are called crossing.
The shape that is formed by crossing base pairs is called a pseudoknot. From a computational
point of view, nested RNA secondary structures are much easier to handle as they can be
decomposed into five basic secondary structure elements: the hairpin, stacking, bulge, internal
and multi-branched loop (see Definition 2.3).

Definition 2.3 (Basic secondary structure elements)
All elements are defined for an RNA sequence A with associated nested secondary structure
R.

1. A hairpin loop is formed if a base pair (i, j) encloses an unpaired subsequence, i.e. if
Ai+1..j−1 is unpaired and (i, j) ∈ R.

2. A stacking loop is formed if two consecutive base pairs occur, i.e. if (i, j) ∈ R and the
interior base pair (i+ 1, j − 1) ∈ R.

2.1. RNA structure 9

3. A bulge loop is formed if either the right or left ends of two base pairs are consecutive,
i.e. if (i, j) ∈ R and the interior base pair (i′, j′) ∈ R with either i′ = i+ 1 or j′ = j − 1.

4. An internal or interior loop is formed if the subsequences between the left ends and right
ends of two base pairs are unpaired and have at least length two, i.e. if (i, j) ∈ R and
the interior base pair (i′, j′) ∈ R with i′ > i + 1 and j′ < j − 1 and Ai..i′ and Aj′..j are
unpaired.

5. A multi-branched loop or multiloop is formed by three or more base pairs. It is closed by
base pair (i, j) and has additional interior base pairs (i1, j1) . . . (in, jn) with n > 1, i < i1,
jn < j, Ai..i1 and Ajn..j are unpaired, and for all l ∈ [1..n − 1] : jl < il+1 and Ajl..il+1 is
unpaired.

Base pair (i, j) is called the closing base pair and the loop is closed by (i, j). A k-loop is a
loop with k base pairs, i.e. the closing base pair plus k− 1 interior base pairs. Thus, a hairpin
loop is a 1-loop, a stacking, bulge or internal loop is a 2-loop, and a multiloop is a k-loop with
k > 2. Consecutive stacking loops form a stem.

A visualization of the basic RNA secondary structure elements in a nested structure is given
in Figure 2.1a. The hairpin loop, the simplest element, is shown in orange. A hairpin loop is a
1-loop as it has one closing and no interior base pair. In this example, base pair (45, 50) closes
the hairpin loop. Stacking, bulge and internal loops (shown in light blue, pink and green,
respectively) are all 2-loops as they have one closing and one interior base pair. They only
differ in the location and number of unpaired bases within the loop: In the stacking, bulge
and internal loop, there are – in between the left and right ends of the two base pairs that
form the loop – no unpaired bases, unpaired bases only for one of the two, and unpaired bases
for both, respectively. In the example provided in Figure 2.1, base pairs (2, 61), (10, 20) and
(27, 38) close a stacking, bulge and internal loop, respectively. The corresponding interior base
pairs are (3, 60), (11, 18) and (29, 36). The multiloop is the only structural element where the
number of interior base pairs is not fixed. The multiloop is thus in general a k-loop with k > 2.
The multiloop shown in dark blue is a 4-loop as it has the closing base pair (5, 58) and in
addition the three interior base pairs (8, 22), (25, 40) and (42, 53).

A simpler representation of a nested RNA secondary structure is the dot-bracket notation.

Definition 2.4 (Dot-bracket notation)
The dot-bracket notation is a string of characters ’.’, ’(’ and ’)’ and contains information for
each position in the RNA sequence A. If a position in A is unpaired, the position in the
dot-bracket notation stores a ’.’ and if it is the left or right end of a base pair, it stores a ’(’
and ’)’, respectively.

All necessary structure information is encoded in the string and it is straightforward to identify
for a left end of a base pair the corresponding right end, and vice versa. An example dot-bracket

10 Chapter 2: Fundamental Concepts

(a)

A
G

A
C

U

A

A

U

C

U

A

U

A U

U A

G

A

C

C

C

G

U

G

A

U

C
C

G
A

C

G

A U

C G

C G

G U

12

17

13

14

15

16
21

9

28

31

36

26

27 38

39

40

29

30 35

32 33

34

37

25

43

52

44

51

46
47

48
49

45

50

4 59

U C

U G

U

G

A

G

G

G
G

C

G

U

U

C
C

5
6

8

7

42

53

41

54

55

56

58
57

22

23

24

1 62

3

2 61

G

C

G

G

C
18

11

20

10

19

60

(b)
(((((. . (((((. . . .)) .))) . . (((. ((. . . .)) .))) . ((((. . . .)))))))))
1 2 3 4 5 6 7 8 9101 2 3 4 5 6 7 8 9201 2 3 4 5 6 7 8 9301 2 3 4 5 6 7 8 9401 2 3 4 5 6 7 8 9501 2 3 4 5 6 7 8 9601 2

Figure 2.1: Different visualizations of secondary structure elements. The hairpin,
stacking, bulge, internal and multi loop are highlighted in orange, light blue, pink,
green and dark blue. (a) 2D structure representation and (b) dot-bracket notation
with annotated structure elements.

2.1. RNA structure 11

notation is given in Figure 2.1b, which is additionally annotated with the secondary structure
elements from Figure 2.1a.

A nested RNA secondary structure can be represented by a tree as each base pair has a unique
parent.

Definition 2.5 (Parent, loop positions)
The terms are defined for an RNA sequence A with associated nested secondary structure R. A
pseudo base pair ψA := (0, |A|+ 1), which covers the whole sequence, is introduced to simplify
notation.

a) The parent of position k in R, parentR(k), is the base pair (i, j) ∈ R∪ψA with i < k < j

such that there is no (i′, j′) ∈ R with i < i′ < k < j′ < j. Analogously, the parent of a
base pair (i, j) ∈ R, parentR(i, j), is the parent of i (which is also the parent of j). A
position i in A or a base pair (i, j) ∈ R is external iff parentR(i) = ψA.1 Otherwise it is
called internal.

b) All unpaired positions and base pairs that have the same parent base pair are denoted
by loopR(i, j) = {k | (i, j) = parentR(k)}∪{(i′, j′) | (i, j) = parentR(i′, j′)}. If (i, j) /∈ R,
loopR(i, j) is empty. The expression loopR(i, j) combines all bases and base pairs that
belong to the same loop closed by (i, j).

In Figure 2.1, position 46 is contained in the hairpin loop (shown in orange) and thus its parent
is the closing base pair of the hairpin loop, i.e. base pair (45, 50). All positions and base pairs
that are part of the bulge loop (shown in pink) are loopR(10, 20) = {19, (11, 18)}. Note that
the closing base pair is not part of the loop it closes. Base pair (1, 62) is the only external base
pair in this example. and thus positions 1 and 62 are both external.

Most RNA molecules fold hierarchically, which means that first secondary structure elements
are developed that serve later as a basis for more complex interactions, e.g. pseudoknots [TB99].
Mostly, these additional interactions do not significantly alter the already formed structure.

2.1.3 Tertiary structure

The tertiary structure of an RNA is given by the precise location of each atom of the molecule
in three-dimensional space. Van der Waals and additional base pair interactions further shape
the tertiary structure. Experimental techniques like X-ray crystallography or nuclear magnetic
resonance (NMR) spectroscopy can be used to determine exact coordinates of the atoms within
the molecule, but they are both time consuming and expensive [SYKB07]. Computational
methods that predict the tertiary structure have to cope with the high structural diversity of
RNA molecules and are thus usually only applicable to small RNAs or instances that have

1Note that we defined the term external in this way to treat the pseudo base pair analogously to every other
base pair in the structure. In an alternative definition, a position i can only be external if it is unpaired.

12 Chapter 2: Fundamental Concepts

a relatively simple structure [LS10, LS11]. One can say that computational RNA tertiary
structure prediction is still at an early stage, but a first step towards more efficient and accurate
approaches would be a deep understanding of RNA secondary structure.

2.2 Algorithms for RNA structure prediction

Throughout this thesis, only nested secondary structures are considered and called structures
from now on. Efficient algorithms for RNA structure prediction have been studied extensively
in the past 40 years. The basic Nussinov algorithm predicts the structure for a given sequence
by maximizing the number of base pairs [NPGK78]. However, the likelihood that a structure
is formed is mainly controlled by the Gibbs free energy, called free energy from now on. It is
computed by E = H − T S, where H is the enthalpy, T the temperature and S the entropy.
In this context, this energy is computed as the difference ∆E of the structure compared with
the unfolded sequence. The Zuker algorithm [ZS81] computes the structure with the minimum
free energy (mfe), which is usually more accurate than maximizing the number of base pairs.
However, computing a single mfe structure might not be the best approach as RNA molecules
can have multiple possible conformations with almost equal energy. Thus, going beyond Zuker’s
algorithm, McCaskill’s algorithm allows to compute the probability that a base pair is present in
the structure of a given sequence by considering a set of structures that are weighted according
to their free energy [McC90]. Note that the valid base pairs are typically restricted to G-C,
A-U and G-U for all structure prediction algorithms.

2.2.1 Nussinov’s algorithm

The Nussinov algorithm [NPGK78] maximizes for an RNA sequence A the number of non-
crossing base pairs. The algorithm applies the principle of dynamic programming and recur-
sively computes the maximum number of base pairs for all subsequences from position i to j
for i < j :

N̂(i, j) = max

N̂(i, j − 1)

max
h with i≤h<j and

(h, j) valid base pair

N̂(i, h− 1) + N̂(h+ 1, j − 1) + 1 (2.1)

The dynamic programming matrix N̂ is initialized with N̂(i, i − 1) = 0, N̂(i, i) = 0 for all i.
In the first recursion case, position j is unpaired and N̂(i, j − 1) is considered without adding
a base pair score. The second case maximizes over all possibilities to introduce a base pair
with fixed right end j and variable position h as a left end. Due to the nested condition, this
splits the problem into two subproblems, namely the part before – N̂(i, h− 1) – and below the
inserted base pair – N̂(h+1, j−1). Furthermore, a base pair score of 1 is added for the inserted

2.2. Algorithms for RNA structure prediction 13

base pair. The subsequences are processed in a way that all necessary smaller subsequences are
already computed when evaluating a subsequence. Since there are O(n) possible split points
h, Nussinov’s algorithm has O(n3) time and O(n2) space complexity. After filling the whole
dynamic programming matrix, the optimal structure can be derived by doing a traceback from
matrix cell (1, n) with Equation 2.1.

2.2.2 Zuker’s algorithm

The structure with the maximal number of base pairs found by Nussinov’s algorithm is not nec-
essarily a stable structure as no thermodynamic data is included in the computation. Adding
more base pairs to the structure does not necessarily increase the stability of the structure.
The Zuker algorithm [ZS81] computes the mfe structure of an RNA sequence by incorporating
experimentally derived free energy contributions for the different loop types [MSZT99, TM10],
see also Definition 2.3. A stacking loop for example has a negative free energy and thus
stabilizes the structure, whereas a large unpaired loop region has a positive free energy and
destabilizes the structure. The original version of Zuker’s algorithm was introduced without
individual energy contributions for multiloops [ZS81]. A variant was introduced in [ZS84],
where multiloop energies are expressed by EM = a + (k − 1)b + uc for a k-multiloop with u

unpaired bases and a, b and c are constants. In this energy model, the energy for a multi-
loop is only dependent on the number of interior base pairs and unpaired bases. Using this
simplified model allows to construct efficient dynamic programming recursions. Note that the
recursions in Equation 2.2 are rephrased in comparison with the original formulation in [ZS84]
to make the recursions more similar to the McCaskill recursions introduced later and to have a
non-ambiguous representation. This means that there is a one-to-one correspondence between
the traceback path within the matrices and the derived structure.

W (i, j) = min

W (i, j − 1)

min
i≤h<j

W (i, h− 1) +W b(h, j)

W b(i, j) = min

EH(i, j)

min
i<i′<j′<j

ESBI(i, j, i′, j′) +W b(i′, j′)

min
i<h<j

Wm(i+ 1, h− 1) +Wm1(h, j − 1) + a

Wm(i, j) = min
i≤h<j

c(h− i) +Wm1(h, j)

Wm(i, h− 1) +Wm1(h, j)

14 Chapter 2: Fundamental Concepts

Wm1(i, j) = min
i<h≤j

W b(i, h) + b+ c(j − h)

EH(i, j) : energy of a hairpin loop (experimentally derived)

ESBI(i, j, i′, j′) : energy of a stacking, bulge or interior loop

(experimentally derived)

a+ (k − 1)b+ uc : energy of a k-multiloop with u unpaired bases (2.2)

The matrices are initialized for all i and for j = i and j = i− 1 with: W (i, j) = 0,W b(i, j) =
Wm(i, j) = Wm1(i, j) = ∞. Matrix W stores the minimum free energy for all subsequences
Ai..j without any restrictions on the structure and is similar to matrix N̂ in Nussinov’s algorithm
where the maximum number of base pairs is stored. As the energy is minimized, the case that
h and j form a base pair needs to be further partitioned in order to assign an energy value
according to loop type. For this reason, matrix W b is introduced, which stores the minimum
free energy for all subsequences Ai..j with the constraint that i and j are paired to each other.
In W b, case one considers a 1-loop (hairpin loop), case two a 2-loop (stacking, bulge or internal
loop) and case three a multiloop (k > 2). For scoring the multiloop correctly, matrix Wm is
introduced, which has the additional requirement that at least one base pair is predicted.
To avoid ambiguity, the split point h in Wm is chosen to always cut off the right-most base
pair. For keeping the complexity low, an auxiliary matrix Wm1 is introduced that stores the
minimum free energy under the constraint that i is paired to some position h ≤ j and Ah..j is
unpaired. In Wm, the part before the split point h can be either unpaired (first case) or there
can be an additional base pair (case two). In both matrices Wm and Wm1, the subsequences
are scored according to the multiloop energy. The constant c is added in matrices Wm and
Wm1 each time an unpaired base is introduced. The constant b is added in matrix Wm1 as a
base pair is inserted. The energy contribution a for closing the multiloop is considered in W b.
Usually, the loop length of 2-loops is restricted to a fixed size (typically 30 bases [LBHZS+11])
to achieve the same complexity bounds as the simpler Nussinov algorithm, i.e. O(n3) time and
O(n2) space complexity.

2.2.3 McCaskill’s algorithm

One main achievement of McCaskill’s algorithm [McC90] is the computation of both structure
and base pair probabilities for a given sequence. In contrast to the simpler Zuker algorithm
that computes a single mfe structure, base pair probabilities provide information about all
possible conformations of an RNA sequence. Each possible structure R of an RNA sequence
A is assigned a probability proportional to its free energy or Boltzmann factor e−µE(R), where
µ = 1

kBT , T is the temperature and kB is a constant. Then, the partition function Z is defined

2.2. Algorithms for RNA structure prediction 15

as the sum of all Boltzmann factors of all possible structures R of sequence A:

Z =
∑
R

e−µE(R) (2.3)

All structures considered by the partition function form the Boltzmann ensemble of sequence
A and the structures within the ensemble are Boltzmann-distributed. The recursions in Equa-
tion 2.2 can be reused with some modifications: the Boltzmann factor replaces the free energy
function and each summation is converted into a multiplication and each minimization into a
summation. This yields the recursions shown in Equation 2.4. The non-ambiguity of the re-
cursion cases is crucial for the accuracy of the result, as otherwise the same structure would be
considered multiple times and the result would be distorted. This non-ambiguity is ensured by
considering the split point h in Qm only if it cuts off the right-most base pair. In comparison,
an ambiguous formulation of Zuker’s algorithm would still yield the correct result as the single
structure with minimum free energy is selected.

Q(i, j) =
∑

Q(i, j − 1)∑
i≤h<j

Q(i, h− 1) ·Qb(h, j)

Qb(i, j) =
∑

e−µEH(i,j)∑
i<i′<j′<j

e−µESBI(i,j,i′,j′) ·Qb(i′, j′)∑
i<h<j

Qm(i+ 1, h− 1) ·Qm1(h, j − 1) · e−µa

Qm(i, j) =
∑
i≤h<j

e
−µc(h−i) ·Qm1(h, j)

Qm(i, h− 1) ·Qm1(h, j)

Qm1(i, j) =
∑
i<h≤j

Qb(i, h) · e−µb · e−µc(j−h)

EH(i, j) : energy of a hairpin loop (experimentally derived)

ESBI(i, j, i′, j′) : energy of a stacking, bulge or interior loop

(experimentally derived)

a+ (k − 1)b+ uc : energy of a k-multiloop with u unpaired bases (2.4)

16 Chapter 2: Fundamental Concepts

(a)

g c c c g g a u a g c u c a g u c g g u a g a g c a u c a g a c u u u u a a u c u g a g g g u c c a g g g u u c a a g u c c c u g u u c g g g c g

g c c c g g a u a g c u c a g u c g g u a g a g c a u c a g a c u u u u a a u c u g a g g g u c c a g g g u u c a a g u c c c u g u u c g g g c gg
c

c
c

g
g

a
u

a
g

c
u

c
a

g
u

c
g

g
u

a
g

a
g

c
a

u
c

a
g

a
c

u
u

u
u

a
a

u
c

u
g

a
g

g
g

u
c

c
a

g
g

g
u

u
c

a
a

g
u

c
c

c
u

g
u

u
c

g
g

g
c

g

g
c

c
c

g
g

a
u

a
g

c
u

c
a

g
u

c
g

g
u

a
g

a
g

c
a

u
c

a
g

a
c

u
u

u
u

a
a

u
c

u
g

a
g

g
g

u
c

c
a

g
g

g
u

u
c

a
a

g
u

c
c

c
u

g
u

u
c

g
g

g
c

g

(b)

g
c
c
c
g
g
aua

gcuc
agu

c
g

g u a
g a g c

a
u c a

g
a
c
u
u
u
u
a
a u

c
u
g
a
g
g
g
u
c

c a g g g
u u

c
a

agu
cccug

u
u
c
g
g
g
c
g

Figure 2.2: Dot plot and secondary structure representation. Both representations are
generated by RNAfold [LBHZS+11]. (a) Visualization of the base pair probabilities
in a dot plot. The base pair probabilities are displayed in the upper right half and
the mfe structure in the lower left half. The area of the squares is proportional to
the base pair probability. All sides of the rectangle are annotated with the RNA
sequence. (b) Corresponding drawing of the mfe structure.

The matrices are initialized for all i and for j = i and j = i − 1 with: Q(i, j) = 1, Qb(i, j) =
Qm(i, j) = Qm1(i, j) = 0. Matrix Q stores the partition function for all subsequences Ai..j .
Matrix Qb contains the partition function for all Ai..j with the constraint that i and j form a
base pair. Analogously to the Zuker algorithm, matrices Qm and Qm1 are used to efficiently
cover the multiloop case with proper scoring (cf. Section 2.2.2). When restricting the length of
2-loops to a fixed size, the partition function can be calculated in O(n3) time and O(n2) space.
In an alternative formulation, the energy calculation of 2-loops – more precisely interior loops
– can be simplified to consider only the number of unpaired bases within the loop and not the
position of the interior base pair [McC90]. This constraint also allows to reduce the runtime to
O(n3) and is less restrictive than having a maximal loop length size. By utilizing the partition
function Z = Q(1, n) of the full sequence, the probability of a structure R of sequence A can be
calculated by Pr [R|A] = e−µE(R)

Z . More importantly, the probability of a base pair (i, j) within
the structure ensemble can be computed by summing up the probabilities of all structures that
include the base pair:

Pr [(i, j)|A] =
∑

R with
(i,j)∈R

Pr [R|A]

2.3. Sequence and sequence-structure alignment 17

Thus, Pr [(i, j)|A] is the probability that a random structure R, drawn from the Boltzmann
ensemble of A, contains the base pair (i, j). The set of all possible base pairs for RNA sequence
A is denoted by PA. The base pair probabilities can be efficiently computed from McCaskill’s
dynamic programming matrices in O(n3) time and O(n2) space starting from long base pairs
and recursing to shorter ones [McC90]. The base pair probabilities are much more expressive
than the mfe structure as they contain information of the whole structure ensemble. A widely
used tool for predicting RNA structures is RNAfold [BBB+08] that is part of the ViennaRNA
Package [HFS+94, LBHZS+11]. It computes the mfe structure based on Zuker’s algorithm and
the base pair probabilities based on McCaskill’s algorithm. The base pair probabilities can
be visualized in a dot plot where alternative structures can be easily detected and compared
against each other. An example dot plot is given in Figure 2.2a with the mfe structure shown
in the lower left half. A different visualization of the mfe structure is given in Figure 2.2b. The
cloverleaf structure is characteristic of tRNA sequences. Suboptimal structures can be inferred
from the base pair probabilities shown in the upper right half in Figure 2.2a. The area of the
squares is proportional to the base pair probability. Anti-diagonals in the dot plot correspond
to stems in the structure. In a different suboptimal configuration, another stem can be added
to the left stem by introducing a bulge loop while shortening the upper stem.

2.3 Sequence and sequence-structure alignment

Similarities between two sequences can be efficiently identified through the computation of an
alignment where evolutionary relationships can be revealed. The simplest form is the sequence
alignment where only sequence information is utilized. In a sequence-structure alignment,
structural features are additionally taken into account.

Throughout this thesis, in addition to sequence A of length n with structure R, we use sequence
B of length |B| = m. For discussing the computational complexity of the presented algorithms,
we assume w.l.o.g. m ≤ n. A structure of B is denoted by T .

2.3.1 Sequence alignment

Homologous sequences that are derived from a common ancestor are usually pretty similar and
a high alignment score is obtained. During evolution, a mutation of a nucleotide leads to a
substitution of a single character in an RNA sequence. Furthermore, insertions of nucleotides
into the sequence or deletions of nucleotides from the sequence might take place. Generally,
the more time has elapsed since their common origin, the more dissimilar the sequences are.
This is due to a larger number of edit operations (mutations, insertions and deletions) that can
occur during the longer time period. To measure the relatedness of two sequences, the cheapest
way to transform the first sequence into the second one is calculated. For that purpose, specific

18 Chapter 2: Fundamental Concepts

costs are associated with each edit operation. A formal description of sequence alignment is
given in Definition 2.6.

Definition 2.6 (Sequence alignment)
A sequence alignment A of sequences A and B contains edges between one character of each
sequence, i.e. A = {(i, k)|i ∈ [1..n], j ∈ [1..m]}. Alignment edges do not cross, i.e. for all
(i, k), (i′, k′) ∈ A : (i < i′ =⇒ k < k′ and i = i′ ⇐⇒ k = k′). A position i in sequence A is
deleted by A iff @k with (i, k) ∈ A. Analogously, a position k in sequence B is inserted by A
iff @i with (i, k) ∈ A. Positions that are neither deleted nor inserted by A are covered by A.
Two positions i and k are matched to each other by A and form a base match iff (i, k) ∈ A. A
gap in A is a maximal stretch of adjacent deleted or inserted positions.

DP provides an efficient way to determine the optimum over the exponentially many alignments
between two sequences, as the alignment of the complete sequences can be constructed from
optimal alignments of subsequences. The first description of an algorithm for sequence align-
ment with cubic runtime was given in [NW70] that allowed arbitrary gap costs. Variants with
quadratic runtime were introduced in [San72] where no gap costs are considered and in [Sel74]
with more general gap costs. In principle, one can either compute the alignment with maximal
similarity or minimal distance. Here, only the first variant is shown for the simple linear gap
cost scheme. In this case, an alignment is scored by score(A) =

∑
(i,k)∈A σ(i, k)+nAindelγ, where

σ(i, k) denotes the similarity between Ai and Bk, nAindel the number of gap positions in the
alignment and γ (γ ≤ 0) is the fixed cost for each position in the gap. The recursion to compute
the sequence alignment with maximal score is given in Equation 2.5. Matrix K(i, k) stores
the maximal similarity of subsequences A1..i and B1..k. Three cases need to be considered for
computing K(i, k): i and k are matched and thus (i, k) ∈ A, k is inserted (not matched to a
position in A) or i is deleted (not matched to a position in B). With this model, the sequence
alignment can be computed in O(n2) time and space [Sel74].

K(i, k) = max

K(i− 1, k − 1) + σ(i, k) (match)

K(i, k − 1) + γ (insertion)

K(i− 1, k) + γ (deletion)

(2.5)

Favoring longer stretches of insertions and deletions rather than single distributed insertions
and deletions is biologically more reasonable. To model this, affine gap costs are introduced
where a fixed gap opening cost β is added in addition to the fixed gap cost γ for each position
in the gap, in this context called gap extension cost. A sequence alignment algorithm with
affine gap costs was introduced in [Got82].

This procedure can be extended to compute a multiple sequence alignment for more than two
sequences – a problem that is known to be NP-hard [Jus01]. The progressive alignment strategy

2.3. Sequence and sequence-structure alignment 19

is the most widely used heuristic to efficiently construct a multiple sequence alignment [EB06].
A distance matrix is computed by pairwise comparison of all pairs of sequences, for example by
pairwise alignment. During progressive alignment, the sequences are added one at a time to the
already constructed subalignment. A guide tree, which is constructed from the distance matrix,
controls in which order the sequences are added. In this scheme, it is crucial for the alignment
quality that the most similar sequences are aligned first. A subsequent realignment step further
refines the multiple alignment. Implementations like ClustalW [THG94], T-Coffee [NHH00],
MAFFT [KMKM02] and MUSCLE [Edg04] differ in the techniques they use for the single steps
and which additional methods they apply to improve the accuracy of the multiple alignment
but all employ the progressive strategy.

2.3.2 Sequence-structure alignment

For non-coding RNAs (ncRNAs), sequence information alone is not sufficient to guide the
alignment as the structure is usually more conserved than the sequence [TSH+06]. So even if
two sequences do not have a high sequence conservation, i.e. they do not share long stretches
of the same nucleotides, they can still be related and form the same structure. In this case,
the structure is conserved by compensatory mutations where a mutation in one end of a base
pair is compensated by a mutation in the other end such that the base pair is preserved. A
sequence-structure alignment computes the alignment that maximizes a score that incorporates
both sequence and structure information.

Definition 2.7 (Sequence-structure alignment)
A sequence-structure alignment is the triple (A, R, T), whereA is a sequence alignment (cf. Def-
inition 2.6) and R and T are structures for sequences A and B, respectively. A base pair
(i, j) ∈ R [(i, j) ∈ T] is deleted [inserted] by (A, R, T) iff positions i and j are deleted [inserted].
A base pair (i, j) ∈ R [(i, j) ∈ T] is covered by (A, R, T) iff there is a base pair (i′, j′) ∈ T

[(i′, j′) ∈ R], such that (i, i′), (j, j′) ∈ A. Two base pairs (i, j) ∈ R and (i′, j′) ∈ T are matched
to each other by (A, R, T) and form a base pair match iff A matches their respective left and
right ends to each other.

Figure 2.3 displays a possible representation of a sequence-structure alignment. The plot is
produced by RNAalifold [HFS02, BHW+08] that is implemented in the ViennaRNA Pack-
age [HFS+94, LBHZS+11]. The alignment is annotated with the consensus structure that can
be formed by most of the sequences and a color code that illustrates the extend of compen-
satory mutations for each base pair in the consensus structure. Furthermore, the sequence
conservation is shown by gray bars for all alignment columns.

20 Chapter 2: Fundamental Concepts

(((((((..((((...........)))).(((((.......)))))..............
L36887_1_4319-4391 GGGGUUAUAGUUAAAUUUGGU--AGAACGACUGCGUUGCAUGCAUUUA------------ 46
AF008220_1_6888-6961 GGGCCUGUAGCUCAGCU-GGUU-AGAGCGCACGCCUGAUAAGCGUGAG------------ 46
X61698_1_1470-1542 ACCUACUUAACUCAGU--GGUU-AGAGUACUGCUUUCAUACGGCGGGA------------ 45
X15118_1_1470-1542 GUCAGGAUAGCUCAGUU-GGU--AGAGCAGAGGAUUGAAAAUCCUCGU------------ 45
X03016_1_3583-3669 GGAGGCGUGGCAGAGU--GGUUUAAUGCACCGGUCUUGAAAACCGGC-AGUCGCUCCGGC 57

.........10........20........30........40........50.........

.......(((((.......)))))))))))).
L36887_1_4319-4391 ----A-UAUGAGUUCAAGUCUCAUUAACUCCA 73
AF008220_1_6888-6961 ----GUCGAUGGUUCGAGUCCAUUCAGGCCCA 74
X61698_1_1470-1542 ----GGCAUUGGUUCAAAUCCAAUAGUAGGUA 73
X15118_1_1470-1542 ----GUCACCAGUUCAAAUCUGGUUCCUGGCA 73
X03016_1_3583-3669 GACU--CAUAGGUUCAAAUCCUAUCGCCUCCG 87

.........70........80........90.

Figure 2.3: Example sequence-structure alignment. The alignment is produced for se-
quences from the tRNA family by the tool RNAalifold [LBHZS+11]. The consensus
structure displayed at the top shows the characteristic cloverleaf structure of tRNA
sequences. The sequence conservation of the different alignment columns is indi-
cated by gray bars. The colors encode the number of types of base pairs that occur
within one alignment column. Between the two red alignment columns, no com-
pensatory mutations occur as all sequences consistently form a G−C base pair. On
the other hand, 4 different base pairs occur in the turquoise alignment columns.

2.4 Overview of sequence-structure alignment methods

All sequence-structure alignment approaches can be categorized into the following three main
groups: 1) structure information is inferred from a precomputed sequence alignment, 2) an
alignment is computed based on the precomputed folded structures and 3) the sequences are
simultaneously aligned and folded. These three variants are illustrated in Figure 2.4. In the
following, a basic description of the different approaches including an overview of the available
tools is given. A previous comparison was conducted in [GG04].

2.4.1 First align then fold

The first strategy applies a two step approach: first the input sequences are aligned using a
sequence alignment tool, then a common secondary structure is derived from the (multiple)
alignment. This consensus structure includes all base pairs shared by the majority of the
sequences. Structures for each input sequence can be inferred by using the consensus structure
as a constraint for folding (e.g. by RNAfold -C). In the following, a listing of the most common
tools that apply the first strategy is given.

• RNAalifold [HFS02] is an extension of Zuker’s algorithm [ZS81] that computes the mini-
mum free energy structure for a given sequence alignment by averaging the energy contri-
butions of all sequences in the alignment. Furthermore, it includes a covariation score to
consider evolutionary relationships. Compensatory mutations in two alignment columns

2.4. Overview of sequence-structure alignment methods 21

RNA structures

C
G
A
U
C

U
A U

G
A
U
C
G
A C

G
G
G
C
C

A
A U

G
G
C

A
C
G
A

seqA seqB

Sequence alignment

seqA CG-AUCUAUGAU-CGA
seqB CGGGCCAAUGGCACGA

RNA sequences

seqA CGAUCUAUGAUCGA
seqB CGGGCCAAUGGCACGA

Sequence-structure
alignment

((.(((...))).)).
seqA CG-AUCUAUGAU-CGA
seqB CGGGCCAAUGGCACGA

Align
sequences

Fold
sequences

Fold
alignment

Align
structures

Simultaneous
alignment

and
folding

Figure 2.4: Three variants for computing a sequence-structure alignment. The first
strategy first aligns the sequences and then folds the (multiple) alignment (left).
The second approach first folds the sequences and then aligns the structures (right).
The third variant folds and aligns the sequences simultaneously (middle). Figure
adapted from [GG04], published under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0).

indicate the formation of a base pair between these positions. Thus, compensatory mu-
tations are rewarded a base pair conservation score, whereas a penalty is considered for
each sequence that cannot realize the base pair. The latter ensures that the consensus
structure can be formed in most of the sequences. Both measures contribute to the co-
variation score. An advanced version of RNAalifold enhances the scoring and improves
the handling of gaps [BHW+08].

• Pfold [KH99] models RNA secondary structure by a stochastic context free grammar
(SCFG), where each production rule is assigned a probability. The SCFG is derived
from a training set of correctly folded RNAs. Furthermore, the model includes mutation
rates for single bases and base pairs. The evolutionary relationship of the input sequences
is incorporated by the use of a phylogenetic tree that is computed by maximum likeli-
hood estimation. The most likely secondary structure for a given sequence alignment is
identified by maximum a posteriori estimation. A more accurate and faster version of
Pfold is described in [KH03].

• ILM [RSZ04] extends the previous approaches by inferring pseudoknotted structures.
Similar to RNAalifold, it applies a score that combines thermodynamic and covariation
information.

http://creativecommons.org/licenses/by/2.0

22 Chapter 2: Fundamental Concepts

All approaches that fold a precomputed (multiple) sequence alignment rely on the quality of
that input alignment. Since sequence conservation is low in many RNA families, an alignment
that is based on sequence information alone might not be accurate. Inferring covariation signals
from severely misaligned sequences is not meaningful. Thus, for sequences with low sequence
conservation, the consensus structure prediction often fails.

2.4.2 First fold then align

The second strategy reverses the order of the previous method: the sequences are first folded
and then the resulting structures are aligned. In [Tai79], the concept of edit operations was
generalized to trees. A tree alignment model was proposed in [JWZ95] as a similarity measure
between two trees. In the following, a listing of the most common tools for the second strategy
is given.

• RNAforester [HTGK03] extends the tree alignment algorithm in [JWZ95] with the ability
to compute local forest alignments in the proposed forest representation of RNA struc-
tures. Thereby, local structural features common to given structures can be identified.
A progressive profile approach for the extension of RNAforester for multiple structure
alignment was introduced in [HVG04].

• MARNA [SB05] uses a pairwise alignment algorithm [JLMZ02] that minimizes the edit
distance between two sequences that are annotated with a secondary structure. The
model includes edit operations on bases and base pairs. Based on the pairwise alignments
between all sequence pairs, T-Coffee’s consistency transformation [NHH00] is conducted
to favor those alignment edges that can be realized consistently between many of the
sequences. The progressive alignment strategy of T-Coffee is used to construct a multiple
alignment. Although technically only a sequence alignment is produced, it is guided by
sequence and structure information that determines the weights of the alignment edges.
A consensus structure is derived by measuring the correlation between the alignment
columns.

Even though the presented methods for the second strategy are more robust towards low se-
quence conservation, using a single fixed structure for each sequence might pose problems. An
RNA sequence might have several structures with a free energy close to the mfe structure. In
such a case, it is not guaranteed that the approaches that first fix the structure of each input
sequence and then align the structures find a proper consensus structure. Although MARNA
can include information of several suboptimal structures, the computational complexity in-
creases with the square of the number of considered structures. Thus, in practice, it is only
feasible to consider a small number of suboptimal structures, which might not suffice for an
accurate result.

2.4. Overview of sequence-structure alignment methods 23

2.4.3 Simultaneous alignment and folding

It was observed for the first two strategies that structure and alignment computation cannot
be separated without potentially affecting the prediction quality. This is why a third variant
performs the alignment and structure prediction simultaneously. Sankoff’s algorithm [San85]
is considered the gold standard even though it was proposed 30 years ago and has a high
O(n6) time and O(n4) space complexity for the pairwise case. In [San85], it was discussed
as a multiple sequence-structure alignment pipeline with extreme O(n3N) time and O(n2N)
space complexity, where N denotes the number of sequences. Thus, various attempts have
been made to obtain efficient implementations of restricted variants of the original Sankoff
algorithm, which will be described in the following.

FoldAlign [GHS97] is designed to construct multiple local alignments by applying the pairwise
progressive alignment strategy from ClustalW [THG94] while many suboptimal intermediate
solutions are kept to increase the probability that the optimal solution is found. To reduce the
computational complexity, only the number and not the energy of base pairs contribute to the
structural score and multiloops cannot be predicted. The goal is to identify the “most signifi-
cant core structure” [GHS97], which can be refined later by existent methods. This approach
reduces Sankoff’s time complexity to O(N4n4). The approach was completely redesigned over
the years to also include multiloops and a loop-based energy model [HLSG05] and efficient
pruning of the dynamic programming matrix [HTG07].

Dynalign [MT02] is a pairwise sequence-structure alignment algorithm that restricts the max-
imal difference of positions between aligned nucleotides to a fixed parameter M and scores
the sequence contribution only implicitly through free energy parameters. The time and space
complexity is thereby reduced to O(M3n3) and O(M2n2), respectively.

A prominent line of research is based on constraints derived from sequence alignments, termed
sequence alignment-based or sequence-based constraints. The main idea is to restrict the number
of matrix cells through the identification of probable regions in the dynamic programming
matrix based on pure sequence alignment. Only those cells that pass a fixed threshold are
considered in the sequence-structure alignment. Stemloc [Hol05] provides a general model
how to incorporate constraints into algorithms for pairwise SCFGs (pair SCFGs), which are
utilized for evolutionary analysis. A pair SCFG extends the normal SCFG by emitting pairs
of characters. Suboptimal alignments and foldings can be used as constraints to determine
the “alignment and fold envelope” [Hol05]. These envelopes determine those parts of the
DP matrix that are considered in the subsequent sequence-structure alignment computation
based on a pair SCFG. Consan [DE06] also uses a pair SCFG but identifies confidently aligned
position pairs that can guide the alignment process. These “pins” [DE06] are characterized
by high posterior probabilities that are derived from pure sequence alignment. This speeds
up the computation as only a reduced number of index combinations have to be considered in

24 Chapter 2: Fundamental Concepts

a subsequent sequence-structure alignment. A revised version of Dynalign [HSM07] integrates
probabilistic alignment constraints similar to those introduced in [Hol05, DE06]. Here, a
hidden markov model (HMM) is utilized as a stochastic model to represent the sequence
alignment and to derive “posterior co-incidence probabilities” [HSM07] for nucleotide pairs.
For instances with low sequence conservation, however, all approaches that utilize sequence-
based constraints have to cope with the fact that sequence information alone is not sufficient
for sequence conservation under 60% [GWW05]. Either probable regions identified from pure
sequence alignment might not be reliable or only small or no regions at all are discarded
in the dynamic programming matrices. In the first case, the subsequent sequence-structure
alignment might not be correctly predicted whereas the latter case would nullify the runtime
advantage of those methods. In general, the runtime of the above mentioned tools that utilize
sequence-alignment based constraints is between O(n3) and O(n6) for pairwise alignment.

Due to these shortcomings, a completely different route has been proposed with the tool
PMcomp [HBS04]. To speed up the original Sankoff algorithm, the original free energy contri-
bution in the loop-based energy model [MSZT99] is approximated by a product of base pair
probabilities that can be efficiently precomputed by McCaskill’s algorithm. This lightweight or
base pair based energy model is further simplified by requiring that all predicted base pairs are
covered by the sequence-structure alignment. The unconstrained version has O(n6) time and
O(n4) space complexity, which matches the original Sankoff algorithm for the pairwise case.
Restricted versions that limit the difference in size of matched base pairs reduce the runtime
up to O(n4). The multiple alignment version PMmulti applies a progressive strategy and needs
O(N2n6) time for the unconstrained version.

LocARNA [WRH+07] is built upon PMcomp’s simplified lightweight energy model, but further
speeds up the computation by applying a fixed base pair filter. Base pairs with low probability
within the structure ensemble are unlikely to contribute to an optimal solution and can be safely
discarded without sacrificing the quality of the alignment. Thereby, only a linear number of
base pairs need to be considered for each sequence, which reduces the runtime to O(n4) and
the space complexity to O(n2) for the pairwise case. LocARNA’s multiple alignment pipeline
requires O(N2n4) time. FoldAlignM [THG07] is a PMcomp variant that adds the ability to
cluster the RNA sequences.

RAF [DFB08] is a hybrid that combines the lightweight energy model with sequence-based con-
straints. RAF inherits PMcomp’s simplified structure prediction and applies fixed cutoffs to the
base pair probabilities calculated by CONTRAfold [DWB06] and to the posterior probabilities
of aligned positions computed by CONTRAlign [DGB06]. The combination of both approaches
significantly reduces the runtime to O(n2) for pairwise alignment but also introduces the dis-
advantages of sequence-based constraints described above. RAF also includes a pipeline for
computing multiple progressive alignments.

Recently, sparsification was also applied to the simultaneous alignment and folding prob-

2.4. Overview of sequence-structure alignment methods 25

lem [ZUGVWS08, ZUGVWS10], which reduces the time complexity over Sankoff’s algorithm.
However, the high time complexity still limits the practicability of this single non-heuristic
optimization strategy.

All these considerations show that a lot of progress was made since Sankoff’s algorithm was
proposed in 1985. Nevertheless, all previous approaches are either too slow for large scale
analyses or compromise the alignment quality for instances with low sequence conservation.
But exactly these ‘hard’ alignment instances are ultimately decisive for assessing the quality of
a structure alignment method. For this reason, novel fast approaches are required that perform
well independent of the sequence conservation of the input sequences.

CHAPTER 3

Framework for ensemble-based sparsification

In this chapter, we introduce a novel form of sparsification, the ensemble-based sparsification.
It is key to optimizing algorithms for the identification of sequence-structure motifs (cf. Chap-
ter 4) and simultaneous alignment and folding (cf. Chapter 5). The sparsification technique
introduced in [WZZU07] for RNA structure prediction is based on identifying parts of the com-
putation that can be discarded without sacrificing optimality. Ensemble-based sparsification
on the other hand determines those parts that are unlikely to contribute to an optimal solution
and thus can reduce the time complexity much more. This chapter is based on [OMH+14].

The probabilities that a base or a base pair is contained in a loop (cf. Definition 3.1) are the
basis for the ensemble-based sparsification. The main idea is to apply different filter steps to the
structure ensemble. In the first filter step all base pairs are filtered by a fixed threshold. This
was first proposed for the tool LocARNA [WRH+07]. We extend this technique by a second
filter step, where all bases and base pairs within a loop are filtered based on the joint in-loop
probabilities by applying two additional thresholds. Only those bases and base pairs that
survived the filter can be – within the respective loop – part of the final result. Importantly,
all these probabilities are efficiently precomputed independently for each sequence. Hence,
e.g. in clustering scenarios, where all pairs from a set of sequences need to be matched, this
preprocessing needs to be done only once for each sequence and not for all quadratically many
pairs. We describe the procedure for sequence A of length n.

Definition 3.1 (Joint in-loop probabilities)
We define joint occurrence probabilities of elements in loops of structures in the Boltzmann
ensemble of an RNA sequence A.

• Pr [k ∈ loop(i, j)|A] denotes for i < k < j the joint probability that a structure of A
contains the base pair (i, j) and the unpaired base k such that (i, j) is the parent of k.

28 Chapter 3: Framework for ensemble-based sparsification

• Pr [(i′, j′)∈ loop(i, j)|A] denotes for i < i′ < j′ < j the joint probability that a structure
of A contains the base pairs (i, j) and (i′, j′) and that (i, j) is the parent of (i′, j′).

To simplify the notation, the expressions loop(i, j) in Definition 3.1 resemble loopR(i, j) from
Definition 2.5b) – notationally omitting the structures R in the Boltzmann ensemble of A.
Based on these in-loop probabilities, we reduce the number of positions in the dynamic pro-
gramming matrices that need to be filled.

Furthermore, we define external probabilities (see Definition 3.1), i.e. the probabilities that an
unpaired base k or a base pair (i, j) is external and thus in the loop closed by the pseudo base
pair ψA = (0, n + 1). As the pseudo base pair is present in each structure, we can utilize the
notation of the joint in-loop probabilities. The external probabilities can be easily computed
from the McCaskill matrices (cf. Section 2.2.3) as no base pair spans position k or base pair
(i, j) and thus the structure can be partitioned in an arbitrary part before (Q(1, k − 1) and
Q(1, i− 1)) and after (Q(k + 1, n) and Q(j + 1, n)) the base and base pair.

Pr [k∈ loop(0, n+ 1)|A] = Q(1, k − 1)Q(k + 1, n)
Q(1, n)

Pr [(i, j)∈ loop(0, n+ 1)|A] = Q(1, i− 1)Qb(i, j)Q(j + 1, n)
Q(1, n) (3.1)

In Section 3.1 we describe how the base pairs per sequence can be reduced to a linear number.
Details of how the joint in-loop probabilities from Definition 3.1 are computed can be found
in Section 3.2 and 3.3. A complexity analysis is given in Section 3.4. In Section 3.5 we show
how to utilize the joint in-loop probabilities to enable ensemble-based sparsification.

3.1 Restricting the number of base pairs

By considering only probable base pairs from both structure ensembles, the overall number
of base pairs is reduced. This is achieved by introducing a fixed threshold θ1 with which all
base pairs are filtered, i.e. all base pairs (i, j) with Pr [(i, j)|A] ≥ θ1 are kept. In this way,
only a linear number of base pairs remain (the argument has been given before in the context
of LocARNA [WRH+07]). Furthermore, the threshold can be chosen to be suitable for the
particular application.

Proposition 3.1 (Linear number of base pairs) For a fixed θ1 > 0, there are only O(n) base
pairs with Pr [(i, j)|A] ≥ θ1.

Proof. Because each structure of A has at most one base pair with right end j, it holds∑
i Pr [(i, j)|A] ≤ 1. With this property, we can infer a bound on the number of base pairs.

3.2. Computation of unpaired probabilities in loops 29

Figure 3.1: Computation of unpaired probabilities in loops. The recursions cover the
cases that position k occurs unpaired inside a hairpin loop (H), 2-loop (I) or mul-
tiloop (M) with closing base pair (i, j). Every unpaired position in the multiloop
is scored with e−µc. Figure adapted from [OMH+14].

There exist at most 1
θ1
∈ O(1) base pairs with Pr [(i, j)|A] ≥ θ1 for a fixed position j. Thus,

in total, there are at most O(n) base pairs (i, j) with Pr [(i, j)|A] ≥ θ1.

3.2 Computation of unpaired probabilities in loops

The unpaired probabilities in loops, i.e. Pr [k ∈ loop(i, j)|A], can be computed by extending
McCaskill’s algorithm. For this purpose, we utilize the matrices Q(i, j), Qb(i, j), Qm(i, j) and
Qm1(i, j) and energy terms as defined in Section 2.2.3. We extend the original set of matrices
by introducing the additional matrix Qm2.

Qm2(i, j) =
∑

i<k<j−1
Qm(i, k)Qm1(k + 1, j)

It stores the partition function for parts of a multiloop with at least two interior base pairs
for all subsequences Ai..j . We utilize the fact that matrix Qm1 always cuts at the left end
of the right-most base pair to ensure that the recursions remain non-ambiguous. The joint
probability that base pair (i, j) is contained in a structure and the unpaired base k occurs in
the loop closed by (i, j), i.e. Pr [k∈ loop(i, j)|A], can be computed by Equations 3.2a–f. Please
compare the formulas with the visualization in Figure 3.1. The joint probability is split into the
probability that base pair (i, j) occurs in the structure ensemble and the conditional probability
that k ∈ loop(i, j) under the condition that base pair (i, j) is part of the structure for sequence
A, see Equation 3.2a. The conditional probability can be expressed by the partition function of
all structures where k is unpaired in the loop closed by (i, j) divided by the partition function
of all structures where i and j form a base pair. The numerator can be further partitioned
according to the loop type (Equation 3.2b), i.e. k is unpaired inside a hairpin loop (H), 2-loop
(I), or multiloop (M). Position k can be unpaired before or after the interior base pair of

30 Chapter 3: Framework for ensemble-based sparsification

0.40.6

Figure 3.2: Joint vs. conditional probability. Illustrative example for two structures that
differ only in one base pair (shown in blue and red) with a respective probability
of 0.6 and 0.4. Note that the blue and red base pair cannot be part of the same
structure as the base pairs cross each other. Furthermore, there are no base pairs
in the loop closed by (i, j) and (i′, j′). This example illustrates that all joint
probabilities of some parent base pair (blue and red base pair) and unpaired position
k such that k is in the loop closed by the base pair sum up to at most 1 (here
0.6 + 0.4 = 1), whereas the conditional probabilities do not necessarily fulfill this
property (here 1 + 1 = 2).

a 2-loop (Equation 3.2d) or, in the multiloop case, unpaired before, after (Equation 3.2e) or
in between (Equation 3.2f) the interior base pairs of a multiloop. By utilizing matrix Qm2,
it can be assured that only proper multiloops that have at least two interior base pairs are
considered. Precomputing the matrix allows to access a value of Qm2 in constant time. Note
that the energy of a k-multiloop with u unpaired bases is calculated by a+ (k − 1)b+ uc.

Pr [k∈ loop(i, j)|A] = Pr [(i, j)|A] Pr [k∈ loop(i, j)|(i, j) ∧A] (3.2a)

= Pr [(i, j)|A]H + I +M

Qb(i, j) ,where (3.2b)

H = e−µEH(i,j) (3.2c)

I =
∑
i′,j′

i<k<i′<j′<j

e−µESBI(i,j,i′,j′)Qb(i′, j′) +
∑
i′,j′

i<i′<j′<k<j

e−µESBI(i,j,i′,j′)Qb(i′, j′) (3.2d)

M = e−µae−µc(k−i)Qm2(k + 1, j − 1) + e−µaQm2(i+ 1, k − 1)e−µc(j−k) (3.2e)

+ e−µaQm(i+ 1, k − 1)e−µcQm(k + 1, j − 1) (3.2f)

Now we have a closer look at the difference between joint and conditional probabilities in the
given case and give a first intuition why we use joint probabilities for the novel ensemble-based
sparsification. Unlike for conditional probabilities, all joint probabilities – that a structure of
A contains the base pair (i, j) and k occurs as an unpaired base or right end of a base pair in
the loop closed by (i, j) – sum up to at most 1 for a fixed position k and all parent base pairs;
for an illustrative example see Figure 3.2. This is the property that we will utilize to obtain
a low complexity. Similarly to the reasoning in Proposition 3.1, this is the essential key that
guarantees that each position is considered only for a constant number of base pairs (the full
proof will be given in Section 3.5).

3.3. Computation of base pair probabilities in loops 31

Figure 3.3: Computation of base pair probabilities in loops. The recursions cover the
cases that base pair (i′, j′) occurs inside a 2-loop (I ′) or multiloop (M ′) with closing
base pair (i, j). Every unpaired position in the multiloop is scored with e−µc. Figure
adapted from [OMH+14].

3.3 Computation of base pair probabilities in loops

The joint probability that base pair (i, j) is contained in a structure and the base pair (i′, j′)
occurs in the loop closed by (i, j), i.e. Pr [(i′, j′) ∈ loop(i, j)|A], can be computed by Equa-
tions 3.3a–f. A visualization of the recursion can be found in Figure 3.3. Analogously to the
computation of unpaired probabilities in loops, the conditional probability in Equation 3.3a
is computed by considering the case that (i′, j′) is the interior base pair of a 2-loop (I ′) or
multiloop (M ′), see Equation 3.3b. In the multiloop case, base pair (i′, j′) can be the leftmost
(Equation 3.3d), the rightmost (Equation 3.3e) or any other interior (Equation 3.3f) base pair.
Note that the energy of a k-multiloop with u unpaired bases is calculated by a+ (k− 1)b+uc.

Pr [(i′, j′)∈ loop(i, j)|A] = Pr [(i, j)|A] Pr [(i′, j′)∈ loop(i, j)|(i, j) ∧A] (3.3a)

= Pr [(i, j)|A]I
′ +M ′

Qb(i, j) , where (3.3b)

I ′ = e−µESBI(i,j,i′,j′)Qb(i′, j′) (3.3c)

M ′ = e−µae−µc(i
′−i−1)Qb(i′, j′)Qm(j′ + 1, j − 1) (3.3d)

+ e−µaQm(i+ 1, i′ − 1)Qb(i′, j′)e−µc(j−j′−1) (3.3e)

+ e−µaQm(i+ 1, i′ − 1)Qb(i′, j′)Qm(j′ + 1, j − 1) (3.3f)

3.4 Complexity Analysis

The additional joint occurrence probabilities as defined in Definition 3.1 need to be computed
only for the linear number of base pairs that remain after the filter step with threshold θ1

32 Chapter 3: Framework for ensemble-based sparsification

(cf. Proposition 3.1). All time and space complexities in the following are given for this case.
Matrix Qm2 can be precomputed in O(n2) time and space. For the computation of unpaired
probabilities in loops, only O(n2) many combinations of (i, j) and k exist. Except the I

recursion, each of them require constant time. By restricting the loop length or simplifying the
energy calculation of 2-loops for the I recursion in the same way as in the McCaskill algorithm
(see 2.2.3), the computation can be performed in at most linear time. For the computation
of base pair probabilities in loops, O(n2) combinations of (i, j) and (i′, j′) exist, each of which
can be computed in constant time. In total, all required joint in-loop probabilities can be
computed in O(n3) time and O(n2) space, which is within the same complexity bounds as the
McCaskill algorithm.

3.5 Implementing ensemble-based sparsification

Based on the introduced in-loop probabilities, we introduce now all necessary background to
prepare for ensemble-based sparsification. This novel technique discards parts of the dynamic
programming matrices that are unlikely to contribute to the optimal solution. This reduces
the number of positions that need to be filled for the novel algorithms ExpaRNA-P and SPARSE
(cf. Chapter 4 and 5). For that, we precompute all in-loop probabilities for both sequences A
and B. Here, we show how to identify the relevant parts of the dynamic programming matrices
and introduce additional data structures that allow an efficient traversal of the sparsified
matrices.

In addition to θ1 that is used as a cutoff for filtering the sets of base pairs, we introduce fixed
thresholds θ2 and θ3 for the in-loop probabilities. These additional probability cutoffs are key
for ensemble-based sparsification and drastically reduce the number of candidate positions that
need to be considered.

Definition 3.2 (Candidate)
Each j′ is a candidate of (i, j) in sequence A if it is either a significant single-stranded position
within (i, j), i.e. Pr [j′ ∈ loop(i, j)|A] ≥ θ2, or contained in a significant helix of (i, j), i.e.
Pr [(i′, j′) ∈ loop(i, j)|A] ≥ θ3 for some i′. Analogously, we define candidates l′ of (k, l) in
sequence B: for candidates l′ holds Pr [l′∈ loop(k, l)|B] ≥ θ2 or Pr [(k′, l′)∈ loop(k, l)|B] ≥ θ3

for some k′.

Due to the recursive structure of our novel algorithms, Definition 3.2 does not consider a
position j′ as a candidate if it is the left end of a probable base pair within the current loop.
Centrally for the complexity of the novel algorithms ExpaRNA-P and SPARSE (cf. Chapter 4
and 5), Lemma 3.2 provides an upper bound for the number of times each position occurs as
a candidate across all possible base pairs.

3.5. Implementing ensemble-based sparsification 33

Lemma 3.2 For a fixed j′, there are only O(1) base pairs (i, j), such that j′ is a candidate of
(i, j) (and analogously for l′ and (k, l) in sequence B).

Proof. We fix some j′ and denote by pj′(i, j) the probability that a structure of A contains the
base pair (i, j) and j′ occurs as an unpaired base or right end of a base pair in the loop closed
by the base pair (i, j):

pj′(i, j) := Pr [j′ ∈ loop(i, j)|A] +
∑
i<i′<j′ Pr [(i′, j′) ∈ loop(i, j)|A]. If j′ is a candidate, it

follows pj′(i, j) ≥ θ∗ := min{θ2, θ3}, since then either Pr [j′∈ loop(i, j)|A] ≥ θ2 or Pr [(i′, j′)∈
loop(i, j)|A] ≥ θ3 for some i′. Note that for different (i, j) the events of probabilities pj′(i, j)
are disjoint, since in any structure j′ can occur in just one loop. Therefore

∑
i,j pj′(i, j) ≤ 1.

Hence there are at most 1
θ∗ ∈ O(1) base pairs (i, j) for which pj′(i, j) ≥ θ∗ and j′ can be a

candidate only for those.

By considering only candidate positions when computing the score of a base pair match, we
can operate on sparsified dynamic programming matrices. In order to efficiently compute all
necessary parts, additional data structures need to be introduced (cf. Equation 3.4). The vector
posA(i,j) contains all candidates of (i, j) in sequence A sorted in ascending order. The number of
elements of vector posA(i,j) is denoted by

∣∣∣posA(i,j)
∣∣∣. We introduce another vector mat-idx-befA(i,j)

that stores for each sequence position i′ the first matrix index that lies before i′. The function
mat-pos-befijkl(i′, k′), which is defined by mat-idx-bef in both sequences, allows an efficient
traversal of the sparsified matrices.

posA(i,j)(x̄) = j′ where j′ is the x̄-th candidate position in

the loop closed by (i, j) in A

mat-idx-befA(i,j)(i′) = max p̄ with posA(i,j)(p̄) < i′, 0 if it does not exist

mat-pos-befijkl(i′, k′) = (mat-idx-befA(i,j)(i
′),mat-idx-befB(k,l)(k

′)) (3.4)

The computation of these additional data structures does not increase the time complexity of
O(n3) for precomputing all in-loop probabilities. This means that all preprocessing steps for
ensemble-based sparsification can be done within the same complexity bounds as the McCaskill
algorithm.

To make the description clearer, we distinguish sequence positions from matrix indices. We
use ′ (“prime”) to denote a sequence position, e.g. i′. A position in the sparsified matrix is
distinguished by using a¯(“bar”) and is denoted by (x̄, ȳ). These notations will be consistently
used in Chapter 4 and 5.

CHAPTER 4

Fast simultaneous exact pattern matching and
folding

In this chapter, we introduce ExpaRNA-P – a novel approach for identifying sequence-structure
motifs common to two RNAs. In contrast to already existent methods that solve the problem
for a priori known structures, we consider exactly matching sequence-structure motifs in en-
tire Boltzmann-distributed structure ensembles of two RNAs. This is important since reliable
structures for single sequences are rarely known and single sequence structure prediction is
usually highly unreliable. Furthermore, we present ExpLoc-P, a novel pipeline that utilizes
the sequence-structure motifs identified by ExpaRNA-P to speed up simultaneous alignment
and folding algorithms. Before we describe our novel approach in detail, we give a short
overview of existent methods for detecting sequence-structure motifs. In addition, a detailed
overview of methods for simultaneous alignment and folding is provided in Section 2.4, in-
cluding LocARNA [WRH+07] and Sankoff’s algorithm [San85]. We describe all approaches for
sequences A and B with respective lengths n and m (n ≥ m) and associated base pair sets PA

and PB. The description in this chapter is based on [OMH+14]. A preliminary version was
published in [SMH+12].

Approaches for sequence-structure motif detection Various attempts have been made to ef-
ficiently find sequence-structure matches between two RNA sequences. The algorithm devised
by Backofen and Siebert [BS07] efficiently computes common structure motifs that exactly
match the underlying nucleotides for fixed secondary structures in O(n2) time and space.
ExpaRNA [HWBB09] utilizes these motifs and identifies the best subset that can be simulta-
neously part of an alignment in O(Hn2) time and O(n2) space, where H ∈ O(n2) in general
and H � n2 for real RNAs. Note that this chaining approach guarantees that the motifs do
not overlap or have crossing edges. The identified subset of motifs can be subsequently used

36 Chapter 4: Fast simultaneous exact pattern matching and folding

as alignment constraints (termed anchor constraints) to speed up the RNA alignment method
LocARNA [WRH+07]. This complete pipeline is implemented in the tool ExpLoc [HWBB09].
A very similar heuristic pipeline was employed for the tool RNA-unchained [BCA14]. In con-
trast to ExpaRNA, the sequence-structure motifs that are identified in the first step have to
be connected at sequence level and thus a complete structural motif can only be matched if
the part under the base pairs can also be matched or it has to be partitioned into two sepa-
rate motifs. For instance, the closing stem of a multiloop can only be matched as one motif
if the whole multiloop and loop regions can be matched as well. If this is not possible, the
left ends of the base pairs of the stem have to be matched independently from the right ends
and two separate motifs are computed. A subsequent chaining algorithm computes the best
anchor constraints in O(k2 log k), where k is the number of motifs identified in the first step.
These two approaches suffer from similar problems as the first generation of RNA alignment
methods [HTGK03, SB05]: relying on a single predicted input structure for each sequence,
this strategy fails frequently and causes severe misalignments, since predicting minimum free
energy structures from single sequences is highly unreliable. On top of that, the motifs identi-
fied by RNA-unchained have to be connected on the sequence level such that base pairs cannot
be matched in total without the loop region that connects the base pairs on the sequence level.

Contributions We present the novel algorithm ExpaRNA-P, which computes exactly sequence-
structure-conserved elements that form highly probable local substructures in the RNA struc-
ture ensembles of both input RNAs. Analogous to Sankoff’s simultaneous alignment and
folding idea [San85], the novel strategy performs “simultaneous matching and folding” of RNA
sequences. Thereby, it liberates exact pattern matching from its restriction to a priori fixed
structures [BS07]. We point out that a straight-forward extension of the fixed input structure
matching to simultaneous matching and folding would require at least O(n4) time and O(n2)
space, which is still as high as the complexity of LocARNA. However, reducing this complexity
is fundamental to speed up RNA comparison significantly.

Thus, our main technical contribution is to solve simultaneous matching and folding in quad-
ratic time and space – as efficiently as plain sequence alignment. This is enabled by a novel
ensemble-based sparsification technique (cf. Section 3) that substantially goes beyond prior
approaches. Utilizing novel ensemble properties of the sequences, we identify sparse regions
of each matrix such that, in total across all matrices, only quadratically many matrix entries
have to be computed; each of them can be calculated in constant time. In contrast, LocARNA
reduces only the number of computed DP-matrices, but requires quadratic time for each of
them. This novel sparsification is based on limiting the joint probability of a sequence position
or a base pair occurring as parts of particular loops in the ensembles of the single RNAs.

37

G
C
C
U
U
G

GUGGU
G

AAA
U

G
G

U A G
A CAC G C

G
A G

A
C

U
C
A

A A
A

U
C

U
C
G U

G
C

U
A A

A
CA

G
C

G
U

GG
A

G
G

U
U
CG

A
G

U
C
C
U
C

UUC
A
A
G
G
C
A

Chaining

CGCGGGAUAGAGUAAUUGGUAACUCGUCAGGCUCAUAAUCUGAAUGUUGUGGGUUCGAAUCCGACUCCCGCCAA
B

CGCGGGAUAGAGUAAUUGGUAACUCGUCAGGCUCAUAAUCUGAAUGUUGUGGGUUCGAAUCCGACUCCCGCCA

EPMs

Anchor
Constraints

GCCUUGGUGGUGAAAUGGUAGACACGCGAGACUCAAAAUCUCGUGCUAAACAGCGUGGAGGUUCGAGUCCUCUUCAAGGCA

G
C G
C A
U G
C G
C

G
A G

G

G
A

G
C G
C

A

U G
C

G
C

G
GG

A

U

G
C

G
C

G

C

G GG

G

G A
A

G
C

G
C

U
G

C
C

G
G

G
C

G
C

A

U

G
C

G

G A
A

G
C

G
C

A
UC

GG G G
C

G
C

A

U
G
C

G
C

G

G A

C

G

C

A

U

G
C G

C
G

G A
A

C

G

C

A

U
G

CG
C

G

GC
GC

A
G

G

A

G

G
A

G
C

G
C

A

U

G
CG

CGG
G

GAA

GCCUUGGUGGUGAAAUGGUAGACACGCGAGACUCAAAAUCUCGUGCUAAACAGCGUGGAGGUUCGAGUCCUCUUCAAGGCA

C
G
C
G
G
G
AUA

GAGU
AAU

U
G

G U A
A C U C

G
UCA GG

C
U
C
A
U
A
A
U

C
U G A

A
UG

U
U

G
U

G
G

G
U
U C G A

A
UC

CGA
CU

C
C
C
G
C

C
A

C
G
C
G
G
G
AUA

GAGU
AAU

U
G

G U A
A C U C

G U
C
A G

G
C
U
C
A
U
A
A
U

C
U G A

A
UG

U
U

G
U

G
G

G
U

U
C

G
AA

UC
CG

ACU
C
C
C
G
C

C
A

C
G
C
G
G
G
AUAGAGUAAU

U
G
G

U
A
ACU

C
GUCAG

G
C
U
C
A
U
A
A
U

C
U G A

A
UG

U
U

G
U

G
G

G
U

U
C

G
A

A
UC

C
G
A

C
U
C
C
C
G
C

C
A

C
G
C
G
G
G
AU

A
GAGU

AAU
U
G

G U A
A C U C

G
U
C
A
G
GC

U
C A U

A
A

U
C
U
G
AAUG

U
U
G U G

G G
U U

C
G

AAU
CCG

AC
U
C
C
C
G
C

C
A

ExpaRNA-P

 (((((((..((((.........))))((((((.......))))))..............(((((.......)))))))))))).
A CGCGGGAUAGAGUAAUUGGUA-ACUCGUCAGGCUCAUAAUCUGAAU----------GUUGUGGGUUCGAAUCCGACUCCCGCCA
B GCCUUGGUGGUGAAA-UGGUAGACACGCGAGACUCAAAAUCUCGU-GCUAAACAGCG-UGGAGGUUCGAGUCCUCUUCAAGGCA

LocARNA
Alignment

G
C
C
U
U
G
GUG

GUGAAAUG
GU

A
G A

C A C G C
G

A G
A

C
U

C
A

A A
A

U
C

U
C
G U

G
C

U
A A

A
CA

G
C

G
U

GG
A

G
G

U
U
CG

A
G

U
C
C
U
C

UU
C
A
A
G
G
C
A

G
C
C
U
U
GGUG

G
U

GAAA
U
G
G

U A G A
C A C

G
C

G
A

G
AC

U
C

A A
A
A

U
C
U
C
G U

G
C

U
A A

A
CA

G
C

G
U
G G A G G

U U
C
G

AGU
CCUCU

UC
A
A
G
G
C
A

Ensemble of B
G
C
C
U
U
GGUG

G
U

GAAA
U
G
G

U A G A
C A C

G
C

G
A

G
AC

U
C

A A
A
A

U
C
U
C
G

U
G
C

U A A A
C
A
G

C
GUG G A G G

U U
C
G

AGU
CCUCU

U
C
A
A
G
G
C
A

Ensemble of A

Figure 4.1: Visualization of the ExpLoc-P pipeline. ExpLoc-P uses exact pattern match-
ings as anchor constraints to speed up RNA structure alignments. 1) ExpaRNA-P
identifies exact sequence-structure patterns (EPMs), 2) a chaining algorithm se-
lects an optimal subset of compatible matchings that can simultaneously occur in
an alignment of RNAs and 3) LocARNA utilizes these matchings as anchor con-
straints to speed up the alignment computation. Figure taken from [OMH+14].

Overview of Results To evaluate the practical benefits of our algorithmic innovations, we con-
struct the pipeline ExpLoc-P for simultaneous alignment and folding (in the spirit of ExpLoc),
which we sketch in Figure 4.1. In its first stage, it enumerates suboptimal exact matchings of
local sequence-structure patterns with the novel algorithm ExpaRNA-P. In the second stage,
the suboptimal matchings are chained to select an optimal subset of compatible matchings that
can simultaneously occur in an alignment of RNAs. Finally, these matchings are heuristically
utilized as anchor constraints in the subsequent LocARNA alignment. This procedure speeds
up LocARNA as only the parts in between the anchor constraints have to be computed. We

38 Chapter 4: Fast simultaneous exact pattern matching and folding

show that ExpLoc-P produces high-quality alignments in extensive benchmarks. At the same
time, due to its heuristic use of ExpaRNA-P anchors, it achieves a considerable speedup (about
four-fold) over the benchmark set of typical RNAs (BRAliBase 2.1 [WMS06, GWW05]). For
long sequences (≈400nt) of the benchmark set, the speedup is more than 30-fold.

Additionally, we study important design choices in the ExpLoc-P pipeline, which provides
insights into practical implications of the developed concepts; in particular, we compare strict
and relaxed matching in ExpaRNA-P. The latter allows mismatches at structural positions,
which improves the coverage of low identity sequences.

4.1 ExpaRNA-P – Sparsifying the computation of pattern
matchings

In the following, we introduce our novel algorithm ExpaRNA-P for simultaneous exact pattern
matching and folding. We describe in detail which pattern matchings are considered and derive
the recursion equations. To illustrate the different dynamic programming matrices, we first
give the recursions for the unsparsified matrices. Afterwards we derive the proper recursions
that operate on sparsified matrices.

4.1.1 Pattern matchings in RNA structure ensembles

ExpaRNA-P identifies sequence-structure patterns that are shared by two input RNA sequences.
We provide a general description of pattern matchings in RNA sequences and specialize to two
different variants (for examples, see Figure 4.2).

Definition 4.1 (Connected, Pattern Matching)
We denote the match of positions i and k by (i∼k) and the base pair match of base pairs (i, j)
and (k, l) by (ij∼kl). We consider pairs P = (M,S) of setsM⊆ {(i∼k)|i ∈ [1..n], k ∈ [1..m]}
and S ⊆ {(ij∼kl)|(i, j) ∈ [1..n]2, i < j, (k, l) ∈ [1..m]2, k < l}.

P is connected, iff the graph GP = (M, E), where E = {((i∼k), (j∼ l))|(j = i + 1 and l =
k + 1) or (ij∼kl) ∈ S}, is (weakly) connected.

P is called Pattern Matching iff

• M is a matching, i.e. i = j ⇔ k = l for all (i∼k), (j∼ l) ∈M

• M is non-crossing, i.e. i < j ⇒ k < l for all (i∼k), (j∼ l) ∈M

• M ‘contains’ S, i.e. (ij∼kl) ∈ S ⇒ (i∼k), (j∼ l) ∈M

• the structure {(i, j)|(ij∼kl) ∈ S} is non-crossing (consequently, together with the pre-
vious condition, {(k, l)|(ij∼kl) ∈ S} is non-crossing as well).

4.1. ExpaRNA-P – Sparsifying the computation of pattern matchings 39

• (M,S) is connected.

A position i is matched by P (in sequence A) iff there is a position k, s.t. (i∼k) ∈M. This is
symmetrically defined for positions j and sequence B.

We are going to define strict and relaxed exact pattern matchings, see Figures 4.2a,b and
Example 4.1 and introduce the term exact pattern matching (EPM) to refer to strict EPMs
and relaxed EPMs generically. In the former, all matched nucleotides have to be identical.
The latter relaxes this by allowing mismatched nucleotides at matched base pairs (taking

(a)

C A G G A G G A G C

U A G A G U A G A A

1 2 76543 1098

1 2 76543 10
C

98 11

U
11

G
12

C
12

G
13

C
14

U
15

A
16

(b)

EPM

C

A

G

G

U

C

G

G

A

G

G

A

A

G

A

C

U

A

G

A

G

A

U

C

G

C

U A

4

5

6 7

8

9

1

2

3 10

11

12

12

1

2

3 14

15

16

4

5

6 11

7

8 9

10

13

(c)

C

A

G

G

U

C

G

G

A

G

G

A

A

G

A

C

U

A

G

A

G

A

U

C

G

C

U A

4

5

6 7

8

9

1

2

3 10

11

12

12

1

2

3 14

15

16

4

5

6 11

7

8 9

10

13

no
EPM

Figure 4.2: Visualization of the pattern matching definition. Exact matches are shown
in blue and inexact (structure) matches in red. Two different illustrations of the
notion pattern matching are shown in (a) and (b). The two separate regions in the
blue parts are connected through base pairs and thus form a pattern matching, more
precisely a strict EPM. The pattern matching can be extended by the (inexact)
base pair match shown in red and forms a relaxed EPM. (c) shows an example of an
invalid matching. Separately, both the small and the big matched parts are valid
EPMs, but together they do not form a valid EPM as the two individual parts are
not connected. Figure adapted from [OMH+14].

40 Chapter 4: Fast simultaneous exact pattern matching and folding

compensatory mutations into account).

For this purpose, we distinguish two kinds of matches in a pattern matching (M,S): define the
set of structure matches as M|S := {(i∼k), (j∼ l)|(ij∼kl) ∈ S}; the set of sequence matches
is M\M|S = {(i∼k) ∈M|(i∼k) /∈M|S}, i.e. all matches that are not structural matches.

Definition 4.2 (Strict EPM)
A strict exact pattern matching (strict EPM) is a pattern matching (Definition 4.1) with the
additional property:

for all (i∼k) ∈M : Ai = Bk.

Definition 4.3 (Relaxed EPM)
A relaxed exact pattern matching (relaxed EPM) is a pattern matching with the additional
property:

for all (i∼k) ∈M \M|S : Ai = Bk.

By Definition 4.1, a pattern matching, and therefore an EPM, does not necessarily match
positions of contiguous subsequences, but it is required that the matched sequence-structure
motifs are structure-local [BW04, OWB08] in each sequence. For example, in Figure 4.2b, the
sets of blue sequence positions in each RNA are structure-local, because these positions are
(graph-theoretically) connected via edges formed by backbone or base pair bonds; in contrast
the blue motifs in Figure 4.2c are not structure-local, because they consist of two separated
connected components.

Example 4.1 (Pattern matching definition)
We give a detailed example of the pattern matching definition for the sequences in Fig-
ure 4.2. Exact matches are shown in blue and inexact (structure) matches in red. For
the EPM shown in blue, we obtain M = {(2∼2), (3∼3), (9∼13), (10∼14), (11∼15)} and
S = {(2 11∼2 15), (3 10∼3 14)}. Furthermore, the set of structure matches is given byM|S =
{(2∼2), (3∼3), (10∼14), (11∼15)} and the set of sequence matches byM\M|S = {(9∼13)}.
As only exact matches occur, it is a strict EPM. The EPM can be extended by the base pair
match shown in red, i.e. M′ = M ∪ {(1∼1), (12∼16)} and S ′ = S ∪ {(1 12∼1 16)}. The
extended EPM is a relaxed EPM as mismatches in structure matches occur.

To characterize good EPMs, we define the score of an EPM (M,S) by summing up single
score contributions of base and base pair matches:

score((M,S)) =
∑

(i∼k)∈M\M|S

σ(i, k) +
∑

(ij∼kl)∈S
τ(i, j, k, l), (4.1)

where σ and τ are scoring functions with properties σ(i, k) > 0 if Ai = Bk and τ(i, j, k, l) > 0

4.1. ExpaRNA-P – Sparsifying the computation of pattern matchings 41

if Ai = Bk and Aj = Bl. The scoring parameters are instantiated by

σ(i, k) =

α1 if Ai = Bk

−∞ otherwise

τ(i, j, k, l) = α1 (c1(i, k) + c1(j, l)) + α2c2(i, j, k, l) + α3c3(i, j, k, l)

c1(i, k) =

1 if Ai = Bk

str-mm otherwise

c2(i, j, k, l) = Pr [(i, j)|A] + Pr [(k, l)|B]

c3(i, j, k, l) = Pr [(i, j) ∧ (i+ 1, j − 1)|A] + Pr [(k, l) ∧ (k + 1, l − 1)|B] (4.2)

The parameters α1, α2, and α3 weight respective contributions of matches (i∼k), and structure
matches c2(i, j, k, l) and stacking c3(i, j, k, l) for a base pair match (ij∼kl). The stacking
contribution c3(i, j, k, l) rewards stacked base pairs (i, j) and (k, l). Each mismatch at the left
or right end of a base pair match is penalized by str-mm with str-mm < 0; for scoring strict
EPMs, we set this penalty to −∞, which forbids all kinds of mismatches. In analogy to the
notation Pr [(i, j)|A], Pr [(i, j)∧(i+1, j−1)|A] denotes the joint probability of the stacked base
pairs (i, j) and (i+ 1, j−1). Such probabilities are computed in slight extension of McCaskill’s
algorithm [BBB+08].

As in the case of RNA structures (of some sequence A), one can define parent relations in
EPMs of sequences A and B. In analogy, we define the pseudo-base pair match to match the
two pseudo base pairs, i.e. ψ := ((0, |A|+ 1)∼(0, |B|+ 1)) = (ψA∼ψB). In the following, we
define an ordering of the base pair matches (i′j′∼k′l′) by their spans j′ − i′ + 1 (or k′ − l′ + 1;
the choice is arbitrary, since we consider only non-crossing structure). According to this partial
order, we define parentS(i∼k) as the smallest (i′j′∼k′l′) ∈ S ∪ {ψ} that satisfies i′ ≤ i ≤ j′;
parentS(ij∼kl) denotes the smallest base pair match that satisfies i′ < i < j < j′.

For sequences X ∈ {A,B}, one efficiently computes base pair probabilities Pr [(i, j)|X] by
McCaskill’s algorithm [McC90]. Fundamentally, our novel sparsification technique relies on the
joint probabilities Pr [k ∈ loop(i, j)|A] and Pr [(i′, j′)∈ loop(i, j)|A] of Definition 3.1 that can
be efficiently computed in the complexity bounds of the McCaskill algorithm (see Section 3.4).
Since we want to match only structures that have high probability in the Boltzmann ensembles
of the given sequences – as computed by McCaskill’s algorithm [McC90] – we define the notion
of significant EPMs. This constraint is crucial for both the quality of the results and the
complexity of the algorithm. To define significance, we furthermore introduce three thresholds
θ1, θ2 and θ3. We limit the probability of all matched base pairs by θ1; furthermore, the joint
probabilities of matched unpaired bases and base pairs, occurring as part of their enclosing
loop, by θ2 and θ3, respectively.

42 Chapter 4: Fast simultaneous exact pattern matching and folding

Definition 4.4 (Significant EPMs)
Given fixed thresholds θ1, θ2, and θ3 (with θi > 0 for i ∈ {1, 2, 3}), an EPM is significant iff

1. for all (ij∼kl)∈S: Pr [(i, j)|A] ≥ θ1 and Pr [(k, l)|B] ≥ θ1

2. for all (j′∼ l′) ∈M \M|S with (ij∼kl) = parentS(j′∼ l′):

• Pr [j′∈ loop(i, j)|A] ≥ θ2 if (i, j) 6= ψA

• Pr [l′∈ loop(k, l)|B] ≥ θ2 if (k, l) 6= ψB

3. for all (i′j′∼k′l′) ∈ S with (ij∼kl) = parentS(i′j′∼k′l′):

• Pr [(i′, j′)∈ loop(i, j)|A] ≥ θ3 if (i, j) 6= ψA

• Pr [(k′, l′)∈ loop(k, l)|B] ≥ θ3 if (k, l) 6= ψB

We reduce the return set of our algorithm further by reporting only EPMs that are not included
in better (reported) EPMs and that do not include better EPMs. Due to the negative scoring of
mismatches within base pair matches, the second condition is relevant only for relaxed EPMs,
since this cannot occur for strict EPMs. In the case of strict EPMs, those EPMs are simply
maximal w.r.t. the following inclusion order v of pattern matchings. Hence, we call them
maximal strict EPMs.

Definition 4.5 (Inclusion Order on EPMs)
Let P = (M,S) and P ′ = (M′,S ′) be EPMs. P is included in P ′, written P v P ′ iff

• M ⊆M′

• for all (i∼k) ∈M: parentS(i∼k) = parentS′(i∼k)1

Notably, in the inclusion order of Definition 4.5, EPMs with different structures are not com-
parable. Consequently, two EPMs that match the same positions can be both maximal, if they
match different structure. In Figure 4.3a, both EPMs B and C are maximal.

In the case of strict EPMs, the highest scoring EPMs are always maximal EPMs w.r.t. the
inclusion order, which allows us to select the “interesting” EPMs by this simple property.
However, the same does not hold for relaxed EPMs: for example, typically the score of a
relaxed EPM decreases if it is extended by a structure match with mismatching nucleotides;
still, further extensions can increase the total score again. These dependencies are illustrated
in Figure 4.3b: while extending EPM A, the score first decreases (EPM D) and then increases
again (EPMs E and F).

Consequently, since we want to keep the highest scoring EPMs in the case of relaxed EPMs as
well, we define a score-extended partial order.

1This condition is required to allow different structural variants (cf. Figure 4.3a) and to easily determine the
starting points for the traceback (cf. Lemma 4.1).

4.1. ExpaRNA-P – Sparsifying the computation of pattern matchings 43

(a)

score(A) = 20

G
C

G
C

G
A

GG

GA

A

G
C

G
C

A
U

G
C

G
C

G
A

GG

GA

B

G
C

G
C

A

U

G
C

G
C

GG
G

GA
A

C

(b)

G
C

G
C

A
U

G
A

GG

score(D) = 15

GA

D

G
C

G
C

A
U

G
C

G
A

GG

GA
score(E) = 25

E

G
C

G
C

A
U

G
C

G
C

G
A

GG

GA
score(F) = 30

F

Figure 4.3: Visualization of maximal EPMs. Matches of blue bases refer to exact matches
and red ones to inexact (structure) matches. (a) EPM A is not maximal since there
exists a larger (strict) EPM (B or C). EPMs B and C can be maximal simultane-
ously since in each case some base matches have different parents. (b) EPM D is
generated from A by appending an inexact structure match and has a lower score
than A. Further extending the EPM leads to higher scores again (E and F). D is
not maximal since A has the same parents and a higher score. A is not maximal
because there exist (relaxed) EPMs E and F with the same parents and higher
scores. Among A,D,E, and F, only F is maximal. Figure adapted from [OMH+14].

Definition 4.6 (Score Inclusion Order)
Let P = (M,S) and P ′ = (M′,S ′) be EPMs. P is smaller than P ′ in the score inclusion order,
iff

• score(P) < score(P ′)
• P v P ′ or P ′ v P

We call a relaxed EPM maximal, iff it is maximal w.r.t. this order among all relaxed EPMs.
In other words, a relaxed EPM is maximal if and only if there is no second relaxed EPM with
a higher score that is, by inclusion order, (a) smaller or (b) larger in the relaxed EPM. EPM
D in Figure 4.3b for example is not maximal, as E and F are larger EPMs with the same
parents that have a higher score. EPM F is maximal, as all other smaller EPMs have a lower
score. Note that different patterns with the same score are not comparable so that they cannot
rule out each other. Both maximality definitions are canonically raised to maximal significant
strict EPMs and relaxed EPMs.

4.1.2 Optimizing over significant pattern matchings

Figure 4.4 provides formal recursion equations of the dynamic programming EPM optimiza-
tion algorithm; the same recursions are presented graphically in Figure 4.5. The entries are
recursively defined for all (i, j) ∈ PA, (k, l) ∈ PB, j′ (i < j′ < j), and l′ (k < l′ < l).

Fundamental to our approach, all matrices and evaluations in the recursions are sparse, i.e.

44 Chapter 4: Fast simultaneous exact pattern matching and folding

only entries and cases are considered where the probabilities of elements pass the respective
probability thresholds (cf. Definition 4.4). Corresponding constraints are given in the recursion
equations – this is also illustrated in Figure 4.5, using arrows. Otherwise, we can largely
postpone this aspect until Section 4.1.3.

The matrix entries D(ij, kl) score the best EPM enclosed by each base pair match (ij∼kl), i.e.
D(ij, kl) denotes the best score of a significant EPM (M,S) of Ai..j and Bk..l with (ij∼kl) ∈ S.

Inside the base pair match (ij∼kl), we determine the (score of the) best (M,S) that is either
a significant EPM itself or forms a (connected) significant EPM only together with the closing
base pair match (ij∼kl). The first case is covered by the single matrix L, whereas the latter
case requires three matrices GA, GAB, and LR. By and large, for deriving one D-entry one
starts matching from the left using L. Potentially, one introduces a gap using matrices GA and
GAB and continues using matrix LR to match the part that will only be connected to the right
end of (ij∼kl).

In more detail, first we determine the best score of a significant EPM P = (M,S) that is con-
nected to the left end (i∼k) of the base pair match, i.e.M is empty or contains (i+ 1∼k + 1).
Concretely, Lijkl(j′, l′) is such a score, where M⊆ [i+ 1..j′]× [k + 1..l′] and (j′∼ l′) ∈M. To
introduce a gap, the latter condition is changed for GA and GAB. In the case of GijklA (j′, l′),M
does not match j′ but matches l′; for GijklAB (j′, l′),M does not match l′ and potentially does not
match j′. Finally, LRijkl(j′, l′) is the best sum of scores of two significant EPMs P1 = (M1,S1)
and P2 = (M2,S2) where the first is connected to the left base pair match end (i∼k) and the
second contains (j′∼ l′). Intuitively, the two EPMs are separated by a gap; formally: (for all
(i1∼k1) ∈ M1 and (i2∼k2) ∈ M2, i1 < i2 − 1 and k1 < k2) or (for all (i1∼k1) ∈ M1 and
(i2∼k2) ∈M2, i1 < i2 and k1 < k2 − 1).

Our recursion equations (Figure 4.4 and Figure 4.5) show the precise case distinctions and
dependencies. In L, we check whether there is a sequence match (second case) or a structure
match (third case); otherwise, we assign −∞ (first case). To cover the structure match case,
we iterate over all PA and PB, i.e. all possible base pairs for sequence A and B, that remain
after filtering with θ1 and θ3 (cf. Definition 4.4 condition 1 and 3). LR is analogous to L, only
allowing to close a gap left of the structure or sequence match. For this purpose, we introduce
an auxiliary matrix H, which does not need to be stored.2 The gap itself, computed in GA

and GAB, allows skipping an arbitrary number of positions in both sequences. The recursion
structure ensures that such a gap is introduced at most once per loop match and sequence. To
avoid ambiguity, the recursion enforces to first skip positions in A (using GA) and after that
positions in B (using GAB); furthermore we enforce a gap in the matchings computed via LR
by its initialization.

2It is also possible to store the H matrix instead of the LR matrix. We chose this representation to emphasize
the similarity between matrices L and LR.

4.1. ExpaRNA-P – Sparsifying the computation of pattern matchings 45

D(ij, kl) = max

−∞
if Pr [(i, j)|A] ≥ θ1 and Pr [(k, l)|B] ≥ θ1

max{Lijkl(k − 1, l − 1), H ijkl(k − 1, l − 1)}+ τ(i, j, k, l)

Lijkl(j′, l′) = max

−∞

if Aj′ = Bl′ , Pr [j′∈ loop(i, j)|A] ≥ θ2, Pr [l′∈ loop(k, l)|B] ≥ θ2

Lijkl(j′ − 1, l′ − 1) + σ(j′, l′)

for all (i′, j′) ∈ PA, (k′, l′) ∈ PB

with Pr [(i′, j′)|A] ≥ θ1,Pr [(i′, j′)∈ loop(i, j)|A] ≥ θ3 and
Pr [(k′, l′)|B] ≥ θ1,Pr [(k′, l′)∈ loop(k, l)|B] ≥ θ3

Lijkl(i′ − 1, k′ − 1) +D(i′j′, k′l′)

GijklA (j′, l′) = max{Lijkl(j′ − 1, l′), GijklA (j′ − 1, l′)}

GijklAB (j′, l′) = max{Lijkl(j′, l′ − 1), GijklA (j′, l′ − 1), GijklAB (j′, l′ − 1)}

H ijkl(j′, l′) = max{LRijkl(j′, l′), GijklA (j′, l′), GijklAB (j′, l′)}

LRijkl(j′, l′) = max

−∞

if Aj′ = Bl′ , Pr [j′∈ loop(i, j)|A] ≥ θ2, Pr [l′∈ loop(k, l)|B] ≥ θ2

H ijkl(j′ − 1, l′ − 1) + σ(j′, l′)

for all (i′, j′) ∈ PA, (k′, l′) ∈ PB

with Pr [(i′, j′)|A] ≥ θ1,Pr [(i′, j′)∈ loop(i, j)|A] ≥ θ3 and
Pr [(k′, l′)|B] ≥ θ1,Pr [(k′, l′)∈ loop(k, l)|B] ≥ θ3

H ijkl(i′ − 1, k′ − 1) +D(i′j′, k′l′)

F (j′, l′) = max

0

if Aj′ = Bl′

F (j′ − 1, l′ − 1) + σ(j′, l′)

for all (i′, j′) ∈ PA, (k′, l′) ∈ PB

with Pr [(i′, j′)|A] ≥ θ1 and Pr [(k′, l′)|B] ≥ θ1

F (i′ − 1, k′ − 1) +D(i′j′, k′l′)

Figure 4.4: Recursion Equations. Recursions for computing the significant strict EPMs and
relaxed EPMs, respectively. These equations are visualized in Figure 4.5. Figure
adapted from [OMH+14].

46 Chapter 4: Fast simultaneous exact pattern matching and folding

L L L D

GA GAL

GAB
GA GABL

D HL

F F DF

LR H H D

H GA GAB LR

Figure 4.5: Recursion Visualization. Visualization of the recursions to compute the matrix
entries Lijkl(j′, l′), GijklA (j′, l′), GijklAB (j′, l′), LRijkl(j′, l′), D(ij, kl), F (j′, l′) and the
auxiliary matrix H ijkl(j′, l′). Figure taken from [OMH+14].

4.1. ExpaRNA-P – Sparsifying the computation of pattern matchings 47

We compute entries of D in increasing order with respect to their size so that when computing
some D(ij, kl), any D(i′j′, k′l′) with i < i′ < j′ < j and k < k′ < l′ < l is already computed.
Since EPMs are not necessarily closed by a base pair match (like the EPMs of D), we finally
compute the matrix F . The entries F (j′, l′), for 0 ≤ j′ ≤ n and 0 ≤ l′ ≤ m, denote the
maximum score of a significant EPM of A1..j′ and B1..l′ with (j′∼ l′) ∈ M. The recursion for
F is almost identical to the recursion for L, except for the first case, which is 0 instead of
−∞, since the EPMs in F can start at any point (similar to local sequence alignments). Also,
since the matched base pairs in EPMs of F are external (i.e. they are not enclosed by some
other base pair of the EPM), we do not perform checks for the second and third condition of
significant EPMs (Definition 4.4).

Matrix initialization Matrix entries corresponding to matches of empty subsequences are ini-
tialized. Here, we take special care to disallow such matches for certain matrices (by assigning
−∞).

• Lijkl(i, k) = GijklA (i, k) = GijklAB (i, k) = 0 and LRijkl(i, k) = −∞ (first matrix entry)

• Lijkl(i, l′) = GijklA (i, l′) = LRijkl(i, l′) = −∞ and GijklAB (i, l′) = 0 for all l′ > k

(first matrix row)

• Lijkl(j′, k) = GijklAB (j′, k) = LRijkl(j′, k) = −∞ and GijklA (j′, k) = 0 for all j′ > i

(first matrix column)

By initializing the LR matrix with −∞, we keep matchings represented by LR and L distinct
(because in this way, finite LR entries have to be derived via GA or GAB entries, which enforces
a gap). The final matrix F is initialized by F (j′, 0) = F (0, l′) = 0 for all j′, l′.

For enumerating only maximal EPMs during suboptimal traceback, we take special care that
EPMs cannot be extended at the left or right end of gaps (GA and GAB matrices). For strict
EPMs this is decided independently of the other traced strict EPMs. It suffices to check whether
the strict EPM can be extended into the gap matrices, i.e. whether a sequence or structure
match is possible at the borders of the gap matrices. However, the same does not work for
relaxed EPMs, since while extending a relaxed EPM, the score might first decrease and then
increase again (Figure 4.3). Therefore, we filter relaxed EPMs in two steps. First, we discard
EPMs due to the same criterion as in the case of strict EPMs, checking for exact sequence or
structure matches at the borders of the gap matrices. If an EPM cannot be discarded in this
way, it is stored until all relaxed EPMs in the same D matrix are traced back. Only then, we
compare the withheld relaxed EPMs of the same D matrix according to Definition 4.6. Since
we complete the whole traceback for a D matrix before tracing into its “enclosed” D matrices,
we identify and remove all non-maximal relaxed EPMs in an early stage of the traceback. To
enumerate all maximal EPMs, we start such tracebacks only from entries F (j′, l′) that satisfy
Aj′+1 6= Bl′+1. Due to Lemma 4.1, this condition is necessary and sufficient for strict EPMs.

48 Chapter 4: Fast simultaneous exact pattern matching and folding

Lemma 4.1 Let P = (M,S) be a maximal strict EPM of A1..j′ and B1..l′ with (j′∼ l′) ∈ M.
P is a maximal strict EPM of A and B, iff Aj′+1 6= Bl′+1.

Proof. “⇒”: Let Aj′+1 = Bl′+1. Then P ′ := (M∪ {(j′ + 1∼ l′ + 1)},S) is a strict EPM with
P v P ′; hence P is not maximal for A and B (i.e. among all strict EPMs of A and B).
“⇐”: Let Aj′+1 6= Bl′+1. Assume P is not maximal for A and B. Then, there is a strict EPM
P ′ = (M′,S ′) 6= P with P v P ′ that is not a strict EPM of A1..j′ and B1..l′ . Consequently,
to satisfy M ⊂ M′, there has to exist (ij∼kl) ∈ S ′ with i ≤ j′ < j and k ≤ l′ < l.
Consider first the case that (j′∼ l′) ∈ M \M|S . While the parent of (j′∼ l′) in S is ψ, there
is a parent of (j′∼ l′) in S ′ different from ψ (i.e. either (ij∼kl) or some “smaller” base pair
match). Let us now consider the case that (j′∼ l′) ∈ M|S . We know that (i∼k) ∈ M and
parentS (i∼k) 6= parentS′ (i∼k) = (ij∼kl). Thus, this contradicts P v P ′ in both cases,
because P and P ′ are not comparable by inclusion order (Definition 4.5).

By the same argument, the forward direction holds for relaxed EPMs. Therefore, we enumerate
all maximal relaxed EPMs by restricting the traceback in the same way. However, since the
backward direction does not hold generally, this procedure can enumerate non-maximal relaxed
EPMs. In practice, we observe this very rarely; consequently, while redundant relaxed EPMs
could be removed explicitly, we let the chaining procedure handle those EPMs.

4.1.3 Recursions on sparsified matrices

In this section, we give a full description of the recursions operating on sparsified matrices.
These matrices only contain relevant entries, i.e. those that can contribute to a significant
EPM. If a position in one sequence is not likely to be unpaired or the right end of a base
pair in the loop closed by a base pair of the base pair match, the position cannot be part
of a significant EPM. Thus, the corresponding row or column in the matrix is no candidate
(cf. Definition 3.2) and thus can be skipped. All necessary definitions for this novel ensemble-
based sparsification are described in Chapter 3. A sequence position is denoted by a “prime”,
e.g. i′, and a position in the sparsified matrix by a “bar”, e.g. (x̄, ȳ).

As we skip whole rows and columns in the sparsified matrix, the corresponding sequence
positions of two adjacent matrix positions are not necessarily adjacent. In this case, an implicit
gap is introduced. Consequently, the key modification extends the recursions to include the
check of such a case. With the help of the data structures introduced in Definition 3.4, the
check for adjacency wo-gapijkl((x̄, ȳ), (i′, k′)) (read “match without gap”) can be computed in
constant time:

wo-gapijkl((x̄, ȳ), (i′, k′)) = [posA(i,j)(x̄)− 1 = i′ ∧ posB(k,l)(ȳ)− 1 = k′],

where (x̄, ȳ) is a matrix position and i′ and k′ are sequence positions.

4.1. ExpaRNA-P – Sparsifying the computation of pattern matchings 49

Figure 4.6: Illustration of the recursion cases in the sparsified matrices. The parts
that correspond to candidates and thus need to be filled are shown in blue and the
resulting sparsified matrix on the right side. The positions displayed in gray are in
matrix LR; in black in matrix L, GA or GAB. After matching x̄ + 1 and ȳ + 1 in
LR, we can continue matching from position (x̄, ȳ) in LR as no gap between the
corresponding sequence positions is introduced – shown with the solid arrow 1).
The dotted arrows show the transition from matrix LR to matrix L, GA or GAB.
This happens if an (implicit) gap is introduced as illustrated by 2) and 3b) since in
each base pair match at most one gap can be introduced. For the structure match
3a) we go to the next valid matrix position (p̄, q̄) (cf. 3b)) that lies before the left
ends i′ and k′ of the base pairs. A detailed description can be found in the text.

An illustration of the sparsified matrices is given in Figure 4.6. The blue parts of the matrices
highlight candidates of the two enclosing base pairs of the base pair match (cf. Definition 3.2).
During the computation, only these positions need to be calculated such that the recursions
operate on sparsified matrices, see right matrix in Figure 4.6. The positions shown in gray
belong to matrix LR. The positions shown in black are in matrix L, GA or GAB. After the first
sequence match of x̄+1 and ȳ+1 in matrix LR, we can continue matching in LR from position
(x̄, ȳ) – shown with the solid arrow 1) – as the corresponding sequence positions (l′ and l′ + 1,
j′ and j′ + 1) are also directly adjacent and no gap is introduced. After the second sequence
match of x̄ and ȳ in LR, we cannot continue matching in LR from position (x̄ − 1, ȳ − 1) as
the corresponding sequence positions are not adjacent and an implicit gap is introduced, see
dotted arrow 2). In this case, the matching has to be continued in matrix L, GA or GAB as
at most one gap is allowed for one base pair match. For the structure match (i′j′∼k′l′), see
arrow 3a), we go to the next valid matrix position that lies before the left ends i′ and k′ of the
base pairs (dashed box). In the displayed example, a gap has to be introduced, see 3b), and
the value at matrix position (p̄, q̄) in matrix L, GA or GAB is accessed. Note that, contrary to

50 Chapter 4: Fast simultaneous exact pattern matching and folding

the right ends of a base pair match, the left ends are not represented in the sparsified matrix
(cf. candidate definition in Definition 3.2). Still, the base pair match can be included in the
EPM and the next valid matrix position (p̄, q̄) is computed by accessing mat-pos-bef ijkl(i′, k′)
(cf. Equation 3.4). Figure 4.7 shows the recursion on the sparsified matrices. In order to be
able to check for adjacency within matrix H, we pass in addition the current sequence positions
i′ and k′.

ExpaRNA-P’s efficiency depends fundamentally on the sparsity of the DP matrices, which we
leverage through fixed thresholds θ1, θ2, and θ3. We compute matrices Lijkl, GijklA , GijklAB ,
and LRijkl only for base pairs (i, j) and (k, l) that are significant, i.e. Pr [(i, j)|A] ≥ θ1 and
Pr [(k, l)|B] ≥ θ1. Furthermore, we compute only relevant entries of these matrices, namely
those rows and columns whose index of the enclosing base pair as defined in Definition 3.2.

Before we give the full proof in Corollary 4.3, we give the key idea that leads to ExpaRNA-P’s
quadratic time complexity. By definition, only candidates j′ or l′ can be part of a significant
EPM as defined in Definition 4.4; otherwise, we assign −∞ to Lijkl(j′, l′) and LRijkl(j′, l′).
Furthermore, in the latter case, we neither store nor compute the values for GijklA (j′, l′) and
GijklAB (j′, l′). Due to these considerations, in the matrices Lijkl, LRijkl, GijklA , and GijklAB , we
skip each complete row or column whose index is no candidate. Consequently, after computing
a mapping from candidate sequence positions to matrix positions — independently for each
sequence and for all significant base pairs, the sparsified algorithm operates on “contracted”
matrices that contain only the candidate rows and columns. The first threshold θ1 reduces
the number of base pairs to a constant number of base pairs per sequence position; in total,
quadratically many base pairs pass the filter. The thresholds on joint probabilities guarantee
that each sequence position is candidate of only constantly many base pairs. Note that it is
essential that we filter on joint probabilities and not on conditional probabilities as otherwise
we could not infer a limit on the number of base pairs each sequence position is considered in
(cf. Figure 3.2 in Chapter 3). By doing so, each position is considered only a constant number
of times during the entire computation; this directly results in quadratic time complexity.

Theorem 4.2 There are O(n2) entries Lijkl(j′, l′), GijklA (j′, l′), GijklAB (j′, l′), and LRijkl(j′, l′)
such that j′ is a candidate of (i, j) and l′ is a candidate of (k, l).

Proof. Due to Lemma 3.2 (cf. Chapter 3) there are O(n) many combinations i, j, j′. Analo-
gously there are O(n) combinations k, l, l′ and therefore O(n2) combinations i, j, k, l, j′, l′

satisfying the conditions.

Corollary 4.3 The time and space complexity of computing all entries Lijkl(j′, l′), GijklA (j′, l′),
GijklAB (j′, l′), and LRijkl(j′, l′), D and F is O(n2).

Proof. Clearly, the number of entries for all matrices except D is quadratically bounded due
to Theorem 4.2. Matrix D has O(n2) entries as there are only a linear number of base pairs

4.1. ExpaRNA-P – Sparsifying the computation of pattern matchings 51

D(ij, kl) = max

−∞
if Pr [(i, j)|A] ≥ θ1 and Pr [(k, l)|B] ≥ θ1

max{Lijkl(nA−1, nB−1), H ijkl
(j,l)(nA−1, nB−1)}+ τ(i, j, k, l)

Lijkl(x̄, ȳ) = max

−∞

if Aj′ = Bl′ ,wo-gapijkl((x̄, ȳ), (i′, k′)) and
Pr [j′∈ loop(i, j)|A] ≥ θ2,Pr [l′∈ loop(k, l)|B] ≥ θ2

Lijkl(x̄− 1, ȳ − 1) + σ(j′, l′)

for all (i′, j′) ∈ PA, (k′, l′) ∈ PB

with
Pr [(i′, j′)|A] ≥ θ1,Pr [(i′, j′)∈ loop(i, j)|A] ≥ θ3 and
Pr [(k′, l′)|B] ≥ θ1,Pr [(k′, l′)∈ loop(k, l)|B] ≥ θ3 and
(p̄, q̄) = mat-pos-bef ijkl(i′, k′) and wo-gapijkl((p̄, q̄), (i′, k′))

Lijkl(p̄, q̄) +D(i′j′, k′l′)

GijklA (x̄, ȳ) = max{Lijkl(x̄− 1, ȳ), GijklA (x̄− 1, ȳ)}

GijklAB (x̄, ȳ) = max{Lijkl(x̄, ȳ − 1), GijklA (x̄, ȳ − 1), GijklAB (x̄, ȳ − 1)}

H ijkl
(i′,k′)(x̄, ȳ) = max

{
LRijkl(x̄, ȳ) if wo-gapijkl((x̄, ȳ), (i′, k′))
max{GijklA (x̄, ȳ), GijklAB (x̄, ȳ)}

LRijkl(x̄, ȳ) = max

−∞

if Aj′ = Bl′ ,Pr [j′∈ loop(i, j)|A] ≥ θ2,Pr [l′∈ loop(k, l)|B] ≥ θ2

H ijkl
(j′,l′)(x̄− 1, ȳ − 1) + σ(j′, l′)

Lijkl(x̄− 1, ȳ − 1) + σ(j′, l′) if ! wo-gapijkl((x̄−1, ȳ−1), (j′, l′))

for all (i′, j′) ∈ PA, (k′, l′) ∈ PB

with
Pr [(i′, j′)|A] ≥ θ1,Pr [(i′, j′)∈ loop(i, j)|A] ≥ θ3 and
Pr [(k′, l′)|B] ≥ θ1,Pr [(k′, l′)∈ loop(k, l)|B] ≥ θ3 and
(p̄, q̄) = mat-pos-bef ijkl(i′, k′)

H ijkl
(i′,k′)(p̄, q̄) +D(i′j′, k′l′)

Lijkl(p̄, q̄) +D(i′j′, k′l′) if ! wo-gapijkl((p̄, q̄), (i′, k′))

j′ = posA(i,j)(x̄), l′ = posB(k,l)(ȳ)

nA =
∣∣∣posA(i,j)

∣∣∣ , nB =
∣∣∣posB(k,l)

∣∣∣
Figure 4.7: Recursion equations on sparsified matrices. Recursions for computing the

significant strict EPMs and relaxed EPMs, respectively, on sparsified matrices; for
additional definitions see Equation 3.4.

52 Chapter 4: Fast simultaneous exact pattern matching and folding

for each sequence (see Proposition 3.1). For the same reason, each matrix entry is computed
in constant time: whenever we iterate over base pairs (i, j) ∈ PA and (k, l) ∈ PB, we require
Pr [(i, j)|A] ≥ θ1 and Pr [(k, l)|B] ≥ θ1. Hence, for fixed j and l, these iterations are constantly
bounded.

4.2 Chaining – Selecting a compatible subset of pattern matchings

Chaining selects a non-crossing and non-overlapping subset of EPMs. Our algorithm gener-
alizes the chaining of ExpaRNA [HWBB09]. The chaining algorithm recursively fills the holes
of all EPMs with other EPMs. For this purpose, it fills one O(n2) matrix for each hole and
takes O(Hn2) time, where H is total number of holes with H � n2. In contrast to ExpaRNA,
there may exist more than one EPM ending at each sequence position pair, i.e. there is no
one-to-one correspondence between EPMs and EPM’s end positions. This is why each ma-
trix requires additional steps in the order of the number of input EPMs E in ExpaRNA-P’s
chaining; the complexity of the generalized chaining algorithm is O(H · (n2 + E)). Since in
the most general case, when we enumerate all suboptimal EPMs up to a maximal difference
to the optimal score, E ∈ O(n2) is not guaranteed, we implement in addition several ways to
control the number of EPMs. For example, ExpaRNA-P allows setting an ad hoc limit on this
number. Furthermore, we suggest a heuristic strategy: for each sequence position pair, keep
only the best EPM ending there. Consequently, typical use cases of ExpaRNA-P maintain the
chaining complexity of ExpaRNA, i.e. O(Hn2).

4.3 Additional constraints on ExpaRNA-P’s sparsified matrices

We further extend the algorithm ExpaRNA-P by including the max-diff constraint from
LocARNA that was introduced in its current generality with the tool REAPR [WYB13]. In
general, this constraint allows to specify regions in a dynamic programming matrix that will
be considered during computation. The tool REAPR conducts whole genome realignments
based on RNA sequence and structure by allowing a certain deviation (modeled by max-diff)
from a given reference alignment.

Without a reference alignment, the max-diff constraint defines a band around the diagonal
of the dynamic programming matrix. Thereby, it restricts the number of matrix cells that
need to be filled and thus heuristically speeds up the computation. When utilizing EPMs as
anchor constraints for computing a global alignment, it might be beneficial to use the max-diff

constraint, as an EPM that matches the beginning of one sequence with the end of the other
sequence is unlikely to be a good candidate as anchor constraint and thus should not be
included in the set of traced EPMs.

4.3. Additional constraints on ExpaRNA-P’s sparsified matrices 53

The max-diff constraint is implemented by a maximal allowed deviation δ that defines an
interval for each row in the matrix. In the unsparsified matrix, these intervals are defined by
min-col(j′) and max-col(j′) for each row j′ and only entries in this interval are filled. One
possibility of initializing the interval for row j′ is given by∣∣∣∣j′n − l′

m

∣∣∣∣ ≤ δ

(n+m)/2 such that

min-col(j′) = j′m

n
− δm

(m+ n)/2 , max-col(j′) = j′m

n
+ δm

(m+ n)/2
δ : maximal allowed deviation defined by max-diff (4.3)

If the sequence lengths are the same, i.e. m = n holds, we obtain min-col(j′) = j′ − δ and
max-col(j′) = j′+δ. This defines a band of width 2δ around the diagonal of the DP matrix. For
unequal sequence lengths, the width of the band is scaled accordingly. The minimal δ is chosen
that guarantees that the intervals in two adjacent rows are connected, if this is not already
fulfilled by Equation 4.3. This ensures that min-col(j′) and max-col(j′) are both monotonous
increasing and the intervals are connected and non-empty.

The data structures for defining and traversing the sparsified matrices are constructed in a
preprocessing step for each sequence separately. The max-diff constraint, however, defines
regions in the sparsified matrices for each base pair match and thus we do not profit from
preprocessing data structures in this case.

In the sparsified matrix, a position is valid in base pair match (ij∼kl) if both correspond-
ing sequence positions are candidates of the respective enclosing base pair of the base pair
match (cf. Definition 3.2) and fulfill the max-diff constraint, i.e. the corresponding sequence
positions are within the intervals specified by min-col and max-col. As only valid positions
need to be considered, we can further limit the number of matrix positions. For that, we
map a given interval to the sparsified matrix to identify the valid entries in the interval[
col-idx-beginijkl(x̄), col-idx-endijkl(x̄)

[
for row x̄:

• col-idx-beginijkl(x̄) returns the matrix index ȳb that stores the first candidate position
that is greater than or equal to min-col(j′) in sequence B, where j′ = posA(i,j)(x̄), i.e.
ȳb = arg minȳ posB(k,l)(ȳ) ≥ min-col(j′).

• col-idx-endijkl(x̄) returns the matrix index ȳe that stores the first candidate posi-
tion that is greater than max-col(j′) in sequence B, where j′ = posA(i,j)(x̄), i.e. ȳe =
arg minȳ posB(k,l)(ȳ) > max-col(j′).

So, col-idx-beginijkl(x̄) computes the first valid matrix index and col-idx-endijkl(x̄) the index
after the last valid matrix index in row x̄. The column indices for the sparsified matrices can
be computed in constant time by utilizing data structure mat-idx-befB(k,l) (cf. Algorithm 4.1).
Note that sequence position l′min (l′max) – the minimum (maximum) column for position j′ –

54 Chapter 4: Fast simultaneous exact pattern matching and folding

is not necessarily in the range of the base pair (k, l) such that we need incorporate the cases
that it is located before the left end k (line 3) or after the right end l of the base pair (line 6,
min(l′min, l) and min(l′max + 1, l)).

Algorithm 4.1 Identifying the valid interval for row x̄ using the max-diff constraint.
Function: col-idx-beginijkl(x̄)

1: j′ ← posA(i,j)(x̄)
2: l′min ← min-col(j′)
3: if l′min ≤ k then
4: ȳb ← 0
5: else
6: ȳb ← mat-idx-befB(k,l)(min(l′min, l)) + 1
7: end if
8: return ȳb

Function: col-idx-endijkl(x̄)
1: j′ ← posA(i,j)(x̄)
2: l′max ← max-col(j′)
3: if l′max < k then
4: ȳe ← 0
5: else
6: ȳe ← mat-idx-befB(k,l)(min(l′max+ 1, l)) + 1
7: end if
8: return ȳe

Algorithm 4.2 Locating the first valid matrix position before sequence positions i′ and k′

including the max-diff constraint.
1: (p̄, q̄)← mat-pos-befijkl(i′, k′) # matrix position (p̄, q̄) without max-diff
2: r̄ ← p̄
3: while r̄ ≥ 0 do # check each row
4: s̄b ← col-idx-beginijkl(r̄)
5: s̄e ← col-idx-endijkl(r̄) # [s̄b, s̄e[interval for current row r̄
6: if s̄b < s̄e and s̄b ≤ q̄ then # valid interval found?
7: s̄← min(s̄e − 1, q̄) # determine correct column
8: return (r̄, s̄) # return valid matrix position
9: end if

10: --r̄
11: end while

After having introduced an efficient method to map the valid intervals to the sparsified matrix,
we describe how to efficiently locate the first valid matrix position before sequence positions i′

and k′ when the max-diff constraint is used to further restrict the number of cells in the dy-
namic programming matrix (cf. Algorithm 4.2). We cannot guarantee that the matrix position
(p̄, q̄) = mat-pos-befijkl(i′, k′) that lies before sequence positions i′ and k′ (cf. Equation 3.4)
is valid, as it might not fulfill the max-diff constraint. Thus, we start at (p̄, q̄) and check
row-wise whether there exists a valid position whose second index is located before or at q̄.
By utilizing the mapped intervals, each row can be checked in constant time (line 6). An
illustrative example is shown in Figure 4.8. The blue parts show the candidate positions and
the light red parts the intervals that fulfill the max-diff constraint. The overlapping and thus
valid parts are highlighted in red. After considering the base pair match 1a), we identify the
matrix position (p̄, q̄) that lies before the left ends i′ and k′ of the base pairs. As the interval
identified with Algorithm 4.1 is empty, no valid positions can be found in row p̄. The algorithm

4.4. Results 55

Figure 4.8: Illustration of the max-diff constraint in the sparsified matrix. The blue
parts show the candidate positions and the light red parts the intervals that fulfill
the max-diff constraint. The overlapping and thus valid parts are highlighted
in red. First we compute the matrix position (p̄, q̄) that lies before i′ and k′,
the left ends of the base pair match 1a). As this matrix position does not fulfill
the max-diff constraint, we check row-wise until the valid entry (r̄, s̄) is found
(cf. Algorithm 4.2).

moves to the next line r̄ where a non-empty interval is found and the matrix position (r̄, s̄) is
returned.

4.4 Results

We implemented ExpaRNA-P and the chaining algorithm in C++. In particular, we implemented
two versions of the traceback: the suboptimal traceback and a heuristic version that, for each
match (i∼k), considers only the optimal EPM ending at that match. Our tool supports two
ways to control the EPM enumeration by the suboptimal traceback: either by defining the
maximum score difference to the optimal score or the maximum number of EPMs.

In order to assess the performance of ExpaRNA-P, we designed the following pipeline: In a
first step we compute the significant EPMs with ExpaRNA-P and use the chaining algorithm to
extract from these EPMs an optimal non-overlapping and non-crossing subset. Then we com-
pute a sequence structure alignment that includes all matches of the chained EPMs. For this
purpose, we utilize the EPMs as anchor constraints for LocARNA [WRH+07]. Consequently,
LocARNA runs much faster, since each anchor reduces the alignment space. We call our pipeline
ExpLoc-P in correspondence with the analogous approach ExpLoc [HWBB09], which utilizes
ExpaRNA anchors.

We performed all benchmarks over the pairwise alignment instances of the BRAliBase 2.1 bench-

56 Chapter 4: Fast simultaneous exact pattern matching and folding

Table 4.1: Comparison of ExpLoc-P variants. Total runtimes of different ExpLoc-P variants
(see text) and average SPS scores over the BRAliBase 2.1 benchmark set. The run-
times are split into (a) time for preprocessing, (b) time for computing and chaining
the EPMs and (c) time for the LocARNA alignments with anchor constraints. Table
adapted from [OMH+14].

ExpLoc-P variant 1 2 3 4 5

total SPS 0.86 0.84 0.86 0.84 0.84

total time 3.5h 3.0h 3.7h 3.1h 3.1h

(a) preprocessing 0.6h 0.6h 0.6h 0.6h 0.6h
(b) EPM calculation 0.4h 0.5h 0.4h 0.5h 0.5h
(c) LocARNA alignment 2.5h 1.9h 2.7h 2.0h 2.0h

mark set [WMS06, GWW05]. To measure the quality of the calculated alignment in compari-
son with the (for each instance) known reference alignment, BRAliBase 2.1 provides the scoring
tool compalignp. It computes the similarity between the two alignments as sum-of-pairs score
(SPS). Identical alignments receive the SPS score 1; alignments without any correspondence,
0. In this way, we evaluated different variants of our method and later compare them with
existing tools. At the same time, we opposed quality to runtime.

4.4.1 Impact of EPM selection on the performance

We study five ExpLoc-P variants, where we generate anchor constraints respectively by

1) heuristic traceback with exact matches
2) heuristic traceback with inexact structure matches
3) suboptimal traceback with exact matches
4) suboptimal traceback with inexact structure matches
5) suboptimal traceback with inexact structure matches and the additional second filter

step

In particular, we compare exact modes (1,3), which follow the strict EPM definition, and
inexact modes (2,4,5), which allow mismatches at structure positions (relaxed EPMs).

The parameters were selected ad-hoc without parameter learning. In particular, we set the
cutoff probabilities to θ1 = θ2 = θ3 = 0.01 to predict less false positives. Furthermore, we
enumerated EPMs that have a score of at least 90 and fix the maximal number of traced
EPMs in the suboptimal traceback to 100. The scoring – as defined in Equation 4.1 and
4.2 – was instantiated by setting the structure mismatch score str-mm to −10 for structure
mismatches in inexact modes. Furthermore we set α1 = 1, α2 = 5 and α3 = 5 in order to favor
structured regions.

4.4. Results 57

(a)

20 40 60 80

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Sequence Identity

S
P

S

1) heuristic exact
2) heuristic inexact
3) suboptimal exact
4) suboptimal inexact
5) subpotimal inexact addFilter

(b)

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sequence Identity

C
ov

er
ag

e

1) heuristic exact
2) heuristic inexact
3) suboptimal exact
4) suboptimal inexact
5) subpotimal inexact addFilter

Figure 4.9: Comparison of ExpLoc-P variants. (a) Alignment quality (SPS) vs. sequence
identity. (b) Coverage vs. sequence identity. Dependencies are visualized as lowess
curves. Figure taken from [OMH+14].

58 Chapter 4: Fast simultaneous exact pattern matching and folding

(a)

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sequence Identity

T
im

e
pe

r
In

st
an

ce
 (

s)

1) heuristic exact
2) heuristic inexact
3) suboptimal exact
4) suboptimal inexact
5) subpotimal inexact addFilter

(b)

0 100 200 300 400

0
5

10
15

Length

T
im

e
pe

r
In

st
an

ce
 (

s)

1) heuristic exact
2) heuristic inexact
3) suboptimal exact
4) suboptimal inexact
5) subpotimal inexact addFilter

Figure 4.10: Comparison of ExpLoc-P variants. (a) Runtime vs. sequence identity (b)
Runtime vs. length. The length of a benchmark instance is defined as the average
length of its two sequences. Dependencies are visualized as lowess curves. Figure
taken from [OMH+14].

4.4. Results 59

In addition to SPS and runtime, we computed the coverage for each benchmark instance –
consisting of sequences A and B. For this purpose, we define coverage as the fraction of
nucleotides that are matched by the best chain of EPMs C =

⋃
(M,S):

coverage =

∑
(M,S)∈C |M|
min(A,B) (4.4)

Figure 4.9a shows the alignment quality (SPS) versus the sequence identity; we visualized the
dependency by estimating a lowess curve [Cle81] for each series of benchmark evaluations.
Overall, we observed that the difference between the suboptimal and heuristic traceback is not
significant, solely for inexact modes, the suboptimal traceback leads to slightly better results.
Furthermore, in inexact modes the additional second filter step did not change the quality
significantly. Exact modes produced better alignments, however these modes generated much
less anchor constraints for low sequence identity regions; in turn, the speedup decreases in
these modes. This effect is visible in Figure 4.9b, which plots the estimated coverage vs. the
sequence identity. The exact modes predict EPMs only for sequence identity values above 60%.
For the inexact modes, we obtained much higher coverage; notably, we predicted many more
relaxed EPMs than strict EPMs for the sequence identity interval from 40-60%.

In Table 4.1, we report total runtimes and average SPS scores of different ExpLoc-P variants
over the entire benchmark set. Furthermore, we provide single timings for (a) preprocessing,
(b) computing and chaining the EPMs and (c) subsequent LocARNA alignments.

The differences in coverage directly impact the runtimes of the different variants, but not as
pronounced, since – like one would expect for many real world applications – the benchmark
set contains many high identity sequences. Consequently, relaxed EPMs significantly reduced
the runtime for instances with sequence identity between 50-80% (Figure 4.10a). Furthermore,
the heuristic traceback was slightly faster than the suboptimal one for long RNA sequences
(Figure 4.10b), while suboptimal traceback could not significantly improve the alignment qual-
ity in this setting. Consequently, for this specific benchmark, the two variants with heuristic
traceback turned out to provide the best balance of quality and speed up.

4.4.2 Comparison with other tools

We benchmarked three existing approaches: LocARNA [WRH+07], ExpLoc [HWBB09], and
RAF [DFB08]. LocARNA without anchors serves as base line approach; in contrast to ExpLoc-P,
ExpLoc identifies EPMs in a single predicted structure for each RNA (using ExpaRNA); and
RAF is currently the fastest Sankoff-style alignment approach due to its heuristic filtering based
on sequence alignments. We compared these approaches with ExpLoc-P variants 1 and 2, which
performed best in the previous section.

Table 4.2 summarizes the results; we report the speedup over LocARNA, total runtime, and

60 Chapter 4: Fast simultaneous exact pattern matching and folding

(a)

20 40 60 80

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Sequence Identity

S
P

S

LocARNA
1) ExpLoc−P heuristic exact
2) ExpLoc−P heuristic inexact
ExpLoc γ =10
RAF

(b)

0 100 200 300 400

0
10

20
30

40
50

Length

S
pe

ed
up

LocARNA
1) ExpLoc−P heuristic exact
2) ExpLoc−P heuristic inexact
ExpLoc γ =10
RAF

Figure 4.11: Comparison with sequence-structure alignment methods. (a) Compari-
son of alignment quality vs. sequence identity. (b) Comparison of speed up over
LocARNA vs. length. Dependencies are visualized as lowess curves. Figure taken
from [OMH+14].

4.4. Results 61

Table 4.2: Comparison of RNA alignment methods. We report speedup over LocARNA,
total runtime, and average alignment quality (SPS) over the BRAliBase 2.1 bench-
mark set. Table taken from [OMH+14].

LocARNA ExpLoc-P ExpLoc-P ExpLoc RAF
(variant 1) (variant 2) γ = 10

speedup 1 3.9 4.6 5.0 14.4

runtime 13.8h 3.5h 3.0h 2.8h 1.0h

SPS 0.87 0.86 0.84 0.81 0.86

average alignment quality (SPS) across the entire benchmark set (Opteron 2356, 2.3 GHz, sin-
gle thread). Figure 4.11a shows the behavior of the SPS dependent on the sequence identity.
LocARNA aligned with the best quality at the expense of the highest computation time. The
best alignment quality that has been obtained with ExpLoc in [HWBB09] has been achieved
with parameter setting γ = 10 (the minimal EPM size). Even this quality is significantly
lower than the one for the two variants of ExpLoc-P (0.81 vs. 0.84 and 0.86). Moreover, the
overall speedup for this setting is not much higher than the speedups for ExpLoc-P. Although
RAF achieved the best speedup of 14.4, the quality drops tremendously for sequence similar-
ities below 50%. The quality drop of RAF alignments at low sequence identities is strongly
reminiscent of pure sequence alignment methods. Thus, we conjecture that the specific use of
sequence-based heuristics by RAF, while guaranteeing sequence alignment like run-time behav-
ior, compromises RAF’s use for ‘hard’ RNA alignment instances that require structure-based
alignment methods.

Furthermore, we investigated the dependency of the lengths of the input sequences on the
speedup (see Figure 4.11b). As expected, the speedup increased for longer input sequences.
For RNA sequences longer than 150 bases, we obtained a significantly better speedup with
both variants of ExpLoc-P compared with ExpLoc. For the longest input sequences, ExpLoc-P
achieved respective speedups of 32 and 35 for the exact and inexact mode, and RAF of almost
50.

Furthermore, Figure 4.12 compares the speedup distributions of ExpLoc-P variants 1 and 2
as boxplot. The benchmark instances are classified according to their sequence length in the
intervals (0,50], (50,100], (100,150], (150,200], (200,250], (250,300], (300,350], and (350,400].
For sequences of lengths greater than 150 we achieve substantial speedup. The inexact mode
is also superior to the exact mode for these input sequences.

To summarize, ExpLoc-P provided the best trade-off between alignment quality and speedup
in this setting; robustly, it maintained high alignment quality over the entire range of sequence
identities; finally, it proofed to be particularly suited for long instances.

62 Chapter 4: Fast simultaneous exact pattern matching and folding

0.
1

0.
5

1.
0

5.
0

10
.0

50
.0

10
0.

0

50 100 150 200 250 300 350 400

Length

S
pe

ed
up

Length

S
pe

ed
up

1) Exploc−P heuristic exact
2) Exploc−P heuristic inexact

Figure 4.12: Speedup potential increases with the sequence lengths. Boxplot for the
speedup over LocARNA vs. sequence lengths for ExpLoc-P variants. The speedup
is measured relative to the speed of LocARNA. The width of the boxes are scaled
according to the number of benchmark instances in each interval. For sequences
longer than 150, a considerable speedup is obtained for both variants. Further-
more, the inexact variant shows a larger potential for speedup for these input
sequences. Figure taken from [OMH+14].

4.5 Discussion

We have introduced the algorithm ExpaRNA-P that very efficiently identifies exact pattern
matches in RNAs by matching and folding them simultaneously. The method is a major
achievement over previous approaches (including the “predecessor” ExpaRNA) that – without
being more efficient – are much less flexible, since they require a priori known or unreliably
predicted structure. Due to its novel ensemble-based sparsification, the algorithm ExpaRNA-P
has only a very low (quadratic) time and space complexity, equaling sequence alignment.

We have developed two major variants of this method; one requires strict matches in all

4.5. Discussion 63

positions of an EPM (strict EPMs), the other relaxes this (therefore, relaxed EPMs) to allow
mismatches at structural positions. The latter supports compensatory mutations, which are
highly relevant in RNA structure analysis in general.

Our benchmarks study EPMs as anchor constraints to speed up RNA structure alignments (in
the form of simultaneous alignment and folding by LocARNA). EPMs from structure ensembles
have turned out to be substantially more reliable than EPMs from fixed structures. At compa-
rable speed ups, this results in increased quality. Most importantly, the novel approach keeps
up the alignment quality even for sequences of low identity, which is ultimately decisive for
structure alignment. In striking contrast, the alignment quality of the similarly fast alignment
tool RAF breaks down – very much like pure sequence alignment.

We have implemented rigorous suboptimal traceback, which provides extensive control of the
set of enumerated EPMs. For example, this level of control is required in the analysis of
structural variants common to the RNAs. In addition, we have developed a heuristic traceback
that restricts the number of enumerated EPMs. This variant performs almost indistinguishable
in our benchmark. Being much faster than the rigorous method, it offers the best speed-quality
balance in such settings. Furthermore, we demonstrated how to integrate further constraints on
ExpaRNA-P’s dynamic programming matrices in addition to the ensemble-based sparsification.

Finally, reliable EPM-based anchor constraints as computed by ExpaRNA-P can be combined
advantageously with other RNA alignment tools such as RAF. While for LocARNA the con-
straints yield a considerable speedup, the combination with RAF has the potential to improve
RAF’s poor alignment quality for low sequence similarity.

CHAPTER 5

Fast and accurate simultaneous alignment and
folding

Ever since Sankoff’s algorithm [San85] for simultaneous alignment and folding was proposed in
1985, a lot of effort was put into reducing its extreme time complexity. A detailed description
of the different approaches is given in Section 2.4. Since separating structure and alignment
computation introduces the risk of predicting an incorrect alignment, the favored approach
computes the structure and alignment simultaneously. Developing fast algorithms for simulta-
neous alignment and folding that maintain good alignment quality still poses a big challenge
especially for RNA families with low sequence identity. A lightweight energy model [HBS04]
that scores structural features based on base pair probabilities constitutes a first step towards
efficient approaches that keep up good alignment quality. However, none of the existing algo-
rithms that apply a lightweight energy model implement the full flexibility of Sankoff’s model.
In this chapter, we introduce two novel algorithms for computing sequence-structure align-
ments simultaneously. PARSE enables Sankoff’s flexible structure prediction while applying
a lightweight energy model. The sparsified variant SPARSE utilizes in addition the efficient
ensemble-based sparsification (cf. Section 3) to significantly speed up the computation.

All subsequent algorithms are described for sequences A and B with respective lengths n
and m (n ≥ m) and associated base pair sets PA and PB, and structures R and T . Formal
definitions of sequence alignment (denoted byA) and sequence-structure alignment (denoted by
(A, R, T)) are provided in Section 2.3. The description in this chapter is based on [WOM+15].
A preliminary version was published in [WSM+13].

Contributions We present the novel algorithm PARSE, which is the first approach for fast
simultaneous alignment and folding that combines the original flexible structure prediction of
Sankoff’s algorithm with the lightweight energy model of PMcomp [HBS04] to efficiently score

66 Chapter 5: Fast and accurate simultaneous alignment and folding

structure contributions. To initially improve the time complexity from O(n6) to O(n4), we
additionally integrate a base pair filter that was proposed in LocARNA [WRH+07]. Crucially,
this filter does not impair the quality of the sequence-structure alignment. Additionally, we
introduce the sparsified variant SPARSE that incorporates the novel ensemble-based sparsi-
fication introduced in Section 3. The in-loop probabilities enable to identify efficiently in a
preprocessing step those unpaired bases and base pairs that are likely to occur in a particu-
lar loop and thus allow to restrict the search space. This technique solely utilizes properties
of the structure ensemble and does not rely on sequence-based heuristics that could cause
mis-alignments for RNA families with low sequence conservation. These are introduced for
instance in [Hol05, DE06, HSM07] and in the tool RAF [DFB08], which is with quadratic run-
time currently the fastest tool for simultaneous alignment and folding. Integrating the novel
ensemble-based sparsification in SPARSE leads to a drastic reduction to quadratic runtime
without utilizing sequence-based heuristics. Remarkably, the complexity of SPARSE matches
the time complexity of sequence alignment. To incorporate this novel sparsification technique
into a sequence-structure alignment tool requires compatible individual structure prediction
for the two input sequences as implemented in PARSE. Notably, directly integrating it into
PMcomp or LocARNA is not possible.

Overview of results To evaluate the effectiveness of our novel algorithm SPARSE, we con-
duct extensive benchmarks on the well-established benchmark set BRAliBase 2.1 [WMS06,
GWW05]. We show that SPARSE achieves an alignment quality comparable with LocARNA,
but unlike RAF maintains it even for hard instances with low sequence conservation. More-
over, SPARSE achieves roughly the same speed up as RAF of around 4. The enhanced structure
prediction flexibility of SPARSE over LocARNA is reflected in a significant improvement of the
structure prediction accuracy.

5.1 Sankoff’s algorithm and Sankoff-style alignment

The idea to simultaneously align and fold RNA sequences was introduced in Sankoff’s algo-
rithm [San85] that computes an alignment A and RNA structures R and T simultaneously
for two given RNA sequences A and B. Even though this approach has a high O(n6) time
and O(n4) space complexity, it is still considered the gold standard for RNA alignment. Its
objective function combines the free energy of the predicted structures for the input sequences
in a loop-based model [MSZT99] with a scoring of the edit distance of the predicted alignment.
To get a biologically meaningful result and to simplify computation, dependencies between
the alignment and structures are introduced. Each k-loop has exactly one k-loop counterpart
to which it is aligned or the whole k-loop is deleted or inserted. Thus, it is not possible to
align one k-loop to positions in more than one k-loop in the other sequence. Furthermore,

5.1. Sankoff’s algorithm and Sankoff-style alignment 67

ACGCCUACGUAACUG-AG-AGAUACACUA-U--C-U

-GC--UAC----GUGCAGUAGAAUCUGUAGAAACAU

Figure 5.1: Visualization of Sankoff’s restrictions on alignment and structures. Align-
ment of sequences A and B with associated structures R and T , where ak and bk
(1 ≤ k ≤ 5) are base pairs. ψA and ψB denote the pseudo base pairs that cover
the entire sequences. As required by Sankoff’s algorithm, all interior base pairs of
multiloops (a4, a5, b4, b5) and external base pairs (a1, a3, b1 and b2) are covered
by (A, R, T). The positions highlighted in blue belong to the 2-loop closed by base
pair a1 and base pair a2 can only be deleted together with the entire 2-loop (loop
deletion). Analogously, the positions in red show the case of a loop insertion within
a 2-loop. Figure adapted from [WOM+15].

the general shape of the RNA structures should be identical. This branching configuration
is maintained if all external base pairs and the interior base pairs of multiloops of the two
predicted RNA structures are covered by the sequence-structure alignment (cf. Section 2.3).
However, if only the number of base pairs in the stem regions of two RNA structures differ,
they still have the same overall shape. Thus, insertion and deletion of 2-loops is supported,
but with the requirement above, only if the interior base pair is inserted or deleted together
with all unpaired positions in the loop. This operation corresponds to a shortening or elon-
gation of stems. Insertion and deletion of 2-loops are defined in Definition 5.1 and illustrated
in Figure 5.1. The precise restrictions on the predicted alignment and structures in Sankoff’s
algorithm are given in Definition 5.2.

Definition 5.1 (Insertion and deletion of 2-loops)
Let (A, R, T) be a sequence-structure alignment, where A is a sequence alignment and R and
T are structures for sequences A and B, respectively (cf. Definition 2.7). A sequence-structure
alignment (A, R, T) of sequences A and B deletes [inserts] the entire 2-loop closed by base
pair (i, j) ∈ R [(k, l) ∈ T] iff the base pair closes a 2-loop and the base pair and all bases in
loopA(i, j) [loopB(k, l)] are deleted [inserted].

Definition 5.2 (Sankoff’s restrictions on alignment and structures)
Let (A, R, T) be a sequence-structure alignment. (A, R, T) is a structure alignment triple iff it
satisfies Sankoff’s restrictions, i.e. iff

1. for all (i, j) ∈ R: (A, R, T) covers (i, j) or deletes the entire 2-loop closed by parentA(i, j)

2. for all (k, l) ∈ T : (A, R, T) covers (k, l) or inserts the entire 2-loop closed by parentB(k, l)

68 Chapter 5: Fast and accurate simultaneous alignment and folding

An extension to multiple alignment is also suggested in [San85] with an even more extreme
O(n3N) time and O(n2N) space complexity, where N denotes the number of sequences.

PMcomp [HBS04] simplifies the original Sankoff algorithm in two ways. Instead of a loop-based
energy model, PMcomp uses a lightweight energy model based on the base pair probability
matrices – as computed by McCaskill’s algorithm (cf. Section 2.2.3) – of the two input sequences.
Thereby, the free energy contribution in the loop-based energy model is estimated by a product
of the base pair probabilities while assuming their independence for the sake of computational
simplicity. For that, the weight of base pair (i, j) is defined by ΨA

ij = log(Pr [(i, j)|A]/p0),
where p0 is the background probability for base pairs, i.e. the minimum base pair probability
that is considered significant.

To define the score of a sequence-structure alignment, we first introduce the unstructured
part AuRT of the alignment, where (i, k) ∈ AuRT iff ∀j : (i, j) /∈ R and (j, i) /∈ R, and ∀l :
(k, l) /∈ T and (l, k) /∈ T . Since log odds scores are applied, the base pair weights of the
predicted structures are summed up in addition to the regular sequence alignment score for
the unstructured part AuRT .1

score((A, R, T)) =
∑

(i,j)∈R
ΨA
ij +

∑
(k,l)∈T

ΨB
kl +

∑
(i,k)∈AuRT

σ(i, k) + nAindelγ (5.1)

The second simplification of PMcomp reduces the flexibility of Sankoff’s original structure
prediction. Whereas Sankoff’s algorithm predicts two individual but compatible structures,
PMcomp outputs a single consensus structure for both input sequences. This is a strong
restriction as this means that all predicted base pairs have to be covered by the sequence-
structure alignment. In the more expressive Sankoff’s algorithm, only interior base pairs of
multiloops and external base pairs have to be covered such that insertions and deletions of entire
2-loops are allowed. These are particularly important as they correspond to the elongation or
shortening of stems. PMcomp does not support loop deletions or insertions at all.

The original PMcomp algorithm shown in Figure 5.2a first computes the best score of all
subsequence combinations Ai..j and Bk..l. The first three cases of M̄ are analogous to sequence
alignment, whereas the last case considers matches of base pairs. Those are computed in
matrix D̄ by adding contributions ΨA

ij and ΨB
kl for the matched base pairs (i, j) and (k, l)

and M̄(i + 1, j + 1, k − 1, l − 1) for the part enclosed by the base pair match. The original
formulation of PMcomp considers M̄ ijkl for each combination of i,j,k and l, resulting in O(n6)
time complexity if we do not constrain the base pair sets PA and PB because then each entry
needs quadratic time. The space complexity is dominated by storing all D̄ matrices since at
each time only one M̄ matrix needs to be stored, which results in O(n4) space complexity.

When applying sparsification, a variant of the original PMcomp algorithm is required (Fig-

1Note that we slightly modified PMcomp’s original alignment and folding score to simplify the presentation.

5.1. Sankoff’s algorithm and Sankoff-style alignment 69

(a)

for all i with 1 < i < n, j with i < j < n and
k with 1 < k < m, l with k < l < m:

M̄(i, j, k, l) = max

M̄(i, j − 1, k, l − 1) + σ(j, l)
M̄(i, j, k, l − 1) + γ

M̄(i, j − 1, k, l) + γ

max
i′≥i
k′≥k

M̄(i, i′ − 1, k, k′ − 1) + D̄(i′j, k′l)

D̄(ij, kl) = M̄(i+ 1, j + 1, k − 1, l − 1) + ΨA
ij + ΨB

kl

(b)

for all (i, j) ∈ PA, (k, l) ∈ PB and
j′ with i < j′ < j, l′ with k < l′ < l:

M̂ ijkl(j′, l′) = max

M̂ ijkl(j′ − 1, l′ − 1) + σ(j′, l′)
M̂ ijkl(j′, l′ − 1) + γ

M̂ ijkl(j′ − 1, l′) + γ

max
(i′,j′)∈PA,
(k′,l′)∈PB

M̂ ijkl(i′ − 1, k′ − 1) + D̂(i′j′, k′l′)

D̂(ij, kl) = M̂ ijkl(j − 1, l − 1) + ΨA
ij + ΨB

kl

Figure 5.2: PMcomp recursion equations. (a) Original PMcomp algorithm and (b) slightly
modified version suitable for sparsification. While M̄(i, j, k, l) is computed for all
combinations of i, j, k and l, M̂ ijkl is only computed if base pairs (i, j) and (k, l)
occur in the respective base pair set. Figure adapted from [WOM+15].

ure 5.2b). The main difference is that M̂ ijkl is only computed if base pairs (i, j) and (k, l)
occur in the respective base pair set. When a fixed base pair filter is applied (cf. Section 3.1), a
linear number of base pairs is retained in PA and PB such that only O(n2) many M̂ matrices
need to be filled. Furthermore, the time to compute one entry in the M̂ matrix is reduced to
constant time. Thus, this reduces the overall time complexity to O(n4). Keeping at any time
only one M̂ matrix and storing all D̂ matrices requires O(n2) space.

For computing multiple alignments, a progressive strategy is chosen and implemented in the
tool PMmulti. For that, a consensus base pair probability matrix is computed from the
sequence-structure alignment in each step of the progressive phase by taking the geometric
mean of the probabilities of all matched base pairs and using those transformed probabilities
as a basis to compute the base pair weights.

70 Chapter 5: Fast and accurate simultaneous alignment and folding

D̃S(ij, kl) = max

M̃ ijkl(j − 1, l − 1)
ĨijklA (j − 1)
ĨijklB (l − 1)

M̃ ijkl(j′, l′) = max

M̃ ijkl(j′ − 1, l′ − 1) + σ(j′, l′)
M̃ ijkl(j′, l′ − 1) + γ

M̃ ijkl(j′ − 1, l′) + γ

max
(i′,j′)∈PA,
(k′,l′)∈PB

M̃ ijkl(i′ − 1, k′ − 1) + D̃S(i′j′, k′l′) + ΨA
i′j′ + ΨB

k′l′

ĨijklA (j′) = max

Ĩ
ijkl
A (j′ − 1) + γ

max
(i′,j′)∈PA

(i′ − i+ 1)γ + D̃S(i′j′, kl) + ΨA
i′j′

ĨijklB (l′) = max

Ĩ
ijkl
B (l′ − 1) + γ

max
(k′,l′)∈PB

(k′ − k + 1)γ + D̃S(ij, k′l′) + ΨB
k′l′

Figure 5.3: Recursion equations. PARSE recursions for computing the best structure
alignment triple. These equations are visualized in Figure 5.4. Figure adapted
from [WOM+15].

5.2 Optimizing Sankoff-style alignment

5.2.1 PARSE – Flexible lightweight simultaneous alignment and folding

To incorporate the full flexibility of Sankoff’s model, we extend the PMcomp recursions (cf. Fig-
ure 5.3) with the loop deletion and insertion case. To cover these new cases, matrices ĨA and
ĨB are introduced, see recursion equations in Figure 5.3 and a visualization in Figure 5.4. The
entries are recursively defined for all (i, j) ∈ PA, (k, l) ∈ PB, j′ (i < j′ < j), and l′ (k < l′ < l).
As an entire 2-loop is deleted in ĨA we either delete the current position j′ or jump over a base
pair that is deleted including the whole part before it. The recursion for ĨB is analogous. Since
in this model not all base pairs are necessarily covered, we cannot include the score of a base
pair match already in matrix D̃S as it was done in PMcomp. Thus, we change the definition
of D̃S matrix entries to consider only the part between base pairs (i, j) and (k, l). The score
contribution of a base pair match is considered in matrix M̃ , whereas the score for inserting
or deleting a base pair is added in matrix ĨA and ĨB, respectively. Clearly, matrices ĨA and
ĨB do not add to the complexity of PMcomp. By restricting the number of base pairs in PA

and PB by a constant threshold as applied in LocARNA [WRH+07] (cf. Section 3.1), we obtain
LocARNA’s quartic time and quadratic space complexity. So far, we enhanced PMcomp’s (and
LocARNA’s) model to incorporate the original flexibility from the Sankoff algorithm.

5.2. Optimizing Sankoff-style alignment 71

= M IBIADS

=M M

M -

M
-

M DS

=IA IA

- ... - -- -

DS

=IB IB - ... - -- - DS

~ ~ ~

~

~

~

~~

~~

~

~~

~ ~

~

Figure 5.4: Recursion visualization. Recursions of the novel lightweight alignment algo-
rithm PARSE. The best alignment of subsequences enclosed by a base pair match
is stored in D̃S . Matrices ĨA and ĨB cover the 2-loop deletion and insertion case,
respectively. The best alignment of the whole input sequences is computed by fill-
ing an additional matrix M̃ for the pseudo base pairs ψA and ψB. Figure adapted
from [WOM+15].

72 Chapter 5: Fast and accurate simultaneous alignment and folding

D̃S(ij, kl) = max

M̃ ijkl(j − 1, l − 1)
ĨijklA (j − 1)
ĨijklB (l − 1)

M̃ ijkl(j′, l′) = max

M̃ ijkl(j′ − 1, l′ − 1) + σ(j′, l′)
Ẽijkl(j′, l′)
F̃ ijkl(j′, l′)

max
(i′,j′)∈PA,
(k′,l′)∈PB

M̃ ijkl(i′ − 1, k′ − 1) + D̃S(i′j′, k′l′) + ΨA
i′j′ + ΨB

k′l′

Ẽijkl(j′, l′) = max
{
Ẽijkl(j′, l′ − 1) + γbase

M̃ ijkl(j′, l′ − 1) + βbase + γbase

F̃ ijkl(j′, l′) = max
{
F̃ ijkl(j′ − 1, l′) + γbase

M̃ ijkl(j′ − 1, l′) + βbase + γbase

ĨijklA (j′) = max

ĨijklA (j′ − 1) + γloop

max
(i′,j′)∈PA

(i′ − i+ 1)γloop + Ĩi
′j′kl

A (j′ − 1) + ΨA
i′j′

max
(i′,j′)∈PA

(i′ − i+ 1)γloop + D̃S(i′j′, kl) + ΨA
i′j′ + βloop

ĨijklB (l′) = max

ĨijklB (l′ − 1) + γloop

max
(k′,l′)∈PB

(k′ − k + 1)γloop + Ĩijk
′l′

B (l′ − 1) + ΨB
k′l′

max
(k′,l′)∈PB

(k′ − k + 1)γloop + D̃S(ij, k′l′) + ΨB
k′l′ + βloop

γbase/γloop : gap cost for base/loop indel
βbase/βloop : gap opening cost for base/loop indel

Figure 5.5: Recursion equations including affine gap costs. PARSE recursions for com-
puting the best structure alignment triple including affine gap costs. Figure adapted
from [WOM+15].

5.2. Optimizing Sankoff-style alignment 73

=-E
~

-
-E

~
-

M
~

= -

-

F
~-

F
~

-M
~

= M
~

M
~ -E

~

M DS

~~-

F
~

=IA
~

IA

-~
... - -- -

DS

~

... - -- -

IA
~

=IB
~

IB -
~

... - -- - DS

~

... - -- - IB
~

Figure 5.6: Recursion visualization including affine gap costs. PARSE recursions for
computing the best structure alignment triple including affine gap costs. The vi-
sualization for matrix D̃S(ij, kl) is analogous to Figure 5.4.

74 Chapter 5: Fast and accurate simultaneous alignment and folding

Before we show how to introduce ensemble-based sparsification, we discuss how to incorporate
affine gap costs into PARSE. When applying an affine gap cost scheme, the cost of a gap is
split into a gap opening cost β and an extension cost γ for each position within the gap. Since
PARSE allows to insert or delete entire 2-loops (loop indels) on top of the regular base insertions
and deletions (base indels), we distinguish these different events by introducing distinct costs
γloop and γbase. Furthermore, we define βloop and βbase, the gap opening costs for loop and
base indels, respectively. This distinction makes sense also biologically, since loop indels –
unlike base indels – represent the deletion or insertion of structural parts, i.e. the elongation or
shortening of stems in the RNA structure. Similar to Gotoh’s algorithm [Got82], we incorporate
affine gap costs for base indels by introducing the additional matrices Ẽ and F̃ . The modified
recursions are given in Figure 5.5 and a visualization in Figure 5.6. In Ẽijkl(j′, l′) base Bl′ is
inserted and in F̃ ijkl(j′, l′) base Aj′ is deleted. Then the base insertion and deletion case of the
M̃ recursion is replaced by Ẽijkl(j′, l′) and F̃ ijkl(j′, l′). Furthermore, we extend the recursions
for ĨA and ĨB to cover the affine scoring of loop indels. Here, we distinguish the cases that a
loop indel is continued (Ĩi

′j′kl
A (j′− 1)) or a new loop indel is started (D̃S(i′j′, kl)). Only in the

latter case, we add the gap opening cost βbase. Note that this is correct even if D̃S(i′j′, kl) also
implicitly includes the case Ĩi

′j′kl
A (j′ − 1), since we are only interested in the maximal score.

Including affine gap costs in PARSE neither increases the runtime nor space complexity.

5.2.2 SPARSE – Sparsifying simultaneous alignment and folding of RNA

In this section, we will use the in-loop probabilities that were introduced in Chapter 3 to
sparsify the PARSE algorithm, resulting in the algorithm SPARSE. Similar to ExpaRNA-P,
SPARSE does not fill whole dynamic programming matrices, but restricts the recursions to
matrix cells that can contribute to a probable solution. All necessary definitions can be found
in Chapter 3. A sequence position is denoted by a “prime”, e.g. i′, and a position in the
sparsified matrix by a “bar”, e.g. (x̄, ȳ). By applying fixed thresholds θ1, θ2 and θ3 to the in-
loop probabilities, we do not optimize over all structure alignment triples (A, R, T) but restrict
the search to probable ones in the structure ensemble (cf. Definition 5.3).

Definition 5.3 (Sparse structure alignment triple)
Given fixed thresholds θ1, θ2, and θ3 (with θi > 0 for i ∈ {1, 2, 3}), a sparse structure alignment
triple is a structure alignment triple (A, R, T), cf. Definition 5.2, that satisfies:

1) for all (i, j) ∈ R : Pr [(i, j)|A] ≥ θ1 and for all (k, l) ∈ T : Pr [(k, l)|B] ≥ θ1

2) for all (j′, l′) ∈ A with (i, j) = parentR(j′), (k, l) = parentT (l′) and j′, l′ unpaired:
Pr [j′∈ loop(i, j)|A] ≥ θ2 and Pr [l′∈ loop(k, l)|B] ≥ θ2

3) for all (i′, j′) ∈ R with (i, j) = parentR(i′, j′) : Pr [(i′, j′)∈ loop(i, j)|A] ≥ θ3 and for all
(k′, l′) ∈ T with (k, l) = parentT (k′, l′) : Pr [(k′, l′)∈ loop(k, l)|B] ≥ θ3

5.2. Optimizing Sankoff-style alignment 75

Note that all external bases and base pairs are implicitly filtered with the probability to be
external (cf. Definition 3.1). In SPARSE, we restrict the recursions to compute the best sparse
structure alignment triple. Thus, for a particular base pair (i, j) only candidate positions
(cf. Definition 3.2), i.e. either significant single-stranded positions within (i, j) or positions
that are contained in a significant helix of (i, j), need to be considered. The entire row or
column can be skipped, if the corresponding sequence position is no candidate. This enables a
novel form of sparsification, the ensemble-based sparsification (cf. Chapter 3). Consequently,
adjacent matrix positions are not necessarily adjacent on the sequence level. If this is the case,
an implicit gap is introduced. But as opposed to ExpaRNA-P, for each skipped row or column,
the appropriate gap cost need to be added but an arbitrary number of those implicit gaps can
be introduced. For sequence A, the number of gap positions that lie in between a matrix index
x̄ and a sequence position i′ with posA(i,j)(x̄) < i′ (see Equation 3.4) is calculated by

gapsA(i,j)(x̄, i
′) = (i′ − posA(i,j)(x̄)− 1) (5.2)

Navigating through the dynamic programming matrices is enabled by the additional data
structures defined in Section 3.5. For instance, after considering a base pair match, the valid
matrix position (x̄, ȳ) before the left ends i′ and k′ of the base pairs can be identified by
mat-pos-befijkl(i′, k′), cf. Equation 3.4. Let i′′ = posA(i,j)(x̄) and k′′ = posB(k,l)(ȳ). Then this
means that the entire subsequences Ai′′..i′ and Bk′′..k′ cannot be aligned and have to be inserted
or deleted. Thus, if we go from one matrix position to the adjacent one, we have to account
for the potentially introduced gaps on the sequence level. In the given example, we consider
gapsA(i,j)(x̄, i

′), the number of gaps for sequence A, and gapsB(k,l)(ȳ, k
′) for B.

Furthermore, we incorporate the probability cutoffs of the in-loop probabilities into the recur-
sions (see Figure 5.7). First of all, we filter all base pairs in PA and PB with threshold θ1 and
use only these constrained sets within the recursions. Furthermore, matrices DS are computed
only for those base pair matches. Filters based on the in-loop probabilities (condition 2) and
3) in Definition 5.3) are applied to the base match and base pair match case.

Previous PMcomp-like implementations as, for example, LocARNA [WRH+07], RAF [DFB08],
and FoldAlignM [THG07] allow to predict a base pair in one sequence only if it is covered.
Thus, they only keep track of one structure, the consensus structure, for both sequences. But
to reasonably apply sparsification for sequence-structure alignment, we need to identify the
enclosing loop for each sequence separately as filtering according to the consensus structure
does not yield the desired results (see Figure 5.8). In Figure 5.8, if a probable base pair in
one sequence could not be predicted as it does not have a corresponding partner in the other
sequence (base pair a2) everything that lies underneath this base pair will be filtered according
to a “wrong” parent base pair (a1) and thus our sparsification technique would not correctly
identify the non-candidate positions.

76 Chapter 5: Fast and accurate simultaneous alignment and folding

DS(ij, kl) = max

M ijkl(nA − 1, nB − 1)

+γ · (gapsA(i,j)(nA − 1, j) + gapsB(k,l)(nB − 1, l))
IijklA (nA − 1) + γ · gapsA(i,j)(nA − 1, j)
IijklB (nB − 1) + γ · gapsB(k,l)(nB − 1, l)

M ijkl(x̄, ȳ) = max

if Pr [j′∈ loop(i, j)|A] ≥ θ2 and Pr [l′∈ loop(k, l)|B] ≥ θ2

M ijkl(x̄− 1, ȳ − 1) + σ(j′, l′)
+γ · (gapsA(i,j)(x̄− 1, j′) + gapsB(k,l)(ȳ − 1, l′))

M ijkl(x̄, ȳ − 1) + γ · gapsA(i,j)(ȳ − 1, l′)
M ijkl(x̄− 1, ȳ) + γ · gapsB(k,l)(x̄− 1, j′)
for all (i′, j′) ∈ PA, (k′, l′) ∈ PB

with
Pr [(i′, j′)|A] ≥ θ1,Pr [(i′, j′)∈ loop(i, j)|A] ≥ θ3 and
Pr [(k′, l′)|B] ≥ θ1,Pr [(k′, l′)∈ loop(k, l)|B] ≥ θ3 and
(p̄, q̄) = mat-pos-bef ijkl(i′, k′)

M ijkl(p̄, q̄) +DS(i′j′, k′l′) + ΨA
i′j′ + ΨB

k′l′

+γ · (gapsA(i,j)(p̄, i
′) + gapsB(k,l)(q̄, k

′))

IijklA (x̄) = max

IijklA (x̄− 1) + γ · gapsA(i,j)(x̄− 1, j′)
for all (i′, j′) ∈ PA

with Pr [(i′, j′)|A] ≥ θ1 and Pr [(i′, j′)∈ loop(i, j)|A] ≥ θ3

(i′ − i+ 1)γ +DS(i′j′, kl) + ΨA
i′j′

IijklB (ȳ) = max

IijklB (ȳ − 1) + γ · gapsB(k,l)(ȳ − 1, l′)
for all (k′, l′) ∈ PB

with Pr [(k′, l′)|A] ≥ θ1 and Pr [(k′, l′)∈ loop(k, l)|B] ≥ θ3

(k′ − k + 1)γ +DS(ij, k′l′) + ΨB
k′l′

j′ = posA(i,j)(x̄), l′ = posB(k,l)(ȳ)

nA =
∣∣∣posA(i,j)

∣∣∣ , nB =
∣∣∣posB(k,l)

∣∣∣
Figure 5.7: Recursion equations for SPARSE. SPARSE recursions for computing the best

sparse structure alignment triple on sparsified matrices.

5.2. Optimizing Sankoff-style alignment 77

 GUUUACGUAAC

 C-GUAC-UU-G

Figure 5.8: Sparsification needs loop indels. Possible base
pairs for A are a1, a2 and a3, and for B b1 and b2. If
a2 is probable, the probability that a3 is contained in
the loop closed by a1 in A is low. Thus, to reasonably
apply sparsification, a2 has to be predicted without
being matched to a base pair in B as a3 is much more
likely to be in the loop closed by a2 due to stacking
effects. Figure adapted from [WOM+15].

Due to the filtering by fixed thresholds θ1, θ2, and θ3, the dynamic programming matrices
become sparse and thus our novel tool achieves quadratic time and space complexity (cf. The-
orem 5.1).

Theorem 5.1 SPARSE finds the optimal sparse structure alignment triple in O(n2) time and
space.

Proof. Analogously to the argument in ExpaRNA-P, there are O(n2) combinations i, j, k, l, j′,
l′ satisfying the candidate condition from Definition 3.2. Thus, the time and space complexity
of computing all entries M ijkl(x̄, ȳ), IijklA (x̄), IijklB (ȳ) is O(n2). Due to Proposition 3.1 (linear
number of base pairs), matrix DS has only O(n2) entries and matrix entries from all matrices
can be computed in constant time.

Albeit this does not affect the complexity, we can apply another optimization strategy that was
already utilized in LocARNA. During the computation ofM matrices, overlapping subsequences
are considered multiple times if the left ends of the base pairs coincide. Thus matrices M ijkl

and M i′j′k′l′ can be combined if i = i′ and j = j′. Here, filling one M matrix suffices for
each i k combination that combines the computation of all M ijkl for all j and l. A position
is considered if it is a candidate in any of these matrices. If a position is a candidate for
different matrices that can be combined, we safe computation time in practice. Note that
applying this technique guarantees that all sparse structure alignment triples are considered
during the computation, but does not necessarily prohibit non-sparse solutions. Due to the
combined computation of different M matrices, a base can be matched that is a candidate for
an (unpredicted) base pair (i, j) and even if it is no candidate for (i, j′) can still be matched
within this base pair. It usually suffices in practice to find some (not necessarily sparse) triple
whose score is at least as high as the score of any sparse triple.

In ExpaRNA-P (Chapter 4), we do not use this optimization strategy but compute a individual
matrix for each base pair match. ExpaRNA-P identifies sequence-structure motifs, termed
EPMs, in entire Boltzmann-distributed structure ensembles of two RNAs. These are used in a
second step to speed up LocARNA, an algorithm for computing sequence-structure alignments
of RNAs. Crucially, we need to make sure to identify probable EPMs that can serve as

78 Chapter 5: Fast and accurate simultaneous alignment and folding

reliable anchors for a subsequent LocARNA run. By filling one matrix per base pair match, we
assure that each matched position fulfills the filter according to the in-loop probabilities of the
predicted parent base pair and is thus probable to occur within the predicted structure.

5.2.3 Multiple alignment

In order to efficiently construct a multiple alignment based on the pairwise SPARSE algorithm,
we apply the widely used progressive strategy. First, we create a guide tree based on pairwise
alignments computed by SPARSE. In the progressive phase, we compute consensus dot plots
for subalignments with RNAalifold [HFS02, BHW+08] and use SPARSE to align the subalign-
ments. We describe the procedure for aligning N sequences with maximal length n. Since
all in-loop probabilities and additional data structures (cf. Chapter 3) can be precomputed
separately for each input sequence, in total O(Nn3) time is needed. All O(N2) many pairwise
alignments between all pairs of the input sequences can be calculated in O(N2n2), from which
the guide tree is constructed by UPGMA [GM07] in O(N2) time. In principle, RNAalifold can
be seen as an extension of the McCaskill algorithm [McC90] to multiple sequences and com-
putes the mfe structure and partition function for a given multiple sequence alignment. For
the progressive phase, we extended RNAalifold to calculate in addition the in-loop probabilities
without changing the time complexity of O(n3). In each step during the progressive phase, a
(pairwise) alignment of two subalignments is computed in O(n2) time. The progressive phase
takes O(Nn3 + Nn2) ∈ O(Nn3) time in total as there are N − 1 steps necessary to compute
the whole multiple alignment. The final multiple alignment pipeline requires O(Nn3 +N2n2)
time whereas the corresponding pipeline based on LocARNA needs O(N2n4) time.

5.3 Results

We embedded our C++ implementation of SPARSE in the LocARNA framework [WRH+07]. We
use from BRAliBase 2.1 [WMS06, GWW05] the pairwise benchmark set k2 and the three-way
alignment set k3. For SPARSE we used the following parameter configuration: θ1 = 0.001,
θ2 = 0.00005, θ3 = 0.0001, βbase = −900, γbase = −3500, βloop = −900 and γloop = −350.2

5.3.1 Comparison with other tools

To evaluate the performance of SPARSE, we benchmarked it against LocARNA [WRH+07]
and RAF [DFB08] with respect to runtime and alignment quality.3 Table 5.1 shows that
SPARSE and RAF achieve a considerable speed up over LocARNA of about 4 on benchmark

2The parameters were selected ad-hoc without parameter learning.
3We used default parameters for LocARNA and RAF.

5.3. Results 79

(a)

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Sequence Identity

S
P

S

20 30 40 50 60 70 80 90

LocARNA
SPARSE
RAF

(b)

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Sequence Identity

S
P

S

20 30 40 50 60 70 80 90

LocARNA
SPARSE
RAF

Figure 5.9: Comparison with sequence-structure alignment methods. The alignment
quality measured by the SPS score is displayed for different sequence identity ranges
as lowess curves [Cle81] for benchmark set (a) k2 and (b) k3. Figure adapted
from [WOM+15].

80 Chapter 5: Fast and accurate simultaneous alignment and folding

Table 5.1: Comparison of RNA alignment methods. Total runtime and speed up of
pairwise alignments across BRAliBase 2.1 set k2. The speed up is measured relative
to LocARNA. Table taken from [WOM+15].

Tool Total time (s) Mean Time (s) Speedup (vs. LocARNA)
LocARNA 13400 1.49 1.0

SPARSE 3600 0.40 3.7

RAF 3200 0.36 4.2

set k2. To measure the alignment quality, we compare for each instance the derived alignment
with the known reference alignment using the tool compalignp [WMS06]. If the computed
alignment perfectly matches the reference alignment, a SPS score of 1 is assigned whereas
alignments without any correspondence receive a SPS score of 0. We show in Figure 5.9a
the dependency of the sequence identity on the SPS score, visualized by lowess curves for
the different tools [Cle81]. Clearly, RAF’s and SPARSE’s curve show a completely different
behavior: whereas SPARSE maintains a high alignment quality over the entire range of sequence
identities, RAF’s performance breaks down for lower sequence identities. This dramatic drop
for RNAs with sequence identities below 60% resembles pure sequence alignment methods and
might be a consequence of the strong sequence-based heuristics applied in RAF. The quality
difference between LocARNA and SPARSE remains largely constant and both tools achieve
a high alignment quality even for the “hard” instances with low sequence identity. To test
the performance of our multiple alignment pipeline, we additionally benchmark the tools on
benchmark set k3. The evaluation in Figure 5.9b show that all tools behave comparably on
multiple alignment instances.

To summarize, it should be noted that RAF and SPARSE show a huge difference regarding the
alignment quality while obtaining a similar speed up.

5.3.2 Flexible structure prediction of SPARSE improves folding accuracy

In a second experiment, we evaluate the impact of the more flexible structure prediction model
in SPARSE for benchmark set k2. Recall that in SPARSE, we integrate the full Sankoff model by
allowing loop insertions and deletions and thus predicting individual but compatible structures
for the two input sequences. All previous lightweight approaches like PMcomp or LocARNA
compute only a single consensus structure. The accuracy of each predicted structure is mea-
sured by Matthews correlation coefficient (MCC) [Mat75] by comparing it with the constrained
folded reference consensus structure of the corresponding sequence from Rfam [BDE+13]. We
compare SPARSE and LocARNA to isolate the effect of enhanced flexibility and sparsification
since these two tools behave as similar as possible aside from that. The distribution of MCC

5.3. Results 81

Sequence Identity

M
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

21 − 40 41 − 60 61 − 80 81 − 100

SPARSE
LocARNA

Figure 5.10: Accuracy of structure prediction. Quality of structure prediction measured
by Matthews correlation coefficient (MCC) [Mat75] on benchmark set k2 for
SPARSE and LocARNA for different sequence identity ranges. The whiskers of
the boxplots are extended up to one interquartile range from the boxes. As the
notches of the two boxplots do not overlap, there is strong evidence for an im-
proved structure prediction ability [CCKT83] of SPARSE for all sequence identity
ranges. Figure adapted from [WOM+15].

values is visualized as boxplot for different sequence identity regions in Figure 5.10. Compared
with LocARNA, the benefit of SPARSE’s flexible model is reflected in a strong evidence for
improved structure prediction quality, visualized by the non-overlapping notches of the box-
plots [CCKT83]. Notably, this is independent from the sequence identity of the benchmark
instance.

As a concrete example for such a case, we compare the alignment and folding of two RNAs from
family gcvT by LocARNA and SPARSE (see Figure 5.11). This example illustrates the benefits
of incorporating loop deletions and insertion. Since LocARNA disallows loop deletions and
insertions, it cannot predict structure in deleted regions; consequently, it predicts large unstable
loops. In contrast, SPARSE supports loop deletions (represented by ’ ’ in the alignment) and
thus predicts a long stem in sequence A, which is deleted in sequence B. Thereby, the remaining
parts can also form a stable structure with short loop regions. This behavior is reflected by the

82 Chapter 5: Fast and accurate simultaneous alignment and folding

(a) LocARNA
-.......(((.............((.......))......(((....((((...(((...)))...))))..)))..........................)))..

A -CAACUCUGGAGAGUGUUUACGAAGGUAAACCACCCACGAAGCAAAUAUUUGUUCUUUUUUGAAGAAUGAAUAUGCAACUUUCUGGUAUAAGGACAGAGAUUUCUUC

B UCGACCCUCGCGGGAGACAUCGGGAUU----CGAUCCCGAGGCCGA-AGGCGCAACCGCCCCGGAAACGCUCAGGCAA-----------AAGGACCG----CGCGGG

........(((.............((.----..))......(((..-.((((...(((...)))...))))..)))..-----------........----.)))..

(b) SPARSE
----.((-(((((......((((((....-)))))).(((...((((...(((((((((((((...)))))))))))))....))))..))).......))))).)).....

A ----CAA-CUCUGGAGAGUGUUUACGAAG-GUAAACCACCCACGAAGCAAAUAUUUGUUCUUUUUUGAAGAAUGAAUAUGCAACUUUCUGGUAUAAGGACAGAGAUUUCUUC

B UCGACCCUCGCGGGAGACAUCGGGAUUCGAUCCCGAGGCCGAAGGCGCAACCG__________CCC__________CGGA-AACGCUCAGGCAAAAGGACCGCGCGGG----

.....((.(((((......((((((.....)))))).(((...((((...(((__________...__________))).-..))))..))).......))))).)).----

(c) LocARNA
CAA

C
U
C

U G
G
AGAGUGUU

U
A

C
G
A
A
GG

UA
A
A
C C A

C C

C
A

C
G

A A G
C
A

A
A
UAU

U
U
G

U
U

C U
U
U
U U

U
G

A
A

G
A

AU
G

A
A

U
AU

G
CAACUU

U
C
U
G
G
U
A
U
A
A

G
G

ACAGAGAUUU
C
U

U
C

UCGA
C
C
C

U C
G
CGGGAGACAU

C
G
G
G
AUU

C G
A U

C
C C G A G

G
C

C
G
A A G

G
C

G
C
A A C

C
G
C C

CC
G

G
A

AAC
G

C
U
C

AG
G

C
A
A
A
A
G

G
A

C
CGCG

C
G

G
G

(d) SPARSE

C
A
A
C
U
C
U
GG

AGA
G UGUUUAC

GA
A

G G U A A A C

C A
C
C

C
A
CG

A
A
G

C
A

A A
U
A
U
U
U
G
U
U
C
U
U
U
U U

U
G

A
A

G
A

A
U

G
A

A
U

A
U

G
C

A
AC

U
U

U
C

UG
G

UAU
A
A
G

GAC
A
G
A
GA
U
U U

C
UUC

UCG
A
C C

C
U

C
G
C
G
GGAGACAUCGGGAU

U
C

G A
U C C C G A

G G
C

C
G
A A G

G
C

G
C
A A C

C
G
C C

CC
G

G
A

AAC
G

C
U
C

AG
G

C
A
A
A
AGGAC

C
G
C
G
C

G
G

G

Figure 5.11: Example from gcvT family where SPARSE improves LocARNA’s struc-
ture prediction. The sequence-structure alignments computed by LocARNA and
SPARSE are shown in (a) and (b). Subfigures (c) and (d) visualize the predicted
structures projected on both input sequences by RNAplot [LBHZS+11]. Since
LocARNA cannot predict structure in deleted regions, large unpaired regions are
predicted in the multiloop, which destabilize the structures. The more flexible
model in SPARSE allows loop deletions and insertions (represented by ’ ’ in the
alignment) and thus can align stems of varying length; in this example, the stems
at the bottom. This results in smaller loops and thus more stable structures.
Figure adapted from [WOM+15].

5.4. Discussion 83

MCC prediction quality scores: LocARNA achieves a MCC of 0.51, which SPARSE improves to
0.94.

5.4 Discussion

We presented PARSE, the first algorithm that combines the original flexibility of Sankoff’s
algorithm with PMcomp’s lightweight energy model. Integrating our novel ensemble-based
sparsification in PARSE, results in the sparsified variant SPARSE. The key is to identify likely
structural features based on the probability that a base or base pair occurs in a specific loop
within the structure ensemble. To apply reasonable filtering, the integration of loop deletions
and insertions into the structure prediction model is crucial. Ensemble-based sparsification
cannot be directly implemented in previous PMcomp-like implementations like LocARNA, RAF
and FoldAlignM as these tools only keep track of a single predicted structure, the consensus
structure, for both sequences. SPARSE, on the other hand, predicts individual but compat-
ible structures for the input sequences, which is an important prerequisite to calculate the
in-loop probabilities for ensemble-based sparsification. SPARSE is the first tool that solves the
simultaneous alignment and folding problem in quadratic time without the need to employ
sequence-based heuristics that could compromise the alignment quality. This makes SPARSE’s
runtime equivalent to the currently fastest tool RAF, which also manifests itself in an over-
all speed up of around 4 over LocARNA for both tools on the pairwise benchmark set k2
of BRAliBase 2.1. Unlike RAF that uses sequence-based heuristics to speed up computation,
SPARSE achieves high alignment quality for all sequence identity regions with merely a con-
stant offset compared with LocARNA. The superiority of SPARSE over RAF is also evident
for the benchmark set of three-way alignments in BRAliBase 2.1. Thus, we also validated that
the results for pairwise alignment can be transfered to multiple sequence-structure alignment.
Furthermore, we demonstrated that the enhanced structure prediction model of SPARSE sig-
nificantly improves the structure prediction over LocARNA. Notably, this is the case for all
sequence identity regions of the benchmark instance. We provided a concrete example for
RNA family gcvT that clearly shows the advantages of predicting individual but compatible
structures for the input sequences. Since SPARSE supports loop insertions and deletions, stems
of different sizes can be matched and the predicted structures are overall more stable. This
is also reflected in a drastically improved structure prediction quality measured by Matthews
correlation coefficient (MCC).

CHAPTER 6

General extension for sparsification in ADP

In this chapter, we introduce a novel approach that combines for the first time the well-
established concept of dynamic programming (DP) with the relatively recent sparsification
technique. For that, we propose a novel sparsification operator that is not restricted to a
specific recursive structure nor objective function. The description in this chapter is based
on [MSZ11].

DP is a widely used technique in bioinformatics and other research areas to efficiently compute
solutions to problems associated with a search space of exponential size. If the optimal solution
can be computed from optimal solutions of subproblems, i.e. Bellman’s principle of optimality
holds (cf. Section 1.3.1), DP can be applied to find the optimal solution in polynomial time. A
DP algorithm is defined by recursion equations and a scoring scheme that defines how solutions
are evaluated. In a typical DP algorithm, the scoring scheme is embedded in the recursion. In
the case of sequence alignment, the recursions (defined by Equation 2.5) already include the
scoring scheme where each base match is scored by σ(i, k) and each gap by γ.

Although in theory, each polynomial time algorithm is considered efficient, polynomial time
algorithms can still be too slow in practice, especially for large problem sizes. Sparsification
was applied to numerous algorithms in the field of RNA bioinformatics to achieve an even
faster computation, both in theory and practice without compromising optimality [WZZU07,
ZUGVWS08, ZUGVWS10, BTZZU11, SMW+10, MSW+10]. The basic idea of sparsification
is to identify those parts of the search space that can be ignored since they cannot contribute
to an optimal solution anymore (see 1.3.2 for a detailed description). Note that in our novel
ensemble-based sparsification technique introduced in Chapter 3, we discard subsolutions that
are unlikely in the structure ensembles of the RNA sequences.

Algebraic dynamic programming (ADP) is a formalism that allows defining DP algorithms
over sequence data in a simple, declarative, and formally precise way [GMS04]. ADP sepa-

86 Chapter 6: General extension for sparsification in ADP

rates the search space defined by the recursive structure and the scoring scheme. This is a
main feature as the algorithms defined in ADP can be easily re-used by modifying the scoring
scheme without having to change the recursive structure. As there is no explicit separation in
a usual DP algorithm, the recursions itself have to be modified if a different scoring scheme is
applied. As ADP is formalized on a higher level, the need for typically error-prone subscripts
in the definition of the recursions is eliminated. ADP is easy to use as there also exist compil-
ers [GS06, SJG11] that yield automatically generated implementations for ADP programs. In
addition, the ADPfusion library provides efficient code directly in the functional programming
language Haskell [HzS12]. As ADP is very general, it has been used to develop tools for a
variety of different tasks like RNA shape analysis (RNAshapes [SVR+06]), prediction of RNA
pseudoknot structure (pknotsRG [RSG07]), or the prediction of microRNA/target duplexes
(RNAhybrid [RSHG04]).

Contributions While it is intuitively clear that all sparsification approaches mentioned above
are somehow related, they have not been characterized in term of a common framework that
highlights their similarities and differences. For the first time, we combine the two techniques
ADP and sparsification. For that, we define a general sparsification operator that is incor-
porated into the ADP framework. This leads to a more general understanding of the entire
concept of sparsification and allows to quickly implement sparsified variants of DP algorithms
formulated in ADP. So far, sparsification has only been applied to problems with a simple
choice function based on minimization or maximization. We show that our novel sparsification
operator generalizes effortlessly to advanced choice functions, such as the enumeration of sub-
optimal solutions. We analyze the number of split points that need to be examined during the
recursive computation for random RNA sequences of different length. Crucially, we show that
the time savings of the sparsified variants increase with the input size, such as the length of the
input sequence or the number of enumerated suboptimal solutions. To keep the presentation
simple, we show how to apply the novel sparsification operator to the Nussinov algorithm. It
can be used analogously for more complex recursions. We describe the subsequent algorithms
for a sequence A of length n.

6.1 A quick overview on ADP

DP algorithms are usually described with recursion equations. Those equations contain all
essential aspects of the program including the recursive structure of the problem decompo-
sition, the scoring scheme, and the question which sub-results should be tabulated. ADP is
an alternative way to describe DP algorithms over sequence data, which explicitly separates
all those aspects. Thus, each ADP program consists of two ingredients: the grammar and
the algebra. The grammar defines the recursive structure and the algebra the scoring scheme.

6.1. A quick overview on ADP 87

We introduce the concepts of ADP by showing an example ADP program for the Nussinov
algorithm [NPGK78]. A detailed description of ADP can be found in [GMS04].

An ADP program for the Nussinov algorithm (cf. Equation 2.1) would consist of these four
grammar rules:

N ′ → nil

ε

| single

a

| unpaired

N ′ a

| paired

N ′ a N ′ â

. . . h (6.1)

representing the two base cases and the two recursive cases. The grammar is similar to a
context free grammar (CFG) but with trees on the right hand side of the rules. If only the
leaves of the trees are considered, a normal context free grammar is obtained. In the example,
the grammar has a nonterminal symbol N ′ and terminal symbols a and â representing arbitrary
bases such that (a, â) is a valid base pair.

The choice function h describes the optimization criterion, i.e. which of the parses are the
solution(s). The algebra of the ADP program evaluates a parse and thus represents the scoring
scheme. For the Nussinov algorithm, the algebra just counts the number of base pairs that are
introduced in the “paired” case and the choice function h maximizes the score:

nil() = 0 unpaired(x, a) = x h(X) = maxX

single(a) = 0 paired(x, a, y, â) = x+ y + 1 (6.2)

The inner nodes of the trees are functions of the algebra. During the run of an ADP program,
the input sequence is parsed as in a usual CFG. But since the right hand side of the grammar
rules are trees, each derivation constructs a tree instead of a string by recursively replacing
each nonterminal by the subtree derived by it. The input sequence “CAG” has, for example,
different parses (see Figure 6.1) representing the structure without base pairs and the one with
base pair C−G. Each such tree can be interpreted as a term whose evaluation yields some
score.1 In this example, the first tree evaluates to 0 and the second one to 1 since the trees
represent structures with 0 and 1 base pair, respectively. The choice function h takes as an
argument a set X, which represents a set of parses (or more precisely a multiset of their scores)
and returns the optimal score(s). For the algebra in Equation 6.2, the choice function selects
the maximal score. In most cases the result is a singleton set, but ADP programs can also, for
example, enumerate all possible parses or pick the best 10.

When the choice function is applied at the very end, after the parser has constructed all possible
parses, the ADP program behaves like a simple generate and test program that enumerates
all possible structures and then picks the one with maximum number of base pairs. But as

1Note that this two-step procedure is crucial for the separation of the search space and the evaluation and
cannot be modeled by a context free grammar.

88 Chapter 6: General extension for sparsification in ADP

(a)

unpaired

unpaired

single

C

A

G

(b)

paired

nil

ε

C single

A

G

Figure 6.1: Example for parses. Two parses of the input “CAG” for the grammar given in
Equation 6.1. The parses in (a) and (b) represent a structure without base pairs
and with base pair C−G, respectively. Evaluation with the algebra in Equation 6.2
yields a score of 0 and 1 for the parses in (a) and (b), respectively. Figure taken
from [MSZ11].

CFGs can be efficiently parsed by the Cocke-Younger-Kasami algorithm (CYK), this can be
turned into efficient dynamic programming by interleaving a CYK like grammar parser with
the application of the choice function. This is indicated by adding “. . . h” to the right-hand
side of a grammar rule. More precisely, the CYK parser runs as usual recursively computing
for all subsequences from some i to some j and each nonterminal X the set of all possible
parses. But instead of storing in a table entry X(i, j) the set of all parses, the parses are first
evaluated to their score and then the choice function is applied such that only the (multisets
of) optimal scores need to be stored in the table. Assume, for example, that “CAG” is a part of
some longer input sequence. Then only the second possible parse for “CAG” (cf. Figure 6.1b)
would be considered when recursively constructing parses for any larger parts of the input, as
its score is the maximum among the two possible parses of the sequence.

Separating the recursion equations (grammar), and the scoring scheme (algebra), offers a great
advantage as different algebras can be defined without having to adjust the recursion equations.
Thus, ADP is very modular. For the Nussinov example, an additional algebra can be defined
by

nil’() = ” unpaired’(x, a) = x+ ’.’ h′(X) = X

single’(a) = ’.’ paired’(x, a, y, â) = x+ ’(’ + y + ’)’ (6.3)

(where + denotes string concatenation) to enumerate all possible structures as dot bracket
strings instead of computing the structure with maximum number of base pairs. In this
example, the choice function does not select the maximal score, but considers the scores of all
parses to enumerate all structures. In our example, the two parses in Figure 6.1 would evaluate
to ’...’ and ’(.)’, representing the two possible structures for the sequence CAG.

6.2. Sparsified variants of the Nussinov algorithm 89

6.2 Sparsified variants of the Nussinov algorithm

Before we introduce our novel sparsification operator, we describe how sparsification can be
applied to the Nussinov algorithm. In general, sparsification allows to completely ignore regions
of the search space if it is guaranteed to find a solution outside these regions. Thus, by
skipping non relevant parts of the search space, the runtime of an algorithm is improved without
sacrificing optimality. For that, we introduce an alternative recursive decomposition that
enables sparsification for Nussinov’s algorithm (Figure 6.2). According to this decompositions,
any RNA structure (represented by N) can either be split into two parts (represented by S)
or is a closed structure (represented by C) that consists either of a single base or an outermost
base pair with an arbitrary structure below.

Recall that we evaluate for each nonterminal for subsequence Ai..j the set of parses, evaluate
them according to the evaluation algebra and select with respect to the choice function. For the
ADP formulation of Nussinov’s algorithm (see Figures 6.2a,b), X(i, j) = {xij} thus contains the
best score xij that is obtained when Ai..j is parsed by nonterminal X ∈ {N,S,C}.2 Figure 6.2c
shows the corresponding DP recursions.

In the case of Nussinov’s algorithm, the basic idea of sparsification is to reduce the number of
split points that need to be examined in grammar rule S (cf. Figure 6.2a). Crucially, this will
be accomplished without sacrificing optimality.

Definition 6.1 ((Optimal) split point [WZZU07, BTZZU11])
Let N(i, j) = {nij}, S(i, j) = {sij} and C(i, j) = {cij} be defined by the grammar and algebra
in Figures 6.2a,b. A split point q (i < q ≤ j) for Ai..j partitions the subsequence Ai..j into two
subsequences Ai..q−1 and Aq..j . A split point is called optimal if sij = niq−1 + cqj .

To give a basic idea about sparsification, we give a simple, straightforward example. A naive
evaluation of the recursions defined in Figure 6.2 would consider all possible split points q for
each subsequence Ai..j . But many of these split points cannot contribute to the solution as
a = Aq and â = Aj have to form a valid base pair in grammar rule C. This suggests that a lot
of split points do not have to be inspected without sacrificing the optimal solution. Though
this gives a considerable speedup in practice, the theoretical complexity is not reduced. We
review in the following two main sparsification criteria – namely the OCT and STEP criterion
– for RNA structure prediction that were introduced in [WZZU07, BTZZU11]. Both criteria
lower the time complexity by reducing the number of split points that need to be considered
in grammar rule S.

2 Note that ADP uses the set notation to keep the description as universal as possible and to allow representing
choice functions other than maximization or minimization (cf. Equation 6.3).

90 Chapter 6: General extension for sparsification in ADP

(a)

N → nil

ε

| C | S . . . h

S → split

N C

. . . h

C → single

a

| pair

a N â

. . . h

(b)

nil() = 0
split(x, y) = x+ y

single(a) = 0
pair(a, x, â) = x+ 1

h(X) = maxX

(c)

N(i, j) = max
{
S(i, j)
C(i, j)

S(i, j) = max
q with
i<q≤j

N(i, q − 1) + C(q, j)

C(i, j) =
{
N(i+ 1, j − 1) + 1 if (i, j) valid base pair
−∞ otherwise

Initialization:
S(j, j − 1) = −∞
C(j, j − 1) = 0

}
for all 1 < j ≤ n

S(j, j) = −∞
C(j, j) = 0

}
for all 1 ≤ j ≤ n

Figure 6.2: Nussinov variant suitable for sparsification. ADP formulation with the gram-
mar displayed in (a) and the algebra in (b). Any RNA structure (represented by
N) can either be split into two parts (represented by S) or is a closed structure
(represented by C) that consists either of a single base or an outermost base pair
with an arbitrary structure below. (c) Corresponding dynamic programming recur-
sions including initialization. Note that the single base case is covered implicitely
in S(i, j) with split point q = j, where C(j, j) is assigned a score of 0 (no base
pairs) in the initialization. Figure adapted from [MSZ11].

6.3. A general extension for sparsification in ADP 91

6.2.1 OCT sparsification

We first study the OCT criterion that introduces an additional constraint into the recursive
computation.

Definition 6.2 (OCT criterion [WZZU07, BTZZU11])
A subsequence Ai..j fulfills the optimally co-terminus (OCT) criterion if i = j or if every
optimal folding of it contains the base pair (i, j), i.e. for C(i, j) = {cij} and S(i, j) = {sij}
(defined by Figures 6.2a,b) it holds cij > sij .

One can show that there is an optimal split point q for Ai..j such that Aq..j fulfills the OCT
criterion. Here we just give an intuitive idea why this holds; the full proof can be found
in [WZZU07, BTZZU11]. Suppose q is an optimal split point for Ai..j . If there exist another
optimal split point q′ > q for Ai..j , it is also an optimal split point for Aq..j . Consequently,
Aq..j does not fulfill the OCT criterion. In this case we do not need to consider the split point
q in S. If we however pick q to be the rightmost optimal split point, by definition there exists
no optimal split point q′ > q for Ai..j . One can show that this holds also for Aq..j such that
Aq..j fulfills the OCT criterion. By that, we know that there is at least one optimal split point
where the right fragment fulfills the OCT criterion and it suffices to check only those in S.

6.2.2 OCT-STEP sparsification

The number of split points that need to be considered in S can be even further reduced by
introducing the STEP criterion.

Definition 6.3 (STEP criterion [BTZZU11])
Let N(i, j) = {nij} be defined by the ADP program in Figures 6.2a,b. The subsequence Ai..j
fulfills the STEP criterion, if nij > nii + ni+1j . This is fulfilled if none of the optimal foldings
allow the split point i+ 1, or equivalently, if in every optimal folding base i is paired.

One can show that there is an optimal split point q for Ai..j such that either q = i + 1, or
Ai..q−1 fulfills the STEP and Aq..j the OCT criterion [BTZZU11].

6.3 A general extension for sparsification in ADP

After we have introduced all necessary basics for ADP and exemplified the principle of spar-
sification for RNA structure prediction, we describe how to incorporate sparsification into the
ADP framework. Up to now, sparsification has not been discussed as a well defined concept
but merely a collection of examples. The common basis of all those approaches [WZZU07,
ZUGVWS08, SMW+10, MSW+10] is to introduce specific tests at some places in the recursion

92 Chapter 6: General extension for sparsification in ADP

to determine whether the currently computed value is a candidate. For (some of the) sub-
sequent computations then only candidates need to be considered whereas other entries can
be safely ignored without affecting the correctness of the recursion. The test for candidacy
depends on the respective algorithm (e.g. the OCT and STEP criteria for RNA structure
prediction in Section 6.2). We propose the following general extension of ADP that is neither
limited to any fixed such criterion nor to a specific choice function h. Intuitively, C ′(i, j) in
Definition 6.4 is the part of C(i, j) that can be safely removed according to a certain sparsi-
fication criterion without compromising optimality, i.e. C ′(i, j) represents all non-candidate
entries.

Definition 6.4 (Sparsification operator)
Given an ADP program with nonterminals S and C and a choice function h. C(i, j) and S(i, j)
contain the result of parsing Ai..j by C and S, respectively, after scoring with the algebra and
selecting by the choice function h. Then, we define the novel sparsification operator \h by

[C \h S](i, j) := {C(i, j)−C ′(i, j) | h(C(i, j)] S(i, j)) = h((C(i, j)−C ′(i, j))] S(i, j))

and |C ′(i, j)| is maximal}.

C(i, j)] S(i, j) creates a multiset, i.e. if some entry occurs once in both S(i, j) and C(i, j) it
occurs twice in the result.

A new nonterminal Cc that represents only the candidates among the possible parses of C can
be obtained with a grammar rule Cc → C \h S. If h encodes maximization (as for example
for the Nussinov algorithm), then – for some subsequence Ai..j – Cc has a parse only if parsing
Ai..j by C evaluates better than parsing Ai..j by S. We will show in Section 6.3.1 that Cc

represents exactly the subsequences that fulfill the OCT criterion (with the definitions given
in Figure 6.3). But our novel sparsification operator also generalizes nicely to other choice
functions and also result sets of size greater one, as we will see in Section 6.3.3.

Note that there might be more than one set that satisfies the criterion for C ′(i, j) in Def-
inition 6.4. In this case, we assume that C ′(i, j) is selected arbitrarily among these sets.
Technically, also less strict forms of sparsification are conceivable where |C ′(i, j)| is not maxi-
mal. In typical cases, however, it is preferable to exploit the full extend of reduction that the
sparsification technique offers and thus to filter as strongly as possible.

6.3.1 Application to sparsified variants of Nussinov’s algorithm

In the following we show how the novel sparsification operator can be utilized to incorporate
the OCT and STEP criteria in the Nussinov algorithm (cf. Section 6.2). The bottleneck of the
algorithm lies in the computation of S where all split points need to be considered. Introducing
the above mentioned criteria significantly reduces the number of split points.

6.3. A general extension for sparsification in ADP 93

(a)

N → nil

ε

| Cc | S . . . h

S → split

N Cc

. . . h

C → single

a

| pair

a N â

. . . h

Cc → C \h S

(b)

nil() = 0
split(x, y) = x+ y

single(a) = 0
pair(a, x, â) = x+ 1

left(a, x) = x

h(X) = maxX

(c)

N → nil

ε

| Cc | S . . . h

S → L̄ | split

Lc Cc

. . . h

C → single

a

| pair

a N â

. . . h

Cc → C \h S
L̄ → left

a N

. . . h

Lc → N \h L̄

Figure 6.3: ADP formulation of Nussinov’s algorithm including sparsification. Sparsi-
fied Nussinov grammar with (a) OCT and (c) OCT-STEP sparsification and (b) the
corresponding grammar. The number of split points for S are significantly reduced
by applying sparsification. Cc has a parse for subsequence Ai..j only if Ai..j fulfills
the OCT criterion and Lc only if Ai..j fulfills the STEP criterion. Lc can be derived
by introducing a new nonterminal L̄ that covers the case where the left position is
unpaired. Figure adapted from [MSZ11].

For that, we introduce the new rule Cc → C \h S to sparsify C with our novel sparsification
operator (see Definition 6.4). The modified grammar of the original ADP formulation of
Nussinov’s algorithm (Figure 6.2) is shown in Figure 6.3a and the corresponding algebra in
Figure 6.3b. We show in the following that Cc represents the OCT fragments.

Proposition 6.1 Cc(i, j) = C(i, j) iff Ai..j fulfills the OCT criterion for h(X) = maxX.

Proof. As subsequences of length 1 cannot be split, S does not have a parse for those subse-
quences. Consequently, Cc(i, i) = C(i, i) follows directly from Definition 6.4 for all i. So let us
consider subsequences of at least length 2 and let C(i, j) = {cij} and S(i, j) = {sij}.

1. Ai..j fulfills the OCT criterion, i.e. cij > sij :
h(C(i, j)] S(i, j)) = h(C(i, j)) = h(C(i, j)− C ′(i, j)) 6= h(S(i, j))
implies C ′(i, j) = ∅ and thus Cc(i, j) = C(i, j).

94 Chapter 6: General extension for sparsification in ADP

2. Ai..j does not fulfill the OCT criterion, i.e. cij ≤ sij :
h(C(i, j)] S(i, j)) = h(S(i, j)) = h((C(i, j)− C ′(i, j))] S(i, j))
holds for C ′(i, j) = C(i, j) and thus Cc(i, j) is empty.

Thus, Cc has a parse for subsequence Ai..j only if Ai..j fulfills the OCT criterion and can be
used in rule N and, more importantly, in S (see Figure 6.3a).

The runtime of the algorithm can be further reduced by additionally integrating the STEP
criterion (cf. Definition 6.3). The grammar is displayed in Figure 6.3c and the corresponding
algebra in Figure 6.3b. For the split point q = i + 1, we need to introduce a new rule L̄

that covers the case where the left position is unpaired. The sparse table Lc (for left paired)
represents fragments where the left position is paired and can be created from L̄ by introducing
the new rule Lc → N \h L̄. We show in the following that Lc represents the STEP fragments.

Proposition 6.2 Lc(i, j) = N(i, j) iff Ai..j fulfills the STEP criterion for h(X) = maxX.

Proof. Let N(i, j) = {nij} and L̄(i, j) = {l̄ij}.

1. Ai..j fulfills the STEP criterion, i.e. nij > nii + ni+1j = l̄ij :
h(N(i, j)] L̄(i, j)) = h(N(i, j)) = h(N(i, j)−N ′(i, j)) 6= h(L̄(i, j))
implies N ′(i, j) = ∅ and thus Lc(i, j) = N(i, j).

2. Ai..j does not fulfills the STEP criterion, i.e. nij ≤ nii + ni+1j = l̄ij :
h(N(i, j)] L̄(i, j)) = h(L̄(i, j)) = h((N(i, j)−N ′(i, j))] L̄(i, j))
holds for N ′(i, j) = N(i, j) and thus Lc(i, j) is empty.

Thus, Lc has a parse for subsequence Ai..j only if Ai..j fulfills the STEP criterion. We know
that there exists an optimal split point q for Ai..j such that either q = i+ 1, or Ai..q−1 fulfills
the STEP and Aq..j the OCT criterion. Consequently, Cc and Lc can both be used in the
grammar rule for nonterminal S when we also check for fragments that are unpaired on the
left side (represented by L̄), see Figure 6.3c. This leads to a reduction in split points that need
to be considered during calculation.

6.3.2 Implementation

To implement the sparsification operator, the parser must be extended for grammar rules like
Cc → C \h S. Once table entries S(i, j) and C(i, j) = {b1, . . . , bk} are computed, Cc(i, j)
is computed as follows. We initialize Cc(i, j) = ∅ and check sequentially for each bx where
1 ≤ x ≤ k if

h(Cc(i, j)] {bx, . . . , bk}] S(i, j)) = h(Cc(i, j)] {bx+1, . . . , bk}] S(i, j)).

6.4. Results 95

If this condition holds, bx is discarded. If not, bx is added to Cc(i, j). This means that bx can
be discarded if it does not contribute to the solution when considering elements in S(i, j) and
all elements in C(i, j) that have not been removed, i.e. Cc(i, j)] {bx+1, . . . , bk}. If we assume
that the solution sets have constant length (usually even singleton sets), this check requires
constant time.

The main benefit of sparsification happens when Cc occurs on the right hand side of some
other grammar rule, e.g. the rule for S in Figure 6.3a. Usually, to compute S(i, j), the parser
would consider each of the linearly many possible split points q to combine N(i, q − 1) with
Cc(q, j). But if Cc is sparse, all q for which Cc(q, j) is empty can be discarded. The possibility
to go from one non-empty entry of Cc to the next one is hence essential to reduce the number
of split points q to be considered. To ensure a faster runtime as well, the next non-empty entry
has to be computed in constant time. To benefit from sparsification also in terms of space
complexity, Cc should be stored in some kind of sparse table data structure (and C should not
be stored at all). This can be achieved, for example, by representing the sparse table by lists
containing the non-empty entries of each individual row (or column).

6.3.3 Advanced choice functions

So far, sparsification has only been applied to simple maximization and minimization prob-
lems. However, Definition 6.4 generalizes naturally to more complex scoring schemes. In the
grammars of Figure 6.3 we can, for example, enumerate the k best suboptimal solutions by
changing the choice function h to choose – instead of the maximal score – the multiset of scores
of the k best solutions. In this case, by Definition 6.4, Cc(i, j) contains exactly the scores of
the suboptimally co-terminus structures in the sense that the structure is among the k best
structures and contains the base pair (i, j). This means that we keep exactly those solutions
that cannot be discarded based on the current available information. This keeps the tables
as sparse as possible but still guarantees that we can reconstruct the k best solutions using
standard back-tracing techniques.

6.4 Results

In order to evaluate the effectiveness of the sparsification approaches introduced in Section 6.2,
we extended the existing Haskell implementation of ADP [GMS04] with our sparsification op-
erator. Furthermore, we implemented the different Nussinov variants in order to measure their
degree of sparseness. Note that the Haskell implementation of ADP is intended as a flexible
and extensible platform for quick experiments and is not optimized for performance. There-
fore, this section is only a feasibility evaluation for which we used the Haskell interpreter hugs

96 Chapter 6: General extension for sparsification in ADP

Table 6.1: Number of split points for Nussinov variants. Average number of split points
over 100 random sequences (a) for finding the optimal solution and (b) for enu-
merating k suboptimal solutions for sequences of length 50. In the latter case, the
number of split point instances is the number of combinations of suboptimal so-
lutions at a split point. For both analyses, the average proportion of split points
examined by the sparse variants compared with the original Nussinov algorithm is
given in brackets. Table taken from [MSZ11].

(a)

Nussinov sparsification Average number of split points per sequence

of length 100 of length 200

none (Figure 6.2) 65288 510473
OCT (Figure 6.3a) 10620 (16.3 %) 53947 (10.6 %)
OCT-STEP (Figure 6.3c) 9430 (14.4 %) 43679 (8.6 %)

(b)

Nussinov sparsification Average number of split point instances per sequence

k = 1 k = 5 k = 10

none (Figure 6.2) 8573 128461 416778
OCT (Figure 6.3a) 2277 (26.6 %) 26032 (20.3 %) 77986 (18.7 %)
OCT-STEP (Figure 6.3c) 2124 (24.8 %) 17576 (13.7 %) 49595 (11.9%)

to measure the number of split points of the different Nussinov variants, Nussinov’s algorithm
without sparsification, with OCT sparsification and with OCT-STEP sparsification.

6.4.1 Sparsified variants of Nussinov’s algorithm

We took 100 random sequences of length 100 and 200 and folded them using our implementation
of the non-sparse Nussinov variant, the OCT variant and the OCT-STEP variant. The average
number of split points that need to be examined during the recursive calculation is given
in Table 6.1a. Also the average proportion of split points examined by the sparse variants
compared with the original Nussinov algorithm are shown. One can see that the proportion
of split points analyzed by the sparse variants compared with the original Nussinov algorithm
decreases with increasing sequence length. For the OCT variant, 16.3% and 10.6% of the split
points of the original Nussinov algorithm have to be examined for sequences of length 100 and
200, respectively. The OCT-STEP variant is slightly more sparse than the OCT variant. Note
that we compare our sparse variants with the original Nussinov algorithm with a recursion
S → NC (cf. Figure 6.2) that considers only split points where the outermost bases of C can
pair. The basic Nussinov variant examines significantly more split points due to a recursion of

6.5. Discussion 97

the form S → NN . Compared with this basic variant, a recursion of the form S → NC reduces
the number of split points by a constant factor independent of the sequence length. In contrast,
the sparsification potential of the sparsified variants increases with increasing sequence length.
Nevertheless, we also compared our implementation with the basic variant and could confirm
the results reported in [BTZZU11].

6.4.2 Enumerating suboptimal solutions

In a second experiment, we evaluated the sparsification potential for advanced choice functions
by enumerating the best k suboptimal solutions. To measure the effectiveness of sparsification
in this scenario, we counted the number of split point instances examined during bottom-up
parsing. At each split point, there can be several split point instances that represent the
number of combinations of suboptimal solutions. When sparsification is applied, the number
of suboptimal solutions that need to be stored can be reduced. We computed for 100 random
sequences of length 50 the average number of split points examined during the evaluation
of suboptimal solutions. The results are shown in Table 6.1b. We also show the average
proportion of split points examined by the sparse variants compared with the original Nussinov
algorithm. For the OCT variant, we achieve a reduction of split points to 26.6%, 20.3% and
18.7% when we enumerate 1, 5 and 10 suboptimal solutions, respectively. Consistent with the
results for computing the optimal solution, the OCT-STEP variant is slightly more sparse than
the OCT variant. In summary, the proportion of split points analyzed by the sparse variants
compared with the original Nussinov algorithm decreases with increasing number of suboptimal
solutions k.

6.5 Discussion

We presented the first systematic approach to describe sparsification in dynamic programming
in terms of a general framework. For that, we defined a universal sparsification operator,
which we integrated into the ADP framework. We described on the basis of the OCT and
STEP criteria for the Nussinov algorithm how it can be used to easily incorporate sparsifica-
tion criteria into ADP programs. In a feasibility study3, we showed that the number of split
points that have to be examined during the evaluation of the DP recursions are significantly
reduced for the sparsified Nussinov variants. We demonstrated that this behavior extends also
to more advanced choice functions, as the enumeration of suboptimal solutions. Importantly,
the potential for speedup increases when the size of the search space grows, for example when
the sequence length or the number of suboptimal solutions increases. Our novel sparsifica-

3For implementations of practical relevance, an analogous extension of the ADP to C++ compiler Bellman’s
GAP [SJG11] is required.

98 Chapter 6: General extension for sparsification in ADP

tion operator can be used analogously for more complex algorithms for RNA structure pre-
diction [WZZU07], simultaneous alignment and folding [ZUGVWS08], RNA-RNA-interaction
prediction [SMW+10], and the prediction of RNA pseudoknot structures [MSW+10].

CHAPTER 7

Conclusion

In this thesis, we introduced novel strategies for the functional characterization of ncRNAs,
including the novel ensemble-based sparsification, a fast algorithm for detecting sequence-
structure motifs shared by two RNAs and two fast methods for simultaneous alignment and
folding. On top of that, we introduced a novel framework to combine the concepts of sparsifi-
cation and dynamic programming (DP).

The essential basis for the subsequent novel approaches is described in Chapter 3. We demon-
strated that our novel ensemble-based sparsification has the potential to speed up various
RNA analysis methods without compromising the quality. The main idea is to restrict the
search space by removing subsolutions that are unlikely in the structure ensembles of the RNA
sequences. We demonstrated its practicability for speeding up the computation of sequence-
structure patterns between two RNAs (Chapter 4) and simultaneous alignment and folding
(Chapter 5). Since ensemble-based sparsification is a universal method, it can be applied to
other RNA-related tasks as well and therefore allows for future advancements of other algo-
rithms. One possible application area is to speed up the tool LocARNA-P [WJH+12], which
computes RNA alignment reliabilities from simultaneous alignment and folding partition func-
tions.

In Chapter 4, we presented the tool ExpaRNA-P, a novel algorithm for simultaneous pattern
matching and folding. The main goal is to identify local patterns shared by two RNAs on the
basis of sequence and structure information. Previous approaches, such as the “predecessor”
ExpaRNA [HWBB09], require a fixed structure for each input sequence that can be predicted
only unreliably in many cases. For the first time, the pattern matching is realized in the en-
tire Boltzmann-distributed structure ensembles. Our novel ensemble-based sparsification (cf.
Chapter 3) identifies those structural parts of the ensembles that are likely to occur and thus
drastically reduces the computational complexity. We demonstrated that each position is con-

100 Chapter 7: Conclusion

sidered in only a constant number of base pairs. For this reason, ExpaRNA-P runs in O(n2)
time, which is as efficient as plain sequence alignment. To evaluate the usefulness of our novel
algorithm, we devised the pipeline ExpLoc-P, where the patterns identified by ExpaRNA-P are
utilized to speed up the tool LocARNA for simultaneous alignment and folding [WRH+07]. The
patterns are first chained to find the best subset that can be part of an alignment simultane-
ously. These patterns are subsequently used as anchor constraints to guide the alignment. As
only the parts in between those anchors need to be computed with the more time-consuming
tool LocARNA, a significant speedup can be achieved compared with using LocARNA alone. To
show that these considerations also work in practice, we ran extensive benchmarks on the well-
established BRAliBase 2.1 k2 benchmark set [WMS06, GWW05] where we compared our novel
tool ExpaRNA-P with ExpaRNA and the widely used tools LocARNA and RAF [DFB08]. RAF
is currently the fastest simultaneous alignment and folding tool due to its heuristic filtering
based on sequence alignments. We demonstrated that ExpaRNA-P offers the best compromise
between speed and quality, where the quality was comparable with LocARNA’s and still a con-
siderable speedup of about four-fold was achieved compared with LocARNA. RAF on the other
hand cannot keep up the alignment quality in the benchmark for low sequence identities that
are particularly difficult to align. This is especially important since they are usually considered
the most decisive RNA alignment instances. Thus, ExpaRNA-P is the only tool that maintains
a high alignment quality for all sequence identity ranges and achieves a significant speedup.
Furthermore, we showed that for long sequences of around 400nt from the BRAliBase 2.1 bench-
mark set, the speedup is more than 30-fold. This demonstrates an increase in the effectiveness
of our novel approach when the RNA sequences get longer, which is crucial for large scale
analysis. Moreover, we formally introduced and evaluated strict and relaxed variants of our
novel algorithm; the latter makes the approach sensitive to compensatory mutations. The
advantage of the relaxed variant was confirmed by an increased coverage in the low sequence
identity region compared with the strict variant. Furthermore, we suggested in addition to the
suboptimal traceback a heuristic traceback that reduces the number of enumerated sequence-
structure patterns. All these different ExpLoc-P variants enable tailoring of the method to
specific application scenarios.

In Chapter 5, we introduced the two novel algorithms PARSE and SPARSE for simultane-
ous alignment and folding. Importantly, PARSE combines for the first time the original
structure prediction flexibility of Sankoff’s algorithm [San85] with PMcomp’s lightweight en-
ergy model [HBS04]. The lightweight energy model scores structural features based on base
pair probabilities that are derived from a full-featured energy model by McCaskill’s algo-
rithm [McC90]. Going far beyond PMcomp’s potential, PARSE allows loop deletions and
insertions such that stems of different length can be aligned. Thus, analogous to Sankoff’s al-
gorithm, PARSE computes two potentially different but compatible structures for the two RNA
sequences. By filtering the base pairs according to their probabilities by a constant threshold

101

as implemented in LocARNA [WRH+07], we obtain LocARNA’s O(n4) time and O(n2) space
complexity. While this constitutes already a relevant contribution, we additionally built upon
PARSE’s model to derive the sparsified variant SPARSE that integrates the novel ensemble-
based sparsification (cf. Chapter 3). Thus, SPARSE enables for the first time simultaneous
alignment and folding in quadratic time without employing sequence based heuristics. This
advantage is demonstrated by benchmarks on BRAliBase 2.1 benchmark sets where we com-
pare our novel tool SPARSE with LocARNA and RAF [DFB08]. Whereas SPARSE and RAF
achieve similar speedups of around 4 over LocARNA on benchmark set k2, SPARSE – contrary
to RAF – keeps up the alignment quality even for ‘hard’ alignment instances with low se-
quence identity. This superiority of SPARSE over RAF is also confirmed for multiple alignment
on the basis of three-way alignments in BRAliBase 2.1. Finally, to demonstrate the effective-
ness of loop insertions and deletions, we compared SPARSE’s structure prediction ability to
LocARNA’s. Measured by Matthews correlation coefficient (MCC), we showed an increased
structure prediction quality for SPARSE compared with LocARNA for all sequence identity
ranges. To exemplify the importance of a flexible structure prediction model, we showed a
concrete example where SPARSE’s ability to match different-sized stems leads to overall more
stable structures and a higher structure prediction quality.

In Chapter 6, we introduced a framework for combining the two important concepts of al-
gebraic dynamic programming (ADP) and sparsification. Unlike our novel ensemble-based
sparsification technique introduced in Chapter 3 that discards unlikely subsolutions, the spar-
sification approach introduced in [WZZU07] does not sacrifice optimality. Sparsification was
used in various RNA-related tasks and has the potential to speed up dynamic programming
computations. ADP is a formalism that allows defining DP algorithms in a simple and formally
precise way [GMS04]. Since there is an explicit separation of the recursive structure and the
evaluation, ADP programs can be easily adapted to different scoring schemes. To incorporate
sparsification into the ADP framework, we proposed a novel sparsification operator that can be
easily applied within the ADP recursions. Thereby, it was for the first time possible to study
these two relevant techniques within a common framework. We demonstrated the simplicity of
use and effectiveness of the novel sparsification operator on the basis of Nussinov’s algorithm
for RNA structure prediction [NPGK78]. The number of split points – that are ultimately
decisive for the algorithm’s runtime – were significantly reduced. Crucially, the speedup po-
tential enlarges with increasing complexity of the problem, which we showed for the length of
an RNA molecule and the number of enumerated suboptimal solutions.

To sum up, this thesis covers novel concepts and approaches for the functional classification of
ncRNAs. In particular, we focus on designing fast algorithms which, nevertheless, guarantee
high quality output. We demonstrated the superior performance of our novel approaches
compared with state-of-the-art programs on real RNA sequences. Furthermore, our novel
ensemble-based sparsification technique has the potential to speed up other algorithms for

102 Chapter 7: Conclusion

RNA analysis. Both forms of sparsification studied in this thesis are valuable techniques to
make DP algorithms more efficient in the future. In this way, we make important contributions
to a better understanding of the functionalities of ncRNA molecules.

Bibliography

[Aku99] Tatsuya Akutsu. Approximation and exact algorithms for RNA secondary struc-
ture prediction and recognition of stochastic context-free languages. Journal of
Combinatorial Optimization, 3:321–336, 1999.

[BBB+08] Athanasius F. Bompfünewerer, Rolf Backofen, Stephan H. Bernhart, Jana Her-
tel, Ivo L. Hofacker, Peter F. Stadler, and Sebastian Will. Variations on RNA
folding and alignment: lessons from Benasque. Journal of Mathematical Biol-
ogy, 56(1-2):129–144, 2008.

[BCA14] Laetitia Bourgeade, Cedric Chauve, and Julien Allali. Chaining se-
quence/structure seeds for computing RNA similarity. In Proceedings of 1st
workshop on Computational Methods for Structural RNAs (CMSR’14), pages
1–12. McGill University, 2014.

[BDE+13] Sarah W. Burge, Jennifer Daub, Ruth Eberhardt, John Tate, Lars Barquist,
Eric P. Nawrocki, Sean R. Eddy, Paul P. Gardner, and Alex Bateman. Rfam
11.0: 10 years of RNA families. Nucleic Acids Res, 41(Database issue):D226–32,
2013.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, USA, 1 edition, 1957.

[BHW+08] Stephan H. Bernhart, Ivo L. Hofacker, Sebastian Will, Andreas R. Gruber, and
Peter F. Stadler. RNAalifold: improved consensus structure prediction for RNA
alignments. BMC Bioinformatics, 9:474, 2008.

[BS07] Rolf Backofen and Sven Siebert. Fast detection of common sequence structure
patterns in RNAs. Journal of Discrete Algorithms, 5(2):212–228, 2007.

[BTZZU11] Rolf Backofen, Dekel Tsur, Shay Zakov, and Michal Ziv-Ukelson. Sparse RNA
folding: Time and space efficient algorithms. J. Discrete Algorithms, 9(1):12–31,
2011.

[BW04] Rolf Backofen and Sebastian Will. Local sequence-structure motifs in RNA.

104 Bibliography

Journal of Bioinformatics and Computational Biology (JBCB), 2(4):681–698,
2004.

[CAS+11] Michael B. Clark, Paulo P. Amaral, Felix J. Schlesinger, Marcel E. Dinger,
Ryan J. Taft, John L. Rinn, Chris P. Ponting, Peter F. Stadler, Kevin V.
Morris, Antonin Morillon, Joel S. Rozowsky, Mark B. Gerstein, Claes Wahlest-
edt, Yoshihide Hayashizaki, Piero Carninci, Thomas R. Gingeras, and John S.
Mattick. The reality of pervasive transcription. PLoS Biol, 9(7):e1000625; dis-
cussion e1001102, 2011.

[CCKT83] J. M. Chambers, W. S. Cleveland, Beat Kleiner, and Paul A. Tukey. Graphical
Methods for Data Analysis. Wadsworth, 1983.

[Cle81] W. S. Cleveland. Lowess: A program for smoothing scatterplots by robust
locally weighted regression. The American Statistician, 35(54), 1981.

[Con07] The ENCODE Project Consortium. Identification and analysis of functional
elements in 1% of the human genome by the ENCODE pilot project. Nature,
447(7146):799–816, 2007.

[Cri66] FHC Crick. Codon—anticodon pairing: the wobble hypothesis. Journal of
molecular biology, 19(2):548–555, 1966.

[CS14] Thomas R Cech and Joan A Steitz. The noncoding RNA revolution—trashing
old rules to forge new ones. Cell, 157(1):77–94, 2014.

[DE06] R. D. Dowell and S. R. Eddy. Efficient pairwise RNA structure prediction and
alignment using sequence alignment constraints. BMC Bioinformatics, 7:400,
2006.

[DFB08] Chuong B. Do, Chuan-Sheng Foo, and Serafim Batzoglou. A max-margin model
for efficient simultaneous alignment and folding of RNA sequences. Bioinfor-
matics, 24(13):i68–76, 2008.

[DGB06] Chuong B Do, Samuel S Gross, and Serafim Batzoglou. CONTRAlign: discrim-
inative training for protein sequence alignment. In Research in Computational
Molecular Biology, pages 160–174. Springer, 2006.

[DWB06] Chuong B Do, Daniel A Woods, and Serafim Batzoglou. CONTRAfold: RNA
secondary structure prediction without physics-based models. Bioinformatics,
22(14):e90–e98, 2006.

[EB06] Robert C Edgar and Serafim Batzoglou. Multiple sequence alignment. Current
opinion in structural biology, 16(3):368–373, 2006.

[Edg04] Robert C. Edgar. MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Res, 32(5):1792–7, 2004.

Bibliography 105

[EGGI92] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse
dynamic programming I: linear cost functions. J. ACM, 39(3):519–545, 1992.

[Est11] Manel Esteller. Non-coding RNAs in human disease. Nat Rev Genet,
12(12):861–74, 2011.

[FG10] Yelena Frid and Dan Gusfield. A simple, practical and complete O(n3/log n)-
time algorithm for RNA folding using the Four-Russians speedup. Algorithms
Mol Biol, 5:13, 2010.

[FPM05] Martin C Frith, Michael Pheasant, and John S Mattick. Genomics: The amaz-
ing complexity of the human transcriptome. European Journal of Human Ge-
netics, 13(8):894–897, 2005.

[FXM+98] Andrew Fire, SiQun Xu, Mary K Montgomery, Steven A Kostas, Samuel E
Driver, and Craig C Mello. Potent and specific genetic interference by double-
stranded RNA in caenorhabditis elegans. Nature, 391(6669):806–811, 1998.

[GG04] Paul P. Gardner and Robert Giegerich. A comprehensive comparison of com-
parative RNA structure prediction approaches. BMC Bioinformatics, 5:140,
2004.

[GHR80] S. L. Graham, M. A. Harrison, and W. L. Ruzzo. An improved context-free rec-
ognizer. ACM Transactions on Programming Languages and Systems, 2(3):415–
462, 1980.

[GHS97] J. Gorodkin, L. J. Heyer, and G. D. Stormo. Finding common sequence and
structure motifs in a set of RNA sequences. In Proc. of the 5th Int. Conf. on
Intelligent Systems for Molecular Biology (ISMB’97), volume 5, pages 120–3,
1997.

[GM07] Ilan Gronau and Shlomo Moran. Optimal implementations of UPGMA
and other common clustering algorithms. Information Processing Letters,
104(6):205–210, 2007.

[GMS04] Robert Giegerich, Carsten Meyer, and Peter Steffen. A discipline of dynamic
programming over sequence data. Sci. Comput. Program., 51(3):215–263, 2004.

[Got82] O. Gotoh. An improved algorithm for matching biological sequences. J Mol
Biol, 162:705–708, 1982.

[GS06] Robert Giegerich and Peter Steffen. Challenges in the compilation of a domain
specific language for dynamic programming. In Proceedings of the 2006 ACM
symposium on Applied computing, SAC ’06, pages 1603–1609, New York, NY,
USA, 2006. ACM.

[GWW05] Paul P. Gardner, Andreas Wilm, and Stefan Washietl. A benchmark of mul-

106 Bibliography

tiple sequence alignment programs upon structural RNAs. Nucleic Acids Res,
33(8):2433–9, 2005.

[HBS04] I. L. Hofacker, S. H. Bernhart, and P. F. Stadler. Alignment of RNA base
pairing probability matrices. Bioinformatics, 20(14):2222–7, 2004.

[HFS+94] Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian Bonhoeffer, Man-
fred Tacker, and Peter Schuster. Fast folding and comparison of RNA secondary
structures. Monatshefte Chemie, 125:167–188, 1994.

[HFS02] Ivo L. Hofacker, Martin Fekete, and Peter F. Stadler. Secondary structure
prediction for aligned RNA sequences. J Mol Biol, 319(5):1059–66, 2002.

[HLSG05] Jakob Hull Havgaard, Rune B. Lyngso, Gary D. Stormo, and Jan Gorodkin.
Pairwise local structural alignment of RNA sequences with sequence similarity
less than 40%. Bioinformatics, 21(9):1815–24, 2005.

[Hol05] Ian Holmes. Accelerated probabilistic inference of RNA structure evolution.
BMC Bioinformatics, 6:73, 2005.

[HSM07] Arif Ozgun Harmanci, Gaurav Sharma, and David H. Mathews. Efficient pair-
wise RNA structure prediction using probabilistic alignment constraints in Dy-
nalign. BMC Bioinformatics, 8:130, 2007.

[HTG07] Jakob H. Havgaard, Elfar Torarinsson, and Jan Gorodkin. Fast pairwise struc-
tural RNA alignments by pruning of the dynamical programming matrix. PLoS
Comput Biol, 3(10):1896–908, 2007.

[HTGK03] Matthias Höchsmann, Thomas Töller, Robert Giegerich, and Stefan Kurtz.
Local similarity in RNA secondary structures. In Proceedings of Computational
Systems Bioinformatics (CSB 2003), volume 2, pages 159–168. IEEE Computer
Society, 2003.

[HVG04] Matthias Höchsmann, Björn Voß, and Robert Giegerich. Pure multiple RNA
secondary structure alignments: a progressive profile approach. IEEE/ACM
Trans Comput Biol Bioinform, 1(1):53–62, 2004.

[HWBB09] Steffen Heyne, Sebastian Will, Michael Beckstette, and Rolf Backofen.
Lightweight comparison of RNAs based on exact sequence-structure matches.
Bioinformatics, 25(16):2095–2102, 2009.

[HzS12] Christian Höner zu Siederdissen. Sneaking around concatMap: efficient com-
binators for dynamic programming. In ACM SIGPLAN Notices, volume 47,
pages 215–226. ACM, 2012.

[JLMZ02] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. A general edit distance
between RNA structures. J Comput Biol, 9(2):371–88, 2002.

Bibliography 107

[Jus01] Winfried Just. Computational complexity of multiple sequence alignment with
SP-score. Journal of Computational Biology, 8(6):615–623, 2001.

[JWZ95] T. Jiang, J. Wang, and K. Zhang. Alignment of trees - an alternative to tree
edit. Theoretical Computer Science, 143(1):137–148, 1995.

[KH99] B Knudsen and J Hein. RNA secondary structure prediction using stochastic
context-free grammars and evolutionary history. Bioinformatics, 15(6):446–54,
1999.

[KH03] Bjarne Knudsen and Jotun Hein. Pfold: RNA secondary structure prediction
using stochastic context-free grammars. Nucleic Acids Res, 31(13):3423–8, 2003.

[KMKM02] Kazutaka Katoh, Kazuharu Misawa, Kei-ichi Kuma, and Takashi Miyata.
MAFFT: a novel method for rapid multiple sequence alignment based on fast
Fourier transform. Nucleic Acids Res, 30(14):3059–66, 2002.

[KR08] Daniel H Kim and John J Rossi. RNAi mechanisms and applications. Biotech-
niques, 44(5):613, 2008.

[LBHZS+11] Ronny Lorenz, Stephan H. Bernhart, Christian Höner Zu Siederdissen, Hakim
Tafer, Christoph Flamm, Peter F. Stadler, and Ivo L. Hofacker. ViennaRNA
Package 2.0. Algorithms Mol Biol, 6:26, 2011.

[LMWZU09] Y. Lifshits, S. Mozes, O. Weimann, and M. Ziv-Ukelson. Speeding up HMM de-
coding and training by exploiting sequence repetitions. Algorithmica, 54(3):379–
399, 2009.

[LS10] Christian Laing and Tamar Schlick. Computational approaches to 3D modeling
of RNA. Journal of Physics: Condensed Matter, 22(28):283101, 2010.

[LS11] Christian Laing and Tamar Schlick. Computational approaches to RNA struc-
ture prediction, analysis, and design. Current opinion in structural biology,
21(3):306–318, 2011.

[Mat75] B. W. Matthews. Comparison of the predicted and observed secondary structure
of T4 phage lysozyme. Biochim Biophys Acta, 405(2):442–51, 1975.

[McC90] J. S. McCaskill. The equilibrium partition function and base pair binding prob-
abilities for RNA secondary structure. Biopolymers, 29(6-7):1105–19, 1990.

[MM06] John S Mattick and Igor V Makunin. Non-coding RNA. Human molecular
genetics, 15(suppl 1):R17–R29, 2006.

[MSW+10] Mathias Möhl, Raheleh Salari, Sebastian Will, Rolf Backofen, and S. Cenk
Sahinalp. Sparsification of RNA structure prediction including pseudoknots.
Algorithms Mol Biol, 5(1):39, 2010.

[MSZ11] Mathias Möhl, Christina Schmiedl, and Shay Zakov. Sparsification in algebraic

108 Bibliography

dynamic programming. In Proceedings of the German Conference on Bioinfor-
matics (GCB 2011), 2011.

[MSZT99] DH Mathews, J Sabina, M Zuker, and DH Turner. Expanded sequence de-
pendence of thermodynamic parameters improves prediction of RNA secondary
structure. J Mol Biol, 288(5):911–40, 1999.

[MT02] David H. Mathews and Douglas H. Turner. Dynalign: an algorithm for finding
the secondary structure common to two RNA sequences. J Mol Biol, 317(2):191–
203, 2002.

[MTF10] John S. Mattick, Ryan J. Taft, and Geoffrey J. Faulkner. A global view of
genomic information–moving beyond the gene and the master regulator. Trends
in Genetics, 26(1):21–8, 2010.

[NHH00] C. Notredame, D. G. Higgins, and J. Heringa. T-Coffee: A novel method for
fast and accurate multiple sequence alignment. J Mol Biol, 302(1):205–17, 2000.

[NPGK78] Ruth Nussinov, George Pieczenik, Jerrold R. Griggs, and Daniel J. Kleitman.
Algorithms for loop matchings. SIAM J Appl Math, 35(1):68–82, July 1978.

[NW70] S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol, 48(3):443–
53, 1970.

[Ohn72] Susumu Ohno. So much “junk” DNA in our genome. In Brookhaven Symp Biol,
volume 23, pages 366–370, 1972.

[OMH+14] Christina Otto, Mathias Möhl, Steffen Heyne, Mika Amit, Gad M. Landau,
Rolf Backofen, and Sebastian Will. ExpaRNA-P: simultaneous exact pattern
matching and folding of RNAs. BMC Bioinformatics, 15(1):404, 2014.

[OWB08] Wolfgang Otto, Sebastian Will, and Rolf Backofen. Structure local multiple
alignment of RNA. In Proceedings of German Conference on Bioinformatics
(GCB’2008), volume P-136 of Lecture Notes in Informatics (LNI), pages 178–
188. Gesellschaft für Informatik (GI), 2008.

[PBS+06] J. S. Pedersen, G. Bejerano, A. Siepel, K. Rosenbloom, K. Lindblad-Toh, E. S.
Lander, J. Kent, W. Miller, and D. Haussler. Identification and Classification
of Conserved RNA Secondary Structures in the Human Genome. PLoS Comput
Biol, 2(4):e33, 2006.

[RBT+10] Mathieu Rederstorff, Stephan H. Bernhart, Andrea Tanzer, Marek Zywicki,
Katrin Perfler, Melanie Lukasser, Ivo L. Hofacker, and Alexander Huttenhofer.
RNPomics: defining the ncRNA transcriptome by cDNA library generation
from ribonucleo-protein particles. Nucleic Acids Res, 38(10):e113, 2010.

Bibliography 109

[RSG07] Jens Reeder, Peter Steffen, and Robert Giegerich. pknotsRG: RNA pseudoknot
folding including near-optimal structures and sliding windows. Nucleic Acids
Res, 35(Web Server issue):W320–4, 2007.

[RSHG04] Marc Rehmsmeier, Peter Steffen, Matthias Höchsmann, and Robert Giegerich.
Fast and effective prediction of microRNA/target duplexes. RNA, 10(10):1507–
17, 2004.

[RSZ04] Jianhua Ruan, Gary D. Stormo, and Weixiong Zhang. An iterated loop match-
ing approach to the prediction of RNA secondary structures with pseudoknots.
Bioinformatics, 20(1):58–66, 2004.

[San72] David Sankoff. Matching sequences under deletion/insertion constraints. Pro-
ceedings of the National Academy of Sciences, 69(1):4–6, 1972.

[San85] David Sankoff. Simultaneous solution of the RNA folding, alignment and pro-
tosequence problems. SIAM J. Appl. Math., 45(5):810–825, 1985.

[SB05] Sven Siebert and Rolf Backofen. MARNA: multiple alignment and consensus
structure prediction of RNAs based on sequence structure comparisons. Bioin-
formatics, 21(16):3352–9, 2005.

[Sel74] P.H. Sellers. On the theory and computation of evolutionary distances. SIAM
J. Appl. Math, 26:787–793, 1974.

[SGSM13] Martin A. Smith, Tanja Gesell, Peter F. Stadler, and John S. Mattick.
Widespread purifying selection on RNA structure in mammals. Nucleic Acids
Res, 2013.

[SJG11] Georg Sauthoff, Stefan Janssen, and Robert Giegerich. Bellman’s GAP - A
Declarative Language for Dynamic Programming. In 13th International ACM
SIGPLAN Symposium on Principles and Practice of Declarative Programming,
PPDP 2011. ACM, 2011.

[SMH+12] Christina Schmiedl, Mathias Möhl, Steffen Heyne, Mika Amit, Gad M. Landau,
Sebastian Will, and Rolf Backofen. Exact pattern matching for RNA structure
ensembles. In Proceedings of the 16th International Conference on Research
in Computational Molecular Biology (RECOMB 2012), volume 7262 of Lecture
Notes in Computer Science, pages 245–260. Springer Berlin Heidelberg, 2012.

[SMW+10] Raheleh Salari, Mathias Möhl, Sebastian Will, S. Cenk Sahinalp, and Rolf
Backofen. Time and space efficient RNA-RNA interaction prediction via sparse
folding. In Bonnie Berger, editor, Proc. of RECOMB 2010, volume 6044 of
Lecture Notes in Computer Science, pages 473–490. Springer-Verlag Berlin Hei-
delberg, 2010.

[SVR+06] Peter Steffen, Björn Voß, Marc Rehmsmeier, Jens Reeder, and Robert

110 Bibliography

Giegerich. RNAshapes: an integrated RNA analysis package based on abstract
shapes. Bioinformatics, 22(4):500–3, 2006.

[SYKB07] Bruce A Shapiro, Yaroslava G Yingling, Wojciech Kasprzak, and Eckart Binde-
wald. Bridging the gap in RNA structure prediction. Current opinion in struc-
tural biology, 17(2):157–165, 2007.

[Tai79] K.-C. Tai. The tree-to-tree correction problem. In Journal of the ACM,
26(3):422–433, 1979.

[TB99] I. Jr Tinoco and C. Bustamante. How RNA folds. J Mol Biol, 293(2):271–81,
1999.

[The12] The ENCODE Project Consortium. An integrated encyclopedia of DNA ele-
ments in the human genome. Nature, 489(7414):57–74, 2012.

[THG94] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,
22(22):4673–80, 1994.

[THG07] Elfar Torarinsson, Jakob H. Havgaard, and Jan Gorodkin. Multiple structural
alignment and clustering of RNA sequences. Bioinformatics, 23(8):926–32, 2007.

[TM10] Douglas H. Turner and David H. Mathews. NNDB: the nearest neighbor pa-
rameter database for predicting stability of nucleic acid secondary structure.
Nucleic Acids Res, 38(Database issue):D280–2, 2010.

[TSH+06] Elfar Torarinsson, Milena Sawera, Jakob H. Havgaard, Merete Fredholm, and
Jan Gorodkin. Thousands of corresponding human and mouse genomic regions
unalignable in primary sequence contain common RNA structure. Genome Res,
16(7):885–9, 2006.

[Val75] L.G. Valiant. General context-free recognition in less than cubic time. Journal
of Computer and System Sciences, 10:308–315, 1975.

[WC53] J. D. Watson and F. H. Crick. Molecular structure of nucleic acids; a structure
for deoxyribose nucleic acid. Nature, 171(4356):737–8, 1953.

[WHS05] Stefan Washietl, Ivo L. Hofacker, and Peter F. Stadler. Fast and reliable pre-
diction of noncoding RNAs. Proc Natl Acad Sci USA, 102(7):2454–9, 2005.

[WJH+12] Sebastian Will, Tejal Joshi, Ivo L. Hofacker, Peter F. Stadler, and Rolf Back-
ofen. LocARNA-P: Accurate boundary prediction and improved detection of
structural RNAs. RNA, 18(5):900–14, 2012.

[WKS+11] Yue Wan, Michael Kertesz, Robert C. Spitale, Eran Segal, and Howard Y.
Chang. Understanding the transcriptome through RNA structure. Nat Rev
Genet, 12(9):641–55, 2011.

Bibliography 111

[WMS06] Andreas Wilm, Indra Mainz, and Gerhard Steger. An enhanced RNA alignment
benchmark for sequence alignment programs. Algorithms Mol Biol, 1:19, 2006.

[WOM+15] Sebastian Will, Christina Otto, Milad Miladi, Mathias Möhl, and Rolf Backofen.
SPARSE: Quadratic time simultaneous alignment and folding of RNAs without
sequence-based heuristics. Bioinformatics, doi:10.1093/bioinformatics/btv185,
first published online April 2, 2015.

[WRH+07] Sebastian Will, Kristin Reiche, Ivo L. Hofacker, Peter F. Stadler, and Rolf
Backofen. Inferring non-coding RNA families and classes by means of genome-
scale structure-based clustering. PLoS Comput Biol, 3(4):e65, 2007.

[WSM+13] Sebastian Will, Christina Schmiedl, Milad Miladi, Mathias Möhl, and Rolf
Backofen. SPARSE: Quadratic time simultaneous alignment and folding of
RNAs without sequence-based heuristics. In Proceedings of the 17th Interna-
tional Conference on Research in Computational Molecular Biology (RECOMB
2013), volume 7821 of Lecture Notes in Computer Science, pages 289–290.
Springer Berlin Heidelberg, 2013.

[WWH+12] Stefan Washietl, Sebastian Will, David A. Hendrix, Loyal A. Goff, John L.
Rinn, Bonnie Berger, and Manolis Kellis. Computational analysis of noncoding
RNAs. Wiley Interdiscip Rev RNA, 3(6):759–78, 2012.

[WYB13] Sebastian Will, Michael Yu, and Bonnie Berger. Structure-based whole-genome
realignment reveals many novel noncoding RNAs. Genome Res, 23(6):1018–
1027, 2013.

[WZZU07] Ydo Wexler, Chaya Zilberstein, and Michal Ziv-Ukelson. A study of accessible
motifs and RNA folding complexity. J Comput Biol, 14(6):856–72, 2007.

[ZS81] M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Res, 9(1):133–
48, 1981.

[ZS84] Michael Zuker and David Sankoff. RNA secondary structures and their predic-
tion. Bulletin of Mathematical Biology, 46(4):591–621, 1984.

[ZTZU10] Shay Zakov, Dekel Tsur, and Michal Ziv-Ukelson. Reducing the worst case run-
ning times of a family of RNA and CFG problems, using Valiant’s approach. In
Vincent Moulton and Mona Singh, editors, Proc. of the 10th Workshop on Algo-
rithms in Bioinformatics (WABI), volume 6293 of Lecture Notes in Computer
Science, pages 65–77. Springer Berlin / Heidelberg, 2010.

[ZUGVWS08] Michal Ziv-Ukelson, Irit Gat-Viks, Ydo Wexler, and Ron Shamir. A faster
algorithm for RNA co-folding. In Keith A. Crandall and Jens Lagergren, editors,

112 Bibliography

WABI 2008, volume 5251 of Lecture Notes in Computer Science, pages 174–185.
Springer, 2008.

[ZUGVWS10] Michal Ziv-Ukelson, Irit Gat-Viks, Ydo Wexler, and Ron Shamir. A faster
algorithm for simultaneous alignment and folding of RNA. Journal of Compu-
tational Biology, 17(8):1051–1065, 2010.

Abbreviations

A adenine

ADP algebraic dynamic programming

C cytosine

CFG context free grammar

CYK Cocke-Younger-Kasami algorithm

DNA deoxyribonucleic acid

DP dynamic programming

EPM exact pattern matching

G guanine

HMM hidden markov model

lncRNA long ncRNA

MCC Matthews correlation coefficient

mfe minimum free energy

miRNA microRNA

mRNA messenger RNA

ncRNA non-coding RNA

NMR nuclear magnetic resonance

OCT optimally co-terminus

pair SCFG pairwise SCFG

RNA ribonucleic acid

RNAi RNA interference

rRNA ribosomal RNA

SCFG stochastic context free grammar

114 Abbreviations

siRNA small interfering RNA

snoRNA small nucleolar RNA

snRNA small nuclear RNA

tRNA transfer RNA

U uracil

List of mathematical expressions and symbols

A RNA sequence . 7

Ai base at i-th position of A . 7

Ai..j sequence from position i to j in A . 7

|A| = n length of A . 7

R secondary structure for sequence A . 8

(i, j) base pair, denotes that i and j are paired 8

[i..j] interval of integers from i to j . 8

ψA pseudo base pair for sequence A . 11

parentR(k) parent of position k in R . 11

parentR(i, j) parent of base pair (i, j) in R . 11

loopR(i, j) positions and base pairs in the loop closed by (i, j) in R . . . 11

E Gibbs free energy . 12

N̂(i, j) maximal number of base pairs forAi..j in the Nussinov algorithm
. 12

EM = a+ (k − 1)b+ uc energy contribution of a k-multiloop with u unpaired bases with
constants a, b and c . 13

W (i, j) minimum free energy (mfe) for Ai..j in Zuker’s algorithm . . . 13

W b(i, j) mfe for Ai..j , i and j are paired in Zuker’s algorithm. 13

Wm(i, j) mfe for Ai..j for parts of a multiloop with a non-empty structure
in Zuker’s algorithm. 13

Wm1(i, j) mfe for Ai..j for parts of a multiloop with i left end of the single
interior base pair in Zuker’s algorithm . 13

EH(i, j) energy contribution of a hairpin loop closed by (i, j). 13

116 Expressions and symbols

ESBI(i, j, i′, j′) energy contribution of a 2-loop with closing base pair (i, j) and
interior base pair (i′, j′) . 13

µ µ = 1
kBT , where T is the temperature and kB is a constant

. 14

Z partition function of the full sequence in the McCaskill algorithm
. 14

Q(i, j) partition function for Ai..j in the McCaskill algorithm. 15

Qb(i, j) partition function for Ai..j , i and j are paired in the McCaskill
algorithm . 15

Qm(i, j) partition function for Ai..j for parts of a multiloop for a
non-empty structure in the McCaskill algorithm 15

Qm1(i, j) partition function for Ai..j for parts of a multiloop with i left
end of the single interior base pair in the McCaskill algorithm
. 15

Pr [(i, j)|A] probability of base pair (i, j) in sequence A 16

PA set of all possible base pairs for sequence A 16

B RNA sequence . 17

|B| = m length of B (with m ≤ n) . 17

T secondary structure for B . 17

A sequence alignment between sequences A and B 18

score(A) score of A in sequence alignment . 18

σ(i, k) similarity between Ai and Bk in sequence alignment 18

nAindel number of gaps in A in sequence alignment 18

γ uniform cost for each position in the gap in sequence alignment
. 18

K(i, k) maximal similarity between A1..i and B1..k in sequence align-
ment. 18

β gap opening cost for affine gap costs . 18

(A, R, T) sequence-structure alignment; A sequence alignment, R struc-
ture for A, T structure for B . 19

Pr [k∈ loop(i, j)|A] joint probability that a structure of A contains the base pair
(i, j) and the unpaired base k such that (i, j) is the parent of k
. 27

Expressions and symbols 117

Pr [(i′, j′)∈ loop(i, j)|A] joint probability that a structure of A contains the base pairs
(i, j) and (i′, j′) such that (i, j) is the parent of (i′, j′) 27

θ1 threshold for base pair probabilities . 28

Qm2(i, j) partition function for Ai..j for parts of a multiloop with at least
two interior base pairs . 29∣∣∣posA(i,j)

∣∣∣ number of candidate positions in the loop closed by (i, j) in
sequence A . 33

posA(i,j)(x̄) x̄-th candidate position in the loop closed by (i, j) in sequence
A . 33

mat-idx-befA(i,j)(i′) first matrix index that lies before the sequence position i′ in
the loop closed by (i, j) in sequence A . 33

mat-pos-befijkl(i′, k′) first matrix position that lies before sequence positions i′ and
k′. 33

(i∼k) match in a pattern matching in ExpaRNA-P 38

(ij∼kl) base pair match in a pattern matching in ExpaRNA-P 38

P = (M,S) pattern matching in ExpaRNA-P . 38

M set of matches (i∼k) in a pattern matching in ExpaRNA-P
. 38

S set of base pair matches (ij∼kl) in a pattern matching in
ExpaRNA-P . 38

M|S set of all structure matches in a pattern matching in ExpaRNA-P
. 40

M\M|S set of all sequence matches in a pattern matching in ExpaRNA-P
. 40

score((M,S)) score of EPM (M,S) in ExpaRNA-P . 40

τ(i, j, k, l) score contribution for base pair match (ij∼kl) of base pairs
(i, j) and (k, l) in ExpaRNA-P . 40

c1(i, k) score contribution for a match (i∼k) in a base pair match in
ExpaRNA-P . 40

c2(i, j, k, l) score contribution for structure match in a base pair match
(ij∼kl) in ExpaRNA-P . 40

118 Expressions and symbols

c3(i, j, k, l) score contribution for stacking in a base pair match (ij∼kl) in
ExpaRNA-P . 40

α1 weight factor for c1(i, k) in ExpaRNA-P . 41

α2 weight factor for c2(i, j, k, l) in ExpaRNA-P 41

α3 weight factor for c3(i, j, k, l) in ExpaRNA-P 41

str-mm structure mismatch score for relaxed EPMs in ExpaRNA-P
. 41

ψ pseudo base pair match that matches the pseudo base pairs of
the two sequences . 41

parentS(i∼k) parent of a match in a pattern matching in ExpaRNA-P . . . 41

parentS(ij∼kl) parent of a base pair match in a pattern matching in
ExpaRNA-P . 41

θ2 threshold for unpaired in-loop probabilities 41

θ3 threshold for base pair in-loop probabilities 41

D(ij, kl) scores the best EPM enclosed by base pair match (ij∼kl) in
ExpaRNA-P . 44

Lijkl(j′, l′) scores the best EPM that is connected to the left ends of the
base pair match in ExpaRNA-P . 44

GijklA (j′, l′) scores the best EPM where an arbitrary number of gaps was
introduced in sequence A, in ExpaRNA-P 44

GijklAB (j′, l′) scores the best EPM where an arbitrary number of gaps was
introduced in sequence A and B in ExpaRNA-P 44

H ijkl(j′, l′) auxiliary matrix in ExpaRNA-P . 44

LRijkl(j′, l′) scores the best EPM that closes a gap left of the sequence or
structure match in ExpaRNA-P . 44

F (j′, l′) scores the best EPM that is allowed to start at any point and
ends at position (j′, l′) in ExpaRNA-P . 44

wo-gapijkl((x̄, ȳ), (i′, k′)) returns true if corresponding pair of sequence positions of ma-
trix position (x̄, ȳ) and sequence positions i′ and k′ are directly
adjacent; otherwise false . 48

min-col(j′) minimal column for row j′ when the max-diff constraint is
used . 53

Expressions and symbols 119

max-col(j′) maximal column for row j′ when the max-diff constraint is
used . 53

δ maximal allowed deviation defined by max-diff 53

col-idx-beginijkl(x̄) minimal column for row x̄ in a sparsified matrix for base pair
match (ij∼kl) when the max-diff constraint is used 53

col-idx-endijkl(x̄) column after maximal column for row x̄ in a sparsified matrix
for base pair match (ij∼kl) when the max-diff constraint is
used . 53

ΨA
ij weight of base pair (i, j) in sequence A 68

AuRT all parts of sequence-structure alignment (A, R, T) not covered
by the structures, i.e. the unstructured part 68

score((A, R, T)) score of (A, R, T) in PMcomp-derived approaches 68

M̄(i, j, k, l) scores the best alignment of subsequences Ai..j and Bk..l in
original PMcomp recursion . 68

D̄(ij, kl) scores the best subalignment enclosed by match of (i, j) and
(k, l) including a score for matching the two base pairs in orig-
inal PMcomp recursion . 68

M̂ ijkl(j′, l′) scores the best alignment of subsequences Ai+1..j′ and Bk+1..l′

in PMcomp variant . 68

D̂(ij, kl) analogous to D̄(ij, kl) for PMcomp variant 68

D̃S(ij, kl) analogous to D̄(ij, kl) for PARSE . 69

M̃ ijkl(j′, l′) analogous to M̂ ijkl(j′, l′) for PARSE . 69

ĨijklA (j′) scores a loop deletion enclosed by match of (i, j) and (k, l) in
PARSE . 69

ĨijklB (l′) scores a loop insertion enclosed by match of (i, j) and (k, l) in
PARSE . 69

Ẽijkl(j′, l′) covers insertion case for affine gap cost (base Bl′ is inserted) in
PARSE . 70

F̃ ijkl(j′, l′) covers deletion case for affine gap cost (base Aj′ is deleted) in
PARSE . 70

γbase gap cost for base insertion or deletion . 70

γloop gap cost for loop insertion or deletion . 70

120 Expressions and symbols

βbase gap opening cost for base insertion or deletion. 70

βloop gap opening cost for loop insertion or deletion. 70

DS(ij, kl) scores the best subalignment enclosed by match of (i, j) and
(k, l) without a score contribution for the match of the base
pairs in SPARSE . 75

M ijkl(x̄, ȳ) scores the best alignment of subsequences up to matrix position
(x̄, ȳ) enclosed by match of (i, j) and (k, l) in SPARSE 75

IijklA (x̄) scores a loop deletion enclosed by match of (i, j) and (k, l) in
SPARSE . 75

IijklB (ȳ) scores a loop insertion enclosed by match of (i, j) and (k, l) in
SPARSE . 75

N ′ represents an RNA structure (Nussinov variant), Sparsification
in ADP . 87

h choice function, Sparsification in ADP . 87

N represents an RNA structure (Nussinov variant), Sparsification
in ADP . 89

S represents an RNA structure that can be split into two parts,
Sparsification in ADP . 89

C represents a closed RNA structure, Sparsification in ADP . . . 89

\h novel sparsification operator, Sparsification in ADP 92

Cc contains the OCT fragments, Sparsification in ADP 92

L̄ represents fragments that are unpaired on the left side, Sparsi-
fication in ADP . 92

Lc contains the STEP fragments, Sparsification in ADP 92

	Introduction
	World of ncRNAs
	General objectives and contributions
	General methods
	Dynamic programming
	Sparsification

	Thesis overview

	Fundamental Concepts
	RNA structure
	Primary structure
	Secondary structure
	Tertiary structure

	Algorithms for RNA structure prediction
	Nussinov's algorithm
	Zuker's algorithm
	McCaskill's algorithm

	Sequence and sequence-structure alignment
	Sequence alignment
	Sequence-structure alignment

	Overview of sequence-structure alignment methods
	First align then fold
	First fold then align
	Simultaneous alignment and folding

	Framework for ensemble-based sparsification
	Restricting the number of base pairs
	Computation of unpaired probabilities in loops
	Computation of base pair probabilities in loops
	Complexity Analysis
	Implementing ensemble-based sparsification

	Fast simultaneous exact pattern matching and folding
	ExpaRNA-P – Sparsifying the computation of pattern matchings
	Pattern matchings in RNA structure ensembles
	Optimizing over significant pattern matchings
	Recursions on sparsified matrices

	Chaining – Selecting a compatible subset of pattern matchings
	Additional constraints on ExpaRNA-P's sparsified matrices
	Results
	Impact of EPM selection on the performance
	Comparison with other tools

	Discussion

	Fast and accurate simultaneous alignment and folding
	Sankoff's algorithm and Sankoff-style alignment
	Optimizing Sankoff-style alignment
	PARSE – Flexible lightweight simultaneous alignment and folding
	SPARSE – Sparsifying simultaneous alignment and folding of RNA
	Multiple alignment

	Results
	Comparison with other tools
	Flexible structure prediction of SPARSE improves folding accuracy

	Discussion

	General extension for sparsification in ADP
	A quick overview on ADP
	Sparsified variants of the Nussinov algorithm
	OCT sparsification
	OCT-STEP sparsification

	A general extension for sparsification in ADP
	Application to sparsified variants of Nussinov's algorithm
	Implementation
	Advanced choice functions

	Results
	Sparsified variants of Nussinov's algorithm
	Enumerating suboptimal solutions

	Discussion

	Conclusion
	Bibliography
	Abbreviations
	Expressions and symbols

