
Task Planning for High-Level
Robot Control
Christian Dornhege

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Technische Fakultät
Albert-Ludwigs-Universiẗat Freiburg im Breisgau

Betreuer: Prof. Dr. Bernhard Nebel

Dezember, 2014

Task Planning for High-Level
Robot Control
Christian Dornhege

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
der Technischen Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau

Dekan: Prof. Dr. Georg Lausen
Erstgutachter: Prof. Dr. Bernhard Nebel
Zweitgutachter: Prof. Dr. Wolfram Burgard
Tag der Disputation: 11.05.2015

Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Problem der Entscheidungsfindung für Robo-
ter. Die Entscheidung, welche Aktion in der aktuellen Situation notwendig ist, um
ein gegebenes Ziel zu erreichen, ist grundlegend für intelligente Systeme. Dabei ist
es notwendig, dass die Vielfalt der in einem aktuellen Robotiksystem vorhandenen
Fähigkeiten sinnvoll kombiniert werden. Dazu benutzen wir Handlungsplanung. Au-
tomatisierte Planungssysteme benötigen als Eingabe lediglich eine Beschreibung der
Fähigkeiten des Roboters und des Ziels. Aufgrund dieser Beschreibungen erzeugt ein
Planer für beliebige Situationen eine Aktionsfolge. Um die Stärken solcher Systeme in
einem Roboter einzusetzen, müssen verschiedene Probleme gelöst werden. Zum einen
ist es notwendig, dass die Ausdruckskraft der Planungssprache ausreichend ist, um
Aufgaben und Fähigkeiten sowohl auf symbolischer, als auch auf geometrischer Seite
zu beschreiben. Zum anderen muss solch ein Handlungsplaner sinnvoll in das Gesamt-
system eingebunden sein, so dass dieser als zentrale Entscheidungskomponente mit
dem restlichen System zusammen arbeitet.
Der erste Teil der Arbeit zielt darauf korrekte Pläne für Planungsaufgaben in der

Robotik zu erzeugen. Moderne Planer akzeptieren hauptsächlich symbolische Einga-
ben oder nur stark eingeschränkte numerische Probleme. Diese sind nicht ausreichend,
um Fragen wie “Kann der Roboter diese Tasse jetzt greifen?” zu beantworten. Aller-
dings gibt es für solche Fragestellungen bereits Robotikalgorithmen, die diese korrekt
und effizient lösen. Daher verfolgen wir den Ansatz solche externen Algorithmen in
den Planungsprozess zu integrieren. Dies wird durch das Konzept von semantic at-
tachments (semantische Anhänge) gewährleistet. Die Idee dabei ist, dass verschiedene
logische Fragestellungen innerhalb des Planers durch externe Algorithmen beantwortet
werden. Dies ist für den Planer transparent, so dass diese Techniken direkt auf aktuelle
Planungssysteme übertragen werden können. Solche Anhänge sind in Form von Mo-
dulen implementiert, die beliebige Algorithmen über eine Schnittstelle aufrufen. Wenn
während der Planung zum Beispiel ein Prädikat greifbar ausgewertet werden muss
und dieses einen Anhang besitzt, dann wird zuerst das zugeordnete Modul ausgeführt.
Der Wahrheitswert des Prädikats ist dann durch das Ergebnis des Modulaufrufs de-
finiert. Dadurch lassen sich beliebige externe Algorithmen in einen Handlungsplaner
integrieren. Die daraus erzeugten Pläne erlauben es zum Beispiel Manipulationspläne
zu erzeugen, die symbolisch und geometrisch korrekt sind.
Ein weiteres Problem besteht darin, dass klassische Beschreibungen von Planungs-

problemen nur endlich viele Objekte und damit Möglichkeiten eine Aktion zu parame-
trisieren zulassen. Eine Aktion, wie zum Beispiel “Stelle die Tasse auf den Tisch”, kann

deshalb nicht die Entscheidung, wohin genau dies geschehen soll, widerspiegeln. Aktu-
elle Ansätze gehen dieses Problem an, indem nur endlich viele Optionen betrachtet wer-
den. Ist darunter keine, die zur Lösung des Gesamtproblems führt, schlägt die Planung
fehl. Das Hauptproblem besteht hier daran, dass jede vollständige Lösung unendlich
viele Möglichkeiten untersuchen muss, was im Allgemeinen unentscheidbar ist. Dies
ist auch für praktisch angewandte Systeme ein Problem. Unser Ansatz generiert da-
her neue Aktionsparametrisierungen durch einen beliebigen externen Algorithmus als
Teil der Planung. Der Planer selbst kann entscheiden, ob noch weitere Möglichkeiten
an diesem Punkt der Suche getestet werden müssen, oder die Suche vorerst an ande-
rer Stelle fortgesetzt wird. Da dies prinzipiell auch unendlich viele Möglichkeiten sein
können, war es notwendig einen neuen Suchalgorithmus zu entwickeln, der solche Pro-
bleme lösen kann, solang diese semi-entscheidbar sind. In Vergleichen mit klassischen
Planungsalgorithmen zeigt dieses neue Verfahren in Manipulationsplanungsaufgaben
deutlich bessere Laufzeiten und löst mehr Probleme.
Der zweite Teil der Arbeit beschäftigt sich mit der Anwendung dieser Planungsalgo-

rithmen auf Robotersysteme. Zuerst werden dazu die Eigenschaften von Planungspro-
blemen in realen Umgebungen definiert. Diese sind ein ungenaues Wissen über die vor-
handenen Objekte, sowie über deren Eigenschaften, eine unsichere Aktionsausführung,
sowie externe Ereignisse. Um auf diese Dinge reagieren zu können, verwenden wir das
Prinzip des continual planning (kontinuierliche Planung). Dazu wird der Planer in
eine Schleife eingebunden. In jedem Schritt wird nur eine Aktion ausgeführt. Danach
wird der aktuelle Zustand neu geschätzt und geprüft, ob der aktuelle Plan dafür noch
zum Ziel führt. Ist dies nicht der Fall wird neu geplant. Dies ermöglicht es einen klas-
sischen Planer auf einem Roboter einzusetzen, der mit den Eigenschaften der echten
Welt zurecht kommen muss. Allerdings waren dafür einige Vereinfachungen dieser Ei-
genschaften notwendig. Dies führt zu einigen Annahmen über die Eigenschaften, die
Anwendungsszenarien wie Haushaltsrobotik haben. Wir untersuchen diese insbesonde-
re im Hinblick darauf, unter welchen Annahmen wir dennoch garantieren können, dass
das Ziel erreicht wird. Konkret ist die wichtigste dabei, dass der Roboter sich nicht
in eine Sackgasse manövrieren kann, aus der kein Weg mehr zum Ziel führt. Die Im-
plementierung eines komplexen Robotiksystems im Bereich der mobilen Manipulation
zeigt, dass dieses System in der echten Welt zuverlässig funktioniert.
Des weiteren untersuchen wir das Problem von Umgebungssuche für mehrere Robo-

ter in 3d. Hier besteht das Ziel darin eine bekannte drei-dimensionale Umgebung mit
den Sensoren der Roboter einmal vollständig zu erfassen. Da wir keine Annahmen über
den Arbeitsbereich der Roboter, deren Sensoren, oder die Umgebung machen, ist das
Problem schon von der Robotikseite her schwierig. In einem ersten Schritt berechnen
wir daher mit einem Monte-Carlo Algorithmus eine endliche Menge von Blickpunk-
ten, die in der Gesamtheit die Zielumgebung abdecken. Das verbleibende Problem
besteht darin, eine Teilmenge von Blickpunkten auszuwählen, die immer noch die ge-
samte Umgebung erfasst und gleichzeitig sich von mehreren Robotern in minimaler
Zeit abarbeiten lässt. Wir formulieren dies als klassisches Planungsproblem. Um dieses

zu lösen, wenden wir gierige (greedy) Algorithmen mit vergleichsweise geringen Lauf-
zeiten, sowie einen Planer an. Des weiteren zerlegen wir das Gesamtproblem in zwei
Teilprobleme, die sich als set cover und traveling salesman Problem darstellen lassen.
Diese können wir wiederum mit einem Planer lösen. Eine ausführliche Evaluation in
Simulation und auch mit echten Robotern zeigt, dass dieser Ansatz zu guten Lösungen
führt und in der Praxis funktioniert.
Das Ziel dieser Arbeit ist es Handlungsplanungstechniken für die Entscheidungsfin-

dung von mobilen Robotern zu entwickeln. Ein Hauptergebnis ist daher unser Pla-
nungssystem Temporal Fast Downward with Modules (TFD/M), das auf einem klas-
sischen Planer aufbaut. Die dafür entwickelten Techniken sind essentiell, um korrekte
Pläne zu erhalten und diese zur Aktionsauswahl des Roboters zu benutzen. Dabei ist
es wichtig ein domänenunabhängiges System zu entwickeln, dass sich allgemeingültig
anwenden lässt. Dies wird durch diverse Applikationen auf verschiedenen Robotern
und Szenarien demonstriert.

Abstract

Making intelligent decisions is an essential capability of any robotic system. A rea-
soning component that solves this problem must combine all available skills of a robot
to solve a complex task. This thesis investigates task planning as such a reasoning
mechanism. The strength of automated planning lies in the fact that a planner only
requires a description of a robot’s skills and the goal to reach. From this it computes
action sequences for arbitrary situations. To apply planning techniques to robotics we
must ensure that these are able to deal with the continuous and geometric nature of
real-world tasks.
Therefore the first half of the thesis describes planning tasks that integrate external

reasoners into the planning process. We consider planning operators to have a symbolic
and geometric aspects. While planners deal very well with the former, symbolic task
descriptions are not expressive enough for the latter. We introduce the concept of
semantic attachments that connect a symbolic predicate like “is the cup graspable”
with an external reasoner that computes this query. These allow us, for example, to
describe and plan for mobile manipulation tasks soundly.
Another issue is that we cannot describe geometrical choices such as where to place

an object on a table as planning tasks are required to be finite. To solve this we gen-
erate different instantiations of planning operators reflecting different options during
the planning process by an external procedure. This made it necessary to develop a
new search algorithm for planning with infinite branching factors. This new algorithm
outperforms classical search algorithms on manipulation planning tasks.
The second half of the thesis investigates techniques for integrating task planning

into robotic systems. First, we formulate properties of real-world tasks, e.g., unex-
pected action outcomes or uncertainty about the world. To tackle these we follow
the concept of continual planning, where the planner is embedded in an observation,
monitoring and replanning loop. We state what kind of simplifications we make to be
able to apply our planner to real-world scenarios and specifically address under which
assumptions such a system is guaranteed to reach a desired goal. We demonstrate this
by implementing a complex mobile manipulation system.
Finally we investigate multi-robot coverage search in 3d. Here, the robots have

to observe a known three-dimensional environment as quickly as possible with their
sensors. This is a challenging robotics task especially in 3d scenarios that also contains
a task planning problem. First, we generate a set of high-quality view poses. A subset
of these have to be visited in a short amount of time to cover the search area. We
introduce greedy and planning based methods to solve this problem and compare these

algorithms in simulation and real-world experiments.
The main result of this thesis is our task planner Temporal Fast Downward with

Modules (TFD/M) that extends a classical planner with the aforementioned planning
techniques. This is used in our continual planning infrastructure that allows to embed
this planner into a robotic system. Our evaluation in simulation and real-world
experiments shows that task planning is a viable solution for high-level decision making
in robotics. The techniques developed in this thesis are essential for that.

Acknowledgements

A PhD thesis is a big endeavour. My scientific work would not have been possible
without the contributions of many people that I wish to thank hereby.
First, I want to thank my advisor Bernhard Nebel that gave me the unique op-

portunity to follow each and every idea that I came up with. During my thesis I
had the chance to work with many excellent colleagues and co-authors, among these
are Alexander Kleiner, Andreas Hertle, Andreas Kolling, Armin Hornung, Bastian
Steder, Bernhard Nebel, Christian Becker-Asano, Cyrill Stachniss, Dali Sun, Eduardo
Meneses, Gabi Röger, Giorgio Grisetti, Johannes Aldinger, Julien Hué, Kai Wurm,
Manuela Ortlieb, Marc Gissler, Maren Bennewitz, Matthias Teschner, Matthias West-
phal, Michael Brenner, Michael Ruhnke, Patrick Eyerich, Rainer Kümmerle, Robert
Mattmüller, Stefan Wölfl, Thomas Keller and Wolfram Burgard.
Every roboticist knows that as soon as you integrate your algorithms into a real-

world robot as part of a large system the trouble starts. Finishing many awesome
projects to a deadline, especially as part of a competition like RoboCup is always
hard and can only be achieved in a team that brings the necessary motivation to
work through nights and weekends. For keeping the spirits up I’d like to thank ev-
eryone that worked with me on any robotics project. A possibly incomplete list of
these people consists of Alexander Kleiner, Andreas Hertle, Bastian Steder, Daniel
Meyer-Delius, Felix Endres, Jörg Stückler, Jürgen Hess, Johann Prediger, Kai Wurm,
Marc Gissler, Matthias Luber, Matthias Westphal, Michael Brenner, Michael Ruhnke,
Michael Schnell, Moritz Göbelbecker, Rainer Kümmerle, Tobias Bräuer and Vittorio
Ziparo. From these I’d like to especially thank Alexander Kleiner for showing me the
ropes of robotics and Andreas Hertle for joining me in many fun endeavours robotics
or otherwise.
Finally, I’d like to thank my family and friends for supporting me along the way

and understanding when the robots demand more than a nine to five work schedule.

Contents

1 Introduction 1

1.1 Scientific Contribution and Publications 6
1.2 Collaborations . 8

2 Foundations 11

2.1 Classical Planning Tasks . 11
2.2 Robot Planning Tasks in PDDL . 14
2.3 Forward-Chaining State Space Search 18

3 Semantic Attachments 21

3.1 Motivating Examples . 22
3.1.1 Transport Domain . 22
3.1.2 Robot Manipulation Domain . 23

3.2 Related Work . 24
3.3 Semantic Attachments . 26

3.3.1 Definitions . 27
3.3.2 Soundness and completeness . 35

3.4 Implementation . 37
3.5 Evaluation . 44

3.5.1 Computational Overhead . 44
3.5.2 Transport Logistics . 45
3.5.3 Manipulation Planning . 47

3.6 Conclusion . 51

4 Partially Groundable Planning Tasks 53

4.1 Related Work . 55
4.2 Partially Groundable Planning Tasks 57

4.2.1 Definitions . 57
4.2.2 Decidability and Solution Concepts 61

4.3 Planning with an Infinite Branching Factor 63
4.3.1 Grounding Modules . 63
4.3.2 Partial Grounding . 66
4.3.3 Searching Partially Grounded Planning Tasks 67
4.3.4 Efficient Search Techniques . 73

ix

Contents

4.4 Evaluation . 75
4.4.1 Sampling-based successor generation 75
4.4.2 Discretization-based successor generation 80
4.4.3 Module-Abstracted Search Heuristics 84

4.5 Conclusion . 87

5 Real-World Applications using Continual Planning 89

5.1 Real-World Planning Tasks . 91
5.2 Related Work . 92
5.3 Continual Planning . 94
5.4 Simplifications and Guarantees . 95

5.4.1 Expanding Universes Instead of Open Universes 95
5.4.2 Limited Uncertainty Through Kleene’s Strong Three-Valued Logic 96
5.4.3 Continual Replanning Instead of Conditional Planning 98
5.4.4 Discussion . 100

5.5 Lazy Module Evaluation and Caching 102
5.5.1 Lazy Module Evaluation . 102
5.5.2 Caching Techniques . 103

5.6 Applications and Evaluation . 107
5.6.1 TidyUp-Robot . 107
5.6.2 Lazy Module Evaluation and Caching 112
5.6.3 Robot Applications . 116

5.7 Conclusion . 118

6 Multi-Robot Coverage in 3D 121

6.1 Related Work . 124
6.2 Problem Definition . 126
6.3 Sampling High Utility Views . 128
6.4 Partition Induced by Views . 130
6.5 Multi-Robot Coverage Search . 133

6.5.1 Single-Robot Greedy Solutions 133
6.5.2 Single-Robot Planning Solutions 134
6.5.3 Multi-Robot Greedy Solutions 137
6.5.4 Multi-Robot Solutions From Single-Robot Solutions 138

6.6 Experiments and Evaluation . 138
6.6.1 Efficient travel time computation 140
6.6.2 Evaluation of Coverage Search Algorithms 141
6.6.3 Optimal Solutions and Anytime Planning 146
6.6.4 Real-World Experiments . 147

6.7 Discussion . 151
6.8 Conclusion . 152

x

Contents

7 Conclusion 155

Appendix 159

Bibliography 161

xi

Chapter 1

Introduction

Intelligent robots must be able to make rational decisions. This can affect low-level
controls like moving an arm slightly more to the left or a high-level command to pick
up a cup. The former are necessary to implement individual skills, while the latter
combine these skills to solve a complex task. In this thesis we address the high-level
control problem, i.e., what action should a robot execute to eventually reach a desired
goal. A central question therefore is: What method is suited for high-level control?

Figure 1.1: One of the first autonomous robots “Shakey” used a task planner. It is
now on display at the Computer History Museum in Mountain View, California.

Task planning as the high-level decision making component dates back to the early
days of robotics. In fact one of the first robots “Shakey” shown in Figure 1.1 inspired
the inception of the STRIPS planning formalism that is still relevant today (Fikes and
Nilsson, 1971). Here the world is modeled by a symbolic abstraction based on first-
order logic and operators in the planning language directly map to executable action
routines on the robot. Based on a description of the current world model the planner

1

Chapter 1 Introduction

produces a sequence of operators—the plan—that leads to a goal state. Exemplary
planning tasks use operators like goto a location, push a box, turn on a light or climb
on a box. Note, that the planner was seen as a necessary tool for intelligent robots in
contrast to considering robotics as an application domain for planning research. Of
course both views go hand in hand.
This brings us to another question: Why isn’t task planning ubiqutous in state of

the art robotics applications? The robot “Shakey” could not turn on a light switch or
climb on a box. In fact these are still not simple tasks for modern robots. The actions
the planner wanted the robot to do were just not available and the skills that robots
from decades ago possessed did not warrant the application of a planner to solve a
task. McDermott (1992) in his work on Robot Planning says: “Nowadays nobody
works on this problem any more. As stated, the problem turned out to be too hard
and too easy. It was too hard because it was intractable. It was too easy because
action sequences are not adequate as a representation of a real robot’s program. [. . .]
Perhaps we should build robots that have their own need to plan before we think about
robot planning again.” This is exactly what happened. Robotics research focused on
the more urgent needs like driving from A to B. Planning research addressed solving
large planning tasks from other domains.
As long as there are only single or few skills to combine hand-scripting an executive

might actually be sufficient. Other methods to explicitly define action choices like
state machines can also be used to achieve a desired behavior and dependent on the
application domain there might be different solutions that work. One could understand
a planning-based approach as a state machine that assigns the correct action leading
to the goal in any state. However, the main problem is to define this, which requires
to solve the planning problem in any state. This is usually easy, when it is straight
forward to determine what the next action is to be. It is important to understand what
planning does well and therefore what kind of problems planning solves. McDermott
(1992) also concludes “. . . that there is such a thing as robot planning, an enterprise at
the intersection of planning and robotics”. The interaction of multiple different skills is
a strong suit of symbolic planning. An automated planner finds solutions for arbitrary
situations that arise, handles generic goals and is able to accept task descriptions in
a generic domain-independent way. The more skills must be combined in one system,
the more these are dependent on each other, the more general the application scenarios
and tasks are to be, the greater is the advantage and also the need to use an automated
reasoning approach like task planning. Moreover, when there is more than one way to
reach the goal, planning does not only pick one solution, but also solves optimization
problems to return the best.
Nowadays robots possess a multitude of versatile skills. We have mobile manipu-

lators with 6-dof arms, accurate sensors like laser scanners or RGBD cameras, and
adequate computation power. On the algorithmic side simultaneous localization and
mapping (SLAM), motion planning in high-dimensional configuration spaces, naviga-
tion, 3d perception and object recognition are all available. More specialized skills

2

also exist, for example, towel folding, cooking pancakes, baking cookies, or solving a
Rubik’s cube. Of course these are not perfect, but robust enough to be applied in gen-
eral. This makes it possible to combine these into a robot system that solves complex
tasks. Creating such systems is certainly an interesting and relevant problem. One
that task planning is well suited for.

So, what exactly are the issues when using a task planner to control the high-level
decision making of a robot? First, resulting plans must be executable on the robot.
This means that the underlying model that a symbolic planner reasons on should be
an accurate representation of the continuous real world. In other words plans must be
sound. Second, the planner must be integrated into the robot system as the executive.
Not only is it necessary to execute the symbolic actions in the real world, but we also
have to provide an initial state that represents the current world in a manner that the
planner understands. Moreover, we need to consider that a real-world system does
not behave exactly like it is modeled in a planning formulation.

A purely symbolic planning approach is not expressive enough to capture the ge-
ometric nature of real-world systems. For example, if a symbolic operator such as
“pick up the cup from the table” is applicable also depends on the fact if there ex-
ists an inverse kinematics solution that moves the manipulator arm to the cup. If
the planner asks the robot to execute this action, it will not be sure to succeed.
However, we do have algorithms that can test this correctly. The challenge is to inte-
grate external reasoners into the planning process, ideally keeping the generality of a
domain-independent planning approach. This is usually refered to as integrated task
and motion planning. 1 Such a planner is able to express symbolic and geometric
semantics and leads to sound and thus applicable plans.

If we have such a generic planner, the second part of the problem is to apply that
on a robot. A system acting in the real world is still prone to execution failures or
unexpected outcomes. A closed loop control method that integrates the planner as the
decision making component is necessary as a blind open loop execution is unlikely to
be adequate. Perception actions that update the robot’s knowledge about the world
also need to be issued when necessary, while the system must handle the results of
these. Nevertheless with all possible scenarios and robots that one can imagine acting
in the real world is still challenging.

In this thesis we address several aspects of planning systems for robotics and the
application of planning for solving various different problems. First, we present our
approach to integrated task and motion planning called semantic attachments. Prior
work on integrated task and motion planning was mainly used to solve specific prob-
lems, i.e., a domain-independent integrated planner did not exist. We addressed this
shortcoming by basing our planner on the state of the art domain-independent planner
Temporal Fast Downward (Eyerich et al., 2009). The result of this is the planner Tem-

1Although commonly named “integrated task and motion planning” we consider this an integration
of arbitrary generic reasoners into planning that is not limited to motion planning.

3

Chapter 1 Introduction

poral Fast Downward with Modules (TFD/M). This also provides another advantage.
Not only do we gain a generic system, but we also incorporate the advances from
planning research such as an efficient state representation and the search guidance
heuristic. Our idea uses the concept of semantic attachments to integrate geometric
reasoning in a symbolic planner. Different aspects of a planning task’s semantics are
not expressed on a logical level, but provided by external reasoners that are called
by the planner during planning. In contrast to approaches that verify such geometric
constraints after symbolic planning or produce symbols for geometric relations before
planning an integrated approach ideally computes costly geometric facts only if they
are needed.
We have developed three kinds of semantic attachments that provide external se-

mantics. They are used when checking operator applicability, providing numerical ef-
fects, or computing an operator’s cost. Our planning tasks are described in PDDL/M,
which is a slight adaption to the well known Planning Domain Definition Language
(PDDL). Besides this language extension we also introduce a generic interface for im-
plementing semantic attachments. We define these planning tasks and the interface
and describe how a search-based planner is enhanced with semantic attachments.
Another problem for robotics planning tasks is action parametrization. To use a

skill like “place an object” during planning it must be determined which object to
place where. This relates to the problem of what is given to the planner as an input
and what does the planner need to find out as part of its algorithm. Ideally we want
to specify only what we clearly need to state. For the case of placing an object the
planner needs to know what objects there are and what surfaces they can be placed
on, but not where exactly to put them. This is a choice that the planner should be
able to figure out.
State of the art approaches either relieve the planner of this by just passing complete

parametrizations or somehow limit the planner’s options to explore such choices to a
fixed number of tries. The reason for this is that planning tasks with a high or unlim-
ited number of choices are extremely hard to solve as these influence the branching
factor of an underlying search process. We introduced a new generic interface for gen-
erating action parameters by an external procedure. In contrast to other approaches it
is not required to limit the possible parametrizations to a fixed number. The planner
itself asks for more when it deems this necessary for the search to succeed. As such
tasks are undecidable in general we also present a new search algorithm that deals
with this issue efficiently.
Next, we look into robotics applications of planning in general. For applying a

planner to real-world tasks we follow the approach of continual planning, where the
classical planner is embedded in a closed loop. Such a monitoring, planning, and exe-
cution system is commonly chosen. Using generic interfaces for action and perception
we integrate the planner into the overall robotics system. An important factor is that
such a system must react to unexpected action outcomes and perception from real-
world data. We investigate in detail what guarantees this approach provides and state

4

Figure 1.2: The mobile manipulation robot PR2 cleaning a table.

the assumptions that we make for this.
We implement a complex mobile manipulation system on the principle of continual

planning using a classical planner with semantic attachments. An example scene is
shown in Figure 1.2. This serves as a testbed and evaluations show that our assump-
tions are reasonable for real-world scenarios like service robotics. We also introduce
techniques for efficiency in integrated planning systems and perform a quantitative
evaluation of this system. Furthermore, we apply our continual planning system on
multiple robots and scenarios to demonstrate that we have a truly generic and versatile
system.
Finally, we investigate multi-robot coverage search in 3d. Here, multiple robots are

to search a known environment as quickly as possible. Covering a three dimensional
environment with sensors completely is a challenging robotics problem that has not
been widely addressed. We use a generic problem formulation with no specific require-
ments on the sensor model, the robot’s reachable space or the environment itself. Our
solution first produces a set of high-quality view poses that covers the environment.
For this we use a sampling-based approach, where the sampling space is explicitly
computed as part of the algorithm. The resulting view volumes are then partitioned
into individual parts.
Besides the geometric problem of finding good observation poses in a three dimen-

sional world this task contains a hard combinatorial problem. What the first step
leaves us with is the following problem: Find the fastest multi-robot trajectory, where
each view part is covered by a view at least once. We formulate this as a task planning
problem. However, large scenarios with tens to hundreds of poses and thousands of
parts are not within the reach of modern planning systems. We therefore decompose
this problem into two parts: A set cover problem, and a (multi-)traveling salesman
problem. These can individually be expressed and solved as a planning task. As

5

Chapter 1 Introduction

these are known problems we also investigate the use of a dedicated traveling sales-
man solver. We evaluate this system on small to large scale simulation tasks and in a
real-world multi-robot scenario.
The remainder of this thesis is structured as follows. First, we explicitly state

the scientific contribution. Then, Chapter 2 gives foundations for classical planning
and introduces a running example for a robotics planning task. Planning tasks with
semantic attachments are defined in Chapter 3, where we also show how to integrate
these into our planner. Chapter 4 addresses planning tasks with infinite branching
factors and our novel search algorithm. In Chapter 5 we state properties of real-
world planning tasks and describe under which assumptions we can solve these using
a classical planner in a continual planning loop. Here, we also show applications of this
system to various robot scenarios. Chapter 6 introduces the problem of multi-robot
coverage search in 3d and shows our solution as a combination of a geometric and a
combinatorial planning problem. Finally, we conclude in Chapter 7.

1.1 Scientific Contribution and Publications

In general there have been the following major contributions. We introduced seman-
tic attachments that constitute a generic methodolgy for integrating task and motion
planning (Chapter 3). We formulated partially groundable planning tasks and devel-
oped a new search algorithm that can plan with an infinite branching factor (Chap-
ter 4). Both are implemented in the integrated task and motion planner TFD/M that
is the result of multiple iterations of applications and has therefore continuously been
enhanced. We addressed continual planning for real-world applications. In Chapter 5
we formulated such tasks from a planning perspective and stated how these can be
solved with a classical planner. We determined under what explicit assumptions our
approach works. Chapter 5 also introduces new algorithms aimed at efficiency in in-
tegrated task and motion planning. Furthermore, in Chapter 6 we have developed a
novel approach to the coverage search problem in 3d with multiple robots, where plan-
ning is a viable solution. These insights were contributed in the form of publications
in workshops, conferences and journals that we list here in chronological order.

• C. Dornhege, A. Kleiner, A. Hertle, and A. Kolling. Multi-robot coverage search
in 3d. Journal of Field Robotics, 2014. To appear.

• A. Hornung, S. Böttcher, J. Schlagenhauf, C. Dornhege, A. Hertle, and M.
Bennewitz. Mobile manipulation in cluttered environments with humanoids:
Integrated perception, task planning, and action execution. In International
Conference on Humanoid Robots (HUMANOIDS), 2014.

• A. Hertle, C. Dornhege, T. Keller, R. Mattmüller, M. Ortlieb, and B. Nebel.
An experimental comparison of classical, FOND and probabilistic planning. In
German Conference on Artificial Intelligence (KI), 2014.

6

1.1 Scientific Contribution and Publications

• C. Dornhege, A. Hertle, and B. Nebel. Lazy evaluation and subsumption caching
for search-based integrated task and motion planning. In IROS Workshop on
AI-based robotics, 2013a.

• C. Dornhege, A. Kleiner, and A. Kolling. Coverage search in 3d. In International
Symposium on Safety, Security and Rescue Robotics (SSRR), 2013b. (Best Paper
Award Finalist)

• B. Nebel, C. Dornhege, and A. Hertle. How much does a household robot need to
know in order to tidy up your home? In AAAI Workshop on Intelligent Robotic
Systems, 2013.

• C. Dornhege and A. Hertle. Integrated symbolic planning in the TidyUp-robot
project. In AAAI Spring Symposium - Designing Intelligent Robots: Reintegrat-
ing AI II, 2013.

• C. Dornhege and A. Kleiner. A frontier-void-based approach for autonomous
exploration in 3d. Advanced Robotics, 27(6), 2013.

• K. M. Wurm, C. Dornhege, C. Stachniss, B. Nebel, and W. Burgard. Coordi-
nating heterogeneous teams of robots using temporal symbolic planning. Au-
tonomous Robots 34(4):277–294, 2013.

• A. Hertle, C. Dornhege, T. Keller, and B. Nebel. Planning with semantic at-
tachments: An object-oriented view. In European Conference on Artificial In-
telligence (ECAI), 2012.

• C. Dornhege and A. Kleiner. A frontier-void-based approach for autonomous
exploration in 3d. In International Symposium on Safety, Security and Rescue
Robotics (SSRR), 2011.

• M. Westphal, C. Dornhege, S. Wölfl, M. Gissler, and B. Nebel. Guiding the gen-
eration of manipulation plans by qualitative spatial reasoning. Spatial Cognition
and Computation: An Interdisciplinary Journal 11(1):75–102, 2011.

• K. M. Wurm, C. Dornhege, P. Eyerich, C. Stachniss, B. Nebel, and W. Burgard.
Coordinated exploration with marsupial teams of robots using temporal sym-
bolic planning. In International Conference on Intelligent Robots and Systems
(IROS), 2010.

• M. Gissler, C. Dornhege, B. Nebel, and M. Teschner. Deformable proximity
queries and their application in mobile manipulation planning. In Symposium
on Visual Computing (ISVC), 2009.

7

Chapter 1 Introduction

• C. Dornhege, M. Gissler, M. Teschner, and B. Nebel. Integrating symbolic
and geometric planning for mobile manipulation. In International Workshop on
Safety, Security and Rescue Robotics (SSRR), 2009b.

• C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel. Se-
mantic attachments for domain-independent planning systems. In International
Conference on Automated Planning and Scheduling (ICAPS), 2009a.

1.2 Collaborations

The work in this thesis resulted in multiple scientific publications. As common in
state of the art research this scientific work was performed in collaboration with other
researchers. The consistent use of “we” within this thesis reflects this fact. As it is
not possible from the study of these publications to identify each author’s individual
contribution I will now list all publications contained in this thesis that I co-authored,
relate them to the following chapters, and explicitly state my contributions therein.

Throughout any development on the planner TFD/M I have worked on the de-
sign and implementation of every feature. The first concept for integrating semantic
attachments in Temporal Fast Downward presented in Dornhege et al. (2009a) was
created with P. Eyerich, T. Keller and B. Nebel and implemented with P. Eyerich and
T. Keller, where I mainly contributed the translation component. This work along
with the following applications and extensions is described in Chapter 3. The exper-
imental evaluation was also performed with P. Eyerich, T. Keller and B. Nebel. For
the resulting manipulation planner described in Dornhege et al. (2009b); Gissler et al.
(2009) all authors, i.e., M. Gissler, M. Teschner, B. Nebel and I conceived the algo-
rithm and evaluation. M. Gissler and I implemented the algorithm and executed the
experiments, where I implemented the motion and the task planner. The algorithm
from Westphal et al. (2011) was designed by M. Westphal, S. Wölfl and me and imple-
mented mainly by M. Westphal and me, where I implemented the guidance heuristic
based on the qualitative planner from M. Westphal. The experiments were performed
by M. Westphal, M. Gissler and me and evaluated by all co-authors. Together with
A. Hertle and T. Keller I contributed to the design of the planning language OPL
presented in Hertle et al. (2012), the translation algorithm of OPL to PDDL and the
evaluation of the OPL interface.

I designed, implemented and evaluated the algorithm for searching planning tasks
with infinite successors shown in Chapter 4. Using this algorithm A. Hornung, A. Her-
tle and I designed the planning domain for the work presented in Hornung et al. (2014)
and we applied the planning architecture from Chapter 5 to humanoid Nao robots.
Chapter 5 is mainly based on the next three papers that illustrate several aspects of
planning for real-world tasks. The planning formulation for the Nao robots was based
on the domain designed by A. Hertle and me for the TidyUp mobile manipulation

8

1.2 Collaborations

scenario presented in Dornhege and Hertle (2013). Here, the robot implementation
and integration was performed by F. Endres, A. Hertle and J. Hess and me. The
simplifications making this planning domain applicable to real-world tasks were for-
malized in Nebel et al. (2013) with B. Nebel and A. Hertle. The algorithms presented
in Dornhege et al. (2013a) were created and implemented by A. Hertle and me, where
I implemented lazy module evaluation and subsumption caching (see Section 5.5). I
also performed the experimental evaluation of this work. In addition Chapter 5 also
includes the following related work and application examples. The comparison of plan-
ning methodologies and their evaluation in Hertle et al. (2014) was designed by A.
Hertle, T. Keller, R. Mattmüller, M. Ortlieb, B. Nebel and me. The integration of cost
modules (see Chapter 3) in the work presented in Wurm et al. (2010) was performed
by P. Eyerich and me. K. Wurm and I implemented the exploration algorithms for
the work in Wurm et al. (2010, 2013), where I implemented the planning variant. K.
Wurm, C. Stachniss and I designed the experimental evaluation and K. Wurm and I
executed the experiments.
For the topic of multi-robot coverage search addressed in Chapter 6 the candidate

generation algorithm presented in Dornhege and Kleiner (2011, 2013) was designed,
implemented and evaluated by A. Kleiner and me. The formulation and algorithm for
multi-robot coverage search in Dornhege et al. (2013b, 2015) as well as the evaluation
was designed by A. Kleiner, A. Kolling, A. Hertle and me. The implementation and
experiments were performed by A. Hertle, A. Kleiner and me.

9

Chapter 2

Foundations

In this chapter we introduce fundamental concepts relevant for task planning in a
robotics context. The following chapters will build on these concepts extending the
basic capabilities and applying the resulting formulation to high-level robot control.
First, we define classical planning tasks. Then we describe how such planning tasks
are formulated in the Planning Domain Definition Language (PDDL), where we focus
on a domain formulation for robotics. We will use this domain as a running example
throughout this work.

2.1 Classical Planning Tasks

There are many formulations of classical planning tasks in the literature. Our defini-
tions are based on those for PDDL planning tasks (Fox and Long, 2003). A planning
task consists of a planning domain and planning problem. The domain describes how
a robot’s world model is constructed and the generic actions that can be executed are
modeled as schematic operators. A planning problem instantiates a world model and
the possible actions for a specific situation. Therefore the domain is usually given as
part of a system and problems are generated during runtime from sensor data reflecting
the current world and goals.
First, we define the planning domain.

Definition 1. A planning domain is a tuple (P,O), where P is a finite set of predicate
symbols, each with an associated arity, and O is a finite set of schematic operators.

Planning tasks use first-order logic formulae. The terms of our logic are constant
and variable symbols drawn from a finite set VF . No interpreted first-order function
symbols are allowed. We call these terms classical terms. The predicate symbols
together with terms form atomic formulae and expressions of our language.

Definition 2. The atomic formulae are formed from an n-ary predicate symbol from
P with n classical terms.

Before addressing planning operators in Definition 5 we define a specific planning
problem for a planning domain and the resulting state space.

11

Chapter 2 Foundations

Definition 3. A planning problem is a tuple (IL, φG, OF), where IL is the initial state,
φG is a first-order formula describing the goal and OF is a finite set of objects.

We refer to a planning problem with its respective planning domain as a planning
task. Its state space is defined by the grounded representation as follows. We call OF

the set of PDDL objects, which is used for grounding classical terms. Grounding is
the syntactic procedure that replaces each term with an object from OF . Constant
terms are replaced by a given representation in OF . Variable terms are grounded by
replacing all variables in an n-ary predicate with all possible object combinations from
OF leading to many possible grounded instantiations. Boolean fluents are formed from
grounding predicates. The grounded predicates form the set of Boolean fluents FL.
A state of a planning task is represented by the values of Boolean fluents. We now
define a state for a problem instance.

Definition 4. A state s is a function that maps each Boolean fluent from FL to
{true, false}, i.e.:

s : FL → {true, false}

The set of all possible assignments for FL is the set of states S.

FL is finite as it is grounded from a finite set OF . IL is a variable assignment that
represents the initial state.

Definition 5. A schematic operator is a tuple (φ, e, c), where φ is a first-order formula—
the precondition, e an effect and c ∈ R>0 the operator cost. First-order formulae are
formed over the atomic expressions from P with the usual logical connectives. An
effect is defined by the finite application of the following rules:

• e is called a simple effect if e is a predicate literal (i.e., a predicate or negated
predicate).

• e1 ∧ . . . ∧ en is a conjunctive effect for effects e1 . . . en.

• ∀x : e is a universal effect for a variable symbol x ∈ VF and an effect e.

We call the set of free variables of an operator the parameters of an operator. The
free variables of an operator (φ, e, c) are the free variables of its precondition and its
effect, i.e., free(φ) ∪ free(e), where the free(e) is defined as:

free(e) =

free(ψ) if e = ψ or e = ¬ψ is a simple effect
⋃n

i=1 free(ei) if e = e1 ∧ . . . ∧ en is a conjunctive effect

free(e′) \ {x} if e = ∀x : e′ is a universal effect

A grounded operator is an operator that has no parameters.

12

2.1 Classical Planning Tasks

We refer to the cost of an operator o as cost(o). If the cost is not explicitly given,
unit costs are used, i.e., c = 1. A grounded operator describes a transition between
two states. Grounding an operator is performed by instantiating each of its parameters
with an object from OF for variables in VF leading to |OF |

m grounded operators for a
schematic operator withm parameters. All free variables in the precondition and effect
are thereby substituted by concrete objects. We now define when an operator o can
be applied in a state s—or applicable(o, s)—and how the successor state s′ = app(s, o)
resulting from applying o in s is derived.

Definition 6. An operator o = (φ, e, c) is applicable in state s iff o is grounded and
the interpretation of its precondition φ in the state s given by φI is true. Applying an
operator o in a state s results in the successor state s′ given by s′ = app(s, o).

We now give this interpretation I of φ in a state s. Mostly the interpretation of
first-order formulae φI is straight-forward. We use standard first-order semantics for
the usual logical connectives and quantifications and focus on the semantics of the
atomic expressions, i.e., if φ is a grounded Boolean fluent p ∈ FL. In this case s |= φI

iff s(p) = true.
To define the semantics of successor states, i.e., the function app(s, o) we use PDDL

semantics (Fox and Long, 2003). First, all simple effects in conjunctive effects are
recursively collected into the set of effects E to apply. Universal effects ∀x : e therefore
are also treated as conjunctive effects, where x is substituted for all objects in OF

resulting in one effect for each object in OF . Next, if there is a negative and positive
literal for the same Boolean fluent, the negative literal is removed. The resulting state
s′ = app(s, o) for a Boolean fluent p of applying o in s is then:

s′(p) =

true if p ∈ E

false if ¬p ∈ E

s(p) otherwise

With the notion of applicability and successor states, we can now define the state
space for a planning task.

Definition 7. The State Space for a Planning Task is a directed graph G =
(S,E), where the vertices are all possible states in S over FL, and there is an edge
from a state s to s′, iff there exists a grounded operator o, so that o is applicable in s,
i.e., applicable(o, s) and the result of applying o in s is s′, i.e., s′ = app(s, o).

Based on the state space we formulate the planning problem for classical planning
tasks as a search problem in the state space.

Definition 8. Plan is a search problem in the state space for a planning task, where
s0 is the state defined by IL. Find a finite path in the state space from s0 to any state
that fulfills φG or show that none exists.

13

Chapter 2 Foundations

Figure 2.1: An example of a mobile manipulation scenario. The robot can pick up and
put down objects with its manipulator arm and drive to tables and shelves to move
objects from one place to another.

The solution of a planning task is a plan.

Definition 9. A plan is the sequence of operators o1, . . . , on along a path, where
applicable(oi, si−1) and app(oi, si−1) = si for all i ∈ {1, . . . , n}. A plan must lead
to a goal state, i.e., sn |= φG.

The cost of a plan is
∑n

i=1 cost(oi).

2.2 Robot Planning Tasks in PDDL

The goal of this section is to give a complete PDDL example for a robotic planning task.
This shows how the definitions of the previous section are used in a real world example.
Although the planner that we use supports temporal planning with concurrent actions
we restrict the domain to non-concurrent actions as executing multiple robot skills like
driving and grasping at the same time is not possible without affecting each other. This
task will also serve as a running example for the next chapters. We model a mobile
manipulation domain as shown in Figure 2.1. Mobile manipulation tasks require a
robot to bring objects from one place to another, e.g., to clean up. Manipulation skills
allow the robot to pick up and put down objects and a navigation component drives
the robot base to different locations.
We start with formulating the planning domain. The first step is to give the pred-

icate symbols with arities. This is an important part of any domain formalization

14

2.2 Robot Planning Tasks in PDDL

as it defines what constitutes the state and thus describes our model of the world.
The preamble of the domain states, which PDDL features we require. We use typed
objects. This allows us to restrict the grounding to use only objects of a certain type
for variables. Without this we would need to explicitly specify that, for example, there
should not be a pick-up action for lifting a static object like a table.

(define (domain mobile-manipulation)

(:requirements :strips :typing)

(:types

grasp

static

pose

movable - pose

)

There are four different types in this domain. A grasp specifies how an object is to
be held, e.g., a side grasp. A static is an object that cannot be moved like a table
or a shelf. A pose is used for anything that has a pose, while movable is a sub-type
of pose and describes objects to be manipulated like a cup or a bottle.
Next, we will look at the predicate symbols from Definition 1 and how they form

the predicates from Definition 2. They are given in the :predicates section. PDDL
variables used therein are preceded by a question mark and can have an optional
type. For example ?x - movable states that the variable x only holds objects of type
movable.

(:predicates

(on ?x - movable ?y - static)

(grasped ?x - movable ?g - grasp)

(is-grasp-for ?g - grasp ?o - movable)

(handempty)

(at ?s - static)

)

The on predicate states on which static object a movable object is placed. An object
can also be grasped in a certain grasp. Which grasps are possible for an object is
given by is-grasp-for. If no object is grasped, handempty is true. at is true for
a static object if the robot base is located near this object. The second part of a
domain description contains the schematic operators (Definition 5). First, we look at
the pick-up action.

15

Chapter 2 Foundations

(:action pick-up

:parameters (?x - movable ?y - static ?g - grasp)

:precondition (and

(at ?y)

(on ?x ?y)

(handempty)

(is-grasp-for ?g ?x)

)

:effect (and

(not (on ?x ?y))

(not (handempty))

(grasped ?x ?g)

)

)

The pick-up as well as the put-down operator both have three parameters: the
object ?x to pick or place, the static object ?y, where the movable object is placed on,
and the grasp to use. For the pick-up action to be applicable the robot needs to be at
the static object, the object to pick needs to be on the static ?y and the robot cannot
already hold an object, i.e., handempty is true. The last condition is-grasp-for

states that this grasp can be used for the object. The result of applying the pick-up
action is that ?x is not on ?y any more, but grasped. Therefore handempty is now
false.

(:action put-down

:parameters (?x - movable ?y - static ?g - grasp)

:precondition (and

(at ?y)

(grasped ?x ?g)

(is-grasp-for ?g ?x)

)

:effect (and

(not (grasped ?x ?g))

(handempty)

(on ?x ?y)

)

)

The put-down action inverts the effects of the pick-up action. Thus now the object
being grasped is the precondition, while the effect leads to the object being not
grasped anymore and handempty is true.

16

2.2 Robot Planning Tasks in PDDL

(:action drive-base

:parameters (?s - static ?g - static)

:duration (= ?duration 5)

:precondition (and

(at ?s)

(not (at ?g))

)

:effect (and

(not (at ?s))

(at ?g)

)

)

Finally, the drive-base action moves the robot base from a start location ?s to a
goal location ?g. To be able to do so, the robot must be at ?s and not already at ?g.
As an effect of the action the robot is now at ?g, but not at ?s any more. The cost
of this operator is explicitly given in the duration statement as 5. This concludes
the domain for our mobile manipulation scenario. While the domain usually stays
fixed during execution, the problem definition (Definition 3) changes given the current
situation and goal. We give one example problem here with a single object in the
scene of Figure 2.1.

(define (problem p)

(:domain mobile-manipulation)

(:objects cereal_box_6 - movable

table2 table3 shelf1 shelf2 - static

side_left side_right top - grasp)

First, the object set OF is given. Here we have one movable object cereal box 6

and four static ones: the two tables as well as the two stacked shelves to the left.
Note that movable is a sub-type of pose and thus the cereal box 6 can also be used
anywhere, where a pose is accepted. It might be more intuitive to think of movable
objects also having the properties of a pose. Three different grasps are available. Next,
the initial state is defined.

(:init

(handempty)

(is-grasp-for top cereal_box_6)

(is-grasp-for side_left cereal_box_6)

(is-grasp-for side_right cereal_box_6)

(at table3)

(on cereal_box_6 table2)

)

17

Chapter 2 Foundations

This represents IL and states that the robot is at table3 and its hand is empty. The
cereal box is on table2 and all three grasps are possible. Although the is-grasp-for
predicates are constant throughout the plan it is often still necessary to formulate a
domain this way for robotics tasks and not compile this information out beforehand.
The reason is that those might be determined during execution from sensor data and
are then written to the problem. The planner therefore only uses the correct grasps.
Finally the goal statement requires cereal box 6 to be in either of the shelves.

(:goal (or

(on cereal_box_6 shelf1)

(on cereal_box_6 shelf2)

)

)

This problem together with the domain above states a classical planning task for
a mobile manipulation scenario. With respect to robotics tasks there are some lim-
itations. All conditions and effects are purely symbolic. Although there is symbolic
information like a specific grasp, we cannot express if the arm can be moved into a
collision-free configuration that grasps an object. It is also not clear, where an object
is to be placed when it is on a table. The actual placement pose influences not only if
it can be placed, but also any further actions. In addition this planning task assumes a
deterministic execution and full knowledge of the scenario. A requirement unlikely to
be fulfilled for real-world tasks. We will address all these shortcomings in the following
chapters.

2.3 Forward-Chaining State Space Search

There are multiple different ways to solve the planning problem, i.e., finding a plan or
proving that none exists. Many planners—including the one developed in this thesis—
use a search-based approach. Therefore, we will shortly introduce the basic concepts of
how such an approach works. The purpose of this section is not a complete overview of
state of the art search techniques for planning, but to give an intuitive understanding
of state space search that will illustrate how the techniques presented in the following
chapters integrate with the search procedure. The underlying principle is that we use
a forward-chaining—that is from the initial to a goal state—search in the state space
graph given by Definition 7.
An important distinction between planning and other search algorithms is that this

state space graph is too large to be explicitly built. It is only partially constructed
during the search. However, we do need to represent a state and the grounded oper-
ators. In other words: We need a grounded representation. Although it is possible
to create this online during planning this is often built as an explicit preprocessing
step called grounding. There exist efficient algorithms to do so. We use the method

18

2.3 Forward-Chaining State Space Search

Algorithm 1 Heuristic Best-First Search

1: open ← PriorityQueue(∅)
2: closed ← ∅
3: current ← s0
4: current g ← 0
5: best g[current] ← 0
6: while True do
7: if current 6∈ closed or current g < best g[current] then
8: closed ← closed ∪ {current}
9: best g[current] ← current g

10: if current |= φG then
11: return SOLVED
12: end if
13: generate successors(open, current, current g)
14: end if
15: next ok, current, current g ← fetch next state(open)
16: if not next ok then
17: return NO PLAN FOUND
18: end if
19: end while

introduced by Helmert (2009). The result of this is a more concise representation
than the simple replacement of all variables with objects from OF as described in Sec-
tion 2.1, where instantiations for unreachable fluents or operators are not performed.
Any grounding procedure leads to a set of grounded fluents representing the state and
a set of grounded operators, here called P , that are used by the search.
Algorithm 1 shows the basic search algorithm. The priority queue stores pairs of

the parent state and operator to apply, thus implicitly representing a successor of the
parent state, as well as the g-value of the parent. The g-value is the cost estimate from
the initial state to this state. In each step the current state—starting with the initial
state—is added to the closed set (l. 8) and expanded by computing successors (l. 13).
We discard states that have been closed unless their cost is lower than the closed state’s
cost (l. 7). generate successors is shown in Algorithm 2 and inserts all applicable
operators into the open queue. The priority for the open queue is determined using
heuristic estimates from a given heuristic guidance function. fetch next state also
shown in Algorithm 2 takes the next state from the open queue. It computes this state
explicitly by app(state, op) and its g-value as well as a flag that states if a state could
be taken. The search procedure continues until a goal state is found (l. 11) or no new
state could be fetched as the open queue ran empty (l. 17).

19

Chapter 2 Foundations

Algorithm 2 Successor Generation and Fetching

1: function generate successors(open, parent, parent g)
2: for all o ∈ P do
3: if applicable(o, parent) then
4: open.insert((parent, o, parent g),
5: computePriority(parent, o, parent g))
6: end if
7: end for
8: end function

1: function fetch next state(open)
2: if open.empty() then
3: return False, None, ∞
4: end if
5: state, op, g ← open.pop()
6: return True, app(state, op), g + cost(op)
7: end function

20

Chapter 3

Semantic Attachments

Real-world planning problems often require several sub-problems to be solved. The
high-level tasks a robot is supposed to perform, e.g., fetching a bottle of water from
the kitchen, must be planned for. In a robotics context it is usually also necessary
to plan for lower-level aspects like robot movements or the manipulation of objects.
While the former problem can be expressed using a symbolic planning formalism as
shown in Chapter 2, navigation and path planning is beyond the scope of symbolic
planners. In fact, specialized planners that are better suited for these problems are
available.

It makes, of course, a lot of sense to decompose a complex real-world planning
problem into different simpler subtasks. However, the planners have to be combined in
the right way. A commonly used method is a hierarchical top-down combination. First,
at the highest level, the symbolic planner creates a symbolic plan. Then the actions are
refined using low-level planners, e.g., the path planner and the manipulation planner.
The assumption here is that the abstract symbolic description is expressive enough to
permit a successful refinement and execution of the generated actions. However, very
often this is not true. In such cases, the early commitment of the symbolic planner
may lead to failures on the lower levels.

Instead of such a top-down approach, hierarchical composition can also be achieved
in a bottom-up manner, where all information possibly relevant to the symbolic plan-
ner is precomputed by the lower level reasoners beforehand. This, however, may be
very costly if there are too many facts, which often is the case. For example, the
precomputation of all trajectories between all pairs of poses of a manipulator arm for
all possible configurations of objects is extremely time consuming. Furthermore, most
of the generated information will turn out to be irrelevant to the task at hand. In
addition the state space in robotics problems might not be finite and thus a precom-
putation of all information is impossible.

Therefore, in this work, we propose an approach that integrates high and low-level
planning more tightly and in which a low-level reasoner provides information to the
high-level planner during the planning process, but is only evoked if relevant to the
high-level planner. Contrary to the hierarchical decomposition and combination, a
particular choice on the symbolic level can lead the low-level planner to detect failure

21

Chapter 3 Semantic Attachments

and cause backtracking immediately.
To integrate information about special-purpose reasoning into symbolic planning

we use what we call semantic attachments1 within a planning domain description.
Some of the predicate symbols of the domain description can have such a semantic
attachment, meaning that the truth values for corresponding atomic ground formulas
are specified by an external mechanism. We also include numerical fluents in the state.
There exist semantic attachments for effects on numerical fluents and operator cost,
which are computed by an external mechanism as well.
Semantic attachments can easily be added to a planning language like, in our case,

PDDL. Based on that, we describe a general framework for integrating these exten-
sions into forward-chaining state-space planners, which are particularly suited to our
task since they search over complete world states. External modules can then ac-
cess these states in order to compute conditions and effects for their special-purpose
behaviors. While similar mechanisms have been used before, in particular in domain-
specific contexts (Konolige and Nilsson, 1980; Bacchus and Kabanza, 2000; Orkin,
2006), our work (Dornhege et al., 2009a) appears to have been the first that extends
PDDL rendering this feature available for domain-independent planners.
The rest of this chapter is structured as follows. In the next section, we give a

number of motivating examples. Then we comment on related work and put other
approaches in perspective to ours. Afterwards we define planning tasks with semantic
attachments and how PDDL is extended to PDDL/M. Based on that, we describe
our implementation of semantic attachments in the planning system Temporal Fast
Downward. We evaluate the performance of semantic attachments and demonstrate
the applicability of the concept for the examples that motivated this work. Finally,
we conclude by summarizing what is possible with this formalism and give an outlook
on how this system is extended and applied throughout the further chapters in this
thesis.

3.1 Motivating Examples

For many real-world problems, it is hard to find a symbolic abstraction that guarantees
that for every symbolic plan an executable plan can be refined. In this chapter, we
consider two such problems, namely a logistics domain with complex truck packing
problems and the robot manipulation domain introduced in Chapter 2.

3.1.1 Transport Domain

The logistics domain has been a standard benchmark for several years at the Inter-
national Planning Competition. It models a common logistics problem, where trucks

1Semantic attachment is a term coined by Weyhrauch (1980) to describe the attachment of an
interpretation to a predicate symbol using an external procedure.

22

3.1 Motivating Examples

deliver packages to different locations. In the original formulation, each truck can pick
up only one package. With the introduction of numerical fluents, it became possible
to model truck capacities and package sizes in the transport-numeric domain, allow-
ing trucks to load multiple packages. This is represented by adding up package sizes
and permitting to load additional packages as long as the sum stays below a truck’s
capacity.
Although more realistic than not representing capacities at all, summing up volumes

is obviously not sufficient for checking whether a set of packages can be loaded into a
truck, since the package geometries are not considered. For example, Figure 3.1 shows
that it is impossible to pack two equally sized cubes into a cube with twice the volume.
Moreover, it demonstrates that the volume approximation is not even close to reality.

Figure 3.1: The two smaller cubes have half the volume of the outer one, but they
obviously do not fit together into the outer cube.

Clearly, it is beyond the capabilities of a symbolic planner to solve the three-
dimensional packing problem. However, there exist specialized algorithms for solving
this NP-hard problem exactly or approximately. Such a reasoner could be integrated
into the planner by attaching it semantically to the precondition of an action.

3.1.2 Robot Manipulation Domain

Similar to the logistics domain, the blocks-world domain has been a benchmark in the
planning area for a long time. It can be considered as a highly abstract version of a
robot manipulation problem. Nowadays large tasks are easily solved by symbolic plan-
ners. Unfortunately, however, the domain is so abstract that it has hardly anything to
do with reality. For example, gripper poses or potential collisions of the gripper with
other objects do not play a role at all.
A concrete domain is the symbolic robot manipulation domain introduced in Sec-

tion 2.2. Figure 3.2 shows a simple example task for this domain. There are multiple

23

Chapter 3 Semantic Attachments

objects with different shapes and sizes and a manipulator arm. A realistic model for
moving an object to another place entails various problems. A chosen grasp must be
reachable given the kinematic constraints of the manipulator. There must not be any
collisions of the robot arm or the grasped object with any other object in the scene
when grasping it, placing it and on a trajectory between grasping and placing. This
can also mean that another object must be moved away first to avoid collisions or
that the object needs to be re-grasped between picking it up and putting it down at
a target location.

(a) (b)

Figure 3.2: Visualization of the manipulation domain with (a) an initial state and (b)
a goal state.

Again, solving such a task using only a symbolic planner is clearly impossible. We
need a manipulation planner that computes collision-free trajectories for picking and
placing objects as a sub-component of the symbolic planner. Such an embedded plan-
ner checks the precondition of whether a grasp or place action is possible. Furthermore,
it also updates the internal model of the environment, i.e., the new object pose and
arm configuration, so that possible collisions in subsequent states are detected.

3.2 Related Work

There exist some planning systems that exploit domain-specific knowledge, such as
SHOP2 (Nau et al., 2003), TLPlan (Bacchus and Kabanza, 2000), or the TALplan-
ner (Kvarnström and Doherty, 2000). However, in contrast to semantic attachments
the main intention is to create a more efficient search process instead of providing a
more precise domain semantics. This is achieved by “outsourcing” of hard problem-
specific computations during planning, for example by isolating optimization sub-
problems from planning problems (Fox and Long, 2001). The work by Srivastava and
Kambhampati (1999) on decomposing a general planning problem into a resource and

24

3.2 Related Work

a planning problem is also relevant here. However, they specifically investigate the re-
lation between resource and planning problems while we propose a general framework
for combining different kinds of planning and reasoning.
In the past, semantic attachments have already been used in some domain-specific

planning systems for computing specific action preconditions (Konolige and Nilsson,
1980; Orkin, 2006). The mechanism we propose is similar to a feature in TLPlan (Bac-
chus and Kabanza, 2000) called “computed predicates”. These are implemented in the
formula evaluator, which in this case is viewed as an interpreter of a language. Botea
et al. (2003) use this planner to solve instances of an abstracted Sokoban domain,
while the subproblems are solved externally. This domain-specific decomposition can
thus be represented on the planner level.
The main differences to our approach (Dornhege et al., 2009a) are that most other

approaches aim at domain-dependent search control, that the planning state cannot
be queried via call-back functions, and that only the semantics of conditions can be
externally computed, i.e., it is not possible to specify externally computed numerical
effects. Another important aspect is that we developed a domain-independent interface
with a suitable PDDL dialect that easily allows to apply our planner in various systems.
Motivated by SAT modulo theories more recent work proposes planning modulo

theories as a domain-independent formulation of external semantics (Gregory et al.,
2012). In contrast to our work, they do not provide external semantics for distinct
aspects, but external semantics are given for a complete first-order theory. In prac-
tice this means that, e.g., function symbols that give theory-specific results can be
computed externally. They give sets of objects and operations thereon as an example.
On the robotics side the integration of AI planning with robotics systems has also

been considered. In the area of robotic planning, the work by Cambon et al. (2004,
2009) also aims at the integration of geometric and symbolic planning. They use
special propositions that map to subspaces of the geometric configuration space in
a symbolic planner. Symbolic plans are then used as a heuristic to guide a custom
geometric search algorithm. Our manipulation planner build on semantic attach-
ments (Dornhege et al., 2009b) follows a different concept. Instead of the symbolic
planner being used in the manipulation planner, here the motion planner is a part of
the symbolic planner.
Burbridge and Dearden (2013) do use a symbolic and a geometric planning solution,

although both are not integrated. Their approach can be considered to be an iterated
application of a top-down decomposition for a finite number of times. Other concepts
for integrating task and motion planning rely on hierarchical task network (HTN) plan-
ners. Wolfe et al. (2010) use a HTN that on the lowest level of the hierarchy computes
geometric solutions. A more generic formulation uses external computations in HTN
to compute “shared predicates” that are shared in the sense that they have a meaning
for the symbolic planner and for a “geometric task planner” (de Silva et al., 2013).
An important aspect of their work is that they explicitly address backtracking in the
symbolic and geometric domain. Another concept for integrating external reasoners is

25

Chapter 3 Semantic Attachments

Figure 3.3: Semantic attachments consist of a declarative and a procedural part. The
declarative part is contained within the task description and states, which variable
valuations in a planning task are to be computed by the procedural part instead of a
simple lookup.

presented by Kaelbling and Lozano-Pérez (2011, 2013). They search backwards from
a goal state. Instantiations of some objects, such as intermediate placement locations,
are provided by external “suggesters” that, for example, only produce locations so
that a swept volume is kept free for subsequent operators in the plan.

3.3 Semantic Attachments

We address the shortcomings of symbolic planning formulations by a concept that
we call semantic attachments. Semantic attachments are external reasoning modules
(in the following just called modules) that compute valuations of variables used by
a planner at run-time. Thereby they enhance the semantics of what is possible to
express in a symbolic planner, while the domain-independent planner itself is mostly
unaffected by this extension. Instead of looking up values or updating them through
state transitions as usual in Strips-like languages, a function call provides the necessary
information. Under the hood of the module, though, complex computations can be
performed that transcend the capabilities of the planner.
In order to integrate semantic attachments into a planner we propose the archi-

tecture shown in Figure 3.3. Semantic attachments consist of a declarative part that
describes their use in the planning domain, i.e., their symbolic use in preconditions,
costs and effects of planning operators. Additionally, they have a procedural part that
is attached to the declarative part and is the actual algorithm for computing the
value in question. This part is implemented as a function and directly included into
the planner as a shared library. The current planner state can be accessed through
callback functions. The next section gives more details about the implementation.
We propose three kinds of semantic attachments that can be part of operators:

Condition checkers test whether some complex operator precondition given by a pred-
icate is satisfied. Effect applicators compute changes to any number of numerical

26

3.3 Semantic Attachments

state variables. Cost modules compute the cost of an operator. When speaking of the
declarative part of these modules, i.e., their use as preconditions and effects of plan-
ning operators, we will speak of module predicates in the case of condition checkers
and effect modules in the case of effect applicators.

3.3.1 Definitions

In order to actually use semantic attachments in classical planning, it is necessary
to include semantic attachments in the definitions of classical planning tasks given in
Section 2.1. Additionally the description language for planning tasks PDDL is slightly
extended to PDDL/M—an acronym for PDDL with modules. PDDL planning tasks
are described with different levels that optionally enable additional expressiveness.
Besides the usual first-order logic based symbolic formulation we additionally include
numerical state variables. Although our planner TFD/M supports conditions and
effects on numerical state variables, we skip these definitions as numerical PDDL con-
ditions and effects are not sufficient to express robotics tasks. In PDDL/M numerical
fluents are an essential part of the planner state as the external modules are most
relevant when complex numeric computations need to be performed. As such besides
the symbolic values they take numerical values as inputs and also provide resulting
numerical effects. We will now restate the definitions from Section 2.1 extended with
numerical fluents and semantic attachments, but focus the descriptions on the dif-
ferences and additions for planning tasks with semantic attachments. We also give
PDDL/M examples for defining modules based on the PDDL task from Section 2.2.
First, we define the planning domain.

Definition 10. A planning domain is a tuple (P,MP, F,EM,O), where P is a finite
set of predicate symbols,MP is a finite set of module predicate symbols, F is a finite set
of function symbols, EM is a finite set of effect module symbols—all pairwise disjoint
and with respective arities. O is a finite set of schematic operators.

The additions here are the introduction of function symbols that represent numerical
values, module predicate symbols that represent condition checkers and effect module
symbols that represent effect applicators. Together with the classical terms, i.e., con-
stant and variable symbols, we can now form module predicates and effect modules.

Definition 11. The atomic formulae are formed from an n-ary predicate symbol from
P with n classical terms or from an n-ary module predicate symbol from MP with
n classical terms. In addition to atomic formulae we define Primitive Numerical
Expressions (PNE). A PNE is formed from an n-ary function symbol from F and
n classical terms. Finally there are effect modules. An effect module consists of an
n-ary effect module symbol from EM , n classical terms and a k-dimensional vector of
PNEs that we call the affected fluents.

27

Chapter 3 Semantic Attachments

In PDDL primitive numerical expressions are declared in the :functions section
exactly like PDDL predicates are declared in the :predicates section.

(:functions

(q0) (q1) (q2) (q3) (q4) (q5) (q6)

(robot-x)

(robot-y)

(robot-th)

(x ?p - pose)

(y ?p - pose)

(z ?p - pose)

(qx ?p - pose)

(qy ?p - pose)

(qz ?p - pose)

(qw ?p - pose)

)

There are three blocks of numerical state variables. q0–q6 are the current configuration
parameters of the—in this case— 7-dof manipulator. robot-x, robot-y and robot-th

give the pose of the robot base in the 2d plane. Finally, there is a generic pose for
objects, where x, y, z describe the position and qx, qy, qz, qw are parameters of the
orientation quaternion.
A PDDL/M domain contains an additional :modules section that declares the three

types of modules similar to the way predicates and PNEs are declared in PDDL. In
this section, each semantic attachment has its own entry, a condition checker and cost
module consisting of four, and an effect applicator of five mandatory parts. All start
with a unique identifier. In the case of condition checkers and effect applicators this is
the respective symbol; for cost modules this is a name to reference the module. Next
follows a possibly empty list of parameters, similar to a function or predicate entry in
their respective sections. Only for effect applicators we then list the k PNEs that are
set by the module. Then the type of module is declared by a keyword and finally the
function and library name defining the procedural part is given. This is illustrated by
the following modules section for the exemplary mobile manipulation domain.

(:modules

...

(checkTransfer ?target - movable ?place - static ?grasp - grasp

conditionchecker

checkTransfer@libtrajectoryModule.so)

28

3.3 Semantic Attachments

(applyTransfer ?target - movable ?place - static ?grasp - grasp

(q0) (q1) (q2) (q3) (q4) (q5) (q6)

(x ?target) (y ?target) (z ?target)

(qx ?target) (qy ?target) (qz ?target) (qw ?target)

effect applyTransfer@libtrajectoryModule.so)

(costDrive ?s - static ?g - static cost

costDrive@libtrajectoryModule.so)

)

The first two modules are used in the put-down action. They represent a trans-
fer motion, i.e., a manipulator movement, where a grasped object is transfered to
a placement location. First, the symbol names of the module predicate and effect
applicator are given as checkTransfer and applyTransfer. The following three pa-
rameters match those used in the put-down operator. The final statements of the form
checkTransfer@libtrajectoryModule.so state that this module is implemented by
the function checkTransfer in the dynamic library with the name libtrajectory

Module.so. When and how such functions are applied will be explained later in Defi-
nitions 15–17 and Section 3.4. The condition checker checkTransfer here computes
if a collision-free motion plan exists to place the object ?target at ?place, while the
effect applicator applyTransfer computes the pose, where the object will be placed
afterwards and the resulting configuration of the manipulator arm. The configuration
parameters of the manipulator are stored in the state’s numerical fluents q0–q6 and
the 6-dof object pose is given by the fluents x, y, z and qx, qy, qz, qw for the
?target object. The cost module is applied in the drive-base operator. It computes
the path cost to drive the robot base from the location ?s to ?g.

Before addressing planning operators in Definition 14 we define a specific planning
problem for a planning domain and the resulting state space.

Definition 12. A planning problem is a tuple (IL, IN , φG, OF), where IL and IN are
the logical and numerical initial state, φG is a first-order formula describing the goal
and OF is a finite set of objects.

The planning problem defines the initial state, a goal formula and a finite object
set OF for grounding as in Definition 12, where the initial state is now specified for
Boolean and numerical fluents. As before the state space of a planning task is defined
by the grounded representation. The object set is again used to ground the predicates,
but PNEs are also grounded. The grounded predicates form the set of Boolean fluents
FL and the grounded PNEs form the set of numerical fluents FN . Both together
define a state, which is a function s that maps each Boolean fluent to {true, false} and
each numerical fluent to a value in R. Note that module predicates—although being
predicates in first-order formulae—are not part of the Boolean fluents and therefore
not contained in a state. We now define a state for a problem instance.

29

Chapter 3 Semantic Attachments

Definition 13. A state s is a function that maps each Boolean fluent from FL to
{true, false} and each numerical fluent from FN to R, i.e.:

s : FL → {true, false}

and
s : FN → R

The set of all possible assignments for FL and FN is the set of states S.

Given that we include numerical fluents in the state there are infinitely many states.
However, FL and FN are still finite as they are grounded from a finite set OF , so that
in turn the descriptor for a single state is finite and—for a given planning task—of
constant size. IL and IN are the variable assignment that represents the initial state.
An initial state in PDDL now also contains initial values for numerical fluents, e.g.,
for our problem from Chapter 2:

(:init

(handempty)

(is-grasp-for top cereal_box_6)

(is-grasp-for side_left cereal_box_6)

(is-grasp-for side_right cereal_box_6)

(at table3)

(on cereal_box_6 table2)

(= (robot-x) 0)

(= (robot-y) 0)

(= (robot-th) 0)

(= (q0) 0)

(= (q1) 1.570796327)

(= (q2) 0)

(= (q3) 0)

(= (q4) 0)

(= (q5) 0)

(= (q6) 62)

(= (x cereal_box_6) -0.8)

(= (y cereal_box_6) 1.4)

(= (z cereal_box_6) 0.298)

(= (qx cereal_box_6) 0)

(= (qy cereal_box_6) 0)

(= (qz cereal_box_6) 0.7071067812)

(= (qw cereal_box_6) 0.7071067812)

)

30

3.3 Semantic Attachments

The second half of the :init statement after the first six entries initializes all numerical
fluents to the correct values representing the scene in Figure 2.1. The definition of an
operator is slightly adapted to include semantic attachments.

Definition 14. A schematic operator is a tuple (φ, e, cost), where φ is a first-order
formula—the precondition, e is an effect, and cost a function that maps from a state s
to R>0—the operator cost. First-order formulae are formed over the atomic expressions
from P and MP with the usual logical connectives. An effect is defined by the finite
application of the following rules:

• e is called a simple effect if e is a predicate literal (i.e., a predicate or negated
predicate). Note that this excludes module predicate literals.

• e is called a module effect if e is an effect module ea.

• e1 ∧ . . . ∧ en is a conjunctive effect for effects e1 . . . en.

• ∀x : e is a universal effect for a variable symbol x ∈ VF and an effect e.

We call the set of free variables of an operator the parameters of an operator. The
free variables of an operator (φ, e, cost) are the free variables of its precondition and
its effect, i.e., free(φ) ∪ free(e), where the free(e) is defined as:

free(e) =

free(ψ) if e = ψ or e = ¬ψ is a simple effect

free(ea) if e = ea is an effect module
⋃n

i=1 free(ei) if e = e1 ∧ . . . ∧ en is a conjunctive effect

free(e′) \ {x} if e = ∀x : e′ is a universal effect

free(ea) for an effect module are all variables used in the terms of ea and all variables
used in terms of any of the affected fluents of ea. A grounded operator is an
operator that has no parameters.

There are three differences to the classical planning operators given in Definition 5.
The operator cost is now a function. This function might be constant as in classical
planning tasks. In this case we use the same PDDL statements as before. Otherwise
the cost function is given by a cost module (see Definition 17). We added module
predicates to the first-order formulae and effect modules as a module effect to an
operator’s effect. As a consequence of this when grounding an operator we also ground
the module predicates and effect modules. For effect modules not only variables in the
n terms of the module are grounded, but also all variables within the affected fluents are
grounded as well. In addition to FL and FN this leads to grounded module predicates
and grounded effect modules. Within PDDL domain descriptions we signal the use
of a module predicate or effect applicator by square brackets. The put-down action
for our mobile manipulation task with semantic attachments is an example of this
notation. Here the operator cost is constant. The module predicate checkTransfer

and the effect module applyTransfermatching the module definitions above are used.

31

Chapter 3 Semantic Attachments

(:action put-down

:parameters (?x - movable ?y - static ?g - grasp)

:duration (= ?duration 5.0)

:precondition (and

(at ?y)

(grasped ?x ?g)

(is-grasp-for ?g ?x)

([checkTransfer ?x ?y ?g])

)

:effect (and

(not (grasped ?x ?g))

(handempty)

(on ?x ?y)

([applyTransfer ?x ?y ?g])

)

)

The semantics of applicability and operator application have to be adapted to ac-
count for semantic attachments. This is the crucial part, where semantic attach-
ments come into play. If a grounded operator o can be applied in a state s—or
applicable(o, s)— is given by the interpretation I of the precondition φ in a state
s. We use standard first-order semantics for the usual logical connectives and quan-
tifications and focus on the semantics of the atomic expressions. The difference to
first-order formulae in classical planning is that we added module predicates. If φ
is a grounded Boolean fluent p ∈ FL, then s |= φI iff s(p) = true. However, if φ
is a grounded module predicate the semantics are defined by external functions—the
procedural part of the condition checker.

Definition 15. A condition checker is a function fcc attached to an n-ary module
predicate symbol, where fcc : O

n
F → (S → {true, false}) maps from an n-dimensional

vector of objects to a function that maps from a state to true or false.

First, note that condition checkers are attached to module predicate symbols, and
not to module predicates. Thus the definition is generic applied to a domain inde-
pendent of an actual problem instance. For a grounded operator each n-ary module
predicate was grounded with n objects from OF that we collect in a vector x. Applying
the condition checker to x results in a function g = fcc(x) for the grounded module
predicate that maps S → {true, false}. This is the function defining the semantics
of the grounded module predicate in a state from S. Therefore, if φ is a grounded
module predicate s |= φI iff g(s) = true. This means that condition checkers are
evaluated on the current state, and thus not part of the set of logical fluents FL. As
such module predicates must not appear as an effect in any operator. In contrast to

32

3.3 Semantic Attachments

derived predicates in PDDL (Fox and Long, 2003) condition checkers are computed
from the logical and numerical state and thus are able to model complex relations.
The semantics of successor states, i.e., applying o in s given by the function app(s, o)

is defined by PDDL semantics for the parts of an effect that are defined in PDDL,
that is: universal effects, conjunctive effects and simple effects (see Fox and Long
(2003)). The actual state update is performed by simple effects and module effects.
Module effects affect the numerical fluents of the state in FN and thus are independent
from simple effects that change the Boolean fluents in FL. The semantics of module
effects are defined by effect applicators that are attached to effect module symbols.
An example is shown in the put-down operator above.

Definition 16. An effect applicator is a function fea attached to an n-ary effect
module symbol, where fea : On

F →
(

S → R
k
)

maps from an n-dimensional vector of
objects to a function that maps from a state to a k-dimensional numerical vector.

Recall that effect modules are formed from n terms and a k-dimensional vector of
PNEs. Similar to module predicates, for a grounded operator the n-ary effect module
was grounded with a vector x of n objects. To apply a module effect, first we call
h = fea(x) to get an effect applicator function for a grounded effect module. When
applying a module effect with function h in a state s, we call y = h(s), where y is a
k-dimensional vector in R

k. Let a be the k-dimensional vector of affected fluents from
FN for this effect module. The resulting state s′ for these numerical fluents in a is
given by:

s′(a[i]) = y[i] for i ∈ {1, . . . , k}

Numerical fluents f that were not affected by any effect module in an operator
stay unchanged, i.e., s′(f) = s(f). The state update is ambiguous if multiple module
effects affect the same PNE. As there is no reasonable ordering between different
PNE values as, e.g., delete-first for Boolean effects, we disallow assigning to the same
affected fluent within the same operator.

Example Consider the grounded operator put-down bottle1 table2 top that places
a bottle on a table. The object vector x for both modules here is (bottle1, table2,

top)T . Grounding for this operator lead to a grounded effect module

(applyTransfer bottle1 table2 top

(q0) (q1) (q2) (q3) (q4) (q5) (q6)

(x bottle1) (y bottle1) (z bottle1)

(qx bottle1) (qy bottle1) (qz bottle1) (qw bottle1)

effect applyTransfer@libtrajectoryModule.so)

Here k = 14 and the affected fluents a are ((q0), (q1), (q2), (q3), (q4), (q5),

(q6), (x bottle1), (y bottle1), (z bottle1),

(qx bottle1), (qy bottle1), (qz bottle1), (qw bottle1))T .

33

Chapter 3 Semantic Attachments

A state update for applying this effect applicator in a state s is computed as follows:

• First, call h = fea((bottle1, table2, top)T).

• Next, call y = h(s), which must result in a 14-dimensional vector y.

Let us assume the result of that computation is to place the bottle at the position
(0.4,−0.2, 0.75)T . For brevity we will not consider all 14 values here although in
practice each one must be set.

• The respective entries are: y[7] = 0.4, y[8] = −0.2, y[9] = 0.75.

• From a we have a[7] = (x bottle1), a[8] = (y bottle1), a[9] = (z bottle1).

• Therefore the resulting state s′ for those fluents is s′((x bottle1)) = 0.4, s′((y
bottle1)) = −0.2, s′((z bottle1)) = 0.75.

The third type of module is a cost module. As the name suggests it is used to define
an operator’s cost by an external function.

Definition 17. A cost module is a function fcost attached to a schematic operator o
with n parameters, where fcost : O

n
F → (S → R>0) maps from an n-dimensional vector

of objects to a function that maps from a state to R>0.

A cost module is used to provide the cost function of an operator from Definition 14.
Similar to condition checkers and effect applicators this function takes an object vector
to allow domain writers to implement generic functions for any problem instance. In
contrast to the two other module types the function has the same parameters as the
operator. The function fcost is applied in a similar way when grounding a schematic
operator o with a vector of objects x. We get a new function cost = fcost(x). This
function cost : S → R>0 is the cost function of the grounded operator and determines
the operator’s cost as cost(s) when applied in a state s. As an example consider the
drive-base operator.

(:action drive-base

:parameters (?s - static ?g - static)

:duration (= ?duration [costDrive ?s ?g])

:precondition (and

(at ?s)

(not (at ?g))

([checkDrive ?s ?g]))

:effect (and

(not (at ?s))

(at ?g)

([applyDrive ?s ?g]))

)

34

3.3 Semantic Attachments

The cost of this operator is defined by the cost module costDrive that, for example,
calls a path planner to compute the length of the path from the pose of ?s to the pose
of ?g. Likewise, checkDrive will compute if such a path exists and applyDrive will
set the resulting pose at ?g. To prevent code duplication these modules are therefore
usually implemented in the same dynamic library.
Semantic attachments only affect the notion of applicability, successor derivation

and cost of individual operators. Therefore the state space for a planning task with
semantic attachments, the resulting planning problem, and the notion of a plan (Def-
initions 7–9) are similar to Chapter 2. We will quickly restate how the state space
for a planning task looks like as that is relevant for the discussion on soundness and
completeness.

Definition 18. The State Space for a Planning Task is a directed graph G =
(S,E), where the vertices are all possible states in S over FL and FN , and there is an
edge from a state s to s′, iff there exists a grounded operator o, so that o is applicable
in s, i.e., applicable(o, s) and the result of applying o in s is s′, i.e., s′ = app(s, o).

The most noteworthy difference to classical planning tasks is that the state space
is now defined over Boolean and numerical fluents and that effect applicators set or
change numerical fluents. As these take values in R the state space is no longer finite.
The planning problem is the search problem in this graph to either find a path from
the initial state s0 to any goal state—the plan—or show that no such path exists.

Definition 19. Plan is a search problem in the state space for a planning task, where
s0 is the state defined by IL and IN . Find a finite path in the state space from s0 to
any state that fulfills φG or show that none exists.

3.3.2 Soundness and completeness

One important question when using semantic attachments is how these affect sound-
ness and completeness of a planner. Since arbitrary code can be used in the modules,
it cannot be guaranteed that the planner terminates when calling a semantic attach-
ment. However, under some reasonable assumptions soundness and completeness can
still be investigated. All semantic attachments are modeled as functions that given
some objects return functions that in turn map from a state to a module specific re-
sult. We require all these functions to always terminate and return a deterministic
value. This means for identical parameter values and states the result of any semantic
attachment must be identical.
In other words, condition checkers are nothing else than a concise representation of

derived predicates. Similarly we can view effect applicators as a concise representation
of part of the deterministic transition function that for classical planning tasks is
specified by the PDDL effects. Effect applicators in particular should not contain any
mechanism for making choices between different outcomes, such as selecting a location

35

Chapter 3 Semantic Attachments

for placing an object, when called repeatedly with the same inputs. Cost modules are
understood as providing another means of specifying the cost of an operator in a state.
If these conditions are met, one can analyze soundness and completeness of a planner

extended by a semantic attachment mechanism relative to the semantic attachments:
Assuming that all semantic attachments implement the intended meaning are the
returned plans correct and will the planner find a solution if there exists one? Before
we argue later, what guarantees our implementation of semantic attachments provides,
we now consider what is possible theoretically.
First, we define what it means that an effect applicator changes numerical fluents

or the opposite only sets numerical fluents.

Definition 20. We say an effect applicator changes numerical fluents if the result
of a module effect depends on any numerical fluent in FL. If this is not the case, i.e.,
the result only depends on symbolic information, we say that an effect applicator sets
numerical fluents.

One important factor is if the reachable state space is finite. Changing numerical
fluents causes a possibly infinite state space for a planning task. This leads to the
following result.

Theorem 21. Plan is undecidable when effect applicators change numerical fluents.

Proof. Planning with numerical state variables is undecidable (Helmert, 2002). Helmert
reduces the planning problem to finding solutions for Diophantine equations, which
are polynomial equations with multiple variables, in the natural numbers. Planning
tasks with semantic attachments also model Diophantine equations as they are more
expressive than PDDL’s numerical expressions and effects. We create one grounded
operator per variable of the equation that just increases this variable by one with
an effect applicator. This enumerates the natural numbers N. A condition checker
computes if the equation holds and only then allows the transition to a goal state.

When restricting effect applicators to only set numerical fluents, we retain a finite
reachable state space. Let P be the finite set of grounded operators. Each grounded
predicate in FL can be true or false, so that the number of distinct symbolic states is
bounded by 2|FL|. Each operator in P might lead to a new assignment of numerical
fluents. However, the number of distinct assignments to numerical fluents is still finite
and bounded by 2|FL| · |P|—one assignment per operator per state. In the worst
case, we thus get a large, but finite state space. Such a state space can be searched
with a forward-search procedure like breadth-first-search that decides Plan in this
case. Given that the number of operators is finite applying breadth-first-search to
the generic case when effect applicators change numerical fluents leads to a procedure
that enumerates the state space and therefore is semi-decidable. Restricting effect
applicators to only set numerical fluents does have practical applications. The case
of placing an object is formulated to always result in the same geometric placement.

36

3.4 Implementation

A push action, for example, would violate this restriction as multiple pushes lead to
different placements.
Although these results might seem unsatisfactory at first, this does not prohibit

such planning tasks from being applied to real-world systems. As long as we have
a search procedure that only produces sound plans and does not prune away any
plans, computation time is the limiting factor. Considering that complex geometric
operations might be performed in each search step even fully exploring a finite state
space is infeasible. For real-world applications it is therefore important to find existing
plans quickly. A negative result due to a timeout also often occurs even for finite state
spaces. We will address these properties for our implementation in the next section.

3.4 Implementation

A PDDL/M planner must evaluate semantic attachments at runtime, i.e., it must call
the external modules and use the computed results during the planning process. A
sound implementation must consider the following points.

• How do we acquire the actual function to be called from the domain-independent
formulation of a module, i.e., how are module calls grounded?

• How is the current planner state passed to module calls?

• When are modules to be called and how does the module specific return value
influence the planning process?

• How do we integrate actual external code into the planning process?

This section aims to show how these can be addressed for forward-chaining state
space search planners. We present the extension of the planner Temporal Fast Down-
ward (TFD) to TFD/M—Temporal Fast Downward with Modules. First we shortly
introduce the concepts TFD is built upon and then we will show how the aspects listed
above are implemented in TFD/M.
Temporal Fast Downward (Eyerich et al., 2009) is a domain-independent state space

search planner built on top of the classical planning system Fast Downward (Helmert,
2006). It extends the original system supporting durative actions as well as numerical
and object fluents. TFD searches in so called time stamped states to model concurrent
aspects from durative actions. We do not consider concurrent actions for robotics
tasks and therefore prohibit any concurrent application of operators in the search.
This results in a standard progression search in the state space without time stamps.
TFD was chosen because of its native support for numerical fluents, which are essential
to geometric computations. One distinguishing feature is that the input consisting of
propositional atoms is automatically translated into an encoding using multi-valued
variables.

37

Chapter 3 Semantic Attachments

(Temporal) Fast Downward solves a planning task in three phases: As a first step,
the PDDL planning task is translated from its Strips-like encoding into a representation
similar to SAS+ (Bäckström and Nebel, 1995), using finite-domain variables instead of
binary predicates. Afterwards, in a knowledge compilation step, data structures used
by the search heuristic are generated. Finally, a best-first state space search, guided
by a numeric temporal variant of the context-enhanced additive heuristic (Helmert
and Geffner, 2008), is performed. Since the internal representation of TFD is signifi-
cantly different from PDDL, enabling both the planner and the modules to access and
manipulate the planning state is not trivial. The most significant extensions to TFD
occur in the translation and search phases, which we describe in the following.

Translation In the translation phase of Temporal Fast Downward, the task is con-
verted into a finite-domain representation (FDR). In order to generate an appropri-
ate FDR description from PDDL/M tasks, we adapt the method of Helmert (2009).
Roughly, this process consists of the following phases: First, a normalization that
leaves all conditions as conjunctions of literals is executed. During this phase a finite
number of additional operators and axioms, which for this discussion we can treat
as zero-cost operators, might be introduced. Note that this means that conditions
within the search procedure are thus conjunctions of literals, which is quite important
on multiple points throughout this thesis. Next, an invariant synthesis generates mu-
tual exclusion (mutex) invariants that describe, which propositions may never be true
at the same time. These propositions can be combined into a single FDR variable. The
following grounding phase, by means of a relaxed reachability analysis, results in the
sets of grounded predicates and grounded numerical fluents as well as the grounded
operators. Finally the FDR task generation computes from the mutex invariants a
translation table that matches each grounded predicate to an FDR variable and the
value from the variable’s domain, where this grounded predicate is true. This transla-
tion table is then used to translate all conditions and effects to their respective FDR
representations.

Since module predicates are exactly the same as normal predicates regarding their
treatment in first-order formulae, besides different semantics in their interpretation,
the normalization phase is virtually unchanged. We only note, which predicates are
module predicates. During the invariant generation we cannot make assumptions
about mutex groups for module predicates. Therefore for each grounded module pred-
icate we introduce a distinct FDR variable with two valuations: one for true and one
for false.

The instantiations of grounded predicates, numerical fluents and operators during
the grounding phase are extended to module calls. Grounded module predicates are
instantiated exactly like grounded predicates. When an operator is grounded the oper-
ator’s parameter instantiations are also used to instantiate grounded cost modules and
grounded module effects if a cost module or effect applicators appear in the operator.

38

3.4 Implementation

typedef double (*conditionCheckerType)(

const ParameterList & parameterList,

predicateCallbackType predicateCallback,

numericalFluentCallbackType numericalFluentCallback,

int relaxed);

typedef int (*applyEffectType)(

const ParameterList & parameterList,

predicateCallbackType predicateCallback,

numericalFluentCallbackType numericalFluentCallback,

int relaxed, vector<double> & writtenVars);

Figure 3.4: Main part of the PDDL/M C++-Interface. Two types of module call
signatures are used: conditionCheckerType and effectApplicatorType. Cost modules
share the same function signature with condition checkers.

Here, it is important to also ground the affected numerical fluents as they might not
appear anywhere else in the planning task and otherwise might be compiled away.

This is also the point, where we make the transition from a generic module call to
a problem specific instantiation. Recall that the first step to applying any semantic
attachment is to produce a specific function for the grounded module by calling htype =
ftype(x) for any module type. Due to the grounding we now have the vector of objects
x. For each grounded module call of any type we instantiate an individual reference
to the respective module including the grounded parameters. This represents the
instantiated calling function for the module call. For cost modules we add this reference
to the grounded operator. For condition checkers the module call reference is attached
to the grounded module predicate. For effect applicators a reference to the module
call is added to the grounded operator’s effect list as the module effect.

When the FDR task is generated each grounded module predicate is assigned to
an FDR variable that represents its truth value. Here we add a direct link between
that FDR variable and the grounded module call reference. When module effects are
generated, the variable references from the translation table are also applied to the
affected fluents, so that they can be referred to in the translated task. Finally, we
need to address the fact that semantic attachments reason about PDDL, i.e., they are
unaware of any underlying representation such as the FDR. Therefore we also write
out the translation table as part of the generated FDR task. This is used to map the
current planner state stored as an FDR to PDDL.

Module Interface Technically, modules are implemented as dynamically loaded sha-
red libraries. This allows arbitrary modules to be included at run time, i.e., indepen-

39

Chapter 3 Semantic Attachments

dent of the planner, so that the domain specification and the planner are kept sepa-
rate. However, it is necessary to have a common interface. As the search component
of TFD/M is written in C++, the interface shown in Figure 3.4 is also specified in
C++. Similar interfaces can be designed for other programming languages. It is also
possible to relay calls to external components by inter process communication using
robot middleware such as ROS (Quigley et al., 2009).

Cost modules and condition checkers use the conditionCheckerType and effect ap-
plicators use the applyEffectType. All kinds of semantic attachment share the same
input data. First, for a grounded module call, the vector of objects x is passed in
as parameterList. Each module call is also passed the state via a callback inter-
face (see below). Cost modules and condition checkers return a floating point value
that is either the actual cost, or for condition checkers results in a Boolean decision
that is interpreted as true iff the floating point value is below a predefined threshold
INFINITE COST. Effect applicators are passed a reference to a list of numeric values—the
vector y—that is to be filled with the new values for the affected fluents.

Additionally, all module calls can be invoked with a relaxed flag requesting a relaxed
computation that can be significantly faster. This invocation might be used anywhere
within the planner, most notably within heuristic computations. This is an advantage
that implementers can provide for efficiency, but not a limitation to applicability. If
no relaxation that makes sense is available, the full module computation is a trivially
sound, although not faster, relaxed implementation. In other words: It is safe to ignore
this flag.

State Callback The purpose of the state callback interface is to provide the current
planner state to the semantic attachments. The interface has to bridge the internal
representation of a state as a FDR with the module’s interface in PDDL. There are
two callback functions shown in Figure 3.5: One for grounded predicates and one
for grounded numerical fluents. A module that needs to acquire the current state’s
valuation of relevant predicates or numerical fluents passes a list of these that contains
the symbol name, the grounded parameters, and undefined valuations to the callback.
The planner uses the translation table computed during the PDDL to FDR translation
to look up, which variable in the planner state in FDR corresponds to the PDDL
name in the list. For numerical fluents this variable contains the valuation and it is
set correspondingly. For Boolean fluents, i.e., grounded predicates, the lookup table
also contains a value. If the state variable has this value, the fluent is true, otherwise
it is false. One can also pass in an empty list, in which case the planner will report
the complete state back. This is relevant, e.g., for collision checking, when the module
does not even know which objects exist and thus could not query for a specific object.

Search Temporal Fast Downward performs forward-chaining search in the state
space as described in Section 2.3. The internal representation of a state contains

40

3.4 Implementation

typedef bool (*predicateCallbackType)(

PredicateList* &predicateList);

typedef bool (*numericFluentCallbackType)(

NumericFluentList* &numericFluentList);

Figure 3.5: The function signatures for the state callback interface accept a list of pred-
icates or numerical fluents. When called the planner provides the current valuations
for each requested fluent.

a valuation of all state variables in an FDR and the real-valued accumulated cost to
reach this state also called the g-value. Most parts of the search algorithm are un-
changed as we only adapt the semantics of specific aspects. This affects mainly the
successor generation. First, testing for applicability means evaluating the precondi-
tion formula in the current state. Whenever the truth value of a variable with an
attached link to a condition checker module call is requested, we execute this module
call instead of doing a state look-up and return the resulting truth value. The same
holds when evaluating the goal formula for a state. Next, when applying effects to
generate a successor state the effect list might contain module effects, which leads to
an effect applicator call. The resulting numerical values are directly applied to the
list of variables in the effect applicator call as those already refer to FDR variables
generated during the translation. Finally, when computing the cost of the operator
we call the cost module if one was attached to the operator.
We employ a minor optimization to minimize computation time. Recall that any

condition is a conjunction of literals. We sort all variables with an attached condition
checker call behind purely symbolic variables. Therefore if any symbolic literal eval-
uates to false, the condition is determined to be false without calling costly external
modules.

Example Translation We illustrate how a PDDL/M planning task is translated into
the internal grounded FDR formulation on the example of the put-down operator for
placing an object beer011 that is held in a side grasp onto a static object known as
crate 001. Let us review how the condition checker and effect applicator as well as
the put-down operator are defined in PDDL/M.

(checkTransfer ?target - movable ?place - static ?grasp - grasp

conditionchecker checkTransfer@libtrajectoryModule.so)

(applyTransfer ?target - movable ?place - static ?grasp - grasp

(q0) (q1) (q2) (q3) (q4) (q5) (q6)

(x ?target) (y ?target) (z ?target)

(qx ?target) (qy ?target) (qz ?target) (qw ?target)

effect applyTransfer@libtrajectoryModule.so)

41

Chapter 3 Semantic Attachments

(:action put-down

:parameters (?x - movable ?y - static ?g - grasp)

:duration (= ?duration 5.0)

:precondition (and

(at ?y)

(grasped ?x ?g)

(is-grasp-for ?g ?x)

([checkTransfer ?x ?y ?g])

)

:effect (and

(not (grasped ?x ?g))

(handempty)

(on ?x ?y)

([applyTransfer ?x ?y ?g])

)

)

The first part generated is the translation table mapping PDDL predicates to FDR
variables.

begin_pddl_translation

grasped 2 beer011 side 0 0

...

end_pddl_translation

Here, the grasped predicate symbol was grounded with the two objects beer011

and side. The next two numbers give the variable-value pair, in which this grounded
predicate is true, i.e., when the FDR variable 0 has the value 0. A predicate callback for
grasped beer011 side will therefore retrieve the value of variable 0 from the current
state and compare it to the value 0. The condition checker and effect applicator
module calls are grounded from the operator instance put-down beer011 crate 001

side.

begin_modules

checkTransfer@libtrajectoryModule.so

3 ?x movable beer011 ?y static crate_001 ?g grasp side 45

applyTransfer@libtrajectoryModule.so

3 ?x movable beer011 ?y static crate_001 ?g grasp side

me-0 14 31 32 33 34 35 36 37 42 43 44 39 40 41 38

...

end_modules

42

3.4 Implementation

The first entry states that the condition checker call to the function checkTransfer

in libtrajectoryModule.so when called with three parameters that have the values
beer011, crate 001, side determines the truth value of the FDR variable 45. The
second entry refers to the effect applicator call applyTransfer in the same library with
the same parameters. This is known as the module effect me-0 that sets 14 affected
fluents. The next 14 numbers give the FDR variables that hold those. The following
listing gives an excerpt of the translated operator.

01 begin_operator

02 put-down beer011 crate_001 side

03 2

04 0 0

05 45 0

06 4

07 0 0 1 0 0 0 -1 1

08 0 0 0 2 -1 0

09 0 0 0 4 -1 0

10 0 0 0 me-0

11 end_operator

Here, we focus on the relevant aspects. Lines 03–05 define the precondition. There
are two literals. Variable 0 must be 0, i.e., the object must be grasped in a side grasp
(see the translation above) and variable 45 must be 0. The modules section above
states that variable 45 is linked to a condition checker call. The four effects are listed
in lines 07–10, one per line. The first three effects are symbolic effects, where the last
number triple states that, e.g., for line 07 variable 0 is set from -1, which is a marker
for any value, to 1. This means that the object is not grasped any more (variable 0
would be 0). Instead of a number triple line 10 ends in me-0, which means that the
module effect me-0 defined above will be applied in this case.

Soundness and Completeness We cannot overcome the theoretical limitations il-
lustrated in Section 3.3.2. Here we consider how the implementation affects those
properties and what guarantees we have. These are always understood under the
assumption that external modules satisfy the requirements specified previously, i.e.,
assuming that they terminate and deterministically compute values that are regarded
as “correct”. For soundness this means that an implementation must not produce
any plans that are not in the state space (i.e., invalid plans). For affecting complete-
ness this means that any plan in the state space is eventually found by the search.
In that case, if the state space is finite the search is decidable, otherwise it is only
semi-decidable.
It is fairly obvious that semantic attachments, as implemented in TFD/M, do not

affect soundness of the planning algorithms. Effect applicators virtually define how

43

Chapter 3 Semantic Attachments

a correct state transition looks like in the presence of semantic attachments, whereas
condition checkers only restrict the options of the planner, but do not alter them. As
we are using a forward-chaining search, every operator application has been proven to
be valid and successors are a direct result of applying an operator in the parent state.

Semantic attachments themselves do not affect completeness, since condition check-
ers only rule out transitions that are considered “incorrect”. For effect applicators we
assume that choices are uniquely determined by the current planning state, so that
we cannot lose possible plans through “unfortunate” effect selection in the module.

The search algorithm itself might not enumerate every possible plan as its expansion
strategy depends on the search guidance heuristic. A simple breadth-first search would
give us such guarantees. However, in practice planning tasks might become large and
require a more goal-driven search to find plans in reasonable time. In that case one
must evaluate if such a behavior is sufficient for the desired application.

3.5 Evaluation

In this section we present three experiments. The first experiment is an adaptation
of a standard benchmark domain that does not add any new features, but provides
insight on the computational overhead solely caused by module calls itself. The second
experiment shows a new variant of the logistics domain that respects the geometry
of packages when determining if a package can be loaded. In the third experiment a
geometric manipulation planning domain is generated, in which semantic attachments
check for collision-free motion plans in pick and place scenarios. For the first two
experiments we enabled concurrent actions. All experiments have been run on a
standard desktop computer with an Intel Core2Duo E6400 CPU and 2 GB of RAM.

3.5.1 Computational Overhead

The first experiment is designed to show the overhead introduced by the module calls
alone. This consists of performing the actual function call and using the state callback
interface. As an example we chose the crew-planning domain of the International
Planning Competition (IPC) from 2008. The reason is that it contains numerous
operators that all have one predicate in common, namely the predicate available,
showing if a crew member is available for executing a task.

We wrote a condition checker that models this predicate by executing a callback
to the symbolic planner, requesting the truth value of the available predicate in
the current state and returning its truth value. Essentially the module does not
do anything different and does not perform any extra calculations. This means the
semantics and thus the reachable state space of the original domain formulation are
unchanged, so that the results are comparable.

44

3.5 Evaluation

TFD TFD/M % # TFD TFD/M %
01 0.01 0.01 0 16 0.61 0.78 28
02 0.01 0.02 100 17 0.73 0.96 32
03 0.01 0.02 100 18 0.85 1.10 29
04 0.04 0.05 25 19 1.89 2.38 26
05 0.08 0.10 25 20 3.19 4.06 27
06 0.14 0.18 29 21 2.47 3.12 26
07 0.16 0.24 50 22 0.16 0.19 19
08 0.18 0.24 33 23 0.12 0.14 17
09 0.29 0.37 28 24 0.20 0.26 30
10 0.59 0.75 27 25 — — —
11 0.47 0.61 30 26 1.50 1.89 26
12 0.58 0.76 31 27 — — —
13 0.05 0.08 60 28 3.82 4.71 23
14 0.08 0.12 50 29 5.74 7.21 26
15 0.06 0.07 17 30 5.55 6.89 24

Table 3.1: Results of the first experiment (runtimes are in seconds). TFD indicates
the original domain formulation, while TFD/M lists runtimes that include module
calls. The % columns show the runtime increase from the former to the latter.

In our experiment we ran TFD/M on the original version of the domain, and then
compared runtimes with the modified version that adds the module call. Table 3.1
shows the planning time until the first plan was found (for a timeout of 30 minutes
and a memory limit of 1 GB). As expected, the runtime for the module version of the
domain is higher. However, it can be seen that the relative overhead is independent
of the problem size, thus scaling properties of the planner are not affected.
To put the observed overhead into perspective it should be noted that in actual

problems it is not the module call itself that takes a majority of the runtime, but
the module’s calculations. These, however, are necessary to provide sound semantics.
The increase in runtime is as anticipated, as we replaced a predicate check that is
usually implemented as an integer comparison by a function call that in turn creates
a callback to the requested predicate. Additionally, we chose a harsh domain for this
experiment as the crew planning domain calls this module in almost every operator.

3.5.2 Transport Logistics

The second experiment presents a full implementation of a PDDL/M task that uses
non-trivial semantic attachments. We follow the transport example proposed in the
motivation section. Our custom domain models a classic logistics task where trucks are
allowed to carry multiple packages with one crucial adaptation: The pick-up-package

45

Chapter 3 Semantic Attachments

Figure 3.6: Recursive packing of rectangular objects: Once a package has been placed
in a corner, three new rectangular containers emerge from the remaining space into
which the remaining packages are recursively packed in the same manner.

operator’s precondition contains a semantic attachment implemented as a condition
checker. The module canLoad is a packing algorithm that we shortly describe. The
algorithm needs to solve the three dimensional bin-packing problem which, even for
one bin, is already NP-hard (Martello et al., 2000). As our main focus is implementing
a correct, but not necessarily optimal solution, we therefore use a heuristic packing
algorithm.

Our implementation follows a recursive approach of packing a set of rectangular
packages into one rectangular container. First, the largest package that fits the con-
tainer is placed in a corner. Second, the remaining space is partitioned into three new
rectangular containers as shown in Figure 3.6. Third, the set of remaining packages
is recursively packed into the remaining containers, starting with the smallest. If no
unpacked packages remain, a packaging has been found and the module returns true.
To make the planning algorithm complete, the exact method for three dimensional
bin-packing (Martello et al., 2000) could be used. In that case our or any other sim-
plified solution is an obvious choice for a search guidance heuristic, although it should
be noted that it does not provide a relaxation.

The implemented attachment combined with the transport-modules domain adapted
to PDDL/M was run on examples based on the transport-numeric domain of the In-
ternational Planning Competition 2008. Results are shown in Table 3.2 and indicate
the time in seconds until a valid plan was found. As in the first example, a timeout
of 30 minutes and a memory limit of 1 GB was set.

These results only indicate the feasibility of the approach. A direct comparison
with the original transport-numeric domain without semantic attachments does not
make sense as we changed the domain semantics. Our approach is not optimal as a
better packing algorithm could fit more packages into a truck. However, it is sound
as it provides an actually working packaging. For practical problems this is an im-
portant factor. Besides the domain formulation of transport-numeric we also based
the example problems in Table 3.2 on the transport-numeric problems. We discovered
that the package sizes used in the original problems mostly lead to trivial solutions

46

3.5 Evaluation

Trucks Packages Locations Runtime
01 2 2 5 0.01
02 2 4 10 0.36
03 3 6 15 0.81
04 3 8 20 1.70
05 3 10 25 33.86
06 4 12 30 27.47
07 4 14 35 146.62
08 4 18 45 244.45

Table 3.2: Results of the transport logistics experiment (runtimes in seconds).

as packing multiple packages was rarely possible. Therefore we adapted the package
sizes to present a challenge to the planner. This further shows the necessity of being
able to provide correct semantics in a planning task formulation.

3.5.3 Manipulation Planning

In this experiment we implement a manipulation planner by integrating a motion
planner into our symbolic planner using semantic attachments. The system produces
motion plans for each pick-up and put-down action and thus the results are directly
executable on real robots. The purpose of this experiment is on the one hand to
demonstrate that such a system is possible with semantic attachments, and on the
other hand to investigate the feasibility in practice in particular with regard to com-
putation times.
The PDDL/M domain consists of a pick-up and a put-down operator as described

in the examples before. These are implemented by computing if a collision-free motion
plan could be found in the case of the condition checker and the result of the effect
applicator is given by the goal configuration in that motion plan. The motion planner
itself is a randomized roadmap planner (Kavraki et al., 1996; Dornhege et al., 2009b;
Gissler et al., 2009).
We evaluate our manipulation planning system by conducting several experiments of

increasing difficulty in two environments. The scenarios target different challenges for
integrated task and motion planning. The first environment illustrated in Figure 3.7
consists of the robot surrounded by three tables. Here various movable items such as
bottles or cereal boxes are to be placed at target locations. While this is simple from
the motion planning side the focus is on the problem that target locations might be
blocked by other objects. A straight-forward pick up and place at the target location
does not work in these cases. The planner is forced to detect such situations and plan
for them accordingly by moving blocking objects out of the way first.
The second scenario shown in Figure 3.8 is motivated by a grasping dexterity

47

Chapter 3 Semantic Attachments

Figure 3.7: Execution of a manipulation plan in the first environment. The task is to
place the red box to the left of the table, where the blue box is located. Therefore, it
first has to remove the blue box from that position (upper left) and place it somewhere
else (upper right and lower left).

Figure 3.8: The grasping dexterity test, where small cubes have to be put into holes.
Left: Scenario overview with open shelves. Right: Inside view of one shelf, when a
vertical board is mounted.

48

3.5 Evaluation

test (Jacoff and Messina, 2007). Small cubes of about 8 cm side length must be
picked up and placed in holes of 15 cm in diameter. These holes are located in the
front and rear of a shelf that is 1.2 meters wide. In principle this is a pick and place
scenario. The focus here is on the difficulty for motion planning. The shelves as
shown in Figure 3.8 left are open and allow the robot to easily reach locations. When
a vertical board is mounted above this shelf (see Figure 3.8 right) the shelf becomes a
confined space and robot motions are significantly more constrained.

We separate problem instances for the first environment in three classes: Class I
contains simple pick and place tasks, Class II requires to move one object out of the
way and in Class III multiple objects have to be moved. For the second environment
we evaluate the same problem instances with and without the vertical board present.
The limiting factor for all instances was runtime (memory consumption for the hardest
problems was below 100 MB), which is dominated by the motion planner’s compu-
tations. We executed 13 runs for each instance with different seeds and give average
runtimes for the first environment in Table 3.3 and for the second environment in
Table 3.4.

The results for the tables scene indicate that even replacing multiple objects still
leads to reasonable runtimes. It is obvious that problems, where objects have to be
moved away (Class II and III), are harder. Here even the smallest problems require
more time than most of the tasks in Class I. This shows that runtimes are not only
influenced by the number of objects, but also by the plan length and thus the search
depth required to find a plan. The more actions have to be planned for, the more
alternatives there are to investigate for the planner. These kind of problems are
especially hard as the symbolic information does not encode any knowledge about
when two objects can be placed on the same table. This depends on the actual poses
and shapes of the objects and thus has to be discovered by the semantic attachments
in geometric computations. It also shows that a purely symbolic abstraction will fail
to produce correct plans in these cases.

Results for the grasping dexterity test show that especially the problem instances
requiring to grasp the rear cubes (3–5, 10, 11) are more challenging. These are still
solved quickly when there is no board obstructing the way. In the more confined
setting with the vertical board, reaching the rear of the shelves poses a hard problem
for the motion planner, which is evident in the runtimes for those problem instances.
The most difficult problem is instance 11 that places the two rear cubes in holes at
the left and right compartment, so that the manipulator has to be moved in and out
of a shelf four times. This shows that external computations have a large influence on
the performance of the combined planning system.

49

Chapter 3 Semantic Attachments

Class I Runtime [s]
01 3.48 ± 1.23
02 6.08 ± 3.49
03 3.44 ± 1.61
04 1.47 ± 0.12
05 3.77 ± 0.97
06 3.98 ± 3.01
07 4.75 ± 2.36
08 5.27 ± 2.71
09 63.83 ± 7.67
10 5.66 ± 7.50
11 12.48 ± 14.74
12 3.30 ± 0.96
13 5.80 ± 2.40

Class II Runtime [s]
01 24.32 ± 8.63
02 24.95 ± 9.25
03 91.87 ± 14.01
04 30.26 ± 9.74

Class III Runtime [s]
01 37.33 ± 6.85
02 15.50 ± 2.52
03 78.55 ± 45.61

Table 3.3: Results for the tables scene. Problem instances are separated in three
classes: Simple pick-and-place tasks (Class I), problems that require replacing an-
other object to reach the goal configuration (Class II), and problems that require
replacing multiple objects (Class III).

Problem without board [s] with board [s]
01 0.06 ± 0.01 0.06 ± 0.01
02 0.06 ± 0.00 0.06 ± 0.00
03 0.17 ± 0.01 59.46 ± 41.92
04 0.17 ± 0.00 67.96 ± 46.87
05 11.22 ± 9.50 207.66 ± 143.61
06 0.12 ± 0.01 0.12 ± 0.00
07 0.39 ± 0.01 0.12 ± 0.00
08 0.23 ± 0.00 0.24 ± 0.01
09 0.23 ± 0.01 0.24 ± 0.00
10 1.51 ± 0.01 162.00 ± 52.99
11 54.79 ± 21.00 978.35 ± 1105.81

Table 3.4: Results for the grasping dexterity scenario. Problem instances have been
evaluated with and without the vertical board present.

50

3.6 Conclusion

3.6 Conclusion

Planning occurs in many real-world problems. However, often the purely symbolic na-
ture of classical AI planning tasks is insufficient to describe such problems accurately.
This is most notable in robotics applications where causal, symbolic reasoning must be
tightly entwined with numeric computations, and where both may directly influence
each other. The separation of symbolic and geometric reasoning into distinct phases
is an abstraction that only works under the assumption that the symbolic planning
problem can be isolated from other reasoning tasks, which the planner is not designed
to solve.
We believe that interfacing symbolic planners with non-symbolic reasoners such as

manipulation planners or path planners during the planning process is imperative for
their use in robotics. Therefore we have presented an approach to integrate external
reasoning mechanisms, so-called semantic attachments, directly into a planner. An
important aspect of this work is that the interface is domain-independent. This allows
domain designers to use domain-independent planners, and extend them with domain-
specific sub-solvers where necessary. We have specified a suitable extension of PDDL
to model them, and have described criteria under which soundness and completeness
of planners are maintained when they are extended with semantic attachments.
Our initial results show that it is feasible to implement complex robotic plan-

ning systems such as manipulation planning (Dornhege et al., 2009b; Gissler et al.,
2009) with semantic attachments, where we also investigated specific search guidance
heuristics (Westphal et al., 2011). This transfers to many other applications, for ex-
ample multi-robot coordination (Wurm et al., 2010, 2013). We will address further
robotics applications in Chapter 5. This planning system has been improved in several
ways. We have developed a cleaner and more efficient interface to access the planner
state (Hertle et al., 2012). The efficiency with regard to solving more complex tasks
by better suited heuristics is the topic of Section 4.3.4. For real-world tasks we also
developed strategies to prevent costly external computations as much as possible (see
Chapter 5).
There is one important restriction in PDDL/M and our implementation: In general,

there may be many options for how to achieve a module effect. For example, a manip-
ulation planner may find several poses at which it could place an object. Currently,
we only permit modules that return exactly one result. In the next chapter we will
enable the planner to branch over an initially unknown, and possibly infinite number
of outcomes online.

51

Chapter 4

Partially Groundable Planning Tasks

Integrated task and motion planning with semantic attachments focuses on correct
geometric modeling of symbolic actions. However, from the planner’s perspective
actions are still considered to be purely logical. There is one operator to “put the cup
on the table”. This hides the geometric decision, where exactly to put the cup that is
left to some part of the geometric reasoning infrastructure. The decision to put the cup
to a specific position does influence any following operators, for example by blocking
access to other objects. If we want to capture a robot’s capabilities, we need to model
a new kind of decision—the decision to try another geometric position. In the words of
planning this models multiple different instantiations leading to multiple branches for
the symbolic operator. The problem is that there are a large or even infinite number
of possibilities. Classical planning systems do not handle such cases well for practical
and theoretical reasons. Neglecting to consider multiple geometric outcomes, however,
prunes away a large number of solutions or possibly the only solution.

For practical applications different solutions exist that mitigate this problem by
using a classical planning formulation with a finite number of successors. A straight-
forward solution instantiates a fixed number of operators that correspond to different
geometrical choices. This enables searching multiple possibilities. Another approach
moves the geometric selection to the geometric reasoning. When an operator is to
be applied a geometric reasoner tries different geometric solutions and returns the
best solution. This approach provides a clean separation between the geometric and
symbolic parts of the planning process. However, a bad choice for the geometric
outcome might prove disadvantageous later on. Any advanced method for choosing
a good outcome cannot guarantee that this is suited for subsequent operators unless
it performs planning by itself. A solution in the spirit of integrated task and motion
planning computes possible geometric choices during the planning process dynamically.
The advantage is that such instances are only computed when needed, although there
still can only be a fixed number. We will review related work in more detail in
Section 4.1.

All these solutions face the problem that ultimately the number of geometric choices
for an operator in classical planning is finite. Consider the example in Figure 4.1. The
complex scenario on the right requires the robot to move bottles from the crate on the

53

Chapter 4 Partially Groundable Planning Tasks

Large number of positions
slow/likely solvable slow/likely solvable

Small number of positions
fast/likely solvable fast/hard to solve

Figure 4.1: This figure compares an easy scenario (left) with a more complex scenario
(right). Choosing a large number of geometric positions makes it likely that both
scenarios are solved, although a small number is sufficient for the simpler task.

left into the fridge door, which requires regrasping and precise positioning. A large
number of geometric positions must be investigated to find a plan for this setting.
The goal of the simpler scenario on the left is to move all objects from the center
table to the right one. This is likely to be solved with a small number of positions as
there is no constraining geometry. A larger number in this case would only increase
search time. Ideally one wants to have a small search space for simple tasks that can
be searched fast and a larger more complex one when necessary. However, how many
placements must be considered depends on many factors such as what algorithm is
used to select geometric positions and how complex the scenario is. In the case of
a Monte-Carlo algorithm chance is also a factor. These things are hard to predict
in general. Thus, one must balance between gaining faster solutions considering less
possibilities at the risk of pruning out the only feasible solution. The problem is that
the decision how many successors to generate is made at either the geometric or the
symbolic level. An integration of both is not straight-forward. On the practical side
this means that backtracking needs to be interleaved between both levels and must
influence each other. On the theoretical side we must consider that there might be an
infinite number of branches, something that classical planning systems do not support.
Even for a large finite number it is not desirable to compute all possibilities at once
for efficiency reasons.

We approach this problem by integrating branching as part of the planning process.
The main idea is that the planner asks for additional successors if it deems that nec-
essary or continues the search elsewhere with the possibility to come back later. As a

54

4.1 Related Work

model for planning tasks with infinite numbers of successors we use partially ground-
able planning tasks. A classical planning task as in Chapters 2 and 3 is specified using
schematic operators and a given finite object set. The state space to be searched is de-
fined by the grounded representation, where all parameters in each schematic operator
are replaced with any possible combination of objects. In our new formalization this
object set is not required to be finite, thus possibly leading to an infinite number of
operators and an infinite branching factor. As a result of this explicitly grounding all
operators is impossible. For efficiency we use two different object sets, where one must
be finite. The finite set of objects enables to partially ground operators, i.e., ground
some parameters of an operator. Consider the example of a put-down operator. The
parameters for the object to be placed and the surface to place it on, e.g., cup and
table, are given from the finite set. The exact pose on the surface is an additional
parameter chosen from an infinite set (e.g., R2). While we can have one explicit oper-
ator for each cup and table in the task, one explicit operator for each pose is clearly
impossible. Partially groundable planning tasks are formalized in Section 4.2.

In our implementation the non-finite object set is given implicitly by a new kind
of semantic attachment: a grounding module. Repeated calls to an external function
during planning generate different objects and thus represent multiple branches from
a schematic operator. As for other semantic attachments the interface is generic, so
that any geometric reasoner that provides different instances for a schematic operator
can be used. However, the decision to generate additional operators is moved to the
planner. In Section 4.3 we provide a novel search algorithm based on the principle
of heuristic search that handles these decisions even for planning tasks with infinite
numbers of successors. As we deal with huge state spaces and large or infinite branch-
ing factors we aim for satisficing instead of optimal plans. In Section 4.4 we evaluate
our algorithms in realistic problem settings, show the limits of our new algorithm and
compare its performance to the classical search adaption.

4.1 Related Work

The problem of searching continuous spaces and choices that we address in this chapter
is commonly found in motion planning. Even for the specific case of motion planning
this is a hard problem and many state of the art solutions are Monte-Carlo algorithms
that sample the collision-free configuration space of the robot to build a graph of
collision-free motions called the roadmap. Besides collision-free robot motions it is
also possible to plan for manipulation tasks. A manipulation graph is build that
is composed of transit and transfer motions (Alami et al., 1995; Latombe, 1991).
Transit motions move the manipulator without any objects, while transfer motions
move grasped objects. Both are planned using a motion planner. A specific problem
here is to generate the configurations that are to be connected with these paths if they
are not given as an input. Simeon et al. (2004) address this by sampling this subspace

55

Chapter 4 Partially Groundable Planning Tasks

explicitly and thus building up the manipulation graph as part of the planning process.
Their work is able to deal with continuous numbers of grasps and object placements.
Beyond pick and place motions Barry et al. (2013) integrate additional motions like
pushing objects into their DARTT planner.
Those approaches are still purely geometric solutions. For generic robot planning

this is not sufficient as symbolic information is required, for example, to reason about
beliefs (Kaelbling and Lozano-Pérez, 2013). If we generalize the setting to integrated
task and motion planning, we find the problem of determining suitable places as dif-
ferent geometric interpretations of symbolic actions. One option is to only plan on the
symbolic level and thus give an underlying controller more freedom to adapt to the
real-world scenario (Kresse and Beetz, 2012). However, if plans are constructed from
a purely symbolic description of the world, geometric constraints and dependencies
that were not considered might prevent any such plan from being executable. This
is especially true for longer, more complex plans. If geometric choices are considered,
one must determine how backtracking is to be performed either in the symbolic plan
or on geometric possibilities. Kaelbling and Lozano-Pérez (2011) use suggesters that
produce a number of possible instantiations for operator parameters during planning.
Another possibility is to plan symbolically, but search a number of geometric possi-
bilities when trying to apply each operator (Leidner et al., 2012), so that an operator
is only applicable when some geometrically valid configuration is found. Burbridge
and Dearden (2013) separate this process by first producing a symbolic plan and then
searching for a number of geometric instantiation of this plan. If no such instantiation
is found, additional symbolic plans are produced. De Silva et al. (2013) use a geo-
metric task planner that solves geometric problems like “make this book graspable”
within an HTN planner. The symbolic and geometric parts are connected by shared
predicates. They deal with a discrete number of possibilities. Backtracking geomet-
rical possibilities here is not only done for the currently planned action. Geometric
instantiations for earlier actions can be adapted if necessary as long as their symbolic
effect is not changed.
In contrast to our approach all of those solutions separate at some point between

a geometric and symbolic backtracking phase that might be interleaved. We consider
geometric and symbolic possibilities as different choices to take by an integrated plan-
ner. Additionally our proposed algorithm is able to deal with infinitely many choices.
Most classical planning formulations assume a finite number of objects and thus can-
not be used without setting some predefined limit. This is mainly due to the fact that
planning with an infinite number of objects has been shown to be undecidable (Erol
et al., 1995). The problem of limiting the number of geometric possibilities or just
choosing a single one can be mitigated by a good selection strategy. For example,
Leidner and Borst (2013) use reachability analysis to choose good placements for the
robot base. Stulp et al. (2012) define Action-Related Places as a probability distribu-
tion over robot poses peaked at high success locations for grasping. Such approaches
surely push the capabilities of a system, but are still limited by the complexity of the

56

4.2 Partially Groundable Planning Tasks

solvable tasks.

The issue of planning tasks, where the grounded representation is not finite is there-
fore not widely addressed in classical planning. Somewhat similar to this is the problem
of domains that are too large to ground in practice. Relevance grounding addresses this
by grounding only objects that were learned to be relevant for a certain task (Lang and
Toussaint, 2009). Their notion of partial grounding—more precisely partially grounded
models—is different from ours as they produce a grounded task that is grounded from
a partial set of objects. We consider a partially grounded operator to be an operator
where not all parameters have been grounded. The same notion as ours is used for
Partially Grounded Planning as Quantified Boolean Formula (Cashmore et al., 2013).
Here SAT-based planning is used, but tasks are only partially grounded. The un-
grounded parameters are quantified, so that quantified Boolean formula are produced
that are solved with a QBF solver. The efficiency of this method relies on the fact that
the quantified objects are behaving similarly. For our setting this is not the case as we
are looking at geometric possibilities that are explicitly different. However, a similar
idea is used by the heuristic described in Section 4.3.4 as in the symbolic abstraction
of a geometric plan, there is no difference between geometric options. In the related
field of answer set programming for distributed systems grounding on-the-fly is also
relevant, especially when not all information necessary for grounding might be known
beforehand (Dao-Tran et al., 2012).

4.2 Partially Groundable Planning Tasks

In this section we formalize partially groundable planning tasks with infinite branching
factors. First, we define such tasks and state the resulting planning problem. Then
we consider the consequences that this formulation has regarding decidability and
possible implementations.

4.2.1 Definitions

We adapt the definitions from Section 3.3.1 for PDDL/M planning tasks with semantic
attachments and focus descriptions on the differences. The major difference to these
planning tasks is that we introduce an infinite set of objects that leads to states
with infinite successors. Semantic attachments on numerical variables are a necessary
step to provide meaningful semantics for planning tasks with numerical variables and
unbounded branching factors. 1 Therefore partially groundable planning tasks are an
extension of planning tasks with semantic attachments.

1A classical planning task with K grounded Boolean fluents has a fixed state space size of 2K and
thus at most (2K)2 different transitions. Defining more than (2K)2 different operators must have
redundant and thus unnecessary operators.

57

Chapter 4 Partially Groundable Planning Tasks

The planning domain is the same as in Definition 10, i.e., a tuple of a finite set
of predicate symbols P , a finite set of module predicate symbols MP , a finite set
of function symbols F , a finite set of effect module symbols EM , and a finite set
of schematic operators O. However, for building terms we use a two-sorted logic.
Terms are constant and variable symbols drawn from two disjoint sets VF and V∞.
We call the first sort classical terms as before and the latter are called module terms.
Module terms are only used together with modules defining semantic attachments.
This is reflected when atomic formulae and expressions of our language are formed
from domain symbols and terms.

Definition 22. The atomic formulae are formed from an n-ary predicate symbol from
P with n classical terms or from an n-ary module predicate symbol from MP with
n classical or module terms. In addition to atomic formulae we define Primitive
Numerical Expressions (PNE). A PNE is formed from an n-ary function symbol from
F and n classical terms. Finally there are effect modules. An effect module consists
of an n-ary effect module symbol from EM , n classical or module terms and a k-
dimensional vector of PNEs that we call the affected fluents.

Note that predicates and PNEs are only formed from classical terms, while module
predicates and effect modules are formed from classical and module terms. The state
space is derived from the grounded formulation of a planning domain for a specific
problem. Therefore, we slightly adapt the problem definition to account for grounding
of module terms.

Definition 23. A planning problem is a tuple (IL, IN , φG, OF , O∞), where IL and IN
are the logical and numerical initial state, φG is a first-order formula describing the
goal, OF is a finite set of objects, and O∞ a set of objects.

A second object set O∞ was added. In contrast to OF we do not require O∞ to
be finite. To define a planning task by its grounded representation we now have two
sets of objects corresponding to the two sorts of terms. OF is used in the same way
as the object set in PDDL planning tasks for grounding classical terms. O∞ is used
to ground module terms. We call O∞ the module objects. The motivation for the
separation of VF and V∞ instead of allowing all variable symbols to lead to infinitely
many groundings is that we can still explicitly ground some—in practical descriptions
almost all—variables using efficient grounding algorithms. As there might be infinitely
many objects for a variable in V∞, for φG we only allow quantification over variables
from VF .
A state of a planning task consists of the sets of Boolean fluents FL and numerical

fluents FN , i.e., grounded predicates and PNEs. Grounding here is performed exactly
the same as for classical planning tasks. Note that as predicates and PNEs both only
contain classical terms, they are grounded from OF only and thus FL and FN are finite.
The notion of a state is the same as for planning tasks with semantic attachments.

58

4.2 Partially Groundable Planning Tasks

Definition 24. A state s is a function that maps each Boolean fluent from FL to
{true, false} and each numerical fluent from FN to R, i.e.:

s : FL → {true, false}

and

s : FN → R

The set of all possible assignments for FL and FN is the set of states S.

As FL and FN are the same as for classical planning tasks the set of states is also the
same as before. However, the reachable state space defined by the possible transitions
given by the grounded operators is different.

Definition 25. A schematic operator is a tuple (φ, e, cost), where φ is a first-order
formula—the precondition, e is an effect, and cost a function that maps from a state s
to R>0—the operator cost. First-order formulae are formed over the atomic expressions
from P and MP with the usual logical connectives, wherein quantification is only
performed over variables from VF . An effect is defined by the finite application of the
following rules:

• e is called a simple effect if e is a predicate literal (i.e., a predicate or negated
predicate). Note that this excludes module predicate literals.

• e is called a module effect if e is an effect module ea.

• e1 ∧ . . . ∧ en is a conjunctive effect for effects e1 . . . en.

• ∀x : e is a universal effect for a variable symbol x ∈ VF and an effect e.

We call the set of free variables of an operator the parameters of an operator. The
free variables of an operator (φ, e, cost) are the free variables of its precondition and
its effect, i.e., free(φ) ∪ free(e), where the free(e) is defined as:

free(e) =

free(ψ) if e = ψ or e = ¬ψ is a simple effect

free(ea) if e = ea is an effect module
⋃n

i=1 free(ei) if e = e1 ∧ . . . ∧ en is a conjunctive effect

free(e′) \ {x} if e = ∀x : e′ is a universal effect

free(ea) for an effect module are all variables used in the terms of ea and all variables
used in terms of any of the affected fluents of ea. A grounded operator is an
operator that has no parameters.

59

Chapter 4 Partially Groundable Planning Tasks

Besides the requirement that first-order formulae use only quantifications over vari-
ables in VF , a schematic operator is the same as for planning tasks with semantic
attachments in Definition 14. The differences appear when grounding schematic op-
erators. As an operator’s precondition might contain module predicates and its effect
might be formed over effect modules, it is possible that there are parameters of an
operator in V∞.
Grounding a schematic operator is performed by instantiating each of its parameters

with an object from OF for variables in VF or with an object from O∞ for variables in
V∞. All possible object combinations then lead to the set of grounded operators. The
free variables in the precondition, effect, affected fluents in effect modules, and cost
modules are substituted by concrete objects. While FL and FN are only grounded
with objects in OF , this leads to grounded module predicates, grounded effect modules
and cost modules that might have objects from O∞. Therefore if O∞ is not finite there
are infinitely many grounded operators.
Grounded operators describe transitions between two states. The notion of operator

applicability and operator application to form a successor state as well as operator
cost remains the same as for planning tasks with semantic attachments. However,
as module predicates and effect modules are defined over classical and module terms
we have to adapt the definitions of condition checkers and effect applicators. The
adaptions to the module definitions are straight-forward as we include module objects
together with PDDL objects in the definitions. In addition cost modules attached to
an operator are also not restricted to classical terms.

Definition 26. A cost module is a function fcost attached to a schematic operator
o with n parameters, where fcost : (OF ∪ O∞)n → (S → R>0) maps from an n-
dimensional vector of objects to a function that maps from a state to R>0.

Operator parameters from OF and O∞ a passed on to any cost module definition.
The external functions implementing any module type are able to accept arbitrary
objects from OF or O∞ and assign proper semantics. The inclusion of module terms
in module predicates is reflected in the definition of condition checkers for partially
groundable planning tasks.

Definition 27. A condition checker is a function fcc attached to an n-ary module
predicate symbol, where fcc : (OF ∪ O∞)n → (S → {true, false}) maps from an n-
dimensional vector of objects to a function that maps from a state to true or false.

The interpretation of a grounded module predicate in a first-order formula by its
attached condition checker is defined exactly as before. The definition of an effect
applicator is modified in the same way.

Definition 28. An effect applicator is a function fea attached to an n-ary effect
module symbol, where fea : (OF ∪ O∞)n →

(

S → R
k
)

maps from an n-dimensional
vector of objects to a function that maps from a state to a k-dimensional numerical
vector.

60

4.2 Partially Groundable Planning Tasks

Again objects from OF and O∞ can be passed to the attached external function.
As for condition checkers we do not change the semantics of applying module effects
defined by effect applicators. Thus, operator applicability and the definition of a
successor state are the same. Therefore also the state space and the resulting planning
problem are defined like before. Let us review the definition of the state space from
Definition 18.

Definition 29. The State Space for a Planning Task is a directed graph G =
(S,E), where the vertices are all possible states in S over FL and FN , and there is an
edge from a state s to s′, iff there exists a grounded operator o, so that o is applicable
in s, i.e., applicable(o, s) and the result of applying o in s is s′, i.e., s′ = app(s, o).

Although we do have the same definition of a graph, this graph looks different.
The reason is that there might be infinitely many grounded operators. This makes it
possible that there are infinitely many edges connected to a state. An infinite number
of outgoing edges makes it impossible to explicitly enumerate all successors and thus
classical search algorithms cannot be applied any more.

4.2.2 Decidability and Solution Concepts

We have defined planning tasks that model real-world problems with geometric choices.
Before we come to an implementation we first look into the theoretical limitations that
an infinitely large search space and infinite branching factors cause—especially regard-
ing decidability and completeness. Two things differ from purely symbolic planning
tasks: Numerical state variables and the cardinality of the object set O∞, which does
not need to be finite. The results of Erol et al. (1995) indicate that infinite entities in
a planning task lead to undecidability. We now address this explicitly for our planning
tasks.

Theorem 30. For partially groundable planning tasks Plan is undecidable. This
holds even when effect applicators only set numerical fluents.

We have already seen in Section 3.3.2 that planning tasks with numerical state
variables and semantic attachments are undecidable. Therefore we will address only
the case when effect applicators set numerical fluents, i.e., the result of an effect
applicator does not depend on any numerical fluent in the state.

Proof. We again use Diophantine equations to construct a planning task that models
polynomial equations with multiple variables in the natural numbers (Helmert, 2002).
We create one schematic operator per variable of the equation that just sets the value
of this variable provided by an effect applicator. With O∞ = N there is one grounded
operator for each number in N. A condition checker computes if the equation holds
and only then allows the transition to a goal state. Any solution to a Diophantine
equation with m variables thus is represented by a plan that consists of m grounded

61

Chapter 4 Partially Groundable Planning Tasks

operators in an arbitrary order each setting its variable’s value to the one of the
solution followed by one go-to-goal operator with the condition checker.

We already know that we cannot provide a solution concept that proves that no plan
exists for planning tasks with semantic attachments. However, for partially ground-
able planning tasks even a complete procedure that finds a plan if one exists is not
easily attainable. For a finite or countable O∞ we can enumerate successors as before.
For uncountable object sets this is not possible any more. Using a sampling-based
Monte-Carlo procedure, with some assumptions we gain the weaker property of prob-
abilistic completeness that is known from randomized motion planning. An algorithm
is probabilistically complete if given that a solution exists the probability of finding
that solution goes to one as computation time goes to infinity. In other words: If an
algorithm continues to search for a solution, it will eventually be found.
We consider a classical graph search algorithm that uses a FIFO queue. If we expand

a state s with a finite number of successors, we add all these to the queue. Otherwise,
we add only a single successor state. In addition we add a marker that contains s to the
queue. Whenever such a marker is taken from the queue, we add the next successor of
s to the queue and again reinsert this marker into the queue. When O∞ is countable
the next successor is given by a bijection to N. For uncountable O∞ the successors are
sampled using a function on O∞. This sampling function must guarantee that along
each plan s0, . . . , sn for i ∈ {0, . . . , n − 1} the probability of sampling si+1 in si is
greater than zero. Note that this is not a property that is trivially given for infinitely
large sampling sets.

Theorem 31. For countable O∞ this procedure finds a plan in finite time if one exists.
For uncountable O∞ the procedure is probabilistically complete.

Proof. We first establish that the increase of the queue size between subsequent visits
of a state si, i.e., when reinserting a marker to si, is bounded. Let k be the largest
number of successors for any state that has a finite number of successors. If the search
queue has N entries, after visiting all N entries, the queue will have a maximum size
of N · max(k, 2) as each state expansion will have either added at most k successors
or added one successor and a marker.
Now assume there exists a finite path s0, . . . , sn through the state space that is not

found by this procedure. This means there must exist some state si, 0 ≤ i < n in the
path that is visited by our procedure, where si+1 is never visited. If si had a finite
number of successors, we would have added all successors including si+1 to the queue
and as it is a FIFO queue si+1 will be expanded after a finite number of steps, which
contradicts the assumption that si+1 is never visited.
If the number of successors is not finite, each time when we visit si we add another

successor of si and a marker to revisit si to the queue. If si had a countable number of
successors, let si+1 be the m-th successor of si, where m is an arbitrarily large integer.
We need to visit si m times until si+1 is in the search queue. As the queue size increase

62

4.3 Planning with an Infinite Branching Factor

is bounded for each visit we will eventually reach si+1, contradicting that si+1 is never
visited.
If the successors of si are uncountable, the probability to sample si+1 as a successor

of si on the path is greater than zero. If we visit si m times, the probability of not
sampling si+1 is (1− p)

m. As the queue size increase is bounded if we search infinitely
long the probability to not sample si+1 is limm→∞(1−p)m. With p > 0 and (1−p) < 1
it follows that the probability to not sample si+1 is zero. This means that si+1 will
be sampled, added to the search queue and then visited, which again contradicts the
original assumption.

Although we have determined that there is no procedure that decides Plan, it is
possible to give semi-decidable or probabilistically complete algorithms depending on
the cardinality of the object set O∞. However, these are uninformed search algorithms
with a FIFO queue. A guided search is preferable for complex real-world tasks. In
practice there is also the problem of how O∞ is represented. We will address these
issues in the next section.

4.3 Planning with an Infinite Branching Factor

In this section we introduce planning algorithms that solve partially groundable plan-
ning tasks efficiently and show how these are implemented in our planner TFD/M.
We extend the implementation for semantic attachments from Section 3.4. There are
three aspects that have to be adapted for partially groundable planning tasks. First,
we describe how we actually model such tasks in PDDL/M. We introduce grounding
modules that implicitly define a grounded representation and allow us to generate
grounded operators from O∞ during planning. Next, we address how a partially
grounded formulation is computed in the translation phase. Finally, we describe two
search algorithms that deal with infinite branching factors based on the principle of
heuristic state space search.

4.3.1 Grounding Modules

We need to be able to specify—that is write down—a planning task. PDDL problem
descriptions explicitly give the object set for grounding. Given that in our case O∞

might be infinite, this is impossible. However, in our formulation of a planning task, we
still give the finite object set OF explicitly. In fact, we utilize the definitions of PDDL
objects for OF . All variable symbols and objects in a standard PDDL description
represent variables and objects from VF and OF , respectively. Variables from V∞ and
O∞ are given in a different way. The restriction that variable symbols from V∞ are only
allowed in modules is thus handled syntactically. For V∞ and O∞ we extend PDDL/M
by grounding modules. An example illustrating this for the putdown operator is shown
in Figure 4.2.

63

Chapter 4 Partially Groundable Planning Tasks

(:action put-down

:parameters (?x - movable ?y - static ?g - grasp)

:grounding ([determinePutdownPose])

:duration (= ?duration 5.0)

:precondition (and

(at ?y)

(grasped ?x ?g)

(is-grasp-for ?g ?x)

([checkTransfer ?x ?y ?g])

)

:effect (and

(not (grasped ?x ?g))

(handempty)

(on ?x ?y)

([applyTransfer ?x ?y ?g])

)

)

Figure 4.2: The put-down operator with a grounding module. There are four param-
eters: ?x ?y ?g in VF and one from V∞ computed by determinePutdownPose. This
fourth parameter is implicitly added to the condition checker and effect applicator
module calls checkTransfer and applyTransfer.

64

4.3 Planning with an Infinite Branching Factor

(:modules

(determinePutdownPose grounding

determinePutdownPoseSampling@libtrajectoryModule.so)

...

)

typedef std::string (*groundingModuleType)(

const ParameterList & parameterList,

predicateCallbackType predicateCallback,

numericalFluentCallbackType numericalFluentCallback,

int relaxed, const void* statePtr);

Figure 4.3: Example of the planner interface for grounding modules. Top: Declaration
of a grounding module named determinePutdownPose implemented in the function
determinePutdownPoseSampling. Bottom: The C++ interface to be implemented re-
turning the name of a new object from O∞. The statePtr is used to determine if the
module is called in the same state.

Definition 32. A grounding module is a function gmo : O
m
F → (S → O∞ ∪ {⊥})

that is attached to a schematic operator o, where m is the number of the operator’s
parameters in VF and ⊥ 6∈ O∞. The function maps from parameter instantiations
from OF to a function that for a given state in S returns an object in O∞ or ⊥ if there
are no more objects.

Grounding modules are attached to operators that have parameters in V∞. They
implicitly represent O∞. We currently allow one grounding module per operator. One
could still represent k parameters in V∞ by using a new object set O′

∞ = ×k
i=1O∞.

However, for the scenarios that we considered this was not necessary. Similar to
the other module types a grounding module is implemented for a schematic operator
independent of the—in this case partial—grounding for a concrete problem to allow a
generic implementation.

A grounding module produces objects from O∞ and returns ⊥ once all objects are
enumerated (for a finite O∞). Although it is impossible to enumerate a set O∞ that
is not countable, it is still possible to generate objects from the set, e.g., by sampling.
A grounded operator is derived from a schematic operator by first instantiating the
parameters from VF using a classical grounding algorithm as shown in the next sec-
tion. Then the grounding module is called for this partially grounded operator. If ⊥ is
returned, it is not possible to ground the operator in this state any more. Otherwise,
the parameter from V∞ is instantiated. Multiple groundings for the same partially
grounded operator are produced by calling the same module repeatedly and represent

65

Chapter 4 Partially Groundable Planning Tasks

different branches. 2 Note that in our implementation grounding modules are depen-
dent on the current state enabling to produce different subsets of O∞ for different
states. This is not necessary, but allows a module implementation to quickly exclude
impossible groundings, e.g., a putdown action for a certain table does not need to
produce positions on another table that will be unreachable anyways. The declarative
and procedural parts of the grounding module interface are shown in Figure 4.3. ⊥ is
represented by the empty string.

4.3.2 Partial Grounding

The input to partial grounding is a planning task as defined in Section 4.2. The result
is a planning task, where all operators are partially grounded. This means that for
each schematic operator all parameters from VF were grounded, so that only variables
from V∞ are left as operator parameters. We perform this step for the same reasons
as in classical planners: Operating on (partially) grounded operators is more efficient
than using schematic operators. Advanced grounding procedures also enable to prune
inapplicable operators before the search.

In TFD/M partial grounding is performed as part of the translation procedure de-
scribed in Section 3.4. The main point of interest here is the instantiation of grounded
atoms and operators. The algorithm produces an over-approximation of the reachable
state space beginning with the atoms given in the initial state. If we relax opera-
tor conditions, this still results in an over-approximation and thus we retain a sound
grounding process. To adapt the grounding algorithm to partially groundable plan-
ning tasks we only instantiate variables from VF when computing possible groundings
of schematic operators exactly as described before thus effectively generating partially
grounded operators. This causes a problem for applicability tests and operator appli-
cation that are only defined for grounded operators. By our definition the parameters
in V∞ only appear in module predicates, module effects or cost modules. Therefore
we relax every condition in an operator by removing any condition checker from any
conjunction. 3 As only condition checkers use the numerical fluents set by effect appli-
cators we can also remove any module effects. Cost modules are also not considered
here as they are irrelevant for reachability. One can view the partial grounding pro-
cess as grounding being applied to an abstraction of the state set towards the symbolic
part of a state. The set of schematic operators for a planning task is given by O. We
denote the partially grounded operators as P .

2To allow the function to produce different outputs a parameter n ∈ N is added implicitly. This
represents the number of groundings already performed by the module for a state.

3Normalization is performed before this step, so that all conditions are conjunctions (see Helmert
(2009)).

66

4.3 Planning with an Infinite Branching Factor

Algorithm 3 Best-First Search on Partially Grounded Planning Tasks

1: open ← PriorityQueue(∅)
2: closed ← ∅
3: current ← s0
4: current g ← 0
5: best g[current] ← 0
6: while True do
7: if current 6∈ closed or current g < best g[current] then
8: closed ← closed ∪ {current}
9: best g[current] ← current g

10: if current |= φG then
11: return SOLVED
12: end if
13: generate successors(open, current, current g)
14: end if
15: next ok, current, current g ← fetch next state(open)
16: if not next ok then
17: return NO PLAN FOUND
18: end if
19: end while

4.3.3 Searching Partially Grounded Planning Tasks

We use a variant of forward-chaining heuristic best first search in the state space as
described in Section 2.3. The search procedure is shown in Algorithm 3. In each step
the current state—starting with the initial state—is closed and expanded by computing
successors. We discard states that have been closed unless their cost is lower than the
closed state’s cost. generate successors computes successors and inserts them
into the open queue that is sorted using heuristic estimates. fetch next state

takes the next state from the open queue. It returns that state and its g-value as well
as a flag that states if a state could be taken. This procedure continues until a goal
state is found or no new state could be fetched as the open queue ran empty.

This base procedure is not different from classical search. However, we have to
adapt the successor generation as it is impossible to compute all successors. Successor
generation also has to ground partially grounded operators on the fly using grounding
modules before applicability tests can be performed. We present two different algo-
rithms: Ground N (Algorithm 4) and Ground Single Reinsert (Algorithm 5). Note
that in the open queue successor states are only represented implicitly by their parent
state and the operator to be applied.

67

Chapter 4 Partially Groundable Planning Tasks

Algorithm 4 Ground N

Parameters: N ∈ N ∪ {∞}
1: function generate successors(open, parent, parent g)
2: for all o ∈ P do
3: if grounded(o) and applicable(o, parent) then
4: open.insert((parent, o, parent g),
5: computePriority(parent, o, parent g))
6: else if not grounded(o) then
7: for i ∈ {1, . . . , N} do
8: ground param ← gmo(grounded params(o))(parent)
9: if ground param = ⊥ then

10: break
11: end if
12: og = o[vo∞ = ground param]
13: if applicable(og, parent) then
14: open.insert((parent, og, parent g),
15: computePriority(parent, og, parent g))
16: end if
17: end for
18: end if
19: end for
20: end function

Ground N Ground N shown in Algorithm 4 generalizes the successor generation from
classical search to partially groundable planning tasks. The idea is to ground up to
N operators and discard the rest, where N is a configurable parameter. Applicable
grounded operators are inserted into the open queue as in classical search (ll. 3-5). If
an operator is not grounded, we try to ground an instance up to N times (l. 7) by
calling the associated grounding module gmo (l. 8). Here grounded params(o) returns
the vector of objects from OF that o was partially grounded with. If the operator
cannot be grounded any more, we stop (ll. 9-11). We say the operator is grounded
out. Otherwise we produce a grounded operator og by assigning the variable vo∞ to
the ground param (l. 12). vo∞ is the free variable in the partially grounded operator
o. If the grounded operator is applicable, it is inserted into the open queue (ll. 13-16).
This procedure is quite similar to classical search as always all possible operators are
added. For a finite object set O∞ one can set N =∞ and all successors are produced.
In that case we get the same behavior as classical search with the difference that the
full task is not grounded explicitly, which might be preferable when states have many
geometrically different successors.

68

4.3 Planning with an Infinite Branching Factor

Algorithm 5 Ground Single Reinsert

1: function generate successors(open, parent, parent g)
2: for all o ∈ P do
3: if grounded(o) then
4: if applicable(o, parent) then
5: open.insert((parent, o, parent g),
6: computePriority(parent, o, parent g))
7: end if
8: else
9: open.insert((parent, o, parent g),

10: computePriority(parent, o, parent g))
11: end if
12: end for
13: end function

Ground Single Reinsert The problem with Ground N is that it discards possible
successors. As we cannot generate all successors we must balance between generating
more successors (branching) or looking at other states (expanding) and interleave both.
The idea is to produce only one possible successor per partially grounded operator at
each step, but not close this state if there are potentially more. This is motivated
by the algorithm presented in Section 4.2.2. However, we produce one successor per
partially grounded operator and not one per state. Following the principle of heuristic
search we leave the decision to revisit a state and produce more possible successors or
to expand other states to the heuristic.

The successor generation for Ground Single Reinsert is shown in Algorithm 5.
Grounded operators are handled the same as with Ground N. They are added to
the open queue if applicable (ll. 4-7). In the other case Ground Single Reinsert
simply adds the partially grounded operator to the open queue (ll. 9-10) without
an applicability check. A partially grounded operator in the open queue serves as a
marker to produce possible successors by grounding this operator once it is retrieved.
Computing a heuristic estimate for this entry is impossible as it does not represent an
actual state. This, however, is mitigated by the fact that we use deferred evaluation
for heuristic computations (Richter and Helmert, 2009). Deferred evaluation takes
the heuristic of the state’s parent as the state’s estimate. The original intention of
the technique is that per expansion step only one heuristic needs to be computed.
In our case this enables us to compute heuristic estimates for grounded and partially
grounded operators alike.

The successor generation inserts partially grounded operators in the open queue.
Therefore we need to adapt the fetch next state procedure to handle those cor-
rectly. Algorithm 6 shows this process. First, we check that the queue is not empty
and return failure otherwise (ll. 2-4). Then, we retrieve the state and operator from

69

Chapter 4 Partially Groundable Planning Tasks

Algorithm 6 Fetch Next State

Parameters: N ∈ N ∪ {∞}
1: function fetch next state(open)
2: if open.empty() then
3: return False, None, ∞
4: end if
5: state, op, g ← open.pop()
6: if not grounded(op) then
7: ground param ← gmop(grounded params(op))(state)
8: if ground param = ⊥ then
9: return fetch next state(open)

10: end if
11: opg = op[vo∞ = ground param]
12: if num groundings(state, op) < N then
13: open.insert((state, op, g), computePriority(state, op, g))
14: end if
15: if applicable(opg, state) then
16: op ← opg
17: else
18: return fetch next state(open)
19: end if
20: end if
21: return True, app(state, op), g + cost(op)
22: end function

70

4.3 Planning with an Infinite Branching Factor

the queue along with the g-value estimation of this state (l. 5). Let us first consider the
case of a grounded operator. The function returns True and computes the successor
state by applying the operator to its parent. The g-value is computed by adding the
operator cost to the parent’s g-value (l. 21). This is the same behavior as in classical
search.

For a partially grounded operator, first we call the grounding module (l. 7). If the
operator is grounded out, it can be discarded and we continue with the next state from
the open queue by recursively calling fetch next state (ll. 8-10). Otherwise, we
build the grounded operator opg (l. 11). Now two things happen: We reinsert the same
state and partially grounded operator into the open queue—again as a marker (l. 13).
This happens only if we produced less than N grounded operators before in this state.
The number of grounded operators generated from a partially grounded operator in a
state is maintained in num groundings. N in this case serves the same purpose as for
Ground N—to limit the number of possible successors from a state. However, in this
case, one can set N = ∞ even if O∞ is not finite as only a single grounded operator
is added in each step. The second part handles the grounded operator opg. If it is
applicable, it is used as the operator for this planning step (ll. 16, 21). Otherwise, we
continue with the next state from the queue as before (l. 18).

Example Run Figure 4.4 shows an example run using Ground Single Reinsert on the
scenario shown in Figure 4.5. The task is to move a bottle from a crate into the lower
shelf of the fridge door. The robot must regrasp the object in order to avoid collisions
of the gripper with the fridge. The example run uses N =∞, i.e., there is no limit on
the possible successors of an operator. To understand the behavior of Ground Single
Reinsert it is important to note the numbers before transitions, which show the order,
in which all events took place. These are either insertion into the priority queue or
the time of insertion and subsequent removal from the queue (e.g., 36 → 38). Note
that for partially grounded operators there are multiple entries as they are reinserted
into the queue. Values in parentheses are the priorities.

After initializing with the initial state the only applicable operator pick-up beer011

crate011 top is inserted into the priority queue and immediately removed and ap-
plied (2 → 3). The put-down operator is only partially groundable. After inserting
into the priority queue different grounded operators are tried by the planner. Here the
planner alternates between grounding from put-down beer011 fridge door shelf1

top and put-down beer011 table3 top as their heuristic estimates are equal (2)
and priorities of reinserted states are higher due to discounting (see Section 4.3.4). As
it is geometrically impossible to place the bottle directly in the fridge this continues
until a pose on the table is found (23 → 25). Two grasps for re-grasping the ob-
ject are applied, a side and top grasp. The partially grounded operators originating
from the two new states are inserted into the queue. When the first grounded opera-
tor for put-down beer011 fridge door shelf1 side succeeds, a goal state is found

71

Chapter 4 Partially Groundable Planning Tasks

Figure 4.4: An example run with Ground Single Reinsert. Rectangles are states. The
goal is green. Solid arrows show applications of grounded operators. Dashed arrows to
triangle marks show partially grounded operators. Outgoing arrows from these are the
possible successors. They are solid if applicable, and dashed otherwise. Lines ending
in a bar indicate that this operator is grounded out.

72

4.3 Planning with an Infinite Branching Factor

(45 → 47). If this was not the case, the planner would continue producing grounded
operators for this choice, but also for all other put-down operators from each state as
they are still in the priority queue and none have been grounded out.

Soundness and Completeness Soundness and completeness of the implementation
are only guaranteed under the assumptions and conditions stated in Section 4.2.2. For
soundness we need to establish that no incorrect plans are produced. For a search-
based algorithm this means that any closed state must be the result of applying a
series of applicable operators. This is ensured in both algorithms. For Ground N
we only insert grounded and applicable operators in the open queue. The successor
generation of Ground Single Reinsert puts operators in the open queue that are ei-
ther grounded and applicable or not fully grounded. The latter case is handled in
fetch next state. Lines 15–19 guarantee that the operator used in this step is
applicable. If it wasn’t, fetch next state will be called again (l. 18) until either
an applicable successor for a state is found or the queue runs empty.

For completeness we need to ensure that a plan is eventually found. This only holds
for Ground Single Reinsert with N =∞. With a finite N any successors represented
by a partially grounded operator are not visited after N have been generated. Ground
N cannot be run with N = ∞ on infinite O∞ as in that case successor generation
does not terminate. Ground Single Reinsert works slightly different as the algorithm
proposed in Section 4.2.2. However, the same arguments still hold: The increase on
the queue size in every step is still bounded. The difference here is that one additional
queue entry is added per partially grounded operator. As partial grounding uses the
finite object set OF this number is still finite.

Another noteworthy restriction is that this only holds with a FIFO queue, i.e.,
breadth-first-search. In general heuristic best-first search does not make such guaran-
tees. For planning tasks with semantic attachments we argued that this still works
in practice shown by the experimental data. This not true any more as partially
groundable planning tasks are an extension to classical planning tasks with numerical
fluents that, with an infinite number of successors, goes beyond adding more expressive
semantics. We will address this issue in the following section.

4.3.4 Efficient Search Techniques

The aforementioned search algorithms find plans for partially groundable planning
tasks. However, the practical problems that we face are likely to produce a large
number of successors leading to a large branching factor. Moreover, the geometrical
solvers take significantly longer to evaluate than symbolic tests. Therefore we aim for
satisficing solutions. A fast and well guided search is crucial for good performance.
We address this by introducing a discounting scheme that devalues large numbers
of successors from the same state. In addition, we introduce a search heuristic on

73

Chapter 4 Partially Groundable Planning Tasks

the assumption that the symbolic part of a planning task provides good guidance
information.

Discounting In contrast to Ground N, which always produces all (up to N) succes-
sors, Ground Single Reinsert gives us the possibility to balance between branching and
expanding. We use the search heuristic to make this decision. However, the search
heuristic is not well informed about the geometric model that appears as a black box.
The heuristic estimate for a reinserted partially grounded operator might again be the
best entry in the open queue leading to a large number of successors from this state.
To prevent this we employ a discounting function to force the planner to look at differ-
ent operators. The idea is that this balances the heuristic estimate for a state with the
fact that the previous successors from this state have not lead to the goal—otherwise
the search would have ended.

The function computePriority computes the heuristic for the state h(s) and
passes this through a discounting function that depends on the number of possible
successors that have been generated from a partially groundable operator op in this
state given by num groundings . We use a linear discounting function and greedy
search. Thus, computePriority(s, op, g) computes (1 + num groundings(s, op)) ·
h(s) for partially grounded operators and h(s) otherwise.

Module-Abstracted Search Heuristics The heuristic in our planner employs an
adaption of the context-enhanced-additive heuristic (Eyerich et al., 2009) to semantic
attachments. The heuristic can be used independent of the module calls for semantic
attachments operating only on the symbolic part of a state. As only condition checkers
and effect applicators use variables from V∞ partially grounded operators can also be
evaluated and applied on the symbolic part of a state. Thus during heuristic evaluation
we do not need to ground operators. Although this heuristic already works for planning
tasks with semantic attachments, we consider an even better informed heuristic.

In classical planning often the heuristic computation itself takes major parts of
the search time. In our case this is different as geometric computations in modules
dominate the computation time. This gives light to a new heuristic that we name
module-abstracted heuristic. The module-abstracted heuristic performs a full classi-
cal search in the state space formed by the symbolic part of the state and partially
grounded operators. As a heuristic for this search we use the planner’s classical search
heuristic. The value computed by this heuristic is the length of the plan found by
the search. Although using a full search to compute a heuristic estimate might sound
infeasible at first, keep in mind that the state space is considerably smaller as there is
only one transition per partially grounded operator. Also applicability tests and oper-
ator applications now work with purely logical states and do not call costly geometric
computations.

In fact what we gain by this heuristic is a combination of the efficiency of a top-down

74

4.4 Evaluation

abstraction for task and motion planning and the soundness of an integrated approach.
A top-down abstraction would run a search without considering geometric properties
and produce concrete geometric instantiations only when executing the plan. This is
fast, but can obviously fail. By using an abstract plan only as the search heuristic we
follow its guidance, but retain the ability to backtrack.

4.4 Evaluation

Figure 4.5: This figure shows the scenario used in the first two experiments. Yellow
rectangles show the surfaces that the robot can put objects on, i.e., all tables and the
shelves in the fridge and fridge door.

We evaluate our algorithms on manipulation planning scenarios shown in Figure 4.5
and Figure 4.11. In the first two experiments we compare the behavior of Ground
Single Reinsert and Ground N when successors are computed by sampling or from a
fixed discretization. The third experiment investigates the performance of the module-
abstracted heuristic on a mobile manipulation task. The planning tasks are designed
to be challenging and thus contain intricate manipulation or mobile manipulation
that necessitates to generate many successors. The integrated planner is built on our
previous work (Dornhege et al., 2009b) and in this case uses a Rapidly Exploring
Random Tree for trajectory planning of the manipulator. We also enabled partial
state caching and lazy module evaluation, which are introduced in Section 5.5.

4.4.1 Sampling-based successor generation

In this experiment we focus on the behavior of Ground Single Reinsert and Ground
N when successors are generated by sampling. In particular we are interested in how

75

Chapter 4 Partially Groundable Planning Tasks

well both algorithms scale with the increased complexity for larger tasks with more
objects. Here it is especially important how dependent they are on setting a suitable
value of N .

The domain is modeled with two actions: pick-up moves the arm towards an object
and grasps it in a side or top grasp iff there exists a motion plan that allows the robot
to do so without collisions with the environment or other objects. put-down moves the
arm towards a specific putdown pose on a static object (e.g., a table) and releases the
object iff there exists a collision-free motion plan. The placement pose for an object
is chosen by a grounding module that uniformly samples poses on the target surface.

The scenario is shown in Figure 4.5. Initially all objects are stored in the crate at
the left and can only be grasped with a top grasp. We define four tasks with different
goals. For the Table task all objects are to be positioned on the table at the right.
The Fridge task requires all objects to be stored anywhere in the fridge. The Shelf
task positions all objects in the shelves within the fridge, but not in the door. Finally,
the goal of the Door task is to put objects in the lower shelf of the door. Especially
the last task forces intricate trajectory planning to avoid collisions of the object with
the shelf and of the gripper with the upper shelf. Also to position a maximum number
of objects in the small lower shelf the poses need to be as close together as possible
while still allowing the gripper to fit between the objects to put them down. Besides
the Table task all other settings require regrasping from a top grasp lifting the object
from the crate to a side grasp to put an object into the fridge.

There are up to 20 different problems for each task corresponding to 1–20 objects to
be placed at the goal surface(s). We used values of 1, 5, 10, 25, 50 and—if applicable—
∞ for N and ran the planner with Ground Single Reinsert and Ground N on all tasks
and all problems. As pose sampling is a Monte-Carlo algorithm we executed each of
the 20 problems on each of the tasks for each N with ten different random seeds. The
tasks were executed on a single core of an Intel Core-i7-3930K. We set the memory
limit to 4 GB and a timeout of 1800 seconds. For each run we record the time until
the first plan is found and its length or note a failure if no plan was found before the
timeout. We show the results where at least one algorithm with one N value succeeded
to produce a plan.

We use two ways of comparing both algorithms. A direct comparison uses the same
N value for each algorithm. Ground Single Reinsert with N =∞ cannot be compared
to Ground N. Thus in this case we compare it to an oracle algorithm that chooses the
best run among different N values from each Ground N run. Note that to create this
algorithm it is necessary to run Ground N for all N values. This is unfavorable for
Ground Single Reinsert. It serves as a comparison of Ground Single Reinsert without
a pre-given N, i.e., N =∞ to Ground N under the assumption that we could predict
the best N—which is hard to do in practice.

76

4.4 Evaluation

Ground N Ground Single Reinsert

1 5 10 25 50 ∞ 1 5 10 25 50

01 3 10 10 10 10 10 5 10 10 10 10

02 9 10 9 10 10 10 7 10 10 10 10

03 10 10 10 10 5 10 9 10 10 10 10

04 9 10 10 7 4 10 10 10 10 10 10

05 7 9 8 3 0 10 10 10 10 10 10

06 10 9 4 2 0 10 9 9 10 9 9

07 10 8 3 0 0 10 9 10 9 10 10

08 7 2 0 0 0 9 10 8 6 10 8

Total 65 68 54 42 29 79 69 77 75 79 77

Fridge

Ground N Ground Single Reinsert

1 5 10 25 50 ∞ 1 5 10 25 50

01 5 10 10 10 10 10 4 10 10 10 10

02 8 10 9 8 6 10 7 10 10 10 10

03 8 8 9 4 0 10 9 10 10 10 10

04 10 4 9 0 0 9 8 10 10 10 9

05 9 4 2 0 0 10 10 9 9 10 10

06 9 0 0 0 0 9 8 8 8 7 9

07 5 0 0 0 0 9 9 9 8 7 9

08 6 0 0 0 0 9 9 8 9 8 8

09 0 0 0 0 0 5 2 5 6 4 8

10 1 0 0 0 0 4 4 5 5 5 7

11 1 0 0 0 0 3 4 5 6 6 4

12 0 0 0 0 0 4 1 6 5 5 5

13 0 0 0 0 0 4 2 0 2 3 4

14 0 0 0 0 0 1 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 1 0

Total 62 36 39 22 16 97 77 95 98 96 103

Shelf

Ground N Ground Single Reinsert

1 5 10 25 50 ∞ 1 5 10 25 50

01 6 10 10 10 10 10 8 10 10 10 10

02 8 10 10 10 10 10 9 10 10 10 10

03 10 10 10 10 10 10 5 10 10 10 10

04 10 7 2 1 0 10 10 10 10 10 10

05 9 6 9 5 1 10 10 10 10 10 10

06 10 9 10 1 0 10 10 10 10 10 10

07 9 8 6 0 0 10 10 10 10 10 10

08 6 2 2 0 0 10 10 10 10 10 10

09 9 7 3 0 0 10 10 10 10 10 10

10 10 10 10 0 0 10 10 10 10 10 10

11 9 9 1 0 0 10 10 10 10 10 10

12 6 2 0 0 0 10 10 10 10 10 10

13 10 7 0 0 0 10 10 10 10 10 10

14 9 8 0 0 0 10 10 10 10 10 10

15 7 0 0 0 0 10 10 10 10 10 10

16 5 2 0 0 0 10 10 10 10 10 10

17 8 5 0 0 0 10 10 10 10 10 10

18 3 0 0 0 0 10 10 10 10 10 10

19 8 0 0 0 0 10 10 10 10 10 10

20 0 0 0 0 0 10 8 10 10 10 10

Total 152 112 73 37 31 200 190 200 200 200 200

Table

Ground N Ground Single Reinsert

1 5 10 25 50 ∞ 1 5 10 25 50

01 3 10 10 10 10 10 0 10 10 10 10

02 8 10 10 10 10 10 7 10 10 10 10

03 8 10 10 9 4 10 10 10 10 10 10

04 9 0 0 0 0 10 9 10 10 10 10

05 10 6 0 0 0 10 8 8 10 10 10

06 1 0 0 0 0 4 1 3 2 6 5

Total 39 36 30 29 24 54 35 51 52 56 55

Door

Table 4.1: This table shows how often a plan was found for each task and problem
instance. Ten runs with different random seeds were executed for each task, problem,
algorithm and choice of N.

Discussion Table 4.1 shows the coverage for all settings, problem instances and both
algorithms depending on N. As expected coverage goes down when the number of
objects is higher and the tasks are more complex. The Table scenario is the easiest as it
does not require regrasping. Here all 20 instances are solved by Ground Single Reinsert.
The lower shelf in the Door task only fits up to six objects and thus becomes very
constrained with six objects. The Shelf and Fridge tasks give the planner increasingly
more options to put objects. This results in less solved tasks overall for the larger
Fridge task as the search space gets larger. The scaling of computation time with
problem size is visualized in Figure 4.6. 4

If we consider the coverage in Table 4.1 for Ground N with larger N values (N > 5),
we observe that in most instances an increasing N for Ground N leads to more failures.
We can also see this in the plot of computation times in Figure 4.7. In the top row
we compare individual runs with both algorithms for the same N value. Different
N values are colored from the smallest in blue to the largest in red. Entries are
farther away from the diagonal with increasing N. This means that the performance
in comparison to Ground Single Reinsert decreases with increasing N. Some entries
noted as “no plan” are drawn off limits. In these cases the reason in not a timeout,
but a completely explored search space within the time limit. However, this happens

4Plots in this chapter were created with Matplotlib (Hunter, 2007).

77

Chapter 4 Partially Groundable Planning Tasks

Fridge Shelf

Door Table

Figure 4.6: This figure illustrates the scaling of computation time in seconds with
problem size. Ground Single Reinsert (blue) with N = ∞ is compared to the oracle
choice for Ground N (red).

for small N values, here drawn in light blue. Which value of N is best depends on the
problem size. For smaller problems, e.g., for Fridge problem 03 N = 25 still works, for
problem 05 N = 5 is best, and from 06 on N = 1 is best. We see two opposing effects
here. A smaller N crops the search space and thus might prune away the solution. On
the other hand a smaller N leads to a faster search, so that as long as the solution
path is preserved the chance to run into a timeout is lower. The more complex a
task is, the more important it is to limit the branching factor. The main issue here is
that we cannot determine the best N before planning time. This is dependent on the
complexity of the task.

In contrast Ground Single Reinsert behaves differently. We again see that too small
values of N prune away solution paths. However, there is no negative effect for choosing
larger values of N. In fact N =∞ still leads to competitive performance. The reason is
that Ground Single Reinsert does not produce all successors, but determines by itself,
when more are needed. Thus the limit of N is often not reached. This already is a
beneficial property, but more importantly the performance in comparison to Ground
N is better not only for the same values of N, but also when using N =∞.

To emphasize this behavior the bottom row in the plots for the computation times
(Figure 4.7) also contains a comparison of Ground Single Reinsert with N = ∞ to
the oracle algorithm that chooses the best run among different N values for Ground
N. Even against this oracle Ground Single Reinsert performs well. Note also that
especially for the larger problems of the Shelf and Table tasks many runs for Ground
N result in a timeout for any N, where Ground Single Reinsert (N =∞) still finds a
solution. In the Table task the performance difference is most noticeable, although it

78

4.4 Evaluation

Fridge Shelf Door Table

Figure 4.7: This figure plots the computation time in seconds for sampling-based suc-
cessor generation. Ground N is plotted on the x-axis and Ground Single Reinsert on
the y-axis. The top row compares individual runs for the same N. The bottom row
shows Ground Single Reinsert (N =∞) and the oracle choice of Ground N. Entries at
TO are timeouts. Entries drawn at NP signal that no plan could be found, because
the search space was completely explored before the timeout.

79

Chapter 4 Partially Groundable Planning Tasks

is the easiest task. The different behavior of both algorithms is similar to the difference
between breadth-first and depth-first search. Ground N always produces all successors,
while Ground Single Reinsert only produces one and then continues to explore. This
leads to a deeper exploration of the search space, which is advantageous for the Table
and Shelf tasks with many objects. As a result of this plan lengths (see Figure 4.8)

Fridge Shelf Door Table

Figure 4.8: This figure plots the plan lengths for sampling-based successor generation.
Ground N is plotted on the x-axis and Ground Single Reinsert on the y-axis. The top
row compares individual runs for the same N. The bottom row shows Ground Single
Reinsert (N = ∞) and the oracle choice of Ground N. Entries drawn at NP signal
that no plan could be found.

tend to be higher for Ground Single Reinsert. Here “no plan” entries for plan lengths
do not represent an actual plan, but are shown for completeness. The effect is most
prominent for shorter plans and decreases when the plans are longer. It should also
be noted that there are more “no plan” entries for Ground N on the larger problems
especially in the Shelf and Table tasks.

4.4.2 Discretization-based successor generation

In this experiment we investigate successor generation based on a fixed discretization
on the same scenario as before. We use the same domain and tasks shown in Figure 4.5
and focus on the differences to the previous experiment. We discretize the possible po-
sitions on each surface with 10, 25 and 50 centimeters and for directions we considered
45 and 90 degree steps. We denote a specific discretization by position and direction
as, e.g., 25–90. We set N = ∞ for both algorithms. Here, which discretization is

80

4.4 Evaluation

used defines how many successors there are and thus a finer discretization producing
more successors has the same effect as choosing a larger N in the previous experiment.
Courser discretizations, however, might not have a solution. As the discretization is
deterministic no sampling is included and we executed each task once for all possible
discretizations and both algorithms.

Fridge Shelf Door Table

Figure 4.9: This figure plots the computation time in seconds when using a fixed dis-
cretization. Ground N is plotted on the x-axis and Ground Single Reinsert on the
y-axis. The top row compares individual runs for the same discretization. The bot-
tom row shows Ground Single Reinsert and the oracle choice of Ground N. Entries at
TO are timeouts.

As a first note, given that the number of successors here is fixed, although large,
it is theoretically possible to fully ground the planning task before search instead of
using grounding modules. As a preliminary experiment we tried to do so, but ran into
memory limits even for smaller tasks and coarse discretizations. Thus, planning tasks
with large numbers of successors already benefit from using grounding modules even
when just Ground N is used. Keep in mind that even the roughest discretization of
50 cm and 90 degrees produces dozens of successors for placing an object. Therefore
we only consider results when using grounding modules with Ground N and Ground
Single Reinsert.

Discussion We record the same information as in the previous experiment. Table 4.2
shows the computation time for all settings, problem instances and both algorithms
depending on the discretization. If we consider how many tasks were solved, we see
that the coverage in comparison to sampling in the previous experiment is worse,

81

Chapter 4 Partially Groundable Planning Tasks

Ground N Ground Single Reinsert

50-90 50-45 25-90 25-45 10-90 10-45 50-90 50-45 25-90 25-45 10-90 10-45

01 23.6 38.2 50.2 87.3 194.1 360.0 4.6 7.6 7.7 5.7 6.1 8.1

02 - - 199.0 379.2 848.2 - - - 388.0 24.5 44.2 37.6

03 - - - - - - - - - - 59.9 124.2

04 - - - - - - - - - - 90.8 102.3

05 - - - - - - - - - - 252.4 1459.7

Door
Ground N Ground Single Reinsert

50-90 50-45 25-90 25-45 10-90 10-45 50-90 50-45 25-90 25-45 10-90 10-45

01 - - 68.1 124.9 372.3 474.1 - - 25.1 11.2 12.5 19.9

02 - - - - 973.4 - - - 142.9 59.0 55.9 97.5

03 - - - - - - - - - - 284.0 1711.9

04 - - - - - - - - - - 309.8 457.5

05 - - - - - - - - - - 637.6 637.1

06 - - - - - - - - - - 750.1 -

07 - - - - - - - - - - 543.2 -

08 - - - - - - - - - - 974.6 -

Shelf
Ground N Ground Single Reinsert

50-90 50-45 25-90 25-45 10-90 10-45 50-90 50-45 25-90 25-45 10-90 10-45

01 33.0 56.8 72.3 131.9 123.1 238.5 7.1 14.8 16.3 17.6 5.7 8.0

02 320.9 634.0 138.4 258.7 494.5 965.4 64.4 118.3 31.2 109.0 101.2 98.4

03 - - 435.0 - - - - - 346.3 230.2 111.6 486.0

04 - - - - - - - - 297.5 - 216.8 218.0

05 - - - - - - - - - - 359.9 490.6

06 - - - - - - - - - 588.2 209.0 1024.8

07 - - - - - - - - 1662.6 - 331.2 693.1

08 - - - - - - - - - - 767.1 -

Fridge
Ground N Ground Single Reinsert

50-90 50-45 25-90 25-45 10-90 10-45 50-90 50-45 25-90 25-45 10-90 10-45

01 11.3 19.1 25.1 45.0 94.9 182.9 2.6 2.5 2.6 2.6 2.7 2.8

02 128.3 158.7 181.5 285.6 928.4 - 22.3 50.9 39.4 22.3 22.8 16.3

03 64.4 306.5 401.4 801.3 919.4 - 33.5 83.2 54.1 320.3 44.1 17.0

04 183.5 365.8 298.9 648.7 1466.6 - 69.9 125.2 18.3 21.5 23.5 26.3

05 635.5 1632.4 1781.6 1359.9 - - - - 26.9 35.7 58.0 61.6

06 1380.6 - 1049.3 1402.0 - - - - 49.7 49.0 130.4 121.4

07 - - 947.4 1647.6 - - - - 94.3 107.2 153.7 126.5

08 - - 1770.5 - - - - - 90.8 178.3 111.1 90.1

09 - - - - - - - - 167.0 150.0 133.1 124.1

10 - - 1398.6 - - - - - 165.1 214.3 407.2 275.9

11 - - - - - - - - - - 221.5 246.3

12 - - - - - - - - - - 256.6 281.8

13 - - - - - - - - - - 391.7 598.9

14 - - - - - - - - - - 551.2 608.2

15 - - - - - - - - - - 905.4 572.6

16 - - - - - - - - - - 457.5 721.4

17 - - - - - - - - - - 785.2 646.9

18 - - - - - - - - - - 432.8 582.2

19 - - - - - - - - - - 1144.9 778.2

20 - - - - - - - - - - 364.3 682.4

Table

Table 4.2: This table shows the computation times for the different settings when fixed
discretizations are used. Timeouts are marked by “-”. Best times among the same
discretization between Ground N and Ground Single Reinsert are shown light gray.
Best overall times for the same task are displayed dark gray. Best times for different
discretizations for the same algorithm are bold.

82

4.4 Evaluation

especially for Ground N. The reason for this is that successors here are produced de-
terministically from the discretization. Thus, when the search generates successors for
different states it will always generate the same successors in contrast to sampling,
where successors are produced randomly. This could be an advantage as when good
successors are generated, they will be generated again. On the other hand bad suc-
cessors will also be generated repeatedly. The results indicate that—at least for such
challenging tasks, where a majority of the possible successors are not applicable—a
sampling-based approach is better. This affects Ground N more than Ground Single
Reinsert as Ground Single Reinsert does not need to produce all possibly bad succes-
sors for a state. Instead it expands other states before returning. One undesirable
property of Ground N is that the discretization that results in the most solved prob-
lems is dependent on the task. Coarser discretizations are faster to explore, but might
not be solvable. Finer discretizations take too long to search. Ground Single Rein-
sert handles finer discretizations very well. Almost all tasks are solved even when the
finest discretization is used. Ground Single Reinsert with 10-90 solves all tasks in all
scenarios.

Fridge Shelf Door Table

Figure 4.10: This figure plots the plan lengths when using a fixed discretization.
Ground N is plotted on the x-axis and Ground Single Reinsert on the y-axis. The
top row compares individual runs for the same discretization. The bottom row shows
Ground Single Reinsert and the oracle choice of Ground N. Entries drawn at NP signal
that no plan could be found.

We compare computation times in Figure 4.9. The oracle algorithm for Ground N
here chooses the best run among all discretizations. This is compared with Ground
Single Reinsert using the finest discretization available, i.e., all possible successors.

83

Chapter 4 Partially Groundable Planning Tasks

Different discretizations are colored from the coarsest in blue to the finest in red. Here,
even in the comparison to the oracle choice the same problem instance is almost always
solved faster with Ground Single Reinsert. Comparing plan lengths in Figure 4.10 the
advantage for Ground N is not as pronounced as for the sampling case. One reason for
this is that many tasks are just not solved by Ground N. Overall we can say that for
complex tasks, where not many successors are applicable, and especially, when they
are produced deterministically, Ground Single Reinsert is superior.

4.4.3 Module-Abstracted Search Heuristics

Figure 4.11: This figure shows the scenario used in the third experiment. Yellow rect-
angles show the surfaces that the robot can put objects on, i.e., the tables and the
shelves on the left.

Search guidance heuristics have to provide a good balance between how expensive
they are to compute and how informed they are. The module-abstracted heuristic
actually performs classical planning albeit on a task that is simpler than the full
domain with geometric information. As a base line we use the context-enhanced-
additive heuristic denoted as CEA (Eyerich et al., 2009), which is the default for
our planner TFD/M and was used in the previous experiments. The goal of this
experiment is to investigate the performance of module-abstracted search heuristics in
comparison to this base line.

We use a mobile manipulation scenario shown in Figure 4.11 with two grounding
modules. The pick-up and put-down operators are the same as before. Placements are
chosen with the sampling-based grounding module. In addition a drive-base operator
moves the robot base to another pose (i.e., position and orientation) near a table or
cupboard. The poses are sampled uniformly in the blue rectangles, where the robot
base (gray rectangle) must not intersect any object’s surface area (red rectangles). The
robot pose is defined to be the point at the manipulator base, e.g., in Figure 4.11 the

84

4.4 Evaluation

Ground N Ground Single Reinsert

1 5 10 25 50 ∞ 1 5 10 25 50

01 14 20 20 20 20 20 15 20 20 20 20

02 19 20 20 20 17 20 16 20 20 20 20

03 9 0 0 0 0 3 10 8 7 9 7

04 12 0 0 0 0 13 10 16 15 17 15

05 2 0 0 0 0 0 2 0 0 0 0

06 0 0 0 0 0 0 0 0 0 0 0

07 6 0 0 0 0 2 4 7 7 6 6

08 4 0 0 0 0 5 7 9 8 7 3

09 1 0 0 0 0 1 4 2 6 6 4

10 6 0 0 0 0 5 10 3 7 9 7

Total 73 40 40 40 37 69 78 85 90 94 82

Ground N Ground Single Reinsert

1 5 10 25 50 ∞ 1 5 10 25 50

01 13 20 20 20 20 20 18 20 20 20 20

02 15 20 20 20 20 20 20 20 20 20 20

03 16 20 20 20 20 19 16 19 19 19 19

04 6 20 20 20 20 9 10 12 7 13 8

05 11 9 15 8 5 16 16 13 13 15 12

06 10 6 4 0 0 11 11 11 10 10 9

07 13 12 8 0 0 11 11 10 12 13 13

08 15 13 6 0 0 18 20 18 17 18 14

09 10 17 6 0 0 18 14 16 19 15 13

10 9 9 1 0 0 12 12 13 15 14 14

Total 118 146 120 88 85 154 148 152 152 157 142

CEA Module-Abstracted

Table 4.3: This table shows the number of solved runs out of 20 for each problem using
the context-enhance-additive heuristic (CEA) in comparison to the module-abstracted
heuristic.

robot is positioned at the very left of the rightmost rectangle. There is one additional
operator arm-to-drive-pose that makes sure that the robot does not navigate with
an extended arm. This domain is more challenging as the previous ones as the ability
to position or grasp an object now not only depends on the grasp and (chosen) object
pose, but also on the robot’s pose that directly influences the reachability. Here, well
informed heuristic guidance is even more important than in the previous scenarios.

The task is to place all boxes in the shelf on the left and to move four glasses (gray
cylinders) from the right table to the center table. Besides the mobile manipulation
scenario itself the challenge for the planner is to determine a valid sequence. Until
the two boxes on the center table are moved it is harder to determine collision free
poses for placing the glasses. Also, if the boxes and glasses on the right table are
graspable depends on the order, in which they are removed from the table and the
robot’s pose. For example, one of the glasses here is placed behind the green box and
thus is not graspable until that is removed. Problems are numbered with an increasing
number of objects. Problem #01 and #02 only address the two boxes on the center
table. Problems #03 - #06 also include the four boxes on the right table and #07 -
#10 additionally include the glasses on the right table. For each of the 10 problems
we executed Ground N and Ground Single Reinsert with values of 1, 5, 10, 25, 50 and
if applicable ∞ for N. Each run was executed with the context-enhanced-additive
heuristic and the module-abstracted heuristic on 20 random seeds each. The tasks
were executed on a single core of an Intel Core-i7-3930K. We set the memory limit to
4 GB and a timeout of 1800 seconds.

Discussion Again we record the time until the first plan was found and its length
or note a failure if no plan was found. Table 4.3 shows the coverage for CEA and
the module-abstracted heuristic. The module-abstracted heuristic solves more tasks
in total than CEA for any search algorithm and N. With the exception of Ground
Single Reinsert in problem #04 this tendency also shows for individual problems. The
behavior of problems #03 and #04 is different, which can also be seen as Ground N

85

Chapter 4 Partially Groundable Planning Tasks

Ground N Ground Single Reinsert Ground Single Reinsert (∞)

Figure 4.12: This figure compares the module-abstracted heuristic with the context-
enhanced-additive (CEA) heuristic. CEA is plotted on the x-axis and the module-
abstracted heuristic on the y-axis. The top row shows computation times in seconds,
the bottom row plots plan lengths. Entries at TO are timeouts. Entries drawn at NP
signal that no plan could be found.

86

4.5 Conclusion

here has more coverage than Ground Single Reinsert. These are the problems, where
two boxes need to be moved from the right table in addition to the two boxes on the
center table. The only successful plan here is to find a good robot position that allows
to grasp each box directly as other objects cannot be repositioned. This is unfavorable
to the more explorative nature of Ground Single Reinsert or the more goal-directed
behavior in the module-abstracted heuristic as in this case enumerating all possibilities
early on is better.

We plot computation times and plan lengths for the same N value and random seed
in Figure 4.12 comparing CEA and the module-abstracted heuristic for each search
algorithm. For Ground Single Reinsert fixed N values and N = ∞ are displayed
separately. Again, different N values are colored from the smallest in blue to the
largest in red and “no plan” entries are shown when the search space was explored
before the timeout. For smaller problems that are solved in about 10 seconds or
less neither heuristic shows better planning times than the other. On more difficult
problems there is a considerable advantage for the module-abstracted heuristic. Here,
also the larger number of unsolved problems for CEA is clearly visible. Plan lengths
shown in the bottom row of Figure 4.12 are comparable for both heuristics. Overall
the guidance provided by module-abstracted heuristics for these mobile manipulation
tasks leads to better coverage and faster solution times than CEA.

4.5 Conclusion

We addressed planning tasks with an infinite branching factor. Such problems arise
in real-world domains like robotics when geometric choices are made. We formulated
these kind of tasks as partially groundable planning tasks. Classical search algorithms
cannot be applied any more as they do not terminate with an infinite number of
successors. We presented two generic search algorithms for planning tasks with an
unlimited branching factor. Ground N extends classical planning to infinite successors
by setting a fixed limit for each state. As this requires to pre-set a large enough limit
to reliably find plans, we introduced Ground Single Reinsert that dynamically makes
the decision to branch or explore.

We evaluated both algorithms on robot manipulation scenarios. Our evaluation
shows that Ground Single Reinsert provides better coverage and leads to faster plan-
ning times than Ground N, even when compared to an oracle choice of N. The mo-
tivation here was to relieve a user from making this choice and leave this to the
algorithm. Ground Single Reinsert does have another advantage. The number of nec-
essary branches is determined on a per state basis as part of the search in comparison
to a fixed limit. Therefore even on a fixed discretization we have shown favorable per-
formance for Ground Single Reinsert. With uniform sampling we only considered a
simple mechanism for successor generation. More advanced methods for producing ge-
ometric choices, e.g., using a capability map for robot placement (Leidner et al., 2014)

87

Chapter 4 Partially Groundable Planning Tasks

easily fit in our framework and thus can be integrated to lead to further improvements.
Finally, we evaluated module-abstracted heuristics for integrated task and motion

planning that search on the symbolic abstraction of the full geometric state. Our
results show that this heuristic works well for mobile manipulation tasks. Search
guidance is an important topic for symbolic-geometric planning. Techniques from
motion planning like RRT-planning have been applied to symbolic planning (Alczar
et al., 2011) and thus might lead to even better search mechanisms in the future.

88

Chapter 5

Real-World Applications using

Continual Planning

In the previous chapters we showed how we plan for robotics tasks. A robotic system
must also integrate the planner to achieve goal-directed behavior. This means that
interfaces to the robot’s action and perception capabilities are provided. Perception
is necessary as the current state of the world represents the initial state for the plan-
ner. The action interfaces make it possible to actually execute a plan. The planning
algorithms that we described are based on the semantics of classical planning, i.e.,
they assume that the inital state completely and correctly describes the current world
state, that each action execution deterministically leads to the stated effects, and that
the current state in the world does not change from anything else, but the robot’s
actions. These assumptions are clearly violated for a robot acting in the real world.

Figure 5.1: Overview of an experimental environment for a household scenario. The
test scenario contains two rooms separated by a door (red), tables (blue) and a shelf
(yellow) in the back.

Consider the example of a household domain in Figure 5.1. We want a robot to
tidy up by bringing all objects on the tables into the shelf and wiping all tables with
a sponge. This is all the information that is necessary to state this task. In particular
one should not need to specify, which objects there are or where they are located. The

89

Chapter 5 Real-World Applications using Continual Planning

robot should determine this by planning for appropriate sensing actions. Furthermore,
an action execution might fail, e.g., a pick-up action not grasping an object leading
to a different state than predicted. Also external events can happen: For example, a
human closes the door after walking through it. A robot must at least to some degree
be able to deal with all these properties of real-world tasks.
We follow the approach of continual planning. The planner is embedded in a closed

perception-reasoning-action loop. Instead of blindly following a plan, the current state
is estimated after each action and replanning is triggered if necessary. This procedure
continues until the goal is reached or no plan can be found. Replanning mitigates the
shortcomings of the robot’s skills or of the expressiveness of the planning formalism
always adapting the current plan to the observed situation.
The principle of continual planning is also applied in other robotic systems. How

well such a system performs depends on various factors, for example, the robotics
algorithms like manipulation or navigation skills, the expressiveness of the planning
algorithm, or the domain formulation itself. In this chapter we formalize the proper-
ties of real-world planning tasks and show how these can be addressed by continual
planning with an embedded classical planner. Here we look in particular at identifying
the underlying assumptions and as a result of this the limitations of such a system.
Another aspect of real-world systems is speed. Planning with semantic attachments

is a time consuming process. Even classical planning is PSPACE-complete and more
expressive formalisms for partially-observable, nondeterministic domains are 2-EXP-
complete (Rintanen, 2004). The results from previous chapters have shown that rea-
sonable computation times are possible in practice. However, faster planning times
are beneficial for real-world systems. We introduce two techniques that specifically
address planning tasks with semantic attachments. First, a novel lazy evaluation al-
gorithm prevents costly geometric computations as much as possible without losing
soundness. Second, we investigate a variety of caching techniques that answer re-
quests to a semantic attachment by previously computed results within the current
plan computation, but also across different calls to the planner.
One goal of our integrated planning system was to provide a domain-independent

planner with semantic attachments. This means that the same planner can be used in
different problem domains. To demonstrate the versatility of our approach we apply
our continual planning system to various different tasks and robots. In addition the
application to these scenarios also demonstrates that our assumptions are realistic and
thus allow the system to work in the real-world. We particularly focus on a complex
tidy up example with the PR2 mobile manipulation robot. Here, we also evaluate the
performance of the aforementioned lazy evaluation and caching techniques.
The remainder of this chapter is structured as follows. In the next section we will

formalize real-world planning tasks. In Section 5.2 we review other approaches and
formalisms. Section 5.3 illustrates our continual planning architecture and we show
how properties of real-world tasks are addressed in Section 5.4. Section 5.5 introduces
efficient planning techniques. The application scenarios and evaluation is presented in

90

5.1 Real-World Planning Tasks

Section 5.6 before we conclude in Section 5.7.

5.1 Real-World Planning Tasks

In order to control a robot with the help of a planning system, an adequate planner
would be one that is able to deal with:

• open domains (with an unlimited number of objects)

• uncertain initial states

• sensing operations with partial observability

• nondeterministic (or probabilistic) effects of actions

• exogenous events

These properties are certainly present in common robotics domains such as service
robotics, which is our main target application. One example is a simple task like “clean
the dinner table”. This is an open domain as the robot does not even know which
objects to clean. If it doesn’t know which objects there are, it obviously can’t be sure
about their initial state. It has to find out by using sensing actions. However, usually
the robot’s sensors will only detect objects in front of the robot. Thus the state is only
partially observable. Failure to grasp an object is just one possible nondeterministic
outcome of a grasping action. Finally someone might put a dirty glass on the table
while the robot is already cleaning. This is an exogenous event as it is not directly
caused by the robot.
Although this seems like a hard problem from a planning point of view, this is only

an issue if we want to provide strong guarantees to our robot behavior. To what
extend such guarantees are necessary is dependent on the application domain. For a
household robot we can be more lenient than for a Mars lander or a medical robot. We
concur with the assessment of Kaelbling and Lozano-Pérez (2011) that “there are few
catastrophic or entirely irreversible outcomes”. We believe that a good measure for
the simplifications and resulting robot behavior is under what assumptions a human
would address and solve such tasks.
It seems as a bit of an overkill that a robot should be able reason about multiple

possible situations. A service robot certainly is not supposed to solve whodunit puzzles
or diagnose the failure of a dish washer. Furthermore, it also seems a bit over-cautious
to plan for all contingencies in advance, given that a household domain (as many
others) is quite forgiving concerning wrong choices or guesses. Also humans plan in
most cases without considering all possibilities. Requiring safe plans under all possible
outcomes might even hinder the robot when trying to move any object. There is no
plan that ensures that a glass can be brought into the kitchen without breaking it.

91

Chapter 5 Real-World Applications using Continual Planning

Almost everyone has done that at some time. In any case planners that consider
nondeterministic effects can only do so within the effects that have been described in
the planning input.
So, as many others have proposed and done, we use a continual planning approach,

where we plan for one way to solve the planning problem at hand, and replan if
anything does not work out according to plan. We now discuss related work for
solving real-world planning problems before we explain our procedure. Afterwards,
we will address two important questions:

1. How to compile a particular feature in the original planning task description
away?

2. Under what conditions can we expect that the approach guarantees that we can
reach the goal?

5.2 Related Work

Robot planning tasks could be, for instance described using the planning language
NPPDL (Bertoli et al., 2003), an extension of PDDL that is able to deal with un-
certainty, nondeterminism, partial observability and sensing, but not open domains.
It should be noted that this language does not support an explicit knowledge or be-
lief modality. Rather all preconditions, effect conditions, and goal specifications are
assumed to be implicitly in the scope of a modal belief operator.
A number of planners have been developed that deal with nondeterminism, partial

observability, and sensing. For instance the myND planner solves fully observable
nondeterministic planning tasks using LAO* search (Mattmüller et al., 2010; Hansen
and Zilberstein, 2001), the planning system MBP, which is based on BDDs (Bertoli
et al., 2001), the planning systems POND and CAltAlt (Bryce et al., 2006; Bryce,
2006), a lazy approach to representing belief sets (Hoffmann and Brafman, 2005), and
a compilation approach to solve nondeterministic planning problems using classical
planning (Kuter et al., 2008). However, given the size of the search space in our
domain, it is questionable from the performance data in the paper by Bryce et al.
(2006), if such planners will be able to generate plans in reasonable time especially
when geometric computations are to be included.
We believe, planning approaches that do not try to solve the entire problem of-

fline are more adequate for robotics. One approach is, for example, to interleave
planning for nondeterministic partially observable domains with execution as pro-
posed by Bertoli et al. (2004). While often there is a simple plan-execute-monitor
loop, there are also other approaches more tightly integrating planning and execu-
tion (Ambros-Ingerson and Steel, 1988; Brenner and Nebel, 2009; Knoblock, 1995).
Konecny et al. (2014) specifically address the problem of execution monitoring for
robotics with causal, temporal, and categorical models. An interesting aspect of their

92

5.2 Related Work

approach is that they produce lifted plans, so that unpredicted events do not neces-
sarily cause execution failures. For example, if a mug to be grasped was removed, but
another equivalent is detected at the same location the execution system switches to
use the other mug. Our monitoring system also does not fail on any unpredicted event
albeit relying on another principle (Dornhege and Hertle, 2013).
Under which conditions such approaches are feasible and how expensive the veri-

fication of such a condition would be has not been investigated thoroughly, though.
This is one main point of the work presented in this chapter. We not only describe
the challenges in real-world planning tasks and state how we simplify these to make
them applicable to robotics, but also discuss our assumptions (Nebel et al., 2013).
State of the art systems for high-level robot control often require an explicit speci-

fication of the desired robot behavior, for example in a state machine (Bohren et al.,
2011). In recent years, robot control by automatic planning is considered again as
a realistic means to achieve autonomy. The reason for that is that automatic plan-
ning has become much more efficient, as demonstrated by recent events such as the
International Planning Competitions.
Current approaches can deal with incomplete knowledge and beliefs while integrat-

ing geometric reasoning into the planning process. Notably, Kaelbling and Lozano-
Pérez (2013) have developed a robot planning system that integrates task and motion
planning in belief space. They also use a replanning approach which accounts for
wrong choices in the planning process and implicitly for execution failures. To pre-
vent becoming stuck in dead ends they require the property that a domain should be
reversible. Another interesting approach related to our work is the work by Gaschler
et al. (2013), which demonstrates how Petrick’s belief-space planner can be used in a
real world environment.
Efficient planning techniques specifically for integrated task and motion planning

have also been addressed as computing motion plans as part of a symbolic plan is a
costly process. Srivastava et al. (2013) interleave task and motion planning and feed
symbolic facts determined by motion planners back into the classical planner to avoid
committing early to instantiations of continuous operators. Another way is to plan
in the now (Kaelbling and Lozano-Pérez, 2011) using abstract versions of operators
for plan steps far enough in the future. Here, Kaelbling and Lozano-Pérez use a
hierarchical regression planner and once the prefix of the computed plan is refined to
the lowest level of the hierarchy they start execution immediately. Other approaches
focus on reuse of solutions: In their combined task and motion planner Wolfe et al.
(2010) use subtask-specific irrelevance to reuse trajectories that have been computed
before. This concept is similar to what we call partial state caching, which we extend
even further to subsumption caching (Dornhege et al., 2013a).
In the context of classical planning Eyerich et al. investigated subsumptions of

planning operators (Eyerich et al., 2008), although without connecting this concept
to geometric constraints. Related to our lazy module evaluation is a technique from
classical planning. Heuristic estimates can be approximated by the heuristic value of

93

Chapter 5 Real-World Applications using Continual Planning

the parent state, so that computationally expensive heuristics are never computed for
states in the search queue (Richter and Helmert, 2009). We use a similar concept to
avoid geometric computations for queued states.

5.3 Continual Planning

The architecture of our continual planning system is shown in Figure 5.2. The left
side shows the generic implementation of the closed loop system. In each iteration
the current state is merged with observations of the world. Then, the current plan
(initially empty) is monitored, i.e., it is determined, if executing the plan leads to the
goal, given the current state. If that is not the case, a new plan is produced. The
first action of the plan is executed and removed from the current plan and the loop
continues until the goal is reached or no plan can be found.

We use our planner TFD/M to perform both monitoring and planning. For mon-
itoring, in addition to the domain description and the current state we also pass the
current plan. In that case the planner performs a search that is at each step restricted
to apply only the operator listed in the plan if possible. If the goal is reached, mon-
itoring is successful. This serves multiple purposes. First, as we use the exact same
algorithms, we guarantee that the results of monitoring and planning agree. In par-
ticular when semantic attachments are used we therefore can be sure that the next
action is still applicable. We also gain a generic goal test: If the empty plan fulfills the
goal, we are in a goal state. Finally it is important to note that we only compute if the
current plan still leads to a goal state, but not if the exact same state progression takes
place that was used to produce this plan initially. This is important for real-world
planning tasks as monitoring will often fail otherwise. For example, the perception
might discover a new object, thus leading to a different state space. If this object is
irrelevant for the robot to reach its goal, we can still follow the plan. Another example
is that the observed pose for an object changes slightly without preventing any motion
plan from being executable.

The continual planning loop is implemented independent from a specific robotic
system. While semantic attachments provide a domain-independent way to integrate
robot-specific semantics into the planning process we also need to integrate robot-
dependent perception and action execution into our system. We therefore provide
two interfaces: One to estimate and update the symbolic state from real-world ob-
servations and another to execute symbolic actions. Both interfaces are provided by
a plugin-based architecture. Multiple StateEstimator plugins can be defined that re-
trieve different aspects of the current state from the world. Each action in the domain
description requires a corresponding ActionExecutor plugin. Besides actually execut-
ing the actions, ActionExecutor plugins also define the effects of an action updating
the state depending on the actual action outcome. For example, failing to grasp an
object will not blindly set the grasped predicate to true as specified in the domain.

94

5.4 Simplifications and Guarantees

Figure 5.2: This figure gives an overview of the planner’s integration in the continual
planning loop.

Dealing with such a nondeterministic outcome is then left to monitoring or replan-
ning. This also allows us to implement and plan for an explicit sensing action like
performing object detection. Such an action inserts newly perceived objects into the
state. Replanning will then be triggered automatically if the objects are relevant for
the goal.

5.4 Simplifications and Guarantees

An ideal planner would consider all aspects of real-world planning tasks. It is clear
that we lose optimality and completeness with our approach. However, often enough,
we might be able to still guarantee that the goal can be reached. We now describe how
we compile each aspect into a classical planning formulation when the planner runs
in a continual planning loop. We address open domains, partial observability and
nondeterministic action outcomes. From the perspective of the planner exogenous
events can be modeled as nondeterministic outcomes. For the planner it does not
matter if a possible unexpected outcome was caused by the robot or by something
else.

5.4.1 Expanding Universes Instead of Open Universes

The first issue we want to address is the mismatch between the domain closure as-
sumption in most planning systems and the fact that it seems rather unrealistic to
assume that all relevant objects are known from the beginning. To formulate such
tasks semantically, one would assume an infinite (open) domain, where for all types of
objects, we have a—possibly infinite—set of such objects, whereby for most of them

95

Chapter 5 Real-World Applications using Continual Planning

we do not know anything about them, e.g., where they are located. Such infinite do-
mains lead to the problem that the planning task may become undecidable and that
grounding a first-order specification of the planning domain into a propositional logic
theory does not work any more.

Relevant objects unknown at planning time cause two issues. These objects can
appear in the goal or might be necessary to reach the goal. An example for the first
case is a task like “Bring all dirty dishes into the dish washer”. Here it is not specified
what these objects are or even how many there are. The second case models situations,
where tools (e.g., a hammer) that are needed to solve a task are not given in the input.

One way out could be to introduce new objects only when they are detected by the
robot when observing its environment thus expanding the universe during execution.
After such an introduction of a new object, one can use replanning to deal with the
changed domain. This approach can deal with all the objects we encounter in a
household or similar environment. This is indeed the strategy we choose. However,
one must make sure that these objects are actually encountered during execution.
Consider the first example “Bring all dirty dishes into the dish washer”. If the robot
does not know any dirty objects, the goal formula is true. This is solved by introducing
knowledge-based goal formulae that are still expressible even with the limitations from
the next section. We now say “Make sure that you know all dirty dishes and bring
them into the dish washer”. This forces the robot to visit all possible locations and
perform a sensing action that will then add all detected objects to the task.

This does not completely solve the issue as such tasks are undecidable, but it leaves
us with a weaker assumption. We assume that our knowledge about unknown objects
increases monotonously, i.e., once we performed a sensing action no additional objects
can appear by executing this action again in the same state and thus once we performed
all possible sensing actions we know all objects.

The second case concerns objects that are necessary to reach the goal, but not known
to the planner. Note that this is different from the situation, where a planner knows
that such an object exists, but not where it is. We actually do have a solution for these
cases: Grounding modules introduced in the previous chapter enable the planner to
create objects during planning if it deems this necessary. Although our intention there
was directed at generating objects like placement poses, for the planner a “placement
object” or a hammer are both the same—symbolic objects. Such a solution is of course
still affected by the limitations discussed in the previous chapter.

5.4.2 Limited Uncertainty Through Kleene’s Strong Three-Valued

Logic

Uncertainty about the current state is semantically usually represented by a belief set,
the set of states that are believed to be possible. In NPDDL, uncertainty is introduced
by the specification of the initial situation and by nondeterminism in action effects.

96

5.4 Simplifications and Guarantees

So, for example, it can be that in a particular situation “it is believed that the cup is
broken or the bottle is full”. If the robot now observes that the cup is not broken, it
concludes that the bottle must be full. This kind of knowledge-based reasoning is, of
course, necessary when we want to solve puzzles or diagnose the failure of a machine
from observations. However, we do not expect our robots to do so, at least not within
the planning process. We are more interested in representing what a robot currently
knows about the world or not. So, a simpler way to represent uncertainty might be
enough.
Most of the time, we are just uncertain about the value of a fluent and do not con-

sider the connections between different fluents. So, one could extend the value domain
(may it be Booleans or many-valued fluents) by a value unknown. The evaluation
of logical formulae can then be based on Kleene’s strong three-valued logic (Kleene,
1950). This logic does just what you would expect when combining known with un-
known truth values. Of course, such a representation cannot represent that “it is
believed that the cup is broken or the bottle is full”, or more generally, any disjunc-
tive knowledge. We have reduced the expressivity from uncertainty about formulae to
uncertainty about fluent values. This prohibits the robot from doing knowledge-based
reasoning and thus if we use such a representation to approximate a given belief set,
we lose completeness. For example, we would over-approximate the above statement
about the cup and the bottle by “it is unknown whether the cup is broken” and “it is
unknown whether the bottle is full”. So finding out that the cup is not broken does
not allow the robot to make further conclusions.
We thus do not assume that the robot knows and reasons about hidden variables.

This means that the only way to find out about the value of a fluent is to know it
either from the beginning, to learn about it by sensing its value, or by setting the
value as an effect of an action. Thus, if a fluent’s value is not known initially or set
by an action there must be an observation action to directly observe this fluent—at
least for all fluents that are necessary to solve a task. In practice we assume that all
fluents are observable once the robot is spatially close enough to the location where
the fluents can be sensed.
Furthermore, when the actions of the robot have nondeterministic effects, we assume

that the robot can only change fluents that are observable after the action execution.
In other words, by monitoring the outcomes of actions, the robot can determine the
true effects of an action. As a result of this we have now only uncertainty due to the
initial state and the degree of uncertainty (as measured by the number of fluents that
are unknown) shrinks monotonically.
With these two assumptions, which are admittedly quite strong, the representational

move of using Kleene’s strong three-valued logic instead of general belief sets does
not sacrifice completeness, but of course, optimality. It also means that we have
reduced the search space from double exponential (belief sets = set of sets of state) to
exponential (the set of states). The simplification to a three-valued logic is performed
explicitly in the planning domain, i.e., there is no “known”-operator that can be

97

Chapter 5 Real-World Applications using Continual Planning

applied to formulae. This means that the possible expressions for uncertainty are
evident to a domain writer from the syntax and thus there is no need to determine if
a given planning task can be represented.

5.4.3 Continual Replanning Instead of Conditional Planning

While we have reduced the search space considerably, there is still the problem that
after sensing the value of a fluent (be it after an action execution or after a sensing
action), we may have to branch according to the sensed value. What we have done
is to simplify the nondeterministic planning problem under partial observability to a
nondeterministic planning problem under full observability, where the nondeterminism
is created by the outcomes of an action followed by a monitoring action or by possible
fluent values of pure sensing actions. In terms of computational complexity, this is a
reduction from 2-EXP (Rintanen, 2004) to EXP (Littman, 1997). This is also what
is behind Petrick’s knowledge-based approach to planning that has been applied to
robotics tasks (Petrick and Bacchus, 2002; Gaschler et al., 2013).
The classical way to deal with this problem is to generate conditional plans that can

branch and perhaps loop. Alternatively and equivalently, a policy (a mapping from
states to actions) is created. In this context, one distinguishes weak plans, strong plans,
and strong cyclic plans. Weak plans are sequences of actions whereby nondeterministic
outcomes are chosen arbitrarily. This is the same model as plans in classical planning
with the underlying assumption that one can choose an outcome. Strong plans are
winning strategies against any possible nondeterministic outcomes. Strong cyclic plans
are strategies that guarantee that we never leave the set of states from which the goal
is reachable—again independent of any nondeterministic outcomes.
Strong and strong cyclic plans have the desirable property that they guarantee that

eventually the goal will be reached. It would be nice to create a plan taking into
account, for example, all possible states of all doors and all possible positions of all
cups. However, this does not seem to be worth the computational effort. Furthermore,
for real-world planning tasks one might often not be able to guarantee the existence
of a strong or strong cyclic plan or these plans might be overly cautious and thus lead
to inefficient robot behavior.
In fact, many robotics domains do not require hard guarantees and are quite forgiv-

ing concerning non-optimal or even wrong choices. So, our straight-forward approach
is to develop a plan for the intended outcomes (which have to be marked as such),
monitor the success of the plan (which we do anyway in order to deal with uncer-
tainty) and replan if things do not advance as predicted. So, we propose, as many
others before us to replace conditional planning by classical planning with replanning.
A replanning approach using a classical planner such as FF (Hoffmann and Nebel,

2001) has been shown to outperform probabilistic planners on many probabilistic
planning problems. The reason was that in most cases, the planning domains were
probabilistic uninteresting (Yoon et al., 2007) meaning that the probabilities had very

98

5.4 Simplifications and Guarantees

little impact. Many robotics domains probably have a similar property of being non-
deterministically uninteresting. This can mean two things: Either there is no bad
choice that cannot be repaired any more or a safe strategy like a strong cyclic plan
does not exist as any action required to reach the goal might fail (e.g., when picking
up a cup there is always a chance to drop it). Given that we follow our approach
the main question is now, under which conditions do we not lose soundness and com-
pleteness. Before we can answer this question, we have to define what soundness and
completeness in a replanning context compared to nondeterministic planning actually
means. Intuitively we need to determine when continual planning with a classical
planner gives the same guarantees as a strong cyclic plan.
Completeness means that if there is strong cyclic plan, then the classical planner

is able to generate a successful straight-line plan for each state that could be reached
in the strong cyclic plan. This is trivial to achieve provided the classical planner is
complete as the conditions for a classical plan are weaker than for a strong plan.
Soundness means that the classical planner generates only straight-line plans that

are traces of a possible execution of a strong cyclic plan. In particular, this implies
that if there is no strong cyclic plan, then the classical planner must not generate a
straight-line plan. Moreover, the planner shall never generate a plan that leads to
states that are not reachable by a strong cyclic plan. These are severe restrictions
that do not seem to be easily satisfiable. In particular, in order to meet them, one has
to essentially solve the nondeterministic planning problem.
However, it is possible to specify sufficient conditions on the topology of the search

space under which soundness and completeness are satisfied when using a classical
planner. The main point is that we never want to “paint ourselves into a corner”
or more precisely end up in a dead end in the search space. We define a dead end
as a state from where no weak plan reaches the goal. A simple guarantee that dead
ends are avoided would be to assume the following: There exist no dead ends that are
reachable by a weak plan from the initial state. This is the assumption that we use.
Note that this condition is weaker than the condition posed by Kaelbling and

Lozano-Pérez (2011), who required to have reversibility in their domain, meaning
that one has strong connectivity in the search space. Instead, we only assume that
we are guaranteed to reach the goal, although not necessarily on the path that was
originally planned. The difference is that under our assumption one can, for example,
throw away trash irreversibly, which is not possible under the reversibility restriction.
We now have a sufficient condition that guarantees soundness and completeness

for nondeterministic planning tasks when using a continual planning approach with a
classical planner. To guarantee these properties we must show that a planning task
fulfills this condition. Although it is easier to test than performing nondeterministic
planning it is still as complex as classical planning (Nebel et al., 2013).

99

Chapter 5 Real-World Applications using Continual Planning

Theorem 33. Checking whether there exists a dead end reachable by a weak plan from
a given initial state in the search space of a propositional nondeterministic planning
task is PSPACE-complete.

Another problem arises when we have planning tasks that do not fulfill this con-
dition. As it is only sufficient, but not necessary, in a planning task that has dead
ends reachable by a weak plan from the initial state strong or strong cyclic plans can
still exist. Unfortunately it is not possible to use the dead end test during execu-
tion to guarantee an action selection avoiding dead ends. This is just the question of
whether there exists a strong plan for the environment forcing us into the dead-end
state. In other words, the decision problem is as hard as nondeterministic planning,
i.e., EXP-hard.
So, given our assumption that a planning task is dead-end free, it is possible to

guarantee that a replanning approach will eventually reach a goal. As uncertainty is
reduced monotonically, the number of nondeterministic choice points due to sensing
actions reduces when these are executed. For this reason, eventually, we will have a
completely informed state in which a classical plan is sufficient to reach the goal, or
we have reached a goal state before.

5.4.4 Discussion

Our formulation for real-world planning tasks is generic and thus solving these can be
unachievable in practice or even in theory. Realistic demands to a system are often
lower, especially when balancing solution guarantees with efficiency. We will now
discuss the implications that the simplifications and assumptions stated above cause
for practical applications. In particular we are interested in how realistic these are,
what the expected robot behavior is when the assumptions are violated—obviously
then without guarantees, and in how far this behavior is acceptable for robot domains
without hard requirements such as service robotics. We also consider situations that
cannot be guaranteed to be solved at all, where nevertheless a reasonable strategy to
tackle such tasks exists. As a measure for acceptable behavior we compare our robot
to a human performing these tasks—of course given that the human only possess the
robot’s skill set or if a human instead of the planner decides which action is executed
next.
The first simplification is the use of expanding instead of open universes. We men-

tioned a solution for creating necessary objects like tools during planning by grounding
modules. However, it is questionable if one wants the robot to start looking for imag-
inary objects that could help to solve the task. Our formalism does not exclude this
possibility, but usually a domain writer has a general idea if there is a hammer, a
sponge, duct tape or whatever else is needed and thus these will be included in the
planning task. In any practical experiments we always provided necessary tools in the
input. One thing that is definitely not possible is the invention of a new kind of tool

100

5.4 Simplifications and Guarantees

with a yet unknown behavior. We consider this kind of improvisation to be beyond
the scope of a planning-based system.
The other assumption is that our knowledge about which objects exist increases

monotonously. If we drop this assumption, termination is impossible to guarantee.
Consider a butler robot that has to “Bring all dirty dishes into the dish washer”. If
someone places dirty dishes on a table after the robot checked if there is something
to do, the robot needs to return. Otherwise there is no guarantee that these will be
cleaned. Unless we assume that we know all objects at some point in time this will go
on indefinitely. There exist scenarios, where termination is not necessary and in fact
undesirable. For example, a robot serving drinks in a cocktail party should not stop
offering drinks if everyone has gotten one single drink. Depending on the formulation
of our planning task we can enable either behavior.
Our model of limited uncertainty prevents the robot from doing any diagnostic rea-

soning in the planner. We consider this sufficient for modeling robotics tasks. This
simplification already appears during the formulation of a task and thus does not in-
fluence the execution. We therefore focus on the assumption that knowledge about
fluents increases monotonously. An increase in uncertainty is caused by nondetermin-
istic effects that we cannot observe after an action execution, e.g., exogenous effects.
If we drop this assumption, again we might have tasks that cannot terminate. A robot
that is tasked to tidy up two kids’ rooms can clean either room, but when the kids are
still in their room as soon as the robot turns its back to tidy the other room the one
that was just cleaned might get messy again. Unless both rooms are observable at the
same time there is not way to ensure that both are clean. If we want the robot to act
at all, we must therefore decide what behavior we want: Continuously make sure that
each room is clean or assume that tidying a room once is sufficient. In either case the
continual planning loop will insert sensing actions whenever needed.
The assumption that our planning tasks are dead end free is violated in reality. As

a straight-forward example consider a robot picking up a plate. If the plate is dropped
and breaks, there is no way to place the unbroken plate at its goal location. However,
this is inevitable. When handling breakable objects we accept that even humans might
break something. Formally speaking these are situations, where no strong (cyclic) plan
exists. In practice if there is no guaranteed safe plan, we would still like the robot to
try to reach the goal. In this case nondeterministic planning techniques do not help
and therefore following a weak plan is the only option.
However, there do exist real-world scenarios that leave the robot trapped in a dead

end, but are preventable. Consider a mobile manipulation robot with two arms that is
supposed to bring multiple objects from one room into another, where both rooms are
on opposite sides of a hallway. If the robot picks up an object in each hand and then
enters the hallway, a human might close the door behind the robot. Unless the door to
the other room is open or the robot can find a spot to place an object intermediately
the robot is now trapped. This could have been easily prevented by only taking one
object at a time, so that the other hand is free to open doors again.

101

Chapter 5 Real-World Applications using Continual Planning

This is an example, where a nondeterministic planner guarantees that the robot
does not get trapped. As weak plans are usually more goal-directed they have lower
costs (e.g., here taking both objects at the same time), but they might leave the
robot trapped. Nevertheless we still argue that even when this is possible a classical
planning approach might be preferable. The reason for this is that strong plans are
overly cautious and thus overly long. In our example the robot would have to traverse
between both rooms twice as often when following a strong in comparison to a weak
plan. The decision between using a classical or nondeterministic planner here is a
decision between efficient execution and the guarantee to reach the goal.
We have now seen that there are realistic situations, where our assumptions are

violated. Here we need to consider what the best solution for these is. Some assump-
tions are actually necessary as there is just no possible solution method. Planning
tasks with open domains are undecidable and without a monotonous decrease in un-
certainty either in the known objects or in the value of fluents we cannot guarantee
termination. Dead ends can also not always be avoided. In these cases we consider it
better if the robot tries to reach the goal than to give up without trying. Finally there
are some situations, where a nondeterministic planner can provide guarantees over a
classical planner. Still, a classical planner here also has advantages in computation
time and execution efficiency, which we consider more important especially when the
environment in general is benevolent to the robot, i.e., no one actively tries to make
the robot fail. For a service robot, we assume that the contrary is the case. For ex-
ample, nowadays simple vacuum robots like a Roomba are available outside of science
labs and users gladly accept that they might need to move chairs out of the way to
save time overall instead of vacuuming themselves.

5.5 Lazy Module Evaluation and Caching

In this section we are concerned with computation speed for integrated task and motion
planning. We introduce two novel techniques. Lazy module evaluation is suited for
search-based planning with semantic attachments as it modifies the search itself. Most
of the presented caching techniques are implemented on the module side, i.e., before the
geometric computations and could therefore also be used in other integrated reasoners.
An important aspect of all techniques within this section is that they do not impact
soundness.

5.5.1 Lazy Module Evaluation

Lazy module evaluation tackles the same point in the search as a technique from
classical planning named deferred heuristic evaluation (Richter and Helmert, 2009).
Many successor states are generated and pushed in the open queue, but might never be
visited. Deferred heuristic evaluation identifies heuristic calculations as the expensive

102

5.5 Lazy Module Evaluation and Caching

operation. By taking the heuristic measure of the successor’s parent instead of the
successor itself, only a single heuristic computation is needed for all successors. In our
case, generating successors is the costly part as this means computing applicable(s, o),
which might call modules. Therefore, we defer these calculations to a later time by
using a relaxed version of an operator to perform the applicability-check.

Definition 34. The operator o+ is a relaxation of an operator o if for all states s ∈ S:
applicable(s, o)⇒ applicable(s, o+).

This will never discard applicable states, but might include inapplicable ones. Thus,
we cannot always compute a successor state and store the pair s, o implicitly defining
the successor (see Section 2.3). The additional problem that we cannot calculate a
heuristic value without the successor is easily solved by applying deferred heuristic
evaluation. The issue of possibly inapplicable open queue entries is addressed once a
state is taken out of the queue to be expanded. Now we perform the full, i.e., non-
relaxed, applicability check. If applicable(s, o) fails at this point, we discard this entry
and continue by taking the next state out of the open queue. What we have done is
to defer the costly applicability check from the point, where a successor is inserted
into the open queue to the point, where it is removed again. In comparison to only
replacing applicability checks by faster, approximate versions when the insertion is
performed this method is sound.
We can derive relaxed operators as operator conditions are represented as conjunc-

tions (see Section 3.4). Herein module predicates are positive literals. The simplest
option is to skip all module calls. A better way is offered by our module interface
that optionally calls a fast, relaxed version. Often there is an obvious way to come up
with such a relaxation. Consider for example the checkTransfer condition checker
that computes if an object can be placed. Instead of computing a motion plan, the
relaxation only tests whether the target placement is collision-free.

5.5.2 Caching Techniques

In relation to classical planning applying an operator or just testing for applicability
can take orders of magnitude longer when external modules are called. The main goal
of the caching techniques is to avoid as many module calls as possible while retaining
soundness. One way is to cache results to module calls, i.e., store and reuse results
from previous calls. Different types of modules (condition checker, effect applicator or
cost module) might require the same underlying geometric computation. Therefore, as
a first step we store computation results instead of just the return values for a specific
module type and the same cache is exchanged between compatible modules.
For example, our checkTransfer condition checker stores the placement pose of

the object and the resulting manipulator configuration. Subsequent calls to the
applyTransfer effect applicator can now access the pose and manipulator config-
uration without recomputing the motion plan. We name a call to any type of module

103

Chapter 5 Real-World Applications using Continual Planning

a request. A request is issued for an operator o in a state s. The caching techniques
presented in this section store computation results for such requests in a mapping data
structure. Here the central question is how a cache key is computed that matches as
many requests as possible without loosing soundness.

Full State Caching

The full state s paired with the operator o that the request was issued from is used
as a key. The cache hits these cases, where the same request might be issued multiple
times. This does happen during search, e.g., when revisiting a state that a shorter
path was found to. An advantage of this method is that cache keys can be provided
by the planner.

Partial State Caching

A partial state sp ⊑ s is computed by the module and used as the cache key together
with the operator o.

Definition 35. A partial state sp ⊑ s is a partial variable assignment, i.e., a function
sp : FL

p → {true, false} and sp : FN
p → R, where FL

p ⊆ FL and FN
p ⊆ FN .

For all variables vL ∈ FL
p or vN ∈ FN

p the following holds: sp(vL) = s(vL) and
sp(vN) = s(vN).

This partial state must contain all relevant information for the computation. A
minimal partial state is straight-forward to determine as it consists of all variables
used in the module computation. For example, a putdown motion only considers
poses of objects that are within the reach of the robot. A partial state implicitly
defines the set of states Sp = {s′ ∈ S|sp ⊑ s′}. Any request for a state in Sp will thus
hit the same cache entry. |Sp| determines the effectiveness of partial state over full
state caching.

Subsumption Caching

We take the idea of a partial state one step further and include requests for different
states. The idea is to build a subsumption hierarchy1 of more or less constrained
states.
Take the example of a putdown request for an object that succeeded when two

objects were already placed on a table. Now if only one object was present, a request
will surely succeed as it is less constrained (always given the same object positions and
dimensions). This is illustrated in Figure 5.3. On the other hand, when a putdown
request failed with three objects present, requests with four objects must also fail as
it is more constrained. This notion is formalized as follows.
1This term is not to be confused with the well known subsumption architecture. Here we mean
logical subsumption.

104

5.5 Lazy Module Evaluation and Caching

Figure 5.3: This figure shows the subsumption hierarchy for successful requests to put
an additional object on the table. When a putdown request succeeded on the table
with two objects already placed, we can infer that less constrained cases (dashed lines)
must also succeed without the need to do any calculations.

Definition 36. For a state s and operator o a state s− is less constrained, i.e., s− ≤o s
iff applicable(s, o) ⇒ applicable(s−, o). Likewise, a state s+ is more constrained iff
s ≤o s

+.

Given such a constrained relation between states, the procedure for answering a
request by subsumption caching is illustrated in Algorithm 7. First, we test if the
request can be answered by the cache. For a (partial) state s and operator o, we
test if s is less constrained than some state s′, where the request succeeded (ll. 4–7).
Analogously we check whether s is more constrained than some state s′, where the
request failed (ll. 8–11). Should neither test match, the request is computed and
the result added to the cache (ll. 13, 21, 28). We build a subsumption hierarchy of
cached requests by only retaining the most constrained states for succeeded requests
(ll. 15–20) and the least constrained states for failed requests in the cache (ll. 23–27).
Note that in comparison to the first two caching methods the constrained relation is
domain dependent. Without a non-trivial constrained relation subsumption caching
becomes partial state caching. Thus, if such a relation can be found, subsumption
caching dominates partial state caching.

Global caching

As we use continual planning, the planner might be called multiple times during
a task. It is therefore likely that the same geometric computation is requested in
different planner calls, e.g., if there is a path to drive from location B to location
C. Global caching reuses cache entries from previous planner calls. Therefore the
caches are not only stored in memory during planning time (local), but also optionally
in a persistent storage (global). To ensure soundness, we require that the cached

105

Chapter 5 Real-World Applications using Continual Planning

Algorithm 7 Subsumption Caching request for s, o

1: Cache Mapping Successes : S ×O → Result
2: Cache Mapping Failures : S ×O → Result
3: // Test for cache hit
4: for all (s′, o′ 7→ r′) ∈ Successes do
5: if s ≤o s

′ and o = o′ then return r′

6: end if
7: end for
8: for all (s′, o′ 7→ r′) ∈ Failures do
9: if s ≥o s

′ and o = o′ then return r′

10: end if
11: end for
12: // Cache miss, compute and insert into cache
13: r, success ← computeRequest(s, o)
14: if success then
15: for all (s′, o′ 7→ r′) ∈ Successes do
16: if s ≥o s

′ and o = o′ then
17: // Subsumed by s, o
18: Remove (s′, o′ 7→ r′) from Successes
19: end if
20: end for
21: Insert (s, o 7→ r) into Successes
22: else
23: for all (s′, o′ 7→ r′) ∈ Failures do
24: if s ≤o s

′ and o = o′ then
25: Remove (s′, o′ 7→ r′) from Failures
26: end if
27: end for
28: Insert (s, o 7→ r) into Failures
29: end if
30: return r

106

5.6 Applications and Evaluation

information fully defines the module computation. This means that a request can be
answered independent of the current robot state, sensor data, or similar. For example,
when all object poses are contained in the request key the fact that the robot can put a
cup next to two bowls on a table is fully determined. This technique is complementary
to the other techniques mentioned above and thus can be combined with either.

5.6 Applications and Evaluation

The goal of this section is to show that our approach to solving real-world planning
tasks by continual planning works in realistic robotics scenarios. We illustrate three
aspects. First, on the TidyUp-Robot example we demonstrate in detail how a complex
robotics task is modeled using the techniques from Section 5.4. In a similar setting
we perform a quantitative evaluation of the computation times for such a system.
Here, we also address in how far the methods introduced in Section 5.5 are able to
reduce planning times. Finally, to show the versatility of the approach we give a short
overview of various other robotic applications that used our system as a high-level
control method.

5.6.1 TidyUp-Robot

There are multiple reasons why evaluating high-level robot control architectures is
difficult. Given that planning tasks with open domains are undecidable a proper
solution cannot exist. The same holds for situations, where no strong plan exists.
There is no clear best solution to compare against. Furthermore, even when such
a guaranteed solution strategy exists, we make assumptions about the structure of
real-world tasks. Here we answer two central questions in detail: How exactly is
a real-world planning task modeled for a fully implemented robot system? Do our
simplifications lead to a working system that performs well in realistic tasks?
Thus we implemented a proof of concept system (see Figure 5.4) that integrates

multiple skills of the PR2 mobile manipulation robot into a single complex system.
The robot’s capabilities in terms of its sensors and actuators as well as the algorithms
for its skills directly influence how well the full system performs. For example, if
a grasping algorithm would fail 50% of the time it might be necessary to consider
contingencies during planning. We use state of the art algorithms to represent what
one can expect from a modern robot system. This means that to be able to judge how
well a continual planning approach works, it is necessary to state what skills we use
and also what information about the world is given to the robot as part of the input.
The goal of TidyUp-Robot is to tidy objects in a household scenario. The task

of tidying up serves as a generic example to demonstrate the problems that a robot
faces in a real-world setting. This consists of finding objects such as cups or bowls
and bringing them to a predefined target location—their tidy-location—that might be

107

Chapter 5 Real-World Applications using Continual Planning

(a) (b)

(c) (d)

Figure 5.4: Example scenes from the PR2 operating in the TidyUp-Robot domain.
The robot collects any cups and bowls from the two tables (a). Next, it opens the
door to the other room (b) to put the objects into the shelf (c). Finally, the robot
wipes the tables where the objects were initially located (d). A video is available at:
http://www.youtube.com/watch?v=pTSz2RBZ2wA

in another room. In addition, we require that all spots, where objects were found,
should be wiped clean with a sponge. The robot is given a three dimensional map
of the environment that is annotated with locations of static objects such as tables,
shelves or a door. No prior information about any of the movable objects is known,
not even how many there are.

The PR2 robot shown in Figure 5.4 was originally developed by Willow Garage and
provides basic implementations for mobile manipulation skills based on the Robot
Operating System (ROS) (Quigley et al., 2009). From these we use the table top
segmentation and object detection, as well as the “arm navigation” components for
motion planning and pick and place execution for both arms. For navigation of the
base we use a search-based motion planner with full 3d collision checking that uses
the ARA* algorithm (Likhachev et al., 2004). To open doors the robot can detect if
they are closed and push these open (Endres et al., 2013). Wiping tables is based on

108

5.6 Applications and Evaluation

a coverage approach to plan a trajectory for a sponge (Hess et al., 2012).
These skills directly map to PDDL/M operators. Pick and place is represented by

the pick-up and put-down actions from Chapter 3 and the navigation component is
called by the drive-base action. detect-objects calls the table top segmentation
and object detection and detect-door-state checks if the door the robot is located
at is open or closed. There are also an open-door and a wipe operator that are
implemented straight-forward in PDDL/M semantics, e.g., before wiping a table the
spot to be wiped must be free and the robot must a have sponge in its hand. Navi-
gation is split into drive-through-door that drives from one room into another and
drive-base that navigates only within the same room. Both call the same navigation
skill. The reason for this split is to enable efficient partial state caching. If there
was only a single navigation action, it would be relevant for each door if it is open or
not. Thus for N doors there would be 2N different path planning queries. Additional
helper actions move the arm to the side of the robot for navigation or to provide a
clear field of view for object detection and two operators that pickup or putdown the
sponge before and after wiping.
We can already see that this system is more complex than the simple pick-up,

put-down, and drive-base examples from before. This is caused by the additional
skills, by adding the helper actions and by the detection actions. This shows one
practical advantage of task planning in comparison to a scripted approach. A plan-
ner handles the dependencies between different operators gracefully, while any extra
feature must be considered everywhere in a manually defined behavior. A detailed
discussion of the complete planning domain would be repetitive as most parts are
standard PDDL and thus not specific to robotics. Therefore we focus on two aspects:
the semantic attachments used for navigation and manipulation and the modeling of
an expanding universe and incomplete knowledge.
Navigation costs are integrated as a cost module in the drive-base operator. The

module calls the aforementioned path planner with 3d collision checking to compute
actual path costs for this operator. In addition if infinite cost is returned the operator is
not applicable. For manipulation tasks, we employ two modules for put-down actions:
A condition checker that determines if an object can be put down on a table and an
effect applicator that provides the numerical state update writing the resulting pose
to the state. The implementation is based on a discretization of possible positions on
the table. Given the size of the object to place and the poses of objects already on
the table, first a set of free spots is determined. If this is empty, the condition checker
returns false. The free spot closest to a point 80 centimeters in front of the chosen
manipulator arm’s origin is chosen as the unique placement pose to be updated by
the effect applicator. The motivation here is to prefer poses with the least amount of
kinematic constraints. A similar free space check is performed as a condition checker
for the wipe operator although in that case the pose is not chosen, but determined by
the spot to wipe.
Expanding universes are addressed by planning for an explicit sensing action detect-

109

Chapter 5 Real-World Applications using Continual Planning

objects that, when executed, calls the robot’s object detection method. Upon each
observation recognized objects are matched on type and distance to previously known
objects that are updated with the new pose. Newly detected objects are added to the
state. In addition a new wipe spot at the object’s pose is added. In PDDL/M the
operator is specified as follows.

(:action detect-objects

:parameters (?l - manipulation_location)

:duration (= ?duration 1.0)

:precondition

(and

(at-base ?l)

(arms-drive-pose)

(or

(not (searched ?l))

(not (recent-detected-objects ?l))

)

)

:effect

(and

(searched ?l)

(recent-detected-objects ?l)

)

)

We can detect-objects at a location ?l if the robot is at this location and both
arms are out of the field of view (arms-drive-pose is true). Here searched and
recent-detected-objects are knowledge predicates. Note that within a plan this
operator does only change these predicates, but no other state variables. The planner
assumes that the state does not change. Of course this can happen during execution,
in which case replanning might become necessary.
The planner must know when object detection should be performed. This is the

function of the knowledge predicates. There are two such predicates that have different
semantics. searched ?l states if we ever executed this action at ?l. It is necessary
that all locations are searched at least once. This is represented in a generic goal
formula.

(:goal (and

(forall (?o - arm) (hand-free ?o))

(forall (?o - movable_object) (tidy ?o))

(forall (?o - wipe_point) (wiped ?o))

(forall (?o - manipulation_location) (searched ?o))

))

110

5.6 Applications and Evaluation

For the task to be solved all known objects have to be cleaned, i.e., they need to be
at their tidy location and the spot, where this object was found has to be wiped. In
addition all manipulation locations must be searched. With the assumption that
knowledge about known objects monotonously increases searching each location once
is sufficient to know all objects.
The other predicate recent-detected-objects states if fluents about all objects

at a location (e.g., their poses) are known. This models uncertainty in the initial state
or about nondeterministic action outcomes, i.e., the effect (not (recent-detected-

objects ?l)) is found in every manipulation action. Likewise (recent-detected-

objects ?l) is a precondition for each manipulation action. Thus between consecu-
tive manipulation actions the planner is forced to insert detect-objects actions, and
planning continues assuming the actual effect took place as desired. The reason for
declaring all objects’ fluents unknown after a manipulation action for a specific object
is that we cannot know what might happen to other objects. For example placing an
object near others might not only place that object slightly different than planned,
but could also knock another object over. Under the assumption that we will actually
observe any such nondeterministic outcome uncertainty will thus still monotonously
decrease.
A simpler representation is the state of doors, i.e., if a door is open or not. In

this case the doors in the environment are given with the input. Two predicates
describe the state of a door. door-state-known ?d is true iff we know if a door is
open. If this is true, door-open holds that value. Therefore the single effect of the
detect-door-state action is (door-state-known ?d). These predicates are used by
the open-door and drive-through-door actions. Both actions require door-state-
known to be true. For drive-through-door the value of door-open must be true,
while for open-door the value of door-openmust be false. The following excerpts from
the operators detect-door-state, drive-through-door, and open-door illustrate
this.

(:action detect-door-state

:parameters (?l - door_in_location ?d - door)

:precondition (and

(at-base ?l)

(not (door-state-known ?d))

...

)

:effect

(door-state-known ?d)

)

111

Chapter 5 Real-World Applications using Continual Planning

(:action drive-through-door

:parameters (?d - door ?s - door_in_location ?g - door_out_location)

:precondition

(and

(at-base ?s)

(door-state-known ?d)

(door-open ?d)

...

)

...

)

(:action open-door

:parameters (?l - door_in_location ?d - door ?a - arm)

:precondition

(and

(at-base ?l)

(door-state-known ?d)

(not (door-open ?d))

...

)

...

)

The full TidyUp-Robot system consists of the domain formulation in PDDL/M in-
cluding semantic attachments, the implementations of all operators within the domain
to execute on the robot, as well as the underlying robotics algorithms that are being
called. We tested the complete system in the environment shown in Figure 5.4. During
this experiment the robot detected all objects, brought them to the tidy location in
the shelf (see Figure 5.4 c), and wiped all tables. Most actions succeeded as planned.
Replanning was mostly triggered when new objects were detected, which is expected,
or actual placement poses were too far off the planned pose. The first execution of
open-door failed, which was initially not detected. When the robot came back to the
door with two objects in hand it had to replan and bring one object back freeing a
hand to open the door again. While such unexpected situations are not an issue for an
automated reasoning approach like planning, we reckon that finding a proper solution
for any conceivable situation with manual scripting becomes impractical quickly.

5.6.2 Lazy Module Evaluation and Caching

While the previous section illustrated how the techniques introduced in this chapter
provide the high-level control architecture for a real-world robot system, in this section

112

5.6 Applications and Evaluation

we are interested in a quantitative evaluation in particular with regard to the planning
techniques that we developed. Besides comparing the efficiency techniques with each
other we are also interested in absolute planning and execution times as these serve
to judge the viability as a practical system.

Figure 5.5: This figure shows four of the evaluation settings. The task was to bring
all objects to the front table and wipe the spot under each object.

We evaluated our system on the PR2 robot running the TidyUp-Robot description
in the scenario shown in Figure 5.5. Although this scene appears to be significantly
smaller than the one used in the previous experiment from a planning perspective the
only notable difference is that there is no door. The number of objects to consider
is similar. Only navigation times become less relevant, when everything is closer
together. We positioned one to five objects in two different configurations for each
number of objects. The goal was to find all objects, bring them to a specific table and
wipe the initial location of each object, so each object had to be interacted with at
least once.
Each setting was executed until the system reported the task to be completed.

For each planner call we ran the planner with lazy and eager (i.e., non-lazy) module
evaluation. After the first plan was found we continued the anytime search for another
25% of the time it took to find the first plan. This way we automatically adapt to the
problem complexity. The plan from the lazy solution was executed. We used partial
state caching in combination with global caching.

113

Chapter 5 Real-World Applications using Continual Planning

Task Objects Total Planning
Time [s]

Max Single
Plan Time [s]

Planner
Calls

Execution
Time [s]

Actions

Eager Lazy Eager Lazy

1 1 76.7 41.8 72.0 37.3 2 497.2 24
2 1 66.0 43.0 61.2 39.0 2 303.4 21
3 2 57.4 42.3 47.9 32.2 3 807.8 38
4 2 106.2 71.2 73.2 42.2 4 631.8 40
5 3 221.0 158.1 112.6 76.6 4 823.8 46
6 3 124.0 99.8 42.4 27.7 18 1630.9 94
7 4 289.6 220.8 203.1 153.5 10 1226.1 63
8 4 120.9 99.8 57.8 56.4 4 1019.3 55
9 5 686.2 505.3 263.7 220.1 6 1651.7 82
10 5 350.2 255.5 281.3 211.0 3 1195.0 56

Table 5.1: This table gives an overview of the system performance under eager and
lazy evaluation.

System Performance

We investigate the overall system performance in Table 5.1. For each task we give the
total accumulated planning time for lazy and eager module evaluation, as well as the
maximum time for a single plan. Single plan times show how hard the task itself was
once all objects had been seen for a first time. Subsequent planner calls might have
cached computations or face a problem that is already partially solved by the robot’s
previous actions. During the experiments two tasks were not fully completed. In task
6 one wipe action could not be executed and in task 9 the robot placed an object too
far on the edge dropping it irrecoverably. Nevertheless, the system continued to solve
all remaining goals.

As expected we observe increasing planning and execution times when more objects
are present. The relation between execution and total planning time indicates that
the system is usable in practice. Besides the number of objects additional factors
are the initial object placements and the order in which the robot finds and interacts
with objects. If the robot solves the task partially for some objects before finding
others, later planning calls might be easier. Such eagerness might be advantageous,
but can have adversary effects if those solved objects block others later on. For smaller
problems planning time was considerably lower than for larger ones. We see that in
relation to the execution time planning scales slightly worse, which is not a surprise
given the combinatorial nature of the problem. Comparing lazy and eager module
evaluation we observe that lazy evaluation is able to find plans faster than eager
evaluation.

114

5.6 Applications and Evaluation

Caching Techniques

We perform a detailed comparison of the different caching techniques. For each module
call, we determined if each caching strategy produced a hit or miss. We also recorded
the time it would have taken to compute the query for a miss. Recorded times for
all queries are accumulated over each run. Module computations were only performed
if partial state caching had a miss. Not using caching or full state caching misses
would repeat identical computations and in these cases we use the stored time from
partial state caching. If subsumption caching misses, we use the time from partial
state caching. Note that we must perform all partial state computations, even if
subsumption caching hits as this might have been subsumed from a different partial
state. We omit the time it takes to answer a cache hit, which in our case is much
lower than the computation time for a miss.

Task No Caching Full State Partial State Subsumption
Requests Time [s] Misses Time [s] Misses Time [s] Misses Time [s]

1 98 60.5 60 36.7 8 4.5 8 4.5
2 140 101.0 70 49.7 5 3.0 5 3.0
3 347 170.4 224 110.5 22 11.3 20 10.5
4 1124 898.7 402 318.9 37 27.0 37 27.0
5 7488 4701.7 1954 1184.1 70 46.4 68 45.3
6 2559 1422.1 1568 862.4 200 121.7 178 111.7
7 5234 3411.2 1880 1285.5 175 140.2 159 126.6
8 1167 790.9 540 358.3 66 40.3 66 40.3
9 11823 15907.6 3980 5301.0 247 472.1 203 393.7
10 6900 4230.3 1844 1112.8 63 38.8 62 37.6

Table 5.2: This table compares the different caching methods for the putdown module,
when no global caching is used.

Table 5.2 shows cache misses and times for putdown module calls without global
caching. Table 5.3 shows the comparison results when global caching is used. As
expected, no caching at all or full state caching are inefficient and not feasible in prac-
tice. Also there is no difference for full state caching with or without global caching,
mainly due to the fact that the full state contains the current robot state, which is
unlikely to be exactly the same between planner calls. Partial state caching performs
considerably better than those techniques as it never repeats the same calculation.
Subsumption caching is able to reduce cache misses even further. We presume that
the impact would be greater for even more complex problems.

Global caching is also able to reduce cache misses, mainly in tasks 6 and 7. Table 5.1
shows that these tasks required multiple replanning steps, where global caching was
able to utilize the stored computations. Although subsumption caching dominates
partial state caching, in task 6 we see more misses for subsumption caching than

115

Chapter 5 Real-World Applications using Continual Planning

Task No Caching Full State Partial State Subsumption
Requests Time [s] Misses Time [s] Misses Time [s] Misses Time [s]

1 98 60.5 60 36.7 8 4.5 8 4.5
2 140 101.0 70 49.7 5 3.0 5 3.0
3 347 170.4 224 110.5 17 8.9 15 8.0
4 1124 898.7 402 318.9 32 23.0 32 23.0
5 7488 4701.7 1954 1184.1 62 42.2 62 42.2
6 2559 1422.1 1568 862.4 68 46.8 95 71.1
7 5234 3411.2 1848 1259.7 90 69.1 74 55.5
8 1167 790.9 540 358.3 66 40.3 66 40.3
9 11823 15907.6 3980 5301.0 228 413.1 190 340.9
10 6900 4230.3 1844 1112.8 63 38.8 62 37.6

Table 5.3: This table compares the different caching methods for the putdown module
with global caching.

partial caching in conjunction with global caching. These were due to numerical
inaccuracies when converting global cache keys back to poses, which is only required
when matching states in subsumption caching. We also investigated the navigation
module and partial caching proved similarly effective. As subsumption caching is not
applicable in this case, we omit these results.

5.6.3 Robot Applications

Amain feature of many modern symbolic planners is that they are domain-independent,
i.e., they can solve arbitrary tasks for different domains without any changes to the
planner itself. Keeping this property when adding semantic attachments in Chapter 3,
infinite branching in Chapter 4, and the continual planning loop in Section 5.3 was an
important aspect during all these steps. Therefore, to apply our current system to any
robot one only needs to define robot-specific interfaces for action and perception as
well as a PDDL/M domain that describes the robot’s skills. This principle allowed us
to apply our planning system to various robots in addition to the PR2 shown above.
Here we demonstrate the versatility of this approach by illustrating three other appli-
cations that in some form use our planner TFD/M. We focus the descriptions on the
planning part and shortly address the capabilities of each system.

Nao-TidyUp

Our planning system was used as the high-level control architecture in a tidy up
scenario with a humanoid Nao robot (see Figure 5.6). The PDDL/M planning do-
main was derived from the PR2 domain described above. The goal here was similar:

116

5.6 Applications and Evaluation

Figure 5.6: A Nao robot tidying vari-
ous objects.

Bring all objects to their target locations
shown by a colored marker. Instead of a
generic pick-up action object-specific pick-up
actions were introduced as, e.g., picking up a
larger cube requires to use both arms. These
actions map to full-body motions of the Nao
robots. Paths for the robots might be blocked
by objects that need to be removed. There-
fore, first, the Nao’s path planner is used as a
cost module and also to check the applicabil-
ity of a navigation action. The robot has two options to clear a blocked path: Either
kick an object like a small ball out of the way or pick the object up and move it some-
where else. As it might not be possible to directly bring an object to its target location
intermediate placement poses are chosen with a grounding module. More details about
the robot implementation are given in the paper by Hornung et al. (2014).

Sokobot

Sokobot brings the puzzle game Sokoban to robotics. Sokoban models a warehouse
keeper that has to organize boxes by pushing them to their target locations in a grid
world. A Turtlebot 2 was used that could localize itself in the grid world and was able
to recognize and push boxes (see Figure 5.7). The planning domain expresses Sokoban
as a purely symbolic problem on the grid world with full observability and no semantic

Figure 5.7: An example of our
Turtlebot 2 solving a Sokoban
task. The top left shows the in-
ternal world representation.

attachments. The main difficulty in Sokoban is
that push actions cannot be reversed. Thus it is
important to plan a sequence of actions to reach
the goal without getting into a dead end. Al-
though Sokoban is a challenging planning prob-
lem (Botea et al., 2003) for the task sizes that we
could actually build in reality computation time
never was an issue. In this setup the planner takes
care of the combinatorial part of the problem, i.e.,
choosing and applying the different skills of the
robot when they are needed. The robotics imple-
mentation only provides the individual actions for
the robot.

Multi-Robot Exploration

We tackled the problem of multi-robot exploration with marsupial robots. Marsupial
robots are robots that can carry other robots. In our case we considered two types of
robots: Legged high-mobility robots that can traverse rough terrain, but slowly, and

117

Chapter 5 Real-World Applications using Continual Planning

larger wheeled robots that carry the legged robots and can drive faster. Figure 5.8
illustrates this. Here the orange areas are rough terrain, white areas are flat terrain,
red dots indicate an exploration frontier, and green dots are meeting points that lie
between rough and flat terrain to allow legged robots to be loaded and unloaded on
carrier robots. The task is to generate parallel minimal time plans that explore all
frontiers. Therefore it is necessary to combine the different robot types according to
their functionality while considering the dependencies between both. For example,
a carrier robot could choose to explore a frontier in the white area or instead drive
to a meeting point to pick up a legged robot that is waiting. These different action
types and interactions between robots make it well suited as a planning problem.

Figure 5.8: An example task of
multi-robot exploration with mar-
supial robots.

Although our experiments were mainly executed
in simulation and thus the planning domain as-
sumes deterministic action outcomes we also face
issues present in real-world planning tasks. A ba-
sic property of any meaningful exploration task is
that the world is not fully observable. That means
when new areas are uncovered exploration fron-
tiers shift, new frontiers might be discovered, or
explored frontiers disappear. These partially ob-
servable tasks with open domains were addressed
by embedding the planner TFD/M in a continual
planning loop. As we are dealing with a multi-
robot problem, in this setting we enabled the tem-
poral planning feature of TFD/M that allows to
plan with concurrent actions. Our results indi-
cate that a planning-based solution outperforms

a hand-scripted approach (Wurm et al., 2010, 2013). In the next chapter we also
address the related problem of coverage search in simulation and with real robots.

5.7 Conclusion

In this chapter we considered planning techniques for real-world applications. As a
first step we formulated planning tasks as open, partially-observable, and nondeter-
ministic. Not surprisingly, it is impossible to guarantee that an arbitrary real-world
task is solved. As we are aiming for efficient solutions to this problem, we simplified
the generic problem to a classical planning problem running within a continual plan-
ning loop. We stated what soundness and completeness means in this case and have
given explicit conditions under which we retain these properties. We also addressed ef-
ficiency in terms of computation time by introducing novel techniques for lazy module
evaluation and caching of geometric computations.

118

5.7 Conclusion

We applied our planning techniques in the TidyUp-Robot system to demonstrate
how a complex mobile manipulation system is created and to evaluate our approach.
The robot was able to successfully handle unexpected events and adapt to new sit-
uations by replanning. With this implementation we have shown the feasibility of
our simplifications in a real-world scenario. Thus, at least for this kind of setting our
assumptions are reasonable. We also evaluated this system quantitatively. Observed
runtimes were in the tens of seconds up to some minutes. The presented efficiency
techniques were able to reduce planning times to a good balance between planning
and execution time. When judging how fast or slow the system is keep in mind that
an automated vacuum robot like a Roomba is also a lot slower than a human. Still,
the work a human has to do to keep the room clean is less when using a robot.
Lazy module evaluation notably reduces planning time. The largest improvement

in caching methods was observed when using partial state caching instead of full state
caching. Subsumption caching works, but its efficiency is dependent on the ability
to create a subsumption hierarchy and thus shows mostly in complex tasks. Global
caching is complementary to other caching strategies and has proven useful for longer
tasks with numerous replanning steps. In this work, we looked at avoiding module
calls. State of the art search-based planning relies on well informed guidance heuristics.
Making these aware of external computations in a generic manner, for example by
relaxed operators, could lead to further improvements on the planning side.
We focused our evaluation on mobile manipulation tasks with the PR2 robot, but

have also applied our system to other robots and settings. Using a domain-independent
planner proved to be advantageous whenever heterogeneous skills of robots needed to
be combined to reach a goal, especially when it is not always clear what the next action
must be, in contrast to, e.g., a cooking recipe. Integrating different robot skills with
the planner is not always straight-forward and requires a user to match the action exe-
cution, the declarative part of the PDDL/M domain, semantic attachments associated
with an operator, and state creators. On the side of the planner interface we already
introduced the object-oriented planning language OPL (Hertle et al., 2012). Beyond
OPL, we believe it will be beneficial for consistency to integrate action execution and
state creation similar to the module interface into a common description language.
Given that there cannot be a system that guarantees to always reach the goal for

any possible task, what could be a best-case approach? From the planning perspec-
tive the answer would be: Use a planner for partially observable nondeterministic
planning tasks (POND). Besides the increased computational demands, unfortunately
such an approach cannot do anything reasonable when there is no guaranteed solu-
tion. A way out might be to use a probabilistic formulation like partially observable
Markov decision processes (POMDPs) to get an “as safe as possible” solution with-
out guarantees. We compared both approaches with classical planning and in terms
of computation time our initial results indicate that either approach might even be
feasible in practice (Hertle et al., 2014).
However, another question is: What is our desired robot behavior? Here, we come

119

Chapter 5 Real-World Applications using Continual Planning

back to our initial reference, which is how a human would behave. Unless there are
hard requirements like “I need to catch this train to reach my flight”, humans tend
to prefer an efficient execution over a cautious one. For example, how many objects
should a robot take from a dish washer to bring to a cupboard in another room if it
believes that the door is open? For a human this is easy: As many as you can carry.
If the door is closed, a human can put the objects down somewhere nearby or call for
help or even use elbows or knees. In other words: We can improvise. Humans only
consider multiple contingencies when the most-likely outcome is not clear. This does
work in reality and we believe being able to improvise would be a promising approach
for reliable robots in real-world scenarios. Task planning is actually very well suited
for this as improvisation is just another plan with different actions. The main problem
here is that the robot has to have the skills to do so. For example, when trying to
pick an object up topples it instead, the robot must still be able to pick the object up
possibly regrasping it. What this kind of improvisation skills would provide is making
sure that our assumption that we can always somehow reach the goal holds.

120

Chapter 6

Multi-Robot Coverage in 3D

Coverage search is a robotics problem relevant for many real-world scenarios and
applications. These range from household robots searching for objects, area inspection,
such as searching for leaking pipelines or cracks in walls, up to searching for survivors
in debris after a disaster in Urban Search And Rescue (USAR). In challenging areas
like USAR this is often a truly three dimensional problem, i.e., survivors can be
enclosed within complex and heavily confined 3d structures and sensors are mounted
on a manipulator arm that reaches arbitrary poses within its workspace. Benchmarks
for autonomous rescue robots, such as those proposed by NIST (Jacoff et al., 2003),
simulate such situations in so called “rescue arenas” using artificially generated rough
terrain, where victims are hidden in crates only accessible through confined openings.
The real-world test environment used in the experiments for this chapter also is a
three dimensional environment, where robots traverse to elevation levels that enable
different view angles. An algorithm must take the environment and the degrees of
freedom of the robots—or more precisely of the sensors—into account. Figure 6.1(a)
shows our test area and Figure 6.1(b-f) shows a sequence of sensor locations from
which a robot could observe part of the environment.

The primary goal of 3d coverage search is to compute a sequence of sensor locations
that can be visited by mobile robots on shortest paths and from which their sensors
will have seen all areas of interest in a known 3d environment. We assume that the
sensor has a specific field of view with an opening angle and a detection distance
that resembles that of most IR and regular cameras. This is a similar problem to
coverage planning, where a robot is required to pass over all points in a given envi-
ronment (LaValle, 2006). However, in these applications the footprint of the robot
does not change, while in 3d coverage search the sensor footprint, i.e., what is visible
by a sensor, can vary dramatically with a small change in its pose. The goal of cov-
erage planning is to compute an optimal shortest motion strategy in order to cover
a planar environment with mobile robots. Solutions to this problem often employ
cellular decompositions of the free space in 2d that are then input into a simple graph
search (Choset, 2001).

In contrast, for our 3d problem we rely on sampling since decompositions of 3d
spaces are very costly to compute. Graph search is also not the best option any more

121

Chapter 6 Multi-Robot Coverage in 3D

(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Motivating example: A progressive search of our test environment by vis-
iting sensor locations in sequence. Unexplored area (blue) is stepwise covered (red)
by sensors of the mobile robots.

as we have to consider that different views might overlap each other and thus might
be redundant. As we also aim for multi-robot solutions, even after a decomposition
into single views we are still facing a hard combinatorial problem. Note that our
3d coverage problem is also different from coverage problems that deploy multiple
sensors to continuously monitor the same area for extended periods of time (Golovin
and Krause, 2011). In our case every part of the environment has to be seen at most
once and does not have to be observed continuously. Other coverage-related problems
often deal with unknown or partially known environments in 2d (Kollar and Roy, 2008;
Bourgault et al., 2002) and attempt to improve the map or explore unknown parts of
the map. In our case the 3d environment is known and we are foremost interested in
computing and visiting a set of useful sensor locations in the shortest time possible
with paths that are feasible to execute for real systems. We will review the literature

122

relating to coverage search in more detail in Section 6.1.
The purpose of the method presented in this chapter is to provide a practical solution

to 3d coverage search that can be feasibly deployed. Our solution copes with realistic
sensor models and the complexity of visibility in 3d, as well as time constraints of
robots navigating on rough terrain. Given that the configuration space for most sensors
has at least six dimensions (the pose), the problem is not suited for the kinds of
decomposition approaches that work well in 2d. Therefore we use a sampling-based
approach that generates a large number of sensor poses so that the views from these
poses cover the 3d environment of interest. The sampling space is computed as part
of the algorithm and generates poses that are likely feasible and that observe volumes
to be covered. The sampled set of sensor poses might result in many different set
covers of the environment when selecting sensor views from these poses. This leaves
us with a combinatorial problem that can be formulated as a planning problem that
selects a good set cover and sequences of poses that are visited in a short time. We
use multiple different algorithms to solve this. These include greedy algorithms and
a decomposition of the complete planning problem into a set cover and traveling
salesman problem. One of the key advantages of our approach is that the input size
to the planning problem is significantly reduced by the sampling of sensor poses. In
addition, we use a minimal partition introduced in detail in Section 6.4 that further
reduces the input size.
The sampling-based candidate view generation is based on our earlier work on com-

puting a next best view pose for exploration in 3d (Dornhege and Kleiner, 2011, 2013).
We describe this procedure to give an illustration of the complete algorithm for cov-
erage search in 3d, but then focus on the solution of the combinatorial multi-robot
problem given these views. In our prior work for this problem we presented results for
the case of a single robot (Dornhege et al., 2013b). Here we determined that already
with a single robot the overall problem is intractable, which is not surprising since
our formulation contains subproblems that require solutions to the set cover prob-
lem (Karp, 1972) and the traveling salesman problem (Applegate et al., 2007), two
well-known NP-hard problems. These results, however, indicated that some of the
algorithmic variants of our approach already perform reasonably well, both in terms
of the time to compute solutions and their cost, i.e., the estimated travel time of real
robots executing the solution. In this chapter we present the generalized and extended
approach (Dornhege et al., 2015) that tackles multiple robots with the goal to reduce
the total concurrent execution time. This includes a generically applicable procedure
that we use to convert single-robot solutions into multi-robot solutions, as well as
extensions to our greedy algorithms that consider the multi-robot case directly. In
addition to extensive experiments on 3d maps collected from real environments, we
also present real robot experiments with four robots and demonstrate the applicability
and feasibility of our approach under realistic conditions.
The remainder of this chapter is summarized as follows. In Section 6.2 we define

the 3d multi-robot coverage search problem. Section 6.3 presents the generation of

123

Chapter 6 Multi-Robot Coverage in 3D

candidate views by sampling a set of high utility sensor poses. These views are then
used to generate a minimal partition, which is described in Section 6.4. Section 6.5
shows how we efficiently plan sequences of sensor poses with short travel times using
multiple algorithms. Greedy algorithms for single robots are presented in Section 6.5.1
and Section 6.5.2 describes a formulation of this as a planning problem, where we also
show how this can be decomposed into a set cover and traveling salesman problem.
Section 6.5.3 extends the greedy approach to multiple robots, while in Section 6.5.4
we adapt the single-robot algorithms to the multi-robot case by splitting single-robot
solutions into multi-robot solutions. We demonstrate the feasibility of our approach
by evaluating it in an extensive series of experiments in Section 6.6. These include
experiments on real 3d maps in Section 6.6.2 comparing our various algorithms and
the results of real-world experiments with up to four robots in a two-story scenario
shown in Section 6.6.4. The latter verify the results of the simulation experiments
and provide further insight about problems that are relevant to address for efficient
execution in realistic scenarios. A detailed discussion is presented in Section 6.7 and
we conclude in Section 6.8.

6.1 Related Work

There are a large number of variations of coverage problems and a vast literature
on the topic. We review the work that is most closely related to our 3d coverage
search problem. Much of the literature on coverage in robotics is concerned with
approaches for distributing a team of robots to cover an environment continuously,
as one would do for environmental monitoring and surveillance applications. This is
known as the area coverage problem (Howard et al., 2002), but also often referred to
simply as the coverage problem (Cortes et al., 2002). Our problem of coverage search
is more closely related to coverage planning, which is motivated by applications such as
vacuum cleaning, lawn mowing, farming, or demining. In coverage planning the goal is
to compute an optimal motion strategy that visits every location in the environment
at least once (LaValle, 2006; Choset, 2001). Coverage planning for finding optimal
shortest paths is NP-hard due to the similarity to the traveling salesman problem,
which also appears as a special case of our 3d coverage search problem. Solutions
to coverage planning generally rely on exact or approximate cellular decompositions
of the environment (Choset, 2001), which then enables to plan in the resulting graph
structure. The kinds of decompositions used for this approach vary from spanning trees
to boustrophedon decompositions with different properties regarding practicality and
optimality.

Most of the work on coverage planning was concerned with 2d environments. The
work by Renzaglia et al. (2011) considers 2.5d environments and applies optimization
techniques to compute 3d paths for unmanned aerial vehicles. The emphasis, however,
lies on the application of an optimization technique in order to maximize area coverage

124

6.1 Related Work

in an unknown environment for the current situation. To the best of our knowledge
most of the prior work on coverage planning is restricted to 2d environments. It is a
considerable challenge to adapt solutions that are based on decompositions of an envi-
ronment to 3d environments. Perhaps the best illustration of this appears in the work
of Lazebnik (2001). Therein the 2d visibility-based pursuit-evasion problem (Sachs
et al., 2004) is generalized to 3d and the resulting complications are staggering. Need-
less to say not much progress has been made on this problem since then.
Other than the extension to 3d a key distinction between coverage search and cov-

erage planning is that the footprint of the robot in coverage planning is static. For
example, a vacuum robot does not change its shape when moving, while the visible
volume of a camera varies wildly. Hence the distinction between coverage planning
and coverage search. As a consequence of this sensor model we have to consider 3d
visibility. Note that 2.5d visibility as in the work of Renzaglia et al. (2011) is still far
simpler than 3d visibility and we are not aware of any prior work that considers 3d
visibility for coverage planning. Here we partly rely on our previous work in which we
extended the well known problem of frontier-based exploration on 2d grid maps (Ya-
mauchi, 1997) to 3d environments (Dornhege and Kleiner, 2011, 2013) by computing
so called frontier-voids.
Most closely related to our 3d coverage search problem is the work by Englot and

Hover (2013). They address coverage planning of a ship hull, while also taking into
account visibility by ray casting. Candidate views are generated by local sampling
around geometric primitives to observe that are given as an input. These are collected
into a roadmap. The only algorithm they consider to compute a coverage plan is the
subsequent application of set cover and traveling salesman. They apply an iterative
traveling salesman variant that enables the lazy evaluation of paths between view
poses as the time to compute feasible paths is comparably large in their setting. This
results in a less generic formulation than our work, but allows to derive theoretical
completeness results and optimized trajectories for the specific scenario.
Coverage search also relates to research that is concerned with the computation

of views and visibility, such as next best view approaches, the art gallery problem,
and pursuit-evasion problems. Traditional next best view (NBV) algorithms compute
a sequence of viewpoints until an entire scene or the surface of an object has been
observed by a sensor (Banta et al., 1995; Gonzalez-Banos et al., 2000). These methods
are, however, not suitable for coverage search on mobile robots since they ignore
the costs for changing between different sensor poses (Gonzalez-Banos et al., 2000).
Our previous work dealt with frontier-void based exploration in 3d (Dornhege and
Kleiner, 2011). We focused on finding cells at the exploration frontier with good views
into unknown parts of the environment, so called voids. Computing visibility is also
addressed by the art gallery problem (Shermer, 1992). There the problem is to find
an optimal placement of guards on a polygonal representation of 2d environments so
that the entire environment is continuously observed by the guards. The emphasis
is on the placement of guards with relation to the complex geometric features of the

125

Chapter 6 Multi-Robot Coverage in 3D

environment and the problem is known to be NP-hard. Pursuit-evasion problems relax
this requirement since the goal is not to keep a static coverage of the environment, but
to search for moving targets (Chung et al., 2011). The environment can be observed
in a dynamic fashion by placing and moving guards over time. This also requires
the computation of the agent’s field of view, which often induces a decomposition
of the environment (Sachs et al., 2004). Again, much of this work focuses on 2d
environments, although there are approaches for 2.5d environments (Kleiner et al.,
2013; Kolling et al., 2010).

While area coverage, pursuit-evasion, and the art gallery problem are naturally
multi-robot problems, our coverage search problem can be applied to a single robot
or multiple robots, just as coverage planning. Multi-robot coverage in 2d has also
been considered (Agmon et al., 2008; Kong et al., 2006). Rekleitis et al. (2004) ex-
tend a single robot approach for coverage planning to multiple robots. They use a
boustrophedon decomposition developed for the single-robot case. The environment
is unknown and robots have line of sight communication, which precludes a multi-
ple traveling salesman approach (Bektas, 2006). Other multi-robot approaches for
coverage planning in 2d are also discussed by Choset (2001).

Coverage search and exploration are also closely related, with the obvious difference
that the environment to be explored is unknown. The literature for robot exploration
is also vast, especially in 2d. Of particular interest in relation to our work are 3d
exploration methods. For example, Nüchter et al. (2003) propose a method for deter-
mining the next scan pose of a robot for digitalizing 3d environments. They compute
a polygon representation from 2d planes in 3d range scans by connecting detected
lines and free space between detected lines. From this polygon potential next-best-
view locations are sampled and weighted according to the information gain computed
from the number of polygon intersections with a virtual laser scan simulated by ray
tracing. An extended approach to this problem uses 2.5d elevation maps and 3d ray
tracing (Joho et al., 2007).

6.2 Problem Definition

In this section multi-robot coverage search is formally described. We first introduce
the robot model, their sensors, and the environment followed by the definition of
the coverage search problem. We consider homogeneous mobile robot platforms, the
searchers, each equipped with a 3d sensor in a bounded 3d environment E ⊂ R

3. The
3d sensor generates a view consisting of a set of n 3d points {p1,p2, . . . ,pn} with
pi = (xi, yi, zi)

T . We associate a view with the sensor state that generates it. A sensor
state x ∈ X ∼= R

3 × RP
3 (see (LaValle, 2006) for details) can also be written as a 6d

pose (x, y, z, φ, θ, ψ)T . Here (x, y, z)T denotes the translational part (the position) and
(φ, θ, ψ)T the rotational part in Euler angles (the orientation). The possible sensor
states and therefore the resulting views that can be obtained depend on the collision-

126

6.2 Problem Definition

free configurations q ∈ Cfree ⊂ C of a robot’s configuration space C. We make no
assumptions regarding C and Cfree other than that we have a function IK : X → {0, 1}
with IK (x) = 1 if there is a valid path in Cfree for the robot that puts the sensor into
state x and 0 otherwise1. This allows us to define the set of all reachable sensor states
Xreach := {x ∈ X | IK (x) = 1}.2 Note that we do not consider collisions between
robots when determining IK and Xreach , so that these are static. In our experiments
we avoid collisions with a simple scheme that requires robots to wait when a collision
with another robot is predicted. Depending on the robot type and their knowledge
about the position of other robots, one may choose to use another deconfliction scheme
or a multi-robot path planning approach.

We furthermore assume the existence of a function cost : Cfree ×Xreach → R
+ that

returns the time to move a robot from one configuration to another, place the sensor
in a desired state and record a view. We will refer to this also as travel time. A cost
function could also incorporate additional criteria, such as risk of failure, detection
by hostiles or other undesired consequences that would lead to increased costs. For
our purposes we equate cost with travel time. Note that for most applications we can
conflate Cfree and Xreach by mapping exactly one configuration onto each sensor state
in Xreach . This effectively ignores additional degrees of freedom of a robot and with
slight abuse of notation we can then write cost(xi,xj). This is now simply the time of
moving from one sensor state to another. We apply this simplification to the remaining
sections as it simplifies the presentation without directly impacting the applicability
of our solutions. For applications in which the additional degrees of freedom can be
exploited, e.g., highly redundant humanoid robots with cameras, one would have to
consider these separately.

Finally, the goal of coverage search is to cover every point in a given search set
S ⊆ E . This search set might contain only a small part or all of E , depending on what
we are interested in covering. For every sensor state let the detection set D(x) ⊂ S
be the set of points in S visible from x ∈ Xreach . Note that there is a subtle formal
difference between D(x) and a view at x. D(x) is a 3d volume and a view is a discrete
set of points in a 3d volume. In addition, D(x) is restricted to the search set S while a
view contains points from all of E . Yet, in colloquial terms, we can think of a detection
set as a view.

The multi-robot coverage problem for N robots is to find and visit a sequence of sen-
sor states for each robot n ∈ {1, . . . , N} with lengthm(n), written as xn

1 ,x
n
2 , . . . ,x

n
m(n),

so that the entire search space S has been seen and covered, i.e.,
⋃N

n=1

⋃m(n)
i=1 D(xn

i) =

1To make this definition complete we further make the usual assumption that a starting configuration
q0 is given or that Cfree is connected.

2Depending on the configuration space reachable states can be precomputed for efficient access
during the search, e.g., using capability maps (Zacharias et al., 2007).

127

Chapter 6 Multi-Robot Coverage in 3D

S. In addition, the overall execution time needed to visit all sensor states given by

costmax = max
n∈{1,...,N}

m(n)−1
∑

i=1

cost(xn
i ,x

n
i+1)

has to be minimized. We refer to travel time when we consider the time a single robot
takes to travel between locations and execution time when referring to the maximum
combined travel time across all robots, i.e., the time to execute the entire sequence for
all robots in parallel.

6.3 Sampling High Utility Views

We now describe how to find sensor states from Xreach that have large views volumes.
First we compute a utility function util : E → R

+ that identifies good 3d positions in E ,
ignoring the orientation for now. An efficient sampling-based method can significantly
decrease the number of states that have to be considered. In this spirit, we will
compute util via sampling and then later use it to identify 3d poses from which a large
part of S can be seen. These high-utility poses in E are then turned into sensor states,
which will serve as a basis for the coverage search methods described in Section 6.5.
The representation of E is given in form of an efficient hierarchical 3d grid structure,

known asOctoMap (Hornung et al., 2013). Therein our 3d search region S is tessellated
into equally sized cubes. The minimum size of the cubes is typically chosen relative to
the size of the target that one searches for, i.e., the size of the cubes should generally be
smaller than the target. The implementation for OctoMap is based on an octree that
represents occupied areas in a hierarchical manner. Free space, as well as unknown
areas are encoded in the map.
We construct util in two steps, shown in detail in Algorithm 8 and briefly described

below. First, for every s ∈ S we sample kmax vectors that start at s and go towards
a random position in pos(X), sampled using getRandom(.). Here pos(.) returns the
position of a state, simply ignoring its orientation, or the set of positions for a set
of states, respectively. These vectors are collected in V . Second, for each vector
〈s, dir〉 ∈ V we compute by using the ray tracing function getGridCells(s, dir, sr) the
set of grid cells GC that are visible from s in direction dir up to the sensor range limit
sr. Ray tracing is performed efficiently on the OctoMap. Then, for each cell in GC
that corresponds to a reachable sensor state the utility value is incremented by one.
We now obtain our set of sampled sensor states X̃, from which large parts of S are

visible, as follows. First, we sample grid cells that correspond to points (x, y, z)T ∈ E
with a positive and large util value. Note that by construction these points are such
that (x, y, z)T ∈ pos(Xreach), i.e., they correspond to the positions of reachable sensor
states. For each of these points we sample an orientation (φ, θ, ψ)T , so that we obtain
a full sensor state x = (x, y, z, φ, θ, ψ) ∈ X. If IK (x) = 0, we discard this state.

128

6.3 Sampling High Utility Views

Algorithm 8 Construct util

1: procedure FindGoodViews(S)
2: V ← ∅
3: // Sample random vectors from S into pos(X)
4: for all s ∈ S do
5: k ← kmax

6: while k 6= 0 do
7: x← getRandom(X)
8: dir = normalize(pos(x)− s)
9: V ← V ∪ 〈s, dir〉

10: k ← k − 1
11: end while
12: end for
13: // Accumulate utilities in E
14: for all v = 〈s, dir〉 ∈ V do
15: GC ← getGridCells(s, dir, sr)
16: for all gc ∈ GC ∩ pos(Xreach) do
17: util(gc)← util(gc) + 1
18: end for
19: end for
20: end procedure

129

Chapter 6 Multi-Robot Coverage in 3D

Note that for some robots, such as ground robots, the set of reachable sensor poses
pos(Xreach) can be much smaller than E and our method samples only from this much
smaller space. Now that we have sampled a sensor state x we compute its actual
utility U(x) := |D(x)| by ray tracing the sensor’s field of view and counting all visible
octree voxels in S. If U(x) ≥ ǫ, for some given ǫ, we add x to X̃. Once X̃ reaches a
certain size, i.e., Nsensor = |X̃| for a given value of Nsensor , we stop adding to X̃ and
terminate the sampling.
The method described above for sampling sensor states with high utility is rather

generic and can easily be modified in order to achieve additional objectives or bias
the sampling. For example, to formally guarantee complete coverage of S with the
sensor states from X̃ one could continue to sample poses with non-zero util values and
incrementally add more views until S is covered, as done in the work by Kleiner et al.
(2013). However, this requires that every part of S can be seen by some x ∈ Xreach—a
property required for the problem to be solvable that unfortunately can be violated in
many practical applications. We make no assumptions that the environment data and
maps were collected with the robot that is used for the search and thus the environment
E and search set S can cover arbitrary non-reachable space. Requiring that a user
ensures that S can be covered would in turn require the user to solve this problem,
which is not a reasonable assumption. Therefore, from a practical perspective it is
better to ignore completeness and implement a best effort that is robust and allows
the user to increase Nsensor to increase coverage and determine whether it is sufficient
for the application.
The primary feature of our sampling approach is that we provide an efficient initial

estimate of the utility of sensor states with the util function that can be used in a
number of ways leading to small sets of useful sensor states X̃. In this chapter we
only presented the most straightforward sampling that considers sampling the highest
util poses with an actual utility of at least ǫ until we reach Nsensor sensor states for
X̃. Investigating the wide range of possible variations to this sampling method could
be a fruitful area for further work. We now proceed to the next section that shows
how to exploit the set X̃ for planning purposes by first constructing a partition of the
detection sets corresponding to the sensor states.

6.4 Partition Induced by Views

Based on the sampled X̃ ⊂ Xreach , which represents a number of high-utility sensor
states, we will later seek to determine a smaller set that gives us sequences of sensor
states {xn

1 , . . . ,x
n
m(n)} ⊂ X̃ whose detection sets cover all of S, i.e.,

⋃N

n=1

⋃m(n)
i=1 D(xn

i) =

S. Rather than computing
⋃m(n)

i=1 D(xn
i) for different sequences, which is computation-

ally expensive, we first compute a minimal partition of the search set S that is induced
by the detection sets for a given set of sensor states Q (in our case Q = X̃).
Figure 6.2 illustrates the reduction achieved by such a partition. Here the search set,

130

6.4 Partition Induced by Views

Detection Sets D(x), ∀x ∈ Q Parts of P (S|Q).

Figure 6.2: This figure illustrates the effect of a minimal partition. The left shows the
detection sets for three states, i.e., |Q| = 3, as black triangles. The right shows the
minimal partition P (S|Q) with several parts, each represented with a different color.

S, is the entire grid. The individual voxels that are part of the detection sets are shown
in random colors on the left side, while white voxels are not part of any detection set.
Let x be the state for the leftmost view. Then in the partition P (S|Q) shown on the
right P (x) contains three parts, the sets of blue, green, and orange voxels. Without
partitioning one would have to merge detection sets using individual voxels like seen
on the left in the example. A minimal partition collects all voxels that are contained in
exactly the same detection sets into one partition part. We define the reduction factor
achieved by a partition as the ratio of the number of individual voxels to the number
of partition parts, i.e., for the example in Figure 6.2 it is 164

6
voxels

partition parts
≈ 27.3. A

minimal partition of S given Q is defined as follows.

Definition 37. Minimal partition given a set of sensor states

Given any Q ⊆ Xreach let P (S|Q) be a partition of S minimal for Q defined as follows:

1. ∅ /∈ P (S|Q)

2.
⋃

A∈P (S|Q)A = S

3. ∀A,B ∈ P (S|Q) : A 6= B ⇒ A ∩ B = ∅

4. ∀x ∈ Q, ∀A ∈ P (S|Q) : A ∩D(x) = A ∨ A ∩D(x) = ∅

5. ∀A,B ∈ P (S|Q) : A 6= B ⇒ ∃x ∈ Q : A ∩D(x) 6= ∅ ∧ B ∩D(x) = ∅

Conditions 1) to 3) state that P (S|Q) is a partition. Condition 4) states that every
part of P (S|Q) is either entirely in a detection set or it does not intersect the detection
set. Condition 5) states that P (S|Q) is minimal. With slight abuse of notation we

131

Chapter 6 Multi-Robot Coverage in 3D

Algorithm 9 Minimal Partition for Q

1: P (Q)← {S}
2: Views(S)← Q
3: for all x ∈ Q do
4: P (x)← P (Q)
5: end for
6: for all x ∈ Q do
7: for all A ∈ P (x) do
8: Ain ← A ∩D(x)
9: Aout ← A ∩ (S \D(x))

10: if Ain = ∅ ∨ Aout = ∅ then
11: continue // Condition 4. holds.
12: end if
13: P (Q)← P (Q) \ {A} ∪ {Ain , Aout}
14: P (x)← P (x) \ {A} ∪ {Ain}
15: for all x′ ∈ Views(A) \ {x} do
16: P (x′)← P (x′) \ {A} ∪ {Ain , Aout}
17: end for
18: Views(Ain)← Views(A)
19: Views(Aout)← Views(A) \ {x}
20: end for
21: end for
22: return P (Q)

will write P (x) ⊂ P (S|Q) for all parts of P (S|Q) with P (x) ⊂ D(x). 3 Minimal
partitions can be computed iteratively, as shown in Algorithm 9, when Q is finite. In
colloquial terms one can think of P (S|Q) as the Venn diagram of the search set and
all detection sets for states from Q, i.e., of D(x1), . . . , D(x|Q|), and S. As a shorthand
we also write P (Q) = P (S|Q) since S is given and fixed.

Algorithm 9 works as follows. First P (Q) is initialized to the trivial partition {S}.
For each x ∈ Q, we update P (Q) by splitting all parts in P (Q) that violate condition
4. This ensures that at termination condition 4 holds. As we only perform necessary
splits, condition 5 also holds. Note that we only test against P (x) instead of all parts
in P (Q) as required by condition 4. P (x) ⊆ P (Q) is maintained in addition to P (Q)
and only contains those parts that intersect with the detection set D(x). Thus often
P (x) ⊂ P (Q). We also maintain and update the inverse mapping Views(A) for each
part A in P (Q) to efficiently update P (x).

3Notice that
(

S \
⋃

x∈Q D(x)
)

∈ P (S|Q) is a part of the partition for all Q that does not contain

enough configurations to cover S. From the sensors perspective this part is undetectable from the
states in Q.

132

6.5 Multi-Robot Coverage Search

6.5 Multi-Robot Coverage Search

In this section we are concerned with the combinatorial problem of multi-robot cov-
erage search, i.e., selecting a set of sensor states from X̃, assigning these to individual
robots, and computing the shortest paths for each robot, with the goal of covering
the entire environment in the minimal amount of time. Note that all the above steps
have dependencies that complicate the problem, e.g., the quality of the shortest paths
obviously depends on the assignment or shortest paths may lead to collisions in ad-
dition to obstructions of views by other robots. To be able to find feasible solutions
in a reasonable time we treat individual robot paths as if they were independent from
each other. This means that we will not consider multi-robot collision avoidance, view
obstructions, or synchronizing parallel actions for multiple robots. These problems
can be dealt with for each specific application and have varying degrees of impact,
depending on the scenario. Hence, we believe these issues should be addressed in a
particular implementation and its execution. Unless a particularly hard scenario is
constructed, the interactions between the coverage search and the above issues should
be minimal, especially considering that the robots should naturally spread to different
parts of the environment.
We now introduce the two principal ideas we use for solving the multi-robot planning

problem. The first is to create a high-quality single robot coverage plan and then divide
this plan into smaller segments that are assigned to individual robots. For the single
robot case we present variants of greedy algorithms as well as approaches based on
task planning. The second idea is to adapt the single robot approaches directly to the
multi-robot problem, which we do for the greedy procedures. In the following we thus
first describe our algorithms for single robot coverage plans. We will then adapt these
algorithms to the multi-robot case.

6.5.1 Single-Robot Greedy Solutions

From hereon, whenever we reason about detection sets, we will always use partition
parts instead of individual voxels in our implementation. We utilize P (X̃), as well
as the corresponding mappings P (x), to construct a sequence {x1, . . . ,xm} ⊆ X̃ that
covers S and has a short execution time. Since we now consider the sequence of sensor
states, each with an associated detection set and view, we define a new sequential
utility function Ui that reduces the original utility U(x) = |D(x)| by the volume in S
that has been seen previously by any robot in the sequence:

Ui(x) =

∣

∣

∣

∣

∣

D(x) \
⋃

j<i

D(xj)

∣

∣

∣

∣

∣

All greedy algorithms compute the coverage sequence by repeatedly selecting a state
x ∈ X̃ according to some strategy until all parts in P (X̃) are covered. The greedy

133

Chapter 6 Multi-Robot Coverage in 3D

algorithms differ by how the next x is selected. For all algorithms let UC be the
uncovered parts initialized as UC ← P (X̃). For every i = 1, . . . ,m we select a new
xi and update UC ← UC \ P (xi). The algorithms terminate when UC = ∅. We now
describe two greedy algorithms.

Simple Greedy

The simplest greedy strategy selects a xi that minimizes the travel time from the last
view, i.e., cost(xi−1,xi). The first view is chosen to be the one with maximum utility
U . We denote this variant as Simple-Greedy.

Greedy Next Best View

Our second greedy variant also considers the utility of views in addition to the travel
time, i.e., it chooses a xi that maximizes Ui(xi)/cost(xi−1,xi). The idea is to prefer
high-utility views that are also easily reachable. For this we choose the ratio of utility
and travel time to quantify the tradeoff between the two. Again, the first view is
chosen to be the one with maximum utility U . We denote this variant as Greedy Next
Best View (Greedy-NBV).

6.5.2 Single-Robot Planning Solutions

Greedy algorithms provide simple and reasonably fast solutions that are also easily
modified to consider additional criteria for specific application scenarios. These solu-
tions, however, are usually not optimal. Therefore we also formulate the problem of
finding a coverage sequence for a set of sensor states from X̃ as a classical planning
problem that can be solved optimally. As finding optimal solutions to this problem is
often infeasible, as discussed in further detail in Section 6.6.3, we also present a sub-
optimal decomposition of the problem by solving a set cover and subsequent traveling
salesman problem. We now give the problem formulation as a planning problem and
afterwards show how this formulation is easily adapted to solve the decomposition.

Optimal Planning Formulation

We model our problem as a planning task in PDDL/M introduced in Chapter 3. In
our domain, there are two types of objects:

(:types view view part)

An object of type view is added for each sensor state in X̃ and a view part is defined
for each part in the partition. Next, the planning state is given by the following logical
predicates:

(searched ?xi - view)

describes that a view xi has already been visited and

134

6.5 Multi-Robot Coverage Search

(covered ?pj - view part)

states that part pj has already been covered in a state. searched and covered are
initially set to false for all views and parts, respectively. The current view location
of the robot is given by

(at-view ?v - view)

For each view xi and each part pj the predicate

(view-covers ?xi - view ?pj - view part)

is set to true in the initial state, iff pj is in P (xi). Only a single action is needed that
searches the next view:

(:action search

:parameters (?cur - view ?v - view)

:duration (= ?duration [costSearch ?cur ?v])

:precondition

(and

(not (searched ?v))

(at-view ?cur)

)

:effect

(and

(searched ?v)

(not (at-view ?cur))

(at-view ?v)

(forall (?_vp - view_part)

(when (view-covers ?v ?_vp)

(covered ?_vp))

)

)

)

The precondition prohibits the planner from choosing the same view twice. Accord-
ingly searched is set in the effect. We also assign at-view to the view reached by the
search action. The term [costSearch ?cur ?v] specifies a cost module that calls the
cost function defined in Section 6.2. The forall statement defines a conditional effect
that sets covered to true for a view part when it is contained in P (?v), i.e., when it
is observed by this view.
Finally, we specify as the goal formula:

(forall (?vp - view part) (covered ?vp))

This requires each part to be covered and thus guarantees that any plan found by
a planner actually provides a coverage plan. As we use the actual cost function to
define action costs, a shortest plan found by the planner also constitutes a minimum

135

Chapter 6 Multi-Robot Coverage in 3D

execution time coverage sequence, i.e., an optimal solution to our coverage search
problem. We use our planner TFD/M to solve all planning tasks in this chapter. We
denote this variant as Complete Plan.

Decomposition into Set Cover and Traveling Salesman Problem

While the previous planning formulation can yield optimal solutions, the search space
is still rather large and the optimal solutions may not be found in a reasonable amount
of time for large problem instances. In this section we simplify the problem by decom-
posing it into a set cover and a traveling salesman problem. More precisely, we first
find a minimal set of views that covers all parts of the partition, which is the classical
set cover problem. We are looking for a minimum cardinality subset QC ⊆ X̃, so that
all parts of P (X̃) are covered, i.e., that fulfills the following condition.

⋃

xj∈QC

P (xj) =
⋃

xi∈X̃

P (xi)

We use the minimal partition to reduce the input size to the set cover problem by
ignoring views covering unique parts of the search set that are not covered by any
other view. We call these views necessary, since they have to be part of any cover, and
then only determine the minimum set cover for the remaining views. The set cover
problem is solved by a simple reformulation of the complete planning problem using
the same planner. More precisely, action costs from the above definition are set to 1,
so that the cost of a plan is identical with the number of views. These problems are
solved quite fast (within seconds in all our experiments) as they contain a considerably
smaller set of views and permutations do not need to be considered.
Given the minimum cardinality subset of views that covers the search space it

only remains to find an optimal execution time sequence visiting all views. This is
a Traveling Salesman Problem (TSP) without the requirement to return to the first
location. We already have a PDDL formulation for the complete problem and can
easily apply this formulation to the Traveling Salesman Problem by changing the goal
formula to:

(forall (?v - view) (searched ?v))

This requires all views in the planning task, which are now only the views that are part
of the minimal cardinality cover, to be visited and thus an optimal cost plan to this
problem results in a minimum execution time path through all views. The coverage
information can be safely ignored as that is already guaranteed by the set cover.
There exist efficient solvers specifically designed for the Traveling Salesman Problem

and thus we investigate the application of the LKH solver (Helsgaun, 2000), an efficient
implementation of the Lin-Kernighan heuristic to solve the TSP. When we use the
TFD/M planner for solving the TSP in the decomposed formulation, we denote this
variant as Set Cover/TSP (TFD). When using the LKH solver we call the variant Set
Cover/TSP (LKH). TFD/M is always used to solve the set cover problem.

136

6.5 Multi-Robot Coverage Search

To summarize, the decomposition of the complete planning formulation into a set
cover and a TSP problem is clearly suboptimal. Yet, it still requires solutions for
two NP-hard problems. From a practical perspective, this decomposition allows the
application of advanced solvers that have been developed specifically for these prob-
lems. In the experimental section we will investigate the tradeoff between the time to
compute solutions and the quality of these solutions comparing the optimal and the
decomposition approach.

6.5.3 Multi-Robot Greedy Solutions

In this section we adapt the single-robot greedy algorithms directly to the multi-
robot case. As before we utilize P (X̃), as well as the corresponding mappings P (x),
to construct a sequence {xn

1 , . . . ,x
n
m(n)} ⊆ X̃ for each robot n ∈ {1, . . . , N} with

length m(n). The multi-robot greedy algorithms compute the coverage sequences by
repeatedly selecting a specific robot n and a view xn ∈ X̃ until all parts in P (X̃) are
covered. Similar to the single robot case we define a sequential utility function Uk

that reduces the original utility U by the volume in S that has been seen previously
in any sequence for any robot. Here k is the k-th step in the greedy procedure, when
the k-th view is assigned. Let mk(n) be the sequence length for robot n in the k-th
step. Then the utility to choose the view from sensor state x in the k-th step is:

Uk(x) :=

∣

∣

∣

∣

∣

∣

D(x) \

N
⋃

n=1

⋃

j≤mk−1(n)

D(xn
j)

∣

∣

∣

∣

∣

∣

Note that this measure is independent of the robot. First, using this expected
utility and the cost to reach the sensor state for a view, every robot is choosing
its next preferred view at step k exactly as in the single robot case. The preferred
view is selected either using the Greedy-NBV or the Simple-Greedy equations from
Section 6.5.1 leading to the Multi-Greedy-NBV and Multi-Simple-Greedy variants.
Let x̂n

k be the sensor state chosen by robot n for step k. We now select the sensor
state from the robot that leads to the minimum increase in overall execution time,
i.e., we greedily select the robot with the shortest overall path to its preferred state.
More precisely, let this robot n∗ be

n∗ := argmin
n∈{1,...,N}

cost(xn
mk−1(n)

, x̂n
k) +

mk−1(n)−1
∑

i=1

cost(xn
i ,x

n
i+1).

The view x̂n∗

k is then appended to the sequence of views for robot n∗ and we continue
with the next step by incrementing k. As for the single robot case the procedure
continues until all parts in P (X̃) are covered. Let UC again be the uncovered parts
initialized as UC ← P (X̃). For every k we update UC ← UC \P (x̂n∗

k). The algorithm
terminates when UC = ∅.

137

Chapter 6 Multi-Robot Coverage in 3D

6.5.4 Multi-Robot Solutions From Single-Robot Solutions

The greedy spirit of the single-robot greedy algorithms was readily extendable to
the multi-robot case by simply greedily selecting the best robot. The single-robot
planning algorithms, however, are not extendable to the multi-robot case in such a
straight forward manner. Therefore, our multi-robot planning approach starts with
a single robot plan and splits this into N parts to produce N paths that will be
executed by N robots in parallel. Although this is clearly not optimal we gain the
practical advantage of being able to use improved planners that work well for the
single robot case without any additional effort, i.e., we can simply substitute a single
robot planner with an improved version and simultaneously improve our multi-robot
plans. This advantage should not be underestimated, especially for the development
of practical and fielded systems.

This approach takes as the input a single robot coverage sequence {x1, . . . ,xm} ⊆ X̃
that covers S. Our goal is to split this into N sequences {xn

1 , . . . ,x
n
m(n)} ⊆ X̃ for each

robot n ∈ {1, . . . , N} with length m(n). There are N − 1 splitting points sn for N
robots. A splitting point sn ∈ {1, . . . ,m}, i < j ⇒ si < sj defines the end index of the
n-th robot’s subsequence, so that xn

m(n) = xsn . Starting points are one past the end
of the previous robot’s sequence, so that the subsequences connect, i.e., xn

1 = xsn−1+1.
The first robot’s subsequence must start with the first sensor state of the single robot
plan, i.e., x1

1 = x1 and likewise the last robot’s subsequence must complete the single
robot sequence, so that all views are covered, i.e., xN

m(N) = xm. There are in the order

of mN−1 ways to perform such splits. As long as the number of robots N is not too
large it is feasible to enumerate all solutions, despite the exponential complexity in the
number of robots. We do so and select the split that minimizes the overall execution
time as our solution. If computation time is an issue, the method described above
can be approximated, e.g., by k-means clustering of sensor states. In the experimental
section, however, we will see that the complexity of this step plays a minor role in the
overall computation time.

Applying the above splitting method to the single robot algorithms described in
Sections 6.5.1 and 6.5.2 leads to new variants. To describe these we append a ‘-S’ to
the single robot variant name leading to the new variants Simple-Greedy-S, Greedy-
NBV-S, Set-Cover/TSP (TFD)-S, Set-Cover/TSP (LKH)-S, and Complete Plan-S.

6.6 Experiments and Evaluation

We evaluated our approach and algorithms on four real-world data sets, i.e., OctoMaps
obtained from sensor data collected by robots in real environments. In addition, we
carried out real-world experiments in which robots execute the computed solutions
for 3d coverage search. The results of the experiments on the data sets are presented
in Section 6.6.2 and results of the real-world experiments are found in Section 6.6.4.

138

6.6 Experiments and Evaluation

(a) (b) (c)

(d) (e)

Figure 6.3: This figure shows the data sets used for evaluation: The 3d scan in our
lab (a), Building 78 (b), the rescue arena (c) and the Computer Science Campus at
the University of Freiburg (d). For a better visualization of the plan in the campus
a top-down view is given (e). The shown plans (green) are generated with the Set
Cover/TSP (LKH) method for one robot. Occupied cells are displayed blue, covered
cells red.

Section 6.6.1 discusses how we compute travel times efficiently, while Section 6.6.3
briefly discusses optimality for the planning problem.

The four data sets represent one small indoor, two large indoor and one large outdoor
environment. The small indoor data set consists of a 3d scan taken in the robotics lab
at the University of Freiburg. The first large indoor data set was recorded in Building
78 at the University of Freiburg, which consists of two rooms separated by a door.
The second one was recorded in the rescue arena at Jacobs University in Bremen.
The large outdoor data set was recorded on the Computer Science Campus at the
University of Freiburg. OctoMaps for the indoor data sets are generated with 5 cm
resolution while the outdoor data set uses a resolution of 20 cm. Visualizations of the
maps obtained from the data sets are shown in Figure 6.3.

In all simulation experiments the search set S to be examined consists of all vertical
structures of the map, thus aiming for a complete coverage of everything that is not
floor or ceiling. This choice models an inspection task for inspecting walls. For our
purposes it serves to have a large search set S in a larger environment E , but within
a similar order of magnitude. The robot model used is a mobile ground robot with

139

Chapter 6 Multi-Robot Coverage in 3D

Figure 6.4: An example for a robot platform used for coverage search. Sensors are
mounted on a versatile manipulator arm.

the sensor mounted on a 6-DOF manipulator with a reach of one meter. The sensor
model is a camera with 60 degrees horizontal and 40 degrees vertical field of view.
For the indoor data sets a maximum range of five meters was used, the outdoor data
set was searched with a 35 meter maximum range. This searcher model is motivated
by a common setup for USAR robots depicted in Figure 6.4: A tracked robot with a
manipulator arm as a sensor platform. The small indoor map, denoted as Lab, was
used for two scenarios. The first scenario, denoted by Lab 1, only allowed manipulator
movements and no motion of the ground platform. The map is sufficiently small, so
that the manipulator has a reasonably large Xreach . The second scenario, denoted by
Lab 2, allowed manipulator movements and navigation for the ground platform. In
all other maps we considered manipulator movements and navigation for the ground
platform.

The variants of our algorithm, described in detail in Section 6.5, that we used for the
experiments are Multi-Greedy-NBV, Greedy-NBV-S, Multi-Simple-Greedy, Simple-
Greedy-S, Set-Cover/TSP (TFD)-S, Set-Cover/TSP (LKH)-S, and Complete Plan-S.
For the TFD/M planner we used anytime search that stopped after twice the time
it took to find the first valid plan. The LKH solver was executed with the default
parameters supplied by the software. All greedy variants of the algorithm were run
until a solution was found.

6.6.1 Efficient travel time computation

As noted in the problem definition in Section 6.2 we require the computation of time
estimates for moving between different sensor states on the map, i.e., the function
cost(xi,xj). A major part of the computation time is spent when computing the time
to navigate between poses. We use value iteration, a popular dynamic programming
algorithm frequently used for robot planning (Burgard et al., 1998). As shown in
Figure 6.5 the planner takes as input a segmented elevation map in which important

140

6.6 Experiments and Evaluation

structural elements such as stairs and ramps are discriminated and indicated by a
different color. Value iteration computes for each grid cell on the map a time estimate
for reaching a goal cell. These time estimates are composed of travel distance as well
as costs for overcoming different types of terrain, such as flat ground, ramps, or stairs.
The resulting value function is then used by an A∗ planner as the heuristic for finding

Figure 6.5: The computation of travel time on segmented elevation maps considers
different structural elements such as flat ground (green), walls (red), stairs (light
blue), or ramps (yellow).

shortest paths on the map.
Besides these travel times between robot base poses, we are also considering the

time for moving the manipulator from one view configuration to the next based on
the maximum angular displacement of any joint and the maximum angular velocity
for that joint. The expected combined time defines the cost of moving between two
sensor states and hence we obtain cost(xi,xj).

6.6.2 Evaluation of Coverage Search Algorithms

The first series of experiments applies all variants of our multi-robot coverage search
algorithm to the scenarios generated from the real-word data sets, using one to four
robots. For these experiments we are reporting computation times and the planned
execution times, i.e., the cost of the best plans found by the algorithms on each
of the maps. Since the generation of views for X̃ involves randomization, we ran the
algorithm ten times for each scenario and report mean values with standard deviation.
The minimum utility ǫ to accept a view as well as the number of views, Nsensor , that
need to be generated for X̃ was chosen with respect to the average expected utility
which depends on the sensor model and the environment. Therefore, for the outdoor
environment with a 35 meter sensor, this minimum needs to be significantly higher
than the one chosen for an indoor environment with limited field of view. The choices
of parameters are shown in Table 6.1. Table 6.1 also shows computation times for
the first part of our algorithm, i.e., the generation of views for X̃ and the minimal

141

Chapter 6 Multi-Robot Coverage in 3D

partition. In addition, we provide the reduction factor achieved by the partition. This
reduction factor introduced in Section 6.4 is defined as the ratio of cells in S to parts
in the partition. It provides a measure for the reduction of the search space achieved
by the sampling of X̃ and its minimal partition. With a large reduction factor the
number of parts in the partition is significantly smaller than the number of cells that
are to be covered and the input size to the planning algorithms can be thought of as
being reduced by this factor.

Scenario Lab 1 Lab 2 Bldg. 78 Arena Campus

Computing X̃ [s] 2.1 ± 0.2 3.0 ± 0.5 30.8 ± 2.5 79.0 ± 4.9 201.9 ± 10.1
Minimal Partition [s] 0.1 ± 0.0 0.0 ± 0.0 2.2 ± 0.3 5.5 ± 0.7 31.5 ± 2.8
Reduction Factor 127.2 ± 17.1 49.3 ± 12.5 16.5 ± 1.9 37.0 ± 4.6 71.6 ± 4.2
ǫ [dm3] 150 150 125 250 8000
Nsensor 15 15 100 142 280

Table 6.1: This table shows computation times for the generation of X̃ and its minimal
partition. In addition the reduction factor achieved by the partition is given, as well
as the parameters ǫ and Nsensor that were used.

Each of the ten X̃ and minimal partitions obtained for every scenario were used as
an input to the variants for the coverage search presented in Section 6.5. This was
done with one, two, three and four robots, i.e., N = 1, . . . , 4. Table 6.2 shows the
average plan cost for a solution for the smaller Lab scenarios, where all algorithms
performed similarly well. Figures 6.6 and 6.7 plot the resulting cost for each variant
and number of robots for the Bldg. 78, Arena, and Campus scenarios. Table 6.3 shows
the average measured computation time required to compute the solutions for each
variant, number of robots, and scenario.

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4

P
la

n
C

os
t [

s]

Robots

Multi-Greedy-NBV
Greedy-NBV-S

Multi-Simple-Greedy
Simple-Greedy-S

Set-Cover/TSP (TFD)-S
Set-Cover/TSP (LKH)-S

Complete Plan-S

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

1 2 3 4

P
la

n
C

os
t [

s]

Robots

Multi-Greedy-NBV
Greedy-NBV-S

Multi-Simple-Greedy
Simple-Greedy-S

Set-Cover/TSP (TFD)-S
Set-Cover/TSP (LKH)-S

Complete Plan-S

Bldg. 78 Arena

Figure 6.6: Box plots of the plan cost for N = 1, . . . , 4 of multiple algorithm variants
for the Bldg. 78 and Arena scenarios.

142

6.6 Experiments and Evaluation

Scenario Lab 1
Num Robots 1 2 3 4

Multi-Greedy-NBV 25.7 ± 3.2 12.6 ± 2.3 9.1 ± 1.5 7.5 ± 0.8
Greedy-NBV-S 28.8 ± 3.5 17.3 ± 3.9 10.1 ± 1.6 9.8 ± 2.1
Multi-Simple-Greedy 25.9 ± 3.3 13.9 ± 2.2 10.0 ± 1.3 8.0 ± 1.2
Simple-Greedy-S 30.3 ± 7.3 15.8 ± 4.2 11.9 ± 3.1 9.8 ± 2.1
Set-Cover/TSP (TFD)-S 23.4 ± 7.6 11.9 ± 3.4 9.9 ± 2.6 8.0 ± 2.1
Set-Cover/TSP (LKH)-S 21.6 ± 5.4 14.9 ± 3.5 9.3 ± 2.5 8.1 ± 1.9
Complete Plan-S 31.7 ± 6.0 17.0 ± 4.0 12.0 ± 3.3 9.9 ± 2.8

Scenario Lab 2
Num Robots 1 2 3 4

Multi-Greedy-NBV 60.4 ± 6.9 31.4 ± 3.8 22.0 ± 2.1 17.3 ± 1.8
Greedy-NBV-S 66.6 ± 8.4 38.0 ± 2.6 27.8 ± 3.2 21.1 ± 2.1
Multi-Simple-Greedy 50.5 ± 6.9 29.6 ± 2.9 22.8 ± 2.3 19.3 ± 1.9
Simple-Greedy-S 57.1 ± 5.9 33.9 ± 5.1 26.4 ± 4.1 20.9 ± 2.5
Set-Cover/TSP (TFD)-S 54.3 ± 11.6 35.7 ± 5.5 25.1 ± 4.0 21.4 ± 3.9
Set-Cover/TSP (LKH)-S 60.7 ± 10.0 35.0 ± 5.1 26.5 ± 4.7 22.3 ± 3.2
Complete Plan-S 56.1 ± 12.1 33.8 ± 6.9 25.0 ± 3.2 20.8 ± 3.8

Table 6.2: This table shows plan cost in seconds for the Lab 1 and Lab 2 scenarios.

For the greedy variants, we observe that the Simple-Greedy variants usually perform
better than Greedy-NBV. The balancing of travel time and utility of views in Greedy-
NBV does not pay off in these experimental scenarios. One explanation for this effect
is that the selection of views for X̃ is already biased towards high utility views and the
additional consideration of utility penalizes travel times too much. This suggests that
when considering to use utilities in a greedy approach, a different tradeoff equation
than the simple ratio could be more beneficial. It is unclear however, which tradeoff
can lead to a good greedy heuristic, and the simple greedy approach seems already to
perform rather well.

Another interesting observation is found in the comparison of the ‘-S’ variants of
the greedy algorithms (Greedy-NBV-S and Simple-Greedy-S) against the multi-robot
greedy variants (Multi-Simple-Greedy and Multi-Greedy-NBV). For the medium sized
scenario, i.e., Bldg. 78, the multi-robot variants perform slightly better (see Fig-
ure 6.6). This advantage, however, vanishes for the larger maps (Arena and Campus).
The computation times for the multi-robot variants scale linearly with the number
of robots (see Table 6.3). This is due to the fact that for each step the single robot
variants compute the travel times to all other views, while the multi-robot implemen-
tation computes travels times to all other views for every robot. This linear growth in
the number of robots has a much larger impact on computation time than the expo-
nential growth in the number of robots that is due to the splitting for the ‘-S’ variants.
As it happens in real applications the constants hidden in the complexity classes can

143

Chapter 6 Multi-Robot Coverage in 3D

Num Robots 1 2 3 4

Scenario Lab 1

Multi-Greedy-NBV 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
Greedy-NBV-S 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
Multi-Simple-Greedy 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
Simple-Greedy-S 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
Set-Cover/TSP (TFD)-S 2.6 ± 0.5 2.5 ± 0.5 2.6 ± 0.4 2.6 ± 0.5
Set-Cover/TSP (LKH)-S 0.7 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 0.6 ± 0.2
Complete Plan-S 3.2 ± 0.6 2.9 ± 0.3 2.9 ± 0.3 3.1 ± 0.7

Scenario Lab 2

Multi-Greedy-NBV 0.2 ± 0.0 0.3 ± 0.0 0.4 ± 0.0 0.6 ± 0.0
Greedy-NBV-S 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.0
Multi-Simple-Greedy 0.1 ± 0.0 0.3 ± 0.0 0.4 ± 0.0 0.6 ± 0.1
Simple-Greedy-S 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0
Set-Cover/TSP (TFD)-S 2.8 ± 0.8 2.8 ± 0.8 2.9 ± 0.5 2.6 ± 0.6
Set-Cover/TSP (LKH)-S 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0
Complete Plan-S 3.8 ± 0.9 4.3 ± 1.2 4.3 ± 0.8 4.3 ± 0.9

Scenario Bldg. 78

Multi-Greedy-NBV 19.0 ± 1.2 40.7 ± 1.3 59.7 ± 1.3 79.8 ± 4.7
Greedy-NBV-S 21.9 ± 1.2 22.0 ± 1.0 22.5 ± 1.0 34.4 ± 1.2
Multi-Simple-Greedy 17.9 ± 1.1 40.5 ± 1.5 58.9 ± 3.0 79.6 ± 4.3
Simple-Greedy-S 20.1 ± 1.3 21.2 ± 1.0 20.9 ± 0.6 33.3 ± 1.6
Set-Cover/TSP (TFD)-S 158.4 ± 3.5 159.3 ± 4.6 158.8 ± 4.4 174.1 ± 4.6
Set-Cover/TSP (LKH)-S 43.3 ± 2.0 43.9 ± 2.8 43.8 ± 2.2 56.6 ± 2.5
Complete Plan-S 1363.0 ± 255.8 1337.6 ± 245.9 1363.1 ± 240.0 1356.0 ± 202.2

Scenario Arena

Multi-Greedy-NBV 64.4 ± 3.7 133.0 ± 9.0 201.0 ± 10.6 272.5 ± 12.8
Greedy-NBV-S 69.9 ± 4.3 71.6 ± 4.0 73.9 ± 3.3 103.9 ± 3.9
Multi-Simple-Greedy 61.5 ± 3.9 132.9 ± 9.3 210.3 ± 5.9 279.6 ± 15.3
Simple-Greedy-S 65.7 ± 3.7 68.3 ± 3.9 70.9 ± 3.4 101.8 ± 3.1
Set-Cover/TSP (TFD)-S 487.4 ± 33.0 488.7 ± 24.4 504.0 ± 27.1 523.7 ± 25.6
Set-Cover/TSP (LKH)-S 131.7 ± 11.7 131.9 ± 7.9 134.7 ± 8.9 165.1 ± 12.2
Complete Plan-S 2421.9 ± 483.3 2387.2 ± 326.4 2445.4 ± 305.4 2501.4 ± 372.7

Scenario Campus

Multi-Greedy-NBV 690.0 ± 54.6 1471.7 ± 83.3 2164.0 ± 94.4 2847.0 ± 140.3
Greedy-NBV-S 781.8 ± 60.0 803.5 ± 51.8 800.6 ± 33.9 976.0 ± 52.8
Multi-Simple-Greedy 717.9 ± 50.4 1488.8 ± 106.0 2229.5 ± 129.4 2947.6 ± 178.6
Simple-Greedy-S 815.4 ± 44.8 844.6 ± 49.8 845.6 ± 30.6 1071.4 ± 50.4
Set-Cover/TSP (LKH)-S 1249.2 ± 97.8 1285.0 ± 105.2 1275.2 ± 98.0 1432.7 ± 110.9

Table 6.3: This table shows computation times in seconds for the different scenarios.
Set-Cover/TSP (TFD)-S and Complete Plan-S were not applicable in the Campus
scenario due to limited memory.

144

6.6 Experiments and Evaluation

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

1 2 3 4

P
la

n
C

os
t [

s]

Robots

Multi-Greedy-NBV
Greedy-NBV-S

Multi-Simple-Greedy
Simple-Greedy-S

Set-Cover/TSP (LKH)-S

Campus

Figure 6.7: A box plot of the plan cost for N = 1, . . . , 4 of multiple variants of our algo-
rithm for the Campus scenario. The variants Set-Cover/TSP (TFD)-S and Complete
Plan-S were not applicable due to limited memory.

matter more than the complexity classes themselves, especially when considering a
limited range of input sizes (here N = 1, . . . , 4). The same effect also explains why
the Set-Cover/TSP algorithms in some cases are faster to compute than the multi-
robot greedy variants as the number of robots increases. Again, the computation of
the single robot solution dominates the computation time and the splitting into seg-
ments, despite the exponential complexity is comparatively fast and its overhead does
not become relevant until four robots are used. The increase in computation time for
four robots is particularly noticeable on the larger maps. This indicates that comput-
ing optimal scheduling by enumeration is unlikely to scale for larger number of robots,
where more sophisticated scheduling algorithms must be applied.

For the planning based algorithms, we generally see better results at the cost of in-
creased computation time. The results for the smaller scenarios are similar. However,
the Simple-Greedy-S algorithm is quite competitive overall. Although costs computed
for the rescue arena do not significantly differ, here the computation times are shorter
for Simple-Greedy-S. With increasing problem size the decomposed variant becomes
superior on the Campus map, when using a specialized TSP solver. As the planner
operates on a grounded representation the very large problems become infeasible for
the planning based variants. In these cases the system runs out of memory not in the
search, but already during the grounding phase of the planner. Although plan cost
for Complete Plan-S is similar to the other variants, the computation times are not
competitive. A brief discussion of optimal planning is found in Section 6.6.3.

When we compare the cost with an increasing size of robots, we see that all algo-
rithms were able to utilize more robots efficiently. Overall planned costs scale down
almost linearly with an increasing number of robots, which is an important aspect
especially for the larger scenarios. The question if this scaling behavior carries on

145

Chapter 6 Multi-Robot Coverage in 3D

to real-world scenarios, especially in smaller settings where robots can obstruct each
other will be addressed in Section 6.6.4.

Algorithm first solution best solution optimality

Simple-Greedy cost [s] 22.22 22.22
computation time [s] 0.03 0.03

Set Cover/TSP (TFD) cost [s] 19.34 16.83
computation time [s] 0.15 7.76 100.09

Complete Plan cost [s] 20.79 15.78
computation time [s] 0.16 12722.88 33281.29

Table 6.4: Comparison of best results that the algorithms are capable of. Computation
time and planned cost until the first and best plan are found are listed together with
the time of the full run needed by the planners to prove the best plan to be optimal.

6.6.3 Optimal Solutions and Anytime Planning

The Set Cover/TSP approaches are closely related to the formulation for the Complete
Plan approach, but decompose the problem. As briefly discussed in Section 6.5.2 this
decomposition can lead to suboptimal solutions. Clearly, it is of interest to experimen-
tally determine the loss of quality of the solutions that is due to the decomposition
into a set cover and TSP problem. One problem for such an experiment is that the
Complete Plan variant only runs within a reasonable amount of time on small maps
and computing optimal solutions for the larger maps was not feasible. Thus we used
the X̃ and minimal partition obtained for the smallest map (Lab 1) and ran Complete
Plan against Set Cover/TSP (TFD) for one robot until the state space was com-
pletely explored. We used TFD/M in both instances which allowed us to find optimal
solutions and prove optimality.

Table 6.4 shows the cost of the first plan found by the respective variant, also includ-
ing Simple-Greedy as a reference, the best plan as well as the time it took to determine
the plan and prove optimality. All variants quickly found a reasonable first solution
with the Set Cover/TSP (TFD) variant finding the best first solution, although taking
an order of magnitude longer than the greedy variant. As one would expect the final
optimal solution returned by the Complete Plan variant is better (15.78 s) than the
best solution for the decomposition approach Set Cover/TSP (TFD) (16.83 s) as that
is only optimal for the set cover and TSP problem independently. The Set Cover/TSP
(TFD) solution is 6.6% longer than optimal, yet the reduction in computation time
from 12722.88 s for the optimal solution to 7.76 s is substantial. In addition, the
Complete Plan approach only found a slightly better plan than 16.83 s after 4996
s. Hence, with an anytime approach the Complete Plan formulation is not likely to
yield any improvements over the decomposition approach. A complete theoretical or

146

6.6 Experiments and Evaluation

experimental analysis of related questions, e.g., the derivation of approximation fac-
tors is beyond the scope of this work. This brief experimental investigation, however,
indicates that our choice to decompose the problem has a reasonable tradeoff between
quality and computation time. This observation encourages the use of our algorithms
for real-world scenarios with the expectation of finding solutions with good quality.
The next section demonstrates the application of our approach with a team of real
robots.

Computing X̃ [s] Minimal Partition [s] Reduction Factor ǫ [dm3] Nsensor

4.8 0.02 1.92 1500 45

Table 6.5: This table shows computation times for the generation of X̃ and its minimal
partition for the real-world scenario shown in Figure 6.8.

6.6.4 Real-World Experiments

Figure 6.8: This figure shows our two story test environment for multi-robot coverage
search experiments.

We performed real-robot experiments with up to four robots in a two story test
environment4 shown in Figure 6.8. The goals for these experiments are manifold.
First, we show that the presented algorithms can be applied in practice. From the
actual execution we learn in how far the simulation results can predict the real-world
performance relative between algorithms, i.e., which will lead to shorter execution
times, and absolute, i.e., do the observed execution times lie within reasonable margins

4A video of the experiments is available at: http://www.youtube.com/watch?v=jEFZMoxNGMI

147

Chapter 6 Multi-Robot Coverage in 3D

Figure 6.9: One of the Turtlebot 2 robots used in the experiments with a Kinect sensor
and Hokuyo laser.

of the planned cost. In addition, we also determine how well the scaling properties
of the multi-robot solutions transfer to the real world and where the limitations of
an offline approach lie. As noted previously, our approach does not directly consider
multi-robot collisions, view obstructions, and other issues arising when using multiple
robots. These are dealt with on the implementation level for our specific system and
may also have an impact on the real execution of the coverage search solutions.
The experiments are performed in a two story test environment that allows to ob-

serve the lower level from the upper level and has a cave-like section to create a three
dimensional problem. Figure 6.8 shows the test environment. The test environment
was built according to a manually created three dimensional blueprint. In contrast
to the experiments presented in the previous sections, we did not build an OctoMap
from sensor data, but used the 3d blueprint to generate an OctoMap with a resolution
of 0.05 m. This OctoMap was used as an input for our algorithms. We ran the sam-
pling for X̃ to search for volumes of 0.064 m3—a volume too small for a human not
to be found in. Computation times for this are shown in Table 6.5. To determine a
realistic cost-function we ran preliminary experiments and matched the cost-function
to the observed execution times. Then we ran the greedy and decomposition variants
of the multi-robot coverage search algorithms from Section 6.5 for one to four robots
and executed the resulting plans on the robots. As a robotic platform we use four
modified Turtlebot 2, shown in Figure 6.9, that are equipped with a laser range finder
for localization and a Kinect RGBD camera that is used as the observation sensor.
Note that the robot is different from the robot used for the experiments presented
in the previous section, most importantly it does not have its camera mounted on a
manipulator. Each robot gets its specific path preloaded for an experiment and all
robots visit their sequence of sensor locations in parallel and record a view at each
of these in form of a 3d point cloud. For safety reasons ramp transitions between
levels have been tele-operated. All other actions, especially navigation to sensor loca-
tions were autonomous. Thus in total there were 24 multi-robot coverage search runs
containing 60 individual robot runs. Figure 6.11 gives the measured overall execu-

148

6.6 Experiments and Evaluation

Figure 6.10: Illustration of multi-robot coverage search in the environment shown in
Figure 6.8. The four robot solution for Set-Cover/TSP (LKH) is displayed. Endpoints
of view rays are shown in red.

149

Chapter 6 Multi-Robot Coverage in 3D

tion time for each algorithm and number of robots in comparison to the overall costs
computed by the algorithms. Table 6.6 gives the computation times for running the
multi-robot coverage search algorithms and shows the total path length of all robots
for each algorithm and number of robots.

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4

R
ea

l E
xe

cu
tio

n
T

im
e

[s
]

Robots

Multi-Greedy-NBV
Greedy-NBV-S

Multi-Simple-Greedy
Simple-Greedy-S

Set-Cover/TSP (TFD)-S
Set-Cover/TSP (LKH)-S

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4

P
la

nn
ed

 E
xe

cu
tio

n
T

im
e

[s
]

Robots

Multi-Greedy-NBV
Greedy-NBV-S

Multi-Simple-Greedy
Simple-Greedy-S

Set-Cover/TSP (TFD)-S
Set-Cover/TSP (LKH)-S

Real Execution Time [s] Planned Execution Time [s]

Figure 6.11: This figure shows the execution times of the real robots (left) in compar-
ison to the planned cost by the coverage search algorithms (right).

Computation Time [s]
Num Robots 1 2 3 4

Multi-Greedy-NBV 6.7 14.4 20.9 27.8
Greedy-NBV-S 6.7 7.2 7.5 7.5

Multi-Simple-Greedy 12.4 28.0 40.3 53.0
Simple-Greedy-S 13.0 13.8 14.1 14.4

Set-Cover/TSP (TFD)-S 49.7 47.0 47.6 49.2
Set-Cover/TSP (LKH)-S 37.5 31.5 29.2 29.5

Path Length [m]
1 2 3 4

87.0 59.5 50.6 67.6
70.1 80.0 70.6 76.0
39.4 44.5 58.7 93.2
44.6 48.6 52.7 53.4
30.5 33.3 34.7 52.1
48.7 32.7 48.1 40.0

Table 6.6: This table shows the computation times for the different algorithms (left)
and the total path length driven by all robots in a run.

150

6.7 Discussion

6.7 Discussion

We now discuss in detail the results from the previous experiments, especially the
applicability of our algorithms to real-world systems and with respect to the observa-
tions from simulation experiments. First, we report that the observed coverage in the
real sensor data was never lower than 98.4% from what the algorithms predicted for
any run. This indicates that the presented algorithms provide a viable solution to the
coverage search problem for realistic environments. As an example for an execution
see Figure 6.10. Comparing the algorithms we see that the Greedy-NBV variants per-
form well in comparison to the other variants, especially against Simple-Greedy. This
is due to the fact that Greedy-NBV considering higher utility views usually uses fewer
views in total, which comes into play in this particular environment. In relation to the
distance to be driven between views, the time to approach and record a view matters
for this smaller environment in comparison to the larger simulation maps where the
driving distance dominates the execution time given by the cost function. We can also
see that in the driven path length. Greedy-NBV usually drives longer distances, but
is still faster than Simple-Greedy with real robots. Nevertheless, the Set-Cover/TSP
variants still have better performance than all greedy algorithms in almost all cases
in their planned costs and, more importantly, also in the observed execution times.
This means that the longer computation times for these algorithms do pay off in faster
execution times. A fact that is relevant for real-world applications as offline compu-
tation time usually is cheaper than robot operation time. Only for online approaches
or when running the algorithms on the robot itself upon deployment one might prefer
a lower computation time, such as with Greedy-NBV-S.

If we compare the planned cost with the real execution time, we observe that com-
puted times are not a very accurate prediction of real execution times, although the
overall ranking between algorithms is still fairly similar whether one considers com-
puted or real execution times. This is not really surprising as autonomous robot
navigation is influenced by many factors, including but not limited to sensor noise
and inaccurate motion execution. These affect our autonomous navigation and are
contained in measured travel times and thus execution times. More importantly, the
real execution time is determined by the slowest robot and when running multiple
robots it is more likely that at least one will have some delays in its path, increas-
ing the likelihood of a delay with each new robot. Here our assumption that robots
operate independently also comes into play. A robot blocking the path of another
robot temporarily might have bad effects on the blocked robot’s travel time. This is
what happened in the four robot case for Set-Cover/TSP (TFD)-S. See Figure 6.12(a)
for an illustration. Another example can be seen in Figure 6.12(b). Final poses of
two robot paths lie next to each other. Although it is the best solution, in terms of
cost, i.e., computed execution time, it is very likely that one robot will arrive at that
location earlier than the other. In such a case it would be beneficial to transfer the
assignment of sensor locations to the robot that is already there. Conflicting situa-

151

Chapter 6 Multi-Robot Coverage in 3D

(a) (b)

Figure 6.12: Illustration of sub-optimal real-world behavior. Four robot solutions from
Set-Cover/TSP (TFD)-S (a) and Set-Cover/TSP (LKH)-S (b) are shown. The path
to both ramps is in a confined space marked on the left image. If a robot assigned to
the lower level temporarily blocks access to the ramps, robots aiming for the upper
level must wait. The final poses of two robots’ paths might lie next to each other
(marked on the right image) predicting both robots arriving at the same time. It is
likely that one robot arrives earlier and thus should target both views.

tions between robots are not always that extreme, but they do explain most of the
cases in which solutions for three or four robots have computed execution times that
underestimate the real execution times. These situations are most effectively solved
online during execution, but it is still beneficial to have plans that distribute robots
preventing possible conflicts in the first place. An example is the four robot execution
for the Set-Cover/TSP (LKH)-S solution. Nevertheless, we are approaching the lim-
its of gaining performance by scaling up the number of robots for this environment.
While keeping this in mind, using multiple robots to solve the coverage search prob-
lem clearly reduces the time to solve the coverage search and the algorithms utilize
additional robots fairly effectively.

6.8 Conclusion

We considered the problem of identifying and planning efficient sequences of sensor
locations for covering complex environments represented in 3d with multiple robots.
For that purpose we introduced a sampling based method that reduces the size of
the search space by selecting a large number of high utility sensor locations, which
can then be used to efficiently plan sequences of sensor locations. We introduced
several variants for the planning problem for single robots and multi-robot teams. We

152

6.8 Conclusion

evaluated these empirically in order to determine the trade-off between computation
time and execution time of the solutions. Our results in simulation and real-world
experiments indicate that despite the intractability of the problem, efficient multi-
robot coverage in 3d is feasible.
Small size problems, such as incremental vicinity exploration by a single robot in the

Lab scenario, were solved close to real-time and thus can directly be deployed in real-
world applications. For larger problems, our Simple-Greedy variant provided solutions
that were competitive with the ones based on more elaborate planning approaches
that solve the set cover and traveling salesman subproblems. If the time for visiting a
single sensor location is noticeable, the Greedy-NBV algorithm is a viable alternative.
Although the computation times for the Simple-Greedy variants were smaller than for
the advanced solutions, the latter are still the overall better choice since they result
in lower execution times. This is especially the case when the map is known prior
to deployment and not transmitted to robots after deployment, giving more time for
offline computations.
As one would expect, performance increases when adding more robots. All algo-

rithms were able to reduce the execution time for the coverage search problem when
given more robots. Yet, the dedicated multi-robot greedy solutions only showed ad-
vantages for small to medium sized problems. The decomposition approach that solves
the set cover and traveling salesman subproblems turned out to be superior, i.e., pro-
ducing high-quality solutions in a short amount of time, especially in combination with
the TSP solver. Even the splitting of the resulting single robot solution into a solution
for multiple robots did not lead to inferior performance compared to the multi-robot
greedy solutions, which do not require the splitting. Overall, producing multi-robot
plans from single-robot plans showed to be a good approach for extending single-robot
algorithms.
Our real-world experiments have shown that the simulation results transfer well to

robots acting in real environments. The same algorithms that have been shown to be
superior in simulation also performed better in reality, especially if we value execution
time more than offline computation time. An increasing number of robots also lead to
shorter execution times when the robots were distributed well. Although one would
expect that advanced dedicated multi-robot algorithms might produce even better
solutions with lower execution times, our experiences from the real world experiments
suggest that the strongest potential for improvement is to consider online adaptation
of solutions. This is mainly due to the fact that robot execution times are hard to
predict precisely in reality and the location of an error or unanticipated delay is crucial
for finding a high quality solution that mitigates the delay. Overall, despite the large
amount of future work one may carry out to improve multi-robot 3d coverage search,
we were able to show that our current approach is already well suited for real-world
applications.

153

Chapter 7

Conclusion

In this thesis we investigated task planning as a method to control the high-level
decision making of mobile robots. The aim was to enable robots to solve complex
tasks by combining their skills in an intelligent and goal-directed manner. We chose
to use automated planning to tackle this problem as planners only need a description
of a robot’s skills and the goal to reach. Based on that they produce plans that solve
arbitrary situations, which is important for real-world tasks, where one cannot rely
on known or deterministic scenarios. Nevertheless, classical planning does have some
limitations, mainly that tasks are described symbolically or with limited numerics,
and that at least for classical planners an observable and deterministic world model
is assumed. Therefore a central topic was to develop techniques to make automated
planners suitable for planning in real-world scenarios and integrate these into a real
robot system.

First, we addressed the discrepancy between a symbolic description and geometric
robotics skills, like grasping an object. We determined that state of the art numerical
extensions are not expressive enough for this kind of task and thus developed the
concept of semantic attachments. An important feature for these is that they use a
generic interface to include arbitrary external reasoners, so that the resulting planner
is applicable to any application domain. As semantic attachments are transparent to
the planner, we could base our planner on a state of the art classical planner, in this
case Temporal Fast Downward. We introduced three kinds of semantic attachments
that allow us to provide external semantics for different aspects of planning tasks:
condition checkers, effect applicators, and cost modules. These were motivated by
our requirements for modeling robotics tasks that we encountered in practice. The
result of this work is the planner Temporal Fast Downward with Modules (TFD/M)
that generates sound plans for mixed symbolic-geometric robotic planning tasks. We
demonstrated this with manipulation planning tasks that use a robot and world model
representing real robots. The resulting plans contain, for example, motion plans that
are directly executable on a robot.

Another problem related to the expressiveness of planning formalisms was action
parametrization. Commonly these only allow a finite number of operator instances,
which prohibit to model geometric choices like where to place an object. State of the

155

Chapter 7 Conclusion

art solutions mitigated this by providing a limited number of options to the planner
with the input. Our solution removed this limitation. We provided a mechanism
to generate action parameters on the fly during planning. In the spirit of semantic
attachments an external interface allows to use arbitrary algorithms to do so. One
reason for this limitation of classical planning algorithms is that the generic problem
is undecidable. Therefore we also developed a new search algorithm that finds so-
lutions for planning tasks with an infinite branching factor. Thus domain designers
do not need to commit to giving any constant in the input that in reality is problem
dependent. This is now solved in the planner as part of the planning process. We
believe this principle is important in general, i.e., a user should ideally need to specify
only what is needed to define the problem, while the system determines everything
else. Our evaluation shows that in comparison to an adaption of classical planning
algorithms our new algorithm also performs better. The main reason for this is that
the planner is now free to choose a suitable number of operator instantiations that
might be lower than a given fixed limit.
The second part of the thesis dealt with applications of our planner in real-world

systems. As a basis for this we identified challenges of real-world tasks such as an
incomplete or uncertain world knowledge and unexpected action outcomes. To deal
with these issues we embedded our planner in a continual planning loop. Here we
focused not only on the implementation of this system, but also specifically addressed
what simplifications we made and under what assumptions we still can guarantee to
reach the goal. It turns out that for many situations one has to make assumptions,
i.e., there is no best way to solve these problems in general. This is important to
recognize as thus the actual impact of our simplifications in comparison to other
possible approaches like nondeterministic planning is not that strong. Most noticable
is that we require the robot to never get into a dead end state. We implemented a
complex mobile manipulation system on the PR2 robot and thereby showed that our
system works in practice or in other words that our assumptions hold in the scenarios
that we investigated.
We also addressed the problem of multi-robot coverage search in 3d. The inter-

esting aspect here was that this is a challenging problem from the geometric side of
robotics tasks, but also contained a combinatorial problem that can be formulated
as a planning problem. We compared various approaches using greedy and planning
based formulations. Our evaluation showed that the general approach that we pro-
posed works well to solve this problem in simulation and real-world settings. Besides
that we also gained another insight. Although the decomposition approach using the
specific traveling salesman solver was slightly better than the approach that only used
our planner, the planning based variant was competitive. This means that if one needs
to built an ad-hoc system and a generic domain-independent planner as ours is already
integrated in the robot, it might be unnecessary to look for specialized solvers when
the main goal is to get a working system. Task planning can already be well suited
for any new problem.

156

Within this thesis we have investigated how task planning can be used as the high-
level control method for robotics. We identified the major problems that such a
system faces and introduced new planning techniques for integrated task and motion
planning to solve these. One major contribution is the resulting planning system
Temporal Fast Downward with Modules (TFD/M) that implements these techniques.
We also addressed how a planner is integrated into a robotic system that must act
in the real world. Here we have not only shown experimentally that these techniques
work in practice, but also stated the assumptions under which real-world planning
tasks are solved. Our domain formulation is thus more than a single example as
it demonstrates general concepts for dealing with unknown objects and observation
actions in a replanning context. An imporant aspect here was that our system is
generic and not specific to a robot platform or scenario. This was shown by applying
our planner to various different robots and scenarios.
The general applicability to many different tasks and scenarios makes task plan-

ning an interesting method to pursue in the future. While this thesis mainly focused
on establishing planning techniques for robotics there are some topics that we only
touched upon. Better computation speed is always relevant. Heuristic guidance had
a lot of success for classical planning. Developing specific heuristics for robotics plan-
ning tasks is thus promising. The challenge here is to keep these generally applicable
without being specific to a certain domain or even problem instance. Another inter-
esting point is to work towards even more generic skill descriptions. Currently one
has to give these as a planning task with semantic attachments. Although this is a
generic method, this requires users to have at least a basic understanding of planning
itself. To solve this problem providing world models and skill descriptions that are
easily adaptable to any robot system as well as the necessary tools to allow experts in
robotics, but not necessarily planning, to use our system is necessary. This will enable
anyone to use the strength and generality of task planning as the high-level control
method in their robotic system.

157

Appendix

The planning and execution system developed in this thesis is released as open source
software and integrated in the Robot Operating System (ROS) (Quigley et al., 2009).

The most recent version of this software is available at
https://github.com/dornhege/tfd_modules.

The current code revision at the time of writing this thesis is
907080467ffb191a14bc948b75efe42e77362008.

A direct download of this revision is available at
http://www.informatik.uni-freiburg.de/~dornhege/tfd_modules.tar.gz.

The following software and documentation is contained therein.

• The directory tfd modules contains the planner TFD/M.

• The directory continual planning executive contains our continual planning
framework.

• The full PDDL/M domain for the TidyUp scenario is in
planner benchmarks/modular/tidyup/domain modules.pddl. Note that the
TidyUp domain is specified in temporal PDDL, i.e., using durative-action

instead of action and specifying temporal conditions and effects. As already
stated in the thesis, these were not in effect during the experiments.

• PDDL/M domains and problems from Chapter 3 are in
planner benchmarks/modular/crewplanning-modules

and
planner benchmarks/modular/transport-modules

159

Bibliography

N. Agmon, N. Hazon, and G. A. Kaminka. The giving tree: constructing trees for effi-
cient offline and online multi-robot coverage. Annals of Mathematics and Artificial
Intelligence, 52(2-4):143–168, 2008.

R. Alami, J. P. Laumond, and T. Simeon. Two manipulation planning algorithms. In
Workshop on algorithmic foundations of robotics (WAFR), 1995.

V. Alczar, M. Veloso, and D. Borrajo. Adapting a rapidly-exploring random tree for
automated planning. In International Symposium on Combinatorial Search (SoCS),
2011.

J. A. Ambros-Ingerson and S. Steel. Integrating planning, execution and monitoring.
In AAAI Conference on Artificial Intelligence (AAAI), 1988.

D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The traveling salesman
problem: a computational study. Princeton University Press, 2007.

F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge
for planning. Artificial Intelligence, 116(1–2):123–191, 2000.

C. Bäckström and B. Nebel. Complexity results for SAS+ planning. Computational
Intelligence, 11(4):625–655, 1995.

J. Banta, Y. Zhieng, X. Wang, G. Zhang, M. Smith, and M. Abidi. A ”best-next-view“
algorithm for three-dimensional scene reconstruction using range images. In SPIE
Symposium on Intelligent Robots and Computer Vision: Algorithms, 1995.

J. Barry, L. P. Kaelbling, and T. Lozano-Pérez. A hierarchical approach to diverse
action manipulation. In International Conference on Robotics and Automation
(ICRA), 2013.

T. Bektas. The multiple traveling salesman problem: an overview of formulations and
solution procedures. Omega, 34(3):209–219, 2006.

P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeterministic
domains under partial observability via symbolic model checking. In International
Joint Conference on Artificial Intelligence (IJCAI), 2001.

161

Bibliography

P. Bertoli, A. Cimatti, U. Dal Lago, and M. Pistore. Extending pddl to nondetermin-
ism, limited sensing and iterative conditional plans. In ICAPS Workshop on PDDL,
2003.

P. Bertoli, A. Cimatti, and P. Traverso. Interleaving execution and planning in non-
deterministic partially observable domains. In European Conference on Artificial
Intelligence (ECAI), 2004.

J. Bohren, R. Rusu, E. Gil Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise,
L. Mösenlechner, W. Meeussen, , and S. Holzer. Towards autonomous robotic but-
lers: Lessons learned with the PR2. In International Conference on Robotics and
Automation (ICRA), 2011.

A. Botea, M. Müller, and J. Schaeffer. Using abstraction for planning in sokoban. In
Computers and Games, 2003.

F. Bourgault, A. Makarenko, S. Williams, B. Grocholsky, and H. Durrant-Whyte.
Information based adaptive robotic exploration. In International Conference on
Intelligent Robots and Systems (IROS), 2002.

M. Brenner and B. Nebel. Continual planning and acting in dynamic multiagent
environments. Journal of Autonomous Agents and Multi-Agent Systems, 19(3):297–
331, 2009.

D. Bryce. POND: The partially-observable and non-deterministic planner. In Inter-
national Planning Competition (IPC), 2006.

D. Bryce, S. Kambhampati, and D. E. Smith. Planning graph heuristics for belief
space search. Journal of Artificial Intelligence Research, 26:35–99, 2006.

C. Burbridge and R. Dearden. An approach for efficient planning of robotic manip-
ulation tasks. In International Conference on Automated Planning and Scheduling
(ICAPS), 2013.

W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner,
and S. Thrun. The interactive museum tour-guide robot. In AAAI Conference on
Artificial Intelligence (AAAI), 1998.

S. Cambon, R. Alami, and F. Gravot. A robot task planer that merges symbolic
and geometric reasoning. In European Conference on Artificial Intelligence (ECAI),
2004.

S. Cambon, R. Alami, and F. Gravot. A hybrid approach to intricate motion, ma-
nipulation and task planning. International Journal of Robotics Research, 28(1):
104–126, 2009.

162

Bibliography

M. Cashmore, M. Fox, and E. Giunchiglia. Partially grounded planning as quan-
tified boolean formula. In International Conference on Automated Planning and
Scheduling (ICAPS), 2013.

H. Choset. Coverage for robotics–a survey of recent results. Annals of Mathematics
and Artificial Intelligence, 31(1):113–126, 2001.

T. Chung, G. Hollinger, and V. Isler. Search and pursuit-evasion in mobile robotics.
Autonomous Robots, 31(4):299–316, 2011.

J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing
networks. In International Conference on Robotics and Automation (ICRA), 2002.

M. Dao-Tran, T. Eiter, M. Fink, G. Weidinger, and A. Weinzierl. OMiGA : An open
minded grounding on-the-fly answer set solver. In European Conference on Logics
in Artificial Intelligence, 2012.

L. de Silva, A. Pandey, and R. Alami. An interface for interleaved symbolic-geometric
planning and backtracking. In International Conference on Intelligent Robots and
Systems (IROS), 2013.

C. Dornhege and A. Hertle. Integrated symbolic planning in the tidyup-robot project.
In AAAI Spring Symposium - Designing Intelligent Robots: Reintegrating AI II,
2013.

C. Dornhege and A. Kleiner. A frontier-void-based approach for autonomous explo-
ration in 3d. In International Symposium on Safety, Security and Rescue Robotics
(SSRR), 2011.

C. Dornhege and A. Kleiner. A frontier-void-based approach for autonomous explo-
ration in 3d. Advanced Robotics, 27(6), 2013.

C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel. Semantic
attachments for domain-independent planning systems. In International Conference
on Automated Planning and Scheduling (ICAPS), 2009a.

C. Dornhege, M. Gissler, M. Teschner, and B. Nebel. Integrating symbolic and ge-
ometric planning for mobile manipulation. In International Workshop on Safety,
Security and Rescue Robotics (SSRR), 2009b.

C. Dornhege, A. Hertle, and B. Nebel. Lazy evaluation and subsumption caching for
search-based integrated task and motion planning. In IROS Workshop on AI-based
robotics, 2013a.

163

Bibliography

C. Dornhege, A. Kleiner, and A. Kolling. Coverage search in 3d. In International
Symposium on Safety, Security and Rescue Robotics (SSRR), 2013b. (Best Paper
Award Finalist).

C. Dornhege, A. Kleiner, A. Hertle, and A. Kolling. Multi-robot coverage search in
3d. Journal of Field Robotics, 2015. To appear.

F. Endres, J. Trinkle, and W. Burgard. Learning the dynamics of doors for robotic ma-
nipulation. In International Conference on Intelligent Robots and Systems (IROS),
2013.

B. Englot and F. S. Hover. Three-dimensional coverage planning for an underwater
inspection robot. International Journal of Robotics Research, 32(9-10):1048–1073,
2013.

K. Erol, D. S. Nau, and V. Subrahmanian. Complexity, decidability and undecidability
results for domain-independent planning. Artificial Intelligence, 76(1-2):75–88, 1995.

P. Eyerich, M. Brenner, and B. Nebel. On the complexity of planning operator sub-
sumption. In International Conference on Principles of Knowledge Representation
and Reasoning (KR), 2008.

P. Eyerich, R. Mattmüller, and G. Röger. Using the context-enhanced additive heuris-
tic for temporal and numeric planning. In International Conference on Automated
Planning and Scheduling (ICAPS), 2009.

R. Fikes and N. Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2(3–4):189–208, 1971.

M. Fox and D. Long. Identifying and managing combinatorial optimisation subprob-
lems in planning. In International Joint Conference on Artificial Intelligence (IJ-
CAI), 2001.

M. Fox and D. Long. PDDL2.1: an extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20(1):61–124, 2003.

A. Gaschler, R. P. A. Petrick, T. Kröger, A. Knoll, and O. Khatib. Robot task planning
with contingencies for run-time sensing. In ICRA Workshop on Combining Task and
Motion Planning, 2013.

M. Gissler, C. Dornhege, B. Nebel, and M. Teschner. Deformable proximity queries
and their application in mobile manipulation planning. In Symposium on Visual
Computing (ISVC), 2009.

164

Bibliography

D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active
learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:
427–486, 2011.

H. Gonzalez-Banos, E. Mao, J. Latombe, T. Murali, and A. Efrat. Planning robot
motion strategies for efficient model construction. In International Symposium on
Robotics Research (ISRR), 2000.

P. Gregory, D. Long, M. Fox, and J. C. Beck. Planning modulo theories: Extending
the planning paradigm. In International Conference on Automated Planning and
Scheduling (ICAPS), 2012.

E. A. Hansen and S. Zilberstein. LAO*: A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1–2):35–62, 2001.

M. Helmert. Decidability and undecidability results for planning with numerical
state variables. In International Conference on Artificial Intelligence Planning and
Scheduling (AIPS), 2002.

M. Helmert. The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006.

M. Helmert. Concise finite-domain representations for PDDL planning tasks. Artificial
Intelligence, 173:505–535, 2009.

M. Helmert and H. Geffner. Unifying the causal graph and additive heuristics. In
International Conference on Automated Planning and Scheduling (ICAPS), 2008.

K. Helsgaun. An effective implementation of the lin-kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

A. Hertle, C. Dornhege, T. Keller, and B. Nebel. Planning with semantic attachments:
An object-oriented view. In European Conference on Artificial Intelligence (ECAI),
2012.

A. Hertle, C. Dornhege, T. Keller, R. Mattmüller, M. Ortlieb, and B. Nebel. An
experimental comparison of classical, FOND and probabilistic planning. In German
Conference on Artificial Intelligence (KI), 2014.

J. Hess, D. Tipaldi, and W. Burgard. Null space optimization for effective cover-
age of 3d surfaces using redundant manipulators. In International Conference on
Intelligent Robots and Systems (IROS), 2012.

J. Hoffmann and R. Brafman. Contingent planning via heuristic forward search with
implicit belief states. In International Conference on Automated Planning and
Scheduling (ICAPS), 2005.

165

Bibliography

J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap:
An efficient probabilistic 3d mapping framework based on octrees. Autonomous
Robots, 34(3):189–206, 2013.

A. Hornung, S. Böttcher, J. Schlagenhauf, C. Dornhege, A. Hertle, and M. Bennewitz.
Mobile manipulation in cluttered environments with humanoids: Integrated percep-
tion, task planning, and action execution. In International Conference on Humanoid
Robots (HUMANOIDS), 2014.

A. Howard, M. J. Matarić, and G. S. Sukhatme. Mobile sensor network deployment
using potential fields: A distributed, scalable solution to the area coverage problem.
In International Symposium on Distributed Autonomous Robotic Systems, 2002.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science &
Engineering, 9(3):90–95, 2007.

A. Jacoff and E. Messina. Urban search and rescue robot performance standards:
progress update. In SPIE Defense and Security Conference, 2007.

A. Jacoff, B. Weiss, and E. Messina. Evolution of a performance metric for urban
search and rescue robots. In Performance Metrics for Intelligent Systems (PER-
MIS), 2003.

D. Joho, C. Stachniss, P. Pfaff, and W. Burgard. Autonomous exploration for 3d map
learning. Autonome Mobile Systeme, pages 22–28, 2007.

L. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion planning in the now.
In International Conference on Robotics and Automation (ICRA), 2011.

L. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief
space. International Journal of Robotics Research, 32(9-10):1194–1227, 2013.

R. Karp. Reducibility among combinatorial problems. Complexity of Computer Com-
putations, 1972.

L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566–580, 1996.

S. C. Kleene. Introduction to Metamathematics. D. Van Nostrand, Princeton, NJ,
1950.

166

Bibliography

A. Kleiner, A. Kolling, M. Lewis, and K. Sycara. Hierarchical visibility for guaranteed
search in large-scale outdoor terrain. Journal of Autonomous Agents and Multi-
Agent Systems, 26(1):1–36, 2013.

C. A. Knoblock. Planning, executing, sensing, and replanning for information gather-
ing. In International Joint Conference on Artificial Intelligence (IJCAI), 1995.

T. Kollar and N. Roy. Efficient optimization of information-theoretic exploration in
slam. In AAAI Conference on Artificial Intelligence (AAAI), 2008.

A. Kolling, A. Kleiner, M. Lewis, and K. Sycara. Pursuit-evasion in 2.5d based
on team-visibility. In International Conference on Intelligent Robots and Systems
(IROS), 2010.

S. Konecny, S. Stock, F. Pecora, and A. Saffiotti. Planning domain + execution seman-
tics: a way towards robust execution? In AAAI Spring Symposium on Qualitative
Representations for Robots, 2014.

C. S. Kong, N. A. Peng, and I. Rekleitis. Distributed coverage with multi-robot system.
In International Conference on Robotics and Automation (ICRA), 2006.

K. Konolige and N. J. Nilsson. Multiple-agent planning systems. In AAAI Conference
on Artificial Intelligence (AAAI), 1980.

I. Kresse and M. Beetz. Movement-aware action control – integrating symbolic and
control-theoretic action execution. In International Conference on Robotics and
Automation (ICRA), 2012.

U. Kuter, D. S. Nau, E. Reisner, and R. P. Goldman. Using classical planners to solve
nondeterministic planning problems. In International Conference on Automated
Planning and Scheduling (ICAPS), 2008.

J. Kvarnström and P. Doherty. TALplanner: A temporal logic based forward chaining
planner. Annals of Mathematics and Artificial Intelligence, 30(1-4):119–169, 2000.

T. Lang and M. Toussaint. Relevance grounding for planning in relational domains.
Machine Learning and Knowledge Discovery in Databases, 5781:736–751, 2009.

J. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K.,
2006. Available at http://planning.cs.uiuc.edu/.

S. Lazebnik. Visibility-based pursuit-evasion in three-dimensional environments. Tech-
nical report, University of Illinois at Urbana-Champaign, 2001.

167

Bibliography

D. Leidner and C. Borst. Hybrid reasoning for mobile manipulation based on object
knowledge. In IROS Workshop on AI-based robotics, 2013.

D. Leidner, C. Borst, and G. Hirzinger. Things are made for what they are: Solving
manipulation tasks by using functional object classes. In International Conference
on Humanoid Robots (HUMANOIDS), 2012.

D. Leidner, A. Dietrich, F. Schmidt, C. Borst, and A. Albu-Schäffer. Object-centered
hybrid reasoning for whole-body mobile manipulation. In International Conference
on Robotics and Automation (ICRA), 2014.

M. Likhachev, G. J. Gordon, and S. Thrun. ARA*: Anytime A* with provable bounds
on sub-optimality. In Advances in Neural Information Processing Systems (NIPS).
2004.

M. L. Littman. Probabilistic propositional planning: Representations and complexity.
In AAAI Conference on Artificial Intelligence (AAAI), 1997.

S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing problem.
Operations Research, 48(2):256–267, 2000.

R. Mattmüller, M. Ortlieb, M. Helmert, and P. Bercher. Pattern database heuris-
tics for fully observable nondeterministic planning. In International Conference on
Automated Planning and Scheduling (ICAPS), 2010.

D. McDermott. Robot planning. AI Magazine, 13:55–79, 1992.

D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wau, and F. Yaman.
Shop2: An HTN planning system. Journal of Artificial Intelligence Research, 20:
379–404, 2003.

B. Nebel, C. Dornhege, and A. Hertle. How much does a household robot need to
know in order to tidy up your home? In AAAI Workshop on Intelligent Robotic
Systems, 2013.

A. Nüchter, H. Surmann, and J. Hertzberg. Planning robot motion for 3d digitalization
of indoor environments. In International Conference on Advanced Robotics (ICAR),
pages 222–227, 2003.

J. Orkin. Three states and a plan: The A.I. of F.E.A.R. In Game Developers Confer-
ence (GDC), 2006.

R. P. A. Petrick and F. Bacchus. A knowledge-based approach to planning with incom-
plete information and sensing. In International Conference on Artificial Intelligence
Planning and Scheduling (AIPS), 2002.

168

Bibliography

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng.
ROS: an open-source robot operating system. In ICRA Workshop on Open Source
Software, 2009.

I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset. Limited communication, multi-
robot team based coverage. In International Conference on Robotics and Automation
(ICRA), 2004.

A. Renzaglia, L. Doitsidis, A. Martinelli, and E. B. Kosmatopoulos. Multi-robot 3d
coverage of unknown terrains. In Conference on Decision and Control and European
Control Conference (CDC-ECC), 2011.

S. Richter and M. Helmert. Preferred operators and deferred evaluation in satisfic-
ing planning. In International Conference on Automated Planning and Scheduling
(ICAPS), 2009.

J. Rintanen. Complexity of planning with partial observability. In International
Conference on Automated Planning and Scheduling (ICAPS), 2004.

S. Sachs, S. Rajko, and S. M. LaValle. Visibility-based pursuit-evasion in an unknown
planar environment. International Journal of Robotics Research, 23(1):3–26, 2004.

T. Shermer. Recent results in art galleries. Proceedings of the IEEE, 80(9):1384–1399,
1992.

T. Simeon, J. Cortes, J. Laumond, and A. Sahbani. Manipulation planning with
probabilistic roadmaps. International Journal of Robotics Research, 23(7-8):729–
746, 2004.

B. Srivastava and S. Kambhampati. Scaling up planning by teasing out resource
scheduling. In European Conference on Planning, 1999.

S. Srivastava, L. Riano, S. Russell, and P. Abbeel. Using classical planners for
tasks with continuous operators in robotics. In ICAPS Workshop on Planning and
Robotics (PlanRob), 2013.

F. Stulp, A. Fedrizzi, L. Mösenlechner, and M. Beetz. Learning and reasoning with
action-related places for robust mobile manipulation. Journal of Artificial Intelli-
gence Research, 43:1–42, 2012.

M. Westphal, C. Dornhege, S. Wölfl, M. Gissler, and B. Nebel. Guiding the genera-
tion of manipulation plans by qualitative spatial reasoning. Spatial Cognition and
Computation: An Interdisciplinary Journal, 11(1):75–102, 2011.

R. W. Weyhrauch. Prolegomena to a theory of mechanized formal reasoning. Artificial
Intelligence, 13(1-2):133–170, 1980.

169

Bibliography

J. Wolfe, B. Marthi, and S. J. Russell. Combined task and motion planning for mobile
manipulation. In International Conference on Automated Planning and Scheduling
(ICAPS), 2010.

K. M. Wurm, C. Dornhege, P. Eyerich, C. Stachniss, B. Nebel, and W. Burgard.
Coordinated exploration with marsupial teams of robots using temporal symbolic
planning. In International Conference on Intelligent Robots and Systems (IROS),
2010.

K. M. Wurm, C. Dornhege, C. Stachniss, B. Nebel, and W. Burgard. Coordinat-
ing heterogeneous teams of robots using temporal symbolic planning. Autonomous
Robots, 34(4):277–294, 2013.

B. Yamauchi. A frontier-based approach for autonomous exploration. In International
Symposium on Computational Intelligence in Robotics and Automation (CIRA),
1997.

S. W. Yoon, A. Fern, and R. Givan. FF-replan: A baseline for probabilistic planning.
In International Conference on Automated Planning and Scheduling (ICAPS), 2007.

F. Zacharias, C. Borst, and G. Hirzinger. Capturing robot workspace structure: rep-
resenting robot capabilities. In International Conference on Intelligent Robots and
Systems (IROS), 2007.

170

