
Using Local RNA Secondary Structures

for Computational Comparison and

Clustering of RNA Molecules

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat

der Technischen Fakultät

der Albert-Ludwigs-Universität Freiburg

von Diplom-Bioinformatiker

Steffen Heyne



Dekan:

Prof. Dr. Yiannos Manoli

Gutachter:

Prof. Dr. Rolf Backofen

PD Dr. Björn Voss

Die vorliegende Arbeit wurde erfolgreich am 16.06.2014 in Freiburg verteidigt.



Abstract

The past decade in molecular biology was characterised by a multitude of genome-wide

studies which revealed fascinating insights into the complexity of genomic organization

in all kingdoms of life. Surprisingly, a large extend of the transcriptional output con-

sists of non-coding RNAs (ncRNAs), transcripts not being translated into proteins. The

sheer amount of functional identified ncRNAs is just overwhelming and high-throughput

sequencing technologies produce genomic and transcriptomic sequence data with an ever

increasing rate. However, a precise functional annotation of the majority of RNA tran-

scripts remains a challenge. Comparative bioinformatic approaches are commonly used

for large-scale functional analysis and annotation of this immense amount of sequence

data. The close linkage of sequential and structural properties in ncRNAs necessitates

comparison approaches with usually high computational complexity, which in turn makes

even small-sized studies often infeasible for existing approaches. In my thesis, I address

these challenges and describe efficient and accurate computational methods for the com-

parative analysis of RNAs based on their sequence and structure.

In the first part of this thesis, I present ExpaRNA, a pairwise RNA comparison approach

that uses a novel similarity measure based on exact matching substructures (EPMs). In

contrast to previous methods, ExpaRNA detects conserved substructures during the RNA

comparison, which is a key feature to detect functional motifs. Instead of generating a full

sequence-structure alignment, the developed dynamic programming algorithm efficiently

computes an optimal, non-crossing arrangement of matching substructures. I have shown

that this longest common subsequence of exact pattern matchings is in good agreement

with existing comparison approaches, but can be obtained in a fraction of runtime. In

addition, I investigated a generally applicable approach to speedup ressource-expensive

sequence-structure alignment methods by using ExpaRNA’s EPM set as anchor constraints.

The evaluation showed that there is a trade-off between overall quality and speedup that

can be controlled by the minimal size of EPMs used.

With ExpaRNA-P, I present in the second part of this thesis a method that generalizes

exact matching substructures from fixed RNA secondary structures to energy-based RNA

structure ensembles. The developed algorithm not only identifies ensemble-based EPMs

in quadratic time, but it is moreover the first O(n2) time RNA comparison algorithm
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that is based on full RNA structure ensembles. This major leap is achieved by novel

in-loop probabilities in combination with a new structural sparsification scheme. The

evaluation showed that these algorithmic improvements lead to a better quality of the

identified EPMs according to reference alignments as well as to higher speedups when

using ensemble-based EPMs as anchor constraints for full RNA alignments. Moreover,

our method provides a generally applicable method that can also be adopted for other

RNA comparison problems.

In the last part of this thesis, I present GraphClust, an efficient structure-based RNA

clustering method for large RNA datasets. The core of the clustering procedure runs in

linear time and, thus, eliminates the runtime bottleneck of previous approaches. The very

high quality of the found clusters was shown in extensive benchmark studies on already

annotated RNA sequences. GraphClust achieves a drastic runtime reduction from, for

example, approximately 1 year to 36 hours for a dataset of 3900 RNA sequences. This

major improvement is realized by an alignment-free clustering step using a fast graph

kernel in combination with an efficient approximate nearest neighbour search query. The

key for the fast clustering is an explicit representation of the kernel subgraphs that even-

tually allows to retrieve dense candidate clusters in linear time by using locality sensitive

hashing. The feasibility of this approach was demonstrated with a software pipeline that

integrates the clustering algorithm together with a structure-based refinement procedure

to obtain RNA clusters of high quality. In a pilot study, large-scale datasets with up

to 118,000 RNA sequences have been processed and several structural RNA clusters in,

for example, human long intergenic non-coding RNAs and RNAz screens from fly and fish

have been detected.



Zusammenfassung

In der Molekularbiologie konnte im letzten Jahrzehnt dank stark weiter entwickelter Se-

quenziertechnologien ein tiefgreifendes Verständnis über Aufbau und Organisation von

Genomen verschiedenster Organsimen erlangt werden. Dabei wurde überraschenderweise

deutlich, dass zum Beispiel Menschen und andere höhere Organismen viel weniger Gene

für Proteine enthalten als früher angenommen, aber dennoch ein großer Teil der Erb-

information in Form von DNA nach RNA transkribiert wird. Insbesondere sogenannte

nicht-kodierende RNA (ncRNA), RNA Moleküle, die keine Vorlage für ein Protein bil-

den, stellen den Großteil der genomischen Transkripte dar. Es konnte gezeigt werden,

dass diese ncRNAs, wie zum Beispiel die nur 21 Nukleotide umfassenden micro-RNAs,

außerordentlich wichtige Faktoren für die Regulation von zellulären Prozessen darstellen.

Jedoch ist die Menge an identifizierten RNA-Molekülen so immens, dass bisher nur

sehr wenigen Transkripten eine genaue Funktion zugewiesen werden konnte. Bioinforma-

tische Methoden zur vergleichenden Analyse sind deshalb zwingend notwendig, um diesen

riesigen Berg an Sequenzdaten zu durchforsten und einen Beitrag zu dessen funktioneller

Analyse zu leisten. Die strukturellen Eigenschaften von ncRNAs erfordern komplexe Al-

gorithmen, welche selbst die Analyse von kleinen Datensätzen mit bestehenden Ansätzen

fast unmöglich macht. In meiner Arbeit stelle ich mich diesen Herausforderungen und

entwickle effiziente bioinformatische Methoden, die RNA-Moleküle basierend auf deren

Sequenz und Struktur vergleichen und analysieren können.

Im ersten Teil meiner Arbeit stelle ich ExpaRNA vor - ein Verfahren zum paarweisen

Vergleich von RNAs, das auf dem Prinzip von exakt übereinstimmenden Teilstrukturen,

sogenannten EPMs, basiert. Im Gegensatz zu bestehenden Methoden benutzt ExpaRNA

evolutionär konservierte Teilstrukturen für den Vergleich und ist damit besser für die

Erkennung von funktionellen Motiven geeignet. Der entwickelte dynamische Program-

mieralgorithmus berechnet kein vollständiges Alignment, sondern eine optimale Men-

ge von Teilstrukturen, welche in beiden RNA-Sekundärstrukturen exakt enthalten und

ähnlich angeordent sind. Ich habe gezeigt, dass die ausgewählten Teilstrukturen gut mit

den Ergebnissen bisheriger Methoden übereinstimmen, jedoch in einem Bruchteil der

Laufzeit berechnet werden können. Zusätzlich habe ich einen Ansatz untersucht, der das

Ergebnis von ExpaRNA benutzt, um aufwendige Sequenz-Struktur-Alignment-Methoden
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zu beschleunigen. Dabei werden gemeinsame Teilstrukturen als Ankerpunkte zur Berech-

nung eines vollständigen Alignments benutzt. Genauigkeit und Geschwindigkeitsvorteil

können dabei über die minimale Größe der verwendeten Strukturen balanciert werden.

Mit ExpaRNA-P präsentiere ich im zweiten Teil ein Methode, die exakt übereinstim-

mende Teilstrukturen in RNAs von festen Sekundärstrukturen auf energiebasierte RNA-

Strukturensembles erweitert. Der entwickelte Algorithmus findet nicht nur EPMs in-

nerhalb quadratischer Laufzeit, er stellt auch den ersten RNA-Vergleichsalgorithmus

überhaupt dar, der auf Grundlage von RNA-Strukturensembles eine Laufzeit von O(n2)

erreicht. Dieser Fortschritt wird durch neue sogenannte
”
in-loop”-Wahrschein-lichkeiten

auf dem Strukturmodell erreicht, so dass weniger Matrixeinträge berechnet werden müssen.

Dieses Verfahren lässt sich auch auf allgemeinere RNA-Vergleichsmethoden anwenden. In

der Auswertung konnte gezeigt werden, dass EPMs auf Basis von Strukturensembles eine

höhere Qualität aufweisen. Wenn diese EPMs als Ankerpunkte für Alignments verwendet

werden, kann dadurch eine noch höhere Beschleunigung erreicht werden.

Im letzten Teil dieser Arbeit präsentiere ich GraphClust - ein sehr effizientes Verfahren

zum strukturbasierten Clustern von großen RNA-Datensätzen. Das entwickelte Verfahren

stellt die erste brauchbare Lösung für dieses Problem dar, da der zentrale Algorithmus

von GraphClust nur lineare Laufzeit benötigt und ohne Alignments auskommt. Dadurch

kann hinsichtlich der Laufzeit der Flaschenhals früherer Ansätze überwunden werden und

es ist erstmals möglich, große RNA-Datensätze auf Basis von Sequenz und Struktur zu

clustern. In breiten Benchmarkstudien auf bereits annotierten RNA-Sequenzen konnte

die hohe Qualität der gefundenen Cluster gezeigt werden. Im Vergleich zu bisherigen

Verfahren wird der Vorteil von GraphClust besonders offensichtlich, da die Laufzeit von,

zum Beispiel, einem Jahr auf 36 Stunden für einen Datensatz von 3900 RNA Sequenzen

verringert werden konnte. Diese starke Verbesserung ist möglich durch die Verwendung

eines schnellen Graphkernels in Kombination mit einem sehr effizienten Verfahren, wel-

ches die k-nächsten-Nachbarn einer RNA approximiert. RNA-Sekundärstrukturen werden

dafür in Graphen umgewandelt und lokale RNA-Strukturelemente als Features kodiert.

Der Schlüssel für das sehr schnelle Clusterverfahren liegt in der expliziten Repräsentation

dieser Features, so dass anhand eines inversen Index eine Menge sehr ähnlicher RNAs in li-

nearer Zeit berechnet werden kann. Die Umsetzbarkeit dieser Methode wird mit Hilfe einer

kompletten Software-Pipeline zum Prozessieren von großen RNA-Datensätzen demons-

triert. In einer Pilotstudie wurden damit mehrere Datensätze von bis zu 118.000 RNA

Sequenzen bearbeitet und es konnte eine Reihe ähnlicher RNA Moleküle zum Beispiel in

langer, intergenischer, nicht-kodierender RNA vom Menschen sowie in RNAz-Screens in

Fruchtfliegen und Fischen gefunden werden.
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Chapter 1

Introduction

When James D. Watson and Francis H. C. Crick put in 1953 all pieces of scientific dis-

coveries in the right place and presented the first correct description of the complex,

double-helical structure of DNA, it marked only the beginning of a new era in under-

standing the foundations of life [175]. It was also around this time when Crick wrote for

the first time his central dogma of molecular biology which states that information passes

only from DNA to proteins via RNA [35]. Although not being wrong, his statement influ-

enced molecular biology and put the focus of research for many years predominantly on

the protein universe. The popular assumption was that biological complexity correlates

with the number of protein-coding genes. RNA in contrast was considered as passive

molecule being only a piece in the machinery that converts DNA into proteins. In the

meantime, many rather surprising lessons have been learned and RNA molecules seem to

be the dark matter orchestrating the development of complex organisms [160]. It is even

an established opinion that all life on earth evolved from a primordial RNA world to the

modern RNA world we recognize today [26].

When the first draft of the human genome sequence was presented in 2001, it became

clear that the initial estimates of up to 150,000 humans genes had to be corrected to

only 25,000 genes or even less [45, 46]. In the following years, emerging sequencing tech-

nologies sparked an explosion of large-scale genome sequencing projects for many higher

eukaryotes like for mouse and chimpanzee, but also for yeast and bacteria. Different evi-

dence from tiling arrays and high-throughput sequencing revealed basically in all higher

eukaryotes a much more complex transcriptome together with a much larger amount of

DNA transcribed into RNA than one could explain by protein-coding genes alone. For

example, in the human genome about 85% of the genome is transcribed into RNA, while

less than 1.5% is contained in protein-coding exons [46]. This large amount of non-coding

RNA is probably the key to finally explain biological complexity, or more philosophical:

what makes us human? For example, the number of genes in the roundworm Caenorhab-

ditis elegans is about the same as found in human or mice. In contrast, the ratio between
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coding and non-coding RNA sequences is much higher in humans [160]. The discovery of

small interfering RNAs (siRNAs) and micro RNAs (miRNAs) around the turn of the mil-

lennium mark in retrospective the dawn of the ongoing effort to understand this hidden

layer of cellular regulation [52, 98]. Numerous studies revealed that non-coding RNAs

are an essential part of nearly all regulatory processes in all kingdoms of life. They are

involved, for example, in cell development, gene activation or silencing and chromatin

remodelling [87]. There is also clear evidence that many ncRNA are linked to complex

diseases [48].

Subject of this thesis

Even though RNAs are a vital part of current research in molecular biology, the key

question remains: what are the precise functions of this immense bulk of RNA tran-

scripts? Experimental methods are often costly and time-consuming, and hence, com-

putational methods are necessary. Bioinformatics is already an integral part of RNA

research and the sheer amount of data makes it also mandatory to keep step with the

ever increasing rate of novel sequence data. For example, recent computational screens

suggest more than 30,000 conserved ncRNAs only in humans [128, 169]. Several studies

for genome-wide transcriptomics show that a broad RNA transcriptome is a widespread

feature not only of humans and other mammals, but also of fish, invertebrates and bac-

teria [45, 46, 104, 109, 120]. However, a precise functional annotation of the majority

of RNA transcripts remain elusive in many cases and the fraction of ncRNA candidates

lacking a reliable class assignment is rapidly expanding [115]. Computational methods

complementing a detailed functional analysis of ncRNAs are requested, but constitute a

challenging task. The reason is that conserved, and thus functional, signals are trace-

able mostly by structural properties of the RNAs whereas their sequence alone is often

not sufficient. On the other hand, structure-aware approaches immensely increase the

computational complexity and runtime of comparative algorithms, which makes even

small-sized comparison studies infeasible [58, 173]. A further complicating fact is that

ncRNAs are overall very inhomogeneous with vastly different structures, functions, and

evolutionary patterns, for example ranging from short micro RNAs (miRNA) to long

intergenic non-coding RNAs (lincRNAs) [17].

Therefore, the subject of this thesis are efficient computational methods for the com-

parative analysis of RNAs based on their sequence and structure. More precisely, I present

a fast pairwise RNA comparison method based on exact matching substructures that can

also speedup complex sequence-structure alignment algorithms. The second method de-

scribes an efficient solution to identify exact local motifs in complex RNA structural

ensembles. Finally, I present the first feasible solution for large-scale, structure-based
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clustering of RNA sequences. This method can also be used for the purpose of de-novo

identification and prediction of functional RNA elements. A pilot study revealed con-

served structural RNA elements in the human genome and elsewhere.

Thesis outline

The following introduction gives an overview on important biological functions of RNAs

and major classes of RNA molecules. Then, I introduce general concepts in bioinfor-

matics necessary for modelling RNA structure and RNA folding. Finally, I summarize

existing approaches for RNA comparison, clustering and ncRNA gene finding. In the sec-

ond chapter, I present ExpaRNA, a fast tool for RNA comparison based on exact matching

substructures. The third chapter of this thesis presents ExpaRNA-P, a fast RNA com-

parison approach which generalizes the concept of exact matchings to RNA structure

ensembles. In the fourth chapter, I present GraphClust, a very efficient method for

large-scale structure-based clustering of RNA sequences. A summary of this thesis and

ideas for future work are presented in the final chapter.

Bioinformatics is an interdisciplinary research area that is nowadays designated by

collaborations. The work presented in thesis results from close collaboration with other

scientists, who contributed with ideas, discussions or implementations. Therefore, I use

first person plural instead of first person singular in my thesis. The presented work is

based on publications which already appeared in international journals or as conference

proceedings [70–72, 150, 157]. Figures, tables and text passages from these publications

are used in the thesis without further notice.

1.1 RNA in Biological Systems

In all living organisms, RNAs are predominantly synthesized by the transcription of

the DNA sequence stored in specific genomic loci.1 For many years, it was assumed

that the majority of these transcripts are protein-coding messenger RNAs (mRNAs),

which are translated into an amino acid sequence, i.e proteins. This protein-centric view

led to the discovery of only a small number of non-coding RNAs (ncRNAs), mainly

involved in basic cellular processes like translation. Among these infrastructural RNAs

are tRNAs that transfer a single amino acid to the ribosome in order to elongate a protein

sequence. Many ncRNAs are also often found in complexes where they act together with

proteins. The ribosome itself is, for example, a large arrangement of ribosomal RNAs

(rRNAs) and proteins. The discovery of catalytic active RNAs (ribozymes) like self-

splicing introns or RNaseP recovered RNAs from being passive and not worth to be

studied cellular players [26]. Other common RNAs comprise the small nuclear RNAs

1Although not considered as living organisms, retroviruses store their genome directly as RNA.
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Figure 1.1. Simplified representation of regulatory ncRNAs and their functions. A
genomic locus can be origin or target of several ncRNA species with different functional roles.
Generalized gene models are presented in dark grey and light orange and overlap the double-
strand DNA structure (light grey). Classes of regulatory RNAs and their functions are defined by
a colour. PARs, promoter-associated RNAs; lncRNAs, long non-coding RNAs; miRNAs, micro
RNAs; snoRNAs, small nucleolar RNAs; sdRNAs, sno-derived RNAs; endo-siRNAs, endogenous
siRNAs; piRNAs, PIWI-interacting RNAs; tiRNAs, transcription initiation RNAs. The figure
is adapted from Taft et al. [160] with kind permission of John Wiley & Sons (License Number:
3610150730390).

(snRNAs) U1-U6, which are part of the eukaryotic spliceosome, and snoRNAs, which

are involved in the post-transcriptional modification of rRNAs. The 7SL ncRNA is part

of the signal recognition particle (SRP), a complex that is important for correct protein

localization [115].

With the discovery of RNA interference (RNAi) in eukaryotes, the fundamental role

of RNAs for regulatory processes like gene silencing became evident [34]. RNAi-related

pathways result in about 22nt long RNA molecules derived either from a hairpin or double-

stranded precursors. These short interfering RNAs (siRNAs) along with micro RNAs

(miRNAs) share a similar pathway to form RNA-RNA interactions with mRNAs, which

usually lead to gene silencing. Many studies showed that miRNAs play a central role in

the regulation of developmental processes, cell proliferation and apoptosis [160]. Among

further short RNA classes of the steadily expanding RNA universe, PIWI-interacting

RNAs (piRNAs) are, for example, responsible for the silencing of transposons in the

germ line of animals [156].

The class of long non-coding RNAs (lncRNAs) includes a broad variety of transcripts

with no clear classification. Most of them are localized in the nucleous, show low ex-

pression levels, some have a poly-A signal or get spliced. Their location with respect

to protein coding genes can be sense, antisense, intronic, intergenic or bidirectional [87].

Long-intergenic RNAs (lincRNAs) form a subgroup with a specific chromatin signature

and are, for example, linked to epigenetic regulation by interacting with chromatin re-

modelling complexes [87]. A comprehensive overview of known ncRNA classes is given in

Bompfünewerer Consortium et al. [17] and Taft et al. [160]. Figure 1.1 gives an overview

on eukaryotic regulatory RNAs and their functional classification.
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Prokaryotes also contain a large number of small regulatory RNAs (sRNAs) involved

in the regulation of many critical processes. Most of them act by base pairing to mRNAs

at the ribosome binding site and thus lead to a downregulation of the encoded protein.

However, activation of translation is also reported [61]. Prokaryotic sRNAs are usually

between 50−500nt long, whereas in eukaryotes arbitrarily everything < 200nt is regarded

as short RNA [88].

Another type of regulatory RNAs are cis-acting elements embedded in untranslated

regions (UTRs) of mRNAs [115]. These elements often form a local secondary struc-

ture that acts as binding platform for trans-acting signals like RNA binding proteins

or metabolites as, for example, in case of riboswitches. A well-studied example of cis-

acting elements is the iron-responsive element (IRE) found in ferritin mRNAs. The IRE

folds into a small stem-loop structure and is bound by IRE-binding proteins (IRE-BPs)

in low iron conditions. If iron level increases, the IRE-BP changes its folding and gets

released from the IRE. This triggers the translation of ferritin, an iron storage compo-

nent [2]. Other cis-regulatory RNAs are, for example, SECIS elements, responsible for

the insertion of selenocystein into proteins in response to UGA codons, or localization

elements [111, 161].

1.2 RNA Structure

An RNA molecule is an hetero-polymer composed of the four nucleotide monomers ade-

nine (A), cytosine (C), guanine (G) and uracil (U). Each nucleotide consists of a phos-

phate, a ribose ring, phosphate groups and the corresponding nucleobase. Adjacent nu-

cleotides are linked together by phosphodiester bonds between the third and fifth carbon

atom of the ribose. This asymmetric linkage of nucleotides induces a direction which is

always specified from 5’ to 3’. The sequence of nucleotides denotes the primary structure;

Watson-Crick pairs and other non-crossing pairs are called secondary structure and all

other contacts and pairs like pseudoknots are subsumed as tertiary structure.

Most RNA monomers fold into a secondary structure formed by intramolecular hy-

drogen bonds between complementary bases according to standard Watson-Crick pairs

(A-U and G-C) and non-standard pairs like G-U. Although all possible kinds of base

pairs occur in nature, these three types contribute most to the free energy of an RNA

molecule [100]. Furthermore, RNA folding is a hierarchical kinetic process that is mainly

influenced by these base pairs. Once small helices are built, additional contacts and

pairs like pseudoknots are made in order to form the three-dimensional structure [20].

Figure 1.2 shows different illustrations of an RNA secondary structure.
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1.2.1 Formal Abstraction of RNA Structures

We describe an RNA structure as combination of its primary and secondary structure

and choose the notion of arc-annotated sequences [49, 50]. We define an arc-annotated

sequence as follows:

Definition 1.2.1 (arc-annotated sequence). An arc-annotated sequence is a tupel (S, P ),

where S is a string over the alphabet {A,C,G,U}. The nucleotide at the i-th position of

S is denoted by Si, the subsequence from position i to j by S[i .. j] and its length by |S|.
The secondary structure P is a set of arcs (i, j) such that 1 ≤ i < j ≤ |S|. Furthermore,

we require that each sequence position is involved in at most one base pair, i.e. for all

(i, j), (i′, j′) ∈ P : i = i′ ⇔ j = j′ and i 6= j′. An arc (i, j) ∈ P is called crossing if there

exists an arc (i′, j′) ∈ P with i < i′ < j < j′. An arc-annotated sequence is crossing if it

contains a crossing arc, otherwise we call it non-crossing or nested .

The set of arcs is usually restricted to complementary Watson-Crick base pairs (A-U

or G-C) and the non-standard G-U base pair. In order to discriminate two RNAs A and

B, we simply write (A,PA) and (B,PB). A sequence position is indicated with Ai or Bi.

Natural RNA structures like those of transfer-messenger RNAs (tmRNAs) or RNase P

often form so-called pseudo-knot motifs that contain crossing base pairs. However, cross-

ing arcs are usually ignored because the computational complexity for problems like

structure prediction as well as structure comparison becomes NP-hard, and thus, in-

feasable for RNAs of reasonable length [50, 107]. In order to circumvent the NP-hardness

for structure prediction, tools like KnotSeeker and IPknot use heuristics, while other

approaches restrict the type of possible pseudoknots [136, 149, 159]. Most of these ap-

proaches are, however, limited to small-scale analysis tasks. In the course of this thesis,

we hence consider only non-crossing structures.

1.2.2 RNA Motifs

There exists no general definition of an “RNA motif”, although there is an intuitive idea of

a recurrent part of an RNA behind it. Motifs are often linked to special functions, either

directly or indirectly. Known examples comprise short RNA sequences responsible for

RNA-protein interactions or for sensing of metabolites or temperature in riboswitches [19,

32]. RNA motifs, also denoted as RNA modules, that are necessary for the compact

folding of complex RNAs were in detail analyzed by Eric Westhof and colleagues, who

state that “RNA motifs are directed and ordered stacked arrays of non-Watson-Crick base

pairs forming distinctive foldings of the phosphodiester backbones of the interacting RNA

strands” [101]. Recurrent classes of such motifs are tetraloops in hairpins like the GNRA

or UNGC tetraloops, loop E motif, bulged G motif, kink-turn motif and the C-motif [177].

As these motifs include very special non-Watson-Crick base pairs, they are usually missed
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Figure 1.2. Different representations of RNA secondary structure. From left to right:
Circle plot, conventional secondary structure graph, mountain plot and dot plot. Corresponding
colors in each plot indicate the same base pairs. The diagram at the bottom shows the sec-
ondary structure in dot-bracket notation, where each base pair corresponds to a pair of matching
parentheses. The structure shown is the purine riboswitch (Rfam accession number RF00167).
The figure is reused from Hofacker and Stadler [75] with kind permission of John Wiley & Sons
(License Number: 3632720643620).

in structure prediction methods. An exception are, for example, certain tetraloops with

experimentally measured energies that can be predicted by RNAfold. Some of these motifs

have special patterns in the secondary structure, which allows to find them indirectly for

example in structure based RNA alignments.

In this thesis, we use the term RNA motifs to denote distinct but recurrent secondary

structure patterns that can be utilized to identify related RNAs. However, we do not link

motifs to specific functions as they can occur anywhere in the structure. Accordingly, an

RNA motif could be any substructure like a hairpin, an internal loop, two stacking base

pairs or a complete multiloop. The most important characteristic of known RNA motifs

seems to be their structural locality, which we incorporated in the developed methods to

the best of our knowledge.

1.3 RNA Structure Prediction

Similar to proteins, there is a close connection between structure and function for an

RNA molecule. A good structural model is therefore crucial to determine the function

of an RNA. As it is a very tedious task to determine a complete 3D model experimen-

tally, computational methods are often used to predict structure while focusing on the

secondary structure only [174].

RNA secondary structures can be decomposed into loops. The resulting structural

elements are distinguished by their composition of base pairs and unpaired bases. We

discriminate the following elements: hairpin loop, interior loop, bulge loop, multi-branch
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loop, exterior loop and stacked base pairs (see Figure 1.3a). The assumption behind

this decomposition is that the free energy contribution is additive and independent of

other building blocks. We call this the nearest neighbor or loop-based energy model

(see Figure 1.3b). Although this concept lacks some parameters of biological relevant

RNAs, it enables the usage of dynamic programming (DP) algorithms for RNA structure

prediction. The free energy contributions of single loops can be determined experimen-

tally; a set of widely used parameters was generated by the Turner lab [113]. In general,

stacking base pairs have a stabilizing energy contribution while long unpaired loops are

destabilizing.

One of the first approaches to solve the RNA folding problem was the Nussinov

algorithm [124]. This method finds the RNA secondary structure with the maximum

number of base pairs in O(n3) time and O(n2) space. The utilized decomposition is

simplified in Figure 1.3c. By incorporating the loop-based energy model, one can predict

for a given RNA sequence the structure with the minimum free energy (MFE). The

Zuker algorithm is the most common variant for this task [193]. Loop energies are either

tabulated or modelled linearly to the size of the loop. When the size of internal loops

is bound by some constant, the Zuker algorithm runs in O(n3) time; otherwise it needs

O(n4) time. Tools like RNAfold from the Vienna RNA package or RNAstructure are well-

known implementations of this algorithm [76, 105, 133]. Lyngso et al. [108] proposed

an O(n3) time algorithm for unbound internal loop sizes. There is also a wide range of

algorithms that are able to predict structures with pseudoknots. For more details see the

recent review by Washietl et al. [173].

The accuracy of energy-based models is compromised by several issues as neglect-

ing all tertiary interactions or too many loop combinations for experimental parameter

measurement. It was shown that about a third of the predicted base pairs are wrong

and a similar fraction is missed completely [40, 113, 174]. In contrast to energy-based

models, only 20% of the base pairs can be correctly predicted by using Nussinov-style

algorithms. Prediction accuracy can be enhanced by predicting canonical RNA struc-

tures, i.e. by omitting unstacked, “lonely” base pairs [16]. Further improvements can

be achieved by integrating folding constraints found by structural probing experiments.

Such external knowledge helps to restrict the folding space in tools like RNAfold. Struc-

tural information obtained by sequencing techniques like SHAPE can be integrated via

pseudo energies [37, 172].

Probabilistic models constitute an alternative to energy-based models. Folding pa-

rameters can be estimated from a set of verified RNA structures and inferred onto RNA

sequences with an unknown structure. Stochastic context free grammars (SCFG) can

be used for this task, although actually better suited for RNA homology search [43].
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Figure 1.3. Principles of RNA structure prediction. (a) A secondary structure can be
uniquely decomposed into basic elements (e.g. stacked bases) that are independent from each
other. (b) Example of energy evaluation of a small RNA structure. Thermodynamic folding
algorithms assign free energies to the structural elements. In the example shown, two stacks and
a symmetric interior loop stabilize the structure (negative free energy), while the hairpin loop
destabilizes the structure (positive free energy). The total free energy of the structure is the
sum of the energy of all its structural elements. (c) The dynamic programming principle allows
for efficient folding algorithms. In order to find the minimum free energy between the positions
i . . . j, we use the solution for i+1 . . . j and either add an unpaired base or a base pair (i, k). Here
k divides the problem into smaller subproblems which can be recursively solved. The figure is
adapted from Washietl et al. [173] with kind permission of John Wiley & Sons (License Number:
3610141326722).

CONTRAFOLD is an interesting approach that augments SCFGs by using conditional ran-

dom fields [38]. It can score all types of possible base pairs and advanced scoring schemes

can be easily integrated. However, it is not suited to predict MFE structures.

1.3.1 Structure Ensemble

At physiological relevant temperatures, an RNA sequence is not fixed into one structure

but it can form an ensemble of different structures. The fact that many stabilizing effects

are ignored in the energy model leads to the problem that a predicted MFE structure is

often different to the structure with biological function. The analysis of suboptimal struc-

tures is, however, difficult because the number of structures increase exponentially with

the length of the sequence [77]. Using the partition function for Boltzmann-weighted

ensembles instead allows for a computational tractable method to analyze the RNA

structure space [117]. The underlying assumption is that a thermodynamic system in

its equilibrium occupies states with a probability depending on the energy of the state.

Adopted to the RNA world, a state is a structure P from the set of all possible secondary
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structures P that can be formed by a sequence S. The energy at a temperature T of a

structure P is denoted as E(P ). Now we can use the Boltzmann distribution to define

the probability of a structure P of sequence S as

Pr{P |S} =
e−βE(P )

Z
(1.1)

where β = (kBT )−1 is the inverse temperature, Z the partition function and kB is

the Boltzmann constant. Basically, the probability of a structure P is proportional to its

Boltzmann factor e−βE(P ) and gets normalized by Z. As all probabilities add up to one,

we can define the partition function Z as

Z =
∑
P∈P

e−βE(P ). (1.2)

In addition to the probabilities of single structures, we can also compute the probabil-

ities of smaller structural features like base pairs. To this end, we sum up all Boltzmann

weights of structures that contain a base pair p = (i, j) and divide this term by Z, i.e.

Pr{(i, j)|S} =
Zij
Z

=

∑
(i,j)∈P e

−βE(P )

Z
. (1.3)

Fortunately, the partition function can also be computed in O(n3) time complexity

as folding into the MFE structure, although with a different constant factor. McCaskill

[117] formulated a DP algorithm to compute Z and its basic recursion scheme is related

to the Zuker algorithm. With the McCaskill algorithm, one can for example compute

the probability matrix of all possible base pairs (i, j) and obtain a very compact and yet

powerful way to abstract the folding space of an RNA sequence. These “RNA dot plots”

(see Figure 1.2) are widely used and permit powerful structure-based algorithms. The

Vienna RNA package contains a widely used implementation of McCaskill’s algorithm,

which is used by tools like RNAfold [105].

The RNAShapes approach for structure prediction is also based on the partition func-

tion and can efficiently group similar foldings into different levels of abstraction, called

shapes [57]. Each shape class is represented by the structure of minimal free energy

within the shape and thus allows to easily identify meaningful suboptimal foldings of a

single RNA sequence.

1.3.2 Comparative Structure Prediction

Using a single RNA sequence for structure prediction is usually not sufficient to obtain a

clear picture of its structure, not to mention its function. Homologous sequences can im-

prove structure prediction by exploiting RNA specific substitution patterns particularly

found in structured regions. Similar to proteins, related RNAs preserve structural fea-



1.4 RNA Gene Finding and Annotation 11

tures, while the underlying nucleotide sequences can diverge more easily. In the secondary

structure this can be observed by either consistent or compensatory mutations on base

pairs, for example a change from A-U to G-U base pair or a full swap like from A-U to

G-C. For large RNA sets, the mutual information content can identify highly correlated

columns. Another strategy for small datasets is employed by tools like RNAalifold [12],

which try to fold a given multiple sequence alignment with a variant of the Zuker algo-

rithm. A consensus structure is inferred by averaging the individual energy contributions

and adding a special reward for observed covariance. An alternative approach is, for

example, provided by PETfold, which combines evolutionary and thermodynamic infor-

mation to derive a consensus structure [151].

The aforementioned approaches rely on a given multiple alignment, usually obtained

by sequence alignment tools like MAFFT [90]. Especially for RNAs, this is adverse because

the named mutation patterns are ignored by sequence alignments algorithms. It has been

shown that sequence alignment methods fail for RNA sequences below 60% sequence

identity even if they are related. Therefore, structure-aware RNA alignment methods

are required and the broad range of existing approaches can be discriminated by how

structural information is incorporated. Tools like MARNA [154] and RNAforester [73] first

predict an RNA structure for each sequence and try to align them afterwards. As these

tools use mainly the MFE structure as input, their accuracy is also clearly limited.

The assumed “gold standard” is the simultaneous alignment and folding approach as

introduced by David Sankoff [147]. Here a common structure is inferred during the com-

putation of the alignment. Tools like Dynalign [114] and FoldAlign [67] use an energy

model and implement the Sankoff method with heuristics as the original algorithm runs

in O(n6) time. More recent advances use a sparse version of the structure ensemble based

on base pair probability dot plots, which allows for less expensive O(n4) time algorithms,

for example implemented in LocARNA [179] and FoldAlignM [163]. The sequence-structure

alignment tool Lara uses integer linear programming to compute near-optimal solutions

by using methods from combinatorial optimization [10]. There are also SCFG-based tools

like Stemloc [79] that follow the Sankoff framework.

1.4 RNA Gene Finding and Annotation

The identification of functional RNAs or RNA genes is a difficult task and remains a

key problem especially with the evidence of pervasive transcription for example in mam-

mals [30]. Comparative methods are superior to single sequence methods because specific

conservation patterns can be used to distinguish functional regions from non-functional

ones. Obviously, de-novo RNA gene finding relies on structure prediction methods as

outlined above and hence their performance. Furthermore, it has been shown that RNA

structure stability alone is not sufficient to identify RNA genes [137]. The problem is
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further complicated by the fact that functional RNA elements can be embedded in longer

RNA transcripts and can only be detected by employing local search strategies. Such

examples comprise cis-acting RNAs like SECIS elements or riboswitches. There is also

evidence that long non-coding RNAs contain independent functional units that might act

in cis or trans [165].

One of the first tools for de-novo ncRNA prediction is QRNA, which uses probabilistic

models and was successfully used to screen pairwise BLASTn alignments of bacteria for

novel ncRNAs [138, 139]. More recent approaches often use multi-species alignments of

whole genomes (e.g. from MULTIZ [14]) as input and employ a sliding-window approach

to assess the “gene” potential of a homologous region. RNAz for example uses a SVM

trained on both sequence and structure conservation to classify ncRNA candidates [170].

The probabilistic approach EvoFold combines phylogenetic information with a SCFG for

structure prediction [128]. Although many (potential) ncRNAs could be, for example,

identified in human [171], the employed sequence alignments limit the capacity of such

approaches. By adopting a structure-based whole genome realignment beforehand, RNAz

is able to predict many new ncRNA candidates [183].

Structure-based RNA clustering can be used to discover new RNA classes out of

unaligned sequences. This scheme was introduced with the LocARNA-based RNAclust

pipeline [179]. First, a cluster tree is generated from the pairwise distance matrix and a

potential new ncRNA class is then identified by evaluating all subtree alignments with

tools like RNAalifold or RNAsoup [86]. However, the required, but expensive, all-against-

all pairwise sequence-structure alignment step limits this approach to datasets of some

thousand RNA sequences. Other tools like EvoFam employs a similar clustering scheme

based on EvoFold hits, although entirely based on profile SCFGs [126]. The tool RNApromo

uses a special EM (expectation maximization) algorithm for SCFGs to train models

based on unaligned local secondary structures [131]. CMfinder also starts from unaligned

sequences and successfully identified novel ncRNAs in bacteria [176, 188, 189]. It was one

of the first tools for RNAs that used an EM method on SCFGs to improve initial family

models.

RNA gene annotation often refers to the identification of known RNA genes or ele-

ments. For this task, the Infernal suite uses covariance models to describe known RNA

families [42, 43]. It contains constantly improved tools like CMsearch, which efficiently

finds family members in genomes or databases [94, 121, 122]. In addition, there exist sev-

eral tools which can identify RNAs of specific RNA families: for example tRNAscan-SE

for tRNAs [106], RNAmmer for ribosomal RNAs [97], and SnoReport for snoRNAs [69].



1.4 RNA Gene Finding and Annotation 13

RNA Databases

There exists a large variety of ncRNA-related databases [51] motivated by the fact that

general sequence databases like Ensembl or GenBank often lack appropriate ncRNA spe-

cific annotations (e.g. secondary structure). For structured RNAs, Rfam is probably the

most comprehensive collection and its current release 11.0 lists 2208 families [23]. It com-

prises many infrastructural RNA families, miRNA, snoRNAs as well as cis-regulatory

elements. Each family is build upon a manually curated covariance model which can be

used to identify new family members. Benchmark data sets like BRAliBase are also build

upon Rfam in order assess different RNA alignment methods [54, 184]. A comprehensive

database for micro RNAs and their target sites is miRBase [95]. In addition, there exists

specialized databases like for RNase P [22].
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Chapter 2

ExpaRNA: Fast RNA Comparison

on Fixed Structures

In this Chapter we introduce the ExpaRNA approach, a new motif-based method for fast

pairwise RNA comparison. The advantage over existing approaches is that ExpaRNA uses

exact matching substructures to identify similarities common to two RNA molecules.

Furthermore we show how the predicted motifs can be used to speed-up Sankoff-style

alignment algorithms. We have evaluated ExpaRNA’s performance on a reliable benchmark

set. Finally we present a web server that allows to use ExpaRNA via an easy to use web

interface. This chapter is based on the publications Heyne et al. [70, 71] and Smith et al.

[157].

2.1 The ExpaRNA Approach

The multitude of discovered RNAs lacking precise functional annotations is rapidly ex-

panding. One major reason of so many unannotated ncRNAs is that in contrast to

protein-coding genes, ncRNAs belong to a diverse array of classes with vastly different

structures, functions, and evolutionary patterns [17]. In addition, genes of non-coding

RNA often have no discernible homology at the sequence level but still share common

structural and functional properties.

Likewise to proteins, specific functions of ncRNAs are often associated with evolution-

ary conserved motifs that contain specific sequence and structure properties. Examples

for such regulatory RNA elements, whose functions are mediated by sequence-structure

motifs, are selenocysteine insertion sequence (SECIS) elements [82] (see Figure 2.1 for

an example) which occur in the 3’ untranslated (UTR) region of mammalian messenger

RNAs. They facilitate the integration of selenocysteines, the 21st amino acid, in the pep-

tide chain of proteins. Further examples of regulatory RNA elements are iron-responsive
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elements (IRE) [68], different riboswitches [152], or internal ribosomal entry sites (IRES)

[112]. IRES elements occur often in viral genomes where they allow the translation of

the virus’ RNA in a cap-independent manner in the host cell.

Although the detection of similar structural motifs in different RNAs is an important

aspect for function determination, it is often negligibly handled in pairwise RNA com-

parison methods. Functionally important and common substructures are not necessarily

preserved in the alignment and these methods are often very time consuming [84, 85].

State-of-the-art approaches dealing with pairwise RNA comparison can be distin-

guished by the given structural information and their representation. With the ExpaRNA

approach presented in this chapter we follow the line of research that a nested RNA sec-

ondary structure is given (or predicted) for each RNA. The more advanced problem of

starting with the full RNA structural ensemble is solved with the successor ExpaRNA-P

presented in chapter 3.

Existing alignment-based comparison approaches employ the computation of edit dis-

tances between given RNA secondary structures [8, 85]. Generally speaking, the com-

parison of arc-annotated sequences boils down to find the longest arc-preserving common

subsequence (LAPCS) [50]. However, even for two nested RNA secondary structures the

problem remains NP-hard [15, 102]. Contrarily, RNA molecules are in general three-

dimensional structures with complex base pairing interactions and they often contain

crossing base pairs like pseudoknots. However, most comparison methods neglect them

for the sake of described algorithmic complexity and applicability in practice. Fortunately,

these limitations still allow to describe sequence-structure motifs with nested RNA sec-

ondary structures in a biological relevant way, as shown in Figure 2.1. Moreover, the

comparison of nested RNA secondary structures can be lowered to polynomial-time al-

gorithms with some restrictions to the scoring scheme [85].

Alternatively, the nested secondary structure can be represented as a tree. In this case

comparison methods exist for the edit distance between two ordered labeled trees [190]

as well as for the alignment of trees [84]. An improved version of the tree alignment

method with extension to global and local forest alignments is implemented in the pro-

gram RNAforester [73]. The MIGAL approach extends the tree edit distance model by

two new tree edit operations and is especially efficient due to its usage of different ab-

straction layers [3]. General drawbacks of tree alignment methods are their lack of scoring

arbitrary alignments and possible differences between edit distance and alignment dis-

tance.

With ExpaRNA we present a new lightweight, motif-based method for pairwise com-

parison of RNA molecules. Instead of computing a full sequence-structure alignment,

our approach efficiently computes a significant arrangement of sequence-structure motifs,

common to two RNAs. The complete, but overlapping set of exact common substructures

for two RNAs of lengths n and m is determined by a fast O(nm) time and space algo-
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Figure 2.1. Putative SECIS elements in non-coding regions of Methanococcus jannaschii (ac-
cording to Wilting et al. [185]). The highlighted substructure represents a common local motif,
i.e. an exact matching substructure, of the shown RNA elements.

rithm as pre-processing step [5, 155]. ExpaRNA makes use of these common substructures

and computes the longest collinear, non-overlapping sequence of substructures common

to two RNAs in O(H · nm) time and O(nm) space, where H � n · m for real RNA

structures.

We successfully show the performance of ExpaRNA against existing methods. In ad-

dition we create a pipeline which uses ExpaRNA’s predicted motifs as anchor constraints

in order to speed up state-of-the-art Sankoff-style algorithms for simultaneous alignment

and folding [147]. We successfully show the benefit of this combination for a large and

reliable benchmark set.

2.2 Exact Pattern Matchings in RNA Structures

In the following we introduce our concept of exact pattern matchings in RNA secondary

structures. We define an exact pattern matching (EPM) as local matching between two

RNAs that does not necessarily implicate a contiguous subsequence in each RNA, but

implies a structural locality induced by backbone bonds or base pairs. Furthermore, we

require an exact matching in order to achieve its fast algorithmic identification. This

scheme allows us to use EPMs for the description of local RNA motifs which comprise a

set of structure-local nucleotides as shown in Figure 2.1. It was shown that comparative

RNA methods can profit from this notion of locality because it improves the detection of

signals which are weak at the sequence level ([6, 125]).

According to Definition 1.2.1 from Section 1.2.1 for arc-annotated sequences, we fix

two non-crossing RNA sequences (A,PA) and (B,PB) and define an EPM as follows.

Definition 2.2.1 (EPM). An Exact Pattern Matching (EPM) is a tuple (M,S) with

M⊆ {(i ∼ k)|i ∈ {1, . . . , |A|}, k ∈ {1, . . . , |B|}} and S ⊆ {(ij ∼ kl)|(i, j) ∈ {1, . . . , |A|}2, i <
j, (k, l) ∈ {1, . . . , |B|}2, k < l} such that
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� for all (i ∼ k) ∈M : Ai = Bk

� for all (i ∼ k), (j ∼ l) ∈M : (i < j ⇒ k < l ∧ i = j ⇔ k = l)

� (ij ∼ kl) ∈ S ⇒ {(i ∼ k), (j ∼ l)} ⊆ M

� the structure {(i, j)|(ij ∼ kl) ∈ S} is non-crossing (with the previous condition

this implies {(k, l)|(ij ∼ kl) ∈ S} is non-crossing).

� the matching is connected on the sequence or structure level, i.e. the graph

(M, E) with E = {(i ∼ k, j ∼ l)|(i = j + 1 and k = l + 1) or (ij ∼ kl) ∈ S} is

(weakly) connected.

Please note that Definition 2.2.1 is according to the EPM definition presented in our

ExpaRNA-P paper [150]. Although we require that an EPM maintains all base pairs, it

does not necessarily preserve all backbone bonds. Therefore the resulting graph from the

last condition is only weakly connected because not for any two matchings (i ∼ k), (j ∼ l)
with i = j + 1 it also holds that k = l + 1. In the view of the RNA secondary structure

this is for example the case if an EPM matches a complete hairpin in one RNA but the

hairpin has a different size in the second RNA.

In the following we will use E for an arbitrary EPM (M,S) between two RNAs. In

addition we define E|M as the set of all base matchings of a single EPM and with E|S we

denote the set of matchings involved in base pairs. The size of an EPM E is defined as

|E| = |M|, i.e. the size corresponds to the number of base matchings.

Matching parents

Since non-crossing RNA structures correspond to trees, we define, for any position k of

A, the parent of k as the (i, j) ∈ PA with i < k < j such that there does not exist any

(i′, j′) ∈ PA with i < i′ < k < j′ < j. Analogously, the parent of a base pair (i, j) is

the parent of i (which is also the parent of j). Intuitively, if a base or base pair has a

parent (i, j), it is located in the loop closed by (i, j). For external positions k that are not

included in any loop, we define the parent to be an additional virtual base pair (0, |A|+1)

over the entire sequence.

As the correspondence between nested RNA structures and trees naturally generalizes

to EPMs, we can define the parent of some element of M∪S according to [150] as

parentS(i ∼ k) = argmin
(i′j′∼k′l′)∈S∪{(0|A|+1∼0|B|+1)},i′≤i≤j′

|j′ − i′| (2.1)

parentS(ij ∼ kl) = argmin
(i′j′∼k′l′)∈S∪{(0|A|+1∼0|B|+1)},i′<i<j<j′

|j′ − i′|. (2.2)
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Figure 2.2. EPM A is not maximally extended if there exists a larger EPM like B or C. EPMs
B, C, and D can all be maximally extended simultaneously since in each case some base matches
have different parents. Each EPM is a matching between two RNAs which are denoted in red
and green.

Note that every matched element that is not enclosed by matched base pairs has the

pseudo-parent (0|A| + 1 ∼ 0|B| + 1) which is best understood as additional match of

pseudo base pairs outside of the two sequences. Also note that for parentS(ij ∼ kl) ∈ S
parentS(ij ∼ kl) 6= parentS(i ∼ k) = parentS(j ∼ l) = (ij ∼ kl), i.e. the parent of a

matching base pair is always outside the pairs whereas the parent of a matching base can

include the bases itself.

Score of an EPM

The score of an EPM (M,S) consists of a score σ(i, k) for each pair of matched unpaired

bases and τ(i, j, k, l) for each pair of matched base pairs. For the purpose of simplification,

we define the set of structure matches for two RNAs as M|S := {(i ∼ k), (j ∼ l)|(ij ∼
kl) ∈ S}. We define the score of an EPM according to [150] as

score(M,S) =
∑

(i∼k)∈M\M|S

σ(i, k) +
∑

(ij∼kl)∈S

τ(i, j, k, l). (2.3)

Maximally Extended EPM

In order to remove simple variants of large EPMs we consider only maximally extended

EPMs. This not only maintains algorithmic complexity bounds, but also focus on impor-

tant substructures. Maximally extended EPM is defined as follows [150].

Definition 2.2.2 (maximally extended EPM). An EPM (M,S) is maximally extended, if

there does not exist any (M′,S ′) withM⊂M′, S ⊆ S ′ and such that for all (i ∼ k) ∈M
parentS(i ∼ k) = parentS′(i ∼ k).

As shown in Figure 2.2, the last condition of this definition is required to ensure that

we consider EPMs with different structures as being different. Due to this definition, the

set of maximally extended EPMs does not contain proper substructures. For example, the

EPM A in Figure 2.2 depicts a proper substructure of EPM B, but allowed are structural

variants of the same set of matched positions as shown with EPMs C and D. Please note,

the given definition for maximally extended EPMs can already handle structural variants

of more complex structure representations like we use in Chapter 3, but which do not

occur for fixed input structures in case of ExpaRNA.
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Set of EPMs

Given two RNAs and their secondary structures, a large set of possible EPMs can exist.

Clearly not all of them are relevant or meaningful. Hence we apply a score threshold γ

on all EPMs before we consider them for further comparison. We define the set of all

maximally extended EPMs (M,S) over two RNAs A and B as

Eγ =
{
E | E is EPM(M,S) ∧ score(M,S) ≥ γ

}
. (2.4)

If we use for example δ = 1 and τ = 2 then score(M,S) is defined similar to the min-

imal word size in BLAST [4] and the score threshold γ designates the minimal number of

matching nucleotides. A more advanced measure for score(M,S) could include energetic

stability of the EPM and its matching substructures.

2.3 A Method for RNA Comparison with EPMs on Fixed

Input Structures

The method presented in this chapter requires two nested RNA structures in input.

According to Definition 2.2.1 each EPM is an arc-preserving common (but not longest

common) subsequence as defined for the LAPCS problem [50]. Since EPMs have in

addition the above described properties, the detection of all EPMs is a computationally

light problem, compared to LAPCS, which is NP-complete even for nested sequences [15].

Using the dynamic programming approach described by Backofen and Siebert [5], the set

of all EPMs for two nested RNA secondary structures can be found in O(nm) time and

O(nm) space, making this approach applicable for fast sequence-structure comparisons.

Eγ can be seen as a ”library” of all common motifs between two RNAs that can be

utilized for a pairwise comparison method. Thus, the main idea of our approach will

be to take a subset of EPMs from Eγ that in combination will cover a large portion of

both RNAs. The EPMs in Eγ differ in their size and shape as well as in their struc-

tural positions in both RNAs. Simply selecting two or several of these substructures for

combination would probably lead to overlapping or crossing structures (see Figure 2.3).

Hence, the set of all EPMs is not a solution for the LAPCS problem since the combi-

nation of several EPMs is not necessarily arc-preserving. Clearly, a meaningful subset

of common substructures excludes overlapping and crossing patterns. This guarantees

that the backbone order of matched nucleotides as well as base pairs of the given RNAs

are preserved. Compatible EPMs are non-crossing and non-overlapping. Formally, two

EPMs E1 and E2 are non-crossing if E1 ∪ E2 is an ordered matching. Note, this definition

excludes overlapping EPMs as well. Figure 2.3 shows an example of a possible set Eγ .

If the EPMs indicated in red are excluded, then any other two EPMs are an ordered

matching and they can be used to describe the similarity between two RNAs.
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Figure 2.3. A possible set Eγ for two RNAs. The set {E1, E2, E3, E4} can be used for a comparison,
whereas {E5, E6} should be excluded. E5 is crossing E2 and E3 whereas E6 is overlapping with E3
in the left RNA and with E4 in the right RNA. Note, not all possible EPMs are indicated.

2.3.1 Combining EPMs for Comparing RNAs: Problem Definition and

Algorithm Overview

Our approach is motivated by the fact that similar RNAs with fixed secondary structures

share identical structural elements in a similar arrangement. Examples are shown in

our result section for the comparison of thermodynamically folded as well as experimen-

tally verified secondary structures. The knowledge of such a “common core” of identical

substructures in two RNAs is highly useful for comparative analysis tasks.

For our global approach, we are interested in a maximal possible arrangement of

substructures shared by two RNAs. If the motifs are given in the form of exact pattern

matchings, we call this the LCS-EPM problem (Longest Common Subsequence of Exact

Pattern Matchings). Basically, we search for a maximal combination of EPMs that form a

common subsequence. Note that albeit the problem shares some similarity with LAPCS,

it is restricted in such a way that an efficient solution is possible.

Formally, LCS-EPM is defined as follows. Given two nested RNAs A and B and a

set of exact pattern matchings Eγ of these two RNAs, find an ordered matching MEPM

consisting of a subset of EPMs from Eγ that has maximal cardinality. Thus, MEPM is

defined as the union MEPM =
⋃
C of a subset C ⊆ Eγ , where all EPMs contained in C

are mutually non-crossing. Note, this implies that the found subsequence is a common

subsequence sinceMEPM is an ordered matching. Common base pairs are induced by the

EPMs itself. We can now simply set σ(i, k) = 1 and τ(i, j, k, l) = 2 to find the longest

common subsequence of EPMs. In this case, the score corresponds to the number of

matched nucleotides, i.e. score(M,S) = |E|.
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Figure 2.4. Ordering of exact pattern matchings relative to EPM E1 (indicated in green and
dark gray). The cases before, inside and after do not violate the non-crossing condition. Only
EPM E3 crosses E1. An arc denotes that an EPM contains at least one base pair.

Given an EPM library Eγ , our algorithm works by singling out the best combination of

compatible EPMs. This task is performed efficiently by dynamic programming. The main

idea is to recursively reduce the EPM puzzle for EPMs enclosed in subsequences Ai...j

and Bk...l to a problem of smaller subsequences. For our recursion scheme, we exploit the

special structure of EPMs, which span matchings of certain subsequences of consecutive

nucleotides. Between the boundaries of these matched consecutive subsequence, EPMs

can omit subsequences; thereby they contain holes.

Figure 2.4 illustrates this structure of EPMs and shows, given a single EPM E , how

the relative position of other EPMs to E can be distinguished. Formally, this is defined

via boundaries and holes of a single EPM.

2.3.2 Boundaries and Holes of an EPM

According to the definition of an EPM (M,S) as ordered matching, its base matchings

(i ∼ k) ∈M with |M| = n can be denoted as two increasing sequences 〈i1, i2, ..., in〉 and

〈k1, k2, ..., kn〉 of nucleotide positions.

Boundaries of EPMs

In the view of the secondary structure, the elements (i1, in) and (k1, kn) determine the

outside borders of the EPM. Therefore we call them outside-boundaries and write them

as OUTE =
〈
(i1, in), (k1, kn)

〉
. In the view of an arc-annotated sequence, we call (i1, k1)

left-outside-boundaries and (in, kn) right-outside-boundaries and denote them as LEFTE

and RIGHTE .

In case an EPM contains base pairs, the structural shape is more complex and the

outside-boundaries are not sufficient to describe all structural borders. If not all enclosed

nucleotides of a base pair are part of the EPM, then there exist two positions in each RNA

that form an additional structural border inside the range of the outside-boundaries. In

addition, if a pattern contains several independent base pairs (e.g. in a multi-loop),

there can be several inside borders (cf. Figure 2.5). The set of all such borders is called

inside-boundaries and is defined as
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Figure 2.5. A pattern of an EPM in one RNA (green nucleotides). The different boundaries are
indicated with arrows: a pair of outside boundaries and a two pairs of inside boundaries.

INE =
{〈

(ir, ir+1), (kr, kr+1)
〉
| ir+1 > ir + β ∧ kr+1 > kr + β, β ≥ 1

}
. (2.5)

With the parameter β we can control the required sequence length between a pair of

inside-boundaries in each RNA. This will be useful later when we filter out holes which

cannot contain other EPMs. Note that outside-boundaries always exists, whereas the

set inside-boundaries can be empty. For example, assume an EPM that comprises only

unpaired nucleotides or a complete hairpin including the closing bond. If an EPM consists

of only one base pair in each sequence, then inside and outside boundaries are identical.

With a superscript index to a specific boundary we indicate the position in a single RNA,

for example LEFTAE = i1.

Holes

Holes describe the region between inside-boundaries of an EPM E which are not part

of the subsequences A[LEFTAE ..RIGHT
A
E ] and B[LEFTBE ..RIGHT

B
E ]. For a given EPM E

with its set of inside-boundaries INE , the set of holes with minimal size β is defined as

HOLESE =
{ 〈

(hLA, hRA), (hLB, hRB)
〉
| hRA − hLA + 1 ≥ β ∧ hRB − hLB + 1 ≥ β ∧〈

(hLA − 1, hRA + 1), (hLB − 1, hRB + 1)
〉
∈ INE , β ≥ 1

}
(2.6)

Each hole h ∈ HOLESE corresponds to a pair of inside-boundaries in INE and a

hole spans over the two subsequences A[hLA .. hRA] and B[hLB .. hRB]; with ’R’ and ’L’

indicating the rightmost or leftmost position. With the parameter β we omit holes that

are too small for other EPMs and thus we can skip these holes in our algorithm. In general,

we can set β to the size of the smallest EPM found in Eγ , i.e. β = argminE∈Eγ |E|.
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In order to enhance the recursion scheme and avoid recalculation of some matrix

entries, all holes are sorted according to their size w.r.t. one RNA. Let hi ∈ HOLESEi and

hj ∈ HOLESEj two holes for any two Ei, Ej ∈ Eγ . We define an ordering hi �HOLES hj

w.l.o.g. for the first RNA if and only if hi is of smaller size than hj or of equal size, i.e.

hi �HOLES hj ⇐⇒ (hRAi − hLAi ) ≤ (hRAj − hLAj ). (2.7)

2.3.3 Dynamic Programming Recursion for LCS-EPM

The essential difference of LCS-EPM to other, alignment-based RNA comparison prob-

lems (including LAPCS) is that it treats a common substructure (i.e. an exact pattern

matching) as a whole, unbreakable unit. This means that a solution of LCS-EPM either

completely includes or completely excludes all matchings (i ∼ k) ∈ M of an EPM. Fol-

lowing this idea, we want to compute the longest collinear sequence of EPMs which does

not contain any crossing and overlapping EPMs. Note that there is also a relation to

fragment chaining methods, which can be used for example for multiple genome compar-

ison or to identify regions with conserved synteny [1]. However the algorithm presented

here is better described as structural fragment chaining.

The overall solution for LCS-EPM is constructed by a bottom-up approach from the

comparison of substructures that are covered by the subsequences A[i .. j] and B[k .. l]. In

principle, this requires a four-dimensional matrix, denoted as D(i, j, k, l), which contains

the maximal score for combining EPMs with matchings only in A[i .. j] and B[k .. l]. How-

ever, we can restrict ourselves to two-dimensional matrices using the notions of bound-

aries and holes in combination with the ordering �HOLES. For each hole, we introduce

one two-dimensional matrix of entries Dh(j, l), such that Dh(j, l) is D(hLA, j, hLB, l) of

our imaginary four-dimensional matrix.

Finding non-crossing regions relative to an EPM E is achieved as follows: all nu-

cleotides before LEFTE , i.e A[1 .. LEFTAE −1] and B[1 .. LEFTBE −1], as well as all nucleotides

after RIGHTE , i.e. A[RIGHTAE + 1 .. |A|] and B[RIGHTBE + 1 .. |A|] fulfill the non-crossing

condition. This means that any EPM with its outside-boundaries OUTE in these regions

is non-crossing relative to the considered EPM. Similar we handle EPMs that contain

base pairs with the introduced notion of HOLESE . All EPMs that are located inside any

hole of E cannot cross or overlap with E .

The recursion scheme for a dynamic programming algorithm is now straightforward.

Any E is handled only once at its right-outside-boundary RIGHTE . The score of E is

composed of the score before E (see Figure 2.4), given at the position LEFTE −1, plus the

score of E itself and the additional contributions obtained from inside-boundaries, recur-

sively computed for all holes h ∈ HOLESE . This last recursion case recurses to possible

substructures and therefore suggests the use of a four-dimensional matrix. However, it

suffices to use only quadratic space, since a) all the scores for EPMs are stored in a vector
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with entries SE and b) the score of each hole of an EPM can be computed using only a

two-dimensional matrix. By ordering all holes according to �HOLES, we guarantee that

all necessary scores are already computed and stored, whenever an EPM is considered.

Thus the recursion starts with the smallest holes and goes on to larger ones. Note, that

two holes of the same size can be treated in any order. After a hole score is computed,

SE is updated.

For the formal description of the recursion, a hole h is fixed. The following recursion

scheme works for any j, l with hLA ≤ j ≤ hRA and hLB ≤ l ≤ hRB.

Dh(j, l) = max



Dh(j − 1, l)

Dh(j, l − 1)

Dh(i− 1, k − 1) + SE ,

if ∃E ∈ Eγ with RIGHTE = (j, l) and

LEFTE = (i, k), i ≥ hLA, k ≥ hLB

SE = ω(E) +
∑

h∈HOLESE

Dh(hRA, hRB).

After filling all matrices Dh(j, l) we have the final vector SE . The best score is then

computed from treating the whole sequence as hole. With a standard traceback technique

the set of EPMs that form the LCS-EPM are found.

2.3.4 Complexity Analysis

Let n = |A| and m = |B| denote the lengths of the input sequences. Given that we have

only nested RNA secondary structures in input and each EPM is maximally extended,

the number of EPMs contained in Eγ is bound by n ·m. Maximal EPMs imply that any

two EPMs are disjoint and therefore any matching (i ∼ k) ∈ E ∈ Eγ is unique in Eγ and

part of at most one EPM.

Accordingly, the set Eγ contains maximal n ·m different holes. This can be estimated

with O(nm) and is the primary influence of the time complexity of the algorithm. For

each hole, we fill a two-dimensional matrix with a size of at most |A[hLA, hRA]| ≤ |A| = n

and |B[hLB, hRB]| ≤ |B| = m. Consequently, for all holes we need O(n2m2) time as worst

case complexity.

However, a more appropriate time complexity can be given as O(H · nm) where H

denotes the number of holes. For real RNAs it es very likely that H � n · m. This

explains the fast running time of our algorithm on RNAs. The space complexity is only

O(nm) because for each hole, after computing its score contribution and adding the score

to its EPM, the space for the corresponding matrix Dh is recycled.
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We summarize the complexity of solving the LCS-EPM problem as follows. Given

two nested RNAs A and B. The problem to determine the longest common subsequence

of exact pattern matchings (LCS-EPM), including computation of Eγ , is solvable in total

O(n2m2) time and O(nm) space.

2.4 Speeding Up RNA Alignment by EPMs

In the following we introduce an important application of LCS-EPM which uses the pre-

dicted chain of non-crossing EPMs as anchor constraints for sequence structure alignment

methods like FoldAlign, LocARNA and related methods [10, 67, 179]. The idea of this

combined alignment approach is to first solve the LCS-EPM for two given RNAs and then

hand over the obtained result to an (usually much more expensive) sequence structure

alignment algorithm. This second algorithm is used to fill the unaligned space between

the exact pattern matchings in order to produce a complete alignment, i.e. an alignment

that also includes all the bases that do not occur in EPMs. This procedure is illustrated

in Figure 2.6.

In general, anchor constraints restrict the search space of possible alignments which

in turn can accelerate alignment algorithms. Consequently, one expects a speed up of

the existing sequence structure alignment tools that support anchor constraints, when

combining them with a pre-processing by ExpaRNA that generates anchor constraints.

Thus, the proposed combination will result in an accelerated RNA alignment approach

compared to the underlying RNA alignment approach alone. The combination will work

for any available alignment method. Since all anchor constraints are based on EPMs,

which inherit structural properties of the RNAs, the quality of the final alignment should

not be affected largely.

In particular, we modified the LocARNA algorithm for simultaneous folding and align-

ment of two RNA sequences A and B in order to profit from anchors [71, 179]. As a

Sankoff-style algorithm, LocARNA essentially evaluates the recursion

Mi j;k l = max



Mi j−1;k l−1 + σ(j, l)

Mi j−1;k l + α

Mi j;k l−1 + α

max
j′l′

Mi j′−1;k l′−1 +Dj′ j;l′ l

Di j;k l = Mi j−1;k l−1 + τij;kl,
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RNAs

Full sequence-structure alignment

EPMs as constraints      to guide alignment

ExpaRNA

additional LocARNA alignment edges

Figure 2.6. Workflow for combining ExpaRNA with LocARNA. First, ExpaRNA is called on the
input RNAs to predict EPMs (1-4). This information is used as anchor constraints for a com-
plete sequence-structure alignment by LocARNA. EPM numbers and colours correspond to the
comparison of two RNaseP secondary structures shown in Figure A.4.

where i, j, k, l are sequence positions, i.e. 1 ≤ i < j ≤ n = |A| and 1 ≤ k < l ≤
m = |B|, α is the gap cost, σ is a base similarity function, and τ is a base pair similarity

function τ , which reflects Turner’s RNA energy model [78, 113]. An entry Mi j;k l contains

the maximal score of alignments of A[i..j] with B[k..l], whereas for the entries Di j;k l the

alignments additionally have to match the base pairs (i, j) and (k, l). In consequence,

Di j;k l are only required when (i, k) and (j, l) can be alignment edges of some alignment

at all. For computing all entries Di j;k l with a common (i ∼ k), the algorithm fills the

matrix slice Mi ·;k ·, which is the main load of the algorithm.

When given anchors, the algorithm can be modified to require less entries in Di j;k l,

namely only those where (i ∼ k) and (j ∼ l) are compatible with the anchors. Particularly

this implies that it needs to compute only entries Mi j;k l where (i, k) is compatible with

the anchor constraints.

For example assume that we have a single anchor constraint (n/2 ∼ m/2) (w.l.o.g.

n and m even). Because only alignment edges (i ∼ k) with i ≤ n/2 and k ≤ m/2

or i > n/2 and k > m/2 are compatible with the anchor, the algorithm computes only

entries inMi j;k l for those (i, j), i.e. only 50% of the entries compared to the unconstrained

algorithm.
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2.5 Results

The algorithm for finding the longest common subsequence of exact pattern matchings

(i.e. LCS-EPM) is implemented in C++ in the tool ExpaRNA (Exact pattern alignment

of RNA) along with the algorithm to determine all EPMs [5].

We see at least two main application areas for ExpaRNA. First, given two RNAs along

with their known or predicted secondary structure, the result of ExpaRNA comprises the

optimal set of compatible exact common substructures. In biology, this can be used to get

a good overview of existing similarities to support a functional determination. Second,

due to the fast running time of ExpaRNA, it is very attractive to use ExpaRNA for high

throughput RNA analysis tasks. We designed scenarios for both applications to study

the different uses of our tool in detail.

2.5.1 Comparative Structural Analysis of Large RNAs

Here, we study the application of ExpaRNA for studying large RNAs that are very costly to

compare by other sufficiently accurate tools. In this case, ExpaRNA elucidates information

about identical structural motifs, which is not directly addressed by other tools and

therefore may remain hidden. To enable an evaluation of our results, the experiments are

performed on medium-sized and large RNAs where sequence structure alignment tools

are still applicable.

We have chosen two pairs of RNAs: a) two IRES RNAs from Hepatitis C virus, which

belong both to the Rfam family HCV IRES for internal ribosomal entry sites (IRES);

GenBank: AF165050 (bases 1-379) and D45172 (bases 1-391) [63]; and b) two 16S rRNAs.

The first 16S is from Escherichia coli and is 1541 bases long; the second rRNA with 1551

nucleotides stems from Dictyostelium discoideum (GenBank codes: J01859 and D16466).

The secondary structures for the IRES RNAs were predicted by RNAfold [76], whereas

secondary structures for the 16S rRNAs were taken from the Comparative RNA Web

(CRW) site [25].

Table 2.1 shows the results for both pairs of RNAs. The solution of LCS-EPM is

depicted as colored annotations of the secondary structures - in Figure 2.7 for the IRES

RNAs and in Figure 2.8 for the 16S rRNAs. These figures are directly produced by

ExpaRNA with the help of the Vienna RNA Package for the structural layout [76]. For the

IRES RNAs, the numbers mark the five largest EPMs from the set Eγ and correspond

to the manually marked EPMs in the Backofen and Siebert article [5]. ExpaRNA predicts

all of them automatically. In the case of the 16S rRNAs, the result of ExpaRNA shows

significant similarities in nearly all stem and loop regions. Note that the EPM library Eγ

was computed with γ = 2 and we used δ = 1, τ = 2 and β = 2 for both examples.
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Figure 2.7. LCS-EPM approach applied to two Hepatitis C virus IRES RNAs. The colored
nucleotides represent the optimal set of exact matching substructures (LCS-EPM) with a coverage
of 45% (175 nt). Each EPM is shown in a different color. The numbers indicate the five largest
EPMs from Eγ . GenBank: D45172 (upper RNA), AF165050 (lower RNA).
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Figure 2.8. LCS-EPM approach applied to two 16S ribosomal RNAs. The colored nucleotides
represent the found LCS-EPM with a coverage of 57% (875 nt). Each EPM is shown in a different
color. Left: D. discoideum 16S rRNA (D16466) Right: E. coli 16S rRNA (J01859)
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An interesting detail in Figure 2.7 is, for example, the included small blue hairpin

in the top structure between number three and four. In the bottom RNA, this hairpin

is opposite to the small yellow stem with number five, whereas in the top structure this

stem is situated in another region.

We compare our results with the output of RNA align and RNAforester. The first

method computes sequence structure alignments according to the general edit distance

algorithm [85]. The RNAforester program is build upon the tree editing algorithm for

ordered trees and extends it to calculate forest alignments [73, 84]. We compare us with

these tools since both tools cover the state-of-the-art in RNA alignment that is based on

fixed structures. The general edit distance algorithm is a classic editing type algorithm

for RNA comparison, whereas RNAforester represents the class of tree-alignment based

algorithms, which can be due to their working principle much faster, but are less accurate

than editing algorithms.

We compared the methods by the number of common realized alignment edges. For

this purpose, we have first computed the alignments for both RNA pairs. Next, we have

counted all positions with exact sequence structure matchings in these alignments and

also determined the intersections with LCS-EPM. Note that the time for ExpaRNA in

Table 2.1 includes the time to determine all EPMs for the two IRES RNAs (0.44s) and

for the two 16S rRNAs (1.2s). The given sequence coverage rate is twice the number of

predicted exact matches divided by the sum of the two sequence lengths.

IRES RNAs 16S rRNAs
#matches coverage time #matches coverage time

ExpaRNA 175 45% 0.97s 875 57% 16.9s
RNA align 192 50% 62.1s 861 56% 1h 35m

RNAforester 128 33% 5.41s 847 55% 7m 25s

comparison IRES RNAs 16S rRNAs
#common matches #common matches

ExpaRNA & RNA align 159 (82.8%) 688(79.9%)
ExpaRNA & RNAforester 103 (80.5%) 700(82.6%)

Table 2.1. Comparison of the number of found exactly matching alignment edges by LCS-EPM
and two alignment methods. In the lower part, #common matches defines the number of identical
aligned nucleotides of ExpaRNA and the other methods.
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Figure 2.9. Obtained alignment qualities from the combined approach of ExpaRNA and LocARNA

(ExpLoc). The alignment quality is measured as sum of pair score (SPS) for different minimal
EPM sizes γ in comparison to LocARNA and Lara on BRAliBase 2.1 k2 dataset.

2.5.2 Speeding Up RNA Alignment for Large Scale Analysis

Here, we study the performance of ExpaRNA for high throughput RNA analysis. In

Section 2.4 we have shown by which means sequence structure alignment algorithms can

profit from anchor constraints. In consequence, we suggest combining complex RNA

alignments methods with tools like ExpaRNA that predict EPM-like anchor constraints

during a pre-computation step.

In order to assess the speedup of this approach, we exemplarily combine ExpaRNA with

the sequence structure alignment tool LocARNA [125, 179]. We evaluate the accuracy of our

combined approach (called ExpLoc) with the BRAliBase 2.1 benchmark, which consists

of a collection of hand-curated RNA alignments derived from Rfam [54, 184]. Because

we are interested in the performance of pairwise alignment, we choose the k2 benchmark

dataset with 8976 pairwise alignments. For each reference alignment we compute the

corresponding ExpLoc alignment. As quality measure we use the compalign score which

evaluates the accuracy of reproducing a reference alignment and refers to a sum-of-pairs

score (SPS) [9, 54, 184]. A compalign score of 1 means the obtained alignment matches the
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reference alignment perfectly whereas a compalign score of 0 refers to the case where the

calculated alignment has no correspondence with the reference alignment. Furthermore,

we record the runtime of ExpLoc and LocARNA for each k2 alignment.

For the computation of a single ExpLoc alignment we first determined for both se-

quences the minimum free energy structure via RNAfold and feed these two RNAs into

ExpaRNA. Next, the ExpaRNA output is used as anchor constraint for LocARNA in order to

obtain the complete alignment of the two RNAs.

In order to test the performance of the two approaches, we carried out five experi-

ments. First, we examined the accuracy of LocARNA alone. The other four experiments

evaluate the performance of the combined approach ExpLoc. Here, we assessed the re-

sulting alignment quality for different score thresholds γ = 7, 8, 9, 10 when we use δ = 1

and τ = 2 in the ExpaRNA scoring function. Note, γ corresponds in this case to an EPM

size threshold.

Figure 2.9 shows the achieved SPS scores at different levels of sequence identity for

all five experiments. In addition, we included the performance of the Lara sequence

structure alignment algorithm [10]. Figure A.1 shows a boxplot (also called box-and-

whisker plot) visualizing min-, max-values, medians and quartils of the SPS/Compalign

score distribution for varying pairwise sequence identities.

The obtained speedup factors shown in Figure 2.10 are calculated relative to the

LocARNA algorithm for different EPM score thresholds γ. With decreasing γ the speedup

increases because more anchor constraints can be predicted. The overall running time

of LocARNA was 19h26min. All computations were carried out on a Pentium 4 with 3.2

GHz.

2.6 A Web Server for ExpaRNA

We have set up a web server for ExpaRNA as part of the Freiburg RNA tools web server

for advanced RNA analysis tasks [157]. Therein ExpaRNA can be used via an integrated,

easy to use interface which supports the combination with other RNA analysis tools. The

ExpaRNA web server is available at http://rna.informatik.uni-freiburg.de.

The input of ExpaRNA consists of a pair of RNA sequences and secondary structures

in dot-bracket notation using an extended FASTA format. These sequences can be either

entered directly or uploaded. If no secondary structure is available then the sequences are

automatically folded by RNAfold [76]. Furthermore, the input page provides program-

specific options with reasonable default settings in order that the user can configure

ExpaRNA to their needs. The input is validated and the user is informed of inconsistencies

as early as possible. An example input page is shown in Figure 2.11.

http://rna.informatik.uni-freiburg.de
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Figure 2.10. Speedup of the combined approach ExpLoc. The plot shows the achieved speedup
relative to the run time of LocARNA for different minimal EPMsizes γ. With decreasing γ the
speedup increases because more anchor constraints can be predicted. In general, anchor con-
straints restrict the alignment search space and thus the runtime of the final alignment is reduced.
Total times were measured against all alignments of the BRAliBase 2.1 k2 dataset.

ExpaRNA outputs the optimal set of exact pattern matches between the input RNAs.

The result is presented graphically in the browser as coloured secondary structure plots (see

e.g. Figures 2.7 and 2.8). Figures are displayed as PNG graphics and offered for download

in postscript and PDF format. Additionally, the web server allows the user to download

results in different text file formats, for example as structure annotated alignment or list

of (all) found exact pattern matchings.

The webserver provides example input and a video tutorial for demonstration pur-

poses. Online help is provided for general tool overview, its input, available options and

output. Finally, the server provides a link to the source code of ExpaRNA. The stand-alone

command-line version is more convenient and appropriate for large scale studies, however

there are no input size restrictions by our web server.

Combining ExpaRNA and LocARNA In addition to the EPM-based comparison, the web

server supports the direct usage of ExpaRNA’s exact matches as anchor constraints for a

full sequence structure alignment. This allows the calculation of a constraint alignment

by LocARNA, hence enabling alignment of very large RNAs that otherwise could not be

aligned in reasonable time. This procedure is supported by the web server with a direct

link from the ExpaRNA results page to the LocARNA input page as shown in Figure 2.12.
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Figure 2.11. Screenshot of the ExpaRNA web server input page for a pair of example sequences.
The input form allows to set important parameters and to choose between different output options.
RNA secondary structures can be given in an extended FASTA format (as shown) or they will be
automatically predicted with RNAfold.

Technical aspects The ExpaRNA web server is based on a general framework devel-

oped in the Freiburg Bioinformatics group and has been continuously improved [110].

XHTML is served by Apache Tomcat that supports the use of JavaServer Pages and

Java Servlets consequently allowing a large deal of dynamically generated content to be

provided. JavaScripting is used to aid the user in providing well formed input (sequences

and parameters), which is then stored in a Java Bean and processed by a Java Servlet.

ExpaRNA together with all other tools from the Freiburg RNA tools web server are

processed following a general scheme: jobs with valid input parameters are scheduled to

a computing cluster managed by Sun Grid Engine in order that jobs can be computed in

parallel and resources flexibly adapted to the server load. After submission the current

status of the job is reported and the user receives a URL allowing access to the job status

or output. It is also possible for the user to set a job description and to provide an

email address to receive a notification when the job is finished. Upon job completion the

result page is displayed online in the web browser and the user can access result details.

Figure 2.12 shows an example result page. The whole web server is run on a virtual

machine hosted on a server running Scientific Linux.
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Figure 2.12. Screenshot of the ExpaRNA webserver result page. The result of the comparison is
presented via colored secondary structure plots as well as in a summarizing table. A full screen
view of the plots is possible to better analyze details. A direct link from the result page allows to
feed the result as anchor constraints into the input page of the LocARNA web server. In addition,
the page allows access to all job details as well as to download result files in various formats.
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2.7 Discussion

In this chapter we presented ExpaRNA, a new and fast approach for pairwise comparison

of RNA structures based on exact local matchings. Instead of computing a full sequence

structure alignment, ExpaRNA efficiently computes the best non-crossing arrangement of

sequence structure motifs common to two RNAs. As motifs we consider exact matching

substructures, called exact pattern matchings or simply EPMs. We also introduced a

general scheme to formalize exact matching substructures in RNA secondary structures

and their usage for RNA comparison algorithms.

The presented results show that the developed ExpaRNA algorithm is useful for dif-

ferent applications in Bioinformatics and Biology. For comparative RNA analysis tasks,

the result of ExpaRNA illustrates in nice way existing similarities between RNA struc-

tures. Existing relationships can be detected in a fraction of runtime without using a

full alignment procedure. In addition, ExpaRNA can be used as a fast filtering method for

large-scale datasets from modern sequencing techniques. High throughput analysis meth-

ods for thousands of RNAs are needed which incorporate sequence and structure. We

analyzed the contribution of ExpaRNA for such tasks with the BRAliBase benchmark. In

general, our combined approach yields comparable results like other sequence-structure

alignment algorithms. We observed a scaleable trade-off between speedup and resulting

alignment quality according to the selected minimal EPM size γ (see Figure 2.9 and 2.10).

By using different γ parameters our combined approach ExpLoc can be nicely balanced.

This is important for problems with large datasets in which often a lower quality setting

is sufficient. Moreover, our results show that anchor constraints are able to speedup

Sankoff-style alignment algorithms in general (cf. section 2.4).

A more fine-grained picture of the achieved accuracy of ExpLoc with γ = 10 is shown

in Figure A.1. In the area below 70% sequence identity the differences are small. The

lowered quality especially in the region with a high sequence identity can be explained

by the used minimum free energy structures for ExpaRNA predicted by RNAfold. Only

slight differences in the sequence result in wide changes of the secondary structure which

in turn leads to wrong predicted anchors. However, pure sequence alignment programs

are sufficient here. For benchmark instances with a low sequence identities (≤ 30%) we

observe nearly no differences. Here, ExpaRNA often does not find anchors which result

in a standard LocARNA alignment. However, these cases are rare in the used benchmark

set as indicated by the width of the boxes in Figure A.1. Finally, we also observe 336

alignments for ExpLoc with γ = 10 (447 alignments for γ = 7) resulting in a better SPS

score than LocARNA alone indicating there are cases where our ExpaRNA is superior to

existing methods.
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The different speedups of ExpLoc for different γ values can be explained by the number

of predicted anchor points. For γ = 7 there exists more anchors than for γ = 10.

Furthermore, we observe from our data speedups for short as well as for long alignments

as shown in Figures A.2 and A.3. In particular, the speedup for long alignments is

higher than for small ones, but also the majority of small alignments are accelerated.

For longer RNAs we observe speedups around 100. We also look into the distribution of

the speedups over different sequence identity classes. In general, sequences with a high

sequence identity gain a higher speedup, but we also observe high speedups for classes

between 35% and 65% sequence identity. This range is especially relevant for sequence

structure alignment methods, as pure sequence alignment methods will fail here.

ExpaRNA can be extended by considering different matchings. It is known that many

RNA families comprising members that share a only a very low sequence similarity. For

this reason ExpaRNA could be extended by allowing mismatches in EPMs. However, only

the usage of exact matchings permits a fast identification of common substructures and

hence to maintain a fast overall runtime.

On the other hand, ExpaRNA uses only a fixed input structure for each RNA which

limits largely the space of possible EPMs. Furthermore, the correct folding is often un-

known and thus existing EPMs may remain hidden. Therefore, the usage of the structural

ensemble for each RNA is necessary to identify EPMs which are not part of the minimum

free energy structure. To this end, we developed the ExpaRNA-P approach presented in

the following chapter. In addition, ExpaRNA can be extended by applying a different EPM

scoring scheme which incorporates thermodynamic stability information of the underlying

substructure.
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Chapter 3

ExpaRNA-P: Exact Matchings in

RNA Structure Ensembles

In this chapter we present ExpaRNA-P that efficiently solves the problem of finding exact

matching substructures in RNA structure ensembles. First, we introduce novel in-loop

probabilities and define significant EPMs in RNA structures. Second, we outline a dy-

namic programming algorithm that efficiently computes significant EPMs by means of a

novel sparsification technique and analyze its complexity. Finally, we evaluate and discuss

the benefits of our ensemble-based approach. This chapter is based on the publication

Schmiedl et al. [150].

3.1 The ExpaRNA-P Approach

The large amount of recent studies like genome-wide transcriptomics point out the crucial

role of RNAs in living cells [13, 27, 162]. It has become clear that the majority of novel

transcripts are non-protein coding RNAs and they performing important primarily reg-

ulatory functions [116]. However, their functional annotation is strongly lagging behind

and reliable automated annotation pipelines exist only for subclasses of ncRNAs such as

tRNAs, miRNAs or snoRNAs [17]. Hence there is a constant need for fast and accurate

methods for RNA analysis [60].

With ExpaRNA we have already presented a promising approach to enhance RNA

analysis (cf. Chapter 2) and it can be used e.g. to speed up RNA alignments. In ExpaRNA,

sequence-structure similarities are based on a single, fixed secondary structure for each

RNA sequence. This strategy is working for well-conserved RNAs where the structure

can be for example inferred due to their functional importance. This fact is also used by

a priori RNA-gene finders like QRNA [138], RNAz [168], and Evofold [128], which detect

conserved RNA-structures in whole-genome alignments. However, inferring a conserved

structure on sequence-based alignments of less-conserved RNAs easily fails because the
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secondary structure is not considered during alignment and thus gets misaligned [183].

Clearly, this strategy also fails if no comparative information is available at all. In these

cases one have to resort to structure prediction methods like RNAfold or mfold and often

the non-functional minimum free energy structure is used for tools which can only handle

a fixed structure [76, 192].

Recently, a more qualified strategy towards the automatic annotation of non-coding

RNAs has emerged, which identifies RNAs with similar sequence and common secondary

structure on a genomic scale [86, 126, 179]. This can be used to determine remote

members of RNA families as defined in the Rfam database [23, 62]. Albeit this approach

is appealing, a wide-spread, or even automated, application of these methods has been

hindered by the huge complexity of the underlying sequence-structure alignment approach

for detecting similarity in both sequence and structure. The first practical approaches for

multiple structural alignment, such as RNAforester and MARNA depend on predicted or

known secondary structures [73, 154]. In practice, however, these approaches are limited

by the low accuracy of non-comparative structure prediction. Sankoff’s algorithm [147]

provides a general solution to the problem of simultaneously computing an alignment and

the common secondary structure of two aligned sequences. In its full form, the problem

requires O(n6) CPU time and O(n4) memory (for RNA sequences of length n). This

complexity is already limiting for most practical problems such as routinely scanning

remote members of RNA families. For detecting novel RNA classes in the plethora of

newly discovered RNA transcripts, this complexity becomes plainly prohibitive, since

this task requires clustering based on quadratically many all-against-all pairwise RNA

comparisons.

For that reason, many variants of the Sankoff algorithm with different optimizations

have been introduced. FoldAlign [66] and Dynalign [114] implement a full energy model

for RNA that is evaluated during the alignment computation. In contrast, PMcomp [78]

and LocARNA [179] use a lightweight energy model, which assigns energies to single base

pairs. This simplification reduces the computational cost significantly. They achieve

their accuracy by precomputing the energy contributions of base pairs from their prob-

abilities in a full-featured energy model [117]. Whereas approaches like FoldAlign and

others [18, 59, 66, 114] have to compensate their computational demands by strong, often

sequence-based, heuristics, LocARNA [179] takes advantage of structural sparsity in the

RNA structure ensembles to reduce its complexity to O(n4) time and O(n2) space. This

successful approach is consequently found in other Sankoff-like methods [10, 39, 163].

With ExpaRNA-P we introduce a strategy that reduces the computational demands

further, but differs fundamentally from heuristic improvements (as e.g used in RAF [39]),

that restrict the search space based on sequence alignments. The presented approach
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computes sequence-structure-conserved elements that form highly probable local sub-

structures in the RNA structure ensemble of both input RNAs. Subsequently we use

these elements as anchor constraints in a full sequence-structure alignment by LocARNA.

In our previous approach ExpaRNA we have successfully shown how to use conserved

elements in pairs of fixed RNA secondary structures for RNA comparison [71]. Therein

finding of conserved substructures (EPMs) is based on an fast algorithm with quadratic

time and space complexity [5]. Albeit ExpaRNA reduces the overall computation time

significantly, we face similar problems as the first generation of RNA alignment meth-

ods [73, 154], due to the use of a single predicted input structure for each sequence. Since

predicting minimum free energy (MFE) structures from single sequences is unreliable,

this strategy fails frequently and causes severe misalignments.

Overcoming the limitations of the previous approach, our novel algorithm for deter-

mining exact sequence-structure patterns is based on probabilities in the RNA structure

ensembles. We point out that a straight-forward extension of the fixed input structure

algorithm to RNA structure ensembles, would result in a complexity of O(n4) time and

O(n2) space. This complexity is as high as the one of a full sequence-structure alignment

method like LocARNA, which would nullify the benefits of exact matching.

Thus, our main technical contribution is to solve the ensemble based problem in

quadratic time and space. This advancement is comparable to the leap from first gen-

eration RNA alignment to efficient Sankoff-style alignment. For this achievement, we

introduce a method of sparsification that uses the ensemble properties of the input se-

quences. Previous sparsification approaches reduced the number of computations required

for each entry [7, 67, 146, 178, 191] or the number of matrices to be considered [163, 179].

In addition, we identify sparse regions of each matrix a priori such that, in total, only

quadratically many entries remain; each of these entries is calculated in constant time.

The a priori identification of sparse regions is based on the joint probability that a se-

quence position occurs as part of a particular loop. Since the sum of these probabilities

is bound by one, we can control the complexity on a global scale by setting a probabil-

ity threshold. As a further benefit over sparsification methods that filter non-optimal

solutions [7, 67, 146, 178, 191], our sparsification allows us to enumerate suboptimal

solutions.

We successfully evaluate the practical benefits of these algorithmic innovations by a

novel pipeline ExpLoc-P for sequence-structure alignment. In its first stage, it enumerates

suboptimal exact matchings of local sequence-structure patterns due to the introduced

algorithm ExpaRNA-P. We also enhance ExpaRNA’s chaining algorithm in order to deal

with suboptimal matchings derived from structure ensembles. Finally, we utilize an

optimal subset of structurally compatible matchings as anchor constraints in a subsequent

Sankoff-style alignment by LocARNA. In benchmarks on BRAliBase we show the effective

improvement of ensemble-based anchor constraints, both in quality and speed.
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3.2 Significant EPMs in RNA Structure Ensembles

In the previous chapter we have introduced an EPM as exact matching substructure

between two RNAs. More precisely, we only require that each EPM itself is a non-

crossing or nested structure independently of any underlying structure space. For our

ExpaRNA-P approach we use similar notions and definitions (cf. Section 2.2), but extend

them with features required to define EPMs on top of structural ensembles. In detail,

we extend the previous EPM definition (cf. Definition 2.2.1) to significant EPMs since

we only want to match substructures that are probable in the structural ensemble of the

given RNA sequences. Considering only significant EPMs is crucial for both the quality

of the results and the complexity of the algorithm, which will be discussed later. In order

to define significant EPMs we fix two RNAs A and B and introduce the following novel

in-loop probabilities according to [150] over the Boltzmann weighted ensemble of RNA

structures.

a) Pr{(i, j)|X} denotes the probability, that a structure in the ensemble of X ∈
{A,B} contains the base pair (i, j),

b) Prloop(i,j)(k|X) denotes for i < k < j and X ∈ {A,B} the joint probability that the

structure of X contains the base pair (i, j) and the unpaired base k such that

(i, j) is the parent of k.

c) Prloop(i,j)((i
′, j′)|X) denotes for i < i′ < j′ < j and X ∈ {A,B} the joint probability

that the structure of X contains the base pairs (i, j) and (i′, j′) and that (i, j)

is the parent of (i′, j′).

In the special case of a pseudo base pair (or pseudo parent; cf. Section 2.2) where

(i, j) = (0, |A|+ 1) we define

Prloop(0,|A|+1)((i
′, j′)|X) := Pr{(i′, j′)|X} (3.1)

Prloop(0,|A|+1)(k|X) := 1−
∑
j<i

Pr{(j, i)|X} −
∑
i<j

Pr{(i, j)|X} (3.2)

whereas the latter describes the probability that base k of X is unpaired [150]. Please

note that these probabilities include the cases where (i, j) or k are covered by some base

pair. This is reasonable as EPMs are structurally local. Thus, they can be enclosed by

other structure or be external. In Section 3.3 we show how to compute these probabilities

efficiently. The advantage over the ExpaRNA approach is that these probabilities allows for

selecting only relevant local structures instead of treating any base or base pair equally.

Additionally, we can maintain the maximally-extended property of EPMs in structural
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ensembles because we allow for EPMs which are structural variants. Figure 2.2 in the

previous chapter shows three EPMs B, C and D which are all varying EPMs of the same

set of positions.

For significant EPMs we introduce three different thresholds θ1, θ2 and θ3. We require

that all matched base pairs have a probability of at least θ1 and that the probabilities of

all matched unpaired bases and matched base pairs to occur as part of the loop of their

respective parent is at least θ2 and θ3, respectively. This leads to the following definition

for significant EPMs [150].

Definition 3.2.1 (significant EPM). Given the thresholds θ1, θ2, θ3, an EPM is signifi-

cant iff

� for all (ij ∼ kl) ∈ S: Pr{(i, j)|A} ≥ θ1 and Pr{(k, l)|B} ≥ θ1

� for all (i ∼ k) ∈M \M|S with (i′j′ ∼ k′l′) = parentS(i ∼ k):

Prloop(i′,j′)(i|A) ≥ θ2 and Prloop(k′,l′)(k|B) ≥ θ2

� for all (ij ∼ kl) ∈ S with (i′j′ ∼ k′l′) = parentS(ij ∼ kl):

Prloop(i′,j′)((i, j)|A) ≥ θ3 and Prloop(k′,l′)((k, l)|B) ≥ θ3

3.3 Precomputing Likely Loops

In a preprocessing step we compute the above introduced probabilities required to de-

termine significant EPMs. This can be performed for each sequence separately. Hence,

in clustering scenarios, for example, where all pairs from a set of sequences need to be

matched, this preprocessing needs to be done only once for each sequence and not for all

quadratically many pairs.

For the precomputation of likely loops we use the McCaskill algorithm [117] as in-

troduced in Section 1.3.1. This algorithm can be used to compute the base pair prob-

abilities Pr{(i, j)|A}. We extend the McCaskill algorithm to calculate the probabilities

Prloop(i,j)(k|A) and Prloop(i,j)((i
′, j′)|A). To this end, we use the original McCaskill matrices

Qij , Q
b
ij , Q

m
ij , and Qm1

ij . In addition, we compute a matrix Qm2
ij =

∑
i<k<j−1Q

m
ikQ

m1
k+1 j

that represents parts of a multiloop with at least two outermost base pairs. Then we

can compute the unpaired probability Prloop(i,j)(k|A) as joint probability of Pr{(i, j)|A} and

the probability of the set of all structures where (i, j) is parent of k, i.e. by summing up

all Boltzmann weights of such structures divided by the corresponding partition function

Qbij . Accordingly, we can compute the probability of base pairs in loops, Prloop(i,j)((i
′, j′)|A),

by computing the probability of all structures where (i, j) is parent of (i′, j′).
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Given an RNA A, both joint probabilities, i.e. the base pair probabilities and the

unpaired probabilities in loops, can be computed within the same asymptotic time com-

plexity of O(|A|3) as the McCaskill algorithm. More details and formulas are given in

our paper [150].

3.4 A Method for Computing the Significant EPMs

In the following we outline the developed dynamic programming algorithm and its recur-

sion scheme that computes significant EPMs. Basically, we fill a matrix D whose entries

D((ij), (kl)) store the maximum score of an significant EPM under a base pair match

(ij ∼ kl). The matrix D is filled in increasing order to the size of the base pair matches.

This ensures that all base pairs within (i, j) or (k, l) are already computed when an entry

D((ij), (kl)) is filled.

In addition, for each entry inD we need to compute the matrices Lijkl(j′, l′), GijklA (j′, l′),

GijklAB (j′, l′), and LRijkl(j′, l′) for each i < j′ < j and k < l′ < l. The scheme of our algo-

rithm is that we match bases and closed substructures from left to right below the loops

(i, j) and (k, l). The matrix L denotes the part of the matching that is connected to

the left ends i and k of the base pairs. Then the matching can continue with a gap in

both sequences which is modeled by the matrices GA and GAB. Finally, the matrix LR

denotes the part that is connected to the right ends j and l.

In the following we describe the main principles of the recursion scheme and give

details for the L matrix. All other exact recursions will be part of a journal version for

ExpaRNA-P (Otto, C. et al., in preparation). To ease understanding of all recursions and

their cases, Figure 3.1 shows a visualization of the recursion scheme. For matrix L, the

recursion is given as follows.

Lijkl(j′, l′) = max



−∞

if Aj′ = Bl′ , Prloop(i,j)(j
′|A) ≥ θ2 and Prloop(k,l)(l

′|B) ≥ θ2
Lijkl(j′ − 1, l′ − 1) + σ(j′, l′)

for all (i′, j′) ∈ PA, (k′, l′) ∈ PB

with
Pr{(i′, j′)|A} ≥ θ1,Pr{(k′, l′)|B} ≥ θ1,

Prloop(i,j)((i
′, j′)|A) ≥ θ3 and Prloop(k,l)((k

′, l′)|B) ≥ θ3,

L(i′ − 1, k′ − 1) +D((i′j′), (k′l′))

(3.3)

The base cases are Lijkl(i, k) = 0, Lijkl(j′, k) = −∞ for all j′ > i and Lijkl(i, l′) = −∞
for all l′ > k. The recursion for L always matches the last positions j′ and l′ or returns

−∞ if j′ and l′ do not match. The matching j′ ∼ l′ can be an extension of an unpaired
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L GAB
GAGAB

LR

D LRL
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Figure 3.1. Visualization of the recursions to compute the matrix entries Lijkl(j′, l′), GijklA (j′, l′),

GijklAB (j′, l′), LRijkl(j′, l′), D((ij), (kl)), and F (j′, l′). The recursion equations for matrix L is given
in Equation 3.3.
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match or of two base pairs. In addition, we check if j′ ∼ l′ ensures all probability

thresholds θ1, θ2 and θ3 to make use of our novel in-loop probabilities. The recursion for

LR is similar to L but it also recognizes a gap ending at j′ − 1 or l′ − 1. The gap itself

is handled in the matrices GA and GAB. To obtain only unambiguous solutions during

the suboptimal traceback, we always use gaps in RNA A first and then skip positions in

B. The case that a matching goes completely from the left to the right below a matching

base pair (ij ∼ kl) is handled in D by considering Lijkl, as well.

Finally, we compute the matrix F where each F (j′, l′) indicates the best score of an

EPM ending at (j′, l′). As we want to find all significant EPMs, we initialize F with 0

instead of −∞. This allow EPMs to start at any point in the matrix likewise to local

sequence alignment. However, we only want to enumerate maximally extended EPMs.

This can be ensured if we start tracebacks in F only for entries where Aj′+1 6= Bl′+1, i.e.

for non-matching bases. This leads to the following lemma about maximally extended

EPMs [150].

Lemma 1. A maximally extended EPM (M,S) of A[1 .. j′] and B[1 .. l′] with (j′ ∼ l′) ∈
M is also a maximally extended EPM of A and B, iff Aj′+1 6= Bl′+1.

For the proof we refer to our paper [150], but the idea is as follows. If there is a

matching (j′+1 ∼ l′+1) then clearly the smaller EPM ending at (j′, l′) is not maximally

extended. On the other hand, two different EPMs can only exist if they have different

parents for some (j′ ∼ l′), but this contradicts Definition 2.2.2 for maximally extended

EPMs.

In general, the recursion scheme uses the introduced in-loop probabilities and therefore

the matrices are sparse. Note that we precompute these probabilities and whenever we

recurse, for example, into L or LR, we can skip unlikely entries completely. Please

see Sections 3.4.1 and 3.4.2 below for more details on the sparsification and complexity.

Suboptimal EPMs are retrieved by doing a standard traceback, but enumerating all EPMs

up to a given score threshold.

3.4.1 Sparsification

We need to compute matrices Lijkl, GijklA , GijklAB , and LRijkl only for i, j, k, l with

Pr{(i, j)|A} ≥ θ1 and Pr{(k, l)|B} ≥ θ1. For each of these matrices, we further reduce the

number of entries as follows. We call each j′ a candidate of (i, j) if Prloop(i,j)(j
′|A) ≥ θ2 or if

for some i′ Prloop(i,j)((i
′, j′)|A) ≥ θ3. Analogously, l′ is a candidate of (k, l) if Prloop(k,l)(l

′|B) ≥ θ2
or if for some k′ Prloop(k,l)((k

′, l′)|B) ≥ θ3. Note that if j′ or l′ is no candidate, the recursion

directly implies that Lijkl(j′, l′) = LRijkl(j′, l′) = −∞ and hence we neither have to ex-

plicitly compute nor to store these entries. This allows to skip the corresponding entries

GijklA (j′, l′) and GijklAB (j′, l′), because for Lijkl(j′, l′) = −∞ their value is identical to their

respective neighboring entry. In total, this optimization allows to skip in Lijkl, GijklA ,
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GijklAB , and LRijkl each complete row or column whose index is no candidate. Since we

can compute (in a preprocessing step and for each sequence separately) a mapping from

sequence positions to candidate positions, the recursion can be implemented on matrices

that only contain the candidate rows and columns. In the following complexity analysis,

we show that this optimization reduces the entries from O(|A|3|B|3) to only O(|A||B|)
across all matrices.

3.4.2 Complexity Analysis

The central aspect for the complexity reduction by in-loop probabilities is given by the

following lemma according to [150].

Lemma 2. For a fixed j′, there are only O(1) base pairs (i, j), such that j′ is a candidate

of (i, j) (and analogously for l′ and (k, l) in sequence B).

For the full proof we refer to our paper [150]. Basically, we can argue that j′ is a

candidate in RNA A only if pj′(i, j) ≥ θ∗ := min{θ2, θ3}, i.e j′ is above a probability

threshold. With pj′(i, j) we indicate the probability that a structure of A contains the

base pair (i, j) and j′ is unpaired or the right end of a base pair below the loop closed

by the base pair (i, j). But j′ is always part of exactly one loop (i, j) and therefore the

sum of probabilities for all structures in the loop is bound by 1. Consequently, there are

at most 1
θ∗ ∈ O(1) base pairs for that j′ is a candidate.

Clearly, this argumentation is only possible due to the new probabilities for single

loops instead of, for example, global base pair probabilities. We make use of these in-

loop probabilities in our DP-algorithm with a new sparsification scheme. In consequence

of Lemma 2, there exist only a linear number of possibilities i, j, j′ for candidate positions

in RNA A, and thus, O(n2) combinations for two RNAs. Hence, we only fill O(n2) many

entries in the matrices Lijkl(j′, l′), GijklA (j′, l′), GijklAB (j′, l′), and LRijkl(j′, l′) where j′ and

l′ is a candidate of (i, j) and (k, l), respectively.

The complexity analysis for the matrices D and F can be done similar to the argu-

mentation for the LocARNA algorithm [125, 179]. For each base j in A there exists only

a fixed number of base pairs because we require for all base pairs Pr{(i′, j′)|A} ≥ θ1 and

analogously for B. This threshold can be ensured only for a constant number of base

pairs 1
θ1
∈ O(1) as the sum of probabilities is limited to one by the fact that there is only

one structure that ends in j. Then we can compute each entry in all matrices in constant

time for some fixed j′ and l′ for a base pair (i′, j′) from RNA A and a base pair (k′, l′)

from RNA B.

Consequently, the algorithm to compute significant EPMs has a time and space com-

plexity of O(n2). Note that the McCaskill algorithm has the dominating complexity,

albeit the calculation of base pair probabilities can be done during a preprocessing step.
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3.5 Chaining

The identified set of significant EPMs is useful for different RNA comparison tasks as

shown in Section 2.5. In virtue of the LCS-EPM algorithm presented in Section 2.3, we

developed a chaining algorithm for structural ensembles that selects from the computed

suboptimal EPMs a non-crossing and non-overlapping subset that can be extended to an

alignment. This new EPM chaining variant generalizes the LCS-EPM algorithm used in

ExpaRNA to cope with more than one EPM ending at the same position [71, 150].

Similarly, the new algorithm recursively fills the holes of all EPMs with other EPMs.

For each of the holes a matrix of size O(|A||B|) is computed. In contrast, at each of

its entries all EPMs are considered and simply the best score over all EPMs ending at

this position is taken. Although we have multiple EPMs ending at the same position,

we can still create an ordering �HOLES over all holes. This restricts the algorithm to

two-dimensional matrices as we can guarantee that all smaller holes are processed before

a larger one is considered. For EPMs in structural ensembles we can additionally exploit

that fact that different (suboptimal) EPMs contain equal holes, i.e holes with similar

inside-boundaries. In order to avoid redundant calculation of such holes, we order all

holes by size and their boundaries, i.e.

hi �HOLES hj ⇐⇒ (hRAi − hLAi ) ≤ (hRAj − hLAj ) ∧ hRAi ≤ hRAj . (3.4)

This allows for a simple check whether the current hole is equal to the previous hole

and thus we can inherit the score from the previous hole without any recalculation.

Since each EPM ends at exactly one position, the complexity is O(H · (|A||B|+E)),

where E is the number of input EPMs and H the total number of their gaps.

If we guarantee that E is in O(|A||B|), i.e. there is only a constant number of EPMs

ending at each position, the complexity of the chaining is O(H|A||B|) (as in ExpaRNA).

Whereas the suboptimal traceback does not guarantee E ∈ O(|A||B|), we also imple-

mented and evaluated a heuristic strategy that satisfies the assumption by considering

only the best EPM ending at each position.

3.6 Results

Our ExpaRNA-P approach combines all described steps, i.e. the computation of in-loop

probabilities, the enumeration of significant EPMs and the identification of the best

non-crossing arrangement of EPMs for two RNA sequences. We implemented all steps of

ExpaRNA-P in C++. In order to calculate the additional in-loop probabilities we modified

the partition function algorithm in a recent version of the Vienna RNA 2.0 library [105].

The dynamic programming algorithm to find all significant EPMs together with the new

chaining algorithm is implemented as part of the LocARNA package [179].
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Figure 3.2. Alignment quality of ExpLoc-P with respect to the sequence identity on the k2
dataset of BRAliBase.

Furthermore we implemented two versions of the traceback of ExpaRNA-P: the subop-

timal one as described in Section 3.4 and a heuristic version where we consider from each

position (i, j) in the F matrix only the optimal EPM ending at that position.

In order to assess the performance of ExpaRNA-P in comparison to other alignment

tools, we designed the following pipeline like the one we used for ExpaRNA: in a first step

we compute the significant EPMs with ExpaRNA-P and use the chaining algorithm to

extract from these EPMs an optimal non-overlapping and non-crossing subset. Then we

compute a sequence structure alignment that includes all matches of the chained EPMs.

For this purpose, we apply LocARNA using the EPMs as anchor constraints. This is faster

than computing an unconstrained alignment since each anchor reduces the alignment

space (cf. Section 2.4). We refer to this pipeline, i.e. the combination of ExpaRNA-P and

LocARNA, as ExpLoc-P.

We performed a benchmark test on the k2 dataset of BRAliBase which contains only

pairwise alignments [54, 184]. To measure the quality of the calculated alignment in

comparison to the reference alignment, we utilized the compalign score which refers to

a sum-of-pairs score (SPS) introduced in this specific form with BRAliBase [184]. See

Section 2.5.2 for more details. Besides the quality of the results, we also compared the

runtime of the different methods. We compared our new approach ExpLoc-P with three

other approaches: LocARNA without any anchor constraints, ExpLoc [71], and RAF [39].

Obviously, we include a comparison with the similar ExpLoc approach (cf. Section 2.5.2)

in order to evaluate the potential of using EPMs resulting from structural ensembles in-

stead of EPMs identified on fixed minimum free energy structures. RAF is the currently

fastest Sankoff-style sequence structure alignment approach due to its heuristic filtering
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Table 3.1. Runtime comparison of the different approaches. The speedup factor is measured
relative to the speed of LocARNA. The runtime is the total runtime for computing the entire
benchmark dataset on a single Opteron 2356 processor (2.3 GHz). For ExpLoc-P the first value
in brackets is the time for computing and chaining the EPMs and the second one the runtime for
the subsequent LocARNA alignments.

LocARNA ExpLoc-P ExpLoc-P ExpLoc ExpLoc RAF

(heuristic) (suboptimal) (minsize 10) (minsize 8)

speedup 1 6.0 4.9 4.4 5.4 15.6

total time 14.3h 2.4h 2.9h 3.2h 2.6h 0.9h
(0.4h+2h) (0.4h+2.5h)

based on sequence alignments. We instantiated the scoring of ExpaRNA-P (see Equa-

tion 2.3) by σ(i, k) = 1 and τ(i, j, k, l) = 5(Pr{(i, j)|A} + Pr{(k, l)|B}) + 2. In addition

to the presented scoring, we add a reward of 5 Pr{(i, j)|(i + 1, j − 1)|X} (X ∈ {A,B})
for each stacking in the EPM. In the suboptimal traceback, we enumerate EPMs that

have a score of at least 90 and a score difference of less than 20 to the optimal EPM.

Furthermore, we set θ1 = θ2 = 0.01 and θ3 = 0.

Figure 3.2 shows the result for the compalign score with respect to the sequence

identity on the k2 dataset of BRAliBase. LocARNA achieves the best results at the expense

of the highest computation time. Table 3.1 lists the speedups of the other approaches

compared to LocARNA. Our novel combined approach ExpLoc-P achieves with both the

heuristic and the subobtimal traceback almost the same quality as LocARNA but is 6 and

4.9 times faster, respectively. The best alignment quality that could be obtained with

ExpLoc was achieved with parameter minsize = γ = 10 which refers to the minimal size

of used EPMs. Even for this optimal setting the quality of the result is significantly

lower than the one for LocARNA alone and ExpLoc-P. Additionally, the speedup for this

setting is only 4.4 which is also less than both speedups for ExpLoc-P. With minsize = 9,

the speedup of ExpLoc is comparable to ExpLoc-P but the quality declines much more.

RAF achieves the best speedup of 15.6 but the drawback of the sequence alignment based

heuristic filtering, which causes this speedup, is clearly visible: for sequence similarities

below 50% the quality drops tremendously. This indicates that RAF is only successful

on instances where sequence information alone is sufficient to get already reasonable

alignments. In summary, this means that our novel tool ExpLoc-P finds the best trade-off

between alignment quality and speedup and is robust regarding the alignment quality for

the whole range of sequence identities.

In order to analyze the quality of ExpLoc-P further, we investigated whether the

compalign scores of ExpLoc-P and LocARNA without constraints do correlate well. We

found a high correlation of 0.85. This indicates that the six-times faster ExpLoc-P pipeline

can replace LocARNA in RNA clustering approaches [86, 126, 179].
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Figure 3.3. Correlation between the compalign score of LocARNA and ExpLoc-P. The green
line indicates a lowess fit for the BRAliBase dataset. A subset of the IRES HCV family shows
significantly better alignments with ExpLoc-P than with LocARNA alone.

Figure 3.4. IRES HCV (RF00061) seed alignment. The visualization is taken from SARSE
(http://sarse.ku.dk/Rfam sarse/sno.html). It displays a highly conserved with a low conserved
context.
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Moreover, we observe several benchmark instances where the ExpLoc-P pipeline signif-

icantly outperforms LocARNA. Notably, as can be seen in Figure 3.3, there is a prominent

cluster of improved benchmark instances. Surprisingly, all these alignments belong to the

family IRES HCV (RF00061) leading to an overall improvement for this family (com-

palign score 0.89 compared to 0.82 on average). For the subset of alignments where

ExpLoc-P was better than LocARNA, we found a significant drop (compalign score 0.22

for LocARNA compared to 0.89 ExpLoc-P), indicating that LocARNA was not able to align

these sequences without the help of anchor constraints. Manual inspection of the multiple

alignment revealed that this family is one of the rare cases where there is no global con-

servation. Instead, there is a highly conserved substructure and a less conserved context

(see Figure 3.4). In this case, determining a well-conserved structure first and using this

subsequently as an anchor constraint is clearly a strategy to improve the overall alignment

quality.

3.7 Discussion

We presented in this chapter ExpaRNA-P, a novel method for RNA comparison based on

significant motifs derived from RNA structural ensembles. ExpaRNA-P lifts the concept of

exact matching substructures (EPMs) introduced with ExpaRNA in Chapter 2 from fixed

input structures to RNA structural ensembles. We call EPMs over structural ensembles

significant EPMs (cf Section 3.2) if they are both similar and very likely. This general-

ization is highly advantageous for many applications since the correct or functional RNA

secondary structure is often unknown. Reverting to a single fixed structure, e.g. the

minimum free energy structure, is erroneous and leads to wrong results whereas an en-

semble based approach includes very likely as well as different structural conformations.

However, allowing structural variants usually implies a runtime complexity of at least

O(n4) (e.g. in FoldAlign or LocARNA) which in turn would eliminate most of the benefits

obtained by ExpaRNA. Thus the main technical challenge we solved with ExpaRNA-P is

to keep ExpaRNA’s fast quadratic runtime complexity while dealing with a much larger

structure space for each RNA. We achieved this by introducing novel in-loop probabilities

for RNA secondary structures along with a novel sparsification technique.

As part of ExpaRNA-P we developed a fast dynamic programming algorithm which

identifies significant EPMs for two given RNA structure ensembles (cf. Section 3.4).

Our algorithm maintains important EPM features like finding only maximally extended

EPMs. Furthermore we can use a suboptimal traceback to identify structural varying

EPMs for a specific local region. Hence, our method supersedes the previous Backofen

and Siebert algorithm used in ExpaRNA to determine EPMs [5]. Due to the additional

probabilities we only compute matrix entries for likely loops and likely unpaired position

resulting in a reduced quadratic complexity (cf. Section 3.4.1 and 3.4.2). The novel in-



3.7 Discussion 53

loop probabilities are calculated with a modified version of McCaskill’s partition function

algorithm (cf. Section 3.3). Although the partition function algorithm has a dominating

runtime complexity of O(n3), we can neglect this in scenarios where it is only done once as

precomputation step, such as clustering of RNA sequences or scanning a query sequence

against a database.

Our evaluation evidences the high quality of EPMs based on RNA structure ensembles

because our new pipeline ExpLoc-P outperforms in all benchmarks EPMs from fixed RNA

structures. We designed a benchmark similar to ExpaRNA that utilizes EPMs as anchor

constraints for structure alignments and we achieved both higher quality and higher

speedups with ExpaRNA-P. First, increased speedups indicate that a higher number of

EPMs are used as anchor constraints. Secondly, the improved alignment quality shows

that the used EPMs are very accurate and highly similar to LocARNA alignments without

constraints. This as also shown by the high correlation between the compalign scores of

LocARNA and ExpLoc-P in Figure 3.3.

Furthermore, we can even illustrate cases where ExpLoc-P alignments are superior to

standard LocARNA alignments. For example, our ExpLoc-P strategy leads to a clear im-

provement of the overall alignment quality for the Rfam family IRES HCV. Since our used

benchmark is biased towards global alignment, this situation probably occurs more often

in practice than seen in BRAliBase. Thus, it is conceivable that the ExpLoc-P approach is

an improvement in case where less well-defined families have to be aligned, as in cluster-

based approaches for detecting new structural RNA families on a genome-wide scale.

Here the boundaries of ncRNAs are typically loosely defined and pure global comparison

approaches can fail. For such cases, it can be beneficial to determine well-conserved local

structures first and use them subsequently as anchors. Hence, our ExpaRNA-P approach

can improve the comparison of RNA families that share local and global similarity.

As future work, we will investigate relaxations of the notion of exact patterns to

further improve the results. In particular, the same recursions can be used to detect

patterns that allow mismatches of base pairs or unpaired bases. In addition, we will

explore further parameter optimizations, especially for the used thresholds of in-loop

probabilities. Another useful extension could be a method for multiple RNA comparison

that is based on EPMs. For example, this could be achieved by feeding significant EPMs

into a T-Coffee-like primary library, similarly to LocARNAte [123, 125]. The additional

local EPM information is then used to construct improved multiple alignments with a

standard progressive alignment approach.

Furthermore, EPM based anchor constraints could be used to improve other alignment

tools, like RAF. While for LocARNA the constraints yield a considerable speed-up, in RAF

they could improve the quality that is poor for low sequence similarity. The score of the



54 ExpaRNA-P: Exact Matchings in RNA Structure Ensembles

chained EPMs could also be used as a distance measure for clustering approaches. This

would speedup the clustering process since the expensive computation of full structure

alignments can be avoided.

Above all, we want to stress the impact of the presented state-of-the-art techniques

for the field of RNA bioinformatics in general. There are already constitutive methods

like SPARSE which build upon the described structure sparsification in order to reduce

the time complexity from O(n4) down to O(n2) for Sankoff-style simultaneous alignment

and folding methods [181].



Chapter 4

GraphClust: Efficient Structural

Clustering of Local RNA

Secondary Structures

With GraphClust we present a novel and very efficient solution for sequence and structure-

based clustering of thousands of RNA sequences. We first review the need and difficulties

of clustering strategies for RNA sequences. In the following, we introduce our efficient,

alignment-free, approximate nearest neighbor search procedure that combines several al-

gorithmic enhancements to achieve the required linear time complexity. Moreover, we

give details on the used graph kernel, RNA structure and feature encoding and cluster

refinement procedures. In Section 4.3, we present our GraphClust pipeline that combines

all improvements in a ready-to-use clustering pipeline. Finally, we evaluate and discuss

our approach and investigate its potential on finding novel clusters of ncRNAs. This

chapter is based on the publication Heyne et al. [72].

4.1 The GraphClust approach

Tiling arrays and high-throughput sequencing have strikingly driven the discovery of novel

non-protein coding RNAs [45]. Complementing advances in the computational de-novo

prediction of ncRNAs have uncovered a wealth of signals for potentially novel ncRNAs

in genomic sequences from basically all kingdoms of life. Examples include metazoans

with thousands of predicted ncRNA signals in human, fish or insects [140, 141, 170].

Consequently, the prediction, comparison, and (functional) annotation of ncRNAs are

major tasks of current RNA research. Annotation of ncRNAs, however, is still not part

of generic annotation pipelines of genome or next-generation sequencing data and pre-

cise functional annotations of the majority of identified and predicted RNA transcripts

remain elusive. There are reports of up to 450.000 predicted ncRNAs only in the human
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genome [132]. The exact numbers and even the magnitude are of course matter of dis-

cussion, but it is reflecting the current problems in the analysis of whole transcriptome

data. Thus, there is an urgent need for efficient algorithms identifying novel ncRNAs in

the exponentially growing bulk of sequence data, including complete genomic sequences

as well as whole transcriptomes.

One of the major reasons for the multitude of unannotated ncRNAs is that in contrast

to protein-coding genes, ncRNAs belong to a diverse array of classes with vastly different

structures, functions, and evolutionary patterns [17]. Albeit their heterogeneity, ncRNAs

can be divided into RNA families according to inherent functional, structural, or com-

positional similarities. Today, the Rfam 11.0 database already lists 2,208 different RNA

families [23]. In contrast to RNA families, an RNA class groups together ncRNAs whose

members have no discernible homology at the sequence level, but still share common

structural and functional properties. Prominent examples are the two distinct classes of

snoRNAs (box H/ACA and box C/D) and micro RNAs (miRNAs).

Since an RNA class consists of RNA molecules with similar structure and function,

clustering according to sequence-structure similarity has become a generally accepted

scheme for ncRNAs annotation. The quality and complexity of the clusters is however

largely determined by the pairwise sequence comparison method. The most generic meth-

ods, as introduced with LocARNA [179] and FoldAlign [163], use derivatives of the full

Sankoff algorithm [147] of simultaneous alignment and folding. They suffer, however, from

a very high computational complexity (at least O(n4) in time), and thus, they are lim-

ited to relative small sequence sets. As truly stated by Gorodkin et al. [60]: ”Even using

substantially more sophisticated techniques, genome-scale ncRNA analyses often consume

tens to hundreds of computer years. These high computational costs are one reason why

ncRNA gene finding is still in its infancy.” For this reason, many approaches use differ-

ent heuristics to achieve a reasonable trade-off between time and quality. Oversimplifying

and without completeness, given the variety of approaches present in literature, one can

distinguish two main classes of clustering approaches. The first class uses simplifications

in the representation of structures and consider only single predicted structures [91, 135].

These comparison approaches heavily depend on the correctness of the structure, al-

though computational prediction of secondary structures are known to be error prone.

Other approaches use simplified structural models [148]. The EvoFam work can also be

listed to some extend under this class since they use an approximate measure between

two structural RNAs’ SCFG models for clustering hits found by EvoFold [126, 128].

The second class uses sequence information as prior knowledge to speed up the compu-

tation. In the simplest case, sequences are first clustered by sequence-alignment [96, 153].

These alignments are then used to predict conserved consensus structures using ap-

proaches like RNAalifold [12] or PETfold [151]. A similar overall scheme is e.g. ap-

plied in CMfinder [188], which determines a consensus motif from a cluster of unaligned



4.1 The GraphClust approach 57

sequences. Yet another set of tools employs a sequential encoding of structural informa-

tion [164]. Finally, one can use the information from an ensemble of sequence alignments

to speed up the computation [144]. The major problem, however, is that the sequence

of an ncRNA evolves much faster than its structure, which implies that in most of the

cases, no homology on the sequence level is detectable. Indeed, it has been shown that

family assignments of structured RNAs obtained from sequence alignments at pairwise

sequence identities below 60% are often wrong [54].

With GraphClust we propose an efficient approach for clustering very large sets of

RNA sequences according to sequence and structure information. The size of current

datasets exclude the use of alignment-based techniques. Hence, to achieve the required

efficiency, we propose an alignment-free hashing technique over a novel encoding for

RNA structures. Although there are alignment-free methods for comparison of RNA

with respect to sequence and structure (e.g. Gan et al. [53], Liu and Wang [103]), we

are not aware of any alignment-free method capable to perform RNA sequence-structure

comparisons on hundred of thousands sequences. For this purpose, we extend a fast graph

kernel technique that has been recently developed for chemoinformatics applications and

we adapt it to detect similarities between RNA secondary structures [33]. The key novelty

that we introduce lies in an explicit representation of the associated sequence-structure

information which we encode as sparse vectors in a very high dimensional space. This

allows us to use efficient locality sensitive hashing methods to accurately retrieve dense

data regions with a complexity that is linear in the number of sequences N , rather than

quadratic as it would be with both alignment methods or standard kernels that work

with implicit representations.

We have integrated the approach in a ready-to-use pipeline for large-scale clustering

of putative ncRNAs. After the efficient clustering step, we increase the quality of the

resulting clusters by employing alignment methods to filter away inconsistent elements.

GraphClust has been successfully evaluated on known ncRNA classes and compared

against existing approaches, i.e. the complete LocARNA-pipeline and RNAsoup [86]. We

show that our clustering is of high quality yielding reliable clusters of homologous RNA

sequences. Due to the algorithmic improvements presented here, we achieve a striking

performance speedup (from years to days for serial computation and even hours when

parallelized) outperforming any of the existing approaches. We applied our method to

six heterogeneous large-scale data sets containing more than 220,000 sequence fragments.

First, we analyzed computationally derived predictions of short ncRNAs lacking reliable

class assignments. Next, we searched for local structural elements specific to experi-

mentally validated lincRNAs. We observed enriched GO-terms for lincRNAs containing

predicted local motifs likely functionally “linc”-ing these transcripts to vital processes of

the human nervous system. In general, both application scenarios aim at the detection

of novel structural non-coding RNAs.
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Related Work

Concerning the calculation of sequence-structure similarity, which is the basis for the

clustering of ncRNA in putative RNA-classes, one can roughly distinguish alignment

and kernel methods. For the alignment-based methods, several different algorithmic ap-

proaches have been introduced in the past to determine structural similarities and to

derive consensus structure patterns for RNAs that are too diverse to be alignable at

sequence level. One class, with MARNA and RNAforester [74] being their main represen-

tatives, uses a given or predicted secondary structure as additional input aligning the

sequences. However, these approaches heavily depend on the correctness of the given

structure, and computational prediction of secondary structures are known to be error

prone. In contrast, derivatives of the Sankoff algorithm [147] solve the problem of simul-

taneous folding and alignment. In its full form, the problem requires O(n6) CPU time

and O(n4) memory, where n is the length of given RNA sequences. This complexity

is prohibitive for most practical problems. There are two variants of the Sankoff algo-

rithms. Programs such as FoldAlign [59, 66], Dynalign [114], and Stemloc-AMA [18]

implement an energy model for RNA that is evaluated during the alignment computa-

tion. In contrast, PMcomp [78] and LocARNA [179] use a full-featured energy model in

their pre-computation step by determining a matrix of base pair probabilities using Mc-

Caskill’s algorithm [117] for each input sequence. During the alignment process, base pair

probabilities are used to assess the similarity of the secondary structures. This strategy

reduces the time complexity to O(n4) for pairwise alignments, and thus, improves the

overall time needed for the clustering. The approaches FoldAlignM [163] and RAF [39] fol-

lowed the same filtering principle. The latter approach is interesting because it combines

sparsity on the structure and sequence level (this combination first seen in Stemloc [18])

with a lightweight scoring scheme that significantly improves its efficiency over other

Sankoff-style methods [39].

There are several kernel method that have been used for RNA (see e.g. Wang and

Wu [167] for a review). Basically, RNA kernel methods that compare RNA sequence

and structure without resorting to a single predicted structure can be divided into three

classes. The most complex one resembles more full sequence-structure alignment [145].

On the other hand, the complexity of O(n4) is same as LocARNA. Later, a simplified repre-

sentation of RNA structures as DAG was introduced that gave rise to a O(n2) comparison

method [148]. The second class consist of approaches, which perform pure structure com-

parison without using sequence information at the same time [89]. The last class use an

extended sequence alphabet that encodes also some structural properties. This trick was

introduced by the alignment method STRAL [36] and is shared with approaches that use

predicted structures like Triplet-SVM [187], an SVM-based method to predict miRNAs,

and others [92, 119].
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4.2 Efficient Alignment-Free Structural Clustering of RNAs

In the following, we provide the algorithmic details necessary for an efficient structural

clustering of RNA sequences using kernel and hashing techniques. First, we propose to

sample a small number of probable, but sufficiently different, structures for each RNA

sequence. We then encode each structure as a labeled graph preserving all information

about the nucleotide type and the bond type (i.e. backbone, binding and stacking). In this

way, structural variants of an RNA sequence can be represented as a graph with several

disconnected components. This would be already sufficient to compute the similarity

between the representative graphs using a graph kernel. However, to avoid a quadratic

number of comparisons, we first extract an explicit vector representation for each graph,

and then build an inverse index on a compressed representation obtained via hashing

techniques. This allows us to retrieve in constant time the nearest neighbours sequences

for any given query structure. We evaluate each neighbourhood and select as candidate

clusters those that contain very similar elements.

4.2.1 Graph Encoding for RNA Secondary Structures.

The encoding of structural information is crucial for finding clusters of RNAs with similar

sequence and structure. However, verified structure information is not available in most

cases and one have to resort to RNA structure prediction methods. In case of single

sequences, minimum free energy based secondary structure prediction has been shown to

be error prone [40]. For this reason we want to use a representation of the entire ensem-

ble of low energy conformations. Resorting to a complete enumeration of near-optimal

structures would yield a tremendously large number of structures [186]. Instead, we ap-

ply the abstract shape analysis method by using RNAShapes [56]. Here one analyzes the

complete folding space using McCaskill’s partition function but classifies the structures a

priori into folding topologies, called shape types. This allows us to represent each RNA

by sufficiently different, but probable, RNA secondary structures. Within each shape

type, the most stable structure, called shrep, is selected. Furthermore, shreps can be

sampled within a small energy difference to the optimal energy to ensure their stabil-

ity. RNAShapes provides five shape types that describe the different levels of abstraction

for an RNA secondary structure. In the most accurate type (shape type 1), all loops

and unpaired regions of a secondary structure are denoted, whereas in the most abstract

level (shape type 5), only branches of multiloops and external loops are depicted, but no

unpaired regions. Figure 4.1 gives an example of different shreps for an RNA molecule.

In addition we address an important issue regarding true sequence boundaries. In

benchmark tests for sequence-structure alignments like BRAliBase, sequences are usually

given as full-length transcripts with correct boundaries. However, this setting is quite

unlikely in practical application scenarios, where one often has either a partial transcript
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Figure 4.1. Shape representation of an RNA secondary structure obtained by RNAShapes. The
figure shows the three most stable shreps derived from a tRNA sequence at the most abstract
shape type. Interestingly, the mfe structure (a) as well as the second-best shrep (b) do not fold
into a correct tRNA. The biological relevant cloverleaf structure (c) shows up at the 3rd position
(d) with only a small energy difference to the mfe structure. This approach allows us to encode
correct structural features from a very limited number of folding hypothesis.

(e.g., from RNA-seq data), or just transcripts with wrong boundaries. The fact that

secondary structure prediction may change when additional context is considered, adds

considerable noise to the task of identification of functional families. In order to deal

with this issue we consider several subsequences, obtained from the original sequence,

as overlapping windows of different sizes (parametrized by a set of values W ) and at

different starting locations (parametrized by the overlap value O). This facilitates the

capturing of both local hairpins and larger multi-loop structures as the used window sizes

influences the locality of the structural features that we encode, and thus, our method is

aware of. This also reduces the problem that global folding becoming inexact for longer

sequences [11, 99]. A local folding window is also better suited to capture the correct

folding of e.g. cis-regulatory elements in UTRs or miRNAs in introns (mirtrons) [142].

Finally, for each subsequence in each window we consider the set of l most repre-

sentative structures (shreps) obtained by RNAShapes and encode them as disconnected

components. The vertex set for each of the graph components is derived from the se-

quence of nucleotides, while the edge set encodes both the nucleotide sequence adjacency

information (i.e. the RNA backbone) and the pairwise binding status (i.e RNA base

pairs). In addition, an extra set of vertices (and corresponding edges) is introduced to

better match biological knowledge on important RNA motifs, namely, for each stacking
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base pairs quadruplet, an additional vertex is added (and linked to each of the four nu-

cleotides involved; in this way the notion of neighbourhood subgraph (see next Section)

coincides with that of a sequence of stacking base pairs (see Figure 4.2).

The graph encoding of RNA secondary structures via RNAShapes was developed in

collaboration with Sita Lange and Daniel Maticzka.

4.2.2 Graph Kernel for Local RNA Motifs

In order to deal with entities represented as graphs, graph kernels of several types have

been proposed [166]. Graph kernels compute a similarity between graphs using the so-

called kernel trick, i.e they first employ an implicit mapping of graphs or subgraphs into a

very high-dimensional vector space and then utilizing an appropriate dot product function

as similarity measure. For our approach we start from the recently introduced fast kernel

called “Neighborhood Subgraph Pairwise Distance Kernel” (NSPDK) [33], since this kernel

is suitable for large datasets of sparse graphs with discrete vertex and edge labels.

We now review the NSPDK graph kernel and describe the similarity notion that it

induces. The NSPDK is an instance of a decomposition kernel [65], i.e., a composite kernel

that operates over all possible “parts” defined by a given relation. In this case, the

parts are pairs of special subgraphs, called “neighborhood” subgraphs. More formally,

for a given graph G = (V,E), and an integer r ≥ 0, let Nv
r (G) denote the neighborhood

subgraph, i.e. the subgraph of G rooted in v induced by the set of vertices at distance not

greater than r. The neighborhood-pair relation Rr,d, is defined to hold when the distance

between the roots of two neighborhood subgraphs of radius r is exactly equal to d. Note,

the distance between two vertices v, u is the number of edges of the shortest path between

u and v. NSPDK defines a kernel κr,d as the decomposition kernel on the relation Rr,d, i.e.

κr,d(G,G
′) =

∑
A,B∈R−1

r,d(G)

A′,B′∈R−1
r,d(G

′)

1(A ∼= A′)1(B ∼= B′) (4.1)

where R−1r,d is the inverse of the relation Rr,d and indicates all the possible pairs

of neighborhood subgraphs of radius r, whose root vertices are at distance d in the

given graph G, 1 denotes the indicator function and ∼= the isomorphism between rooted

graphs [33].

Please note that the indicator function 1(Q) returns 1 when its argument Q evaluates

to true, and zero otherwise. Furthermore, the rooted isomorphism requires, in addition

to standard isomorphism, that the roots of the two graphs are mapped to each other.

The (non-normalized) NSPDK is finally defined as the sum of all the kernels for all radii

and all distances:

K(G,G′) =
∑
r

∑
d

κr,d(G,G
′). (4.2)
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Figure 4.2. RNA secondary structure encoding and Graph Kernel Features: Top A) The graph
encoding preserves the nucleotide information (vertex labels) and the base pairs (edge labels),
here depicted with different colors. B) Additional vertices are inserted in order to induce features
related to stacking base-pairs quadruplets (thin light gray vertices at the center of each stacking
pair). Right: Example of features induced by the graph kernel NSPDK for a pair of vertices u, v at
distance 3 with radius 0,1,2. Neighbourhood graphs are enclosed in dashed ovals.

For efficiency reasons NSPDK considers the zero-extension of K obtained by imposing

an upper bound on the radius and the distance parameter:

Kr∗,d∗(G,G
′) =

r∗∑
r=0

d∗∑
d=0

κr,d(G,G
′), (4.3)

i.e. they limit the sum of the κr,d kernels for all increasing values of the radius

(distance) parameter up to a maximum given value r∗ (d∗) [33]. Furthermore a normalized

version of κr,d is suggested, that is:

κ̂r,d(G,G
′) =

κr,d(G,G
′)√

κr,d(G,G)κr,d(G′, G′)
, (4.4)

to ensure that the features induced by all values of radii and distances are equally

important regardless of the overall dimensionality of the induced feature space [33].

In our case of graphs originating from encoded RNA secondary structures, the type

of features that the NSPDK is considering is depicted in Figure 4.2. The neighborhood

subgraphs nicely represent local RNA structures that can be relevant for the biological

function of the corresponding RNA (see e.g. Figure 2.1). Moreover, the obtained neigh-

borhood subgraphs are highly descriptive to model effects of RNA evolution. In case

distance d is bigger than radius r, the neighboring subgraphs do not overlap which can
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be treated as a structural “don’t care” region where mutations (mismatches or indels)

are allowed. Figure B.1 in the appendix give further details on the induced features by

NSPDK. In order to get a meaningful graph encoding of the RNA secondary structure, we

distinguish between backbone bonds and base-pairs by using different edge labels. Fur-

thermore, we introduce a special stacking node type to specifically obtain subgraphs with

stable stacking base pairs. For each stack of two base pairs, a node that connects to each

of the four participating nucleotides is integrated (see Figure 4.2). We also use directed

edges to better reflect the RNA orientation. As typical values for RNA clustering we

consider r ≤ 3 and d ≤ 4.

4.2.3 Fast Subgraph Encoding

Once we can decompose a graph in its neighborhood subgraphs, we are faced to the prob-

lem of running an exact isomorphism test on all parts to either count similar subgraphs

of a single graph G or to compute the similarity κ̂r,d(G,G
′). This test is usually com-

putationally expensive, however, NSPDK substitutes the test with a more efficient graph

invariant computation. The core idea is to devise an efficient graph serialization pro-

cedure, such that two isomorphic graphs can be reduced to an identical string. The

encoding is achieved using a technique based on the distance information between pairs

of vertices and can be computed in linear time w.r.t. the vertex size of the component

on sparse graphs with bounded degree. Finally, an iterative hashing procedure can map

the string encoding into an integer code (see Costa and Grave [33] for further details).

Figure 4.3 illustrates the procedure of the graph encoding.

Clearly, this encoding is beneficial because the isomorphism test between two graphs

can be reduced to the equality test between their integer codes. Note that the string

encoding introduce potential feature “collisions” (i.e. different subgraphs can induce the

same strings or features), although in practice the collision event is negligible by using a

fixed, but high dimensional feature space (e.g. 30 bit integer numbers).

4.2.4 Explicit Feature Representation

In contrast to standard kernel approaches as well as the original NSPDK, here we choose to

materialize the implicit feature encoding. This will turn out to be the key step to obtain

an efficient, sub-linear clustering procedure. The benefit shows up in successive phases,

where we need to build an index over these features to collect nearest neighbors.

More precisely, we make use of the integer code for the invariant graph encoding as a

feature indicator and explicitly list all features. In this way we can interpret the integer

associated to each feature (i.e. each pair or neighborhood subgraphs of radius r whose

roots are at distance d) as the feature key and the (normalized) count of occurrences as

its value. This allows us to obtain an explicit feature encoding for a given graph G as
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Figure 4.3. Graph hashing procedure used by NSPDK. Top: First, all vertex labels are replaced by
canonical labels. Then all edeges are sorted according to their vertex labels. The obtained serial
representation can be hashed into an integer number. Bottom: The key step in this procedure is
the canonical relabeling. The figure was kindly provided by F. Costa.

a sparse vector in Rm (with a very high dimension m). The feasibility of the approach

lies in the fact that the encoding does not produce an exponential number of features, as

it would happen with most graph kernels that enumerate all possible general subgraphs.

Instead NSPDK limits the number of features to O(r∗d∗|V (G)|2) pairs of neighborhood

subgraphs, i.e. one feature for each pair of vertices times each possible combination of

values for the radius and the distance. Note that typically r∗ ∈ [0, 5] and d∗ ∈ [0, 10] and

hence the multiplicative factor (≈ 50) is reasonable.

Moreover, for sparse graphs the number of vertices that are reachable within fixed

small distance is typically small (depending on the average degree) so that the dependency

on the vertex set size can be more tightly approximated by O(|V (G)|). As a result,

each graph is mapped into a sparse vector that lives in a very high dimensional feature

space but that has a number of non-zero features which is linear in the number of the

graph’s vertices. As the computation of the encoding for each neighbor subgraph can be

precomputed and cached, the practical complexity for the overall encoding of a graph is

linear in its vertex set size with small hidden multiplicative coefficient. These properties

make NSPDK one of the fastest graph kernels available and suitable for our RNA structural

clustering approach [33].

4.2.5 Efficient Nearest Neighbor Determination Using Locality Sensi-

tive Hashing

In recent bioinformatics application scenarios dataset sizes become large easily and con-

tain > 104 or > 105 instances. Algorithms that directly make use of pairwise distance or

similarity information become infeasible as they inevitably exhibit a quadratic complex-

ity. For example, approaches like RNAclust [179], which use an O(n4) sequence-structure



4.2 Efficient Alignment-Free Structural Clustering of RNAs 65

alignment step to compute one of the O(m2) matrix entries, can be reasonably applied

only for dataset in the order of ≤ 103 RNAs. Thus, the main goal of our GraphClust

approach is to avoid computation of the full similarity matrix by e.g. expensive pairwise

sequence structure alignments, while still obtaining high quality clusters of structured

RNAs.

The key idea of our solution to this problem is to formulate the clustering problem

in terms of approximate nearest neighbor queries which can be answered efficiently (sub-

linearly). In detail, given a set of n instances P = {p1, . . . , pn} in a metric space X with

a distance function d, a neighborhood query is a procedure that returns the instance in P

closest to a query instance q ∈ X. The nearest neighbor search problem is formulated as

a dataset pre-processing that allows nearest neighbors queries to be answered efficiently.

This problem, first posed in the 1960s by Minsky and Papert [118], admits well under-

stood solutions when X = Rm with small m [44]. However, for high dimensional cases, an

efficient solution was proposed by Indyk and Motwani [83]. The key idea in high dimen-

sional space is to relax the requirements, ask for ε−approximate nearest neighbor queries,

and use locality-sensitive hashing techniques. The ε−approximate nearest neighbor query

returns an instance p for a given query q such that ∀p′ ∈ P ,

d(p, q) ≤ (1 + ε) d(p′, q). (4.5)

A locality-sensitive hash function is a hash function such that the probability of

collision is higher for objects that are close to each other than for those that are far apart.

As locality-sensitive hash function we choose the min-hash function as it approximates

the natural similarity notion defined by the Jaccard index [21].

However these techniques require instances to be represented as sparse binary vectors

rather than sparse real vectors. We therefore binarize all instances from Rm 7→ {0, 1}m

setting to 1 all non-null components, i.e. all occurring feature indicators of an instance

(RNA). Let x, z ∈ {0, 1}m be two instances of binary vectors, the Jaccard similarity

between the two instances is defined as

s(x, z) =
|x ∩ z|
|x ∪ z|

, (4.6)

i.e. the ratio of the number of features that the instances have in common over the

overall number of features. We build a min-hash function starting from a set of random

hash functions fi : N 7→ N, i.e. functions that map integers randomly (but consistently) to

integers. In our case the integers of the domain/co-domain represent feature indicators for

subgraphs. These functions must be independent and satisfy: ∀xj 6= xk, fi(xj) 6= fi(xk),

and ∀xj 6= xk,Pr(fi(xj) ≤ fi(xk)) = 1
2 . The min-hash function derived from fi is defined

as hi(x) = arg minxj∈x fi(xj), i.e. the first feature indicator under a random permutation

of the feature order. With other words, the min-hash functions returns that element which



66 GraphClust: Efficient Clustering of Local RNA Secondary Structures

has the minimal value after a consistent re-mapping. With a random hash function we

denote the fact that there are different functions which hash a specific feature indicator

to different, independent values.

A rather surprising (and for us very useful) fact is that a min-hash collision is an

unbiased estimator of the Jaccard similarity:

Pr(hi(x) = hi(z)) =
|x ∩ z|
|x ∪ z|

= s(x, z), (4.7)

i.e. the probability to select as the minimum feature indicator a non-null feature that

belongs to both x and z is exactly the fraction of features that x and z have in common

over the total number of non-null features of x and z. In order to decrease the (high)

variance of this estimate one can take N independent min-hash functions and compute

the number n of times that hi(x) = hi(z). The estimated value n/N is the average of

N different 0-1 random variables, which evaluates to one when hi(x) = hi(z) and zero in

all other cases. The average of these unbiased estimators of s(x, z) is also an unbiased

estimator, with an expected error bounded by O(1/
√
N). Equivalently, for any constant

γ > 0 we can compute a constant N = O(1/γ2) such that the expected error of the

estimate is at most γ. For example, with 400 hash functions the estimate of s(x, z) would

have an expected error ≤ 0.05. Note that the expected error relation can be obtained by

standard Chernoff bounds for sums of 0-1 random variables [31].

We collect the results of the entire set of min-hash functions in an instance signature as

the tuple 〈h1(x), . . . , hN (x)〉. This tuple act like a compressed representation of an RNA

and its features. In order to obtain an efficient neighbor search procedure, we build an

inverse index that returns all instances with the same min-hash value in O(1). Basically,

we build N different inverse indices (for each of the N hash functions) where the keys

represent the min-hashed feature indicators. With each key we store a list of instances,

representing those instances which have the same min-hash value under the same hash

function.

Now we can retrieve the neighborhood of an instance x, i.e. of one RNA, by querying

the inverse index as follows. Given the i−th hash function and a value h̄ = hi(x), i.e. the

i−th value of the signature of x, we collect the set of instances Zi(h̄) = {z ∈ P : hi(z) = h̄}
stored under the key h̄. The approximate neighbourhood Z of an instance x is then

induced from the multi-set Z = {Zi}Ni=1 by combining all N hash functions. Note that

when γ (or equivalently N) is fixed, the complexity to build a single signature is constant

and therefore the complexity for building the index is linear in the size of the dataset.

Similarly, the approximate neighborhood Z of an instance x can be retrieved in constant

time from the inverse index as we combine only a fixed number of lists, each one stored

under the key given by the instance signature, from the inverse index. Note that no

sorting is required for lists stored in the inverse index.
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4.2.6 Neighborhood Refinement and Candidate Clusters

Given the described efficient ε−approximate nearest neighbor search procedure offered

by the min-hash technique, there exists a large variety of methods for clustering [41].

Clearly, in our case not all approximate neighborhoods are equally good and we want

to select those that contain clusters of similar RNAs. To this end, we first refine all

neighborhoods and employ then a density-based ranking to retrieve only clusters of high

quality.

Obviously, a single instance z ∈ Z can occur multiple times in the approximate

neighborhood of x which indicates x and z have multiple min-hash results (and thus

multiple features) in common. We use this information to improve the quality of the

returned neighbors further. For this purpose, we sort all instances in Z according to their

frequency and consider only the k′ most frequent elements in Z. Furthermore, we re-rank

the k′ most frequent elements according to their normalized NSPDK similarity in respect

to x (see Equation 4.4). The refined k′−neighborhood Nk′(x) contains the k′-closest

elements of x that are kept for further processing.

Clearly, all refinement steps need to maintain the constant time complexity for each

neighborhood. We manage this by retrieving only lists from the inverse index that are

limited in size, i.e. where |Zi(h̄)| ≤ α. The size restriction is necessary as we frequency-

sort all instances in the multi-set Z. This allows us, in addition, to skip feature indicators

that are present in many RNAs, and thus, are rather unspecific. Furthermore, we apply

the re-ranking according to the non-approximate NSPDK similarity only to the first k′

elements, with k′ ≤ |Z|. Reasonable thresholds are, for example, α := 1000 and k′ := 100.

Finally, we define candidate clusters by using a k−neighborhood Nk(x) and a notion

of data density. Intuitively, we prefer as a candidate cluster a set of closely related

RNAs. Choosing a good k is important but not crucial when we use a relatively small k,

i.e. k � P . Therefore, we use a k with k < k′ to compute the density of x. The idea is

to rank each instance x according to the density Dk of its k−neighborhood Nk(x). We

define Dk as

Dk(x) =
1

k

∑
z∈Nk(x)

Kr∗,d∗(x, z), (4.8)

i.e. the average pairwise similarity between x and all elements in its k−neighborhood.

In practise, we can use the kernel similarities already obtained during the re-ranking for

the neighborhood refinement. The candidate clusters are finally obtained from the most

dense neighborhoods according to Dk(x). Note that we choose k < k′ in order rank a

larger fraction of approximate neighbors according to the true NSPDK similarity, and thus,

to compensate for inaccuracies of the frequency-based ranking.
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Additional measures can be used to improve the ranking of high quality neighbor-

hoods. For example, we exclude neighborhoods with a high mutual overlap. Returning

the top ranking dense neighborhoods would produce highly redundant sets as the densest

instances are likely to be part of the same cluster. To tackle the redundancy issue, we

adopt a simple yet effective strategy: the candidate clusters are chosen as the top ranking

k-neighborhoods provided that the size of their overlap is below a specified threshold th

with th < k. More specifically, we sort all candidate clusters ci in decreasing order so

that ∀i < j,D(ci) > D(cj). We then iteratively build the union of the candidate clusters

as Cj =
⋃j
i=1 ci but we greedily discard a candidate cluster ck if |Cj ∩ ck| > th.

In order to achieve further speedups for the clustering step, we utilize only a random

sample of neighborhoods. Instead of ranking the entire set of sequences according to their

approximate density, we work on a smaller sample extracted uniformly at random. The

intuition is that the larger the cluster, the higher is the probability that it will be hit by

the sample. In this way, samples of 50% or 25% allow a 2-4 fold speedup while having a

high probability to identify at least one of the instances of the underlying high density

clusters of size greater than 2 or 4 respectively. Note that the neighborhood queries, the

density estimates and the returned neighborhood are computed on the complete dataset,

not on the sample.

Furthermore we weight a density Dk(x) by its shared neighborhood similarity, which

is defined for two instances as

simcosk(x, y) =
|Nk(x) ∩Nk(y)|

k
, (4.9)

i.e. the normalized intersection size of the k-neighborhoods x and y [47]. This is also

called cosine measure as it is equivalent to the cosine of the angle between the zero-one set

membership vectors for Nk(x) and Nk(y). Specifically, shared neighborhood measures are

reported to be effective for clustering high-dimensional data [47]. In our case, we obtain

the weighting factor for Dk(x) with

ωk(x) =
1

k

∑
y∈Nk(x)

simcosk(x, y), (4.10)

i.e. by computing the average shared neighborhood similarity of Nk(x).

In the following, we summarize the procedure to obtain the final ranked list of can-

didate clusters. First, we select either the complete set or a random sample of instances.

We apply then the following steps on each selected instance x (steps 1-4) or on the list

of instances (steps 5-8) respectively:

1. collect the approximate neighborhood Z for x from the inverse index,

2. sort all elements in Z according to their frequency in Z,
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3. rank the k′ most frequent elements in Z by their normalized NSPDK similarity and

obtain the k′-neighborhood Nk′(x) where k′ � P ,

4. compute the weighted density ωk(x)Dk(x) based on the k-neighborhood Nk(x)

where k ≤ k′,
5. rank all selected instances according to their weighted density,

6. select the most dense instance and its Nk(x) neighborhood as first candidate cluster,

7. proceed with next ranked cluster, select it only if size of overlap with already selected

candidate clusters is below a threshold,

8. continue with 7. until a required number of candidate clusters is found.

Note that we keep the k′−neighborhood Nk′(x) for all candidate clusters as extended

k−neighborhood to improve the quality of candidate models later on (cf. Section 4.2.7).

4.2.7 Candidate Model and Refinement

A candidate cluster contains a set of k sequences that are deemed similar under the min-

hash and NSPDK similarity measure given by the refined k-neighborhood Nk(x). Moreover,

a candidate cluster contains a fixed number of sequences, whereas the true cluster size is

unknown and also variable. To solve this problem, we employ a two step solution. First,

we identify a candidate model from a given candidate cluster. Afterwards, we use this

model to search the full dataset and find missing cluster members.

In our approach, we create a high quality candidate model by performing a sequence

structure alignment procedure of the candidate cluster with existing state-of-the-art tools.

This allows to incorporate further domain specific knowledge like compensatory muta-

tions and consensus structure information. For this purpose, we use mainly the LocARNA

package that identifies a common secondary structure of a set of RNA sequences and uses

e.g. the RIBOSUM scoring to deal with compensatory mutations [93, 179].

More precisely, a cluster or guide tree is created by applying an average-linkage al-

gorithm (UPGMA) to the pairwise distance matrix induced by the LocARNA alignment

score. Alternatively, we can also use the pairwise distance matrix obtained from the

NSPDK similarity by computing 1 − κ̂r,d(G,G′). This will remarkably speedup the guide

tree creation as we get the NSPDK-based distance matrix in only O(k2) time where k is

the neighborhood size. Instead, a LocARNA-based guide tree needs O(k2n4) time where n

refers to the length of the RNAs. We denote the pairwise distance matrix of a candidate

cluster as Aij with 1 ≤ i, j ≤ k.

In addition, we employ a strategy to handle overlapping instances that originate from

the same input sequence. This happens if input sequences are extracted in a sliding-

window approach over long RNA sequences with a shift size lower than the window size.



70 GraphClust: Efficient Clustering of Local RNA Secondary Structures

In this case, overlapping instances share a common sequence part that biases the pairwise

distance matrix, and hence, the guide tree. We resolve this by setting all entries Amn to

a very high distance if the sequences that correspond to m and n are overlapping.

The guide tree of a candidate cluster is denoted as T = (V,E). With T (v) we indicate

the subtree rooted at v with v ∈ V . With |T (v)| we denote the number of leafs in subtree

T (v). Given a guide tree T , we first identify all subtrees with a certain number of leafs,

i.e. we find M ⊆ V such that minM ≤ |T (m)| ≤ maxM for all m ∈ M . Each subtree

induces a multiple alignment A with a number of |T (m)| sequences that is computed with

the LocARNA-package. The pairwise distance matrix for all sequences in A is denoted with

Amij , where 1 ≤ i, j ≤ n and n = |T (m)|. We can rank all subtree alignments according

to their quality, which is defined as

Q(A) =

n(n− 1)

2

n∑
i=1,i<j,i6=j

Amij

mpi(A) sci(A), (4.11)

i.e. the alignment quality is the average pairwise alignment score of its leafs in com-

bination with the sequence identity (MPI) and structure conservation index (SCI) of the

subtree alignment. Note that the average alignment score is not necessarily inversely pro-

portional to the subtree size, and thus, large subtrees can be ranked higher than smaller

ones [143]. As additional quality weights we consider the MPI and SCI, which were suc-

cessfully used, for example, by RNAz to detect conserved ncRNAs [64, 170]. Only the top

ranked subtree alignment, which exhibits the best model quality Q(A), is retained.

The multiple alignment A of each subtree is computed with the sequence-structure

alignment tool LocARNA. To better accommodate for models that exhibit a local similarity

we employ a strategy based on LocARNA-P [180]. This method allows for an accurate pre-

diction of ncRNA boundaries via column-wise reliability scores. Based on the reliability

signal, LocARNA-P then identifies a trusted region as common local motif (i.e. a conserved

ncRNA) and we use this region as final candidate alignment. The consensus secondary

structure of the alignment is determined with RNAalifold [12]. Figure 4.4 shows a guide

tree with reliability profiles for two subtrees.

The candidate alignment, i.e. the top-ranked alignment, contains a small number

sequences according to the chosen thresholdsminM andmaxM . This candidate alignment

can be interpreted as the core of a conserved ncRNA present in the dataset. The selection

of the best subtree is necessary to correctly identify alignments of high quality (data not

shown) as Nk(x) can contain instances that do not fit into a common secondary structure.

On the other hand, alignments with many sequences increase usually the diversity, and

thus, models derived from such alignments can be beneficial during the search for remotely

related sequences. To this end, we optionally allow a retraining of the candidate alignment

by using additional RNA candidates from the extended neighborhood Nk′(x). In general,
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Figure 4.4. Guide tree example for a candidate cluster with k = 15 RNA fragments. For
each candidate cluster, we first create a guide tree (UPGMA) based on the distance matrix
derived either from pairwise LocARNA alignments or from the pairwise NSPDK similarity. Then,
for all subtrees with a certain number of leafs, we compute the corresponding multiple sequence-
structure alignment with LocARNA-P. This method also computes a reliability signal that is used
to identify a trusted (local) region with a common RNA motif or ncRNA. The subtree indicated
in red has a reliable region (green bar) in contrast to the other subtree. Leaf lables are replaced by
external class assignments that clearly support the tree structure and the found signal. Finally,
the alignment with the best quality, for example the red subtree, is used to build a cluster model.

expectation-maximization (EM) algorithms are suited for finding a maximum likelihood

solution. In our case we use CMfinder that implements an EM-algorithm based on

covariance models of RNA sequences [188]. We use the alignment with the best quality

from the k-neighborhood guide tree as input for CMfinder. During the iterative EM-

algorithm, CMfinder tries to include more sequences from the k′-neighborhood into the

candidate alignment.

Finally, we build a covariance model (CM) from the candidate alignment using the

Infernal package [122]. Such a cluster model can be used to search large-scale datasets

for related RNA sequences, as done in Rfam. In our approach, we use the cluster model

to scan all input sequences with CMsearch. This step allows to populate a cluster with

more remote cluster members that are not part of the candidate alignment. Based on
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the candidate model, several sane quality checks can be applied. For example, candidate

models with a very low MPI or SCI can be discarded. Moreover, a candidate model

is probably wrong if CMsearch not reliably recovers sequences from the corresponding

candidate alignment.

4.2.8 Iterative Clustering

GraphClust is a de-novo clustering approach and thus it is difficult to determine be-

forehand the number of clusters to be found. In addition, candidate clusters are only

similar under the min-hash and graph kernel similarity and therefore the clustering can

be different by using additional RNA domain specific knowledge. We solve these prob-

lems with an iterative clustering procedure. During one cycle we only process a small

number of very dense neighborhoods and continue not before identified clusters are re-

moved from the dataset. This approach is beneficial under various aspects. Candidate

clusters are determined by the neighborhood of elements in high density regions. These

clusters have a spherical shape in the kernel feature space. By first filtering a cluster via

RNA alignment procedures and then expanding it using the covariance model, we remove

this bias and obtain non-spherical clusters. Finally, we iteratively remove all instances

of the non-spherical clusters which alters the density distribution in the kernel feature

space. This allows novel clusters to emerge in the next clustering phase. Moreover, an

iterative procedure allows to adapt clustering parameters (e.g. number of hash functions)

between iterations. For example, the algorithm first uses parameters sufficient to detect

well-defined clusters. Then each following iteration change parameters to detect also less-

conserved clusters of RNAs. As stated in Section 4.2.5, the number of hash functions

directly controls the quality of the obtained approximate neighborhoods. In addition,

altered clustering parameters can avoid recurrent local minima, for example, candidate

clusters that are discarded due to quality measures.

Note, in high-dimensional feature space it is not feasible to use absolute values or their

distributions (e.g. to determine a density threshold), because values tend to contract or

their range change easily for a different dataset. Therefore, it is more reliable to process

only very likely candidates instead of applying, for example, significance measures.

4.3 GraphClust Pipeline

In the following we describe in detail our GraphClust pipeline for an efficient clustering of

large scale RNA datasets. All necessary steps, from preprocessing to cluster refinement,

are integrated in an easy-to-use pipeline which finally outputs clusters of similar RNAs

for further analysis. We distinguish nine phases of our GraphClust pipeline: initially,

input is preprocessed and near-duplicates are filtered away (1), sub-optimal structures

for each sequence are computed in parallel (2); the sparse feature encoding is extracted
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Figure 4.5. Complete clustering pipeline diagram. Phases that are executed in parallel are
represented in stacked boxes. 1) filter near-duplicates, 2) compute sub-optimal structures, 3)
compute sparse vector encoding, 4) compute global feature index and return top dense sets, 5)
refine clusters with structural alignment procedure, 6) build covariance model with remaining high
quality instances, 7) populate each cluster with retrieved instances, 8) remove clustered instances
and iterate from step 4, 9) merge redundant clusters.

for each structure (3); the feature encoding is then used to build the min-hash based

feature index for fast similarity searches; the top dense approximate neighborhoods are

returned as candidate clusters (4) and they are subsequently refined using structural

alignment procedures (5); the final candidate alignments are used as high quality seeds

to build covariance models (6) with which additional instances are retrieved to further

populate the clusters (7); before re-iterating starts from step 4, the clustered elements

are eliminated from the working set (8). Finally, redundant clusters are merged and all

instances receive a unique cluster assignment (9).

4.3.1 Pre-Processing and RNA Structure Encoding

Phases 1 to 3 are required to convert all input sequences into sparse vectors, necessary for

our efficient feature based clustering. These steps are only executed once in our pipeline.

Phase 1: Pre-Processing (Sequential)

The GraphClust pipeline is able to cluster RNA sequences which originate from differ-

ent sources like RNA-seq or computational methods like RNAz [170] or EvoFold [128].

Therefore, a solid pre-processing of the input sequences is essential.

In case of genomic sequences, repeats are masked with ’N’s or excluded beforehand

in order to avoid clusters made of genomic repeats. Contiguous strings with more than

15 ’N’s are deleted and the resulting fragments are treated as independent sequences.

Next, we split long sequences into smaller fragments to enable the detection of local

signals. Reasonable fragment sizes in the range of W ′ = [75, 250] nucleotides with an

overlap of e.g. O′ = {33, 50, 75} in percentage of the window size. The actual overlap

is slightly adapted to ensure fragments of nearly similar length. We also require that all

fragments are longer than a required minimal length.
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Obvious relationships of near identical sequences were removed using BLASTclust to

prevent a bias towards sequential clusters [4]. Such sequences would form very dense

neighborhoods and derived candidate clusters would overshadow more subtle sequence-

structure relationships. We identify clusters of sequences which are more than 90% iden-

tical over 90% of the sequence length. From each such cluster we keep only one sequence

at random and remove all the others. The removed sequences can be however included in

the final clustering results (see Phase 9). Filtering with BLASTclust is applied iteratively

until no sequence duplicates are found.

Phase 2: Structure Determination (Parallel)

In this phase we extract a set of structures for each sequence employing the RNAShapes

tool as detailed in Section 4.2.1. Each fragment of window size W ′ is split into further

subsequences of different sizes W with an overlap of O. Different windows sizes W are

helpful to capture both local hairpins and larger multi-loop structures. As default setting

we select two window sizes W = {30, 150} and a fixed overlap of O = 20%. For each such

subsequence we encode the top l = 3 shreps within 20% energy difference to the minimal

energy under the most abstract shape level 5.

As a rule of thumb, a sequence of 150 nt is encoded in a set of disconnected graphs

of ≈ 2500 vertices and is obtained in approximately one second on a Xeon 5160, 3.0 GHz

(O = 20%, W = {30, 150}, l = 3). The structure finding can be done in parallel on

chunks of fragments. For large window sizes we use the structure sampling approach of

RNAShapes to speedup the shrep finding.

Phase 3: Structure Encoding (Parallel)

In this phase we manipulate the set of structures encoded as graphs in Phase 2, and pro-

duce an explicit sparse feature encoding as detailed in Sections 4.2.2 - 4.2.4. Reasonable

values for radius are r∗ = [1, 4] and for distance d∗ = [1, 4]. For a 150 nt long sequence

this yields a sparse vector with ≈ 8000 features when using the default values of r∗ = 2

and d∗ = 4. This can be obtained in approximately one second on a Xeon 5160, 3.0 GHz.

Figure 4.6 illustrates exemplarily the behavior of the number of features on up to 100,000

RNA fragments of size 150nt from human 3’ UTRs. It is important to note that the

feature increase rate shows a sub-linear behavior. In the pipeline the feature encoding

can be executed in parallel on chunks of disconnected components.
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4.3.2 Iterative Clustering

Phases 4 to 8 constitute the iterative part of the GraphClust pipeline. Each iteration

starts with the efficient clustering procedure. Then we select a limited number of top

ranked candidate clusters and each of them undergoes subsequent steps of refinement and

populating the cluster. After scanning of all candidate models is finished, we collect all

hits and blacklist them for the next iteration.

Phase 4: Candidate Cluster (Sequential)

Here we employ our efficient ε−approximate nearest neighbor search procedure offered by

the min-hash technique to define candidate clusters (cf. Sections 4.2.5 and 4.2.6). First,

we combine all parallel encoded features into a single file with all sparse feature vectors.

Second, we generate the min-hash signature of each instance by using n different hash

functions and build the inverse index. Finally we compute the density of an instance

by using its k−approximate neighborhood and rank all instances accordingly. We also

apply all neighborhood refinements steps like NSPDK-based re-ranking and weighting each

density with its shared neighborhood similarity. As output we provide a given num-

ber of c top dense candidate clusters together with their extended k′-neighborhoods (cf.

Section 4.2.6). We also output the kernel similarity matrix on each k−neighborhood,

necessary for building the cluster tree in the next phase.

As this phase constitutes the bottleneck of the entire pipeline (since we go from a

parallel flow to a sequential one) we use additional procedures to trade-off accuracy with

speedup. For example we only compute densities on a smaller random sample of instances

(e.g. 25% or 50%). Nevertheless, we want to emphasize the linear time complexity of the

clustering phase even when using the full set of instances. For example, we measured the

time necessary to finish phase 4 on a growing set of RNA sequences, ranging from 10,000

to 100,000 fragments from human 3’ UTRs of size 150nt. Figure 4.6 shows nicely the

linear dependency between clustering time and dataset size . In general, the size of the

sparse vector depends linearly on the number of instances. For example, 10,000 sequences

of length 150nt require ≈1GB RAM, 20,000 sequences require ≈2GB RAM. In contrast,

the number of keys for the inverse index increase only sub-linearly. The parameters to

determine candidate clusters are dataset dependent, but can be chosen according to some

reasonable estimations. As we stated in Section 4.2.5, with 400 min-hash functions we

can reduce the expected error ≤ 0.05. The number of reported candidate clusters c is set

according to the number expected clusters. The neighborhood size k is set according to

the expected cluster size. The extended neighborhood size k′ is linked to k by a given

neighborhood excess factor e, i.e. k′ = k · e, which is set by default to e = 5. We use

always α := 1000 as maximal list size to collect the approximate neighborhood from the

inverse index. Fragments that overlap on the original input sequences are handled in the
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Figure 4.6. Dependency between dataset size and the number of features or runtime. The red
curve indicates the total number of different features observed for different dataset sizes. The blue
curve shows the measured runtime for our approximate nearest-neighbor clustering procedure.
The linear fit to these times (green line) clearly indicates the linear runtime. For the plot, a
dataset from human 3’ UTRs with a total number of 100, 000 sequences of length 150nt was used.
Used NSPDK parameters: r = 2, d = 4, 400 hash functions.

next phase and we assume here a similar influence on all densities. The neighborhood size

k should be increased for large overlap sizes (≥ 50%) to ensure the expected cluster size,

i.e that a candidate cluster contains enough sequences originating from different input

regions.

Phase 5: Cluster Refinement (Parallel)

Candidate cluster reaching phase 5 are composed of RNA candidates from the k-neighbor-

hood and the extended k′-neighborhood. We enhance the quality of the candidate cluster

by filtering away inconsistent elements using alignment based techniques as described

in Section 4.2.7. Within this phase we accomplish the switch from the NSPDK similarity

measure to a more domain specific metric that is, for example, aware of compensatory mu-

tations or consensus structure information. To this end, we perform a sequence-structure

alignment of the set of k candidate sequences with the tool LocARNA. A cluster tree is

created by applying an average-linkage algorithm (UPGMA) to the pairwise distance ma-

trix induced by the LocARNA alignment score. Alternatively, we can speed up this step

and generate the cluster tree from the NSPDK similarity. Note, as we split input sequences

into windows with a given overlap (e.g. 50%), it is very likely that a candidate cluster

contains overlapping fragments. We avoid any bias in the cluster tree by simulating a
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large distance between overlapping fragments. In addition, we filter out subtrees which

still contain overlapping RNA candidates to avoid any influence on the quality ranking.

This phase is done in parallel on each candidate cluster.

Phase 6: Candidate Model (Parallel)

Next, we traverse the cluster tree and compute multiple alignments with LocARNA-P

for subtrees of a given size (default is minM = 3, maxM = 7). These alignments are

then ranked by their quality Q(A). Only the top ranked alignment, which contains

the RNA candidates that exhibit the best quality, is retained. With the help of an

alignment reliability score provided by LocARNA-P, we re-estimate the boundaries of a

common ncRNA signal. A covariance model (CM) is finally build by using Infernal on

the identified subsequences. Further refinement can be done by retraining the CM with

CMfinder on the RNA candidates from the extended k′−neighborhood. This phase is

done in parallel on each candidate cluster.

Phase 7: Model Scanning (Parallel)

Each candidate cluster induces a CM model which is used to search the full dataset for

residual cluster members with CMsearch. Hits are considered significant on the basis of

their bit score (default threshold is 20) or E-value and they are added to the final cluster.

Scanning the original, unfragmented sequences, is also beneficial to find cluster members

which span over fragment boundaries and hence are difficult to identify. Note that, as

every time we perform the search on the entire dataset, a sequence can be assigned to

multiple clusters. This ambiguity is allowed in this phase as, until all clusters are available,

there is not enough information to decide unambiguously for the best cluster assignment.

The search also retrieves RNA candidates taken out by the initial BLASTclust filtering.

The entire dataset is scanned in parallel by each candidate model.

Phase 8: Iteration and Removal (Sequential)

All RNA fragments assigned to clusters in the previous phase are removed from the

dataset and a new iteration starts from phase 4. The termination condition is given either

by a pre-determined maximal number of iterations, a time limit or when the remaining

dataset is exhausted. At this point we also apply simple filters on found clusters. For

example, clusters with too few members (e.g. < 5) are ignored. A further plausibility

check is conducted whether the list of significant hits comprise RNA candidates initially

used for building the CM model. Finally, all valid clusters are collected and we generate a

list of blacklisted RNA candidates that are skipped during the next iteration. Note that

we can avoid any recomputation of sparse vectors by saving them to disk. In the next
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iteration, blacklisted instances can be skipped while NSPDK reads this sparse vector file of

all instances. The instance signatures and the inverse index are currently recomputed in

every iteration.

4.3.3 Post-Processing and Technical Aspects

Phase 9: Post-Processing (Sequential)

Redundant clusters are merged and instances that belong to multiple clusters are assigned

unambiguously. For every pair of clusters we compute the relative overlap (i.e. the

fraction of instances that occur in both clusters) and merge them if the overlap exceeds

50%. Cluster members are finally ranked by their CM bitscore. We also indicate members

already found by BLASTclust to focus analysis on interesting members. For each cluster

we provide example alignments of the top cluster members and various output files for

further analysis. A table summarizes all found clusters and promising motifs can be

identified by their SCI, MPI or further cluster measures.

Technical Aspects

The feature encoding and graph kernel are part of NSPDK which is implemented in C++.

For the GraphClust project we extended NSPDK by the min-hash clustering procedure and

the retrieval of density-based clusters. The pipeline scripts are implemented in Perl. For

parallelization the Sun Grid Engine (SGE) is used. A more recent version of GraphClust

(v0.7+) and NSPDK (v9.2+) can also be used with threads. In order to achieve the

required linear efficiency during clustering, we use the hash map implementation from

std::unordered map (e.g. for the inverse index), which offers a constant average time

complexity on element insert and access.

4.4 Performance on Clustering of Known ncRNAs

In the following we evaluate the clustering performance of GraphClust on datasets com-

prising known ncRNAs. First, we give details about the measures we use to assess the

clustering quality. Then we describe the compiled benchmark datasets and how we com-

pare GraphClust with existing clustering methods.

4.4.1 Evaluation Measures and Parameters

As the number of clusters cannot be determined beforehand GraphClust uses an iterative

clustering procedure on a limited number of most dense clusters per iteration. In our

evaluation we follow this procedure and measure the clustering quality at the end of each

round on all clusters found so far. We use the F measure and the adjusted Rand index as
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quality measures [81, 134]. The F measure is the harmonic mean of precision and recall

and measures the quality of a single cluster, defined as F = 2(Prec·Recall)/(Prec+Recall).

Precision is defined as Prec = TP/(TP+FP), where TP is the number of correct cluster

members and FP is the number of wrong cluster members. Recall is defined as the

fraction of correctly clustered members over the full family size. To each cluster we

assign the family with the majority of members. We report the average F measure over

all clusters at the end of each round. The Rand index compares two clustering hypotheses

taking into account all possible pairs of instances. The similarity measure is based on the

fraction of times when the two clustering hypothesis agree that the elements in each pair

belong to the same or to different clusters. We use the adjusted Rand index, which uses

a hypergeomeric model to correct for chance effects, so that the value range is [0, 1], with

random partitioning scoring 0 and perfect agreement scoring 1. Note that we measure

only the quality of clustered RNA sequences, i.e. we ignore elements which are not part

of any cluster.

We calculate the quality measures on the basis of different clustering hypotheses,

called partition types. The initial clustering is build upon all significant hits of each

candidate model and is called SOFT partition. In this type a specific RNA candidate

could belong to more than one cluster. Based on the SOFT partition we generate the two

partitions types BEST and MERGED. In addition we consider for evaluation purposes

a theoretical ORACLE partition. Partition BEST assigns an RNA candidate to the

model with the best score (without any merging). MERGED uses the described cluster

merging strategy during phase 9 (see section 4.3.3) of overlapping clusters and applies

BEST afterwards. The MERGED hypothesis is used as main results for all benchmarks

as well as for all application scenarios presented in Section 4.5. The ORACLE partition

assumes a supervised or perfect merging strategy and shows the maximum theoretical

performance. In this case, all initial clusters (SOFT partition) with the same majority

true class were merged, using BEST as final partitioning strategy. The overall running

time is an important measure of our pipeline. Here we measure the time of each phase

and provide a total time after each iteration and an average time per predicted cluster.

GraphClust Parameters

Some default parameters are given in Section 4.3. If not stated differently in a section,

we applied the following parameters while running GraphClust. Phase 2: RNAShapes

abstraction level: 3. Phase 4: Neighborhood subgraphs use radius r = 2 and distance

d = 4. The approximate neighborhood size is set to k = 15 with an excess factor of 5. All

benchmark sets and human lincRNAs are clustered without using a downsampling during

the calculation of densities. For RNAz screens and the human EvoFold set a random sample

of 50% is used. For human 3’UTR set and Fugu lincRNAs a sample of 20% is used. The

initial hash signature uses 300 hash functions. For every subsequent iteration we increase
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the signature size by 50 hash functions. No overlap between candidate clusters is allowed.

Phase 7: For benchmark sets hits with a bitscore ≥ 15 are considered as significant, for

all the other datasets the threshold is ≥ 20.

GraphClust Space and Memory Requirements

A memory limit of 3.5GB is set for all GraphClust-phases except phase 4. The memory

requirement in phase 4 depend directly on the size of the sparse vector. For example, the

sparse vector of the Rfam benchmark is ≈500MB, for the Fruit fly RNAz screen ≈1,7GB

and for the human 3’UTR ≈15GB. Assuming sequence fragments of similar size, the

sparse vector increases linear in the number of sequences. Datasets up to 30.000 sequence

fragments (≈150nt) are therefore possible to cluster on a normal machine (4 GB RAM).

Used Software and Hardware

For all runs we use the following tools: GraphClust (v0.5), LocARNA (v1.6.2), Vienna RNA

package (v1.8.5), RNAsoup (v1.2.5), RNAShapes (v2.1.6), Infernal (v1.0.2), BLASTclust

(v2.2.15). Runtime is measured on Opteron 2356 (2.3 GHz) machines. For parallelization

the Sun Grid Engine (SGE) is used.

4.4.2 Benchmark Datasets

In order to test the performance on clustering known ncRNA classes we use two bench-

marks sets from two different sources. (1) We cluster a set of 503 families obtained from

the Rfam database which has previously been successfully used to benchmark LocARNA-

based structural clustering [179]. The original set consists of all Rfam seed sequences

(v7.1), filtered for 80% sequence similarity and lengths< 400 nt. Application of BLASTclust

to remove trivial sequence clusters leaves 3,900 sequences. The majority of families

(252/503), however, has less than three members. Only 124 families, comprising ∼80%

(3,118) of all sequences, have more than five members. (2) We collected a comprehen-

sive set of 49 bacterial small ncRNA families (941 sequences) from the NCBI Genome

Database. Non-coding RNAs present in at least 10 species were considered. Removing

sequences exceeding 400 nt in length and similar sequences using BLASTclust leaves 363

bacterial ncRNAs. These were randomly embedded in 50 nt genomic context sequence

to harden the classification problem. The set contains 6 families with less than 3 mem-

bers and 37 families with more than 3 members. Sequences of both benchmark sets are

not split into smaller fragments. In addition, in order to recover the structural classes

presented in [126], we clustered 725 EvoFold hits that form 220 EvoFam families [126].
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4.4.3 Comparison to Other Methods

Alignment based RNA clustering methods which take into account structural properties

need to calculate a pairwise distance matrix first. This information can be used to get a

clustering hypothesis using different methods, e.g. by creating a guide tree. We compare

our clustering to a LocARNA-based clustering. The idea of the comparison is to show

that our clustering approach achieves a similar and high clustering quality but with the

discussed benefits especially in complexity and therefore run-time. We use RNAsoup in

order to partition the LocARNA cluster tree into an optimal number of clusters and evaluate

them with the given quality measures. A cluster is reported as optimal cluster according

to a variant of the Duda rule [41]. It checks if the sum-of-squared error for two clusters is

not significantly smaller than expected by chance. The significance level of RNAsoup can

be controlled by k and authors give a range 0.8 ≤ k ≤ 1.2 for Rfam sequences. The error

of a cluster is determined via the free energy of its consensus structure and the minimum

free energies of its individual sequences. Clearly, this procedure gives a full clustering

whereas our pipeline only clusters a subset. Therefore we eliminate all clusters with less

than 3 members from the RNAsoup partition. We also measure the LocARNA run-time

as aggregated serial time. We use LocARNA without any speedup heuristics to stress the

inherent complexity issue of existing structure based clustering methods. Using speedup

heuristics would give a much lower overall LocARNA run-time, but not in the order of

several orders of magnitudes.

4.4.4 Rfam Benchmark

We run the GraphClust pipeline for 15 iterations, retrieving 10 candidate clusters at

each iteration. Table 4.1 gives an overview of the result for the clustering of 3,901 Rfam

sequences. See Appendix Table B.2 and Table B.1 for full details on cluster quality and

runtimes. After 15 iterations we identified 130 clusters (MERGED partition). The high

F measure (0.834) and Rand index (0.984) indicates a correct clustering. The result

reflects the fact that only 124 of 502 families have more than 5 members. Prior to the

merging phase we identified 148 clusters (SOFT partition) with a quality of F=0.796

(R=0.483). This clearly indicates that the overall cluster quality can be significantly

improved employing a merging strategy. Increasing the number of iterations does not

produce additional meaningful clusters, resulting rather in a slightly decreased overall

quality.

We report the aggregated run-time for all serial and parallel phases. Running the

entire pipeline took ~36 h (129626 s) when viewed as serial process on one CPU core. The

parallelized version however, took ~3 h. Note that the clustering step in phase 4 took

only between 1 and 8 minutes (serial time), which is the main bottleneck in previous

RNA clustering approaches. See also Figure B.2 for a more general runtime comparison.
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Quality (MERGED) Time in secs

i #Seq #C F Rand Phase 4 Timei TimeALL

Rfam benchmark

0 8314 8314
1 271 5 0.882 0.888 458 14995 23309
2 629 14 0.834 0.932 416 19962 43272
3 1076 23 0.868 0.956 334 15108 58380
7 2181 58 0.877 0.985 154 11964 104940

15 2821 130 0.834 0.984 77 2491 129626

Small ncRNA benchmark

0 720 720
1 140 10 0.942 0.945 42 2434 3154
2 232 20 0.926 0.939 27 3395 6549
3 270 26 0.936 0.935 17 7681 14230
7 329 35 0.890 0.897 5 250 23186

15 360 43 0.858 0.866 1 92 24301

Table 4.1. Results for Rfam and small ncRNA benchmark set. Results for each iteration i on
the MERGED partition. Clustering quality is given as F measure and Rand index. The total
number of clustered sequences is indicated with #Seq. The total number of clusters after merging
is given by #C. Timei denotes the total time for iteration i, TimeALL is the total serial time up
to iteration i.

In order to compare our results to state-of-the-art sequence-structure clustering, we

applied RNAsoup to the cluster tree obtained from LocARNA alignment scores. We chose

the partition with k = 0.8 which gave a quality of F = 0.588 (R = 0.586) for 160

predicted clusters containing 3,569 sequences. We considered only cluster with at least 3

members for a fair match. Other k values give similar (although slightly worse) results.

Clustering 3,901 sequences with LocARNA without any speedup heuristics took ~370 days,

yielding a theoretical 246-fold speedup for our method. Clearly, it is possible to employ

parallelization and effective heuristics also for LocARNA. We also analyzed the impact of

using a sample of 50% and 25% in phase 4 and observe a similar quality (see Table B.5).

4.4.5 Small ncRNAs Benchmark

We run our pipeline for 15 iterations, retrieving 10 candidate clusters at each iteration.

Table 4.1 gives an overview of the results for the clustering of 363 small ncRNAs (see

also Tab. B.3 and Tab. B.4). After 15 iterations we identified 43 clusters (MERGED

partition) from 38 unique families. The overall clustering quality is high with F = 0.858

and R = 0.866. The additional flanking sequences do not disturb the quality. Please note,

although we ask for 10 candidate clusters at each iteration, less clusters are reported. This

happens for example in case that further clusters would overlap higher ranked clusters,
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Figure 4.7. Two exemplary cluster identified by GraphClust when processing EvoFold hits. For
each cluster the top 20 sequences are given. The consensus secondary structures of both clusters
are small hairpins. Cluster (A) contains many sequences that belong to the same EvoFam family
(as indicated by ’x’). Contrary, only one of the depicted sequences of cluster (B) is a member of a
previously described EvoFam family. Interestingly, this novel cluster contains several compensatory
mutations that support the structural clustering. This demonstrates that GraphClust can identify
relevant local structural clusters. It may not only help to improve existing family assignments, it
can also be used to define new ones.

which is disallowed in the used setting. LocARNA applied to this set results in a quality

of F = 0.729 and R = 0.88 using RNAsoup with k = 0.4 (other k have lower qualities).

The serial run-time of the pipeline is ~6.8 h. Using only LocARNA on the same dataset

takes ~7 days.

4.4.6 EvoFam Family Benchmark

Application of GraphClust (5 iterations) to the 725 EvoFam-annotated sequences yields 37

structural classes. We recover 14 known families with F ≥ 0.5. In particular, even raising

the threshold (F ≥ 0.7), we identify 5 out of 8 families with ≥ 10 members. Applying

GraphClust on all 37,381 human EvoFold hits (20 iterations, see Tab. 4.2 as overview and

Fig. 4.7 for an exemplary clusters) recovered the same amount (5/8) of EvoFam families

(albeit different in type) having ≥ 10 members. Infernal annotates ∼38% (14/37) of the

GraphClust-derived EvoFam clusters as known ncRNA classes. For example, we identified

the Histone 3’UTR stem-loop motif and the let-7 miRNA family. The vast majority of

clusters (11/14) were known miRNAs. For 10 of the 11 miRNA cluster the E-value of

the best Infernal hit was < 10−15 indicating a reliable class annotation. Interestingly,

these GraphClust results can also be used to identify novel human miRNA candidates as

shown in Figure 4.9.
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4.5 GraphClust Predicts Novel Local Structural Motifs

In the following we predict clusters with novel RNA motifs and apply GraphClust to

large scale and genome-wide datasets with several thousands of RNA fragments. With

previous methods a similar setting for sequence structure based clustering would have

been impossible in reasonable time. First we give details on the used datasets and then

we summarize found motifs for RNAz-screens and lincRNAs.

4.5.1 Datasets

We analyze different sets of predicted ncRNAs. We apply GraphClust to 37,381 hu-

man EvoFold hits [128], 16,377 RNAz ncRNA candidates of the fruit fly Drosophila

melanogaster [140], and 11,536 ncRNA candidates of the teleost Takifugu rubripes [141].

EvoFold predictions are generally short and were not split before clustering. For both

RNAz screens, sequences are fragmented into stretches of 150 nt (min. length 50 nt). Re-

moving nearly similar sequences using BLASTclust left 17,765 fragments for fruit fly and

11,287 fragments for teleosts. Moreover, we search for novel local structural motifs in

long ncRNAs. As first set we cluster the collection of 8,195 human lincRNAs described

in [24]. Splitting (150 nt windows, min length 50 nt) and BLASTclust filtering resulted

in 31.418 fragments. Secondly, we cluster the set of 1,133 lincRNAs expressed in zebra-

fish embryos recently reported in [127]. Preprocessing yields 5,877 fragments, ready for

clustering.

Resulting structural clusters were annotated using Infernal (v1.0.2) [122]. Using

CMsearch we compared our clusters to all Rfam seed models (v10.1) that have an average

seed sequence length ≤ 500 nt. Clusters that contain CMsearch hits with an E-value of

E < 10−5 were considered as known, others as novel.

4.5.2 Structural Motifs in RNAz Screens

Most of the known families, including tRNAs, snRNAs (U2, U5) and miRNAs, are recov-

ered in the fruit fly RNAz screen (6 annotable clusters). Throughout all de-novo discovery

screens, miRNAs were most abundantly detected (four clusters in fugu- and two clusters

in the fruit fly-RNAz screen; two clusters in fugu lincRNAs). Clustering the EvoFam dataset

has shown that GraphClust can recover known UTR elements. Therefore, we decided to

analyze and search for novel cis-regulatory UTR elements on a broader scale by clustering

all RefSeq 3’UTRs. Beyond a single box H/ACA snoRNA, this search again returned

the Histone 3’UTR stem-loop motif. Furthermore, it resulted in up to 116 candidates

for novel cis-regulatory elements. The majority of generated clusters, however, can not

be annotated by existing Rfam models and are candidates for novel ncRNA classes. As
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depicted in Table 4.2 and Figure 4.8, our obtained motifs have comparably low sequence

similarity (measured by MPI). Nevertheless, we predicted 186 novel clusters that have an

SCI > 0.5 indicating that these are indeed novel structural clusters.

Figure 4.8. SCI/MPI density heat-maps of GraphClust-generated clusters. The heat-maps
illustrate that GraphClust can indeed identify local structural clusters. We present heat-maps
for different benchmark and application scenarios. Recall that for local motifs the structure
conservation index (SCI) can only be used as a measure of “structured-ness” in case it is high. Low
SCIs are known to be uninformative for local structural elements and no conclusion can be drawn.
Thus, although the mean pairwise sequence identity (MPI) is low for many structural clusters,
we still observe clusters with reasonable high SCIs indicating conserved secondary structural
elements.
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4.5.3 Structural Motifs of lincRNAs

With GraphClust we extract 95 local motifs from the 8,195 human lincRNAs recently

reported by Cabili et al. [24]. In 55% (52/95) of all cases the majority of transcripts

underlying our structural clusters are consistently expressed in the same tissue. The vast

majority of clusters (49/52) contains transcripts specifically expressed in testes. This,

however, is expected, since it has already been shown that most of the lincRNAs from

this dataset are expressed in testes [24]. Nevertheless, we also obtain structural motifs

from transcripts that are consistently and specifically expressed in either skeletal muscle,

kidney and brain. Next, half of our clusters (47/95) contain transcripts with enriched GO-

FAT biological process terms and hence have a putative functional link to their nearest

protein-coding gene [80]. We find 17 clusters that contain at least two different lincRNAs

with enriched GO terms. Of these, ∼53% (9/17) of structural lincRNA motifs are asso-

ciated with exactly the same GO term. The actual number of structural motifs with a

specific biological function is likely higher, since different GO terms can still convincingly

refer to similar biological processes. For example, we obtain clusters whose transcripts

are described by the obviously related GO terms “neuron differentiation”, “regulation of

neurogenesis”, “regulation of nervous system development” and others. Manual inspec-

tion has shown that most of the cluster-associated GO terms deal with aspects of neuron

differentiation and development, neuronal signaling, cognition and related processes. This

is in-line with recent findings that long ncRNAs are functionally linked to the nervous

system, neuronal diseases and brain function [28, 130].

Furthermore, we extract 99 local motifs from the 1,133 teleost lincRNAs recently

reported by Pauli et al. [127]. Interestingly, these contain up to 5 times more novel struc-

tural classes than their human counterpart. This might be explained by the fact that

teleost fish underwent an additional whole genome duplication which increases the likeli-

hood to identify paralogous genes [29]. Found structural clusters from human lincRNAs

and teleost lincRNA are summarized in Figure 4.8 and Table 4.2.

4.6 Discussion

With GraphClust we introduced for the first time an ultra-fast approach for large-scale

comparison and clustering of RNAs according to sequence and structure, which is key to

the functional annotation of ncRNAs. Strikingly, our clustering step is alignment-free to

tackle the inherent complexity issue of sequence structure alignment methods as well as

to skip the computation of a full similarity matrix.

As clearly indicated by the results, our approach yields high quality clusters while

at the same time it is linear in time and thus scales to sets of hundreds of thousands of

sequences. To this end, we introduce a clustering procedure based on the recently intro-

duced graph kernel (NSPDK) in combination with a fast approximate neighborhood search
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Figure 4.9. GraphClust identifies novel human miRNA candidates. A hierarchical LocARNA-
based structural clustering based on one representative sequence selected from GraphClust-
derived clusters of EvoFam sequences reveals two main structural classes. Apart from several
small hairpins, we observe a prominent miRNA cluster consisting of known miRNAs (annotated
by miRBase v.17, highlighted in green) and structurally related sequences lacking any annotation
(red). These are promising candidates for novel miRNAs.

query using hashing techniques. We incorporate structure information by encoding a

set of low energy RNA secondary structures as labeled graphs which preserve important

information like nucleotides, bond types and stacking base pairs. By using RNAShapes for

secondary structure prediction, we ensure the encoding of stable but sufficiently different

conformations from the RNA structural ensemble. We simply handle different structures

as a graph with disconnected components. This is advantageous because we can encode

as many different structures as necessary to cover the most probable conformations of

an RNA. Thereby we also avoid using the complex structural ensemble as well as solely

the erroneous minimum free energy structure. Furthermore, we can address the problem

of unknown signal boundaries by using different folding windows. For feature extraction

we use the neighborhood subgraph pairwise distance kernel (NSPDK). The extracted sub-

graphs (e.g. shown in Figure 4.2) correspond to local substructures in the RNA and the

neighborhood relation is very suitable to model regions in the RNA which evolve differ-

ently. In addition, NSPDK employs a fast graph isomorphism check which we exploit to

obtain an explicit feature representation. Each neighborhood subgraph is hashed into a

high dimensional feature space which allows us to represent an RNA as sparse feature vec-

tor. This explicit feature representation turns out to be the key for an efficient clustering

step. Instead of computing a full similarity matrix, we apply an efficient ε−approximate

nearest neighbor search query in order to define candidate clusters. First, we generate a

compressed signature of each sparse vector by using n different min-hash functions. Then

we build an inverse index over these signatures which allows us to retrieve the approx-

imate neighborhood of one instance in constant time, and thus, in linear time for the

whole dataset. In order to retrieve high quality clusters, we refine all neighborhoods and

rank them by their density. We continue only with the top dense clusters. Each candidate
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cluster consists only of a small number of RNAs, and thus, we can apply more complex

RNA sequence structure alignment methods to build a candidate model of the cluster.

Remote cluster members we obtain by searching with the candidate model against the full

dataset. We also established a novel iterative clustering procedure to address challenges

of both high dimensional data and large RNA datasets. The total number of RNA clus-

ters is unknown beforehand and therefore we process only a small number of very dense

neighborhoods each time. New dense clusters can emerge after each iteration because we

remove found clusters which alters data densities.

The feasibility of the presented RNA clustering approach we confirmed with several

benchmark studies and application scenarios. Eventually we also implemented our ap-

proach as GraphClust pipeline, which is an ready-to-use tool for efficient clustering of

large-scale RNA datasets.

The largest data set we considered consists of ~118 thousand sequences, and they can

be clustered by the proposed pipeline on a single computer in ~13 days. Furthermore

we have parallelized 5/9 phases of the pipeline. This allows to reduce the run-time for

clustering the 3,901 Rfam seed sequences from 36 h to ~3h. When compared with the

time required by an efficient pairwise sequence-structure alignment, namely LocARNA, we

observe a ~250-fold speedup. It indeed took us 370 days to perform the clustering based

on this state-of-the-art complete all-against-all sequence/structure comparison.

Our integrated pipeline uses LocARNA and Infernal to improve the candidate clus-

ters found by a neighborhood search. The latter, now allows us for the first time to

compile RNA-classes of ncRNA and determine associated consensus structures for large-

scale datasets without resorting to alignment-based clustering. This is important as it is

known that sequence alignments often fail at pairwise sequence identities below ~60%.

In addition, our pipeline exhibits an anytime characteristics, since we do not need to pro-

duce a complete hierarchical cluster tree, which is a computational bottleneck for large

datasets. In contrast, we output as many best clusters as wanted by the user. More

cluster can be found by simply running an additional clustering iteration. The overall

complexity of our pipeline is to a large extend determined by the number of reported

clusters.

We have evaluated the approach on several benchmark sets consisting of Rfam seed

alignments, EvoFam families and known bacterial ncRNA. As presented in Section 4.4,

we achieve a high overall clustering quality, even if the known RNA signal is embedded

in flanking context. In addition, the high clustering quality supports the used iterative

procedure. The quality after each iteration decreases very slowly. In contrast, the overall

quality is lower when using only one round with many clusters (data not shown). To

further elucidate the capacity of our approach, we have also clustered datasets where no

clustering approach has been applied so far, for example for RNAz screens and lincRNAs.

By processing the complete dataset to generate its density landscape our method in
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particular enables us to likely detect previously missed structural classes. The screens of

this pilot study only consisted of sequences from a single genome. Thus, we can cluster

only RNA genes that are present in multiple copies within a genome. This implies that

most of the found clusters consist of paralogs, structures from repeat-associated RNAs,

mobile elements, i.e. transposon-derived ncRNAs, and maybe also pseudogenes. Even

under this setting, we can show that we find many structured classes, when we use the

commonly accepted structure conservation index (SCI) to determine structured-ness of a

cluster. This can easily be improved by using additional information on orthologs, as it

is for instance done in the EvoFam approach, where a 41-way multiple alignment is used.

Our structure encoding procedure is flexible enough to combine features of a multi-species

alignment block as single sparse vector. Furthermore it would be beneficial to first apply

a structure-based whole genome realignment with tools like REAPR [183].

Since the lincRNA dataset contains GO annotation, we have used this information

for further evaluation. Albeit the GO enrichment analysis is limited by the low number

of transcripts that are associated with GO terms (overall, GO terms are only available

for 12% (1044/8195) of the Cabili et al. [24] lincRNAs), we found nevertheless that the

GO terms for the majority of clusters (53% but likely more) are consistent and support

our clustering approach.

Our current focus for evaluation is based on the complete approach to show its fea-

sibility in general rather then analyzing and optimizing each individual step. Therefore

the current GraphClust pipeline uses several preset parameters. Most of them are set

according to default values of external tools but we also provide reasonable estimations

for parameters like the number of min-hash functions. For other parameters we have used

external knowledge like for folding windows or Infernal parameters. Some parameters

are also dataset dependent and cannot be optimized. Clearly this yields several starting

points for further investigations and optimizations. For example, it would be beneficial to

obtain robust estimations for the neighborhood size k, the number of candidate clusters as

well as the used window size along with optimized RNAShapes parameters. On the other

hand, instead of relying to fixed parameters we could base the parameter optimization

onto machine learning techniques, i.e. let a support vector machines select the optimal

parameters.

Although our approach is suited for de-novo clustering, we have integrated only simple

quality measures which improve our predictions but do not have the capacity to finally

annotate a found cluster as functional. This is a general problem in ncRNA research

and is highly related to the ongoing discussion about important features of “functional”

alignments [158]. By integrating advanced quality measures we could for example improve

the ranking of subtree alignments for each candidate cluster. This would allow us to
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filter out much earlier clusters which are likely non-functional. Furthermore it might be

beneficial to replace the Infernal scanning phase with tools like LocARNAscan to discover

more structural related RNAs [182].

The presented GraphClust approach constitutes a major improvement for structure

based RNA clustering. The steadily enhanced pipeline has already a broad user base and

future applications of graph kernel based alignment-free clustering approaches will likely

result in the detection of additional functionally relevant structural ncRNA classes.
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Chapter 5

Conclusion

In this thesis, we addressed the problem of comparative RNA sequence analysis and anno-

tation by computational methods. We developed two pairwise RNA comparison methods

and an efficient approach for sequence-structure-based RNA clustering. The presented

algorithms established novel principles for the incorporation of both RNA sequence and

structure, resulting in efficient and accurate approaches. Especially in the domain of

clustering of RNA sequences, our approach is the first computationally feasible solution

for large-scale datasets that takes RNA structure into account.

In the first part of this thesis, we developed the method ExpaRNA, which uses a novel

comparison principle for RNA sequences based on exact matching substructures, called

exact pattern matchings (EPMs). Although structure-based comparison algorithms are

usually computational expensive, it is possible to compute the set of all EPMs for two

given RNAs with fixed secondary structure in quadratic time [5, 155]. This fast algo-

rithm accommodates to the high demand for efficient RNA comparison methods due to

constantly expanding dataset sizes. The low time complexity of the EPM detection in

combination with the intrinsic structural locality of EPMs qualify exact matching sub-

structures for a fast and structure-based RNA comparison. Moreover, functionally im-

portant motifs are often part of conserved substructures and, thus, should be recognized

during the comparison. However, classic alignment-based algorithms can break conserved

substructures as they score only a single nucleotide or base pair. Consequently, the correct

alignment of conserved substructures is achieved only indirectly via an appropriate gap-

cost function. Our method ExpaRNA addresses these issues and enhances previous RNA

comparison methods by efficiently computing an optimal, non-crossing (i.e. secondary

structure-aware) arrangement of EPMs instead of generating a full sequence-structure

alignment. This optimal set of EPMs for two RNA molecules is called LCS-EPM and

can be computed by our developed dynamic programming algorithm. We showed that

our result is in good agreement with existing comparison approaches, but can be com-

puted in a fraction of runtime. The identified EPMs can, for example, guide a manual
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inspection of RNA similarities. In addition, we investigated a promising approach that

integrates conserved EPMs in sequence-structure alignments. To this end, we use the

ExpaRNA-generated EPM set as anchor point of a full alignment. We showed the ben-

efits of this approach by combining ExpaRNA with LocARNA and observed the following

three main improvements: a) ExpaRNA’s EPM set used as anchor constraints for an full

alignment speeds up expensive sequence-structure alignment methods by reducing the

alignment search space, b) EPMs are able to improve the overall alignment quality and

c) the integration of EPMs as anchor constraints is a generally applicable scheme for

sequence-structure alignment methods in order to profit from conserved substructures.

Our evaluation showed that there is a trade-off between overall quality and speedup that

can be controlled by the minimal size of EPMs used. This allows for the right balancing

in large-scale application scenarios.

The second part of this thesis is dedicated to lifting the concept of EPMs from fixed

RNA secondary structures to energy-based RNA structure ensembles. Using a more flex-

ible structural model is very beneficial for structure prediction as shown by various RNA

structure alignment methods, but unfortunately this also increases the computational

complexity to at least O(n4). Thus, our main contribution is not only to provide a so-

lution to find ensemble-based EPMs in quadratic time, but to have the first O(n2)-time

RNA comparison algorithm that uses the full RNA energy model. For this purpose, we

developed the ExpaRNA-P approach that combines two major novelties to achieve the

desired quadratic runtime on RNA structural ensembles: 1) the introduction of in-loop

probabilities, and 2) a new sparsification scheme based on these in-loop probabilities.

The key feature is that we can decide a priori, based on a probability threshold, if a

sequence position is part of a particular loop. We have used this innovation to identify

significant EPMs in structural ensembles and designed an efficient DP algorithm for this

task. To this end, we also extended the McCaskill algorithm to compute the novel in-loop

probabilities by maintaining its complexity bounds. Furthermore, we have extended the

chaining algorithm to deal with EPMs from structural ensembles. The advantages of these

algorithmic improvements are supported by our evaluation, in which we observed both

higher speed-ups and better quality than with ExpaRNA in a similar benchmark setting.

These results prove that ensemble-based EPMs are superior to mfe-based EPMs and,

hence, more EPMs can be included as anchor constraints. The data also suggests using

ExpaRNA-P as a general filter, with the ExpaRNA-P score acting as proxy for an alignment-

based similarity score. A method for the comparison of multiple RNA sequences using

significant EPMs is also in preparation (Meinzer et al.). For this purpose, it seems promis-

ing to construct T-Coffee-like libraries based on EPM information to build a multiple

alignment that is aware of conserved substructures. It should also be highlighted that

the presented state-of-the-art structural sparsification scheme has been already adapted
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to reduce the high complexity of simultaneous alignment and folding approaches. It can

be expected, that it will influence further structure-based RNA comparison methods as

well [181].

Structure-based RNA clustering is an accepted, but difficult technique for the anno-

tation of RNA sequences as well as for the de-novo prediction of RNA genes or functional

RNA elements. However, its application to large-scale datasets was impossible in the past

due to an inherent complexity issue resulting from the computation of the full distance ma-

trix by expensive sequence-structure alignment methods. With the GraphClust approach

presented in the final part of this thesis, we eliminated this bottleneck and provided the

first feasible solution for structure-based RNA clustering. In extensive benchmark studies

on already annotated RNA sequences (from, e.g., Rfam), we proved the very high quality

of our clustering in general as well as in comparison to previous RNA clustering methods.

Convincingly, we achieved a significant runtime reduction from approximately one year

to 36 hours for a dataset of 3900 RNA sequences using a single processor. This major

improvement was possible due to an alignment-free, linear-time clustering step using a

fast graph kernel in combination with an efficient approximate nearest neighbor search

query. Structural properties of the RNA sequences are integrated by local substructures,

which are, however in this case derived from the neighborhood subgraph pairwise dis-

tance kernel [33]. Structural variants are recognized by using a set of relevant structures

obtained via RNAShapes together with a novel graph encoding of RNA secondary struc-

tures. The key for the fast clustering is the explicit representation of the kernel subgraphs

in a high-dimensional feature space. This eventually allowed us to retrieve dense can-

didate clusters from an inverse feature index in linear time. To demonstrate the power

of this approach, we set up a ready-to-use clustering pipeline integrating the clustering

algorithm together with several novel refinements steps, which allows to predict high

quality clusters of sequence-structure related RNAs even for large scale datasets. In a

pilot study, we processed novel datasets with up to 118,000 RNA sequences and predicted

several structural RNA clusters in human lincRNAs and in RNAz screens from fly and fish.

Based on GO annotations, we predicted structural motifs in human lincRNAs that are

specifically expressed in either testes, skeletal muscle, kidney or brain. These findings

are also consistent with recent studies which showed that lincRNAs are often linked to

functions in the nervous system [28, 130]. With the extension to multi-species input data,

our GraphClust pipeline will probably allow to identify additional RNA motifs in long

RNA transcripts and RNA-seq data in future studies.

Many functional RNA molecules have a specific three-dimensional structure that is ig-

nored by the majority of existing computational methods for either structure prediction,

comparison or clustering. However, several RNA motifs or modules are already known

to be important for the overall topology of an RNA molecule and its three-dimensional

folding [101, 177]. The incorporation of such information into RNA structure prediction
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and comparison methods is supposed to be the next major leap to enhance their accu-

racy [173]. The presented principles for the identification of similar local substructures

as well as the integration of local substructures into comparison algorithms could be used

for 3D structure-aware algorithms as well. For example, with an appropriate structure

encoding, a graph kernel could also be used to identify similar substructures and the best

chain of such motifs can act as skeleton for a full three-dimensional structure prediction.

To conclude, the presented methods in this thesis suggest that local substructures from

RNA secondary structures are a powerful bioinformatical concept especially for RNA com-

parison. Based on exact matching substructures, we developed three RNA comparison

approaches. With ExpaRNA, we have established a motif-based comparison concept for

RNA secondary structures that can be also used to speedup complex sequence-structure

RNA alignments. The second approach ExpaRNA-P lifts this concept to RNA structure

ensembles, which highly improves the quality of the predicted exact matching substruc-

tures. We also introduced a novel and general applicable structural sparsification scheme.

The method presented last provides a fast and very efficient solution for structure-based

RNA clustering by exploiting a fast graph kernel and hashing techniques. The provided

GraphClust pipeline constitutes the first practical solution for the problem of clustering

of large-scale RNA datasets.
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Figure A.1. Comparison of the quality of obtained results for ExpLoc (light blue) and
LocARNA (orange). The boxplot shows distributions of sum of pair scores (SPS) (y-axis) for
different sequence identities (x-axis) for all 8976 pairwise alignments from BRAliBase 2.1 and an
minimal EPM size of γ = 10. To compute distributions, alignments were grouped according to
their mean pairwise identity in intervals of width 5.
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Figure A.2. Log-log scatterplot of LocARNA runtimes (x-axis) versus obtained speedup of ExpLoc
with γ = 10.
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Figure A.3. Distribution of obtained speedup for ExpLoc on log-scale on BRAliBase k2 dataset
with γ = 10 for different sequence identity values. For distribution computation, alignments were
grouped according to their mean pairwise identity in intervals of width 5.
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Figure A.4. Annotated structures from the ExpaRNA output. Regions with exact pattern match-
ings (EPMs) are indicated with a similar colour. Shown are two bacterial RNase P RNAs (left:
A-type P RNA from Escherichia coli ; right: B-type P RNA from Bacillus subtilis). Structures are
taken from RNase P database [22]. ExpaRNA was called with a minimal EPM size of 3. The num-
bers indicate four large EPMs. Numbers and colours correspond to theq ExpLoc workflow shown
in Figure 2.6. To get a full alignment, ExpaRNA is called on the input RNAs to predict EPMs.
This information is used as anchor constraints for a complete sequence-structure alignment by
LocARNA.



Appendix B

GraphClust

Figure B.1. Features induced by NSPDK on RNA secondary structure graphs. The left part
shows the influence of the radius r for a fixed distance d = 4. On the right the different features
for a fixed radius r = 1, but varying distances d, are shown. NSPDK always induces a pairwise
subgraph rooted at two vertices u, v (indicated as red and green filled circles) within a distance d
(shown in purple). The radius determines the size of the neighborhood subgraph for one vertex.
For r = 0 only the root vertices are used. With an increasing radius, each subgraph is expanded
to all vertices within distance r (indicated by red and green shaded regions). Right: the distance
d determines the number of vertices between the two roots u and v. For certain combinations of
r and d, for example r = 1 and d = 4, the two subgraphs do not overlap which is beneficial to
model different evolutionary constraints in the RNA structure. Please note that this figure omits
the additional vertices introduced to model stacking base pairs.



i #C Phase 2 Phase 3 Timei TimeALL TimeC

0 4169 4145 8314 8314

Phase 4 Phase 5-6 Phase 7

1 10 458 10633 3904 14995 23309 2331
2 20 416 17980 1564 19962 43272 2163
3 30 334 13239 1533 15108 58380 1946
4 40 260 11694 752 12708 71088 1777
5 50 186 11351 783 12321 83409 1668
6 60 171 8667 726 9566 92975 1549
7 70 154 11069 739 11964 104940 1499
8 80 133 3671 597 4402 109342 1366
9 90 120 3841 620 4581 113924 1265
10 100 114 2768 707 3590 117515 1175
11 110 108 2544 492 3145 120660 1096
12 120 99 1917 712 2728 123388 1028
13 130 90 1197 640 1929 125318 964
14 140 83 1220 512 1817 127135 908
15 150 77 1776 636 2491 129626 864

Table B.1. Aggregated serial time for Rfam benchmark set. TimeC denotes the average time per
predicted candidate cluster C up to iteration i. TimeALL is the total serial. All times are given
in seconds.
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i #C Phase 2 Phase 3 Timei TimeALL TimeC

0 225 495 720 720

Phase 4 Phase 5-6 Phase 7

1 10 41.76 2192 200 2434 3154 315
2 20 27.01 3132 236 3395 6549 327
3 26 17.02 7548 116 7681 14230 547
4 30 13.33 3618 163 3795 18025 601
5 32 8.63 3792 75 3876 21902 684
6 34 6.78 984 43 1034 22936 675
7 35 4.81 221 24 250 23186 663
8 36 3.65 230 21 255 23441 651
9 37 3.07 135 16 155 23596 638
10 38 2.74 102 24 129 23725 624
11 39 2.17 73 33 108 23832 611
12 40 1.73 62 23 87 23920 598
13 41 1.42 114 27 143 24063 587
14 42 1.15 115 30 146 24209 576
15 43 0.88 73 18 92 24301 565

Table B.4. Aggregated serial time for small ncRNA benchmark set. TimeC denotes the average
time per predicted candidate cluster C up to iteration i. TimeALL is the total serial. All times
are given in seconds.
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Figure B.2. Runtime comparison for all analyzed datasets. Shown is the relative runtime spent
in phases 2-7 of the GraphClust-pipeline. Pre- and post processing phases are skipped. For the
ease of comparison, we normalized all times to 5 iterations and 100 clusters. The time for phase
4 (clustering) is normalized to 100% sample size and is indicated on each bar (percentage and in
seconds). On top of each dataset the normalized serial time and the number of sequences is given.
For small datasets, the runtime is dominated by the cluster refinement step (Phase 5+6) which
uses costly sequence-structure alignment. Please note that we do not normalize the influence of
the sequence length which effects all phases, e.g. the RNA folding. The Rfam set and the small
ncRNA set contain sequences up to 400 nt, whereas the EvoFam and EvoFold set contain mainly
short sequences (average length = 36nt). RNAz screens have an average length of 120 nt and all
other sets have an averge sequence length of 150 nt.
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[150] Schmiedl, C., Möhl, M., Heyne, S., Amit, M., Landau, G. M., Will, S., and Back-
ofen, R. Exact pattern matching for RNA structure ensembles. In Proceedings of
the 16th International Conference on Research in Computational Molecular Biology
(RECOMB 2012), volume 7262 of LNCS, pages 245–260. Springer-Verlag, 2012.

[151] Seemann, S. E., Gorodkin, J., and Backofen, R. Unifying evolutionary and thermo-
dynamic information for RNA folding of multiple alignments. Nucleic Acids Res,
36(20):6355–62, 2008.

[152] Serganov, A. and Patel, D. J. Ribozymes, riboswitches and beyond: regulation of
gene expression without proteins. Nat Rev Genet, 8(10):776–90, 2007.

[153] Shi, Y., Tyson, G. W., and DeLong, E. F. Metatranscriptomics reveals unique
microbial small RNAs in the ocean’s water column. Nature, 459(7244):266–9, 2009.



120 BIBLIOGRAPHY

[154] Siebert, S. and Backofen, R. MARNA: multiple alignment and consensus structure
prediction of RNAs based on sequence structure comparisons. Bioinformatics, 21
(16):3352–9, 2005.

[155] Siebert, S. and Backofen, R. A dynamic programming approach for finding common
patterns in RNAs. J Comput Biol, 14(1):33–44, 2007.

[156] Siomi, M. C., Sato, K., Pezic, D., and Aravin, A. A. Piwi-interacting small RNAs:
the vanguard of genome defence. Nature Reviews Molecular Cell Biology, 12(4):
246–258, 2011.

[157] Smith, C., Heyne, S., Richter, A. S., Will, S., and Backofen, R. Freiburg RNA
Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA. Nucleic Acids
Res, 38 Suppl:W373–7, 2010.

[158] Smith, M. A., Gesell, T., Stadler, P. F., and Mattick, J. S. Widespread purifying
selection on RNA structure in mammals. Nucleic Acids Research, 41(17):8220–8236,
2013.

[159] Sperschneider, J. and Datta, A. KnotSeeker: heuristic pseudoknot detection in long
RNA sequences. RNA, 14(4):630–40, 2008.

[160] Taft, R. J., Pang, K. C., Mercer, T. R., Dinger, M., and Mattick, J. S. Non-coding
RNAs: regulators of disease. The Journal of Pathology, 220(2):126–139, 2010.

[161] Thanbichler, M. and Bock, A. The function of SECIS RNA in translational control
of gene expression in Escherichia coli. EMBO J, 21(24):6925–34, 2002.

[162] The FANTOM Consortium. The transcriptional landscape of the mammalian
genome. Science, 309(5740):1559–63, 2005.

[163] Torarinsson, E., Havgaard, J. H., and Gorodkin, J. Multiple structural alignment
and clustering of RNA sequences. Bioinformatics, 23(8):926–32, 2007.

[164] Tseng, H.-H., Weinberg, Z., Gore, J., Breaker, R. R., and Ruzzo, W. L. Finding
non-coding RNAs through genome-scale clustering. J Bioinform Comput Biol, 7
(2):373–88, 2009.

[165] Ulitsky, I. and Bartel, D. lincRNAs: Genomics, evolution, and mechanisms. Cell,
154(1):26 – 46, 2013.

[166] Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M.
Graph kernels. J. Mach. Learn. Res., 99:1201–1242, August 2010.

[167] Wang, J. T. L. and Wu, X. Kernel design for RNA classification using Support
Vector Machines. Int J Data Min Bioinform, 1(1):57–76, 2006.

[168] Washietl, S. and Hofacker, I. L. Identifying structural noncoding RNAs using RNAz.
Curr Protoc Bioinformatics, Chapter 12:Unit 12.7, 2007.

[169] Washietl, S., Hofacker, I. L., Lukasser, M., Hüttenhofer, A., and Stadler, P. F.
Mapping of conserved RNA secondary structures predicts thousands of functional
noncoding RNAs in the human genome. Nat Biotechnol, 23(11):1383–90, 2005.



BIBLIOGRAPHY 121

[170] Washietl, S., Hofacker, I. L., and Stadler, P. F. Fast and reliable prediction of
noncoding RNAs. Proc Natl Acad Sci USA, 102(7):2454–9, 2005.

[171] Washietl, S., Pedersen, J. S., Korbel, J. O., Stocsits, C., Gruber, A. R., Hacker-
muller, J., Hertel, J., Lindemeyer, M., Reiche, K., Tanzer, A., Ucla, C., Wyss, C.,
Antonarakis, S. E., Denoeud, F., Lagarde, J., Drenkow, J., Kapranov, P., Gingeras,
T. R., Guigo, R., Snyder, M., Gerstein, M. B., Reymond, A., Hofacker, I. L., and
Stadler, P. F. Structured RNAs in the ENCODE selected regions of the human
genome. Genome Res, 17(6):852–64, 2007.

[172] Washietl, S., Hofacker, I. L., Stadler, P. F., and Kellis, M. RNA folding with soft
constraints: reconciliation of probing data and thermodynamic secondary structure
prediction. Nucleic Acids Res, 40(10):4261–72, 2012.

[173] Washietl, S., Will, S., Hendrix, D. A., Goff, L. A., Rinn, J. L., Berger, B., and Kellis,
M. Computational analysis of noncoding RNAs. Wiley Interdiscip Rev RNA, 3(6):
759–78, 2012.

[174] Washietl, S., Will, S., Hendrix, D. A., Goff, L. A., Rinn, J. L., Berger, B., and Kellis,
M. Computational analysis of noncoding RNAs. Wiley Interdiscip Rev RNA, 3(6):
759–78, 2012.

[175] Watson, J. D. and Crick, F. H. C. Molecular structure of nucleic acids. A structure
for deoxyribose nucleic acid. Nature, 171:737–738, 1953.

[176] Weinberg, Z., Barrick, J. E., Yao, Z., Roth, A., Kim, J. N., Gore, J., Wang, J. X.,
Lee, E. R., Block, K. F., Sudarsan, N., Neph, S., Tompa, M., Ruzzo, W. L., and
Breaker, R. R. Identification of 22 candidate structured RNAs in bacteria using
the CMfinder comparative genomics pipeline. Nucleic Acids Res, 35(14):4809–19,
2007.

[177] Westhof, E., Masquida, B., and Jossinet, F. Predicting and modeling RNA archi-
tecture. Cold Spring Harbor Perspectives in Biology, 3(2), 2011.

[178] Wexler, Y., Zilberstein, C., and Ziv-Ukelson, M. A study of accessible motifs and
RNA folding complexity. J Comput Biol, 14(6):856–72, 2007.

[179] Will, S., Reiche, K., Hofacker, I. L., Stadler, P. F., and Backofen, R. Inferring
non-coding RNA families and classes by means of genome-scale structure-based
clustering. PLoS Comput Biol, 3(4):e65, 2007.

[180] Will, S., Joshi, T., Hofacker, I. L., Stadler, P. F., and Backofen, R. LocARNA-P:
Accurate boundary prediction and improved detection of structural RNAs. RNA,
18(5):900–914, 2012.
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Abbreviations

bp base pair

DAG directed acyclic graph

DP dynamic programming

EM expectation maximization

EPM exact pattern matching

lincRNA long intergenic non-coding RNA

miRNA micro RNA

mRNA messenger RNA

MFE minimum free energy

MPI mean pairwise identity

ncRNA non-coding RNA

nt nucleotide(s)

NSPDK neighborhood subgraph pairwise distance kernel

rRNA ribosomal RNA

RNA ribonucleic acid

SCFG stochastic context-free grammar

SCI structure conservation index

SECIS selenocystein insertion sequence

SVM support vector machine

tRNA transfer RNA

tmRNA transfer-messenger RNA

UTR untranslated region
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