
Camera-Based
Humanoid Robot Navigation

Daniel Maier

Technische Fakultät
Albert-Ludwigs-Universität Freiburg im Breisgau

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Betreuer: Prof. Dr. Maren Bennewitz

Camera-Based
Humanoid Robot Navigation

Daniel Maier

Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften
Technische Fakultät, Albert-Ludwigs-Universität Freiburg im Breisgau

Dekan: Prof. Dr. Georg Lausen
Erstgutachter: Prof. Dr. Maren Bennewitz
Zweitgutachter: Prof. Dr. Andrea Cherubini
Tag der Disputation: 10. April 2015

Abstract

Humanoid robots possess unique locomotive and manipulation capabilities which makes
them predestined as assistants in households or even in disaster scenarios. Their legs allow
them to walk across rough terrain and clutter, climb elevations, or pass narrow passages.
At the same time, with their arms, they could deliver objects, remove debris, or even
use power tools to cut through walls. However, to enable this kind of behavior, novel
navigation techniques are required that exploit the special capabilities of humanoids.

One of the great challenges in navigation is that a robot always acts under uncertainty. It
possesses only imperfect knowledge about itself and its environment, yet this knowledge
is fundamental. Motions and observations are affected by noise and need to be handled
appropriately. Data has to be associated in the presence of ambiguities to obtain consistent
representations of the environment. For humanoid robots, the problem aggravates as the
kinematic complexity that needs to be handled is higher compared to wheeled robots. The
shaking motion of the humanoids adds further errors to the sensor data, making it harder
to interpret. Additional constraints like balance and payload need to be considered.

In this thesis, we present novel methods that contribute to the development of auto-
nomous humanoid robots. Hereby, we focus on cameras as primary sensor. First, we
describe a method to self-calibration of the robot’s kinematic model. Hereby, our approach
automatically selects appropriate calibration postures. Further, we present a method to
identify safe areas for the robot to step onto based on self-supervised classification of
camera images. Additionally, we describe an integrated navigation system for robots
equipped with depth cameras. The approach estimates the robot’s 6D pose within a map,
constructs a volumetric representation of the unknown parts of the environment and plans
collision-free paths to a target location. We introduce extensions that allow navigation in
challenging, cluttered scenarios based on anytime footstep planning. Thereby we enable
the robot to step over or onto obstacles and traverse narrow passages. Finally, we demons-
trate a method that enables accurate manipulation by tracking the pose of objects in the
camera images.

All of our techniques are implemented and thoroughly evaluated on a Nao humanoid.
Our contributions advance the state-of-the-art in humanoid robot navigation and enable
autonomous navigation capabilities even for affordable humanoids.

Zusammenfassung

Im letzten Jahrzehnt stieg die Anzahl der Roboter, die im Haushalt eingesetzt werden,
deutlich an. Dabei dominieren zwei Arten von Robotern, nämlich solche die Staubsaugen
und solche, die Rasen mähen. Dass gerade diese beiden Typen so verbreitet sind, mag
daran liegen, dass diese Aufgaben anhand relativ simpler Durchführungsstrategien umge-
setzt werden können. Ein Roboter etwa, der mit konstanter Geschwindigkeit durch einen
Raum fährt und dabei zufällig seine Richtung ändert, hat irgendwann jede erreichbare
Fläche desselben überquert. Natürlich gibt es mittlerweile auch Roboter, die ihre Aufgabe
zielgerichteter erledigen, zum Beispiel indem sie ihre Position innerhalb eines Raumes
bestimmen und so den Bewegungsablauf optimieren. Dennoch sind solche Roboter in
ihrer Funktionsvielfalt sehr eingeschränkt und weit von dem entfernt, was man aus der
Fiktion als Service-Roboter kennt.

Wir hätten gerne einen Roboter, der vielfältige Aufgaben im Haushalt übernimmt –
etwa Wäsche aufhängen, Geschirr waschen oder eben auch den Boden saugen. Er soll
uns im Alltag zur Hand gehen und dabei auch anspruchsvolle Aufgaben erledigen. Vor
dem Hintergrund von Katastrophen wie der des havarierten Atomkraftwerks in Fukushi-
ma stellt sich zudem die Frage, ob Roboter nicht auch in solchen Szenarien eingesetzt
werden könnten, um Schlimmeres zu verhindern und Menschenleben zu schützen. Denn
ein Roboter lässt sich ersetzen, ein Mensch dagegen nicht. So könnten Roboter in Ge-
fahrensituationen eingesetzt werden und beispielsweise wichtige Informationen über den
Zustand beschädigter Gebäude liefern, Wege freiräumen, Feuer löschen oder Notstrom-
Aggregate in Stand setzen. Angesichts dieser Möglichkeiten ist es sinnvoll, sich mit der
Weiterentwicklung von autonomen Robotern zu beschäftigen. Hierzu leistet diese Arbeit
einen wichtigen Beitrag.

Nach der Katastrophe von Fukushima wurde die Robotics Challenge von der US-
amerikanischen DARPA (Defense Advanced Research Projects Agency) ins Leben geru-
fen. Der Wettkampf soll die Entwicklung von Robotern für den Einsatz in Katastrophens-
zenarien fördern. Dabei richten sich die Anforderungen an die Roboter an Tätigkeiten aus,
die in solchen Szenarien von Bedeutung sind. Dazu gehört es etwa, unwegsames Gelände
zu überschreiten, Trümmerteile wegzuräumen, Leitern zu erklimmen, oder gar Wände mit
entsprechendem Werkzeug einzureißen. Die hohe Komplexität der genannten Aufgaben

hat das Interesse einer Reihe von internationalen Forschungsgruppen geweckt und zur
Teilnahme am Wettbewerb animiert. Interessant dabei ist, dass sich beinahe alle Teilneh-
mer mit der Entwicklung von menschenähnlichen, also humanoider Robotern, befasst
haben. Dies könnte daran liegen, dass die Roboter aufgrund ihrer Physis in besonderem
Maße für solche Aufgaben geeignet erscheinen.

Eines der Hauptprobleme bei der Entwicklung von autonomen Robotern ist die Na-
vigation. Um sich in seiner Umgebung zurechtfinden zu können, muss ein Roboter seine
eigene Position bestimmen, Hindernisse erkennen und entsprechen darauf reagieren sowie
eine interne Karte seiner Umgebung anlegen können. Im Hinblick auf die genannten
Aufgaben muss er zudem dazu fähig sein, Objekte wahrzunehmen und zu manipulieren,
etwa um Trümmerteile wegzuräumen, die den Eingang zu einem Gebäude versperren.
Die vielfältigen Teilprobleme der Navigation müssen gelöst werden, damit Roboter au-
tonom agieren können. Die Schwierigkeit liegt dabei darin, dass sämtliches Handeln
und Wahrnehmen des Roboters von Unsicherheit betroffen ist. Das betrifft sowohl das
Ausführen von Aktionen als auch die Wahrnehmung oder Perzeption der Umgebung.
Zum Beispiel sind Sensordaten oft fehlerhaft und müssen dennoch korrekt interpretiert
werden. Verschiedene Daten sind hierbei miteinander zu assoziieren, wobei Ambiguitäten
auftreten können. Das Ausführen von Bewegungen ist ebenso fehleranfällig, zum Beispiel
wenn der Roboter aufgrund der Materialbeschaffenheit seiner Fußsohlen auf dem Boden
rutscht. Des Weiteren liegen dem Roboter keine perfekten Modelle über sich selbst und
die Gegenstände in seiner Umgebung vor. Das kann an Fertigungstoleranzen bei der
Herstellung des Roboters liegen oder weil nicht alle physikalischen Zusammenhänge mo-
delliert oder bekannt sind. Speziell bei humanoiden Robotern muss mit weiteren Schwie-
rigkeiten umgegangen werden. Dazu gehören zum Beispiel die hohe Komplexität, d.h. die
Anzahl der Freiheitsgrade, die zu kontrollieren sind. Die Interpretation der Daten wird
zusätzlich dadurch erschwert, dass die Sensormessungen stark vom Laufverhalten des
Roboters beeinflusst werden. Außerdem müssen weitere Bedingungen, etwa bezüglich
der Stabilität oder Balance des Roboters, erfüllt sein. Grundsätzlich müssen also folgende
Fragen beantwortet werden, um eine zuverlässige und robuste Navigation für humanoide
Roboter zu ermöglichen:

� Wie kann der Roboter sein Wissen über sich selbst verbessern?

� Woher weiß der Roboter, welche Bereiche er sicher betreten kann?

� Wie kann der Roboter wissen, wo er sich in seiner Umgebung befindet?

� Wie kann er seine Umgebung überhaupt wahrnehmen und geeignet intern repräsen-
tieren?

� Wie kann der Roboter Hindernisse auf seinem Weg erkennen und angemessen
darauf reagieren?

� Wie kann ein humanoider Roboter seine inhärenten Bewegungsfähigkeiten nutzen
um schwierige Passagen zu meistern?

� Wie kann der Roboter Objekte wahrnehmen und manipulieren?

Ziel dieser Arbeit ist es, diese Fragen zu beantworten. Zuerst stellen wir ein Verfah-
ren zur Selbstkalibrierung für humanoide Roboter vor. Hierbei beobachtet der Robo-
ter mithilfe seiner Kamera Markierungen an seinen Endeffektoren. Unser Ansatz mini-
miert anschließend den Fehler zwischen Modellvorhersage und Beobachtungen um die
Kalibrierungsparameter zu bestimmen. Dazu gehören die Referenzierung der Gelenk-
Inkrementalgeber sowie die intrinsischen und extrinsischen Parameter der Kamera. Dar-
über hinaus präsentieren wir eine Methode, die Roboterkonfigurationen erzeugt und ge-
schickt auswählt, sodass nur wenige Konfigurationen notwendig sind, um die Parameter
zu bestimmen. Das Wissen, welches der Roboter dadurch über sich selbst gewinnt, ver-
bessert seine Fähigkeit, verschiedene Beobachtungen zueinander in Relation zu setzen.
Diese Fähigkeit bildet die Grundlage für alle Navigationsfähigkeiten.

Des Weiteren stellen wir eine Methode zur Klassifikation der Traversierbarkeit anhand
von Kamerabildern vor. Wir klassifizieren das gesamte Kamerabild mittels erscheinungs-
basierten Klassifikatoren, welche selbständig, d.h. ohne manuelles Training, lernen. Dazu
erkennt unser Ansatz anhand eines geometrischen Modells Merkmale in den Kamera-
bildern des Roboters, welche planare Bereiche auf dem Boden repräsentieren. Darüber
hinaus wird anhand der klassifizierten Kamerabilder eine Belegtheitskarte der Umgebung
erstellt. Bei diesem Ansatz werden lediglich Daten einer monokularen Kamera und der
Odometrie verwendet, wodurch er auf vielen Robotern einsetzbar ist.

Für Roboter, die mit einer Tiefenkamera ausgestattet sind, stellen wir ein integriertes
Navigationssystem vor. Dieses besteht aus der 6D-Lokalisierung des Roboters in einer
gegebenen Karte, einem volumetrischen Kartierungsverfahren für unbekannte oder nicht-
statische Bereiche der Umgebung, sowie einem Pfadplanungsansatz zur Vermeidung von
Kollisionen. Das System ist insbesondere für die Navigation in komplexen Szenarien mit
mehreren Stockwerken ausgelegt.

Darauf aufbauend stellen wir Erweiterungen vor, die das Navigieren in Umgebungen
ermöglicht, in denen dies zum Beispiel durch viele, verstreute Hindernisse oder enge Pas-
sagen erschwert ist. Zu diesen Techniken gehört eine Komponente zur Planung der Fuß-
schritte des Roboters, die durch eine Methode ergänzt wird, die die Umgebung effizient
auf mögliche Kollisionen testet und dabei den ganzen Körper des Roboters berücksichtigt
und nicht nur etwa die Fußspuren. Dadurch wird der Roboter befähigt, auch Hindernisse

sicher zu übersteigen oder zu besteigen. Darüber hinaus reduziert unser Ansatz anhand
von Messungen der Tiefenkamera den Drift der Odometrie, um konsistente Karten von
unbekannten Umgebungen erstellen zu können.

Schließlich beschreibt die Arbeit ein Verfahren zur akkuraten Manipulation von Ob-
jekten. Konkret wird dieses am Beispiel eines Metallophon-spielenden Roboters imple-
mentiert. Dazu schätzt der Roboter die Pose (Position und Orientierung) sowohl der
Klöppel in seinen Greifern als auch die des Instruments. Mittels inverser Kinematik (IK)
werden Schlagkonfigurationen für die Arme des Roboters berechnet und ausgeführt. Der
Roboter prüft selbständig anhand visueller und akustischer Signale, ob das Schlagen der
Klangtaste erfolgreich war. Für jede Taste werden Konfigurationen gespeichert, so dass
der Roboter anschließend ganze Lieder selbständig spielen kann.

Alle vorgestellten Methoden wurden praktisch implementiert und sorgfältig anhand ei-
nes Nao-Roboters evaluiert. Die gezeigten Ergebnisse bestätigen, dass diese Arbeit einen
wichtigen Beitrag zur Navigation von humanoiden Robotern darstellt und deren Autono-
mie verbessert, selbst für günstige Roboter mit beschränkten Ressourcen und Hardware.

Acknowledgements

Writing a PhD thesis requires a lot of effort. Not only from the author but also from the
people directly or indirectly involved in this process. In the following, I would like to
express my gratitude to those people.

First of all, I would like to thank Maren Bennewitz for her valuable advice and guidance
of my research. I learned and am still learning a lot from her experience. Her ideas and
thinking had a tremendous influence on the content of this thesis. I am grateful that she
made it possible for me to visit many interesting conferences and that I could learn so
much in my time as a PhD student. I would also like to thank Andrea Cherubini for
agreeing to review this thesis.

Furthermore, I would like to thank my office mates Armin Hornung and Felix Burget
for the great atmosphere and many interesting discussions. This also holds for all previous
and current members of the Humanoid Robot Lab – it was a pleasure to working with you.
Many thanks also go to Wolfram Burgard and all members of the Autonomous Intelligent
Systems group for kindly hosting our lab in the beginning. I would like to thank the
members of the Social Robotics Lab for the great mood in our building and regularly
having lunch together. Together, it was a lot easier to bear the infamous Mensa food.

Many thanks to Felix Burget, Caroline Lais, Armin Hornung, Luigi Palmieri, Christoph
Spunk, and Bastian Steder for proof-reading and providing valuable feedback on earlier
versions of this document. These people are consequently responsible for all remaining
errors in this document – just kidding.

For their assistance with technical and administrative issues, I would further like to
thank Susanne Bourjaillat, Michael Keser, Manuela Kniß, and Dagmar Sonntag.

Finally, I would like to give thanks to my friends and family for their support. Most of
all, I would like to thank Caroline for her consideration, her support, and the great time
we spend together.

The work on this thesis has been generously supported by the German Research Foun-
dation (DFG) within the Research Training Group 1103 Embedded Microsystems, the
BrainLinks-BrainTools Cluster of Excellence (grant number EXC 1086), and within the
SFB/TR-8 Spatial Cognition. Their support is gratefully acknowledged.

Contents

1 Introduction 1
1.1 Main Contributions . 5
1.2 Publications . 6
1.3 Collaborations . 7
1.4 Notation . 8

2 Whole-Body Self-Calibration 9
2.1 Graphed-Based Optimization of the Calibration Parameters 10

2.1.1 Measurement Model and Parameters 11
2.1.2 Formulation as Least-Squares Optimization 13
2.1.3 Implementation . 15

2.2 Automatic Selection of Robot Configurations 16
2.2.1 Generating a Pool of Configurations 16
2.2.2 Selecting a Locally Optimal Subset of Configurations 17

2.3 Experiments . 19
2.3.1 Pose Selection . 20
2.3.2 Effect of Measurement Noise . 21
2.3.3 Resulting Calibration Compared to the Initial State 21

2.4 Related Work . 23
2.5 Conclusions . 27

3 Traversability-Estimation with Monocular Cameras 29
3.1 Outline of the Approach . 32
3.2 Homographies . 32
3.3 Geometric Floor Estimation . 32

3.3.1 Identification of Steady Images While Walking 33
3.3.2 Feature Extraction and Association for Floor Estimation 34

3.4 Appearance-based Traversability Estimation 36
3.4.1 Texture-Based Classification . 37
3.4.2 Color-Based Classification . 38

xiii

3.4.3 Probabilistic Relaxation Labeling 39
3.4.4 Using Traversability Information for Navigation 40

3.5 Experiments . 40
3.5.1 Qualitative Results on Traversability Estimation 40
3.5.2 Adapting to Changing Ground Appearance 42
3.5.3 Classification Accuracy . 42
3.5.4 Turning on the Spot . 44
3.5.5 Dealing with Moving Obstacles 44
3.5.6 Remarks . 46

3.6 Related Work . 46
3.7 Conclusions . 49

4 Robust Navigation Using Depth Cameras 51

4.1 Volumetric Environment Representation 53
4.2 Monte Carlo Localization via Particle Filter 54
4.3 Probabilistic 3D Map Update . 58
4.4 Path Planning and Collision Avoidance 59
4.5 Experiments . 60

4.5.1 Localization Accuracy . 63
4.5.2 Mapping . 64
4.5.3 Path Planning and Obstacle Avoidance 64

4.6 Related Work . 65
4.7 Conclusions . 68

5 3D Footstep Planning Among Clutter 69

5.1 Pose Estimation . 71
5.2 Environment Representation . 72
5.3 Footstep Planning for 3D Environments 73

5.3.1 State Representation and Transition 73
5.3.2 Safe Actions . 73
5.3.3 Whole-Body Collision Checking 74
5.3.4 Footstep Planning with ARA* 75

5.4 Action Set for the Nao Humanoid . 77
5.5 Experimental Evaluation . 78

5.5.1 Quantitative Evaluation of the 3D Planner 79
5.5.2 Evaluation of Localization and Mapping 80
5.5.3 Parametrized Stepping Over and Onto Motions 82
5.5.4 Traversing Narrow Passages . 82

5.6 Related Work . 82
5.7 Conclusions . 86

6 Visual Perception for Accurate Manipulation Tasks 89
6.1 Instrument and Beaters . 91
6.2 Model-Based Object Pose Tracking . 92

6.2.1 Tracking of the Instrument . 93
6.2.2 Tracking of the Beaters’ Heads 95

6.3 Inverse Kinematics and Beating . 97
6.4 Auditory Feedback . 99
6.5 Joint Trajectory Generation . 101
6.6 Experiments . 101

6.6.1 Qualitative Evaluation . 101
6.6.2 Pose Estimation and Calibration 102
6.6.3 Auditory Feedback . 103
6.6.4 Beating Calibration Accuracy 103

6.7 Related Work . 103
6.8 Conclusions . 105

7 Conclusions 107
7.1 Summary . 107
7.2 Outlook . 109

A Mathematical Background 111
A.1 Homogeneous Coordinates . 111
A.2 Pinhole Camera Model . 112
A.3 Forward Kinematics . 114

B The Humanoid Robot Nao 115
B.1 Odometry Computation From Forward Kinematics 116

List of Figures 119

List of Tables 121

List of Algorithms 123

Bibliography 125

Chapter 1

Introduction

Nowadays, robots find their way into private homes more and more frequently. One of the
most widely used robots is the Roomba vacuuming robot by the company iRobot, who
sold more than 10 million units up to today. Vacuuming robots are offered by dozens
of companies in different price ranges. The same holds for autonomous lawn mowers.
Aldebaran Robotics just released Pepper, a robot advertised as a companion to live with
humans and socially interact with them.

Further possible applications for robots in private households bestride tasks like home
care, shopping assistance, or personal service robots that can perform a multitude of tasks
like cleaning dishes, doing the laundry, or vacuuming. Unfortunately, for these types
of applications, there are no solutions available down to the present day. The problem
here is that these tasks are very complex and require various capabilities from a robot.
Vacuuming or lawn mowing robots, on the other hand, are very specialized, yet primitive
robots. They are specifically designed for the task at hand and solve it in a simple fashion.
For instance, lawn mowing robots typically require a border wire around the lawn to
define their limits and perform partly random maneuvers within these limits.

Designing new robots for each task individually requires a lot of resources and it is
questionable whether humans would be willing to buy and hold a robot for each applica-
tion. From a scientific as well as from an economic point of view, it thus makes sense to
ask whether one can do better. Can we not build robots, that are, like humans, capable
of performing multiple, complex tasks? Can we not create robots, that adapt to their
environment and cope with it, instead of making the environment compatible with the
robots?

Recently, there has been some progress in answering these questions. One of the most
well known robots is the ASIMO study by Honda (shown in Figure 1.1). The robot has
been in development for more than two decades with the goal to duplicate complex human
motions and ultimately, assist humans in the household or in scenarios too dangerous for

1

Chapter 1 Introduction

Figure 1.1: The ASIMO multi-functional robot is a study of how robots could assist humans in
households in the future (Source: Honda).

them. One day, ASIMO could live with humans and provide services like preparing food,
cleaning the house or care for the elderly.

After the catastrophe of Fukushima and the accompanying debate about the capabil-
ities of current robots, the US Defense Advanced Research Projects Agency (DARPA)
installed the DARPA Robotics Challenge (DRC). The competition aims at fostering the
development of robots competent of assisting humans in disaster response. The competing
robots have to perform challenging tasks, ranging from walking across rough terrain, over
ladder climbing, up to driving a utility vehicle and cutting through walls (see Figure 1.2
for an illustration). Leading research organizations from around the world are participat-
ing in this event, looking at a two million dollar prize.

It is interesting to note that most participants in the DRC are developing human-shaped
or humanoid robots like Honda’s ASIMO. There seems to be a concentration on humanoid
robots when complex tasks like disaster response or assistance in households are involved.
And there are many reasons for that. Humanoids seem to be best suited to adapt to a man-
made environment. Their legs allow them to walk over rough terrain and climb ladders
or stairs – which is impossible for wheeled robots. With their arms, they are able to carry
and manipulate objects or even use tools.

Independent of the type of robot, one of the most fundamental problems that need
to be solved in order to accomplish such sophisticated behavior is that of navigation.
Simply speaking, navigation is the problem of determining how to get from a one place to
another. Without this capability, robots need to remain stationary or rely on a safe, robot-
friendly environment as the lawn mower robots do. While navigating is an easy task for
most humans, it is very challenging for robots, as it involves a multitude of subproblems
that need to be tackled. These include the perception of the surroundings from sensor
data, maintenance of an appropriate environment representation, planning of collision-
free motions as well as self-localization. In the context of carrying out sophisticated

2

Figure 1.2: The DARPA Robotics Challenge (artist’s illustration) sets humanoid robots difficult
tasks resembling disaster scenarios (Source: DARPA).

assignments like disaster response, the robot further needs to be able to manipulate its
environment. For example it needs to remove debris to reach a location or open doors
prior to entering a building. Consequently, manipulation tasks can be considered part of
the navigation problem as well.

This broad range of subtasks is also the main reason why navigation is so difficult in
practice. In controlled scenarios, i.e., in simulation, impressive approaches have been
presented enabling robots to perform actions that are difficult even for humans, such as
parcouring or rock climbing. However, these approaches simplify the task by neglecting
some subproblems that are important for real world operation, especially perception. For
navigating in the real world, a robot needs to operate with imperfect assumptions about
itself and the environment. It needs to be robust to improper execution of planned actions.
To interact with the environment, a robot needs to perceive it through sensor data and
interpret it geometrically as well as semantically. The robot thereby needs to handle
errors or noise in the data and establish correspondences between multiple observations
in presence of ambiguities. Consequently, everything a robot does and knows is affected
by uncertainty. For humanoid robots, additional aspects aggravate the situation. For
instance, the kinematic complexity that needs to be considered is higher compared to
wheeled robots. The shaking motions of humanoids add further errors to the sensor
data, making it harder to interpret. Other constraints like balance and payload need to
be respected. Finally, affordable robots are typically equipped with less accurate sensors
and actuators, thereby increasing the challenge. Given the limited resources, efficiency
becomes more important.

Subsequently, for enabling humanoid robots to navigate in complex scenarios and
perform challenging operations, one needs to answer at least the following questions:

3

Chapter 1 Introduction

� How can a robot obtain knowledge about its own parameters?

� How does a robot know which areas are safe to set foot in?

� How can a robot perceive its environment and maintain an internal representation
of it?

� How can a robot locate itself with respect to that representation?

� How can a robot avoid obstacles on its way?

� How can a robot utilize its locomotive capabilities to overcome challenging envi-
ronments?

� How can a robot manipulate objects in its environment to achieve a goal?

In this thesis, we describe techniques that enable autonomous navigation capabilities
for humanoid robots which seem to be most suitable to perform complex tasks and be-
come valuable assets to mankind in the future. Common to the approaches we present is
that they rely on cameras for perceiving the environment. Our main motivation for work-
ing with cameras is that we know from our everyday life how powerful visual perception
is. Eventually, it is the primary fashion humans use for navigation. Our methods do not
assume state of the art hardware but are also compatible with affordable robot platforms
and consumer level sensors.

Specifically, in Chapter 2 we introduce a self-calibration method for humanoid robots.
Hereby, the robot estimates its calibration parameters including the camera’s intrinsics
and extrinsics, as well as joint offsets. Knowledge about these parameters is crucial for
all aspects of navigation. Our system for self-calibration is based on graph-optimization
and includes a method to generate and select appropriate robot postures yielding a good
trade-off between accuracy and the required number of observations.

In Chapter 3, we present a method to classify the traversability of the floor. This allows
the robot to safely decide where to step onto and which areas to avoid. The approach
relies only on monocular vision data and odometry. We achieve a dense labeling of the
image by applying appearance-based classifiers that are trained online in a self-supervised
fashion. Our system constructs an occupancy map of the environment that can be used
for collision-free navigation. The approach is not limited to humanoids but can also be
applied to different kinds of robots.

Chapter 4 describes an integrated framework for robot navigation that relies on depth
cameras. We present techniques to localize a robot in a given environment map for
accurate pose estimation. The system enables robots to maintain a three-dimensional
volumetric map of the non-static parts in their vicinity and plan collision-free paths around

4

1.1 Main Contributions

obstacles. This approach allows for robust navigation even in complex scenarios with
multiple stories.

Based on these results, in Chapter 5 we present valuable extensions for navigation in
unknown, cluttered scenarios. The techniques include the construction of a high resolu-
tion map for precise footstep planning. The approach does not require prior knowledge
about the environment for pose estimation but compensates for the drift of the odometry
by aligning consecutive camera observations. By planning footsteps, the robot is able to
step over obstacles and climb onto or from them. Our approach considers the whole body
of the humanoid during collision checking. We employ an anytime planner that generates
initial solutions for the footstep placement quickly and then improves the initial result.
Our system allows the robot to traverse challenging passages.

Finally, we introduce techniques suitable for accurate manipulation tasks in Chapter 6.
We present a model-based object pose estimation framework and solve the inverse kine-
matics (IK) problem to approach the object with the robot’s arms. We precompute arm
configurations to accelerate the IK and compensate for local minima. As a concrete
application, we implement these techniques for a humanoid playing the metallophone.
Our system estimates the pose of the instrument and the beaters in the robot’s grippers.
From these, the system computes beating configurations for the arms of the robot via IK.
The robot automatically validates these configurations via auditory and visual feedback.
By enabling the robot to play complete songs, we demonstrate the achieved high accuracy.
The proposed techniques can also be applied to different manipulation tasks.

Finally, in Chapter 7 we summarize the presented work and discuss remaining chal-
lenges and further research directions. The most essential mathematical background
is summarized in Appendix A. We thoroughly evaluated all of our approaches on an
affordable Nao humanoid. The robot is described in Appendix B.

1.1 Main Contributions

This thesis introduces several valuable techniques that enhance humanoid robot naviga-
tion and advance the state of the art in the corresponding scientific fields. We tackle prob-
lems like self-calibration, traversability classification, pose estimation, mapping, footstep
planning, and manipulation. To summarize, our key contributions are:

� an efficient, accurate method for self-calibration, which is a prerequisite to all kind
of navigation tasks (Chapter 2),

� a self-learning technique for traversability classification from monocular camera
data to determine areas to safely step onto (Chapter 3),

5

Chapter 1 Introduction

� an integrated approach to navigation within a partly known environment based on
depth camera observations, enabling robust navigation in complex scenarios with
multiple levels (Chapter 4),

� further extensions that allow navigation in completely unknown environments, in-
cluding challenging scenarios containing clutter, narrow passages, and traversable
objects via efficient, anytime footstep planning (Chapter 5),

� a framework for accurate manipulation tasks based on model-based object localiza-
tion and IK computation (Chapter 6).

1.2 Publications

Parts of this thesis have been published earlier in refereed journals and conferences, or in
workshop proceedings. Further work emerged during my time as a PhD-student, which is
not covered in this thesis.

Refereed Publications

� D. Maier, S. Wrobel, and M. Bennewitz. Whole-body self-calibration via graph-
optimization and automatic configuration selection. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2015. To appear

� D. Maier, R. Zohouri, and M. Bennewitz. Using visual and auditory feedback for
instrument-playing humanoids. In Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2014

� A. Hornung, S. Osswald, D. Maier, and M. Bennewitz. Monte Carlo localization
for humanoid robot navigation in complex indoor environments. Int. Journal of
Humanoid Robots (IJHR), 11(2), 2014b

� D. Maier, C. Lutz, and M. Bennewitz. Integrated perception, mapping, and footstep
planning for humanoid navigation among 3d obstacles. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2013a

� D. Maier, A. Hornung, and M. Bennewitz. Real-time navigation in 3D environments
based on depth camera data. In Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2012

6

1.3 Collaborations

� D. Maier and M. Bennewitz. Appearance-based traversability classification in monoc-
ular images using iterative ground plane estimation. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2012

Workshop Publications

� D. Maier, C. Lutz, and M. Bennewitz. Autonomous biped navigation through
clutter. In Proc. of the RSS Workshop on Robots in Clutter: Preparing Robots for
the Real World, 2013b

� A. Hornung, D. Maier, and M. Bennewitz. Search-based footstep planning. In
Proc. of the ICRA Workshop on Progress and Open Problems in Motion Planning
and Navigation for Humanoids, 2013a

Publications Not Covered in This Thesis

� D. Maier, C. Stachniss, and M. Bennewitz. Vision-based humanoid navigation us-
ing self-supervised obstacle detection. International Journal of Humanoid Robots,
10(2), 2013c

� M. Bennewitz, D. Maier, A. Hornung, and C. Stachniss. Integrated perception
and navigation in complex indoor environments. In Proc. of the Humanoids 2011
Workshop on Humanoid Service Robot Navigation in Crowded and Dynamic Envi-
ronments, 2011

1.3 Collaborations

Parts of the work presented in this thesis were developed in cooperation with other au-
thors. The integrated navigation approach shown in Chapter 4 resulted from a cooperation
with Armin Hornung. During my time as PhD-student I supervised multiple student
projects, including two Master’s theses. The latter lead to joint research and publica-
tions after submission. In this manner, with his Master’s thesis, Stefan Wrobel lay the
foundation for the self-calibration system for humanoid robots presented in Chapter 2.
The 3D footstep planning framework described in Chapter 5 was originally developed by
Christian Lutz in his Master’s thesis. Furthermore, while working as student assistant,
Ramin Zohouri explored the possibility of the instrument-playing humanoids introduced
in Chapter 6.

7

Chapter 1 Introduction

1.4 Notation

In this thesis, the following notation is being used if not indicated otherwise.

Symbol Meaning

α, β, . . . ,a,b, . . . scalar
A,B,C, . . . matrix
Ai j entry of matrix A at row i and column j
Aᵀ transpose of matrix A
a,b,c, . . . column vector, point or pose
aᵀ transpose of vector a (row vector)
ai ith entry of vector a
p̃ point p in homogeneous coordinates
‖x‖ `2-norm (length) of vector x
Q, {ω1, . . . ,ωn} sets
|Q| cardinality of set Q
N (µ,Σ) Normal distribution with mean µ and variance Σ
p(X) probability distribution for a random variable X
p(X |Y) conditional probability for X given Y
f (p), fun(p), . . . function of p
⊕,	 motion composition operator and its inverse (Smith et al., 1987)
T (x) the homogeneous transformation matrix corresponding to the pose x
F B

E (θ,q) the forward kinematics function (see Appendix A.3)
θ the calibration parameters of the robot (see Chapter 2)

8

Chapter 2

Whole-Body Self-Calibration

Exact knowledge about a robot’s kinematic model is essential for all tasks involv-
ing navigation and manipulation. Therefore, in this chapter, we present a novel
approach to accurately calibrate the kinematic model of a humanoid based on
observations of its monocular camera. Our technique estimates the parameters
of the robot model, consisting of the joint angle offsets of the whole body including
the legs, as well as the camera’s extrinsic and intrinsic parameters. We formulate
the parameter estimation as a least-squares optimization problem. In the error
function, we consider the residuals between camera observations of end-effector
markers and their projections into the image based on the estimate of the calibration
parameters. Furthermore, we developed an approach to automatically select a
subset of configurations for the calibration process that yields a good trade-off

between time and accuracy. As the experiments with a Nao humanoid show, we
achieve an accurate calibration for this low-cost platform. Moreover, our approach
to automatic configuration selection yields substantially better optimization results
compared to randomly chosen viable configurations. Hence, our system only re-
quires a reduced number of configurations to achieve accurate calibration results.

Knowledge about the parameters of a robot’s kinematic model is essential for all tasks
involving navigation and manipulation. To map unknown environments or to estimate
the positions of obstacles, the transformations between the exteroceptive sensors and the
robot’s internal reference frame need to be known, in order to bring the observations in
relation to the robot. Only then, the robot can correctly interpret its sensor measurements,
avoid collisions with objects, and plan paths to target locations.

For manipulation, an accurate kinematic model is necessary to solve the inverse kine-
matics and control a manipulator to reach grasping targets, as well as for collision check-
ing of arm trajectories with the environment. While techniques such as image-based

9

Chapter 2 Whole-Body Self-Calibration

visual servoing are robust to a certain degree of errors in the model (Espiau, 1993),
accurate knowledge of the calibration parameters is necessary if the manipulator is to
follow a given trajectory precisely. Further, an accurate model of the robot allows for
faster control and easier implementation, including the possibility for open-loop control.

The kinematic structure of a robot is usually known from the mechanical design. How-
ever, errors can occur, e.g., as a result of imperfect manufacturing, wear, or repair. To
compensate for such errors and to avoid time-consuming manual tuning of the true pa-
rameters of the models, we present in this chapter an automatic self-calibration technique
for humanoid robots. Our approach calibrates the robot’s kinematic model, given its
structure, based only on observations from the robot’s internal monocular camera. We
estimate the parameters of the kinematic model of the whole body in form of joint angle
offsets as well as the camera’s extrinsic and intrinsic parameters. We formulate the
calibration as an error minimization problem and apply the g2o optimization framework
by Kümmerle et al. (2011). Consequently, we minimize the residuals between observed
positions of end-effector markers in the camera image and their expected locations given
the estimated parameters. Additionally, we present a method to automatically generate
robot configurations for the calibration and to determine a minimal subset of these con-
figurations that lead to accurate calibration results, thereby trading off time and accuracy.

We applied our approach to calibrate the parameters of a Nao humanoid. Hereby, the
optimization using our proposed algorithm to automatic configuration selection substan-
tially outperforms the optimization based on sets of randomly chosen viable configura-
tions. We found that using the configuration selection algorithm, the system requires only
few configurations to achieve an accurate calibration of the robot. Figure 2.1 shows a
Nao performing the self-calibration (left), as well as the expected marker location and a
3D visualization of the kinematic model overlaid to the onboard camera image, before
(top right) and after (bottom right) the calibration.

To the best of our knowledge, this is the first approach to calibrate the complete kine-
matic model of a legged humanoid. Our implementation provides a one-click calibration
routine for the Nao robot, which is the most commonly used humanoid. Adaptations for
different humanoids can easily be obtained by adjusting configuration files.

2.1 Graphed-Based Optimization of the Calibration

Parameters

Poor calibration of a robot leads to a discrepancy between self-observation, e.g., from
a camera, and expected observation according to underlying models and their estimated
parameters. Our calibration framework hence measures this discrepancy and adjusts the

10

2.1 Graphed-Based Optimization of the Calibration Parameters

before calibration

after calibration

Figure 2.1: Left: Nao humanoid with markers attached to the end-effectors (EEF) performing
automatic self-calibration. Right: Marker on the right EEF observed by the onboard-camera before
and after the calibration, with the robot model (semi-transparent) and the expected marker’s center
(coordinate frame) overlaid.

parameters so that the error is minimized. We hereby rely on camera observations of point
markers attached to the robot’s end-effectors. We determine their expected locations in
the camera image and compute the error when compared to the actual observations.

2.1.1 Measurement Model and Parameters

One of the most obvious reasons for a misalignment between a true observation and
the expected one is that the camera’s intrinsic and extrinsic parameters are not known
accurately. Our system uses the standard pinhole model to compute the projection of
a point in the camera image and also considers the radial distortion of the lens, which
is typically the most dominant reason for deviations. The model is further described in
Appendix A.2. In summary, let p =

[
x y z

]ᵀ
be a 3D point in the camera frame, then

its corresponding distorted image coordinates are given by

[
u
v

]
= proj(p). (2.1)

11

Chapter 2 Whole-Body Self-Calibration

The function proj is defined in (A.11) and depends on the camera’s focal lengths f x and
f y, its principle point

[
kx ky

]ᵀ
, and a scalar κ that models the strength of the radial

distortion.
Also, the calibration of the camera’s extrinsics parameters is of great importance, i.e.,

its placement relative to the reference frame that the camera is attached to, i.e., typically
the robot’s neck joint. Consequently, we seek the orientation and center of the camera
(i.e. its pose) relative to the reference frame. These parameters are typically described by
a rotation matrix R and a camera center c =

[
xc yc zc

]ᵀ
(see Appendix A.2). However,

for the optimization, a minimal representation is required. Such a representation can be
obtained in form of the corresponding Euler angles of R and the center point c, i.e.,

[
xc yc zc ϕc θc ψc

]ᵀ
. (2.2)

Determining these values is often referred to as extrinsic calibration of the camera.
Another important reason for poor calibration is that the rotary joint encoders, which

contribute to the kinematic state of the robot, are affected by systematic offsets due to lack
of precision in the manufacturing process or wear. Hence, we model the true position of
the joints at time i as the sum of the offsets qoff and the encoder readings q̂i

qi = q̂i + qoff. (2.3)

Finally, we need to consider the artificial markers attached to the end-effectors (EEF)
as we rely on them as observations. While their approximate positions can be obtained
from manual measuring, positional errors directly affect the automatic evaluation of the
state of calibration of the robot. Hence, we include the position for the markers MEEF on
each end-effector in the estimation and model them as three-dimensional vectors relative
to the EEF-frame by

mEEF =
[
x y z

]ᵀ
. (2.4)

To summarize, the parameters considered in the error minimization are

� the camera’s intrinsics and distortion f x, f y, kx , ky, κ,

� the camera’s extrinsics xc, yc, zc, ϕc, θc,ψc,

� one marker location mEEF per end-effector, and

� the joint offsets qoff.

For mathematical simplicity, in the remainder of this chapter, we stack all these param-
eters in a vector θ ∈ RL, where L is the number of parameters.

12

2.1 Graphed-Based Optimization of the Calibration Parameters

2.1.2 Formulation as Least-Squares Optimization

Thus, our calibration procedure aims at estimating the parameters θ ∈ RL that minimize
the error between the estimated poses of the markers attached to the end-effectors and
their observations in the camera image. To obtain a robust estimate for θ, we consider the
accumulated error for a set S consisting of n different robot configurations, where each
configuration is defined by its joint encoder readings q̂i ∈ S. We formulate the parameter
estimation as a least-squares optimization. Hence, we minimize

θ∗ = arg min
θ

FS (θ), (2.5)

where FS : RL −→ R is the accumulated error given by

FS (θ) B
∑

i=1...n

ei (θ, ẑi, q̂i)ᵀei (θ, ẑi, q̂i), (2.6)

and ei (θ, ẑi, q̂i) is the error residual for the robot configuration q̂i ∈ S and the image
measurement ẑi. For the employed point markers, the error function is given by

ei (θ, ẑi, q̂i) B ẑi − predictMEEF
(θ, q̂i). (2.7)

Here, ẑi ∈ R
2 is the observed marker location in the image, from which we subtract the

estimate for the projection of the marker, predictMEEF
(θ, q̂i), given the robot’s kinematic

structure, the calibration parameters θ, and the joint readings q̂i. The predicted location
of a marker MEEF is given by

predictMEEF
(θ, q̂i) B projθ

([
R −R c

]
F N

EEF(θ, q̂i) m̃EEF
)
, (2.8)

where projθ is as defined in (A.11) using the intrinsic parameters from the current cali-
bration θ. The function F N

EEF(θ, q̂i) describes the forward kinematics of the end-effector
with respect to the neck frame evaluated from the joint readings q̂i and the joint offsets
contained in θ. R and c are extracted from the calibration parameters θ as well. Con-
sequently, the argument to projθ yields the location of the marker MEEF relative to the
camera frame, given the joint readings q̂i and the calibration parameters θ. The forward
kinematic function F is described in Appendix A.3.

To solve the least-squares problem defined in (2.5) to (2.8), we apply a linear approxi-
mation. With the definition

f(θ) B
[
e1(θ, ẑ1, q̂1)ᵀ . . . en(θ, ẑn, q̂n)ᵀ

]ᵀ
, (2.9)

13

Chapter 2 Whole-Body Self-Calibration

we can rewrite (2.6) as

FS (θ) = f(θ)ᵀ f(θ), (2.10)

We apply a linear first-order approximation of f by defining

θ B θ̆ + ∆θ, (2.11)

and consequently approximate

f(θ) = f(θ̆ + ∆θ) ≈ f(θ̆) + J ∆θ, (2.12)

where J B
∂f
∂θ

(θ̆) (2.13)

is the Jacobian of f evaluated at the linearization point θ̆. By plugging (2.12) into (2.10),
a linear approximation for (2.6) is given by

FS (θ) ≈ (f(θ̆) + J∆θ)ᵀ (f(θ̆) + J∆θ) (2.14)

= fᵀ (θ̆)f(θ̆)︸ ︷︷ ︸
Cc

+2 fᵀ (θ̆)J︸ ︷︷ ︸
Cbᵀ

∆θ + ∆θᵀ Jᵀ J︸︷︷︸
CH

∆θ. (2.15)

Thus, we obtain an approximate error function that does not depend on θ anymore but on
∆θ. We call this error function F̆S , with

F̆S (∆θ) B c + 2bᵀ∆θ + ∆θᵀH∆θ. (2.16)

To minimize (2.16), we set its derivative to zero and solve the linear system,

∂F̆S
∂∆θ

= 0 ⇐⇒ 2b + 2H∆θ = 0 (2.17)

H∆θ = −b (2.18)

∆θ = −(Jᵀ J)−1 Jᵀf(θ̆). (2.19)

An estimate for θ can then be obtained via the definition in (2.11). To minimize the
error, we use the Levenberg-Marquardt (LM) algorithm, which repeats the three steps,
i.e., the linearization in (2.12), the minimization in (2.19), and the increment in (2.11),
until convergence or a maximum number of iterations is reached.

To estimate θ ∈ RL, the system of equations may not be under-determined. As each
observation yields two constraints, i.e., x- and y-location of the marker in the camera

14

2.1 Graphed-Based Optimization of the Calibration Parameters

fx , fy
kx , ky
κ1

R, c

qoff

ẑ1, q̂1

ẑ2, q̂2

ẑ3, q̂3

ẑ4, q̂4

ẑ5, q̂5

ẑ6, q̂6

mlarm mrarm

Figure 2.2: Example g2o graph for calibration of a humanoid’s upper body. The graph includes
nodes for the camera’s intrinsics, camera’s extrinsics, joint offsets, and the markers of the two arms.
Three measurements per chain are indicated.

image, it must hold that 2n = 2 |S| ≥ L. Consequently, at least n = dL/2e observations
are required to solve the system.

2.1.3 Implementation

We implemented our calibration system using the g2o library by Kümmerle et al. (2011).
It solves problems of the form given in (2.5) and (2.6) by optimizing a hyper-graph. The
graph consists of a set of vertices that encode the sub-components of the parameter vector
θ to be optimized and the measurements (ẑi, q̂i). The edges represent the error functions
from (2.7) between corresponding vertices. Figure 2.2 shows an example for such a graph
with six measurements and two markers. As can be seen, the edges for one measurement
connect multiple vertices.

The employed framework g2o automatically takes care of singularities when estimating
6D poses such as the camera’s extrinsics. Further, the framework allows using a robust
kernel such as the Huber loss function in (2.6). Thus, it optimizes

F′
S

(θ) =
∑

i=1...n

ρH (
√

ei (θ, ẑi, q̂i)ᵀei (θ, ẑi, q̂i)) (2.20)

where ρH (x) =



x2, if‖x‖ < b

2b‖x‖ − b2, else
, (2.21)

15

Chapter 2 Whole-Body Self-Calibration

Figure 2.3: Self-collision and marker visibility check using mesh-model. Left: an acceptable
configuration, right: the left shoulder occludes the sight of the marker, thus the configuration is
invalid.

and b is a scaling parameter. This means, ρH (xi) is quadratic for small errors xi, and linear
for larger ones. In case of b→ ∞, (2.20) is identical to (2.6). By using a robust kernel, the
effect of outliers on the optimization is reduced, which might occur due to measurement
noise or false associations. In Section 2.3.2 we compare the effect of outliers on the
optimization with and without using a robust kernel.

2.2 Automatic Selection of Robot Configurations

The result of the optimization described in Section 2.1.2 depends on the initial lineariza-
tion point and the set of configurations with their measurements for which the error
minimization is carried out. A higher number of configurations can lead to a more
accurate parameter estimation but, obviously, they consume more time. A small set of
configurations on the other hand might lead to overfitting on the calibration data. In order
to reduce the number of required configurations, while still enabling robust estimates, we
developed an approach to automatically select a set of close-to-optimal configurations.
The goal is to achieve a good trade-off between the time needed to carry out the calibration
and the accuracy of the result.

2.2.1 Generating a Pool of Configurations

Our system initially samples a large pool Q of configurations from which subsequently a
subset of configurations that optimizes a certain criterion is selected. The configurations
are uniformly sampled in joint space and checked for self-collisions as well as marker

16

2.2 Automatic Selection of Robot Configurations

observability. A configuration qi is a vector of admissible values for all the joints that are
included in the calibration.

For each sampled configuration qi, we first project the marker location into the camera
image, given the initial estimate of θ and the kinematic structure of the robot using the
predict-function as defined in (2.8). The system only accepts qi, if zi = predictMEEF

(θ,qi) is
within the boundaries of the camera image minus a safety margin to account for errors in
the initial estimate. Next, the algorithm tests whether the robot is in self-collision using a
mesh-model and the Flexible Collision Library (FCL) by Pan et al. (2012). Finally, using
the same technique, our approach checks whether the marker is not occluded by any part
of the body in this configuration and consequently visible by the camera. To this end, we
insert an additional collision object in shape of a cylinder between marker and camera.
We use a cylinder here instead of a line to represent the spatial extend of the marker and to
account for errors in the initial calibration. Figure 2.3 shows an example for the performed
mesh-model checks. The left image displays an acceptable configuration for observing
the marker on the left arm, while the right image shows an invalid configuration, as the
left shoulder occludes the sight from the camera to the marker.

2.2.2 Selecting a Locally Optimal Subset of Configurations

To automatically generate a set of near optimal configurations for calibration, we exam-
ine the Jacobian defined in (2.13). The Jacobian is decomposed using Singular Value
Decomposition (SVD) into

J = UΣVᵀ, (2.22)

where U and V are orthogonal matrices and Σ is the diagonal matrix of the singular values
σ1, . . . ,σL of J, where σ1 ≥ σ2 ≥ · · · ≥ σL. Here, we assume that there are L = |θ |

columns, corresponding to the number of parameters, and 2 n = 2 |S| ≥ L rows in J,
otherwise the system would be under-determined. On this decomposition, we apply a
so-called observability index, which is based on the σi and generally yields higher values
for larger σi and lower values for smaller σi. The rationale behind maximizing the σi is
that, given the linearization in (2.12), under some assumptions including the invertibility
of Jᵀ J, the covariance of θ can be approximated (Seber and Wild, 2003, Chapter 2) by a
matrix C ∈ RL×L with

C B (Jᵀ J)−1 ∝ cov(θ). (2.23)

Thus, maximizing the singular values σi of J is equivalent to minimizing the Eigenvalues
λi of C and consequently of cov(θ), as σi = λ−2

i . Hence, we seek to reduce the variance

17

Chapter 2 Whole-Body Self-Calibration

or uncertainty of the parameters. To this end, we consider the following observability
indices (Carrillo et al., 2013; Nahvi and Hollerbach, 1996):

OD = (σ1 . . . σL)1/L L−1/2 (2.24)

OA = (σ−1
1 + . . . + σ−1

L)−1 (2.25)

ONAI = σ2
L/σ1 (2.26)

OE = σL . (2.27)

OD corresponds to the determinant of C, OA to its trace, and OE to the largest Eigen-
value of C, while ONAI has no direct relation with the covariance, but can be seen as
the product of the Jacobian’s inverse condition number and its smallest singular value.
In Section 2.3.1, we compare the different observability indices with respect to their
performance in selecting configurations for robot calibration.

For accurate robot calibration, we consequently choose the configurations and thereby
the rows of J, such that the chosen observability index is maximized. How to select a
set of N∗ configurations is explained exemplary for the index OD in the following and
in Algorithms 1 and 2. Here, the function computeOD(S, θ) computes OD from a set of
configurations S ⊆ Q and θ. Therefore, the Jacobian J is computed around the current
estimate for θ from the partial derivatives of the error functions (2.7), corresponding to
the set of configurations S. Algorithm 1 initially samples a set of dL/2e configurations
from the pool Q, which is the minimum number of configurations needed to solve the
optimization problem. The configurations are uniformly sampled, proportional to the
degrees of freedom (DOF) of the corresponding kinematic chains. This is to ensure that
all the parameters can be determined. Each sampled set is optimized by exchanging
its configurations (see Algorithm 2), such that the observability index is maximized.
Algorithm 1 keeps the best optimized set of configurations S∗ and solves (2.5) for θ
as described in Section 2.1.2. Finally, the algorithm iterates between greedily adding
configurations to S∗ and solving for the calibration parameters given the current S∗.

It has to be noted that the observability indices relate singular values whose units
depend on the parameters that are used to calculate the corresponding Jacobian. This
can lead to a bad choice of configurations if the units are differently scaled. Hence, our
approach compensates for this problem by scaling the columns of the Jacobian (Holler-
bach and Wampler, 1996). Therefore, prior to computing computeOD, the algorithm
right-multiplies J by a scaling matrix S = diag(s1, . . . , sL), where

si =



‖ji‖
−1 if ‖ji‖ , 0

1 else
, (2.28)

18

2.3 Experiments

Algorithm 1: OD-select: Selects N∗ configurations from a pool Q for calibration
and optimizes θ

Input:

Pool of configurations Q
Initial calibration parameters θ, with |θ | = L
Desired number of configurations N∗

Max. number of restarts T for initializing the configuration set

Output: Optimized configurations S∗

Optimized calibration parameters θ∗

1 S∗ ←− ∅
2 for t = 1 to T do
3 S ←− sample dL/2e configurations from Q
4 S ←− exchange(S,Q)
5 if computeOD(S, θ) > computeOD(S∗, θ) then
6 S∗ ←− S

7 θ∗ ←− arg minθ FS∗ (θ)
8 while |S∗ | < N∗ do
9 q+ ←− arg maxq∈Q\S∗ computeOD(S

∗ ∪ {q},θ∗)
10 S∗ ←− S∗ ∪ {q+}

11 θ∗ ←− arg minθ FS∗ (θ)

and ji indicates the ith column of J. The advantage of this approach is that the user
does not need to provide a range for the parameters, which can sometimes be hard to
determine (e.g., for camera intrinsics or translations).

2.3 Experiments

In this section, we present an extensive evaluation of our self-calibration method using a
Nao humanoid robot. The robot is described in details in Appendix B. In addition, we
installed one checkerboard marker per end-effector, which we detect in the image using
the corresponding OpenCV function. For calibration, we only consider the center point
of the marker. The Nao robot has a total of 23 joints where one of them is a mimic
joint. Our system respects mimic joints by only considering one of the joints in the
configuration selection and optimization. Five of the joints are redundant with respect
to the camera pose and the markers, i.e., the head pitch joint and the last joints for each
EEF. The head pitch joint is redundant because for each arbitrary joint offset, the camera
pose can be adjusted accordingly to yield the same consistent observations. Similarly,
by adjusting the transform to the point marker, each offset for the joint just before the
marker can be compensated to represent the same physical system. Consequently, as these

19

Chapter 2 Whole-Body Self-Calibration

Algorithm 2: exchange: Optimizes a set S of N configurations for calibration from
a pool Q

Input:
Pool of configurations Q
Initial configurations S = {q1, . . . ,qN }

Calibration parameters θ
Output: Optimized set of configurations S∗ of size N

1 repeat
2 q+ ←− arg maxq∈Q\S∗ computeOD(S

∗ ∪ {q},θ)
3 S∗ ←− S∗ ∪ {q+}

4 q− ←− arg maxq∈Q\S∗ computeOD(S
∗ \ {q},θ)

5 S∗ ←− S∗ \ {q−}
6 until q+ = q−

offsets cannot be determined, they are ignored in the calibration process. In addition to
the joint offsets, we estimate the four marker positions (3 DOF each), the camera pose
(6 DOF), its intrinsics (4 DOF) and one radial distortion parameter. Hence, there is a
total of 41 parameters to be estimated and at least 21 measurements are needed for a
full calibration. Our algorithm sets the initial state for the calibration according to the
manufacturer specifications (i.e., zero) for the joint offsets, while we quickly calibrated
the camera with the standard OpenCV calibration routine. Furthermore, we manually
measured the placement of the markers relative to the end-effectors.

To allow a quantitative evaluation of our system, we generated a large database of
3000 configurations, observing each of the robot’s four end-effectors 750 times, using the
sampling method described in Section 2.2.1 and then recorded the camera observations
and joint encoder readings. We performed a 5-fold cross-validation on the data set to
evaluate the system, including the automatic configuration selection.

2.3.1 Pose Selection

To evaluate our approach to automatic configuration selection as described in Section 2.2,
we compared the results from the OD-select algorithm with a strategy that randomly
selects configurations from the pool Q. For the random strategy, we repeated the complete
5-fold cross-validation three times and accumulated the results to obtain more representa-
tive values. The results are shown in Figure 2.4 (top) as root mean square error (RMSE)
and its standard deviation over the folds (and repetitions in case of the random strategy).
As can be seen, our OD-select algorithm leads to accurate results with an RMSE of
7.2 ± 1.1 px requiring only 25 configurations, which is close to the theoretic minimum
of 21. The random strategy yields a substantially higher RMSE of 19.7 px with a large

20

2.3 Experiments

standard deviation of 9.1 px. Even for 50 configurations, OD-select performs better with
an RMSE of 5.5 ± 0.8 px compared to 6.1 ± 0.8 px.

We also compared the different observability indices introduced in Section 2.2. The
results are shown in Figure 2.4 (bottom). As can be seen, the OD-select performs better
than the other algorithms for few measurements, with OA-select performing similar for
more than 32 configurations. Both algorithms generally perform better than the remaining
two, even for many measurements.

Finally, we compared the performance for arms and legs separately, as some users
might want to calibrate only sub-parts of the humanoids body. The results are shown in
Figure 2.5. As can be seen, in each case, it is advisable to use a selection algorithm. For
the arms, we obtained slightly better results compared to the legs, which is due to the
better observability of the former, as the legs typically need to be in front of the robot
to be seen by the camera, which means that the configurations do not cover the whole
parameter space.

2.3.2 Effect of Measurement Noise

Finally, we tested the effect of noisy measurements on the optimization. Therefore, we
used 60 configurations selected by OD-select and repeated the optimization, but this
time we randomized the detected marker location over the entire image for different
percentages of measurements. This is to simulate the effect of false marker observations,
which may occur in presence of clutter and uncontrolled lighting. We optimized using the
noisy data with and without using a robust kernel and performed a 5-fold cross-validation
as previously. The results are shown in Figure 2.6. As can be seen, using a robust kernel
yields substantially better results compared to a quadratic kernel. For up to 10 noisy
measurements out of 60 total, the robust kernel performs similar to using completely
noise-free measurements, whereas without robust kernel, the RMSE rises up to 45.1 px
(versus 6.6 px for the robust kernel). Concluding, the robust kernel handles up to 16% of
noisy measurements without strong impacts on the performance and clearly outperforms
the standard kernel.

2.3.3 Resulting Calibration Compared to the Initial State

Figure 2.7 shows the residuals in x- and y-direction (in px) in image coordinates for each
of the four chains. The top plot shows the results for the uncalibrated state according to the
manufacturer specifications with a good initial guess for the markers, and the lower plot
shows the residuals after the calibration using 60 configurations selected by OD-select.

21

Chapter 2 Whole-Body Self-Calibration

20 30 40 50 60 70 80

5

10

15

20

25

measurements

R
M

SE
in

px

OD-select
random

20 30 40 50 60 70 80
0

5

10

15

20

measurements

R
M

SE
in

px

OD-select
OA-select
ONAI -select
OM -select

Figure 2.4: RMS-Error on validation data. Top: comparison of OD-selectwith a random selection
strategy. Bottom: comparison of different observability criteria.

22

2.4 Related Work

15 20 25 30 35 40

5

10

15

20

25

measurements

R
M

SE
in

px
OD-select arms

random arms
OD-select legs

random legs

Figure 2.5: RMS-Errors on validation data. Comparison of OD-select with a random selection
strategy, for arms and legs separately.

For the lower plot, we overlaid the results from each of the 5-folds of the data set. The
initial error was 43.4 px and after calibration we achieved an RMSE of only 5.2 px.

2.4 Related Work

The calibration problem for humanoids is composed of different sub-problems, including
calibration of exteroceptive sensors (typically cameras) and the calibration of the kine-
matic structure. The latter is strongly related to the calibration of manipulators, which has
been studied for at least two decades.

One of the most well-known camera calibration procedures is described by Zhang
(1999). It uses a closed-form maximum likelihood (ML) estimation to solve for the in-
trinsic and the extrinsic parameters of the camera. In the system described in this chapter,
we also compute a ML estimation for these parameters. Agrawal and Davis (2003) use
spheres as calibration objects to estimate the camera’s intrinsics and extrinsics via semi-
definite programming. The spheres of known size are identified in the camera images
by fitting ellipses to the corresponding edge images. Asfour et al. (2008) developed
an approach to calibrate a stereo camera relative to a humanoid’s head by observing a
marker and using a least-squares formulation of the problem. Hence, they perform a

23

Chapter 2 Whole-Body Self-Calibration

0 10 20 30 40 50

1

5

25

125

% of random measurements

R
M

S
in

px

With robust kernel
Without

Figure 2.6: Effect of noise on the optimization. Different percentages of camera observations were
randomized in the image and optimized with and without a robust kernel. The plot shows the results
of a 5-fold cross validation.

classical head-eye calibration. Basso et al. (2014) showed a calibration framework for a
depth and RGB sensor couple. They calibrate the intrinsic parameters of both cameras
as well as the transform between them by observations of a checkerboard. They further
compute an undistortion map to compensate for systematic errors in the depth sensor.
While the latter would also be possible within our framework by extension, it is probably
faster to compute such a map within a specialized system that considers the image as a
whole instead of individual marker locations. However, our system is not restricted to
one monocular camera but can easily be used to calibrate multiple cameras. This allows
estimating the alignment between depth and RGB sensor and further, estimating both
camera’s intrinsic parameters.

To calibrate a manipulator, a multitude of approaches have been presented. Bennett and
Hollerbach (1991) fix the end-effector of the manipulator to the ground. The manipulator
is then moved into different constraints. The measurements consist of the joint sensor
readings only. Knowing that the endpoint is always in a fixed position, the kinematic
parameters can be estimated using forward kinematics.

Yamane (2011) proposed to calibrate the joint offsets of a humanoid’s legs using mea-
surements of a chest-mounted Inertial Measurement Unit (IMU) and the constraint that
the feet of the robot are fixed on a plane, while manually moving the robot. However,

24

2.4 Related Work

−40 −20 0 20 40
−20

0

20

40

60

x-residual in px

y-
re

si
du

al
in

px
larm
rarm
lleg
rleg

−40 −20 0 20 40
−20

0

20

40

60

x-residual in px

y-
re

si
du

al
in

px

larm
rarm
lleg
rleg

Figure 2.7: Comparison of measurement residual before (top) and after (bottom) calibration. The
bottom plot show the union of the residuals for a 5-fold cross-validation.

25

Chapter 2 Whole-Body Self-Calibration

the upper body cannot be calibrated with such a method as the corresponding joints do
not affect the IMU measurements. Our method instead uses artificial markers on the end-
effectors, allowing calibration of the whole body.

Park et al. (2012) optimize the Denavit-Hartenberg parameters of a manipulator from
observations of a laser attached to the end-effector and an externally placed camera within
a Kalman-Filter framework. While this allows for precise measurements, it also requires
a substantial modification of the hardware.

Traslosheros et al. (2010) introduced a calibration scheme for a robot with two parallel
manipulators and a camera attached to the EEF. As a marker, the approach uses a ball
of known dimensions that is fixed within the environment. The ball’s projection into the
image plane is used as measurement to constrain the system of equations arising from
multiple configurations. In their approach, the authors assume that the camera’s intrinsics
are already well-known from a separate calibration.

Pradeep et al. (2010) presented a bundle adjustment approach for calibrating a robot
with multiple sensors and two arms. The main idea here is that multiple sensors can
observe the same points in the world and hence, the parameters can be jointly optimized.

Birbach et al. (2012) proposed an approach to calibrate the intrinsic and extrinsic
parameters of a stereo camera, the joint elasticities and the joint angle offsets of an
upper body of a humanoid with two arms, and the head mounted IMU. As in the work
by Pradeep et al. (2010), the authors jointly optimize the parameters from manually
determined robot configurations. The authors use a single point marker located on each
of the arms’ wrists. Similarly, Hubert et al. (2012) applied a maximum a posteriori
approach (MAP) for estimating the parameters of hand-eye kinematics of a humanoid
robot. The prior is assumed to be normal distributed with an empirically determined
variance. If the prior is well chosen, the MAP approach requires fewer measurements
and thus is faster than a maximum likelihood formulation. Our approach, on the other
hand, automatically selects configurations for calibration such that the number of needed
measurements is reduced.

Selection and generation of measurement configurations has been studied previously,
especially in the context of manipulator calibration, for instance as described by Borm
and Menq (1989). Their goal is to minimize the effect of noise in measurement. Using an
observability measure based on the Jacobian of the error function, the authors show that
the selection of the measurement configurations is more important than the actual number
of measurements. Our system follows that idea by evaluating different observability
indices. Also, Li et al. (2011a,b) used observability indices to choose configurations for
calibration of a manipulator. The authors showed that using the optimized configurations
yields better results than using configurations sampled from the boundary of the working

26

2.5 Conclusions

space, which is otherwise a reasonable heuristic. Similar results were shown by Daney
(2002) for a hexapod.

Sun and Hollerbach (2008) presented a theoretical survey on five different observability
indices for configuration selection and their relationship to the paradigm of optimal exper-
imental design. Most similar to our approach, Carrillo et al. (2013) recently experimen-
tally compared different criteria for the selection of measurement configurations for the
calibration of a humanoid’s upper body. The authors conclude that for greedy-selection
algorithms, determinant-based criteria should be preferred. However, the authors only
showed that the determinant-based criteria maximize the other criteria as well, but not
whether it minimizes the actual calibration error. In this chapter, we presented extensive
cross-validation results for four different selection criteria.

2.5 Conclusions

Accurate calibration is a necessity for all types of navigation and manipulation, including
the approaches presented in the following chapters of this thesis. In this chapter, we
therefore introduced new techniques for the automatic calibration of the complete kine-
matic model for legged humanoids. Our system relies on least-square minimization of the
sum of residuals between camera observations of markers and their expected locations
in the image. Our approach automatically chooses robot configurations that enable an
accurate, robust calibration by minimizing the variance of the parameters to be estimated.
The calibration framework is general and can be used for other robots with a different
kinematic model and with different types and numbers of cameras, including RGB-D
cameras by estimating the camera poses of the RGB and the infrared camera. In extensive
experiments with a real Nao humanoid, we showed that our framework requires only few
observations to obtain accurate calibration results. In the next chapter, we describe an
approach to obstacle detection that uses odometry information to predict the feature flow
between consecutive images. Consequently, this approach requires and profits from an
accurate calibration as provided by the work described in this chapter.

27

Chapter 3

Traversability-Estimation with
Monocular Cameras

In this chapter, we present an approach to traversability classification solely based
on monocular images and odometry estimates. We iteratively estimate the ground
plane by detecting and matching features. Since the features are only sparse in
the images and do not lead to dense information about traversability, we propose
a technique to train appearance-based floor detectors. In this way, we achieve a
dense classification of the image data. Our approach trains the classifiers online
in a self-supervised fashion from the ground plane estimation. During robot nav-
igation, the classifiers are automatically updated and applied to the image stream
to decide which areas are traversable. From this information, the robot computes a
two-dimensional occupancy grid map of the environment which can be used to plan
collision-free paths. As we illustrate in thorough experiments with a real humanoid,
the classification results of our approach are highly accurate and the resulting
occupancy map enables the robot to reliably avoid obstacles during navigation.
Our appearance-based classifiers can also be used to augment stereo or RGB-D
data in close ranges where these sensors cannot provide any depth information.

Collision-free navigation is one of the most essential capabilities of autonomous robots.
Typically, they use distance data, e.g., from laser range finders or stereo cameras to detect
obstacles. Recently, depth cameras based on structured light, such as the Microsoft Kinect
or the Asus Xtion, have become available on the consumer market and have been used for
navigation with mobile robots (Biswas and Veloso, 2011; Bylow et al., 2013; Huang et al.,
2011). Also in Chapter 4 and Chapter 5 of this thesis, we describe navigation approaches
using these sensors. However, due to size and weight constraints, monocular cameras

29

Chapter 3 Traversability-Estimation withMonocular Cameras

Figure 3.1: Left: Image captured by the camera of a walking humanoid robot with flow vectors of
detected features on the estimated ground plane. Given the floor features, we train visual classifiers to
densely label patches of subsequent images as being traversable or not. Right: Resulting traversabil-
ity probabilities for the successive camera image as estimated by our approach (the brighter the color,
the higher the probability of being traversable).

are still the typical sensor light-weight robots, including humanoids, are equipped with.
Furthermore, depth cameras typically provide no information in the crucial near range, as
opposed to monocular cameras.

In this chapter, we therefore present an extension of our previous work on obstacle
detection (Maier et al., 2013c) that operated on monocular images and sparse laser data. In
the previous approach, the robot trained visual classifiers for obstacles and the floor based
on classified distance data, which lead to highly accurate image labeling and traversability
classification results. Since not all humanoid robots possess a laser range finder, whose
data can be used to acquire the training data, we developed a novel approach that relies
solely on monocular images and odometry data. The approach does not require any
distance data. Instead, our method iteratively finds sparse features on the floor plane from
geometric information and deploys these features to train appearance-based classifiers.
To obtain geometric information, the approach considers the flow of the sparse image
features and uses odometry from forward kinematics to constrain the search for corre-
spondences. The trained classifiers are subsequently applied to densely label the camera
images during walking. From the labeled pixels, we construct a traversability map of the
robot’s surroundings in form of a 2D occupancy grid map in which a collision-free path
can be computed. The learned classifiers are constantly updated during navigation. In
this way, the robot can deal with changing ground appearance and reliably identify the
traversable floor.

The left image of Figure 3.1 shows an image acquired from the onboard camera of a
walking robot. The dots show the location of detected features on the floor plane. Due

30

Odometry Monocular
Camera

Feature
Extraction

Initialization
Correspondence

Search
Training

Homography
Estimation

Classification

Local Map

image pairs

Figure 3.2: Overview of the proposed system. We compute corresponding features in image pairs
by iteratively estimating the ground plane homography and compatible feature pairs. The system is
bootstrapped from the odometry. Features identified as belonging to the floor are then used to train
appearance-based visual classifiers. These classifiers are applied to estimate dense traversable areas
in the images and to guide the homography estimation in subsequent image pairs.

to the motion of the camera, the locations of the features in the image change from one
image to another as indicated by the lines. The displacements are often referred to as flow
vectors. Our approach iteratively estimates the ground plane based on the detected flow.
From the identified features lying on the floor, we then train visual classifiers to densely
label the traversable area in successive camera images (right image of Figure 3.1).

Several approaches for estimating traversability from a moving monocular camera have
been proposed (Braillon et al., 2006; Einhorn et al., 2009; Kim and Kim, 2004; Low and
Wyeth, 2005). Most of them try to recover structural information about the environ-
ment from the camera motion. These methods often rely on simplifying assumptions
such as accurate knowledge of the camera pose or smooth motions that do not hold for
walking humanoid robots. Further popular approaches relying only on feature correspon-
dences (Klein and Murray, 2007) are unable to cope with rotations when the translation
is small and hence, are only of limited use for humanoid navigation. In contrast to that,
our technique provides a dense labeling of the images from which the traversable areas
can be inferred, while the robot is walking, standing, or turning on the spot.

As the experiments with a Nao humanoid demonstrate, our approach achieves high
classification rates and leads to an accurate, dense labeling of the camera images. The
resulting occupancy grid map allows collision-free navigation of the robot.

31

Chapter 3 Traversability-Estimation withMonocular Cameras

3.1 Outline of the Approach

Figure 3.2 gives an overview of our system. At its core, the system extracts features in
consecutive camera images and finds their correspondences. To constrain the search and
find only features on the ground plane, we make use of the homography between two
images. A homography is a projective mapping between two images and explained in
Section 3.2. It can be estimated from a set of feature correspondences. Consequently, our
approach iteratively matches features within an image pair, guided by the homography,
and refines the estimate for the latter from the correspondences. To bootstrap and con-
strain the system, the homography is initialized from the odometry obtained via forward
kinematics. Once the correspondences on the floor plane are established, we interpret
the sparse features as training examples for the appearance of the floor and train visual
classifiers. Subsequently, the classifiers are applied to assign dense traversability labels
to successive images, which we then use to construct a local map of the scene around the
robot for navigation. These steps are repeated continuously.

3.2 Homographies

To relate the location of two feature points between consecutive images, our approach
relies on homographies. A homography is an invertible, projective mapping between two
planes. Here, we consider the special case that corresponding points x̃↔ x̃ in two images
of a plane π in 3D are mapped to each other by a homography H ∈ R3×3. This means,
that x̃ and x̃ represent the same point on the plane π in 3D but in different camera views.
We call H the homography induced by π and all corresponding points on π fulfill

x̃ = H x̃, (3.1)

where x̃ indicates that the image point is expressed in homogeneous coordinates as de-
scribed in Appendix A.1 of this thesis.

3.3 Geometric Floor Estimation

For identifying points on the floor, which we seek to train the visual classifiers as de-
scribed in Section 3.4, we match image features that are compatible with the floor ho-
mography of image pairs captured by the onboard camera while the robot is moving. One
of the biggest problems with extracting and matching features between images from a
moving camera is the occurrence of motion blur. Especially humanoid robots often move

32

3.3 Geometric Floor Estimation

0 1 2 3 4 5 6

−3

−1.5

0

1.5

3

time (s)

ca
m

er
a

an
gl

e
(d

eg
)

Figure 3.3: The plot shows the camera’s lateral inclination while the robot moves. The gray line
is the lateral inclination angle of the robot’s camera relative to gravity. The black line shows the
smoothed trajectory and the dots indicate the detected steady phases for image extraction.

jerkily which induces blur effects in the camera image. Hence, we first introduce our
technique to acquire steady images that further have the maximum possible baseline.

3.3.1 Identification of Steady Images While Walking

To identify phases in which the camera is steady, we exploit the specific movement of
humanoid robots, which often sway sideways during walking. When the direction of the
swaying changes, the body has to undergo a short phase with zero velocity before it sways
the other way. Our algorithm tries to detect these phases and extracts the camera images
at that moment. A further advantage of this approach is that the recorded camera images
have the maximum possible baseline during two foot steps which makes computing the
planar homography numerically more stable.

To detect the corresponding phases, we compute the lateral inclination angle of the
camera relative to gravity using an integrated inertial measurement unit (IMU). We use
a delayed running average filter with a window length of 0.1 s and group delay compen-
sation on the angular measurements to smooth the data. Then, we identify the steady
points as the extrema of the smoothed function that exceed an experimentally determined
threshold of 3°. Figure 3.3 shows a plot of typically obtained angles, the smoothed
trajectory and extracted steady points. As a result, we are able to identify camera images
with little motion blur and a relatively large baseline that we use for geometric floor
estimation as described next.

33

Chapter 3 Traversability-Estimation withMonocular Cameras

3.3.2 Feature Extraction and Association for Floor Estimation

To identify points on the floor plane, we follow an iterative approach. We consider
steady image pairs in which we detect and match features that are compatible with the
homography H induced by the ground plane. The actual initialization of H is described
further below. From such a homography, we search for correspondences x̃ j ↔ x̃ j+1, with
x̃ j ∈ I j and x̃ j+1 ∈ I j+1, where I j and I j+1 are images from the robot’s onboard camera
via

x̃ j+1 − H x̃ j

 < ξ, (3.2)

for a threshold ξ. In practice, the threshold is larger than 0 due to imperfect camera
calibration and models. From the feature pairs corresponding to points on the floor, the
homography H can in turn be re-estimated via least-squares fitting.

Specifically, we consider successive steady images I j and I j+1 as identified in Sec-
tion 3.3.1 in which we extract Speeded Up Robust Features (SURF, Bay et al., 2006). Let
the set of detected features in image I j be B j and the features from I j+1 be B j+1. We seek
all the correspondences {(x̃ j , x̃ j+1)}, where x̃ j ∈ B j and x̃ j+1 ∈ B j+1, that represent the
same point on the floor in the images I j and I j+1, respectively. Consequently, we seek the
set S, where

S =
{
(x̃ j , x̃ j+1) | x̃ j ∈ B j , x̃ j+1 ∈ B j+1,

x̃ j+1 − H x̃ j

 < ξ

}
. (3.3)

As neither S nor H can be estimated directly, our system iterates the estimation of both,
given a rough estimate for H from the odometry (see below). We denote by S (k) and H (k)

the corresponding estimates at iteration k. At each iteration k of our algorithm, we update
the estimate H (k−1) for the floor homography from the current set of correspondences
S (k−1) to yield H (k) and then refine the correspondences S (k−1) from H (k) to yield S (k).
The two iterating steps, searching for correspondences and estimating the homography,
as well as the initialization from the odometry, are explained in the following.

Correspondence Search

To find the set of correspondences S (k), we consider the homography H (k) and the 64-
dimensional SURF descriptor. We define the set of candidates of potentially matching
features Ci for a feature x̃ j ∈ B j according to the homography H (k) as

Ci = {ỹ ∈ B j+1 |

ỹ − H (k) x̃ j

 < ξk } (3.4)

34

3.3 Geometric Floor Estimation

where ξk is the current search radius. As actual correspondence to x̃ j , we select the most
visually similar candidate feature x̃ j+1 ∈ Ci according to the SURF descriptor dSURF(·),
i.e.,

x̃ j+1 = arg min
ỹ∈Ci

dSURF(ỹ) − dSURF(x̃ j)

. (3.5)

We also apply the common constraint that the ratio between the descriptor distance of
the best match x̃ j+1 to the descriptor distance of the next best match exceeds a predefined
threshold to find robust correspondences. Further, we perform the mutual consistency
check, i.e., we demand that x̃ j is also within the most similar correspondences for x̃ j+1

in terms of the descriptor distance, for the same reason. S (k) is then the set of all pairs
(x̃ j , x̃ j+1) fulfilling these constraints. In each iteration k, we reduce the search radius
ξk . In this way, we reduce the ambiguities in the feature matching process because the
number of candidates |Ci | shrinks with ξk .

Homography Estimation

To estimate H (k), we apply a standard non-linear optimization from S (k−1). Thus, we find
H (k) via a least-squares solution for x̃ j+1 = H (k) x̃ j , i.e., the algorithm minimizes

n∑
i=1

(
x̃ j+1 − H (k) x̃ j

)ᵀ (
x̃ j+1 − H (k) x̃ j

)
, (3.6)

where n =
���S

(k−1) ���. For the minimization, we use the corresponding OpenCV (Bradski
and Kaehler, 2008) function.

Initialization

To initialize the algorithm, we consider the homography H (0) computed from the odom-
etry and the IMU as

H (0) = K
[
e j+1

1 e j+1
2 e j+1

4

] [
e j

1 e j
2 e j

4

]
K−1 (3.7)

where K is the camera’s intrinsic matrix and e j
i is the ith column of the camera’s extrinsic

matrix corresponding to image I j , i.e., its pose according to the odometry and forward
kinematics at the time of capturing image I j (see Appendix A.2). The e j

3 have been
dropped due to the projective nature of homographies. A derivation for (3.7) can be found
in Bradski and Kaehler (2008, Chapter 11).

We then initialize S (0) from H (0) as well as the detected features B j and B j+1 as
described before, using an appropriate search radius ξ0, which depends on the noise in

35

Chapter 3 Traversability-Estimation withMonocular Cameras

the odometry estimate and the error in the robot calibration (see Chapter 2). To include
prior knowledge, we further demand that the features x̃ j ∈ B j of the first image are
from parts labeled as floor by the appearance-based classifiers presented in the next
section, if available. This constraint further improves the initialization but is waived
for all subsequent iterations, in order to be able to adapt to changing floor appearances.
From the remaining correspondences in S (0), our system robustly estimates H (1) using
the random sample consensus (RANSAC) algorithm introduced by Fischler and Bolles
(1981). The advantage of using RANSAC for estimating the homography is that few
outliers have no effect on the estimate (given a sufficiently high number of samples),
while each outlier will impact the estimate in a least-squares optimization, even if a
robust kernel (see Section 2.1.3) is used. Outliers can still occur due to ambiguities in
the matching process and the uncertainty of the initial homography. RANSAC is only
used to estimate H (1). Afterwards, we proceed with the iterative refinement using least-
squares optimization, as a robust homography is established.

Iterative Refinement

We iterate the two steps of correspondence search and homography estimation until the
number of correspondences ���S

(k) ��� has converged or a maximum number of iterations
is reached. Typically, five to ten iterations are sufficient. In this way, the final S (k)

consists of a set of corresponding features on the floor plane, obtained from two sub-
sequent images I j and I j+1, We denote by Sfloor the final S (k) and its elements are the
pairs (xfloor,x′floor) ∈ Sfloor where all the xfloor are extracted from I j and the x′floor from
I j+1. These features are consequently used to train visual classifiers as described in the
following section. Figure 3.1 illustrates one result of our algorithm. The left image shows
the image I j along with the detected floor points xfloor and the corresponding flow vectors,
i.e., the displacements x′floor − xfloor for all (xfloor,x′floor) ∈ Sfloor. As can be seen, our
algorithm extracts features from a challenging floor and the flow is consistent with the
camera’s motion, which is a right-forward movement with a slight roll component.

3.4 Appearance-based Traversability Estimation

The detected points on the floor (i.e., {xfloor} and {x′floor}) are typically sparse in the images
as illustrated in Figure 3.1. However, for collision-free navigation, dense information is
required. We therefore developed an appearance-based approach to estimate traversability
from images. Here, we consider a one-class classification problem since we have accurate
information about features on the floor but no reliable information about obstacles.

36

3.4 Appearance-based Traversability Estimation

Consequently, we train a texture-based and a color-based classifier using the detected
floor points xfloor from the image I j , as explained in the next section. These classifiers
are then used to label all successive images, including I j+1, until new training data is
available. Note that all images can be labeled, not only the steady images used for ground
plane estimation (see Section 3.3.1). This is necessary to be able to update the map while
the robot is standing or turning.

3.4.1 Texture-Based Classification

The texture classifier that we designed labels image patches according to their represen-
tation in the frequency-domain. In particular, we employ the discrete cosine transfor-
mation (DCT) to extract texture information (Ahmed et al., 1974). For an input image
patch, the DCT computes a set of coefficients which can be regarded as weights of a set
of two-dimensional basis functions corresponding to different frequencies. Hence, the
coefficients represent the amount of presence of certain frequencies in the image.

Since the DCT is not invariant to perspective, we do not operate on the camera image
directly but project it to a virtual downwards-looking camera. This projection is computed
by applying a homography induced by the floor plane between the camera and a virtual
camera looking perpendicular at the floor at a fixed height of 2 m and 1 m in front of
the real camera. The homography is computed from the odometry and IMU estimate for
the camera, similar to (3.7). This allows to compensate for potentially different camera
pitch and roll angles between training and test data. The left image in Figure 3.4 shows
an example of such a top-down view. Note that this step works also with inaccurate
odometry information: Planar translational errors have no impact on the projection, the
height is typically fixed, and we observed the classifier to be robust to rotational (yaw)
errors up to circa 30°.

From the projected image, we extract rectangular patches of size 16×16 pixels. To these
patches, we apply the DCT and keep only the 13 coefficients corresponding to the lowest
frequencies in the image patch for dimensionality reduction and generalization. The
extraction of these features is described in more detail in our previous publication (Maier
et al., 2013c). For training, we extract the patches from the projected camera image at
the location of the features {xfloor}, compute the DCT-based descriptor and store it in a
k-d tree (k-dimensional tree, Bentley, 1975).

For classification, we project an image to the top-down view and thereby align the
orientation of the top-down view with the orientation of the top-down view of the train-
ing image. In this way, we compensate for the rotational invariance of the DCT-based
descriptor. Subsequently, we extract 16 × 16 patches at a fixed distance of 8 pixels,
compute for each patch its DCT-based descriptor dDCT(·) and determine the traversability

37

Chapter 3 Traversability-Estimation withMonocular Cameras

Figure 3.4: Virtual downwards-looking camera as described in Section 3.4.1. The images corre-
spond to the situation depicted in Figure 3.1. In the left image, the dots indicate the detected floor
points xfloor. The right image shows the traversability estimation based on texture (the brighter the
color, the higher the probability of being traversable).

probability from the similarity to the training data. Here, we use the distance of the
descriptor dDCT(h) for a patch h to its nearest neighbor h′ in the k-d tree according to
dDCT(·) and define the probability of h being traversable as

p(h) = exp
(
−
‖dDCT(h) − dDCT(h′)‖

σDCT

)
. (3.8)

Hence, we apply the exponential probability density function with scale σDCT, which
controls the steepness of the function. We average the probabilities for individual pixels
from overlapping patches. The right image in Figure 3.4 shows an example classification
result in terms of traversability probabilities.

3.4.2 Color-Based Classification

Due to the projection to the virtual downwards-looking camera, some parts of the original
image cannot be labeled. This is demonstrated in Figure 3.4 where a part of the back-
ground of the original camera image shown in Figure 3.1 is missing in the projection.
Also, the regions close to the border of the visible area are not suitable for texture-based
classification, as the patches might include parts outside the visible area. Therefore, we
train a second classifier based on color to achieve a classification of the whole image.

We compute the average HSV (hue, saturation, value) color representation in a 4 × 4
pixels neighborhood around the floor points xfloor in the original image and store them in
a k-d tree. The descriptor dHSV(·) is a vector of the three HSV components. For classifi-
cation, we again divide the image into 4×4 patches and assign traversability probabilities

38

3.4 Appearance-based Traversability Estimation

according to the distance to the nearest neighbor using an exponential probability density
function as in (3.8).

3.4.3 Probabilistic Relaxation Labeling

For the final classification, we combine the prediction from both classifiers via a weighted
average, where we assign a higher weight to the texture classifier. For considering depen-
dencies between nearby areas and smoothing, we apply probabilistic relaxation label-
ing (Maier et al., 2013c; Rosenfeld et al., 1976). Here, we assume that each node vi,
corresponding to a pixel in a down-sampled version of the combined classification image,
stores a binary probability distribution about its traversability label. More concrete, pi (t)
is the probability that node vi is labeled t ∈ T , where we denote the set of possible labels
by T = {traversable,non-traversable}. The neighborhood relation between two nodes is
represented by two coefficients: ci j representing the influence between two nodes vi and
v j as well as ri j describing the compatibility between the labels of the two nodes.

In details, C = {ci j | v j ∈ N (vi)} is the set of weights indicating the influence
of node v j on node vi. Here, N (vi) describes the 8-neighborhood of vi. In our case,
we set the weights ci j to |N (vi) |−1, thereby assigning equal influence to each neighbor.
The compatibility coefficients are the set R = {ri j (t, t′) | v j ∈ N (vi)}, where ri j (t, t′) with
t, t′ ∈ T defines the compatibility between the label t of node vi and the label t′ of node v j

by a value between -1 and 1. A value ri j (t, t′) close to −1 indicates that the label t′ is
unlikely at node v j given that node vi has label t. Values close to 1 indicate the opposite.
For our application, we set ri j (t, t′) to a constant r ∈ R, if t = t′ and to −r otherwise,
where we determined r is empirically.

Given an initial estimation for the probability distribution p(0)
i (t) over the traversabil-

ity label for each node vi, as obtained via the weighted average over the texture and
color classification, the probabilistic relaxation method iteratively computes estimates
p(k)

i (t), k = 1,2, . . . for the labels via

p(k+1)
i (t) =

p(k)
i (t)

(
1 + q(k)

i (t)
)

∑
t ′∈T p(k)

i (t′)
(
1 + q(k)

i (t′)
) , (3.9)

where

q(k)
i (t) =

∑
v j∈N (vi)

ci j *
,

∑
t ′∈T

ri j (t, t′)p(k)
j (t′)+

-
. (3.10)

39

Chapter 3 Traversability-Estimation withMonocular Cameras

In the equations above, the term q(k)
i represents the change of the probability distribution

p(k)
i for node vi in iteration k based on the current distribution for its neighbors, the

compatibility coefficients and the weights ci j . We stop the method after a fixed number of
iterations or if the change in the label probabilities falls below a threshold. The final p(k)

i
yield the traversability classification of the image. An example for the final classification
after relaxation labeling is depicted in the right image of Figure 3.1.

3.4.4 Using Traversability Information for Navigation

For planning the motion of the robot, we maintain a 2D occupancy grid map (Moravec
and Elfes, 1985) to integrate the traversability information from the classified camera
data over time. Each cell of the map represents the probability of being traversable. To
integrate the traversability information from the camera, we project the labeled camera
image to a virtual top-down looking camera as described in Section 3.4.1. By using
bilinear interpolation, the traversability information from the camera image is mapped
to the coordinate frame of the occupancy map. We update each cell using standard
occupancy grid map updating. An example of such a map is shown in Figure 3.6 (right
image). Afterwards, the map is used for planning collision-free motions by applying a
variant of the A∗ algorithm (Hart et al., 1968). More details on occupancy grid maps can
also be found in Section 4.3 of this thesis.

3.5 Experiments

We conducted a series of experiments on a Nao V4 humanoid robot to demonstrate that
our approach is able to reliably learn about traversability using only odometry information
and monocular images. In the experiments, we used the top camera in the robot’s head.
The robot is described in detail in Appendix B. For all experiments, we weighted the pre-
diction of the texture-based classifier with 0.9 and the color-based classifier with 0.1. The
values were experimentally determined. We further set the radius ξ, in which candidates
for feature correspondences are searched, proportional to the length of the expected flow
according to the homography. This way we allow smaller deviations for features in the
background, which move only little between two images, and allow larger deviation for
features in the foreground.

3.5.1 Qualitative Results on Traversability Estimation

In the first experiment, we placed various obstacles on the floor in our lab. The robot
walked through the scene to a designated goal location. Figure 3.5 shows classifica-

40

3.5 Experiments

onboard view classification time

0.5 s

26.5 s

45.5 s

57.5 s

62.5 s

1 2

3

4

5

6

Figure 3.5: Qualitative evaluation of traversability estimates. The rows show the robot’s onboard
camera images (left) and the corresponding traversability estimates (middle) using our approach
along with the timestamps of the images (right). Note that the varying coarseness within the labeled
images stems from combining two different classifiers with different resolutions. The numbers in
the first column indicate correspondences of objects with Figure 3.6.

overview resulting map

62.5 s

time

1 2
2 3

4 5
6

1

1 m

Figure 3.6: Overview of the scene (left) and the learned occupancy grid map (right). In both pictures,
the numbers correspond to the obstacles marked in Figure 3.5. In the map, obstacles appear dark,
traversable area white, and unknown gray. The light arrow indicates the robot’s pose corresponding
to the left picture and the dashed line illustrates the robot’s trajectory. The map is shown at the time
the robot reached its goal location (dark arrow).

41

Chapter 3 Traversability-Estimation withMonocular Cameras

tion results obtained during this experiment. The rows show the camera image and the
traversability estimates, ordered chronologically from top to bottom. Figure 3.6 shows an
overview picture of the scene as well as the state of the learned occupancy grid map at
the time when the robot reached the goal location. As one can see, our approach results
in correctly labeled images and the constructed grid map contains all the encountered
obstacles, as well as appropriate free-space for collision-free navigation. Note that some
obstacles might appear slightly larger in the map than their actual footprint due to the
applied perspective transformation. This issue resolves as soon as the robot approaches
the object and observes the free space behind it.

3.5.2 Adapting to Changing Ground Appearance

The following experiment is designed to illustrate that our approach can automatically
adapt to new environments, specifically to changing ground appearance. To illustrate
this, the robot started to navigate on a parquet floor. Distant, we placed a PVC floor
coating that was visually dissimilar from the parquet. Figure 3.7 shows in the columns
the onboard camera view, the resulting classification and the detected feature points with
corresponding flow vectors, respectively. The rows represent different time stamps in
ascending order. As can be seen, the robot immediately labeled the parquet as traversable
(first row) but considered the PVC floor as obstacle due to its dissimilarity from the
parquet and only few feature matches for the PVC floor in the background. As soon
as the robot got closer (second row) and hence, could detect features on the PVC floor
for training the classifiers, the PVC as well as the parquet were labeled as traversable
(third row). The resulting grid map, shown in Figure 3.8, correctly represents the area
corresponding to the PVC floor as traversable.

3.5.3 Classification Accuracy

To quantitatively evaluate our approach, we compared the traversability estimates for
the camera images assigned by our algorithm to manually assigned ground truth labels
for the experiments described in Section 3.5.1 (experiment 1) and Section 3.5.2 (ex-
periment 2), respectively. For economic reasons, we only evaluated every fifth steady
image as explained in Section 3.3.1, yielding 14 images for each experiment. To compare
the binary manual labels of the images with the traversability probabilities provided by
our approach, we considered each pixel in the latter as representing floor area, if its
traversability probability was above 0.5 and as obstacle otherwise. Then, we counted the
number of pixels coinciding with the manual labels. Table 3.1 presents the classification
accuracy. As can be seen, the classification rates are highly accurate. The probability that

42

3.5 Experiments

onboard view classification flow vectors

1 2

3

4

Figure 3.7: Our approach automatically adapts when approaching a floor with different appearance.
The rows show the robot’s onboard camera images (first column), the traversability estimates (second
column), and the detected feature locations with flow vectors (third column) at different times. Both
floors are correctly identified as traversable. Correspondences with Figure 3.8 are numbered.

overview resulting map

3
2 2

1

3
4

1 m

Figure 3.8: External overview picture (left) and the constructed grid map (right). The numbers
correspond to the obstacles marked in Figure 3.7. The bright arrow in the map indicates the robot’s
pose in the overview. The map is shown at the time the robot reached its goal location (dark arrow).

43

Chapter 3 Traversability-Estimation withMonocular Cameras

Table 3.1: Traversability classification accuracy.

experiment 1 experiment 2

estimated as estimated as

true class obstacle floor obstacle floor

obstacle 0.88 0.12 0.94 0.06
floor 0.03 0.97 0.06 0.94

a pixel corresponding to an obstacle was classified as traversable space lies between 6%
and 12%. Note that in practice, the number of potentially dangerous false classification
is even lower because most false classifications occurred in the background of the scene.
In these regions, the texture-based classifier has no information due to the projection of
the image into a top-down view (see Section 3.4.1) and thus, only color information can
be used. As soon as the robot gets closer to these obstacles, they appear in the projected
image and the texture classifier can be used as well.

3.5.4 Turning on the Spot

In the next experiment, we demonstrate that our technique is able to classify camera
images even if the robot is turning on the spot. Many structure-from-motion based
approaches, e.g., PTAM (Klein and Murray, 2007) fail in these situations since it is not
possible to compute structural information for rotations around the optical center of the
camera. In contrast to that, our approach yields correct classification results also for
rotations by using the previously learned visual classifiers. After turning, the robot then
automatically re-trains the classifiers when it starts to move. Figure 3.9 shows results
from the traversability estimation while the robot turned counter-clockwise by circa 100°.
As can be seen, the classification results allow the robot to detect obstacles in the scene
and will improve even further once the robot starts navigating and updating the classifiers.

3.5.5 Dealing with Moving Obstacles

In a final experiment, we illustrate the ability of our approach to deal with dynamics in the
environment. While the robot was walking, we rolled a soccer ball several times into the
robot’s field of view. Figure 3.10 depicts results for the traversability estimation as well
as the corresponding camera images. As can be seen, the camera images are accurately
labeled even in the presence of moving obstacles.

44

3.5 Experiments

robot yaw
angle onboard view classification

0°

30°

50°

100°

Figure 3.9: Obtained classification results while the robot turns on the spot. The rows show the
robot’s onboard camera images and the traversability estimates for different rotation angles.

45

Chapter 3 Traversability-Estimation withMonocular Cameras

Figure 3.10: We achieve reliable traversability estimates also in presence of moving obstacles. We
rolled a soccer ball multiple times in front of the robot’s field of view while navigating. The top row
shows the camera images and the bottom row the corresponding traversability estimates.

3.5.6 Remarks

If obstacles look (in terms of the texture features and color) very similar to the floor,
appearance-based classification will fail. The same may hold for a textureless floor, since
it will not generate any interest points. Furthermore, in our approach, we assume that the
floor plane is dominant (with respect to the number of features) in the first image pair.
Afterwards, the floor can be identified even in the presence of larger obstacles, by also
considering the appearance model to establish feature correspondences and estimating
the homography. Concerning the computation time, we found that labeling images takes
0.1 s on a single core of a 3 GHz i7 PC. Training the classifiers takes 2.0 s, of which the
majority is required for the iterative feature matching. For real-time navigation, we thus
cannot re-train from every image pair, but instead can use the existing appearance-based
classifiers while the training is in process.

3.6 Related Work

Several techniques have been presented for obstacle detection based on monocular image
data. Broadly, these approaches can be categorized according to whether they operate
directly on the appearance level or try to recover structural information from a moving
camera. Our approach can be considered as a hybrid technique as it acquires training data

46

3.6 Related Work

from structural information but reaches its traversability decision based on appearance.
We first discuss related work focusing on structure from motion techniques and then
discuss appearance-based approaches.

Einhorn et al. (2009) reconstruct the scene’s geometry by tracking features in con-
secutive images from the robot’s camera. Scene reconstructing requires accurate pose
estimates of the camera which the authors obtain from odometry and filtering. Thus,
this approach is mainly applicable for wheeled robots, as humanoids typically provide
only rough odometry information. Scene reconstruction was also tackled by Pretto et al.
(2009). They presented a visual odometry system based on specifically designed feature
detectors that can cope with effects of motion blur typically occurring during humanoid
walking. The detected features are sparse and hence not sufficient for reliable obstacle
detection.

A different approach was followed by Wang et al. (2005) and Braillon et al. (2006).
They propose to segment a camera image into different regions and apply a given model of
floor motion to these regions. A region is considered as traversable if it can be matched in
the consecutive image at the computed location based on the assumed floor motion. These
methods also rely on accurate odometry data to estimate the floor model. Similarly, Zhou
and Li (2006) presented a homography-based approach to detect the ground plane for
obstacle detection with a wheeled robot. Hence, they imposed restrictions on the motion
of the camera which simplified the computation of the homography. However, these
assumptions do not hold for a humanoid, and the approach provides no dense labeling.

Kim and Kim (2004) use dense optical flow to compute the plane normals for small
image regions. Traversability is estimated from the normals’ consistencies with the esti-
mated normal of the ground plane. However, the authors assumed a wheeled robot in their
approach. Obtaining accurate dense optical flow for images from a walking humanoid’s
onboard camera is difficult to obtain even with a state-of-the-art approach (Sundaram
et al., 2010) as we found out in preliminary experiments. The robot’s quick motion
induces erratic motion blur and the camera’s rolling shutter distorts the image further
according to the robot’s motion. Further approaches based on optical flow to detect ob-
stacles make certain assumptions about the environment that are not generally applicable.
For example, Low and Wyeth (2005) presented a method that relies on the assumption that
optical flow only occurs at obstacles. Hence, the approach is unsuitable for environments
with a textured floor.

Newcombe et al. (2011b) presented DTAM, a system for monocular camera-based
tracking and dense reconstruction and showed impressive results. The system reconstructs
a scene by minimizing a photometric cost function, computed from multiple images. The
approach relies on a static world assumption and on brightness consistency. Further, it
requires a special initialization stage to construct an initial environment model. This is

47

Chapter 3 Traversability-Estimation withMonocular Cameras

because an accurate model is needed for tracking and subsequent mapping. It is question-
able how well the system performs in case of rapid exploration, i.e., quick movements
that typically occur during humanoid navigation.

Recently, Alvarez et al. (2014) showed a collision avoidance system for micro-aerial ve-
hicles (MAV). It computes a dense depth map from a set of images which is then rendered
into a top-down view to generate waypoints for the MAV. Similar to our approach, they
exploit the motion of the robot (while hovering in case of the MAV) to obtain the pose
variation that is needed to extract structural information from a monocular camera. To
estimate the pose, the system relies on PTAM (Klein and Murray, 2007), hence, the system
will fail for pure rotations. Also, prior to navigating, the system requires a hovering phase
of a couple of seconds to initialize the depth map for each scene.

Common to all these approaches is that they rely on information from a moving camera.
Appearance-based approaches, on the other hand, typically classify each camera image
independently. For instance, Ulrich and Nourbakhsh (2000) proposed to use color his-
tograms to model traversable areas. They learn the model by retrospectively updating
histograms over the color of the floor from a robot’s camera while manually steering the
robot through the free space. Cupec et al. (2005) expect obstacles at contrast edges in
the camera image of a humanoid robot. From the detected edges, they employ a scene
analysis that assumes rectangular objects to estimate their poses. This approach requires a
controlled environment, especially with respect to shadows. Li et al. (2009) introduced a
vision-based obstacle avoidance approach for the RoboCup domain. The authors assume
known shapes of the obstacle, i.e., the other field players. They use gradient features
learned from training images and, also, apply a color-based classifier and data from
ultrasound sensors to determine obstacle positions. Their approach relies on a specific
color coding further simplifying the problem.

Further approaches are concerned with estimating depth from a single monocular im-
age. For instance, Michels et al. (2005) and Plagemann et al. (2010) apply regression
techniques to learn a mapping from the feature space to distance. The drawback is that
the approach requires a prior training period whereas our approach carries out automatic
learning while navigating. Similarly, Ross et al. (2013) learn a mapping from feature
space to control commands for autonomous MAV flying through a forest. The features
are chosen such that they typically correlate with depth, such as those employed by
Michels et al. previously. After training, the user can provide a forward velocity, while the
controller reactively sets the left-right velocity. Hence, unlike ours, the approach can not
be used for mapping and planning. Again, such approaches require an extensive learning
phase.

Other authors proposed to divide the camera image into small rectangular patches and
to compute feature vectors for each patch (Kim et al., 2006; Ott and Ramos, 2012).

48

3.7 Conclusions

Consequently, they learn models for the traversability of a patch by clustering in feature-
space. Both approaches obtain the training data from the robot’s interaction with the
environment, for instance by driving over or into different terrain. Such strategies are not
applicable for humanoids as they could easily lose balance.

Dahlkamp et al. (2006) use vision for extending the perception range of the autonomous
car Stanley to allow for faster and more forward-looking driving. The authors apply laser
data for learning a color-based obstacle classifier. Previously, we presented an approach
where a humanoid repetitively adopts a scanning position and tilts its head to acquire
3D range data from an integrated laser scanner (Maier et al., 2013c). Afterwards the robot
trains visual classifiers for obstacles and the floor based on classified laser data projected
to the camera images. While this technique leads to highly reliable classification results,
a drawback is that collecting the 3D data is time-consuming and not all robots can be
equipped with depth or range sensors. Therefore, we extended that approach such that
it only requires monocular camera data and odometry information. Consequently, the
approach is suitable for obstacle detection with most humanoid robots. To the best of our
knowledge, this is the first approach that combines geometric traversability analysis with
appearance-based techniques to obtain a dense classification of the camera images.

3.7 Conclusions

In this chapter, we presented an approach to estimate traversable areas in the surroundings
of a humanoid robot solely based on monocular images and odometry information. We
apply an iterative approach to estimate the floor homography and detect feature correspon-
dences compatible with the homography. To obtain dense information about traversability
given the sparse floor features, we developed a technique to train appearance-based clas-
sifiers based on color and texture. Using the classifiers, which are automatically learned
online, the robot labels its onboard camera images and updates a map of the environment
while walking, standing, and turning. As we showed in practical experiments with a Nao
humanoid, the achieved classification is highly accurate. The labeled images enable safe
navigation by maintaining a probabilistic grid map and the robot is constantly updating
the classifiers to adapt to changing ground appearance. The proposed appearance-based
classifiers can also be used in combination with navigation systems relying on RGB-D
sensors, such as the system presented in the next chapter. Depth data is typically not
available from these sensors very close to objects. In this case, the RGB image can be
analyzed for traversability using our classifiers.

49

Chapter 4

Robust Navigation Using Depth
Cameras

In this chapter, we present an integrated approach for robot localization, obstacle
mapping, and path planning in 3D environments based on data of an onboard
consumer-level depth camera. We rely on state-of-the-art techniques for envi-
ronment modeling and localization, which we extend for depth camera data. We
thoroughly evaluated our system with a Nao humanoid equipped with an Asus
Xtion Pro Live depth camera and present navigation experiments in a multi-level
environment containing static and non-static obstacles. Our approach performs in
real-time, maintains a 3D environment representation, and estimates the robot’s
6D pose. As our results demonstrate, the depth camera-based approach is well-
suited for robust localization and reliable obstacle avoidance in complex indoor
environments.

A robot can only act autonomously, if it is equipped with onboard sensors, that allow
pose estimation and obstacle detection independent of the environment. This is espe-
cially of importance if the robot is to assist humans with tasks such as home-care, where
the environment cannot be adapted to the robot, but vice versa. Such high-level tasks
require that the robot is able to localize itself in the environment, detect obstacles, and
avoid collisions with them by keeping track of their locations and planning collision-free
paths around them. Numerous sensors have been proposed for this purpose, including
ultrasound sensors, laser range finders, as well as monocular and stereo cameras. All
of these sensors suffer from shortcomings such as inaccuracy in case of the ultrasound
sensors or sparseness of the data in case of lasers. Additionally, laser range finders are
typically expensive and also heavy which is incompatible with the limited payload of

51

Chapter 4 Robust Navigation Using Depth Cameras

Figure 4.1: Left: Nao humanoid robot with a depth camera on its head and part of the multi-level
environment. Right: 3D representation of the scene used for collision avoidance. The map was
constructed in real-time by turning on the spot for about 60◦, thereby integrating 28 depth images.

humanoids. Furthermore, interpreting stereo or monocular camera data involves highly
complex algorithms and does not necessarily result in dense data.

In the previous chapter, we introduced an approach that identifies traversable areas in
images from an integrated monocular camera and constructs an occupancy map from the
classified images. We demonstrated highly accurate results for the obtained classification
and grid maps that enable collision-free navigation. However, the approach relies on
certain assumptions such as the availability of sufficiently many features on the floor
and visual dissimilarity between traversable floor and obstacles, which cannot always
be guaranteed.

To ease these assumptions, in this chapter we introduce a navigation system based on
depth camera data, such as from the Microsoft Kinect or Asus Xtion series, which have
become available to the consumer market recently. These cameras operate with projected
infrared patterns and provide relatively accurate, dense, three-dimensional information di-
rectly on the hardware. To the best of our knowledge, the method presented in this chapter
describes the first integrated navigation system based on depth camera data, consisting of
localization, obstacle mapping, and collision avoidance for humanoid robots.

For enabling a humanoid robot to navigate in complex indoor environments containing
multiple levels, our approach relies on a given 3D environment model in form of an
octree (Hornung et al., 2013b; Wurm et al., 2010) that contains the static parts of the
environment. In this representation, the robot estimates its pose using Monte Carlo
localization based on acquired depth camera data. Given the estimated 6D pose of the
humanoid and the depth camera data, our system continuously updates a second 3D
representation of the environment, containing also non-static obstacles. Both octree-based
representations are then used for planning collision-free paths to a target location.

Figure 4.1 shows a motivating example of our system. The left image depicts a Nao
humanoid navigating on the top level of a two-story environment. The right image shows a

52

4.1 Volumetric Environment Representation

Figure 4.2: Photograph of the environment in which we carried out the experiments and the cor-
responding map constructed with a CAD software. The map contains only the static parts of the
environment.

representation of the robot’s pose estimate and the local environment model, both obtained
from depth camera measurements. In the environment model, one can clearly identify
individual objects such as the table, the cabinet, the plant, or parts of the railing. The map
was constructed in real-time from 28 depth images by turning on the spot about 60°.

After presenting the basic techniques and our extensions for depth cameras, we illus-
trate the performance of our system for a Nao humanoid equipped with an Asus Xtion
Pro Live sensor on top of the head. During the experiments, the robot navigated in a
3D environment consisting of multiple levels and containing several static and non-static
obstacles. We thoroughly evaluated our approach and show results that demonstrate that
our system leads to robust localization and reliable obstacle avoidance in real-time. We
conclude that consumer-level depth cameras are well-suited for reliable humanoid robot
navigation in complex indoor environments.

In the following, we describe our 3D navigation framework in details. First, we present
the underlying map representation and how it is probabilistically updated from sensor
readings. Then, we outline the localization technique for estimating the humanoid’s pose,
and finally, a method to plan collision-free paths given the map representations.

4.1 Volumetric Environment Representation

To enable modeling multi-level environments containing obstacles of various shapes,
we use the octree-based mapping framework OctoMap (Hornung et al., 2013b; Wurm
et al., 2010). It partitions the space into free and occupied voxels where each voxel
is associated with an occupancy probability. Unknown space is implicitly modeled by
missing information in the tree. As opposed to a fixed size voxel grid map, this tree-
based approach allows the map to grow dynamically and is compact in memory as it only

53

Chapter 4 Robust Navigation Using Depth Cameras

allocates memory as needed. Bounded occupancy values enable to appropriately react to
changes over time and enable a compression by pruning the tree, particularly in the large
free areas.

We use two different 3D maps. First, we consider a static map of the environment for
localization and as prior knowledge for path planning. Figure 4.2 depicts an example map.
Localization of the robot using this representation is described in Section 4.2. Secondly,
we maintain an additional map containing local obstacles, which is continuously updated
based on the depth data acquired by the robot while walking as described in Section 4.3.
This representation is then used for path planning around non-static obstacles following
the description in Section 4.4. For this process, we maintain a projected 2D map for
efficient collision checks as presented by Hornung et al. (2012b). Each 3D map update
of the local obstacle map also updates the 2D projection. To allow the robot to pass
below underpasses and traverse the upper level of the environment, only obstacles within
the vertical extent of the robot are hereby projected into the 2D obstacle map. Thus, if
the robot walks on different floor levels, the projected map is adjusted accordingly from
the 3D map. From both maps, we filter out voxels corresponding to the floor to avoid
that small errors in the robot’s height estimate lead to false collisions with the floor. In
the following section, we describe how our approach updates the local map from depth
sensor data.

4.2 Monte Carlo Localization via Particle Filter

For localization in the 3D model, we extend the Monte Carlo localization (MCL) frame-
work by Hornung et al. (2010), which was originally developed for data from 2D laser
range finders, to depth camera data. Hereby, the humanoid’s 6D pose is tracked in
the 3D world model using the observations from the depth camera, odometry, and an
integrated inertial measurement unit (IMU).

In our approach, the humanoid’s torso serves as its reference frame, i.e., we represent
by xt the pose of the torso at time t and identify it with the humanoid’s location, as
all other links can be estimated relative to the torso by forward kinematics (see Ap-
pendix A.3). A pose xt consists of a 3D position

[
xt yt zt

]ᵀ
and a rotation matrix R.

However, for simplicity and readability, in this chapter we employ the corresponding
roll, pitch, and yaw angles (ϕt , θt ,ψt) instead of R to express rotations. These Euler
angles can directly be obtained from R and represent the rotations about the x-, y-, and
z-axis of the fixed map frame, respectively. Hence, we consider the pose representation
xt =

[
xt yt zt ϕt θt ψt

]ᵀ
.

54

4.2 Monte Carlo Localization via Particle Filter

In MCL, a posterior probability density function over the state space (i.e., over all
possible values for xt) is estimated by

belief at t︷ ︸︸ ︷
p(xt | m, ô1:t ,u1:t) =

normalizer︷︸︸︷
η

observation model︷ ︸︸ ︷
p(ôt | mt ,xt)∫

xt−1

p(xt | xt−1,ut)︸ ︷︷ ︸
motion model

p(xt−1 | m, ô1:t−1,u1:t−1)︸ ︷︷ ︸
belief at t − 1

dxt−1. (4.1)

The density function p(xt | m, ô1:t ,u1:t) is called the belief about the pose of the robot at
time t. It is recursively estimated from the belief about all possible previous poses xt−1 of
the robot and an observation model p(ôt | mt ,xt) and an motion model p(xt | xt−1,ut). To
evaluate the observation model, the sensor measurements ôt and a map mt are considered,
while the motion model depends on the odometry readings ut . These models are crucial
for the computation of the belief and will be explained later in this section. For tractability,
in MCL, the belief at time t is represented by a discrete set of M weighted particles

Xt B
{
(x1

t ,w
1
t), · · · , (xM

t ,w
M
t)

}
. (4.2)

Each sample xi
t represents a hypothesis about the pose of the robot at time t, along with a

weight wi
t that is proportional to the likelihood of that hypothesis. Therefore, only a finite

number of previous poses xt−1 has to be considered when updating the belief according
to (4.1). One particular algorithm that implements this update is the particle filter. It
consists of three main steps, which are summarized in the following.

Prediction Starting with an initial distribution X0 of the particles, the filter propagates
each particle according to the odometry estimate ut and the motion model p(xt | xt−1,ut).
For humanoids, an odometry estimate can be computed incrementally from the measured
joint angles by applying forward kinematics from the current stance foot to the torso
reference frame (see Appendix B.1). We denote by x̂t the odometry estimate for the torso
at time t, and define ut by the motion displacement between x̂t−1 and x̂t , i.e.

ut = x̂t 	 x̂t−1. (4.3)

In the motion model, we assume that the robot’s motion is only affected by Gaussian noise
that correlates with ut . Thus, we propagate each particle (xi

t−1,w
i
t−1) ∈ Xt according to

xi
t = xi

t−1 ⊕ ut ⊕ εut , (4.4)

where εut ∼ N (0,Σut). (4.5)

55

Chapter 4 Robust Navigation Using Depth Cameras

In this equation, Σut is a covariance matrix depending on ut which we scale with the
magnitude of ut . Consequently, we add Gaussian noise to the particle after propagating it
according to the odometry displacement.

Correction The propagated particles are now distributed according p(xt | ô1:t−1,u1:t).
To obtain the belief at time t, the filter adjusts the particle weights according to the obser-
vation model p(ôt | mt ,xt) and the data of the humanoid’s sensors ôt . The measurements
include the depth image from the RGB-D camera, which we represent as a set of rays rt .
Further, we consider the height ẑt of the humanoid’s torso above the ground plane as
obtained from the joint encoders using forward kinematics. Finally, we integrate the IMU
estimates for the torso’s roll and pitch angles ϕ̂t and θ̂t .

We assume that all these measurements are independent and combine them into one
unified observation model to compute the likelihood of an observation ôt :

p(ôt | mt ,xt) = p(rt , ẑt , ϕ̂t , θ̂t | mt ,xt)

= p(rt | mt ,xt) · p(ẑt | m,xt) · p(ϕ̂t | xt) · p(θ̂t | xt).
(4.6)

Here, we omitted the map m from the likelihood terms for the pitch and roll angles, as the
likelihoods do not dependent on the map. The likelihoods for the torso height ẑt , the roll
angle ϕ̂t and pitch angle θ̂t are modeled by a Gaussian distribution

φ(d,σ) = λ
(
σ
√

2 π
)−1

exp
(
−

d2

2σ2

)
, (4.7)

over the difference d between measured values and the predicted ones for each particle
(xi

t ,w
i
t). Here, λ is a normalizer that guarantees that the integral over φ(d,σ) evaluates to

one, even if the range of admissible values is limited to a certain range, e.g. −π to π for
angles. With this definition, we can write the following likelihoods as

p(ẑt | m,xt) = φ(zt,ground − ẑt ,σz) (4.8)

p(ϕ̂t | xt) = φ(ϕt − ϕ̂t ,σϕ), (4.9)

p(θ̂t | xt) = φ(θt − θ̂t ,σθ), (4.10)

where zt,ground is the height difference between zt and the nearest floor level in the map.
Further, σz,σϕ,σθ are variances depending on the individual sensors and their noise
characteristics. For integrating the depth camera observations, we consider a sparse set of
rays rt extracted from the depth image and evaluate the range sensing likelihood p(rt | xt).

Our system classifies the rays into two groups: rays hitting the ground plane and rays
hitting vertical objects. Rays which did not hit any object within a maximum distance

56

4.2 Monte Carlo Localization via Particle Filter

are ignored. For identifying the rays hitting the ground plane we consider their end
points. We first pre-filter them based on the height (z-coordinate) in the map frame to
obtain consistency with the expected height of the floor. Then the approach identifies the
inliers of the dominant plane obtained via RANSAC (Fischler and Bolles, 1981) with the
constraint that the plane’s normal vector points upwards (in z-direction) in the map frame.
The remaining rays are considered to hit vertical objects. Our system uniformly samples
half the rays from ground parts and the other half from vertical objects. Thereby, we
compensate for the fact that the camera faces primarily the floor area for better obstacle
avoidance. Rays hitting the floor, however, can provide no information about the trans-
lation in the horizontal plane, i.e., x, y, and ψ, which is typically more important than to
estimate height or pitch and roll. The left image in Figure 4.3 illustrates this process. Here,
eleven rays are sampled from the depth image (shown as a point cloud representation, i.e.
the end points of all rays). Five of which hit the ground and six walls or poles. The figure
used few rays for illustration only. In practice, we sample approximately 100 rays.

For evaluating the likelihood, we follow the suggestions by Thrun et al. (2005, Chapter
6). We assume that the sampled rays rt,k are conditionally independent. Thus, we multiply
the likelihoods of the individual rays p(rt,k | xt) to obtain the joint likelihood

p(r̂t | m,xt) =
∏

k

p(rt,k | m,xt). (4.11)

The p(rt,k | xt) are determined via ray casting in the volumetric 3D environment repre-
sentation. Thus, we extract for each ray rt,k the expected distance d(rt,k) to the closest
obstacle in the map along the ray direction, given the camera pose, which is computed via
forward kinematics from the robot pose xt . This distance is then compared to the length
of the ray, d(r̂t,k). The likelihood for the measurement is finally modeled as a mixture of
a Gaussian distribution and a uniform distribution that represents random measurements,

p(rt,k | m,xt) = wφ
(
d(rt,k) − d(r̂t,k),σr

)
+ (1 − w)

1
zmax

, (4.12)

for d(r̂t,k) ∈ [0, zmax], and 0 otherwise. Here, w ∈ [0,1] is a weighting factor, zmax is
the maximum range of the depth sensor, and σr is scaled proportionally with d(r̂t,k)2 to
represent the noise characteristics of the sensor (Khoshelham and Oude Elberink, 2012).

From this, (4.6) can be evaluated and we set the importance weights wi
t for each particle

accordingly. The right image of Figure 4.3 shows a small set of particles, indicated by
arrows. The particle which best matches the measurements, is assigned the highest weight
and is highlighted in saturated colors in the figure. This particle is commonly called the
best particle.

57

Chapter 4 Robust Navigation Using Depth Cameras

particles

best particle

kinematic transformation
from torso to camera

Figure 4.3: Likelihood computation for depth camera measurements. Left: Rays (red dashed)
sampled from the depth image and its point cloud representation (green dots). Right: Particle cloud
(red arrows) with a map rendering (blue) along with rays sampled for the particle with the highest
likelihood (dark red arrow). The likelihood is evaluated via raycasting for each particle.

Resampling In a final step, the particle filter draws a new set Xt+1 of M particles from
the current set Xt , proportionally to the importance weights {wi

t } and with replacement.
Each new particle is assigned the same weight wi

t+1 = 1/M . This step is crucial, as it
ensures that the pose estimate converges towards a hypothesis with a high likelihood. For
obtaining the robot pose at time t, we consider all M particles (xi

t ,w
i
t) ∈ Xt and compute

the weighted average over their poses xi
t according to their weights wi

t .

4.3 Probabilistic 3D Map Update

We maintain a 3D octree-based map to integrate multiple depth camera observations
probabilistically. Therefore, we assume that the robot’s pose is known from the local-
ization described in Section 4.2. In this map, the space is decomposed into a discrete
set of voxels, where each voxel’s probability of being occupied is estimated via a binary
Bayes filter. The probability p(n | ô1:t) that voxel n is occupied is recursively computed
given all sensor measurements ô1:t according to the standard occupancy grid mapping
formula (Moravec, 1988; Wurm et al., 2010)

p(n | ô1:t) = 1 −
*....
,

1 +
p(n | ôt)

1 − p(n | ôt)
p(n | ô1:t−1)

1 − p(n | ô1:t−1)︸ ︷︷ ︸
recursive term

1 − p(n)
p(n)

+////
-

−1

, (4.13)

58

4.4 Path Planning and Collision Avoidance

where ôt is the measurement from the depth camera at time t, p(n) is the prior probability
for n being occupied, and p(n | ô1:t−1) is the previous estimate. The term p(n | ôt) denotes
the likelihood of voxel n being occupied given the measurement ôt . For efficiency, we use
the log odds formulation to update the map. Thus, by assuming p(n) = 0.5, i.e., an equal
probability of n being free or occupied, we can express (4.13) as

l (n | ô1:t) = l (n | ô1:t−1) + l (n | ôt),

where l (x) B log
p(x)

1 − p(x)
(4.14)

is the log odds of p(x). The likelihoods p(n | ôt) are estimated by a beam-based inverse
sensor model that assumes that each measurement is generated by observing the surface
of obstacles and that the line of sight between the sensor origin and the endpoints does
not contain any other obstacle. Thus, we update the last voxel on the beam as occupied,
and all the others up to the last one as free by setting the corresponding log odds l (n | ôt)
for p(n | ôt), i.e.,

l (n | ôt) =



locc, if the endpoint lies within n

lfree, if n is traversed by the beam
, (4.15)

where locc and lfree are experimentally chosen according to the sensor characteristics and
locc > lfree. Ray-casting determines which voxels lie on the beam. We only update a voxel
as occupied, if the end point does not coincide with the ground plane as we do not want
to represent the ground as occupied space. However, our system considers obstacles on
the ground as obstacles appropriately. To identify the ground plane, we use the same
technique as described in Section 4.2.

4.4 Path Planning and Collision Avoidance

For planning collision-free paths, we consider the static map of the environment as prior
knowledge, as well as the locally constructed map based on depth camera data, which
contains also non-static obstacles. By using the static map as well, we can avoid an
exploration step that would force the robot to visit unobserved areas to decide whether
they are occupied or not. Instead, we simply use the information from the static map,
where no local information is available yet.

For the sake of real-time performance and robustness, our approach relies on a projec-
tion of the 3D maps to the floor level. Here, each cell of the aligned 2D map is assigned
the maximum occupancy probability value of the corresponding voxels in the 3D map.

59

Chapter 4 Robust Navigation Using Depth Cameras

To be able to traverse underpasses, we restrict the considered area in the 3D map to the
vertical extent of the robot. This is the area where collisions are potentially hazardous
for the robot. Everything below and above can be safely ignored. Note that this is not
the same as maintaining a simple 2D map. When the robot’s z-coordinate changes,
the projection is updated accordingly. This is only possible because we maintain the
underlying 3D structure, hence enabling navigation in multi-level scenarios.

For collision checks in the projected map, we assume a circular robot model. This as-
sumption prevents the robot from traversing very narrow passages but allows performing
collision checks in constant time by employing a distance transform of the 2D obstacle
map, which can be generated in real-time. With the distance transform, a collision check
is reduced to a simple lookup operation. In Chapter 5, we lift the circular robot assumption
and enable navigation in narrow passages.

To compute a collision-free path to the goal location, our system uses the A∗ algo-
rithm (Hart et al., 1968). In case of a map update, it checks whether the previous plan is
still valid and replans the path only if necessary. This way, we avoid oscillation while still
being able to react to changes in the environment.

4.5 Experiments

We carried out a series of experiments demonstrating the capabilities of our navigation
system. Therefore, we used the Nao humanoid, as is described in Appendix B, with an
attached Asus Xtion Pro Live RGB-D camera. The camera is mounted on the robot’s head
in a way such that its optical axis faces the floor in a 30◦ angle while walking. We found
this to be the best compromise between observing the near range for obstacle detection
and looking ahead for localization and path planning. The increased weight due to the
mounted camera destabilizes the walking behavior of the robot. We therefore added thin
plastic sheets to the robot’s feet to increase the friction.

To allow for real-time performance, we set the camera’s resolution to 320×240 and up-
date the map from sensor data at approximately 6 Hz. All processing is done on a 2.5 GHz
Intel quad core CPU. We conducted the experiments in a multi-level environment, scaled-
down to match the size of a Nao humanoid (see Figure 4.2). We sketched the structure in
a 3D CAD software and converted it to an OctoMap. This model is used for localization.
Note that the 3D model does not perfectly match the actual scene due to imperfection in
constructing the environment and, furthermore, the scene will contain non-static obstacles
not included in the 3D CAD model. Therefore, our approach constructs a local map from
depth camera data during navigation in real time. A video demonstrating our approach
can be found at http://youtube.com/srcx7lPoIfw.

60

http://youtube.com/srcx7lPoIfw

4.5 Experiments

5

4 3

2

1
23

4 5 6 7

start

robot

Odometry
Localization
Ground Truth

1m

start

goal

1
2

3

4 5 6 7robot

Figure 4.4: Top: Nao navigating in the lower level of our environment between obstacles (Scenario
2). Middle: Static (blue) and local (red) 3D map constructed by the robot while walking. Bottom:
Two-dimensional projection of the local map used for collision avoidance and path planning. The
lines show the robot’s odometry estimate, the pose estimate from our localization system, and the
ground truth. The arrow indicates the robot’s pose in the top image. Numbered circles indicate
obstacles that are not part of the static map.

61

Chapter 4 Robust Navigation Using Depth Cameras

5

3 2
1

6

1

23

4
5

6

start

1m

Localization
Ground Truth

goal

start

1

2
3

4

5

6

Figure 4.5: Top: Nao navigating in the topper level of our environment between obstacles (Scenario
3). Middle: Local three-dimensional map (red) constructed while the robot was walking on the top
level of the environment, along with the static map (blue). Bottom: Two-dimensional projection
of this map used for collision avoidance and path planning. As can be seen, also obstacles not
contained in the original static representation are represented accordingly (numbered circles). The
figure further shows the robot’s trajectory estimated by our algorithm (red) and the ground truth
(blue). The odometry plot has been left out for the sake of clarity.

62

4.5 Experiments

Table 4.1: Aggregated localization error for three scenarios

mean error [m] std. dev. [m]

Scenario 1 0.07 0.04
Scenario 2 0.09 0.07
Scenario 3 0.07 0.05

4.5.1 Localization Accuracy

First, we performed a series of experiments to evaluate our localization system. We
compared the resulting pose estimate to the ground truth in the 2D plane, which we
obtained by tracking the humanoid with two stationary SICK laser range finders (Luber
et al., 2011). Consequently, we evaluated the translational error in the horizontal plane.

We conducted experiments in three different scenarios. In Scenario 1, the robot navi-
gated on the lower level of our environment. Except for the two laser range finders used
to record the ground truth and their power supplies, the static map closely resembled the
actual scenario as can be seen in Figure 4.2. Scenario 2 was similar to Scenario 1 but
we additionally placed several obstacles such as books, balls, baskets, and shelves in the
scene, as is shown in the top image of Figure 4.4. These obstacles are not part of the
map used for localization and therefore are expected to decrease the performance. The
robot followed a similar path in Scenario 1 and 2 (see bottom image in Figure 4.4). In
Scenario 3, the robot walked two circles on the top level where we placed additional
unmapped obstacles such as a table, a plant, and a cabinet (see Figure 4.5).

For all scenarios, we manually initialized the localization system. We used 500 particles
for tracking the robot’s pose and sampled 100 rays from the depth camera measurement
for computing the likelihood as described in Section 4.2. The lower images in Figures 4.4
and 4.5 depict the trajectories of the pose estimates and the ground truth on top of the
projected obstacle map. As one can see, the estimated pose closely resembles the ground
truth. Figure 4.4 also shows the robot’s odometry as reference which is clearly useless for
reliably executing navigation tasks.

To evaluate the localization results quantitatively, we computed the mean error as
well as the standard deviation over the robot’s trajectory for each of the three scenarios.
Table 4.1 summarizes the results. As can be seen, our system leads to robust and accurate
pose estimation. As expected, the accuracy decreases slightly in Scenario 2 compared to
Scenario 1, due to the additional obstacles. However, for all scenarios, the average error
is still smaller than 10 cm.

Additionally, as Monte Carlo localization is a probabilistic technique, we repeated the
accuracy evaluation five times over the same data set. Here, we used the same raw sensor

63

Chapter 4 Robust Navigation Using Depth Cameras

 0

 4

 8

 12

 16

 0 50 100 150 200

xy
 e

rr
or

 [
cm

]

time [s]

Figure 4.6: Localization error as mean and standard deviation for five runs in scenario 1.

data and initialization as for Scenario 1 and recorded the pose estimation errors relative
to the ground truth. We then computed the mean error and standard deviation over the
trajectory parameterized by time. In Figure 4.6 we present the obtained results. The error
is generally small, however, for the time between 50 s and 130 s and 170 s to 180 s, the
average error increased from approximately 6 cm to 10 cm, with a peak value of circa
20 cm. Here, the robot navigated in the hallway part parallel to the walls and the camera
observed little structure in the environment that could help to reduce the translational
uncertainty. A larger field of view or active sensing could improve the performance here.

4.5.2 Mapping

To demonstrate the mapping and obstacle detection capabilities of our system, we con-
sider Scenarios 2 and 3 described in the previous section. Figure 4.4 and Figure 4.5
show the 3D map constructed from the depth camera data while walking (red), as well
as the static map of the environment (blue). It is clearly visible that the constructed map
closely follows the structure of the reference map. Furthermore, it also includes all the
obstacles that are not part of the static map. The figures also show the 2D projection of
the constructed 3D map used for collision avoidance. In both maps, the structure of the
non-traversable area is clearly identifiable.

4.5.3 Path Planning and Obstacle Avoidance

In the last experiment, we evaluate the ability to react to changes in the environment and
plan collision-free paths also with non-static obstacles. Figure 4.7 shows a scenario in

64

4.6 Related Work

which the robot reacted to a dynamic obstacle during walking. The left column shows
the state of the projected obstacle map along with the robot’s pose and the planned path.
The right column depicts the current RGB camera image with an overlay of the state of
the constructed 3D map. Initially, the robot planned a straight path to the goal location
through the empty space (first row). While walking, a human entered the scene blocking
the robot’s initial path (second row). The robot immediately updated its obstacle map and
planned a collision-free path to the goal. The robot followed that path accurately (third
row) until it reached the goal.

4.6 Related Work

The work most closely related to our approach has been recently presented by Biswas
and Veloso (2012). The authors developed an approach for indoor robot navigation based
on depth camera data. They proposed to sample points from the depth data belonging to
vertical planes. These points are down-projected to 2D and used to update the particle
filter that estimates the robot’s pose. The observation model hereby matches the projected
points to a given map of walls. The projected points are further used for obstacle de-
tection. One disadvantage of this approach is that it discards the 3D information of the
sensor data. Therefore, robots based on these techniques cannot navigate in multi-level
environments. Similar limitations hold for other approaches. For instance, Stachniss
et al. (2008) presented a system for simultaneous localization and mapping (SLAM) to
learn accurate 2D grid maps of large environments with a humanoid equipped with a
laser scanner located in the neck. Such a map was subsequently used by Faber et al.
(2009) for humanoid localization and path planning in 2D. During navigation, the robot
avoids obstacles sensed with the laser scanner and ultrasound sensors located at the hip.
Obstacles with a lower height are not detected which potentially leads to collisions. Also,
Tellez et al. (2008) use laser data to construct a 2D occupancy grid map in which paths
for a humanoid are planned. The authors use data from two laser scanners mounted on
the robot’s feet. Common to all these approaches is that they insufficiently represent the
environment for navigation tasks in indoor scenarios with complex 3D structures.

Other authors proposed to use data structures more suitable for these tasks. For in-
stance, Nakhaei and Lamiraux (2008) presented a technique to 3D environment modeling
from stereo data for humanoid motion planning. Similar to our approach, the authors
proposed to use a probabilistic voxel grid. However, their system has no localization
component, which leads to inconsistencies in the learned map. Ozawa et al. (2005)
developed a system that relies on stereo image sequences to construct a dense local feature
map. This system performs real-time mapping with a humanoid robot based on 3D visual

65

Chapter 4 Robust Navigation Using Depth Cameras

goalrobot
goal

goal
robot

goalrobot
goal

Figure 4.7: The robot avoids a dynamic obstacle. The first row shows the robot’s initial path to
the goal with the corresponding camera image. Then, a human blocks the robot’s path, forcing the
robot to detour (second row). The robot follows the updated path to the goal (last row). The camera
images show an overlay of the current obstacle map (red).

66

4.6 Related Work

odometry for short trajectories. Similarly, Gutmann et al. (2008) build a 2.5D heightmap
given accurate stereo data and additionally update a 3D occupancy grid map to plan paths
for a humanoid. Chestnutt et al. (2009) also suggested to use heightmaps for navigation.
They obtain 3D laser data acquired with a constantly sweeping scanner mounted on a
pan-tilt unit at the humanoid’s hip. The authors fit planes through 3D point clouds
and construct a heightmap of the environment. Afterwards, they distinguish between
accessible areas and obstacles based on the height difference. Such a sensor setup can
only be used on robots with a significantly larger payload than the Nao humanoid.

Hornung et al. (2010) presented a 3D localization method for humanoid robots, also
based on 2D laser data. Similar to our method, they applied a particle filter to estimate
the 6D pose of the robot in a given 3D volumetric map of the environment. Our work
can be seen as an extension as our approach does not require an expensive laser range
finder but uses comparably cheap depth cameras. Furthermore, our system additionally
contains 3D obstacle mapping and path planning capabilities. To localize a wheeled
robot, Cherubini and Chaumette (2013) proposed to use a view sequence of images. By
specifying a sequence of images, the robot is able to follow the trajectory described by
the images. The approach uses a laser to detect and avoid obstacles on the way while
controlling the camera to guarantee visibility of the features required for localization.
While this approach leads to close path following behavior even over large distances, in
our work, we do not restrict the motion of the robot to a taught trajectory but allow more
deliberate motions. Also targeted at wheeled robots, Kümmerle et al. (2008) developed
a laser-based localization system operating on so-called multi-level surface (MLS) maps.
These maps store multiple levels of the scene per 2D grid cell and compactly represent
3D environments. However, for accurate localization in complex scenarios, a volumetric
representation is required that explicitly represents free space and models arbitrary struc-
tures. MLS maps cannot provide this. Other approaches rely on external sensing, e.g., the
work by Baudouin et al. (2011). The authors propose a framework for footstep planning
and collision avoidance in 3D environments. While the approach works in real-time and
allows the robot to step over low obstacles, it relies on very accurate off-board sensing
and applies a sampling technique for path planning that can result in complicated paths.

Pretto et al. (2009) estimate the 6D pose of a humanoid as well as the 3D position of
features in monocular camera data. The authors designed feature detectors specifically
to be able to deal with the effect of motion blur that typically occurs during humanoid
walking. However, the features are sparse and thereby unsuitable for reliable obstacle
avoidance. Einhorn et al. (2009) proposed to track features in consecutive images and
recover the features’ positions from the ego-motion of the camera. This requires an
accurate estimate of the camera pose, which the authors obtain from the odometry of
a wheeled robot. The system relies on the sparse features for obstacle detection. The

67

Chapter 4 Robust Navigation Using Depth Cameras

system presented by Cupec et al. (2005) assumes that obstacles occur at contrast edges in
the camera image of a humanoid robot. From the detected edges, the author’s approach
performs a scene analysis that expects rectangular objects and thereby estimates their
poses. The inferred objects are then used to plan actions for the humanoid including
stepping over, walking around, or climbing the object. However, this approach requires a
controlled environment with restricted lighting and obstacle shapes.

Recently, multiple approaches have been presented that perform SLAM with RGB-D
cameras (Endres et al., 2012; Huang et al., 2011; Newcombe et al., 2011b). These
approaches are typically optimized for small workspaces such as desktops or small rooms
but not for larger environments. Further, they require that the camera can see enough
texture or structure to match the observations. Consequently, they are not appropriate for
scenarios like ours, where the camera faces the lowly-textured floor most of the time, in
order to sense obstacles in the robot’s way. For the same reason, approaches targeted at
larger environments (Whelan et al., 2012a) are also not directly applicable.

4.7 Conclusions

In this chapter, we demonstrated that affordable, consumer-level depth cameras are well-
suited sensors for robot navigation tasks in complex indoor environments. We presented a
real-time navigation system that allows the estimation of a humanoid’s 6D pose and con-
struction of an environment representation as a 3D map while walking. For efficiency, our
approach projects the map within the robot’s vertical extent to 2D and approximates the
humanoid’s shape by a disc. We described how collision-free paths through environments
containing static and non-static obstacles can be generated from this representation.

In experiments with a Nao humanoid, equipped with an Asus Xtion Pro Live RGB-D
camera, we thoroughly evaluated the performance of our system. As the results show, our
approach leads to accurate pose estimates and reliable, collision-free navigation through
the environment by using the acquired 3D map. Of course, depth cameras also have
some drawbacks. In the near range of the camera (closer than 50 cm), no depth data is
available. In this case, we could fall back to applying collision detection approaches based
on monocular vision data using the techniques introduced in Chapter 3. Depth data could
be used to train the visual classifiers when available and label parts of the image where
depth data is missing. However, in practice, we rarely observed this situation, as by using
the presented approach, the robot avoids getting close to obstacles.

In the next chapter, we extend the presented approach. We will lift the circular robot
model assumption made in this chapter to allow the robot to better pass narrow passages
and even step over or onto obstacles.

68

Chapter 5

3D Footstep Planning Among
Clutter

In this chapter, we enhance the depth camera-based navigation approach intro-
duced in the previous chapter. We describe an integrated navigation system that
allows humanoid robots to autonomously navigate in unknown, cluttered environ-
ments. Our system employs data of an on-board depth camera to estimate the
robot’s pose and compensate for drift of the odometry. The system does not rely on a
given map for pose estimation. For navigating in challenging environments, we lift
the circular robot shape assumption and instead iteratively compute sequences of
safe actions including footsteps and whole-body motions, leading the robot to target
locations. Therefore, the system constructs a high resolution heightmap represen-
tation of the environment. The extended planner chooses from a set of actions that
consists of planar footsteps, step-over motions, as well as parameterized step-onto
and step-down actions. We developed a new approach for fast collision checking
during planning. As we demonstrate in experiments with a Nao humanoid, our
system leads to accurate navigation in cluttered environments and the robot is able
to traverse highly challenging passages.

The human-like design and locomotion allows humanoid robots to step over or onto ob-
stacles, to reach destinations only accessible by stairs or narrow passages, and to navigate
through cluttered environments without colliding with objects. These abilities would
make humanoid robots ideal assistants to humans, for instance in housekeeping or disaster
management. However, there is a number of reasons, why up to today, we do not see such
robots in practical applications.

First, many researchers developed or apply navigation algorithms that represent a hu-
manoid’s shape as a disc, for instance the works by Gutmann et al. (2005); Li et al.

69

Chapter 5 3D Footstep Planning Among Clutter

(2009); Stilman et al. (2006). This model does not respect all the navigation capabilities of
humanoid robots and therefore more appropriate approaches are necessary for navigation
in cluttered, or very narrow scenarios. Second, while some researchers focus on planning
locomotion for humanoid robots, they often neglect sensing. Instead, they assume a
known model of the world (Hauser et al., 2005; Hornung et al., 2012a), or they use
external sensing systems (Chestnutt et al., 2005; Perrin et al., 2012a; Stilman et al., 2006).
Onboard sensing is, however, essential for autonomous navigation in unknown or only
partially known environments. Finally, a seamless combination of individual system
components including environment modeling, pose estimation, and gait generation is
required for humanoids to carry out complex tasks. For all these individual aspects,
promising approaches have been presented. Yet, an integrated system that combines the
best solutions for all the subtasks, has not been demonstrated.

In the previous chapter, we presented a robust navigation framework that includes
many state-of-the-art components. It utilizes a consumer-level depth camera for pose
estimation in a given 3D model of the environment and for mapping of unknown objects.
For planning collision-free paths, the approach projects the constructed 3D map onto
the ground plane and checks for collisions with a circular approximation of the robot’s
shape. While this leads to very efficient collision checking, actions such as stepping
over or onto objects cannot be considered. Recently, Nishiwaki et al. (2012) presented
an impressive system that combines environment mapping, footstep planning, and gait
control. However, for localization the system relies solely on odometry and collision
checking is performed only on foot level, i.e., neglecting the body of the humanoid.

In this chapter, we therefore present an integrated navigation framework that combines
pose estimation, mapping, and motion planning for autonomous navigation in unknown
3D environments. Our system relies only on the robot’s onboard sensors, i.e., its joint
encoders, an inertial measurement unit (IMU), and a head-mounted depth camera. The
environment is represented as an accurate heightmap that is constructed by integrating
multiple measurements over time while the humanoid navigates. A prior map of the en-
vironment is not needed. Our approach performs efficient whole-body collision checking
and applies traversability analysis to determine safe footprints. To navigate collision-
free in challenging scenes containing obstacles on the ground and narrow passages, our
anytime planner computes a sequence of actions that consists of planar footsteps, step-
over motions, as well as parameterized step-onto and step-down actions.

As we demonstrate in practical experiments with a Nao humanoid, our system leads
to robust navigation in cluttered scenes containing objects of various shapes and sizes,
including stairs. The left image of Figure 5.1 shows our Nao stepping over a slat and the
right image shows the corresponding heightmap constructed by integrating multiple depth
camera measurements while navigating. One can see that the map closely resembles the

70

5.1 Pose Estimation

Figure 5.1: Left: A Nao humanoid autonomously traversing a cluttered scene. Right: The corre-
sponding heightmap representation of the environment that the robot generates during navigation
based on data from its head-mounted depth camera. The heightmap is used for planning safe
footsteps.

scenario on the left and our system allows the robot to autonomously traverse the cluttered
scene by planning a sequence of safe actions.

5.1 Pose Estimation

Many approaches to biped navigation rely only on odometric information to obtain the
pose of the robot (Chestnutt et al., 2009; Gutmann et al., 2005; Nishiwaki et al., 2012).
However, odometry is prone to drift over time and abrupt errors due to slipping of the
robot’s feet. To increase the accuracy of the pose estimation, we therefore combine
odometry information with depth camera measurements to reduce such effects.

Our approach computes a corrected pose estimate xt for the robot that aligns the current
depth sensor observations at time t with the previous ones at time t-1. As in the previous
chapter, xt is the 3D pose

[
xt yt zt ϕt θt ψt

]ᵀ
of the robot’s torso at time t. To

obtain xt we seek to minimize the distance between corresponding points in the point
clouds obtained from the depth camera readings. Formally, we estimate

xt = arg min
x′

∑
i

(
T (x′) F T

C (θ,qt) p̃t,i
)
−

(
T (xt−1)F T

C (θ,qt−1) p̃t−1,i
)

2
, (5.1)

where p̃t,i ↔ p̃t−1,i are corresponding points in two consecutive point clouds computed
from the depth camera at time t and t − 1, respectively. All points are expressed in the
camera frame, therefore they are transformed to the torso frame by means of forward

71

Chapter 5 3D Footstep Planning Among Clutter

kinematics (see Appendix A.3) as is expressed by F T
C (θ,qt), where qt are the joint

positions at time t and θ the robot’s calibration parameters. The function T (x) yields
the homogeneous transformation matrix corresponding to the pose x.

Since the correspondences are not known in real sensor data, we estimate xt by using a
variant of the Generalized-ICP (GICP) algorithm proposed by Segal et al. (2009). GICP
iterates between establishing correspondences between the two point clouds and fitting a
motion transformation from the established correspondences, similar to the approach of
homography estimation presented in Section 3.3. To bootstrap GICP, we initialize xt from
previous estimate xt−1 propagated by the odometry estimate, i.e., xt = xt−1 ⊕ (x̂t 	 x̂t−1),
where x̂t is the pose estimate at time t according the odometry (see Appendix B.1). Since
the ground plane typically dominates the scene and thus also the alignment process,
we filter out points belonging to the ground plane prior to applying GICP using the
technique described in Section 4.2. Consequently, our approach corrects for the drift
of the odometry and thereby enables the robot to navigate in areas where no prior map for
accurate localization is available.

5.2 Environment Representation

For planning accurate footsteps through clutter with a small-sized robot such as the Nao
humanoid (see Appendix B), we require a fine-detailed, high-resolution representation
of the environment. In Chapter 4 we proposed to use an octree-based data structure to
represent the environment. While this allows the construction of very memory-efficient
maps of larger environments, very high-resolution 3D maps still occupy a large amount
of memory. Further, the structure requires computational overhead when updating the
map or accessing individual cells as the tree has to be traversed to find the corresponding
leave nodes. However, searching for neighboring cells is a very frequent operation in
collision-checking for footstep planning.

To this end, our system represents the environment as a high-resolution heightmap that
is learned from depth camera data. Each cell c of the map stores a height value hc (i.e.,
the z-coordinate in the fixed odometry frame) and a variance σ2

c . The variance represents
the uncertainty about the height of each cell resulting from small pose estimation errors
and sensor noise. Hence, we interpret N (hc(t),σ2

c (t)) as the belief about the height of
c at time t. To update the map, the points from the current point cloud are binned into
the cells of the heightmap. Let zc be the maximum over the z-coordinates of all observed
points falling into a cell c. Our approach then updates the belief about the height of c from

72

5.3 Footstep Planning for 3D Environments

N (hc(t),σ2
c (t)) and the observation zc using a Kalman filter, assuming a state model with

no underlying dynamics (Pfaff et al., 2007). Hence, we assign

hc(t + 1) =
1

σ2
c (t) + σ2

z

(
σ2

z hc(t) + σ2
c (t) zc

)
, (5.2)

σ2
c (t + 1) =

1
σ2

c (t) + σ2
z
σ2

z σ
2
c (t), (5.3)

where σ2
z represents the uncertainty of the observation. As we employ a depth camera as

sensor, σ2
z is best modeled proportional to the quadratic distance from the sensor to the

observed point, as proposed by Khoshelham and Oude Elberink (2012).

5.3 Footstep Planning for 3D Environments

5.3.1 State Representation and Transition

For planning safe motions based on footsteps, we consider a discretized four-dimensional
state space represented by a sparse graph. The graph consists of a set of nodes cor-
responding to the discrete states and a set of edges representing transitions between
states. A state s is a tuple

(
x̄, ȳ, ψ̄, f

)
, where

[
x̄ ȳ ψ̄

]ᵀ
describes the 2D pose of a

foot with
[
x̄ ȳ

]ᵀ
being a location and ψ̄ an orientation. Further, f ∈

{
left, right

}
is a

binary variable indicating whether the left or right foot acts as stance foot. The height zs

of a state s is determined uniquely from the underlying heightmap as the average over the
height values covered by the robot’s footprint placed at

[
x̄ ȳ ψ̄

]ᵀ
, and hence, it is not

explicitly represented as part of the state space.
For planning motions, we consider a set of discrete actions A. For an action a ∈ A,

a(s) describes the transition s
a
−→ s′ from a state s to its successor s′. An action a

is consequently parameterized by a tuple
(
∆x̄,∆ȳ,∆ψ̄, f

)
, where f indicates the stance

foot for the action and the remaining parameters the displacement of the swing foot
relative to the stance foot f . Furthermore, each action is parameterized over an interval
[∆zmin,∆zmax] that describes the admissible height differences from a state to its successor
when executing this action. This is of importance when climbing onto or from objects.
For planar footsteps, it is simply ∆zmin = ∆zmax = 0.

5.3.2 Safe Actions

During planning, our system evaluates which of the actions a ∈ A can be executed safely
from a given state s. Our approach first checks whether the resulting footprint s′ B a(s)

73

Chapter 5 3D Footstep Planning Among Clutter

is accessible, i.e., whether the corresponding surface of the map is sufficiently flat and
horizontal. Accordingly, we compute the difference between the minimum and maximum
values in the heightmap under the footprint at state s and check whether it lies within a
threshold (implied by the robot’s hardware and walking controller).

Additionally, an action a is only allowed if the height difference ∆h(s,a) B zs′ − zs

from s to its successor s′ lies within the limits ∆za
min and ∆za

max associated with a. Hence,
we require the following inequality to hold:

∆za
min ≤ ∆h(s,a) ≤ ∆za

max. (5.4)

Finally, for motion planning in three-dimensional environments it is important to check
whether the motions are free of collisions, whereas in footstep planning approaches, often
only the footprints are checked for collision (e.g., Hornung et al., 2012a; Nishiwaki et al.,
2012). Our approach to whole-body collision checking is described in the following.

5.3.3 Whole-Body Collision Checking

We propose a new representation called inverse heightmap (IHM), which is computed for
each action a ∈ A. An IHM is a grid, centered at the stance foot, that stores for each cell
the minimum height, relative to the stance foot, for any part of the body that falls into this
cell while executing an action. It is constructed from an animated 3D model of the robot.
The bottom image in Figure 5.2 shows an example of an IHM for a step-over motion,
along with the 3D model used for generating the IHM (top row). The green volume is
a 3D visualization of the IHM and similar to a swept volume. However, for efficient
collision-checking, we only consider its projection in the IHM.

To evaluate whether it is safe to execute an action a at a state s, our system first aligns
the corresponding IHMa with the foot’s pose according to s by an affine transformation.
Then, a simple comparison between the height map and the IHMa is used to decide
whether a can safely be executed. Therefore, we apply bilinear interpolation on the
transformed IHMa to align the cells of both maps and check if

∀c ∈ IHMa : ic + zs > hc. (5.5)

Here, zs is the height of state s according to the heightmap, ic is the value stored in cell c
of IHMa, and hc is the corresponding value in the heightmap. Because of this simple
decision criterion, IHMs are an efficient way to perform whole-body collision checks.
Note that they can be precomputed for all actions a ∈ A.

The described approach requires knowledge about the trajectory of the feet for each
action. Because the placement of the swing foot is not encoded in the state, the trajectory

74

5.3 Footstep Planning for 3D Environments

Figure 5.2: Generation of an inverse heightmap (IHM) for a step-over action. The top four images
are snapshots of a 3D model of the robot executing the action along with the volume covered by the
motion (green). The bottom image shows the resulting IHM (the darker the lower) that corresponds
to the projection of the volume swept by the motion onto the ground plane. For reference, the
footprints of the robot’s initial and next stance foot are outlined in red.

is not fully known. Therefore, we assume that every footstep passes through a predefined
via point configuration, similar to Kuffner Jr et al. (2001). The IHM for an action con-
sequently consists of the swing foot’s downwards phase from one via point configuration
to the double support phase and of the other foot’s upwards phase to the other via point
configuration.

5.3.4 Footstep Planning with ARA*

Our planner searches for the optimal solution with respect to the time needed to reach
a target state and plans a sequence of safe actions that ensure collision-freeness of the
whole body. To plan footstep sequences, we rely on Anytime Repairing A* (ARA*)
algorithm (Hornung et al., 2012a; Likhachev et al., 2004), which is an efficient anytime
variant of A* (Hart et al., 1968). Efficient in the sense that it finds an initial solution
as fast as possible, while guaranteeing a bound on its suboptimality, i.e., the deviation
factor of the solution with respect to the optimal one. Afterwards, the algorithm tries
to refine the solution in the remaining time. This type of algorithm has two advantages.
First, it is goal directed and, second, an initial, valid solution is computed fast. The

75

Chapter 5 3D Footstep Planning Among Clutter

latter is especially useful if the plan has to be updated often, e.g., due to updates of the
environment representation.

For the goal-directedness of ARA*, a heuristic has to inform the algorithm about the
estimated costs to the goal from any state in the search space. Our approach aims at
minimizing the travel time, thus, the heuristic predicts the remaining time to reach the
goal location. We consider two different heuristics and compare their performance in the
experimental evaluation presented in Section 5.5.1. To be able to compute the optimal
path, the heuristic needs to be admissible, i.e., it may not overestimate the true costs.
For both heuristics, we obtain the predicted remaining time t(s) from a state s to the
goal by the estimated remaining distance d(s) divided by the velocity vmax of the fastest
action the robot can perform, to avoid underestimating the actual costs. Thus, we define
t(s) B d(s)/vmax.

Euclidean Distance Path Cost Heuristic

One simple heuristic for obtaining the remaining distance d(s) to the goal is the Euclidean
distance. It promotes expanding states on the straight line to the goal. This heuristic
is clearly admissible. On the down-side, it is often a poor approximation in cluttered
environments where detours are inevitable (Hornung et al., 2012a) or when step-over
actions are associated with higher costs, as is the case for small-sized humanoids including
the Nao.

Dijkstra Path Cost Heuristic

We also developed a more informed heuristic that better approximates the true distance
in presence of obstacles. The heuristic is based on Dijkstra’s shortest path algorithm. In
particular, we construct a graph over the heightmap, where each node represents a cell of
the heightmap. The edges of the graph represent the eight-neighborhood of the nodes.

Our algorithm assigns traversal costs to each edge according to the difference of the
height values in the neighborhood of the connected nodes. If the height difference exceeds
the maximum step height of the robot, the edge is considered non-traversable and infinite
costs are assigned. Edges in a planar neighborhood are assigned costs according to the
euclidean distance. All other edges correspond to a change in the elevation where the
robot could step up, down, or over. To account for the additional time to execute these
actions, our approach assigns higher costs to such elevating edges. Afterwards a full
Dijkstra search is performed on the graph. For a state s, the metric distance d(s) is
evaluated as the accumulated traversal costs for all the edges on the shortest path to the
goal from the node corresponding to s.

76

5.4 Action Set for the Nao Humanoid

Figure 5.3: The left image shows an example heightmap, and the right image the corresponding
traversability costs used to generate the Dijkstra heuristic.

Figure 5.3 shows an example for the traversability classification of a heightmap. Here,
dark corresponds to non-traversable, bright to planar, and gray to elevating edges. The
particular costs of the edges depend on the target hardware platform and should not
overestimate the true costs. Otherwise, the heuristic would be inadmissible and, thus,
optimality cannot be guaranteed.

5.4 Action Set for the Nao Humanoid

In this section, we describe the action set for the Nao humanoid that we used during
the experimental evaluation (see Appendix B). With the provided walking controller, its
swing foot can be placed at most 8 cm to the front and 16 cm to the side and the peak
elevation is 4 cm. The size of the robot’s feet is approximately 16 cm×9 cm. From these
numbers, it is clear that Nao is not able to step over, onto, or down from obstacles using
the standard motion controller. The discrete set consisting of 12 basic footsteps that we
selected from the possible motions of the standard controller is shown in Figure 5.4 (a).

Using kinesthetic teaching, we designed motions that allow the robot to overcome these
limitations. A special motion, the so-called T-step, where the feet are placed at an angle of
90◦, as shown in Figure 5.4 (b), is the basis for the other actions. Our motivation for this
action is to exploit the larger lateral foot displacement while moving forward. From this
pose, the robot can perform a step-over action to overcome obstacles with a height and
width of 6 cm, as demonstrated in Figure 5.4 (c). Furthermore, from the T-step, the robot
is able to step onto or down from obstacles. Figure 5.4 (d) illustrates the robot stepping
onto an obstacle exemplary for this motion. The motion is similar to the step-over action
but the swing foot is placed closer to the stance foot and at a different height. The height
is adjusted during execution using inverse kinematics based to the value in the heightmap.

77

Chapter 5 3D Footstep Planning Among Clutter

12 basic footsteps additional footsteps

2

1
1

2
1

2

∆zmax

(a) (b) (c) (d)

Figure 5.4: Footsteps set for Nao. (a) Basic planar footsteps, (b) T-step, (c) Step-over action, (d)
Step-onto/down action. Step-over and Step-onto/down actions are preceded by a T-step. All actions
are also mirrored for the other foot.

For this action, the height difference relative to the stance foot must be in the interval
[∆zmin,∆zmax] as defined in Section 5.3.2. In our implementation, we set ∆zmin = −7 cm
and ∆zmax = 7 cm. All motions also exist in a mirrored version for the other stance foot.
Thus, in our experiments, the action set A consists of 16 actions per foot.

5.5 Experimental Evaluation

In this section, we present the results from a thorough evaluation of our system. We
first evaluate our 3D planner quantitatively in experiments with simulated heightmaps.
Afterwards, we demonstrate the capabilities of our navigation system in a series of real-
world experiments. All experiments were carried out with a small-sized Nao humanoid
with a head-mounted ASUS Xtion depth camera as described in Appendix B.

In the experiments presented in the following, the robot records a point cloud with its
camera every second step1. The robot waits about 0.5 s before recording the point clouds
to reduce disturbances caused by its shaking motion and delays between the joint encoder
readings and the depth camera data. To obtain a larger field of view, the robot takes two
depth images with its camera facing left and right and combines them to one large point

1Generally, it is also possible to increase the number of steps between two consecutive measurements

78

5.5 Experimental Evaluation

Figure 5.5: Three randomly sampled maps consisting of bars, platforms, and blocks used to quanti-
tatively evaluate our 3D planner. The level of the color gray hereby indicates the height of the cells
(the darker, the higher).

Table 5.1: Quantitative evaluation of the motion planner.

Heuristic Dijkstra Euclid Dijkstra Euclid
t-Limit 10 s 10 s 5 s 5 s

Suboptimality 1.04±0.05 1.13±0.14 1.08±0.10 1.19±0.19
tinit_sol [s] 0.73±0.83 0.61±0.54 0.71±0.80 0.58±0.52

cloud. Here, the camera is pitched down by 50° and the yaw angle is 17° and −17°,
respectively. Our planner treats unknown areas as free space to allow for planning into
unknown areas, which often occurs when only onboard sensor data is used and no prior
information on the environment is available. While executing the planned motions, the
robot actively looks in direction of the next unknown area along the path to update the
heightmap. After each new measurement the robot checks if the planned path is still valid.
If not, the robot re-plans the path. A video demonstrating the system can be found online
at http://youtu.be/g2NZ_EasJv0.

5.5.1 Quantitative Evaluation of the 3D Planner

To evaluate our planner and the two different heuristics quantitatively, we randomly gen-
erated ten different heightmaps. The sampled maps are all of size 2.5 m × 2.5 m with a
resolution of 4 mm and contain obstacles such as bars, platforms, and blocks of varying
width, length, and height. Three example heightmaps are shown in Figure 5.5. We
sampled start and goal locations uniformly such that they were collision-free and their
distance was between 1.5 m and 3.0 m. We then used our motion planner to generate safe
trajectories on a computer with an Intel Core i5 3.1 GHz CPU. The initial suboptimality
bound, i.e., the maximum allowed deviation from the optimal solution, was set to 8 in all

79

http://youtu.be/g2NZ_EasJv0

Chapter 5 3D Footstep Planning Among Clutter

experiments. All 100 planning problems could be solved by ARA* within the given time
limits of 5 s and 10 s, respectively. As can be seen from Table 5.1, the extended Dijkstra
heuristic leads to more efficient solutions that are closer to the optimal path compared
to the straight-line Euclidean distance heuristic (significant at a 95% level). Shown are
the mean and standard deviation of the path cost suboptimality (path costs divided by
the costs of the optimal solution). On average, it took 97 s to compute the optimal plan
with A∗, whereas our anytime algorithm generates first, valid solutions within less than a
second on average and afterwards improves the initial plan.

We also evaluated the planning performance when considering the 3D structure and the
extended action set compared to 2D footstep planning (Hornung et al., 2012a). To this
end, we applied ARA* using only the set of planar footsteps shown in Figure 5.4 (a) to
the same set of 100 planning problems. The 2D planner was only able to solve 91% of
the planning problems within the limit of 10 s. In most of the generated maps, our new
3D planner outperformed the 2D variant in terms of paths costs since the latter one had
to choose detours around obstacles. However, in some simpler scenarios the generated
solutions of the 2D planner were superior to the ones of the 3D planner. The reason is
that the 3D planner has a higher branching factor and has to additionally perform whole-
body collision checks, so that the 2D planner could expand more states and found better
solutions within the given time limit.

5.5.2 Evaluation of Localization and Mapping

The following experiment is designed to evaluate the state estimation accuracy of our
approach in terms of both localization and mapping performance. We tracked the pose
of the robot with an optical motion capture system from Motion Analysis while the robot
traversed the course shown in the top image of Figure 5.6. The bottom image shows the
corresponding heightmap learned by the robot during navigation using our approach. The
path traversed by the robot is indicated by the footprints and lead over a bar. As one can
see, the map closely resembles the actual structure of the scenario shown in the top image.

Using the motion capture system, we measured the accumulated error between the
tracked pose and the pose estimated by our approach and between the tracked pose and
the odometry. Figure 5.7 illustrates the results in terms of the planar translational and
rotational error, plotted over the actual traveled distance. We observed that the accumu-
lated drift of the pose estimate was 0.21 m in xy-direction over the whole trajectory of
3.47 m. Hence, our system drifts approximately 5.9 cm per traveled meter. Analogously,
the accumulated drift in the yaw-estimate was 3.46◦ and hence, on average our system
drifts 0.99◦ per meter. For odometry, we noted an accumulated drift of 0.53 m in xy-
direction and 6.10◦ in the yaw-angle. Hence, the average drift is 15.3 cm and 1.76◦ per

80

5.5 Experimental Evaluation

goal

Figure 5.6: Top: Cluttered scenario autonomously traversed by the robot from left to right for eval-
uating the state estimation accuracy. The black line shows the path traversed by the robot (manually
drawn). Bottom: The corresponding heightmap learned during navigation by our approach along
with the path traversed by the robot. As can be seen, the environment is represented highly accurate.
Dark parts correspond to unobserved area.

 0
 5

 10
 15

 0 0.5 1 1.5 2 2.5 3

ya
w

-e
rr

or
 [

°]

traveled distance [m]

 0

 10

 20

 30

 40

 50

xy
-e

rr
or

 [
cm

]

odometry
our approach

Figure 5.7: Localization accuracy relative to the ground truth from an optical motion capture system.
Our approach clearly outperforms the odometry estimate and leads to an accurate pose estimate
during navigation.

81

Chapter 5 3D Footstep Planning Among Clutter

traveled meter, respectively. Thus, our approach clearly outperforms the pure odometry
estimate obtained from forward kinematics of the measured leg joint angles. Furthermore,
the experiment illustrates that our localization method is able to reduce the drift of the
pose estimate and allows for constructing an accurate environment map.

We also measured the time for aligning the point clouds and updating the heightmap.
On average, a heightmap update from a combined point cloud took 0.07 s ± 0.02 s. Com-
bining the point cloud from the left and the right view, and aligning the resulting point
cloud to the previous combined point cloud with GICP took 0.41 s ± 0.22 s.

5.5.3 Parametrized Stepping Over and Onto Motions

In the remaining two experiments, we present qualitative results of our framework with a
Nao humanoid. Figure 5.8 depicts an experiment in which the robot climbed two stairs
up and down again. No model of the stair was used, not even the height of the stairs was
known beforehand. The heightmap was constructed online and the height of the footsteps
was computed according to this representation.

5.5.4 Traversing Narrow Passages

The final experiment demonstrates the advantage of utilizing whole-body collision check-
ing. Figure 5.9 shows a scenario where a Nao humanoid needed to traverse a passage that
was so narrow that the humanoid could not walk through facing forwards without its arms
colliding with the obstacles. Consequently, our motion planner computed a path where
the robot traversed the passage sideways and without collisions. As the lower body fitted
through in a forward direction, motion planners that consider only the feet or legs of the
robot for collision checks might have found a solution leading to a collision during the
execution of the plan.

5.6 Related Work

Autonomous biped navigation has been studied intensively in the last few years. For
instance, Chestnutt et al. (2005) investigated footstep planning among flat obstacles
using A*. Hornung et al. (2012a) have reasoned about the impact of different heuristics
applied to anytime footstep planning. These approaches check for collisions only by
considering rectangular footprints of the robot and do not consider volumetric obstacles.
Furthermore, they neglect onboard sensing.

Perrin et al. (2012a) also investigated footstep planning and evolved it further to account
for the 3D shape of the humanoid and the obstacles. They perform collision checks for

82

5.6 Related Work

Figure 5.8: Nao climbing up and down steps by carrying out parameterized step onto and down
actions. The right column shows the heightmap representation at the time of the image on the left
along with the current footstep plan and the pose estimate.

83

Chapter 5 3D Footstep Planning Among Clutter

Figure 5.9: Traversing a narrow passage. The Nao humanoid cannot walk through the passage
facing forwards because its arms would collide with the obstacles. Our planner performs whole-
body collision checks and thus computes a solution where the robot traverses the passage sideways.

84

5.6 Related Work

the legs of the robot by precomputing swept volume approximations of the swing leg
trajectories. Perrin et al. (2012b) further suggested simplifying the collision check for
near real-time performance by approximating the robot’s shape with a combination of
three boxes. While navigating, both approaches either rely on an external motion capture
system (Perrin et al., 2012a) to localize the robot and the obstacles, or assume known,
simulated environments (Perrin et al., 2012b).

Other authors combine footstep planning and sensing in one system to allow for au-
tonomous navigation. For instance, Cupec et al. (2005) expect obstacles at contrast edges
in the camera image of a humanoid robot. From the detected edges, they employ a
scene analysis that assumes rectangular objects to estimate their poses and to separate
the objects into three different classes. The classification is then used to plan footsteps for
the humanoid. However, this approach requires a controlled environment with restricted
lighting and obstacle shapes. Michel et al. (2007) presented a method to track objects in
monocular images. This enabled a HRP-2 robot to accurately localize itself relative to a
staircase and plan footsteps to climb it. However, the approach requires a detailed prior
model of the object. Thus, both techniques are not generally applicable for collision-free
navigation in unknown environments with arbitrary objects.

More general approaches try to construct a representation of the free and occupied
space in the environment while navigating. For example, Gutmann et al. (2005, 2008)
maintain a labeled heightmap and a 3D occupancy grid based on data from an onboard
stereo camera. The mapping system relies solely on odometry. The map representation is
classified into floor, stairs, borders, tunnels, or obstacles and is used for planning discrete
actions to a target location. For collision checking, the required space of each action
is approximated by cylinders. The coarse resolution of the map and the approximative
collision checks do not allow planning actions such as to step over objects.

Nishiwaki et al. (2012) utilize a tilting laser scanner mounted on a humanoid robot for
environment mapping. While navigating, their robot takes 3D scans of the area in front.
The laser point clouds are binned into cells of a heightmap which is used for judging the
quality of possible footprint locations and planning a sequence of safe stepping positions.
Because this approach also relies solely on odometry for pose estimation, old data is
deleted from the map to reduce artifacts resulting from accumulated errors. Furthermore,
collision checks are only performed for the footprints, i.e., they disregard the body of the
humanoid.

Recently, Ramos et al. (2014) presented another interesting method for walking on
rough terrain with a humanoid using inverse dynamics control and 3D model recon-
struction from a stereo vision. The model is implemented as truncated signed distance
function and used to adjust the foot position and trajectory according to the ground terrain
structure. The system uses a quadratic solver to compute the foot trajectories and keep the

85

Chapter 5 3D Footstep Planning Among Clutter

robot dynamically balanced. However, so far, the approach has only been demonstrated
in simulation, which simplifies the problem substantially.

Recently, simultaneous localization and mapping (SLAM) systems that operate on
RGB-D camera data have been presented (Endres et al., 2012; Henry et al., 2012). These
approaches are concerned with global consistency of the constructed maps and are compu-
tationally demanding. In the presented work, we do not intend to solve similar problems
but focus on maintaining a locally consistent, high-resolution map that can be used for
3D footstep planning and whole-body collision checking.

Newcombe et al. (2011a) presented Kinect Fusion and Whelan et al. (2012b) Kintin-
uous, which are approaches for dense surface modeling and pose tracking with RGB-D
cameras. While in general, these systems provide very impressive results, they rely on
the presence of sufficient variation in depth. In preliminary experiments, we observed
that these systems struggle with typical humanoid robot navigation scenarios where only
a dominant floor plane and sparse clutter is visible.

5.7 Conclusions

In this chapter, we presented valuable extensions and techniques to RGB-D camera-
based navigation for humanoid robots. We showed an integrated approach that enables a
humanoid to navigate in previously unknown, cluttered environments, without the need
for a given map for localization. Instead, our system includes incremental pose estimation
based on odometry and point cloud alignment using GICP. Further, it features mapping
of the environment using a high-resolution heightmap representation that is consequently
used for anytime footstep planning and whole-body collision checking using novel inverse
heightmaps. To the best of our knowledge, this is the first system that combines these
techniques in a unique framework.

As the experiments with a Nao humanoid show, our technique to pose estimation
clearly outperforms the odometry estimate and allows for the construction of accurate
heightmaps. Based on this, our robot plans and robustly executes sequences of actions
that include stepping over and climbing up or down obstacles as well as passing through
narrow passages, which previously was not possible. Our approach to planning and
collision-checking based on a learned heightmap representation can be generally applied
to any humanoid robot.

One interesting aspect for future work would be to obtain global consistency. This
could for instance be achieved by using the localization approach presented in Section 4.2.
The former requires a given prior map of the environment, which restricts the applicability
of the approach to known areas, which is not an option for instance in disaster scenarios.

86

5.7 Conclusions

However, such a map could be acquired from a SLAM approach (Whelan et al., 2012b)
using a horizontal camera setup for better depth variation and an additional sensor (e.g.,
a second camera) for obstacle avoidance with a coarser model for collision-checking.
Maintaining multiple heightmaps would further allow the robot to navigate in multi-
story environments. For larger robots that can take wider steps and consequently do not
require such high-resolution maps, employing a volumetric map structure could also be
an interesting alternative.

87

Chapter 6

Visual Perception for Accurate
Manipulation Tasks

In this chapter, we present perception and motion generation techniques for ac-
curate manipulation tasks. In particular, we consider the task of enabling a Nao
humanoid to autonomously play a metallophone using these methods. The core
of our approach is a model-based method to estimate the pose of the instrument
and the beaters held by the robot using observations from the onboard monocular
camera. We find valid configurations of the arms for beating the individual sound
bars of the instrument. To determine these, we rely on the estimated pose of the
instrument and the beaters and solve the inverse kinematics (IK) problem. Hereby,
we use precomputed forward kinematics solutions represented by a reachability
tree to accelerate the IK computation and compensate for local minima. The robot
automatically validates the computed IK configurations from visual and auditory
feedback using its sensors, and adapts its arm configurations if necessary. Our
system parses MIDI-files of whole songs, maps the notes to the corresponding arm
configurations for beating, and generates trajectories in joint space to hit the sound
bars. As we show in the experiments with a Nao humanoid, our approach allows
for clean and in-time playing of complete songs on a metallophone. The introduced
techniques can be adapted to different robots and manipulation tasks.

In the previous chapters, we introduced valuable techniques for humanoid robot naviga-
tion based on visual information. So far, these techniques mainly concentrated on the
robot’s lower body, e.g., to plan a sequence of footsteps through the environment from a
visually learned map. We presented strategies enabling the robot to reach distant target
locations and avoid obstacles on its way.

89

Chapter 6 Visual Perception for AccurateManipulation Tasks

Figure 6.1: Left: Nao humanoid playing the metallophone. Right: View of the robot’s onboard
camera with estimated pose of the instrument, one beater’s head (indicated r_tip_tracked), and
calibration marker (coordinate frame inside the checkerboard).

However, in the big picture, the robot does not only need to reach a location. Reaching
the location is just a preliminary condition in order to fulfill a given task. For instance,
the robot could be told to deliver an object and place it on a table or it could be asked
to repair a piece of furniture or play a musical piece on an instrument for entertainment.
Generally, the ability to manipulate objects is a necessary capability for humanoid robots.

In this chapter, we present techniques that allow a humanoid robot to perform accu-
rate manipulation tasks. We implement and demonstrate these techniques exemplary by
enabling a humanoid to play a musical instrument, in this case, a metallophone.

In the last decade, there has been a raise of interest in employing robots in the enter-
tainment field, including music. For instance, Chida et al. (2004) developed the robotic
flutist WF-4, Weinberg et al. (2009) introduced the marimba-playing robot Shimon, and
Mizumoto et al. (2009) demonstrated a theremin-playing HRP-2 robot, while Batula and
Kim (2010) developed a small-scale humanoid pianist. In addition to entertainment, such
robots could also be employed for teaching musical instruments to children or in the
treatment of autistic people (Fujimoto et al., 2010; Ricks and Colton, 2010).

In contrast to the previous robotic musician applications, in our case visual observations
are necessary to track the instrument and the beaters held by the robot. To this end, we use
a particle filter and develop a novel observation model to enable the robot to accurately
track the pose of these objects based on edge observations from its onboard camera.

Given the robot’s kinematic parameters (see Chapter 2) and the pose estimates of the
instrument and beaters, we use inverse kinematics (IK) to determine valid configurations
of the arms to execute beating motions. To speed up the IK computation, we hereby use a
so-called reachability tree in which we store precomputed forward kinematics solutions.
Since the visual observations and the robot calibration might not be perfect, the robot

90

6.1 Instrument and Beaters

Visual Instrument
Tracking

IK Computation
From Reachability Tree

Joint Trajectory
Generation

Beating Execution

Auditory Feedback

Configuration
Validation

Visual Beater
Tracking

Kinematic Model

Kinematic
Calibration

Figure 6.2: Overview of the proposed instrument playing system.

automatically validates the generated IK configuration by playing the notes and adapting
its motions if necessary. Hereby, the robot uses auditory feedback from its onboard
microphones and applies pitch detection based on the Fast Fourier Transform (FFT) to
identify whether the note was hit correctly.

For playing whole songs, our system parses MIDI-files and maps the tones to the
corresponding arm configurations that enable the robot to beat the individual sound bars.
To reach these arm configurations, the robot generates joint trajectories by connecting the
learned configurations. Figure 6.2 depicts an overview of our system.

We implemented our approach on a Nao humanoid (see Appendix B). Figure 6.1 shows
the robot playing the instrument and illustrates tracking results for the metallophone and
one beater’s head in its camera image. As the experiments presented in this chapter the
robot is able to play complete songs cleanly and in time using the methods presented in
this chapter. A video that summarizes our approach and demonstrates some results can
be found online at http://youtu.be/XtUAiIpYUR8.

6.1 Instrument and Beaters

We use a Sonor SM soprano-metallophone with 11 sound bars of 3 cm in width. The
instrument has a size of 49 cm × 20 cm × 22 cm, including the resonating body. The
smallest sound bar is playable in an area of 5.5 cm × 3 cm, the largest in an area of
9.5 cm × 3 cm. The instrument is diatonically tuned in C-Major. As beaters, we use

91

http://youtu.be/XtUAiIpYUR8

Chapter 6 Visual Perception for AccurateManipulation Tasks

Sonor SCH2 with modified grips (see Figure 6.1) to allow the Nao’s simple grippers to
hold them. The beaters are approximately 26 cm in length with a head of 1 cm radius.

6.2 Model-Based Object Pose Tracking

To play the metallophone, the robot needs to be able to adjust its motions according to the
estimated relative poses of the instrument and the heads of the beaters it is holding. Our
approach uses a model-based technique within a particle filter framework to estimate these
poses1. In Section 4.2, we already employed a particle filter for estimating the robot’s pose
within a given map from depth camera observations. Now, we seek to estimate the pose
of an object relative to the robot. A depth camera would not work here, as the object is
typically too close to the robot. Instead, we follow the idea that, given a hypothesis about
an object’s pose, one can project the contour of the object’s model into the camera image
and compare it to the actually observed contour. In this way, it is possible to evaluate the
likelihood of the pose hypothesis. Using independent particle filters for the instrument
and the beaters’ heads, our system maintains multiple hypotheses for each and propagates
them over time. Our approach hence shares the same idea as e.g., the work by Choi and
Christensen (2012); Gonzalez-Aguirre et al. (2014); Michel et al. (2007).

As in Section 4.2, the particle filter represents the posterior density function over an
object’s pose at time t by a set of weighted samples Xt = {(x1

t ,w
i
t), · · · , (xn

t ,w
n
t)}. Each

sample i represents a hypothesis about the pose xi
t of the object. The weight wi

t is
proportional to the likelihood of the hypothesis given the history of observations. At
each update step, the particles are first propagated according to a random walk as

xi
t = xi

t−1 ⊕ ε
i
t , (6.1)

where εi
t ∼ N (0,Σt). (6.2)

Here, Σt is the motion covariance at time t, from which εi
t is sampled. This step cor-

responds to the prediction step in Section 4.2. From the current camera image It , the
importance weights of the particles are updated according to the observation model as

wi
t = p(It | xi

t), (6.3)

1It is possible to integrate the pose estimation in the kinematic calibration described in Chapter 2. How-
ever, we chose a particle filter framework, as it provides continuous updates of the pose. In this way,
it is possible to adjust the motions while playing in case the relative poses change. We plan to address
this issue in future work.

92

6.2 Model-Based Object Pose Tracking

Figure 6.3: Example for likelihood computation in instrument tracking. Green lines are the model
edges according to a pose hypothesis, with sampled points (black dots). Gray indicates canny edges,
blue dots are detected matches to the green dots. The magenta lines indicate the residuals used in
the likelihood computation. Only successful matches smaller than a maximum distance are shown.

which is described in the next two sections for the metallophone and the beaters’ heads.
This step corresponds to the correction step in Section 4.2. Finally, the filter applies
resampling, i.e., a new set of particles is drawn according to the distribution of the
importance weights {wi

t }, as described in Section 4.2. Our algorithm uses the mean of
the particles after the resampling step as pose estimate for the given time step. Note,
in the remainder of the section, we only consider the undistorted image It , as obtained
from the corresponding OpenCV routine (Bradski and Kaehler, 2008) and the camera
calibration parameters (see Chapter 2).

6.2.1 Tracking of the Instrument

In this section, we describe the tracking of the instrument in the particle filter frame-
work. We denote by yi

t the ith pose hypothesis at time t. Fundamental to the localization
capabilities of the particle filter is the choice of the observation model p(It | yi

t) for a
pose hypothesis yi

t . Here, the pose represents the transform of the instrument relative
to the robot’s torso. To evaluate the likelihood of a hypothesis yi

t about the pose of
the metallophone, our approach matches the camera image I to the projection of the
instrument’s edge model according to yi

t . To this end, our system uniformly samples
points Pk

m from the model’s edges and projects them into the image according to the

93

Chapter 6 Visual Perception for AccurateManipulation Tasks

Figure 6.4: Example for the likelihood computation for tracking a beater’s head. The green ellipse
corresponds to the contour of a pose hypothesis, with sampled points (black dots). Gray indicates
canny edges, blue dots are detected matches to the green dots. The magenta lines indicate the
residuals, used in the likelihood computation. Only successful matches smaller than a maximum
distance are shown.

pinhole model, after transforming the points into the camera frame (see (A.9)). Thus, we
obtain

pk
m = K

[
R −R c

]
F N

T (θ,qt) T (yi
t)P

k
m, (6.4)

where (R,c) are the orientation and position of the camera relative to the neck joint
obtained via calibration (see Chapter 2). F N

T (θ,qt) describes the forward kinematics
of the torso with respect to the neck frame according to the calibration parameters θ
and the joint configuration qt at time t (see Appendix A.3). Further, K is the camera
matrix as in (A.6). Finally, T (yi

t) gives the homogeneous 4-by-4 transformation matrix
corresponding to the pose hypothesis yi

t .

The projected model edge points pk
m are then matched to the closest edge points pk

e ,
obtained from the Canny edge detector (Canny, 1986). To find the correspondences, our
method follows the model edge normal at pk

m until the line intersects with a Canny edge
point. If the difference in orientation between the model edge and the corresponding
image edge at pk

e falls below a threshold, we consider the points matching and store the
residual r k = ‖pk

m − pk
e ‖. Otherwise, we follow the line until the next Canny edge with

matching orientation. If no match can be found within a maximum distance, this maxi-
mum distance is assigned to r k . Our algorithm approximates the image edge orientation

94

6.2 Model-Based Object Pose Tracking

by convolving the image with a horizontal and a vertical Sobel operator and computing
the atan2 of the two resulting gradients2.

With the residual vector r =
[
r1, · · · ,r Np

]ᵀ
, where Np is the total number of sampled

points, our approach then computes the observation likelihood from the arithmetic mean
r̄ of r. We assume the observation likelihood to be distributed according to an exponential
distribution over r̄ where the distribution parameter λy was determined experimentally:

p(It | yt) = λy e−λy r̄ (6.5)

Figure 6.3 shows an illustration of the likelihood computation. The green lines are the
projected model edges, gray are the canny edges, green dots are the pk

m, blue dots the pk
e ,

and magenta lines the residuals r k . Only edge points that could be matched are shown in
the image.

6.2.2 Tracking of the Beaters’ Heads

To estimate the pose of the beaters attached to the robot’s grippers, we use the same
particle filter framework3 described in the previous section. As we are tracking the
spherical head of the beater, we do not estimate the rotational component of the pose,
but only the translation vector b relative to the corresponding robot’s gripper. We denote
by bi

t the estimate of particle i at time t.
The observation model p(It | bi

t) we employ is based on a mathematical model of the
spherical head of the beaters. Using the model, we project the outline of the head into the
image and match points sampled from the projection to the Canny edge features. A similar
mathematical model was previously used to calibrate the camera’s intrinsics (Agrawal and
Davis, 2003). For readability, in the following we omit the particle index i and time index
t in bi

t , and consequently we just write b. We describe a beater’s head as quadric S ∈ R4×4

using homogeneous coordinates, with

S =

[
I3 −b
−bᵀ bᵀ b − r2

]
. (6.6)

2One underlying assumption for finding the correspondences is that the poses represented by the particles
are not too far away from the true pose of the instrument. We currently achieve that by a rough manual
initialization.

3Again, it would also be possible to integrate the pose estimation into the kinematic calibration described
in Chapter 2, however, we observed suboptimal estimation results from such an approach. This is likely
due to non-linearities in the encoder readings near the joint limits, unmodeled effects such as joint
elasticity, and local minima in the optimization. Furthermore, the placement of the beater in the gripper
is not always the same for each trial or might even change while playing. The particle filter approach
automatically handles such problems by constantly updating the pose estimate between gripper and
beater.

95

Chapter 6 Visual Perception for AccurateManipulation Tasks

Here, r is the radius of the beater’s head. To evaluate the likelihood of b, we consider the
matching of the camera image It , with the projection of S into It . The projection of S is a
conic C ∈ R3×3 (Hartley and Zisserman, 2004, Chapter 8), with

C =
(
P S−1 Pᵀ

)−1
, (6.7)

where P is the projection matrix that projects points from the gripper frame into the
camera. It is defined as

P = K
[
R −R c

]
F N

G (θ,qt). (6.8)

Here, (R,c) are the orientation and position of the camera relative to the neck joint
obtained via calibration (see Chapter 2) and F N

G (θ,qt) describes the forward kinematics
of the gripper with respect to the neck frame according to the calibration parameters θ and
the joint configurations qt at time t (see Appendix A.3). Further, K is the camera matrix
as in (A.6). The conic C describes an ellipse that is the outline of the projected sphere,
i.e., p̃ C p̃ᵀ = 0 for all p̃ in homogeneous coordinates on the ellipse. In inhomogeneous
coordinates, the ellipse can be described by

0 = pᵀ A p + aᵀp + d (6.9)

where C C
[

A a
aᵀ d

]
, (6.10)

for all points p ∈ R2 on the ellipse and A ∈ R2×2, a ∈ R2, and d ∈ R obtained from C.

From (6.9), we compute the ellipse’s center o =
[
hx ,hy

]ᵀ
, major and minor axes

(l1, l2) and rotation φ, which are needed to sample points from the ellipse. To do so,
we bring the ellipse in center-oriented form and perform an eigendecomposition to obtain
the parameters. Thus, with the definitions

o B −A−1 1
2

a (6.11)

and B B A (aᵀA−1a − d)−1 (6.12)

we can rewrite (6.9) as

(p − o)ᵀ B (p − o) = 1 . (6.13)

By the eigendecomposition

B = R D Rᵀ, with D = diag(ν1, ν2) (6.14)

96

6.3 Inverse Kinematics and Beating

we finally obtain the ellipse parameters as:
[
hx hy

]ᵀ
= o, l1 =

√
1
ν1

, l2 =

√
1
ν2

, and

φ = 1
2 atan2 (−2A12, A22 − A11). This allows us to write the ellipse equation as

x(u) = l1 cos φ cos u − l2 sin φ sin u + hx (6.15)

y(u) = l1 sin φ cos u + l2 cos φ sin u + hy, (6.16)

where
[
x(u) y(u)

]ᵀ
are the contour points of the ellipse, with u ∈ [0,2π]. Our algorithm

uniformly samples k values for u and follows the normals at
[
x(u) y(u)

]ᵀ
until they

intersect with the Canny edges. From there, we proceed similar to Section 6.2.1, and
use an exponential distribution as in (6.3) to evaluate the likelihood from the residuals
r =

[
r1 . . . r k

]ᵀ
. The normals of the ellipse are computed from the gradients as

n(u) =
[
y′(u) −x′(u)

]ᵀ
, with (6.17)

x′(u) = −l1 cos φ sin u − l2 sin φ cos u (6.18)

y′(u) = −l1 sin φ sin u + l2 cos φ cos u. (6.19)

We only consider Canny edge points, where the difference between the orientation of the
image gradient and the gradient of the ellipse at

[
x(u) y(u)

]ᵀ
fall below a threshold. If

no matching point can be found within a maximum distance, we set the residual to the
maximum value. Finally, the approach assigns the likelihood

p(I | bi
t) = λbe−λb r̄, (6.20)

with the distribution parameter λb. Figure 6.4 shows an example for the likelihood com-
putation of a single particle, while tracking a beater’s head. Even though the background
contains clutter, the sampled model points are matched to the contour of the beater’s head,
as a result of considering the edge orientations. Note, because we are using the forward
kinematics function in (6.8), motions of the arms or the head are automatically handled
by the system, as the projection matrix P operating on the sphere is updated accordingly.

6.3 Inverse Kinematics and Beating

Based on the estimated pose of the instrument, the beaters’ heads, and the calibrated
kinematic model, our system computes for each sound bar a suitable beating configuration
for the arm kinematic chain. Suitable means that the beater’s head can be placed on the
surface of the sound bar at a desired angle φS. Here, φS is the angle between the stick
of the beater and the instrument plane, which we assume to be parallel to the robot’s

97

Chapter 6 Visual Perception for AccurateManipulation Tasks

transverse plane. From this configuration, the control points of a predefined beating
motion are updated. To compute the corresponding joint configuration, the system applies
IK based on a resolved-rate approach (Buss, 2004). To specify the target configurations
for the individual sound bars, we provide 4D target poses (position xS and angle φS) for the
beaters, as well as two general reference joint configurations qr (for the left and the right
arm), from which the computed arm configurations should deviate as little as possible.
The latter is to ensure that the robot does not perform too large motions when switching
between different notes and to exploit the redundancy. qr is automatically generated once
per arm as the beating configuration for the each side’s respective reference sound bar,
which is calibrated first.

In more detail, for a robot configuration q, we consider the corresponding translation
tq from the torso’s center to the tip of the beater, and the angle φq between the stick of the
beater and the robot’s transverse plane. Both tq and φq depend on the joint configurations
q, the forward kinematic model, and the estimated translation from the gripper to the tip
of the beater b (Section 6.2.2). Furthermore, we extract the rotation matrix RS and the
center of the sound bar xS, relative to the torso frame, from the pose estimate for the
instrument (Section 6.2.1) and its model. We define the vector-valued error function e for
a configuration q from these terms as

e(q) B



RSw[1:3] ◦ R−1
S (xS − tq)

w4(φS − φq)
0
0



. (6.21)

Here, ◦ is the Hadamard product, i.e., for v = w ◦ x, it is vi B wi xi and w is a vector
of error weights. The idea is to give more weight to deviations in direction of the shorter
side of the sound bar, as a misplacement in the other direction is less crucial for hitting
the bar. Therefore, the displacement vector (xS − xB) is transformed into the frame of the
sound bar, weighted, and transformed back. Further, we consider the deviations of the
beater angle φq from the desired angle φS. The latter controls the inclination or steepness
at which the beater will hit the sound bar. Our system does not impose a target value for
the remaining two degrees of freedom, therefore the two last entries in e(q) are zero.

To reach the sound bar with the beater’s head, we iteratively compute joint velocities
q̇t for a discrete time interval ∆t and update the joint positions qt until ‖e(q)‖ falls below
a threshold. The control laws are consequently

q̇t = J
†

t e(qt) + (I − J †t Jt)(βl∇ f t + βd∇rt) (6.22)

qt = qt−1 + ∆t q̇t . (6.23)

98

6.4 Auditory Feedback

Here, Jt is the manipulator Jacobian of the beater for configuration qt with its pseudo-
inverse J †t , the βl and βd are weights for the secondary tasks, and (I − J † J) is the
null-space projector. Furthermore, ∇ f t is the joint limit gradient at qt and ∇rt the gradient
of the function r (q) evaluated at qt . The function f t (q) restricts the joint configurations
to the physical limits of the robot and is implemented as a combination of a parabola
and a constant function (Chaumette and Marchand, 2001). The function r (q) punishes
deviations from the reference joint configuration qr and is defined as

r (q) B (q − qr)ᵀ (q − qr). (6.24)

Such resolved-rate IK solvers suffer from problems such as singularities and local
minima. Consequently, a good seed configuration is essential. To this end, we developed
an approach, the so-called reachability tree (see Figure 6.5), to precompute a set of joint
configurations, similar to Vahrenkamp et al. (2013), along with the corresponding beater
positions. These configurations are stored for efficient lookup in a k-d tree (Bentley,
1975). In particular, we use the k-d tree to lookup the configurations {qn} in a neigh-
borhood of the target position xS for each IK query. The closest configuration might not
be the best for the IK computation, as the robot calibration or the beater placement in
the gripper potentially changed since the tree creation. Therefore, we pick as seed the
configuration q ∈ {qn} that minimizes ‖e(q)‖ with e as defined in (6.21) from the current
kinematic state and the pose estimate for the beater.

After the robot adapts the joint configuration, our system checks whether the beater’s
head is placed at the desired location, i.e., the center of the sound bar. Otherwise, the IK
computation is restarted with the current pose estimates for beater and instrument. When
the desired pose is reached, the robot performs a predefined beating motion to hit the
sound bar and then analyzes the audio signal, as described in the following.

6.4 Auditory Feedback

To identify whether the executed beating motion successfully hit the sound bar, we rely
on auditory feedback, as visual feedback would require a high speed camera which is still
uncommon for robots. To this end, our system analyzes the audio signal of the integrated
microphones, sampled at 48 kHz. The system considers a window of circa 2 s after the
beating motion is executed. To analyze this signal, we follow a straight-forward approach,
based on the Fast Fourier Transform (FFT) introduced by Cooley and Tukey (1965). Let a

99

Chapter 6 Visual Perception for AccurateManipulation Tasks

Figure 6.5: Illustration of the reachability tree. Blue dots indicate tip locations that can be reached
with the beater in the robot’s right gripper. Green dots indicate the same for the beater in the robot’s
left gripper. The corresponding configurations were sampled from the forward kinematic model and
are used in the IK computation. The samples are restricted to the robot’s typical workspace.

be a discrete, normalized audio signal of length Na, with ai ∈ [−1,1] for i ∈ {1, · · · ,Na}.
Our algorithm first computes

y =
1

Na
FFT(a) (6.25)

and m = abs y, (6.26)

where m is the magnitude of y. The algorithm then searches for local maxima in m
based on a sliding window. The peaks are ordered according to the magnitude values,
beginning with the strongest magnitude, i.e., mi j ≥ mi j+1 . We assume that the frequency
f (i1) with the maximum magnitude mi1 is the note that was supposedly played, where
f (i) = i

Na−1 48 kHz. Our approach employs four different heuristics to identify whether
the note was played correctly:

1. The ratio of mi1 to the median of m is larger than a threshold.

2. The ratio
mi1
mi2

is larger than a threshold.

3. The deviation of f (i1) from the frequency fr of the closest reference note for the
instrument in frequency space is smaller than a threshold. The deviation is specified
in cent as 1200 log f (i1)

fr
.

100

6.5 Joint Trajectory Generation

4. The detected frequency f (i1) matches the frequency fd of the desired note.

Only if all heuristics are satisfied, the note is considered successfully played. If only
the fourth heuristic fails, the robot repeats the complete IK computation, as the beater
is obviously positioned wrongly, e.g., due to wrong pose estimates. Because the pose
estimates are continuously updated, repeating the IK computation can compensate for
temporary errors in the pose estimates. If any of the other heuristics fail, the audio signal
is likely to contain only noise, and the robot first tries to beat harder prior to restarting the
complete IK computation. This way, the robot learns the strongness for beating a note,
and we achieve a robust beating calibration for playing the instrument.

6.5 Joint Trajectory Generation

Our system parses single-track MIDI files to obtain the sequence of notes to play. It
converts the notes into a joint trajectory using the beating configurations obtained from
IK as control points. The timestamps for the control points are extracted from the MIDI
file as well. Our approach calls the NaoQi-API provided by the manufacturer to compute
a trajectory from the determined beating configurations. The API therefore applies Bezier
interpolation in joint space. Immediately afterwards, our system sends the trajectory to
the robot controller for execution. This way, the robot plays in-time with the song.

6.6 Experiments

6.6.1 Qualitative Evaluation

First, we evaluate the performance of our system as a whole. The results are also demon-
strated in the video at http://youtu.be/XtUAiIpYUR8 as well as in Figure 6.6. Ini-
tially, our system performed a fresh kinematic calibration procedure as outlined in Chap-
ter 2. Afterwards, we placed the beaters in the robot’s grippers, as autonomous grasping
is not in the scope of this work. We then manually initialized the localization system
and moved the instrument closer to the robot, such that it can reach all the bars with the
beaters. The video shows that the tracker was following the motion of the instrument
closely. The robot started the automatic beating calibration, i.e., it estimated the pose
of the heads of the beaters, moved the head to the first sound bar, calibrated the beating
motion, and proceeded to the next bar. Each sound bar was hit correctly. As can be
seen in the video, the robot was then immediately able to play complete songs such
as Beethoven’s Ode to Joy and Jingle Bells provided as MIDI files. Each note in both
songs was hit correctly. In the video, one can hear some dissonances that occur when the

101

http://youtu.be/XtUAiIpYUR8

Chapter 6 Visual Perception for AccurateManipulation Tasks

Figure 6.6: Film frame from a video of the beating calibration procedure. The top row shows
an external camera video for reference, the lower the robot’s onboard perspective along with the
tracking results. Left: The instrument is moved in front of the robot, while it keeps track of the
instrument. Second column: The robot calibrates the beating configuration for the D-sound bar from
the visual pose estimation. Third column: The robot calibrates the beating motion for another sound
bar with its left arm. The green beater visual indicates the determined IK solution.

previous note still sounds while another note is hit and both notes are dissonant. Such
effects can be prevented by advanced players by stopping the previous note at the same
time as playing the current one. In future work, we will investigate such techniques in our
system.

6.6.2 Pose Estimation and Calibration

Figure 6.1 depicts an example for the pose estimation of the instrument and one beater’s
head. The edge model closely fits the camera image, and the estimated center of the
beater’s head (indicated by the coordinate frame) aligns with the head in the image as
well. Furthermore, one can see the result of the kinematic calibration (see Chapter 2),
as the coordinate frame indicating the center of the checkerboard marker nicely overlays
with the checkerboard in the camera image. In addition to that, the referenced video
contains a sequence demonstrating tracking results for the beater and the instrument.

The localization performance is generally good, but the markerless method can fail,
once it loses track of the instrument. This is because there is a strong symmetry in the
appearance of the object. If the pose estimate is shifted by one (or more) sound bar plus a
small deviation in depth, the appearance is very similar and hence, the likelihood function
will also return similar values. This can be avoided by additional markers on the object,

102

6.7 Related Work

which we chose to avoid. In practice, the localization performance has proven sufficient
for our application.

6.6.3 Auditory Feedback

To test the auditory feedback, we had a novice human player play the notes of the in-
strument while the robot ran the audio analysis. We evaluated whether the detected notes
were the actually played one. The human played notes randomly, with a pause of circa
5 s in between two notes. We placed the instrument at three different locations (left, right,
center) relative to the robot. Each of the 11 notes were played in each position. From
33 played notes, the system was able to recognize 30 correctly, for the three failures, the
notes were determined correctly, but heuristic two was not satisfied. Consequently, in
the beating calibration context, the robot would unnecessarily have tried to solve the IK
again. Further, we tested whether the analyzer is able to identify when two notes were hit
at the same time. In practice, this is useful, as the robot sometimes hit in between two
notes due to imprecise motion execution or minor pose estimation errors. To this end, the
novice player was asked to hit two neighboring notes at the same time, thereby simulating
the in-between-sound-bars effect (as hitting in between on purpose proved to be difficult).
In all three positions, all the eleven notes were correctly identified as unacceptable.

6.6.4 Beating Calibration Accuracy

To test the accuracy of the beating motion calibration, we let the robot perform the beating
calibration five times, similar to the one shown in the video and described in Section 6.6.1.
For each trial, the instrument’s location was shifted slightly within the reachable limits for
the robot. For each location, the robot managed to find a configuration for all the eleven
sound bars and beat each note correctly as part of the auditory feedback. Therefore, one
can conclude, that the accuracy of the visual tracking is sufficiently good for the task of
calibrating the beating motions.

6.7 Related Work

The work presented in this chapter combines various techniques into one unique system.
Consequently, the related work ranges from visual pose estimation over musical robots
and pitch detection up to inverse kinematics. In this section, we will restrict to the most
relevant aspects, i.e., visual pose estimation as the main underlying technique and musical
robots as an application for our framework.

103

Chapter 6 Visual Perception for AccurateManipulation Tasks

Musical robots have been studied previously. For instance, Chida et al. (2004) pre-
sented a robotic flutist called WF-4. The development focused on the engineering point
of view, i.e., the creation of artificial lungs and lips. Weinberg et al. (2009) introduced
the marimba-playing robot Shimon. The authors focused on the interaction of the robot
with human musicians, i.e., for improvisation. The robot is fixed to the instrument via
a slider, and thus, pose estimation is not explicitly addressed. Mizumoto et al. (2009)
demonstrated a theremin-playing HRP-2 robot. The authors also assume a known pose
of the robot relative to the instrument, but calibrate the pitch of the theremin relative to
the motion of the arm and transfer the knowledge to other robots. Batula and Kim (2010)
developed a small-scale humanoid pianist. Similar to our approach, the system detects the
pitch of the played note to adjust the posture of the robot. However, the authors assume
that the robot is placed parallel to the instrument and do not estimate its pose but instead
move the robot to the side in steps of the width of the keys. Further literature exists, that
focuses on other aspects of musical robots, e.g., acoustic beat tracking. To the best of
our knowledge, none of these works estimate the pose of the instrument accurately from
exteroceptive sensors.

Tracking of objects has been widely studied in the computer vision literature. A
comprehensive survey on these techniques has been published by Lepetit and Fua (2005).
Therefore, we will only summarize some of the most closely related and recent works.

Greenspan and Fraser (2003) track a sphere dipole in the camera images using weak
perspective of the spheres and compare them to edges in the camera images. Drummond
et al. (2002) employ edge models of objects to track them in the camera images. They
rely on iteratively reweighted least-squares (IRLS) to estimate the pose of the camera and
minimize the error between corresponding edge image and model features. Similarly,
Michel et al. (2007) use the GPU to accelerate the tracking of stairs from monocular
camera images. They also follow the IRLS approach on the edge model of the stairs,
thereby enabling a HRP-2 robot to localize itself with respect to the stairs and climb
them. One disadvantage with such optimization approaches is that they suffer from local
minima and can typically not recover well from false data associations. Klein and Murray
(2006) and Pupilli and Calway (2006) presented approaches that rely on edge models and
particle filters to track objects in the camera image. Particle filters typically are more
robust to wrong data associations and errors in the observations. However, particle filters
are also computationally demanding if many particles have to be maintained and evaluated
simultaneously. Therefore, Choi and Christensen (2012) proposed to combine particle
filters for tracking with IRLS to refine the estimate of few particles and to consequently
reduce the number of required particles. In our case, we do not require many particles,
because we exploit the robot’s forward kinematics to propagate the particles accordingly.
Similarly, Gonzalez-Aguirre et al. (2014) recently applied particle filters to localize a

104

6.8 Conclusions

humanoid robot within an environment given its CAD model and the forward kinematics
of the robot.

6.8 Conclusions

In this chapter, we described techniques for visual arm navigation and manipulation
requiring a high accuracy. At the core, we employ particle filters to estimate the pose of
objects from the camera observations and edge models. We implemented our framework
for a humanoid robot playing the metallophone by using the beaters. Therefore, our
system estimates the pose of the beaters and the instrument. We compute target config-
urations for the beaters in joint space from a resolved-rate IK solver to reach the sound
bars of the instrument with the beaters. To accelerate the IK computation and compensate
for local minima, we further presented reachability trees that contain joint configurations
and the corresponding beater positions. To increase the robustness of the application
and to determine whether a note was hit cleanly, we further validate each of the beating
configurations from auditory and visual feedback.

As we showed in the experiments, we achieve good accuracy in tracking the relevant
object poses and in the beating calibration. This allows to cleanly play complete songs.
Hereby, the robot adapts its motions, if necessary, based on visual and auditory feedback.
In future work, we want to update the beating motions while the robot is playing, which
relies on a constant update of the instrument’s pose as provided by the particle filter.

Our methods are not restricted to the Nao humanoid, but could easily be adapted for
other robots as well. The employed techniques such as visual tracking using a model-
based approach are general and can be used in the context of other tasks. For instance
to estimate the pose of other tools held by the robot. A similar task would for instance
involve forcing a nail into a wooden board. The visual tracking could estimate the pose
of the nail in one gripper and a hammer in the other one. We could compute possible
hammer placements via IK, and validate them visually prior to hitting the nail.

105

Chapter 7

Conclusions

7.1 Summary

Within this thesis, we introduced valuable advancements to the state of the art in humanoid
robot navigation. We hereby focused on cameras as primary sensors for perception during
navigation. Specifically, our methods enable humanoids to acquire better knowledge
about themselves and their environment, allow them to determine safe areas to step onto,
localize within a given map, navigate in challenging environments, and perform manipu-
lation tasks requiring high accuracy.

In summary, we first introduced a self-calibration method based on camera observations
of markers attached to the robot’s end-effectors. By formulating and solving a graph-
optimization problem, we determine the robot’s calibration parameters consisting of joint
offsets and the camera’s extrinsics and intrinsics. Additionally, we showed an approach
to generating and selecting meaningful robot postures that minimize the uncertainty in
the calibration parameters. Thereby, we reduce the number of required observations and
achieve a high accuracy. Accurate robot calibration is a prerequisite for all navigation
tasks and consequently all aspects of navigation can profit from it.

Another crucial capability of a robot navigating in unknown environments is the deter-
mination of safe areas to walk onto. We presented a method that matches sparse features
between two monocular camera images by exploiting the humanoid’s specific motion, a
model of the ground plane, and odometry information. From the sparse features we train
appearance-based classifiers that allow a dense labeling of the camera image from which
we construct an occupancy grid. The approach is self-supervised, i.e., it requires no prior
training phase, and yields accurate classification while walking or even turning on the
spot on different grounds.

For robots equipped with a depth camera, we described a complete navigation frame-
work consisting of a localization component, a mapping subsystem and a path-planning

107

Chapter 7 Conclusions

module. We demonstrated accurate localization results in a given map. Furthermore, our
system constructs a voxel-based representation of the non-static parts of the scene to plan
collision-free paths to a target location. The system is specifically targeted at navigation
in complex indoor scenarios featuring multiple levels and handles uncertainty and sensor
noise robustly.

As extensions to this system, we introduced anytime footstep planning for navigation
in cluttered, narrow scenarios. This way, the robot is able to step over, onto, or from
obstacles. Our system considers the whole body of the robot when checking for collisions
while planning a sequence of actions. Therefore, we presented a novel, efficient inverse
heightmap representation of the discrete motions to accelerate the collision checks. Our
anytime planner quickly finds initial solutions and subsequently improves them. Further-
more, we compensate for the drift of the odometry by aligning consecutive depth camera
observations to allow navigation in unknown scenarios.

Finally, we presented techniques allowing a robot to perform manipulation tasks re-
quiring high accuracy. We implemented our framework for a humanoid playing the
metallophone. At the core of our approach, we developed a model-based pose estimation
framework for the instrument and the beaters, based on robust particle filters. From the
determined poses, we compute beating configurations for both arms. We accelerate the
computation and compensate for local minima by precomputing a set of configurations
via forward kinematics that are refined via a resolved-rate IK solver. Our system uses
auditory and visual feedback to validate the beating configurations. By enabling the robot
to play complete songs, we demonstrated the high accuracy of our system.

In summary, we answered the following questions:

� How can a robot obtain knowledge about its own parameters?

� How does a robot know which areas are safe to set foot in?

� How can a robot perceive its environment and maintain an internal representation
of it?

� How can a robot locate itself with respect to that representation?

� How can a robot avoid obstacles on its way?

� How can a robot utilize its locomotive capabilities to overcome challenging envi-
ronments?

� How can a robot manipulate objects in its environment to achieve a goal?

108

7.2 Outlook

All of our approaches were implemented and thoroughly evaluated on a Nao humanoid.
We demonstrated the practicability and utility of the proposed methods even for such
an affordable robot platform with limited hardware. We believe that our contributions
constitute important advances to the robotics community and will be adopted by other
researchers. Many of the presented approaches have or will be released as open source
code. Consequently, the 6D localization code has already been used in further publication
by different authors, e.g., by Hornung et al. (2014a).

7.2 Outlook

The methods presented in this thesis lay an important foundation for humanoid robot
navigation and could inspire manifold follow-up research.

One research direction could feature a marker-less extension to our self-calibration
framework, which currently relies on distinguished markers attached to the end-effectors.
A possible solution could be to use natural features occurring on the robot’s body, either
geometric or appearance-based ones. Another option could be to utilize motion induced
by moving the robot’s limbs in front of the camera. Furthermore, it is imaginable that
the robot automatically determines when a recalibration is necessary and induces the
calibration routine or even continuously updates its internal models. This is an aspect
that is similar to life long learning in the SLAM literature (Kretzschmar et al., 2010).

Based on our technique to self-supervised learning of appearance-based classifiers, one
could extend the approach and also add a long term memory (Dayoub et al., 2011). In our
method, we considered a short-term memory that forgets previously learned appearance
features of the traversable area, once new information is available. By adding models for
different floor types and maintaining them over a long time, the system had access to prior
knowledge as soon as the robot enters unknown environments. This would allow for more
forward-looking planning of exploration steps and might further increase the robustness
of the systems.

For constructing highly detailed maps of the environment in the context of 3D footstep
planning, we considered a static environment in the vicinity of the robot. A natural
extension would thus be to identify moving objects and treat them specially. It would
also be useful to equip our framework with means to obtain global consistency in the
constructed map, e.g., by integrating it with a SLAM system (Whelan et al., 2012a). This
would allow a robot to explore and construct a detailed map of large, unknown scenarios,
which could be useful in disaster operation. The map could consequently not only be
used by the robot but also by human co-workers prior to entering a collapsed building.
Furthermore, low-level control could be more tightly integrated with the proposed system.

109

Chapter 7 Conclusions

For instance, by actively controlling the balance of the robot, it could walk on rough or
inclined terrain (Nishiwaki et al., 2012).

We showed a method to estimate the pose of objects from their models in the context
of manipulation tasks requiring high accuracy. One relevant extension could include
autonomous learning of the object model from observations (Martínez et al., 2014) prior
to tracking and using the object within our framework. This would increase the autonomy
of robots, as no prior model needed to be specified. Service robots in households could
particularly profit, as robots need object models for manipulation but the manufacturer
cannot provide these models for every potential object in a household.

In this thesis, we treated navigation techniques focusing on the locomotion aspect and
techniques for manipulation rather separately. One of the great challenges of the future
will be to combine these aspects in a unified framework, allowing complex operations
like mobile manipulation, e.g., for picking up debris, carrying it across rough terrain, and
placing it on a deposit. Within the same framework, doors or drawers could be opened,
as both generally require the integration of locomotion and manipulation aspects.

Finally, at some point, sophisticated navigation capabilities like walking among clutter
and climbing of objects have to be combined with high-level task planning. For full
autonomy, the robot needs to be able to reason about which steps to take in which order
to achieve a given goal (Erdogan and Stilman, 2013). A possible scenario could be that
the robot pushes an object that it can step onto, like a chair, under a broken light bulb so
it can reach it for maintenance.

110

Appendix A

Mathematical Background

A.1 Homogeneous Coordinates

In this thesis, homogeneous coordinates are often used for the sake of simplicity. This is
because by using homogeneous coordinates, all rigid transformations and even projective
transformations can be expressed by one matrix multiplication. Hence, in the follow-
ing, we briefly recapitulate homogeneous coordinates and their application in projective
geometry. In this thesis, we denote homogeneous coordinates by a ˜, as for instance, x̃.

A homogeneous representation of a point x =
[
x y

]ᵀ
∈ R2 can be obtained by adding

an additional coordinate z, i.e.,

x̃ =



x z
y z
z


. (A.1)

It is important to note that there exists an equivalence class of homogeneous coordinates
that all represent the same point. Two homogeneous points are equivalent if and only if
they differ only by a scaling factor λ ∈ R \ {0}. Hence, all choices for z , 0 represent the
same point x. From a homogeneous representation x̃ =

[
x′ y′ z′

]ᵀ
, we can obtain the

unique, inhomogeneous representation by

x =

[
x′/z′

y′/z′

]
. (A.2)

As multiple representations for the same point exist, a common convention, that we fol-
low in this thesis, is to define z = 1. Thus, we write

[
xᵀ 1

]ᵀ
to indicate a homogeneous

representation of the point x.

111

Appendix A Mathematical Background

One particularly useful application of homogeneous coordinates is to express rigid
transformations as a linear operation. A rigid transform f , with

y = f (x) B R x + b, (A.3)

where b ∈ R2 and R ∈ SO(2), can be formulated conveniently by

ỹ =

[
y
1

]
=

[
R b
0ᵀ 1

]

︸ ︷︷ ︸
CT

[
x
1

]
. (A.4)

The matrix T is referred to as a homogeneous transformation matrix.

In general, all projective transformations (also called homographies) can be expressed
in matrix notation using homogeneous coordinates x̃ and ỹ by

ỹ =

[
A b

uᵀ v

]

︸ ︷︷ ︸
CH

x̃, (A.5)

where A ∈ R2×2, u =
[
u1 u2

]ᵀ
and u1,u2,v ∈ R. Note that multiplying H by a scaling

factor λ ∈ R \ 0 yields the same transformation as λ ỹ = λ H x̃ represents the same points
y for all non-zero λ. In Chapter 3 we make use of homographies to express relationships
between two images.

The principle of homogeneous representations and transform matrices for points in R2

is easily extended to higher dimensions. This especially includes the case of points in R3,
which can be represented by equivalence classes of four-dimensional points.

A.2 Pinhole Camera Model

The pinhole camera model describes the projection of a point from the 3D-space into the
camera image. More specifically, we define the camera’s intrinsics or calibration matrix

K B



f x 0 kx

0 f y ky
0 0 1


, (A.6)

112

A.2 Pinhole Camera Model

where f x , f y, kx , and ky are the camera’s intrinsic parameters. With this definition and
using homogeneous coordinates, we can express the projection of a point from the 3D-
space into image space by a matrix multiplication as



u
v

1


= K



x
y

z


. (A.7)

The same relationship can be expressed using inhomogeneous coordinates as

[
u
v

]
=

[
f x

x
z + cx

f y
y
z + cy

]
. (A.8)

So far, we assumed that the point in 3D-space is given relative to the camera. However,
the point is often described in a different coordinate frame, sometimes called world frame.
Assuming that the camera’s center is located at c and the camera’s orientation is given
by R ∈ SO(3) relative to the world frame, we can express the image of a point x̃ in
homogeneous world-coordinates by

ỹ = K [R | t] x̃, (A.9)

where t = −R c. The matrix [R | t] ∈ R3×4 is often referred to as the extrinsic matrix.

The projection in (A.7) and (A.8) assumes a perfect rectilinear camera, where straight
lines remain straight. In practice, cameras use imperfect lenses which introduce distortion
in the image. To model distorted image coordinates, we use a mapping that assumes that
the distortion correlates with the square of the distance to the center:



u
v

1


= K



(1 + κ r2) x
(1 + κ r2) y

z


,where r2 =

x
z

2
+

y

z

2
. (A.10)

Here, κ ∈ R models the amount of radial distortion, or the deviation from the rectilinear
camera. For κ → 0, the model is identical with (A.7). This mapping can also be expressed
in inhomogeneous coordinates by the function

proj : R3 → R2



x
y

z


7→

[
1 0 0
0 1 0

]
K



(1 + κ r2) x
z

(1 + κ r2) y
z

1


.

(A.11)

113

Appendix A Mathematical Background

The latter is used often throughout this thesis. In Chapter 2, we present a method to
determine the parameters f x , f y, kx , ky, and κ.

A.3 Forward Kinematics

Often, there is the need to express one coordinate frames of the robot relative to another,
for instance the end-effector frame relative to the base frame. The actual transform
depends on the kinematic structure of the robot and the position of the joints along the
kinematic chain. Determining the transform is called forward kinematics. We briefly
describe this process, mostly following the notation by Siciliano et al. (2010, Chapter 2).

Consider two coordinate frames B and E on the robot that are connected by a kinematic
chain consisting of n joints referred to as

(
j1, j2, . . . , jn

)
and n + 1 links, referred to as(

L0, . . . ,Ln
)
. Here, link Li connects the joints ji and ji+1. Furthermore, link L0 connects

the fixed robot frame B with the first joint j1, and Ln connect the last joint jn with the
fixed frame E, respectively. Their transforms are described by the constant homogeneous
transform matrices T B

0 and Tn
E . Then, the forward kinematics are given by

F B
E (θ, q̂) B T B

0
*
,

n∏
i=1

Ai−1
i (qi)+

-
Tn

E , (A.12)

where Ai−1
i (qi) is also a homogeneous 4-by-4 transformation matrix describing the trans-

form between the joints ji−1 and ji. The transform depends on the position qi of joint ji.
The position qi is given by the corresponding encoder reading q̂ji ∈ q̂ and, if available, a
corresponding joint offset qoff

ji
∈ θ from the calibration parameters (see Chapter 2). In this

case, qi = q̂ji + qoff
ji

, otherwise qi = q̂ji . The transform matrices can then be expressed by

Ai−1
i (qi) =

[
Ri−1

i (qi) oi−1
i

0ᵀ 1

]
, (A.13)

where Ri−1
i (qi) is a 3-by-3 rotation matrix describing the rotation around the rotation axis

of ji by qi, and oi−1
i is the origin of the joint ji, with respect to ji−1. Similarly, we can

obtain the transform matrices T that do not depend on a joint position. A method for
obtaining the transform matrices with application to robotics is described in the classical
work by Denavit and Hartenberg (1955).

As one application, the forward kinematic function can be used to express the coordi-
nates of a point pE given in the frame E in coordinates of the frame B by

p̃B = F B
E (θ, q̂) p̃E . (A.14)

114

Appendix B

The Humanoid Robot Nao

This section describes the humanoid robot Nao that we employed during all the ex-
periments performed throughout this thesis. The robot is manufactured by Aldebaran
Robotics and available in different versions. In our work, we use a fourth generation (V4)
robot, officially entitled Nao Next Gen.

The robot is powered by a single-core 1.6 GHz Intel Atom processor for high-level
computation such as the walking engine and an embedded ARM CPU for low-level pro-
cessing, i.e., the communication with the servos. Nao is 58 cm in height, weights 4.8 kg
and has 25 degrees of freedom. Its kinematic structure is outlined in Figure B.1. As can
be seen, each arm has five joints and each leg six joints. However, the HipYawPitch joint
is a mimic one, i.e., there is only one servo controlling LHipYawPitch and RHipYawPitch,
and thus, the legs only have eleven degrees of freedom in total. Furthermore, the robot
has two joints in the neck and one cable-driven servo in each hand to allow opening and
closing of the grippers. The arms have a lenght of circa 23 cm from the ShoulderPitch
joints to the grippers, and the legs have a length of circa 29 cm from the HipYawPitch
joint to the AnkleRoll joints.

The joint positions are measured using magnetic rotary encoders, that exploit the Hall-
effect. Thereby, the sensors have a precision of approximately 0.1°. However, the accu-
racy of the sensors is not known and depend on the manufacturing and wear. In Chapter 2
we present an approach to estimate the offsets of the joints.

Additionally, the robot is equipped with an Inertial Measurement Unit (IMU) mounted
in its chest. It consists of a two-axis gyroscope and a three-axis accelerometer. Their
measurements are fused with a Kalman Filter to yield the robot’s orientation. However,
the yaw angle (rotation about the axis of gravity) cannot be estimated, as the gyroscope
lacks the corresponding axis.

The robot features two monocular cameras integrated in its head. One is parallel to the
HeadPitch joint, the second one is mounted circa 4.6 cm below and faces downwards at an

115

Appendix B The Humanoid Robot Nao

angle of 40°. Each camera has a field of view of 60.9° horizontally and 47.6° vertically.
Given the camera poses, it is clear, that the overlap between both cameras is very narrow
and thus, they cannot efficiently be used as stereo camera pair. The cameras output images
with a resolution of 640×480 pixel at 30 Hz. However, as the data needs to be (de-
)serialized and transferred between different processes while the limited processing power
is shared with other operations, the practically achievable frame rate is much slower.

The robot comes with an API called NaoQI, which we used in version 1.12 and 1.14.
The API allows access to the sensors and actuators, and to generate trajectories for the
end-effectors from a sequence of control points in joint space using Bezier interpolation.
Furthermore, the API features a omni-directional walking engine (Gouaillier et al., 2010),
which we used throughout this work to control the walking behavior of the robot. With
the current firmware, the robot is able to walk up to 10 cm/s. In Section 5.4 we illustrate
the set of possible footsteps it can perform with the given API, as well as our extensions
that allow the robot to step over or onto obstacles.

Additionally, when it became available, we mounted an Asus Xtion Pro Live RGB-D
sensor to the robot’s head (see Figure B.1). The camera has a field of view of 58°
horizontally and 45° vertically. It is attached on the robot’s head in a way such that
its optical axis faces the floor at an angle between 30° and 50° while walking. The value
is adjustable. The sensor outputs RGB-D images, i.e., pairs of RGB- and depth images,
in a resolution of 640×480 pixel at 30 Hz. Like the popular Microsoft Kinect device, the
senor generates depth images by observing a known projected infrared pattern with its
infrared camera. The baseline between projector and camera is approximately 7.5 cm,
and thus, there is a near range clipping at circa 50 cm. Furthermore, the measurements
become unusable after 5 m. The error is assumed to grow quadratically with the distance
to the sensor (Khoshelham and Oude Elberink, 2012).

B.1 Odometry Computation From Forward Kinematics

For a humanoid robot, an odometry estimate can be obtained via forward kinematics.
To estimate the robot’s torso pose x̂ =

[
x y z ϕ θ ψ

]ᵀ
, we keep record of the

accumulated transform to the current stance foot, starting with the identity, and assume
it to be fixed while the swing foot moves. Using forward kinematics, the poses of all
the robot’s joints and links, including its sensors like monocular or depth camera, can be
computed relative to the stance foot for an arbitrary time t. We denote this transform by
x̂t . The transform to the stance foot is updated whenever the swing foot becomes the new
stance foot by concatenating on the accumulated transform, the relative transform from
the previous stance foot to the new one. In this way, we are able to estimate the robot’s

116

B.1 Odometry Computation From Forward Kinematics

LHipYawPitch

LHipRoll

LHipPitch

LKneePitch

LAnklePitch

LAnkleRoll

RHipYawPitch

RHipRoll

RHipPitch

RKneePitch

RAnklePitch

RAnkleRoll

RWristYaw

RElbowRoll

RElbowYaw

RShoulderRoll

RShoulderPitch
HeadPitch

HeadYaw

LShoulderPitch

LShoulderRoll

LElbowYaw

LElbowRoll

LWristYaw

RGB-D
camera

RGB
cameras

IMU

Figure B.1: Left: Kinematic structure including joint names of the Nao humanoid robot. The image
is based on a figure by Gouaillier et al. (2010). Right: Nao with a head-mounted RGB-D camera
and location of the main sensors used in this thesis. Not shown are the joint encoders.

pose even if the height changes, e.g., when the robot steps onto objects. To compensate
for small errors in the joint encoder readings or slightly inclined terrain, our system uses
the pitch and roll measurements from the onboard IMU. Consequently, the algorithm
rotates the pose estimate around the current stance foot such that the reference frame of
the IMU, as computed by forward kinematics, aligns with the IMU measurements. The
IMU is typically installed in the humanoid’s chest or head. This method is sensitive to
drift as errors accumulate, e.g., from slipping of the feet or noisy encoder measurements.
In Section 5.1 we therefore present a technique that reduces the drift by employing also
depth camera readings.

117

List of Figures

1.1 ASIMO multi-functional robot . 2
1.2 DARPA Robotics Challenge (illustration) 3

2.1 Nao robot with calibration markers and their estimated locations before
and after calibration . 11

2.2 Example g2o graph for robot calibration. 15
2.3 Self-collision and marker visibility check 16
2.4 RMSE on validation data, comparing different configuration selection

strategies on the whole body . 22
2.5 RMSE on validation data, comparing OD-select and random strategy

for arms and legs separately . 23
2.6 Effect of noise on the optimization . 24
2.7 Measurement residuals in the image plane, before and after calibration . . 25

3.1 Example of identified feature locations and traversability classification . . 30
3.2 Overview of the traversability classification system 31
3.3 Camera’s lateral inclination and identified steady phases versus time . . . 33
3.4 Virtual downwards-looking camera image for texture classification 38
3.5 Qualitative evaluation of traversability estimates 41
3.6 Experiment overview and map learned from monocular images 41
3.7 Classifier adapting to changing floor appearance 43
3.8 External overview picture and constructed grid map 43
3.9 Classification results while turning on the spot 45
3.10 Classification results in presence of moving obstacles 46

4.1 Nao humanoid taking a 3D scan of a scene and corresponding map repre-
sentation . 52

4.2 Experimental environment and its map representation 53
4.3 Likelihood computation for depth camera observations 58
4.4 Lower level navigation results . 61
4.5 Top level navigation results . 62

119

List of Figures

4.6 Localization error as mean and standard deviation 64
4.7 Avoiding dynamic obstacles . 66

5.1 Nao humanoid navigating through clutter and corresponding map repre-
sentation . 71

5.2 Generation of an inverse heightmap (IHM) for a step-over action 75
5.3 Traversability cost map for the Dijkstra heuristic 77
5.4 Footstep set for the Nao humanoid . 78
5.5 Three randomly sampled maps used for planning experiments 79
5.6 Scenario of the localization experiment and autonomously constructed map 81
5.7 Localization accuracy . 81
5.8 Nao climbing up and down steps and autonomously constructed map . . . 83
5.9 Traversing a narrow passage . 84

6.1 Nao playing the metallophone and pose estimate for the instrument 90
6.2 Overview of the proposed instrument playing system. 91
6.3 Likelihood computation for tracking the instrument 93
6.4 Likelihood computation for tracking a beater’s head 94
6.5 Locations reachable by the beater heads 100
6.6 Beating calibration procedure . 102

B.1 Kinematic structure of the Nao humanoid and Nao with a head-mounted
RGB-D camera . 117

120

List of Tables

3.1 Traversability classification accuracy. 44

4.1 Aggregated localization error for three scenarios 63

5.1 Quantitative evaluation of the motion planner. 79

121

List of Algorithms

1 OD-select: Selects N∗ configurations from a pool Q for calibration and
optimizes θ . 19

2 exchange: Optimizes a set S of N configurations for calibration from a
pool Q . 20

123

Bibliography

M. Agrawal and L. Davis. Camera calibration using spheres: a semi-definite program-
ming approach. In Proc. of the IEEE Int. Conf. on Computer Vision (ICCV), 2003.

N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transfom. IEEE Transactions on
Computers, 23(1):90–93, 1974.

H. Alvarez, L. M. Paz, J. Sturm, and D. Cremers. Collision avoidance for quadrotors with
a monocular camera. In Proc. of the Int. Symp. on Experimental Robotics (ISER), 2014.

T. Asfour, K. Welke, P. Azad, A. Ude, and R. Dillmann. The karlsruhe humanoid head.
In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2008.

F. Basso, A. Pretto, and E. Menegatti. Unsupervised intrinsic and extrinsic calibration
of a camera-depth sensor couple. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), 2014.

A. M. Batula and Y. Kim. Development of a mini-humanoid pianist. In Proc. of the
IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2010.

L. Baudouin, N. Perrin, T. Moulard, F. Lamiraux, O. Stasse, and E. Yoshida. Real-
time replanning using 3d environment for humanoid robot. In Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), 2011.

H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In Proc. of the
European Conf. on Computer Vision (ECCV), 2006.

D. Bennett and J. Hollerbach. Autonomous calibration of single-loop closed kinematic
chains formed by manipulators with passive endpoint constraints. Robotics and Au-
tonomous Systems, 1991.

M. Bennewitz, D. Maier, A. Hornung, and C. Stachniss. Integrated perception and
navigation in complex indoor environments. In Proc. of the Humanoids 2011 Workshop
on Humanoid Service Robot Navigation in Crowded and Dynamic Environments, 2011.

125

Bibliography

J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9), 1975.

O. Birbach, B. Bäuml, and U. Frese. Automatic and self-contained calibration of a multi-
sensorial humanoids upper body. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), 2012.

J. Biswas and M. Veloso. Depth camera based localization and navigation for indoor
mobile robots. In RSS 2011 Workshop on RGB-D: Advanced Reasoning with Depth
Cameras, 2011.

J. Biswas and M. Veloso. Depth camera based indoor mobile robot localization and
navigation. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

J.-H. Borm and C.-H. Menq. Experimental study of observability of parameter errors in
robot calibration. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
1989.

G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with the OpenCV
Library. O’Reilly, 2008.

C. Braillon, C. Pradalier, J. Crowley, and C. Laugier. Real-time moving obstacle detection
using optical flow models. In IEEE Intelligent Vehicles Symp., 2006.

S. R. Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and
damped least squares methods. http://euclid.ucsd.edu/~sbuss/ResearchWeb/
ikmethods/index.html, 2004.

E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers. Real-time camera tracking and
3d reconstruction using signed distance functions. In Proc. of Robotics: Science and
Systems (RSS), 2013.

J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8:679–698, 1986.

H. Carrillo, O. Birbach, H. Taubig, B. Bauml, U. Frese, and J. Castellanos. On task-
oriented criteria for configurations selection in robot calibration. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), 2013.

F. Chaumette and E. Marchand. A redundancy-based iterative approach for avoiding joint
limits: Application to visual servoing. IEEE Trans. on Robotics and Automation, 17
(5), 2001.

126

http://euclid.ucsd.edu/~sbuss/ResearchWeb/ikmethods/index.html
http://euclid.ucsd.edu/~sbuss/ResearchWeb/ikmethods/index.html

Bibliography

A. Cherubini and F. Chaumette. Visual navigation of a mobile robot with laser-based
collision avoidance. Int. Journal of Robotics Research (IJRR), 32(2), 2013.

J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and T. Kanade. Footstep
planning for the Honda ASIMO humanoid. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2005.

J. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, and S. Kagami. Biped
navigation in rough environments using on-board sensing. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2009.

K. Chida, I. Okuma, S. Isoda, Y. Saisu, K. Wakamatsu, K. Nishikawa, J. Solis,
H. Takanobu, and A. Takanishi. Development of a new anthropomorphic flutist robot
WF-4. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2004.

C. Choi and H. I. Christensen. Robust 3d visual tracking using particle filtering on
the special euclidean group: A combined approach of keypoint and edge features.
Int. Journal of Robotics Research (IJRR), 31(4), 2012.

J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics Computation, 1965.

R. Cupec, G. Schmidt, and O. Lorch. Experiments in vision-guided robot walking in a
structured scenario. In IEEE Int. Symp. on Industrial Electronics, 2005.

H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-supervised monoc-
ular road detection in desert terrain. In Proc. of Robotics: Science and Systems (RSS),
2006.

D. Daney. Optimal measurement configurations for gough platform calibration. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2002.

F. Dayoub, G. Cielniak, and T. Duckett. Long-term experiments with an adaptive
spherical view representation for navigation in changing environments. Robotics and
Autonomous Systems, 59(5), 2011.

J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based
on matrices. ASME Trans., J. of Applied Mechanics, 22(2), 1955.

T. Drummond, I. C. Society, and R. Cipolla. Real-time visual tracking of complex
structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(27),
2002.

127

Bibliography

E. Einhorn, C. Schröter, and H.-M. Gross. Monocular scene reconstruction for reliable
obstacle detection and robot navigation. In Proc. of the European Conf. on Mobile
Robots (ECMR), 2009.

F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An evaluation of
the RGB-D SLAM system. In Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2012.

C. Erdogan and M. Stilman. Planning in constraint space: Automated design of functional
structures. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2013.

B. Espiau. Effect of camera calibration errors on visual servoing in robotics. In Proc. of
the Int. Symp. on Experimental Robotics (ISER), 1993.

F. Faber, M. Bennewitz, C. Eppner, A. Goeroeg, A. Gonsior, D. Joho, M. Schreiber, and
S. Behnke. The humanoid museum tour guide Robotinho. In 18th IEEE Int. Symposium
on Robot and Human Interactive Communication (RO-MAN), 2009.

M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the
ACM, 24(6), 1981.

I. Fujimoto, T. Matsumoto, P. R. S. De Silva, M. Kobayashi, and M. Higashi. Study on
an assistive robot for improving imitation skill of children with autism. In Proc. of the
Int. Conf. on Social Robotics (ICSR), 2010.

D. Gonzalez-Aguirre, M. Vollert, T. Asfour, and R. Dillmann. Robust real-time 6d active
visual localization for humanoid robots. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2014.

D. Gouaillier, C. Collette, and K. C. Omni-directional closed-loop walk for nao. In
Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2010.

M. Greenspan and I. Fraser. Tracking a sphere dipole. In Proc. of the Int. Conf. on
Vision Interface (VI), 2003.

J.-S. Gutmann, M. Fukuchi, and M. Fujita. Real-time path planning for humanoid robot
navigation. In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), 2005.

J.-S. Gutmann, M. Fukuchi, and M. Fujita. 3D perception and environment map genera-
tion for humanoid robot navigation. Int. Journal of Robotics Research (IJRR), 27(10):
1117–1134, 2008.

128

Bibliography

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. Proc. of the IEEE Int. Conf. on Systems Science and Cybernetics,
4(2), 1968.

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, second edition, 2004.

K. Hauser, T. Bretl, and J.-C. Latombe. Non-gaited humanoid locomotion planning. In
Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2005.

P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D mapping: Using kinect-style
depth cameras for dense 3d modeling of indoor environments. Int. Journal of Robotics
Research (IJRR), 31(5):647–663, 2012.

J. M. Hollerbach and C. W. Wampler. The calibration index and taxonomy for robot
kinematic calibration methods. Int. Journal of Robotics Research (IJRR), 1996.

A. Hornung, K. M. Wurm, and M. Bennewitz. Humanoid robot localization in complex
indoor environments. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2010.

A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz. Anytime search-based
footstep planning with suboptimality bounds. In Proc. of the IEEE-RAS Int. Conf. on
Humanoid Robots (Humanoids), 2012a.

A. Hornung, M. Phillips, E. G. Jones, M. Bennewitz, M. Likhachev, and S. Chitta.
Navigation in three-dimensional cluttered environments for mobile manipulation. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2012b.

A. Hornung, D. Maier, and M. Bennewitz. Search-based footstep planning. In Proc. of the
ICRA Workshop on Progress and Open Problems in Motion Planning and Navigation
for Humanoids, 2013a.

A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap: An
efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots,
34, 2013b.

A. Hornung, S. BÖttcher, J. Schlagenhauf, C. Dornhege, A. Hertle, and M. Bennewitz.
Mobile manipulation in cluttered environments with humanoids: Integrated perception,
task planning, and action execution. In Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2014a.

129

Bibliography

A. Hornung, S. Osswald, D. Maier, and M. Bennewitz. Monte Carlo localization for
humanoid robot navigation in complex indoor environments. Int. Journal of Humanoid
Robots (IJHR), 11(2), 2014b.

A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy. Visual
odometry and mapping for autonomous flight using an RGB-D camera. In Proc. of the
Int. Symp. of Robotics Research (ISRR), 2011.

U. Hubert, J. Stückler, and S. Behnke. Bayesian calibration of the hand-eye kinematics of
an anthropomorphic robot. In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2012.

K. Khoshelham and S. Oude Elberink. Accuracy and resolution of Kinect depth data
for indoor mapping applications. Sensors: Journal on the Science and Technology of
Sensors and Biosensors, 12:1437–1454, 2012.

D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. F. Bobick. Traversability classification
using unsupervised on-line visual learning for outdoor robot navigation. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2006.

Y.-G. Kim and H. Kim. Layered ground floor detection for vision-based mobile robot
navigation. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2004.

G. Klein and D. Murray. Full-3d edge tracking with a particle filter. In Proc. of the British
Machine Vision Conf. (BMVC), 2006.

G. Klein and D. Murray. Parallel tracking and mapping for small AR workspaces. In
Proc. of the IEEE Int. Symp. on Mixed and Augmented Reality (ISMAR), 2007.

H. Kretzschmar, G. Grisetti, and C. Stachniss. Lifelong map learning for graph-based
SLAM in static environments. KI – Künstliche Intelligenz, 24, 2010.

J. Kuffner Jr, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Footstep planning among
obstacles for biped robots. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2001.

R. Kümmerle, R. Triebel, P. Pfaff, and W. Burgard. Monte Carlo localization in outdoor
terrains using multilevel surface maps. Journal of Field Robotics (JFR), 25:346–359,
2008.

R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general
framework for graph optimization. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), 2011.

130

Bibliography

V. Lepetit and P. Fua. Monocular model-based 3D tracking of rigid objects: A survey.
Foundations and Trends in Computer Graphics and Vision, 2005.

T. Li, K. Sun, Y. Jin, and H. Liu. A novel optimal calibration algorithm on a dexterous
6 dof serial robot-with the optimization of measurement poses number. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2011a.

T. Li, K. Sun, Z.-w. Xie, and H. Liu. Optimal measurement configurations for kinematic
calibration of six-DOF serial robot. Journal of Central South University of Technology,
18, 2011b.

X. Li, S. Zhang, and M. Sridharan. Vision-based safe local motion on a humanoid robot.
In Workshop on Humanoid Soccer Robots, 2009.

M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with provable bounds on
sub-optimality. In Proc. of the Conf. on Neural Information Processing Systems (NIPS),
2004.

T. Low and G. Wyeth. Obstacle detection using optical flow. In Aust. Conf. on Robotics
and Automation (ACRA), 2005.

M. Luber, G. D. Tipaldi, and K. O. Arras. Place-dependent people tracking. Int. Journal
of Robotics Research (IJRR), 30(3), 2011.

D. Maier and M. Bennewitz. Appearance-based traversability classification in monocular
images using iterative ground plane estimation. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2012.

D. Maier, A. Hornung, and M. Bennewitz. Real-time navigation in 3D environments
based on depth camera data. In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2012.

D. Maier, C. Lutz, and M. Bennewitz. Integrated perception, mapping, and footstep
planning for humanoid navigation among 3d obstacles. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2013a.

D. Maier, C. Lutz, and M. Bennewitz. Autonomous biped navigation through clutter. In
Proc. of the RSS Workshop on Robots in Clutter: Preparing Robots for the Real World,
2013b.

D. Maier, C. Stachniss, and M. Bennewitz. Vision-based humanoid navigation using
self-supervised obstacle detection. International Journal of Humanoid Robots, 10(2),
2013c.

131

Bibliography

D. Maier, R. Zohouri, and M. Bennewitz. Using visual and auditory feedback for
instrument-playing humanoids. In Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2014.

D. Maier, S. Wrobel, and M. Bennewitz. Whole-body self-calibration via graph-
optimization and automatic configuration selection. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2015. To appear.

P.-A. Martínez, D. Varas, M. Castelán, M. Camacho, M. F., and A. G. 3D shape re-
construction from a humanoid generated video sequence. In Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), 2014.

P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and T. Kanade. GPU-
accelerated real-time 3D tracking for humanoid locomotion and stair climbing. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2007.

J. Michels, A. Saxena, and A. Ng. High speed obstacle avoidance using monocular vision
and reinforcement learning. In Int. Conf. on Machine Learning (ICML), 2005.

T. Mizumoto, H. Tsujino, T. Takahashi, T. Ogata, and H. Okuno. Thereminist robot:
Development of a robot theremin player with feedforward and feedback arm control
based on a theremin’s pitch model. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2009.

H. P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine, 9(2),
1988.

H. P. Moravec and A. E. Elfes. High resolution maps from wide angle sonar. In Proc. of
the IEEE Int. Conf. on Robotics and Automation (ICRA), 1985.

A. Nahvi and J. Hollerbach. The noise amplification index for optimal pose selection in
robot calibration. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
1996.

A. Nakhaei and F. Lamiraux. Motion planning for humanoid robots in environments mod-
eled by vision. In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
2008.

R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison, P. Kohli,
J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense surface
mapping and tracking. In Proc. of the IEEE Int. Symp. on Mixed and Augmented Reality
(ISMAR), 2011a.

132

Bibliography

R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. Dtam: Dense tracking and mapping
in real-time. In Proc. of the IEEE Int. Conf. on Computer Vision (ICCV), 2011b.

K. Nishiwaki, J. Chestnutt, and S. Kagami. Autonomous navigation of a humanoid
robot over unknown rough terrain using a laser range sensor. Int. Journal of Robotics
Research (IJRR), 2012.

L. Ott and F. Ramos. Unsupervised incremental learning for long-term autonomy. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

R. Ozawa, Y. Takaoka, Y. Kida, K. Nishiwaki, J. Chestnutt, J. Kuffner, S. Kagami,
H. Mizoguchi, and H. Inoue. Using visual odometry to create 3d maps for online
footstep planning. In IEEE Intl. Conf. on Systems, Man, and Cybernetics, 2005.

J. Pan, S. Chitta, and D. Manocha. FCL: A general purpose library for collision and
proximity queries. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
2012.

I.-W. Park, B.-J. Lee, S.-H. Cho, Y.-D. Hong, and J.-H. Kim. Laser-based kinematic
calibration of robot manipulator using differential kinematics. IEEE/ASME Trans. on
Mechatronics, 2012.

N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida. Fast humanoid robot
collision-free footstep planning using swept volume approximations. IEEE Transac-
tions on Robotics (T-RO), 28(2), 2012a.

N. Perrin, O. Stasse, F. Lamiraux, Y. J. Kim, and D. Manocha. Real-time footstep planning
for humanoid robots among 3D obstacles using a hybrid bounding box. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012b.

P. Pfaff, R. Triebel, and W. Burgard. An efficient extension of elevation maps for outdoor
terrain mapping and loop closing. Int. Journal of Robotics Research (IJRR), 2007.

C. Plagemann, C. Stachniss, J. Hess, F. Endres, and N. Franklin. A nonparametric learning
approach to range sensing from omnidirectional vision. Robotics and Autonomous
Systems, 58:762–772, 2010.

V. Pradeep, K. Konolige, and E. Berger. Calibrating a multi-arm multi-sensor robot:
A bundle adjustment approach. In Proc. of the Int. Symp. on Experimental Robotics
(ISER), 2010.

133

Bibliography

A. Pretto, E. Menegatti, M. Bennewitz, W. Burgard, and E. Pagello. A visual odometry
framework robust to motion blur. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), 2009.

M. Pupilli and A. Calway. Real-time camera tracking using known 3d models and a
particle filter. In Proc. of the Int. Conf. on Pattern Recognition (ICPR, 2006.

O. Ramos, M. Garcia, N. Mansard, O. Stasse, J.-B. Hayet, and P. Soueres. Towards
reactive vision-guided walking on rough terrain: an inverse-dynamics based approach.
Int. Journal of Humanoid Robots (IJHR), 2014.

D. Ricks and M. Colton. Trends and considerations in robot-assisted autism therapy. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2010.

A. Rosenfeld, R. Hummel, and S. Zucker. Scene labeling by relaxation operations. IEEE
Trans. Systems. Man. Cybernet, 6(6):420–433, 1976.

S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell, and
M. Hebert. Learning monocular reactive uav control in cluttered natural environments.
In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2013.

G. A. F. Seber and C. J. Wild. Nonlinear Regression. Wiley-Interscience, 2003.

A. Segal, D. Hähnel, and S. Thrun. Generalized-ICP. In Proc. of Robotics: Science and
Systems (RSS), 2009.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning and
Control. Springer, 2010.

R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in
robotics. In Robotics and Automation. Proceedings. 1987 IEEE International Con-
ference on, 1987.

C. Stachniss, M. Bennewitz, G. Grisetti, S. Behnke, and W. Burgard. How to learn
accurate grid maps with a humanoid. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2008.

M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner. Planning and executing navigation
among movable obstacles. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2006.

Y. Sun and J. M. Hollerbach. Observability index selection for robot calibration. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2008.

134

Bibliography

N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories by GPU-accelerated
large displacement optical flow. In European Conference on Computer Vision (ECCV),
Crete, Greece, 2010.

R. Tellez, F. Ferro, D. Mora, D. Pinyol, and D. Faconti. Autonomous humanoid navigation
using laser and odometry data. In Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), 2008.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT-Press, 2005.

A. Traslosheros, J. Sebastian, E. Castillo, F. Roberti, and R. Carelli. One camera in hand
for kinematic calibration of a parallel robot. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2010.

I. Ulrich and I. Nourbakhsh. Appearance-based obstacle detection with monocular color
vision. In Proc. of the National Conf. on Artificial Intelligence (AAAI), 2000.

N. Vahrenkamp, T. Asfour, and R. Dillmann. Robot placement based on reachability
inversion. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2013.

H. Wang, K. Yuan, W. Zou, and Y. Peng. Real-time obstacle detection with a single
camera. In Proc. of the IEEE Int. Conf. on Industrial Technology (ICIT), 2005.

G. Weinberg, T. Mallikarjuna, and A. Ramen. Interactive jamming with Shimon: A social
robotic musician. In Proc. of the Int. Conf. on Human Robot Interaction (HRI), 2009.

T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald. Kintin-
uous: Spatially extended KinectFusion. In RSS Workshop on RGB-D: Advanced
Reasoning with Depth Cameras, 2012a.

T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald. Kintin-
uous: Spatially extended kinectfusion. In RSS 2012 Workshop on RGB-D: Advanced
Reasoning with Depth Cameras, 2012b.

K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap:
A probabilistic, flexible, and compact 3D map representation for robotic systems. In
ICRA 2010 Workshop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation, 2010.

K. Yamane. Practical kinematic and dynamic calibration methods for force-controlled hu-
manoid robots. In Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
2011.

135

Bibliography

Z. Zhang. Flexible camera calibration by viewing a plane from unknown orientations. In
Proc. of the IEEE Int. Conf. on Computer Vision (ICCV), 1999.

J. Zhou and B. Li. Robust ground plane detection with normalized homography in
monocular sequences from a robot platform. In Proc. of the IEEE Int. Conf. on Image
Processing (ICIP), 2006.

136

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Main Contributions
	Publications
	Collaborations
	Notation

	Whole-Body Self-Calibration
	Graphed-Based Optimization of the Calibration Parameters
	Measurement Model and Parameters
	Formulation as Least-Squares Optimization
	Implementation

	Automatic Selection of Robot Configurations
	Generating a Pool of Configurations
	Selecting a Locally Optimal Subset of Configurations

	Experiments
	Pose Selection
	Effect of Measurement Noise
	Resulting Calibration Compared to the Initial State

	Related Work
	Conclusions

	Traversability-Estimation with Monocular Cameras
	Outline of the Approach
	Homographies
	Geometric Floor Estimation
	Identification of Steady Images While Walking
	Feature Extraction and Association for Floor Estimation

	Appearance-based Traversability Estimation
	Texture-Based Classification
	Color-Based Classification
	Probabilistic Relaxation Labeling
	Using Traversability Information for Navigation

	Experiments
	Qualitative Results on Traversability Estimation
	Adapting to Changing Ground Appearance
	Classification Accuracy
	Turning on the Spot
	Dealing with Moving Obstacles
	Remarks

	Related Work
	Conclusions

	Robust Navigation Using Depth Cameras
	Volumetric Environment Representation
	Monte Carlo Localization via Particle Filter
	Probabilistic 3D Map Update
	Path Planning and Collision Avoidance
	Experiments
	Localization Accuracy
	Mapping
	Path Planning and Obstacle Avoidance

	Related Work
	Conclusions

	3D Footstep Planning Among Clutter
	Pose Estimation
	Environment Representation
	Footstep Planning for 3D Environments
	State Representation and Transition
	Safe Actions
	Whole-Body Collision Checking
	Footstep Planning with ARA*

	Action Set for the Nao Humanoid
	Experimental Evaluation
	Quantitative Evaluation of the 3D Planner
	Evaluation of Localization and Mapping
	Parametrized Stepping Over and Onto Motions
	Traversing Narrow Passages

	Related Work
	Conclusions

	Visual Perception for Accurate Manipulation Tasks
	Instrument and Beaters
	Model-Based Object Pose Tracking
	Tracking of the Instrument
	Tracking of the Beaters' Heads

	Inverse Kinematics and Beating
	Auditory Feedback
	Joint Trajectory Generation
	Experiments
	Qualitative Evaluation
	Pose Estimation and Calibration
	Auditory Feedback
	Beating Calibration Accuracy

	Related Work
	Conclusions

	Conclusions
	Summary
	Outlook

	Mathematical Background
	Homogeneous Coordinates
	Pinhole Camera Model
	Forward Kinematics

	The Humanoid Robot Nao
	Odometry Computation From Forward Kinematics

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

