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Zusammenfassung

In den letzten Jahren ging die Entwicklung in der Robotik immer mehr zu flexiblen Robo-
tern, die auBerhalb ihrer traditionellen Einsatzgebiete in Fabriken Aufgaben im direkten
Umfeld mit Menschen tibernehmen. Ein bekanntes Beispiel fiir diese neue Generation von
Robotern sind autonome Staubsauger, die sich frei in Wohnungen bewegen und damit im
direkten Kontakt mit Menschen stehen. Dartiber hinaus gibt es umfangreiche Forschung
zur Entwicklung flexibler Industrieroboter, die ohne Schutzfeld mit menschlichen An-
gestellten zusammenarbeiten. Auch sollen Roboter in der Pflege eingesetzt werden, um
beispielsweise in der Altenpflege die Herausforderungen des demographischen Wandels
zu bewiltigen.

Arbeiten Roboter im direkten Umfeld mit Menschen, werden andere Anspriiche an
ihr Verhalten gestellt. Wihrend traditionell Kollisionsvermeidung, Kostenoptimierung
und baubedingte Beschrinkungen fiir die Pfadplanung wichtig waren, sind nun auch die
Empfindungen von Menschen als Reaktion auf den Roboter ausschlaggebend. Aus diesem
Grund generieren traditionelle Pfadplanungsalgorithmen nicht immer das hier gewiinschte
Verhalten. Zuséatzlich sollte ein Roboter soziale Konventionen verstehen und einhalten,
die das tdgliche Miteinander zwischen Menschen ermdglichen.

Betrachtet man das Verhalten von Fullgéngern, so bewegen sich diese selbst in dicht ge-
dridngten Bereichen meist fliissig und reibungslos. Dies scheint moglich durch soziale und
kulturelle Regeln, die von FuB3gingern wihrend der Interaktion mit anderen eingehalten
werden [45]. Insbesondere sind Menschen dazu in der Lage, das Verhalten von anderen
zu einem gewissen Grad vorauszusehen und friihzeitig zu reagieren, um plotzliche, unan-
genehme Ausweichmandver zu verhindern. Wir glauben, dass sich ein Roboter, der ein
solches Verhalten versteht und selbst anwendet, besser in seine menschliche Umgebung
einbringen kann. Das Ziel dieser Arbeit ist es daher, einen Roboter mit einem Modell von
menschlichen Navigationsstrategien auszustatten.

Um dies zu erm0glichen, stellen wir in dieser Arbeit Modelle vor, die das natiirliche
Interaktionsverhalten von mehreren Menschen, oder auch von Menschen und Robotern
abbilden. Die zentrale Idee hierbei ist, dass nicht das isolierte Verhalten eines Menschen
oder Roboters modelliert wird, sondern explizit ihr gemeinsames Verhalten. Ein Roboter,
der mit einem solchen Modell ausgestattet ist, kann das Verhalten von FuB3géngern in
seiner Umgebung vorhersehen und seine Bewegung friihzeitig daran anpassen. Dariiber
hinaus kann der Roboter aber auch seine eigenen Pfade mit Hilfe dieses Modells planen.
Dies ermoglicht es dem Roboter, die erwarteten Reaktionen von FuB3géngern schon in
seine Pfadplanung mit einzubeziehen.

Unsere Modelle bilden zum einen diskrete Entscheidungen ab, wie zum Beispiel
die Wahl, auf welcher Seite einem FuBgénger ausgewichen werden sollte. Zum anderen
modellieren wir stetige Eigenschaften der Trajektorien, die fiir die Navigation wichtig sind,
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wie die Zeit bis zum Ziel, die Distanzen zu Hindernissen, aber auch Geschwindigkeiten
und Beschleunigungen. Durch Beriicksichtigung dieser Eigenschaften bilden unsere
Modelle zielgerichtetes Verhalten ab, so dass die modellierten Agenten ihr Ziel moglichst
schnell, aber so angenehm wie moglich erreichen. Ein modularer Ansatz ermoglicht
die flexible Anpassung der Modelle an die Eigenschaften der aktuellen Umgebung und
an die Aufgabe des Roboters. Insbesondere parametrisieren Gewichte fiir die einzelnen
Eigenschaften unsere Modelle und erlauben somit die komfortable Feineinstellung des
Verhaltens.

Die Modellierung diskreter Navigationsentscheidungen basiert auf Trajektorien in
verschiedenen Homotopieklassen. Homotopieklassen sind Mengen von Trajektorien,
die Hindernisse in der Umgebung auf die gleiche Weise umgehen. In dieser Arbeit
stellen wir effiziente Verfahren vor, um Trajektorien in diesen verschiedenen Klassen zu
berechnen. Dafiir verwendet unser Verfahren Voronoi-Graphen, mit deren Hilfe der Raum
abstrakt dargestellt werden kann. Neben der Verwendung zur Modellierung menschlichen
Navigationsverhaltens ist dieses Verfahren auch fiir die effiziente Initialisierung von
Trajektorienoptimierungsverfahren einsetzbar.

Die Wahl der Parameter unserer Modelle bestimmt entscheidend die Qualitit der
Pridiktion sowie die Eigenschaften der geplanten Pfade. Insbesondere die gegensitzlichen
Auswirkungen der einzelnen Stellgrolen, wie zum Beispiel der Abstand zu Hindernissen
und die erlaubte Zeit zum Ziel, erschweren die manuelle Feineinstellung. Aus diesem
Grund stellen wir ein Lernverfahren vor, das die Modellparameter aus observierten Trajek-
torien lernt. Zum einen ermdglicht dies das Lernen von akkuraten Modellen menschlichen
Verhaltens, zum anderen konnen so Roboter durch Demonstrationen eingelernt werden.
Dafiir wird der Roboter per Fernsteuerung in seiner Umgebung mit den gewiinschten
Eigenschaften navigiert, was insbesondere fiir nicht-technische Benutzer eine bequeme
Art der Roboterprogrammierung ist.

Neben dem Einsatz der vorgestellten Modelle fiir die autonome Roboternavigation,
stellen wir in dieser Arbeit weitere Einsatzgebiete unserer Modelle fiir teilautonome
Navigationsaufgaben vor. Zunidchst ermdglichen unsere Methoden die Berechnung quali-
tativ unterschiedlicher Pfade. Ein Benutzer muss somit nur einen der vorgeschlagenen
Pfade auswihlen, wihrend der Roboter die lokale Pfadplanung {ibernimmt und sichere,
komfortable Trajektorien plant. Ein solches Verfahren ermoglicht es zum Beispiel Roll-
stuhlfahrern, die feinmotorisch nicht mehr in der Lage sind einen Rollstuhl zu bedienen,
sich sicher und unabhingig in ihrer Umgebung zu bewegen. In einer weiteren Art teil-
autonomer Navigation soll der Roboter in der Néhe eines fiihrenden Menschen bleiben,
um ihm beispielsweise Werkzeuge anzubieten oder mit ihm zu interagieren. Der Mensch
steuert auch hier nur die globale Navigation, wihrend die lokale Pfadplanung von unseren
Verfahren iibernommen wird.

Die bisher genannten Anwendungen setzen eine robuste Perzeption, insbesondere der
Menschen in der Umgebung, voraus. Wihrend 2D Laser Scanner die Position und Bewe-
gungsrichtung schitzen konnen, sind in vielen Anwendungen komplexere Modelle der
menschlichen Bewegung gewiinscht. Wir stellen daher ein Verfahren vor, das vollauto-
matisches Tracking der Skelettstruktur einer Person auf Basis von Markern ermoglicht.
Neben der direkten Interaktion zwischen Menschen und Robotern ermoglicht ein sol-
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ches System auch die Aufnahme von Bewegungsdaten fiir das Erlernen menschlicher
Bewegungsmodelle.

Des Weiteren haben wir unsere Modelle im Bereich des autonomen Fahrens auf Au-
tobahnen angewandt. Hier stellen sich andere Herausforderungen, allerdings lassen sich
die zentralen Ideen unserer Arbeit auch auf diesen Bereich iibertragen. Auch hier gibt
es diskrete Entscheidungen, etwa einen Spurwechsel einzuleiten oder auf der aktuellen
Spur zu bleiben. Innerhalb jeder dieser Entscheidung gibt es eine stetige Menge von Tra-
jektorien mit unterschiedlichen physikalischen Eigenschaften, die von unseren Modellen
reprasentiert werden. Wir stellen auch hier Verfahren vor, um individuelles Fahrverhalten
von Demonstrationen zu lernen.

Alle Teile dieser Arbeit werden durch experimentelle Auswertungen evaluiert. Zum
einen zeigen diese Experimente die Vorteile unserer Verfahren gegeniiber dem aktuellen
Stand der Technik. Zum anderen weisen Experimente mit echten Robotern darauf hin, dass
unsere Ansitze auch praxistaugliche Roboternavigation ermoglichen. Fiir die Anwendun-
gen in autonomer oder teilautonomer mobiler Robotik verwenden wir einen elektrischen
Rollstuhl, der mit unseren Verfahren gesteuert wird. Im Bereich der Skelettschiatzung
stellen wir Experimente vor, die unsere Verfahren mit aktuellen, kommerziellen Produkten
vergleichen. Dariiber hinaus lernen wir individuelles Verhalten sowohl fiir den autonomen
Rollstuhl als auch fiir autonome Automobile von Trainingsdaten, die mit echten Robotern,
bzw. von echtem Fahrverhalten auf Autobahnen aufgenommen wurden. Zusammenfas-
send stellt diese Arbeit Fortschritte im Bereich der kooperativen, sozial kompatiblen
Navigation vor, die uns der Entwicklung einer neuen Generation von Robotern einen
Schritt ndher bringen.






Abstract

The range of applications for robots currently broadens from performing repetitive,
industrial tasks to flexible services in the same environment with humans. Nowadays,
vacuum cleaning robots are already widely used domestic robots and we expect more
and more services from mobile robotic platforms in the future. Robots that move in our
vicinity should navigate in a socially compliant way that does not unnecessarily hinder
nearby humans. Traditional path planning methods that compute time-optimal paths for
the robot are therefore not always desirable. Instead, robots should understand and comply
with social norms that allow the natural navigation behavior of humans. We belief that a
robot that has a better understanding of this human-like behavior is more predictable and
better accepted by humans.

In this thesis, we present a novel navigation scheme for mobile robots that actively
integrates the natural navigation behavior of pedestrians into planning, instead of con-
sidering nearby humans as passive obstacles. The robot performs this reasoning in a
predictive manner, which gives it the possibility to adapt its behavior early in an encounter
to enable smooth evasive movements in contrast to abrupt collision avoidance maneuvers.
In particular, we present a novel model of the cooperative, interactive navigation behavior
of multiple agents. A mobile robot can use such a model to predict the navigation behavior
of nearby pedestrians, and at the same time to plan socially compliant paths to its target
location. The intention-driven model captures goal-directed behavior, i.e. the intention to
reach a target efficiently but as comfortably as possible. To this end, we use features that
model important properties of the navigation behavior such as the time to reach the target,
velocities, and the proximity to obstacles. In addition to these continuous properties, our
model reasons about discrete navigation decisions such as evading obstacles on the left,
or on the right, which we capture in terms of topological classes of trajectories. During
navigation, the robot maintains a probability distribution over trajectories in these classes,
and chooses the socially most compliant one for navigation. This enables the robot to
quickly react to sudden changes in its environment.

The contribution of this thesis is a novel model of the interactive navigation behavior
of multiple agents and its application to mobile robot navigation. In addition to socially
compliant navigation in the presence of humans, our methods enable shared-autonomy
navigation and socially compliant leader following. To allow a robot to observe the
behavior of humans it has to interact with, we present an online skeleton tracking method.
In addition, we present a learning-from-demonstration approach for autonomous cars that
is based on our model. In extensive experiments, carried out in simulation and with real
robots, we evaluated the methods proposed throughout this thesis. These experiments
suggest that our algorithms outperform traditional path planning methods and that our
techniques are applicable to navigate mobile robots in a socially compliant way.
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Chapter 1

Introduction

Mobile robots are envisioned to provide more and more services in a shared environment
with humans. The applications for such robots range from robotic co-workers in factories
over domestic service robots to assistive robots in healthcare. For tasks that require robots
to provide services at different locations, they need reliable methods to compute safe
navigation paths. However, in a shared environment with humans the navigation behavior
should not only be save but also socially compliant, i.e., the robots should behave in a
way that is comfortable for nearby humans. Therefore, traditional approaches to mobile
robot navigation, such as moving on time-optimal paths, are not always desirable. Instead,
the robots should understand and comply with social norms that allow humans to navigate
even in crowded environments.

The effortless navigation of pedestrians in crowded environments seems to be possible
due to mutually accepted rules that we follow when interacting with other pedestrians [45].
In particular, humans are able to predict the intent of others to some extent and also to
reason about the reaction of others to their actions. This allows pedestrians to smoothly
adjust their movements at an early stage of an encounter, avoiding sudden and uncom-
fortable evasive movements. Our goal is to let mobile robots participate in such a natural
navigation behavior in order to enable socially compliant human-robot interaction.

To this end, we propose to endow mobile robots with a model of the natural navigation
behavior of interacting agents. The model we propose in this thesis captures the interactive
behavior of multiple agents in a navigation task in terms of a distribution over their future
trajectories. A mobile robot can not only use such a model to predict the navigation
behavior of nearby pedestrians, but at the same time to plan its own navigation trajectories.
A key aspect of the approach we present in this thesis is that we model the joint behavior
of the robot and the pedestrians. This allows the robot to incorporate the reactions of the
pedestrians to its own actions into planning.

In particular, the proposed model captures discrete navigation decisions such as on
which side to evade an obstacle or a pedestrian, as well as continuous navigation decisions
that affect the resulting trajectories in terms of the travel time, distances to obstacles and
higher-order dynamics such as velocities and accelerations. We present a set of features
that capture these important properties for natural navigation behavior. As a result, the
model is intention-driven, i.e., we model the goal-directed behavior of the agents to reach
a target position as comfortable as possible without colliding with obstacles. Feature
weights determine the importance of each feature, which serves as an intuitive way to
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adapt the model to the dedicated task of the robot.

To capture the discrete navigation decisions, we use homotopically distinct navigation
paths, which correspond to the different possibilities to evade obstacles on the left, or
on the right. In this thesis, we present methods to efficiently compute these different
trajectory classes. To this end, we use the Voronoi graph of the environment and compute
an abstract graph that captures the connectivity of the free space of the environment. In
this graph, we can efficiently explore the distinct homotopy classes. In addition to the
application to socially compliant mobile robot navigation, we show how this technique is
beneficial for parallel initialization of trajectory optimization schemes.

The behavior of nearby pedestrians, as well as the desired behavior of the robot, depends
on the environment the robot is employed in. Therefore, we present methods that allow us
to learn the model parameters, i.e., the feature weights, from demonstrated trajectories.
As a result, the robot can infer the model parameters that best fit the behavior of observed
pedestrians. Furthermore, if the robot should not simply replicate human navigation
strategies, it facilitates teaching the robot by tele-operation. Teaching by demonstration is
an intuitive way to program a robot, especially for non-experts.

During navigation, the robot utilizes the proposed model to maintain a probability
distribution over the trajectories of the pedestrians, and corresponding trajectories for the
robot itself. The robot then efficiently computes the most likely interaction by optimizing
trajectories with respect to the probability density function. The resulting most likely
interaction encodes the best guess of the future behavior of the pedestrian, as well as a
corresponding socially compliant plan for the robot. This plan is a valid trajectory that the
robot can directly apply for navigation. The proposed efficient techniques allow the robot
to replan continuously during navigation, to account for changes in the environment.

In addition to a comprehensive discussion of the underlying model, we present a set
of applications in which a mobile robot benefits from the proposed model. It allows a
mobile robot to navigate to its goal location in populated environments while smoothly
evading pedestrians in a socially compliant manner. Furthermore, our model is capable
of computing a set of qualitatively distinct paths, which a robot can utilize for shared
autonomy navigation. Here, a user selects the desired path on a high level, whereas the
robot takes over the low level control. A further application is the task of following a
human leader in a socially compliant way, in which the robot should stay close to a desired
relative position with respect to the human. For all these tasks it is beneficial for the robot
to have a better understanding of the intent of the pedestrians, which allows it to predict
their navigation behavior and to act in an appropriate manner.

In the abovementioned applications, the robot needs to perceive its environment, espe-
cially the behavior of nearby pedestrians. Whereas in many applications the estimated
position from a 2D laser-based tracking system suffices, it can be beneficial to have more
information about the full body posture, for example to perceive the body language of
humans. To this end, we propose a robust technique for fully automatic skeleton tracking
in optical motion capture. A mobile robot can use such a technique to observe humans
during online interaction tasks, or to record datasets for learning navigation behavior
models.

We furthermore applied our approach to learning individual styles for autonomous cars.
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While highway driving poses different properties and challenges, the fundamental idea
of our approach does still apply. Here, we also have distinct decisions such as staying
in lane behind an other car or overtaking, and continuous properties of the trajectories
within such a behavior class. In the context of highway driving, we use our method to
learn individual driving styles from demonstration, which an autonomous car can then
use to replicate the desired behavior in autonomous mode.

Extensive experiments in all parts of this thesis, including quantitative comparisons to
related methods, suggest that our approaches outperform state-of-the-art techniques. For
perception, we show that our method is better able to track a human skeleton compared
to a current, commercial software. The generation of homotopically distinct navigation
paths outperforms existing methods by an order of magnitude in run-time, and further
experiments aim to show the advantages of our novel method for socially compliant mobile
robot navigation over traditional path planning techniques in different applications. We
furthermore present experiments in which we teach a desired behavior by demonstration,
both for a robotic wheelchair as well as for autonomous cars. We implemented our
approaches on real robots and evaluated their performance in real-world scenarios. With
this thesis, we contribute methods towards a new generation of mobile robots that are able
to navigate socially compliantly in human environments.

1.1 Contributions

The key contribution of this thesis is a framework for socially compliant mobile robot
navigation. The goals for a mobile robot that provides services in the direct presence of
humans are different from traditional path planning methods. For such mobile robots, we
propose methods that allow a robot to better understand the natural navigation behavior
of pedestrians, and to behave accordingly. In particular the key contributions are:

e A method for online tracking of a human skeleton in motion capture. This method al-
lows a mobile robot to record training data for learning models of human navigation
behavior, or to observe humans during interaction. (Chap. 3)

e An online method for generating a set of homotopically distinct navigation paths,
which serves as a basis for the models we propose in this thesis. (Chap. 4)

e A model of the natural, cooperative navigation behavior of multiple agents. In
particular, this model includes discrete as well as continuous navigation decisions
that capture the navigation behavior of humans. (Chap. 5)

e Methods for teaching a mobile robot by tele-operation. (Chap. 6)

e Applications of the proposed models to socially compliant leader following and
shared autonomy. (Chap. 7 and Chap. 8)

e [earning individual navigation styles for highway driving from demonstration.
(Chap. 9)
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1.2 Publications

This thesis is based on our previous work presented in the following conference proceed-
ings and workshop proceedings.

e M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard. Feature-based prediction
of trajectories for socially compliant navigation. In Proceedings of Robotics:
Science and Systems (RSS), Sydney, Australia, 2012.

e M. Kuderer, H. Kretzschmar, and W. Burgard. Teaching mobile robots to coop-
eratively navigate in populated environments. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan,
2013.

e H. Kretzschmar, M. Kuderer, and W. Burgard. Predicting human navigation behavior
via inverse reinforcement learning. In The Ist Multidisciplinary Conference on
Reinforcement Learning and Decision Making (RLDM), Princeton, NJ, USA, 2013.

e H. Kretzschmar, M. Kuderer, and W. Burgard. Learning navigation policies from
human demonstrations. In Proceedings of the Workshop on Inverse Optimal Control
& Robotic Learning from Demonstration at Robotics: Science and Systems (RSS),
Berlin, Germany, 2013.

e H. Kretzschmar, M. Kuderer, and W. Burgard. Inferring navigation policies for
mobile robots from demonstrations. In Proceedings of the Autonomous Learn-
ing Workshop at the IEEE International Conference on Robotics and Automation
(ICRA), Karlsruhe, Germany, 2013.

e J. Meyer, M. Kuderer, J. Miiller, and W. Burgard. Online marker labeling for
automatic skeleton tracking in optical motion capture. In Workshop on Compu-
tational Techniques in Natural Motion Analysis and Reconstruction at the IEEE

International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany,
2013.

e H. Kretzschmar, M. Kuderer, and W. Burgard. Learning to predict trajectories of
cooperatively navigating agents. In Proceedings of the IEEE International Confer-
ence on Robotics & Automation (ICRA), Hong Kong, China, 2014.

e M. Kuderer, C. Sprunk, H. Kretzschmar, and W. Burgard. Online generation of
homotopically distinct navigation paths. In Proceedings of the IEEE Interna-
tional Conference on Robotics & Automation (ICRA), Hong Kong, China, 2014.

e J. Meyer, M. Kuderer, J. Miiller, and W. Burgard. Online marker labeling for fully
automatic skeleton tracking in optical motion capture. In Proceedings of the IEEE
International Conference on Robotics & Automation (ICRA), Hong Kong, China,
2014.
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e M. Kuderer and W. Burgard. An approach to socially compliant leader following
for mobile robots. In Social Robotics, volume 8755, Sydney, Australia, 2014.
Best Presentation Award

e M. Kuderer, S. Gulati, and W. Burgard. Learning driving styles for autonomous
vehicles from demonstration. In Proceedings of the IEEE International Confer-
ence on Robotics & Automation (ICRA), Seattle, USA, 2015.

Accepted for publication

The following publications that are not included in this thesis also originate from the
author’s work at the research group.

e S. Ito, F. Endres, M. Kuderer, G. D. Tipaldi, C. Stachniss, and W. Burgard. W-
RGB-D: Floor-plan-based indoor global localization using a depth camera and wifi.
In Proceedings of the IEEE International Conference on Robotics & Automation
(ICRA), Hong Kong, China, 2014.

e E. Demeester, E. V. Poorten, A. Hiintemann, J. D. Schutter, M. Hofmann, M. Rooker,
G. Kronreif, B. Lau, M. Kuderer, W. Burgard, A. Gelin, K. Vanopdenbosch, P. V.
der Beeten, M. Vereecken, S. Ilsbroukx, A. Fossati, G. Roig, X. Boix, L. V. Gool,
H. Fraeyman, L. Broucke, H. Goessaert, and J. Josten. Robotic ADaptation to Hu-
mans Adapting to Robots: Overview of the FP7 project RADHAR. In International
Conference on Systems and Computer Science (ICSCS), Villeneuve d’ Ascq, France,
2012.

1.3 Collaborations

Parts of this thesis are the result of collaboration with other researchers. Chap. 3 on
skeleton tracking techniques extends the Bachelor thesis of Johannes Meyer, which
the author of this thesis supervised together with Jorg Miiller. Chap. 4 on generating
homotopically distinct navigation paths was joint work with Christoph Sprunk. The
computation of the abstract graph that captures the free-space of the environment is based
on incrementally updatable Voronoi maps, which is previous work of Christoph Sprunk.
The model of the natural navigation behavior of interacting agents that we present in
Chap. 5 was developed in collaboration with Henrik Kretzschmar. Based on the joint work
on the underlying model, Henrik Kretzschmar’s main contribution was the development
of machine learning algorithms that we use for learning-from-demonstration applications
(Chap. 6), whereas the author of this thesis focused on socially compliant mobile robot
navigation. The approach for navigating autonomous cars on highways and for learning
individual navigation styles was developed during an internship with Bosch RTC in Palo
Alto, which was supervised by Shilpa Gulati. Wolfram Burgard was the supervisor of this
thesis and contributed ideas to all its parts.






Chapter 2
Background

The focus of this thesis is robot navigation in the presence of humans. To navigate, a
mobile robot needs path planning algorithms that compute the control commands leading
the robot to its target location. Since the ability to navigate in its environment is a basic
requirement for mobile robots, research on path planning has been extremely active in
the last decades. In this chapter, we introduce a number of path planning techniques that
are relevant in the following chapters and describe methods that we leverage, or compare
against, throughout this thesis. We briefly discuss different methods to find paths from the
current position of the robot to a target location and describe two methods that capture
the interactive behavior of multiple agents. These interaction models apply to control
multi-robot systems, or to model the navigation behavior of pedestrians.

2.1 Shortest Paths in a Graph

In many applications for mobile robot navigation, we can represent the environment of
the robot as a graph, for example as 2D grids, topological maps, or other structures that
capture the connectivity of the environment. In general, a graph G = (V, E) is a set of
vertices V' with a set of edges £ that connect the vertices. In graphs used for navigation,
each edge has an assigned cost that corresponds to the expected travel time, the distance,
or other properties that are important for the navigation task. The goal is to find the best
path from the current state of the robot to a goal state, i.e., the path in the graph connecting
the two corresponding vertices that has the least accumulative cost.

In 1959, Dijkstra [36] proposed an algorithm to find the shortest path in a graph with
non-negative edge costs in run time O (|V'|?). The idea of this algorithm is to iteratively
expand vertices by considering all so far unvisited neighbors of the current vertex. During
this procedure, the algorithm keeps track of the tentative cost, i.e., the cost of the currently
shortest known path from the start to any of the visited vertices. In each step, the algorithm
expands the unvisited vertex with the least tentative cost next. After the goal vertex has
been visited, the algorithm returns the path with the least cost.

The performance of Dijkstra’s algorithm can be improved by using heuristics that
estimate the cost from the current vertex to the goal. An extension of Dijkstra’s algorithm,
known as the A* algorithm [50], computes optimal paths by using an admissible heuristic
of the path cost between any two vertices. Admissible in this context means that the
heuristic never overestimates the cost. For example, in a 2D grid where the cost function
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Figure 2.1: Illustration of the RRT path planning algorithm. The search starts in the bottom left corner and
the goal is in the top right corner. In each iteration the RRT algorithm attempts to grow the tree towards a
sampled position using short straight line edges. Left: search tree where the goal location was sampled with

a probability of 0.001. Middle: search tree where the goal location was sampled with a probability of 0.1.
Right: resulting trajectory from the RRT tree in the middle image.

captures the Euclidean distance, the linear distance between two vertices is an admissible
heuristic. In contrast to Dijkstra’s algorithm that greedily selects the vertex with the
currently least cost, A* selects in each step the vertex with the least estimated cost to the
target, i.e., the sum of the currently least cost to the vertex and the estimated cost from
this vertex to the goal, given by the heuristic. As Dijkstra’s algorithm, A* guarantees to
return the path with the least cost after the goal vertex has been selected.

The resulting path of a graph-based search is often not directly feasible for navigation.
For example, a car-like robot cannot follow a path consisting of linear segments in a 2D
grid. A typical solution to this problem is to follow the planned path reactively using local
methods such as the dynamic window approach [41]. An alternative solution is to plan
paths that are directly suitable for robot navigation, which we discuss in the following.

2.2 Rapidly Exploring Random Trees

Graph search reaches its limit when considering continuous configuration spaces, for
example when including higher order properties such as velocities and accelerations into
planning. In general, we can discretize these properties and extend the state space to
also capture velocities and accelerations. However, in practice graph search becomes
infeasible at high dimensions due to the large search space.

Sampling-based algorithms overcome these problems by incrementally growing a
search tree in the continuous state space. A popular sampling-based method is the rapidly
exploring random tree (RRT) presented by LaValle and Kuffner [94]. It iteratively builds
a tree by repeatedly sampling configurations in the continuous space. The algorithm then
attempts to extend the closest vertex towards the direction of the sampled configuration,
mostly with a fixed maximum length of the extension. If the extension succeeds, i.e., it
passes free space and satisfies further constraints, the algorithm adds a new vertex at the
end point of the extension, and a new edge connects the tree to this vertex. In this way,



2.3. OPTIMIZING TRAJECTORIES 9

the tree efficiently explores the state space.

The convergence of the algorithm is heavily affected by the probability distribution
from which the samples are drawn. Adding the goal state with a higher probability to
the distribution increases the performance considerably in practice. Fig. 2.1 shows two
different runs of a RRT algorithm, which drew the goal state with a probability of 0.001,
and 0.1, respectively. The first run produces a much larger tree, exploring more parts of
the search space compared to the more goal-directed second run.

Karaman and Frazzoli [68] present RRT*, an extension to the RRT algorithm for
asymptotically optimal motion planning. This algorithm continues refining the path after
it has found the initial solution. However, this approach assumes that it is possible to
connect two arbitrary states in the free space with an optimal trajectory. While straight
lines satisfy this requirement for distance-minimizing holonomic robots, it is a non-trivial
problem for non-holonomic robots, or kinodynamic cost functions. Furthermore, the
convergence time may restrict the application of such algorithms in online path planning
scenarios.

2.3 Optimizing Trajectories

An alternative to sampling based path planning is the optimization of an initial guess with
respect to a navigation cost function. For some special cost functions, it is possible to
compute the optimal trajectory in closed form. Examples for this class of problems are
the trivial case of straight lines for minimal-distance paths, or finding trajectories that
minimize the integrated jerk [91] in an environment without obstacles.

Real world mobile robot approaches typically employ cost functions that capture a
trade-off between a variety of desired properties such as the travel time, velocity and
acceleration constraints, and proximity to obstacles. In general, it is not feasible to
compute closed form solutions given such complex cost functions. However, optimization
techniques provide tools to find optimal or near-optimal trajectories.

An important part of optimization methods is a suitable finite dimensional trajectory
representation. Examples for such representations are sequences of points along the
trajectory [66], or splines [136], which are piecewise-polynomial functions. Together
with a cost function that maps the parameters of the trajectory model to a real value, the
navigation task translates to an optimization problem.

The goal is to find the values of the model parameters that yield the trajectory with
minimum cost. If the navigation task can be stated in a way that the resulting optimization
problem is convex, there exists one unique minimum, which simplifies the optimization
considerably [149]. For general, non-convex navigation problems different optimization
techniques converge to local minima, but it is difficult to find the global minimum.
Approaches to solve this problem are sampling based optimization techniques [66], or
multiple initialization as we propose in Chap. 4.
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Figure 2.2: Illustration of social forces. Left: The goal yields an attractive force f,, the static obstacle a
repulsive force f,.. The algorithm adapts the agent’s motion with respect to the resulting force f, + f,.
Right: social forces in a scenario with two agents. Each agent gets attracted by its goal location. In addition,
the agents repel each other. The resulting force used to modify the agents’ velocity is the sum of the forces
for each agent, which yields an evasive movement shown by the dotted lines.

2.4 Social Forces

In contrast to the previously discussed path planning algorithms that compute paths from
the current location of the robot to the goal, reactive approaches map the current state of
the environment directly to a control command of the robot. One class of such reactive
approaches is based on artificial potential fields [70].

In artificial potential field methods, the environment in which the robot moves has
a minimum potential at the goal location, and high potentials in the area of obstacles.
Intuitively, the environment resembles a landscape with mountains, where the robot
always travels downhill. The negative gradient of the potential, which is a sum of the
attractive force f, and of repulsive forces f, points towards the target and away from
obstacles. Fig. 2.2 (left) illustrates the resulting forces for an environment with one agent
and a static obstacle. For navigation, the robot follows the negative gradient direction by
changing its velocity according to the resulting force f, + > fi.

Helbing and Molnar [53] applied the principle of attractive and repulsive forces to
model the interaction between multiple agents such as pedestrians. Here, the agents
additionally exert repulsive forces to each other, modeling the intent of all agents to avoid
collisions. As a result, the agents mutually evade each other during navigation, similar to
the natural navigation behavior of pedestrians. Fig. 2.2 (right) illustrates social forces in
an example with two agents that are attracted by their goal locations. The repulsive force
pushes the agents apart, resulting in an evasive maneuver.

Social forces have been successfully applied to large scale pedestrian simulations.
However, as other potential field methods, they have inherent limitations when applied to
mobile robot navigation, as pointed out by Koren and Borenstein [77]. Most importantly,
the locally computed forces are prone to get stuck in local minima of the environment and
have difficulties to navigate narrow passages between obstacles. Furthermore, the forces
may lead to oscillating behavior near obstacles.
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Figure 2.3: Illustration of the reciprocal velocity obstacles method. Left: the light gray area shows the
velocity obstacle of agent a; with respect to agent ao. It contains all velocities that lead to a collision at
some point in time if ao does not change its velocity. Right: extension to reciprocal velocity obstacles. The
figure shows in dark gray the reciprocal velocity obstacle for agent a; with respect to the other agent. If
each agent selects a velocity outside its reciprocal velocity obstacle, they are guaranteed to pass each other
without collision.

2.5 Reciprocal Velocity Obstacles

A further navigation algorithm that models the interactive behavior of multiple agents
is the reciprocal velocity obstacles (RVO) approach by van den Berg et al. [143]. This
approach builds on top of velocity obstacles, i.e., the set of velocities that would lead the
agent into collision.

The velocity obstacle VO;! (v) is the set of all velocities v, of agent a;, which lead
to a collision at some point in time if agent a, continues with velocity v,. Fig. 2.3 (left)
illustrates the velocity obstacle for two agents a; and as. Given the current velocity vo of
agent as, the two agents collide at some point if agent a; continues with its velocity v;.
Therefore, this velocity is inside the velocity obstacle, i.e., vi € VOg!(vy). The gray area
comprises all such velocities v; for which the agents would collide at some point.

The RVO approach is an extension of VO, which takes into account mutual evasive
maneuvers. Geometrically, the RVO;! (v, vi) is VOG! (v2), shifted by ¥5¥2, where v,
is the current velocity of agent a,. This set contains all velocities for agent a; that are
the mean of the current velocity vy, and a velocity inside the velocity obstacle VOZ; (va).
Fig. 2.3 (right) illustrates the reciprocal velocity obstacle for the same example as before.

During navigation, two agents can use RVO for collision-free motions. To this end, both
agents compute the reciprocal velocity obstacle with respect to the other agent. Then both
agents continuously choose a velocity outside this set, i.e., agent a; chooses a velocity
v1 & RVOg! (v2, v1), and agent ay chooses a velocity vy & RVOZ?(vy, v3). If they choose
the velocity that satisfies this constraint and that is closest to their current velocity, the
mutual behavior is guaranteed to be collision- and oscillation free.

The concept of RVO can also be generalized to multiple agents by computing the union
of the pairwise computed reciprocal velocity obstacles. In this way, we could coordinate
a multi-robot swarm, or model the behavior of a group of pedestrians. More details on
this approach can be found in the work of van den Berg et al. [143].






Chapter 3

Fully Automatic Skeleton Tracking in
Optical Motion Capture

Mobile robots that operate in populated environments need methods
to perceive the behavior of humans in their vicinity. Such methods
allow a mobile robot to directly interact with the human, or to ob-
serve human behavior in order to learn a model of their behavior.
Accurately tracking the human posture is furthermore important
in applications such as animation, interaction, orthopedics, and
rehabilitation. For marker-based systems major challenges are to
associate the observed markers with skeleton segments, to track
markers between consecutive frames, and to estimate the under-
lying skeleton configuration for each frame. Existing solutions to
this problem often assume fully labeled markers, which usually
requires labor-intensive manual labeling, especially when markers
are temporally occluded during the movements. In this chapter,
we propose a fully automated method to initialize and track the
skeleton configuration of humans from optical motion capture data
without the need of any user intervention. Our method applies a
flexible T-pose-based initialization that works with a wide range
of marker placements, robustly estimates the skeleton configura-
tion through least-squares optimization, and exploits the skeleton
structure for fully automatic marker labeling. We demonstrate the
capabilities of our approach for online skeleton tracking and show
that our method outperforms solutions that are widely used and
considered as state of the art.

3.1 Introduction

Social robots that directly interact with humans rely on a perception system that provides
an accurate estimation of the humans’ behavior. In a variety of applications we are
interested not only in the position of the humans, but also in their full body posture. For
example, the head direction, or the pose of the arms are valuable information during
human-robot interaction. The methods thereby range from estimating human body
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Figure 3.1: Skeleton pose estimation. Top: Human with passive optical markers attached to the body.
Bottom: Observed markers and the skeleton configuration as estimated by our fully automated method.

postures in single images [115], from depth images [133] or based on artificial markers.
The advantages of marker-based optical motion capture systems are that they provide
automatic calibration procedures and precise position information about the markers at a
high frame rate. Compared to marker-less approaches, marker-based methods are typically
more accurate and at the same time are more robust against occlusions [111]. Accordingly,
they are perfectly suited to accurately capture even fast movements of people.

However, inferring the body pose in terms of the skeleton configuration, i.e., the global
pose and the joint angles of the underlying skeleton, from raw 3D marker position data is
a challenging task. Although the camera system provides accurate 3D marker positions,
their association to the individual markers placed on the person is initially unknown.
This data association problem is called labeling and is usually solved by analyzing the
geometric structure of the set of detected 3D marker positions, which requires tedious and
time-consuming manual work even with state-of-the-art software. Furthermore, markers
are occasionally occluded by parts of the body or objects around the tracked person, which
makes the labeling of the remaining and especially the re-appearing markers even more
challenging. Finally, given the labeling of the markers, inferring the skeleton configuration
requires to take into account that the markers are only attached to the skin or to clothes.
Hence, the skin movement causes the markers to slightly move with respect to the bones
during the activity, so that the skeleton configuration needs to be inferred in a robust way.
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Figure 3.2: Overview of the proposed method for automated skeleton estimation. Based on the observed
markers in the first frame our method adjusts the skeleton model to the estimated height and fits the skeleton
into the observed point cloud using the principal axes of arms and legs (middle and right). Furthermore, it
initializes the marker labeling and their association to skeleton segments. Left: In each successive frame, the
most observed points are labeled based on the preceding frame by nearest neighbor association. Repeated
optimization of the skeleton configuration and association based on the current skeleton estimate robustly
labels the remaining points.
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In this chapter, we propose a novel fully automatic skeleton tracking technique. Our
method is flexible and includes the labeling of passive markers, which we can place on
arbitrary positions on the human body, without any manual effort. We propose to use a
parameterized standard human skeleton model, which we automatically adapt to humans
of different size, and assume that each marker is attached to one of the limbs of this
skeleton. Our approach to skeleton tracking jointly estimates the labeling of the observed
markers and the skeleton configuration. In contrast to other approaches, our method
exploits the information about the human skeleton during the labeling step and therefore
provides a more informed data association.

Our approach initializes the skeleton tracking based on a T-pose executed by the person
being tracked (see Fig. 3.1). Our method uses this initialization step to scale the skeleton
to the person’s size and aligns the skeleton to the person’s limbs. During tracking, it
then in an alternating fashion labels the observed markers and optimizes the skeleton
configuration in an expectation-maximization-like procedure [33]. Thereby, it exploits
both the marker positions of the most recent frame and the current skeleton configuration
to obtain a consistent labeling and to reliably identify re-appearing markers that were
temporally occluded.

We implemented our approach and evaluated it in extensive experiments. The results
demonstrate the effectiveness and reliability of our approach and show that it outperforms
Cortex, a state-of-the-art commercial solution for tracking articulated objects. Further-
more, we present results indicating that our method is highly efficient and enables online
skeleton tracking on a standard desktop computer.

3.2 Basics

The goal of this section is to give a formal problem definition and to present the foundations
of online marker-based skeleton tracking.
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Figure 3.3: This figure illustrates two linked joints s; and its parent segment p(s; ), their local coordinate
systems and the transformation between the two segments. Furthermore, it illustrates an observed point and
its normalized projection and distance to the segment s;, which we use to compute the likelihood for the
assignment of the observed marker to a segment.

3.2.1 Problem Definition

At each discrete time step ¢, we assume to receive a frame of data F; that is a set of
unlabeled 3D points {0, }. Each point 0;; € F; is the observed 3D position of a marker
attached to one of the limbs of a person. The goal of our method is to estimate the skeleton
configuration C' for each frame, i.e., to estimate the global pose and the joint angles of
the underlying skeleton. In particular, we use a human skeleton model that consists of
14 connected segments s; € S having overall 45 degrees of freedom and that is based
on medical data [27]. However, the 3D observations are subject to measurement noise
and the markers are usually placed on the skin. During the movements of the body this
induces non-deterministic variations of 3D position of the markers also with respect to the
segments of the skeleton. Therefore we consider the full posterior probability p(C' | F')
and estimate the maximum likelihood skeleton configuration of the skeleton configuration
given the observations. This entails to label the observed points, i.e., to find the association
function x; : /¢ — M that assigns each point to a marker label m; € M, which is one of
the key challenges of the method presented in this chapter.

3.2.2 Skeleton Model

In this work, we use a hierarchical skeleton model, where the pose of each segment s;
is defined by its local pose with respect to the coordinate system of its parent segment
p(s;). In particular, we denote the quaternion that describes the orientation of segment
s; in its parent’s coordinate system at time step ¢ as g2 () and the position as t2°"(¢),
respectively. Fig. 3.3 shows an example of a segment s; and its parent segment p(s;).
Consequently, the global orientation q? (Z) of segment s; at time step ¢ is recursively given
by

o () = al, (1) O (), 3.1)

where © is the quaternion product. Similarly, the global position t? (¢) of segment s; is
recursively given by

t9,(8) = 5, (t) + af, ) (£) O 29 (2). (3.2)
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The position t2°(¢) = ¢ /(t) and orientation (1) = f ,(t) of the root segment,

which is the hip segment in our experiments, describes the global pose of the skeleton.
The positions t‘;’fsi)(t) of the remaining segments correspond to their parent’s lengths
and are therefore static and specified by the skeleton model. As a result, the skeleton
configuration C consists of 14 orientations that correspond to the joint angles and the
global position of the skeleton. This results in overall 14 - 3 + 3 = 45 degrees of freedom
of C.

We assume each marker m; to be rigidly attached to one of the segments of the skeleton
and introduce the function £ : M — S that maps each marker to a segment. The local
position of a marker m; in the coordinate system of its corresponding segment is denoted
as pf,s?”). Thus, the position of marker m; in the global coordinate system at time step ¢
is given by

P, () = tg(mj)(t) + qg(mj)(t) © Pfrg;nj) : (3.3)

3.3 Probabilistic Marker-Based Skeleton Tracking

In general skeleton tracking, one aims at estimating the skeleton configuration C'.
from time step 1 to ¢ given the frame of unlabeled, noisy 3D observations of markers
Fy+ = {0;1.+}. In particular, we consider the likelihood £(C}; | Fy.;) of the skeleton
configuration given the observations. However, the association of markers to segments
&1+ and the labeling of the observations x.; are latent variables in our observation model.
Thus, to compute the likelihood

‘C(Clzt ‘ Fl:t) = p(Fl:t ’ Cl:t)
= Z p<F1:t7€1:t7X1:t | Cl:t) (34)

Xl:t)glzt

we marginalize over these latent variables. Since the maximization of Eq. (3.4) is infeasible
in practice, we rely on the popular EM algorithm, which iteratively determines the
maximum likelihood skeleton configuration

Cy, = ar%max Z P(Frt, E1ies X | Ce) - 3.5

Lt Xl:tvgl:t

In particular, the EM algorithm consists of two steps. First, the E-step computes the
expectation value of the latent variables E(x1.;, &1 | C’ﬂ?, F}.;) given the configuration
C’ﬂ?. Second, the M-step computes the configuration C’l(fftﬂ) that maximizes the likelihood
under these expectations.

However, evaluating all possible marker and segment associations over all frames is
not feasible in practice. Therefore, we propose the following approximations:

1. We assume the association £ to be static and only compute it once in the initialization
phase.
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2. We consider online skeleton tracking and therefore recursively compute the like-
lihood. Hence, we assume the latent variables of the preceding frame to be
known so that the recursive E-step reduces to computing the expectation value
E(x: | Ci.t, Fi4, X1.4—1) and the recursive M-step computes Ct(kﬂ).

3. We apply the Hungarian method for optimal assignment to efficiently approximate
the expectation value of the latent variables in the E-step. This maximum likelihood
assignment technique is also known as hard EM in the literature.

Fig. 3.2 illustrates the resulting algorithm for online skeleton tracking. In the initial-
ization phase, we determine the initial skeleton configuration as well as the association
function £. For every incoming frame at time £}, we first label the observations based
on the labeling of the preceding frame and optimize the skeleton configuration to obtain
an initial guess for the EM skeleton estimation. We then iteratively find the most likely
labeling ; given the current skeleton configuration (E-step) and optimize the configura-
tion C; (M-step). In the following, we describe the individual steps of our algorithm for
automatic skeleton tracking in detail.

3.4 T-Pose Initialization

In this section, we present the initialization step of our method to estimate the skeleton
configuration of a person given the 3D position of observed markers that are attached to
the body, as illustrated in Fig. 3.2.

The goal of the initialization step is to estimate the initial skeleton configuration Cj, to
determine the initial labeling Y/, i.€., to assign a marker label to each observed point in
the first frame of observations Fj, and to determine &, i.e., to assign each marker label to
one of the skeleton segments. We assume that the person initially stands in the T-pose,
in which the person stands on the floor, stretches both arms and legs, and holds the arms
approximately horizontally sidewards as shown in Fig. 3.1. Furthermore, we assume that
there is one marker placed on top of the person’s head. Fig. 3.2 (middle) illustrates the
initialization process.

First, we obtain the height of the person by extracting the uppermost marker observation.
Given the height, we scale the skeleton model, i.e., the local position vectors t?;(s’?) of all
segments s; € S\ {so}, to match the size of the observed person. By considering the
anatomy of humans, we identify the subset of points that belong to the legs and to the
arms and compute their first principal axes, as illustrated in Fig. 3.2 (right). We align
the skeleton model to these axes through least-squares optimization to obtain the initial
skeleton configuration Cj. Our initialization method is robust against deviations from the
perfect T-pose due to the optimization-based alignment.

We initialize the bijective association function xo : Fy — M by assigning each
observed point 0; to the marker m;. For each observed point o;, we compute the
projection n(0;, s;) and distance d(o;, s;) to the corresponding segment s; = x((0;),
normalized by the segment’s length and radius, respectively. Thus, as illustrated in Fig. 3.3,
points with the value of n and d in the interval [0, 1] form a tube that has approximately
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the size of the corresponding body part. We define the likelihood of a point o; to belong
to a segment s; as

L(s; | 0;) = f(n(oy,si)) f(d(0j,si)) , (3.6)

where f is a function that has high values in the interval [0, 1] and converges to 0 outside
this interval. As a result, we assign high likelihood to points located inside the tube that
represents the body part corresponding to segment s;. In particular we choose

f(x) = o((x +01)02) ¢((1 — 2+ 61)0,) (3.7

with 0.5
Ry

The parameters ¢, and 0, determine the convergence properties of f. Then, we assign
each point to the segment it is most likely attached to:

¢(m;) = argmax L (s; | xo ' (m;)) - (3.9

s;€8
Finally, we compute the initial estimate of the relative position p%;nj ) of all markers with
respect to their corresponding segments.
To resolve the ambiguity between the two possible headings of the person in T-pose,
we maintain both hypotheses at first and dismiss one hypothesis as soon as it gets unlikely
due to the joint limits of the skeleton (Sec. 3.5.3).

3.5 Joint Labeling and Skeleton Estimation

Skeleton tracking aims at maximizing the likelihood of the skeleton configuration C; given
the unlabeled, noisy observations of markers in an online fashion. As illustrated in Fig. 3.2,
we initialize the labeling based on the preceding frame in a nearest neighbor association.
Given the initial skeleton configuration, we simultaneously perform the labeling of marker
observations and the estimation of the skeleton configuration through an EM procedure,
which alternately updates the labeling based on the skeleton configuration and estimates
the skeleton configuration given the labeling.

3.5.1 Labeling Based on the Preceding Frame

We initialize the labeling of every incoming frame of observations based on the labeling
and the skeleton configuration of the preceding frame. Due to the high frame rate of
motion capture systems usually most of the markers only move a short distance between
two consecutive frames. In our approach, we initially label these markers through nearest
neighbor association given the preceding frame.

In particular, we optimally associate the labeled observations of frame F;_; to the
unlabeled observations of frame F; given the spacial distance as a cost function. Addi-

tionally, we define the threshold 6FF as an upper limit for a valid association to avoid
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a wrong labeling in cases where one marker disappears and another marker appears at
the same time. We determine the optimal one-to-one assignment using the Hungarian
method [89]. This method assigns each observation of F; to one observation of F;_;
in a way that minimizes the sum of the distances. The resulting labeling function is
Xt(051) = Xi-1(0;,—1) for each pair (0;,,0;,_1) that has been assigned by the Hungarian
method. Note, that we can adapt the thresholds FF online for each marker individually
based on statistics over the previous frames to account for a changing velocity of the
markers.

3.5.2 Labeling Based on the Skeleton Configuration

If a marker was occluded during some frames and reappears, or if it moves more than the
threshold 6*F | we cannot label it based on the preceding frame. However, the current
skeleton configuration C; provides a prediction of the position of each marker, given
by the global marker positions 127 (t). According to Sec. 3.5.1, we use the Hungarian
method [89] to assign all remaining observations to markers that have not already been
labeled based on the preceding frame. Here, we assign only observed points to markers in

a radius of 63 to be more robust against outliers.

3.5.3 Skeleton Estimation

Given the full or partial labeling y; of the marker observations of the current frame F;
and the relative position pfr(b;nj) of each marker m; € M with respect to its corresponding
segment, we estimate the skeleton configuration C}. In particular, we estimate the maxi-
mum likelihood skeleton configuration of p(C; | F}) taking into account the uncertainty
of observations and the joint limits of the skeleton. Due to the optical measurement
process and skin effects, we assume Gaussian noise on the 3D observations of markers
with respect to the segments of the skeleton. Thus the M-step translates to optimizing the
skeleton configuration with respect to the mean squared error of the marker distances and
the joint limits of the skeleton.

For each observation o; ;, we compute the reprojection, i.e., the estimated global posi-
tion given (Y, of the marker assigned to this observation pi H(0i) (t) by evaluating Eq. (3.3).
We aim to find the configuration of the skeleton that minimizes the quadratic reprojection
error, which is the quadratic distance between this reprojection and the actual observation.
To improve the performance of the skeleton pose estimation, we include penalties for
joint configurations that are outside of certain limits defined by considering the natural
configurations of the skeleton, forcing for example the knee to move in one degree of
freedom. Thus, the overall optimization function at time step ¢

2
fcy =3 Hpit(oi’t)(t) —ou|| +1(C), (3.10)

i€l

sums over the set /; of labeled marker observations and takes into account the joint limit
cost function [(C}).
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Figure 3.4: The number of observed markers (black) and the number of wrongly or not labeled markers
(green) of our proposed method compared to the commercially available software Cortex and to a baseline
method.

We determine the skeleton configuration C; using the optimization framework go [90],
which provides modular and flexible gradient descent optimization. Particularly, we
formulate the skeleton estimation problem as a graph, which contains the skeleton configu-
ration in a variable node, the relative marker positions in fixed nodes, and the components
of the error function f(C}) as unary and binary edges. The gradient of f(C}) with respect
to the skeleton parameterization C} is computed by means of numerical differentiation.
This optimization procedure usually converges after a few iterations, even during fast
movements and when initialized with the skeleton configuration C;_; of the preceding
frame.

3.6 Experimental Results

We evaluated the presented algorithm on various motion capture recordings of different
test subjects and marker sets. Each data set was recorded with a Motion Analysis motion
capture system with ten Raptor-E cameras at 100 Hz frame rate. Our method was able to
process data online at 100 Hz on an Intel® Core™ i7-2600K CPU with 3.40 GHz.

3.6.1 Initial Association of Markers to Limbs

In a first set of experiments, we evaluated the initialization method (see Sec. 3.4) that
associates observed markers to the skeleton segments. Therefore, we compared the
association of our method to manually labeled ground truth data. For markers that were
located in the joint area between two segments, for example the elbow or the knee, we
allowed the association to both segments. As parameter for the association of markers
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to limbs in Eq. (3.7) we chose #; = 5 and #, = 0.2. In 24 experiments, our approach
associated 99.1% of overall 969 markers to the correct segment.

3.6.2 Performance of the Marker Labeling

A key challenge during the estimation of the skeleton pose of a human is to associate
the observed points to the correct marker labels in each frame. To evaluate and compare
the labeling performance of our method, we manually annotated five publicly available
datasets of overall 10 min motion capture data, including walking, sitting on a chair,
stretching arms and legs, and jumping. Fig. 3.4 shows for each dataset and for our method
as well as the following three alternatives the number of observed markers (Observations)
and the number of markers that were either not or falsely labeled:

e Preceding frame: Our method with labeling based on the preceding frame only.
e Cortex online: Motion Analysis Cortex without manual post processing.

o Cortex manual: Motion Analysis Cortex where each dataset was manually post-
processed for 1 h.

Overall, our approach was able to correctly label 99.6% of all markers, whereas Cortex
online correctly labeled only 79.8% of the data without manual post processing. After one
hour of manual post processing for each dataset, Cortex manual correctly labeled 93.6%
of the data. Obviously, labeling of markers based on the preceding frame only is not
sufficient, as occluded markers are not correctly labeled when they reappear. Thus, our
approach provides the best performance in fully automatic marker labeling for skeleton
tracking.

3.6.3 Data Association Threshold Experiments

Labeling based on the preceding frame is sensitive to the parameter 6% which determines

the maximum distance for optimal data association in the Hungarian method. We can
adjust this parameter for each marker online using statistics over the previous frames.
Thus, we can adapt the threshold to changing velocities of individual markers. To initialize
the thresholds, we evaluated the movements of markers in a typical capture of natural
movements. Fig. 3.5 shows a histogram of correctly (left) and incorrectly (right) associated
markers based on the preceding frame with 6% set to co. Note, that the scales of the two
figures deviate largely, which indicates that most of the markers are labeled correctly. All
correctly associated markers moved less than 5 cm compared to the preceding frame. The
incorrectly labeled observations are mostly due to occlusions. Therefore, in all of our

experiments we chose the initial value 67 = 5 cm.

3.6.4 Ambiguity of the Initial Pose

As described above, our method initially tracks both potential headings of the person until
the constraints in the joints and especially in the knee joints disambiguate the situation.
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Figure 3.5: Histogram of the movement of markers between two consecutive frames for correctly associated
markers (a) and incorrectly associated markers (b) when assigned by the Hungarian method in a typical
capture. Note the substantially distinct scales of the y-axes, which shows that the bulk of the markers are
correctly associated based on the preceding frame.

To evaluate the robustness of our approach to determine the heading we evaluated its
performance on 24 datasets with two different humans and six different marker setups. In
all of the 24 datasets, our method chose the correct heading after 1.78 s in average, with a
standard deviation of 0.93 s.

3.7 Related Work

The problem of inferring the structure and motion of objects based on the observation of
markers attached to these objects has been studied intensively in the past. A common
approach is to detect connected rigid bodies and to estimate the structure of the underlying
skeleton in terms of the joints connecting these segments. Ringer and Lasenby [128]
cluster observed 3D markers using the variance of the pairwise distance over all frames.
Given the association of all markers to the segments, they determine their offsets, similar
to our work. Similarly, de Aguiar et al. [30] and Kirk et al. [73] propose a method to
cluster the observed markers to rigid bodies and estimate the center of rotation between
the resulting limb segments.

Several authors estimate the joint rotation centers and the joint angles of a human
skeleton from clusters of labeled 2D and 3D marker positions while taking into account
skin movement artifacts [4, 20, 75]. Cerveri et al. [20] and Klous and Klous [75] even infer
the skeleton structure and its configuration by calculating statistics over all frames, which
allows only offline processing of the captured data. In contrast, the method proposed by
Aristidou and Lasenby [4] as well as our approach are able to track the skeleton online
frame by frame without observing all frames first.

In many applications, for example when tracking humans, the underlying skeleton struc-
ture is known in advance. In particular, Contini [27] describes a standard human skeleton
model, which we also use in the work described here. Zordan and Van Der Horst [163]
propose a force based approach to fit such a human skeleton model to observed markers.
Similar to our work, Xiang et al. [152] estimate the configuration of a human skeleton
and utilize the knowledge about joint limits. One can either use medical studies [54]
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to determine these joint limits or learn them for individual humans by observing their
motions [56].

All the approaches described above assume known marker labels to estimate the
underlying skeleton model, or they solve the marker labeling independently of the skeleton
estimation process. In contrast to these methods, we propose a marker labeling technique
that exploits the knowledge about the current skeleton configuration. Similarly, Herda
et al. [55] present a method to estimate the labeling of the markers in each frame and
Yu et al. [156] aim to track multiple targets by fitting rigid bodies into the observed
point cloud. Both approaches are able to deal with occluded markers but they require to
manually label the markers in the first frame. In contrast, our approach performs labeling
and skeleton pose estimation automatically without any user assistance.

In addition to the academic approaches described above, there are commercial solutions
available for tracking articulated objects. We compare our work to Cortex developed
by Motion Analysis [106] that provides online labeling of objects after a prior manual
initialization and model training procedure. However, as opposed to our method, Cortex
entirely separates the labeling from the skeleton tracking and therefore requires tedious
manual post-processing to achieve results that are comparable to those obtained with our
system.

In the context of mobile robots, Ziegler et al. [162] match the information of a laser
that is mounted on the robot with a full body posture estimation of a human. This allows
the robot to robustly track and follow the pedestrian for longer periods of time. Yamane
and Hodgins [153] imitate the posture of a human tracked in a motion capture studio with
a humanoid robot, by simultaneously satisfy balance conditions of the robot. Mitsunaga
et al. [103] propose to use the information of a marker-based motion capture system
to adapt the behavior during interaction. Our system provides online skeleton tracking,
which makes it applicable to interaction scenarios with mobile robots.

3.8 Conclusions

In this chapter we presented a fully automatic method to estimate the underlying skeleton
configuration of a human based on the position of markers perceived in a motion capture
system and freely attached to the human. Our method uses the popular EM algorithm to
compute the most likely skeleton configuration by estimating the unknown association of
observations to marker labels in each frame. In contrast to existing approaches, which
typically require tedious manual post processing, our method solves the estimation of
the marker labeling without any user intervention. In an extensive set of experiments we
demonstrate that our method outperforms even a commercially available and state-of-the-
art method for skeleton pose estimation. The methods towards socially compliant mobile
robot navigation we propose in the next chapters of this thesis rely on pedestrian tracking
techniques. In our experiments, we use the position and the velocity of the pedestrians.
However, considering also more complex body language using the method proposed in
this chapter could further improve the interaction between the pedestrian and the robot.



Chapter 4

Online Generation of Homotopically
Distinct Navigation Paths

Obstacles partition the space of navigation paths for mobile robots
into homotopy classes, which are topologically distinct ways to avoid
the obstacles. In motion planning there are many applications in
which it is beneficial to consider and identify these different classes.
For example, for tethered robots, or surveillance UAVs it may be
important in which order and direction they circumvent objects in
the environment. Furthermore, we can use homotopically distinct
trajectories as an informed initialization for an optimization-based
navigation system. Since gradient based optimization approaches
are typically unable to ‘jump’ over obstacles, the homotopy class of
the trajectories does not change during optimization. Initializing
optimization in different homotopy classes therefore increases the
chance of finding the globally optimal path. In later chapters, we
will use the techniques presented here for socially compliant mobile
robot navigation. When using homotopically distinct paths online
during mobile robot navigation, it is crucial to compute these paths
fast and efficiently. To this end we propose a method to compute an
abstract graph representation of the environment from a Voronoi
diagram in which we efficiently search for homotopically distinct
navigation paths. In addition, we present an efficient method to
identify distinct classes of trajectories. An experimental evaluation
suggests that our approach outperforms state-of-the-art methods
for computing paths in different homotopy classes.

In topology, homotopy classes are defined as a set of paths that can be continuously trans-
formed into each other. In terms of motion planning, this means that we can incrementally
transform two homotopic trajectories into each other without moving over obstacles. As
an illustration, Fig. 4.1 shows a set of trajectories in three different homotopy classes in
an environment with two obstacles.

In the context of motion planning, there is a wide range of application in which it is
important to reason about homotopy classes of trajectories. For winding constrained prob-
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Figure 4.1: Example of three homotopically distinct composite trajectories in the same situation. The

agent depicted in blue passes the solid obstacles on different sides. With fixed start- and end points these
trajectories cannot be continuously transformed into each other without colliding with obstacles.

lems it is important in which way the robot circumvents the obstacles in the environment.
For example, tethered robots are constrained in their homotopy class due to the attached
cable [60], and surveillance UAVs may have the task to circumfly the monitored objects a
specific number of times [146].

Another application of trajectories in different homotopy classes is an informed initial-
ization for optimization-based navigation systems. Approaches to mobile robot navigation
often employ a cost function or constraints to encode desirable trajectory properties. If
the employed cost function accounts for higher order properties such as velocities and
accelerations, it is in general difficult to find the globally optimal solution due to the high
dimensionality of the search space. One way to address this problem is an initialization
computed in a lower-dimensional space such as a 2D grid. Approaches following this
principle exist in the spectrum between reactively following a guidance path [41] and ini-
tializing trajectory optimization regimes with a lower-dimensional path [136]. Typically,
the navigation cost function includes penalties for increasing closeness to obstacles. As a
result, gradient-based optimization approaches can typically only find solutions that are
in the same homotopy class as their initialization since they are unable to ‘jump’ over
obstacles [93]. Unfortunately, for most applications there are no methods available that
provide an initialization leading to the global minimum. To solve this problem, many
approaches resort to sampling techniques to increase the chance of finding the global min-
imum [66]. However, existing methods generate a substantial number of initial paths from
the same homotopy class, which increases their run-time. In contrast, initializing with
trajectories of different homotopy classes leads to distinct local minima after optimization.
In this way, we efficiently solve multiple solutions in parallel and select the best result for
navigation.

In this chapter, we propose an online method to explicitly compute a set of homotopi-
cally different paths to the goal, i.e., a set of paths that cannot be smoothly transformed
into each other without colliding with obstacles. We first compute a Voronoi diagram
in the environment using an efficient, incrementally updatable method [92]. From this,
we compute an abstract graph representation that captures the connectivity of the free
space of the environment. In this graph, we efficiently search for the k best paths, or for
paths that satisfy certain winding constraints. Subsequently, we convert the 2D paths into
trajectories and optimize them with respect to a navigation cost function that captures
higher order properties.

In addition, we describe a method to efficiently compute the winding numbers of a
given trajectory. The vector of winding numbers uniquely identifies the homology class
of a trajectory. Homology is a topological concept related to homotopy, which serves
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Figure 4.2: This figure shows an example of two paths that are homotopically distinct, but that are in the
same homology class. The trajectories cannot be transformed into each other without moving over either of
the two gray obstacles.

as a valid approximation for homotopy for navigation tasks. Identifying the class of a
given trajectory allows us to re-use optimized trajectories during navigation, instead of
discarding the remaining optimized trajectories after selecting the best one. This allows
robots to instantly switch to readily available fallback trajectories should the previously
selected solution become more costly or even infeasible due to changes in the environment.

In later chapters of this thesis we utilize the techniques described in this section for
socially compliant mobile robot navigation. Specifically, in Chap. 5 we present a model of
the interactive navigation behavior of multiple agents. This model also takes into account
discrete navigation decisions that correspond to the homotopy classes of the environment.
Furthermore, the techniques described in this chapter enable human-in-the-loop or shared
autonomy applications that provide qualitatively different trajectories to the user, which
we discuss in Chap. 7.

In the remainder of this section we first introduce the topological concepts of homotopy
and homology. We then describe our method to efficiently compute a set of homotopically
distinct navigation paths and a method to compute the winding numbers of trajectories. In
an experimental section, we show that our method outperforms state-of-the-art methods
for computing homotopically distinct navigation paths in run-time, which makes our
method applicable to online navigation tasks.

4.1 Homotopy vs. Homology

There are two related topological concepts for classifying paths, homotopy and homology.
Homotopy captures whether two paths can be continuously deformed into each other.
Applied to paths in a 2D environment with obstacles, two paths that are homotopic can be
transformed into each other in infinitesimal steps without contact to the obstacles. On the
other hand, the concept of homology captures how often a given curve winds around a
certain point, or an obstacle in our case. Informally, for homotopy the order in which the
curves winds around points matter, in contrast to homology. Thus, homotopy is a stronger
concept in the sense that any two homotopic curves are homologous, but not necessarily
vice versa.

Our motivation is to find homotopic distinct paths that cannot be continuously deformed
into each other. However, classifying the homotopy class of a path turns out to be much
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harder than to classify homology. Therefore, in this work we propose to use an identifier
that captures homology, which serves as a valid approximation to homotopy in the most
practical situations.

4.1.1 Homotopy

We define paths in a 2D environment as functions p : [0, 1] — R?\ {oq, ..., 0,,}, where
the points o; correspond to obstacles in the environment. Two paths with start point s
and end point e are defined as homotopic if they can be continuously transformed into
each other. More formally, the paths p; and p, are homotopic if and only if there exists
a continuous function H : [0,1] x [0,1] = R?\ {0y, ..., 0,,} for which the following
conditions hold

H(0,7)=s Vv e€]0,1] 4.1)
H(l,7v)=e VYvy€]0,1] 4.2)
H(t,0) =p,(t) Vtel0,1] (4.3)
H(t,1) = py(t) ¥t e [0,1]. 4.4)

The first two conditions fix the start point and the end point. The last two conditions
state that as we change the second argument of H from O to 1, H transforms the path p,
smoothly into the path p,.

Fig. 4.2 illustrates two paths that are not homotopic. If we think of the red path as
a rubber band fixed at the start and the end, it is not possible to reshape it to the blue
path without moving it over one of the obstacles, which corresponds to the definition of
homotopy.

For navigation tasks, we are interested in homotopically distinct navigation paths.
However, it turns out to be difficult to efficiently determine the homotopy class of a given
trajectory. Therefore, we rely on identifying homology classes, which is a related concept
that we introduce in the following.

4.1.2 Winding Numbers and Homology

A circle sector < is the area of a disk with center at o that is bounded by two radii and an
arc. We can define a function o, : < — R that maps any point x in the sector to the angle
between (1,0)” and (x — o), as illustrated in Fig. 4.3 (left).

For any continuous path p : [0,1] — R? \ {o}, we adopt the definition of winding
numbers of Fulton [43]. They define the winding number by subdividing the interval [0, 1]
into subintervals [a;, a;41] withag =0 < a; < --- < a, = 1 in a way that each of the
subsegments P |(q; a;.4] © [@i, air1] — R?\ {0} are contained in a circle sector with vertex
at o. For each such segment, we compute the angle difference o, (p(a;11)) — ao(p(a;)),
which is the change of the angle along the path. The winding number w,(p) is the sum of
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Figure 4.3: Computation of the winding number. Left: for each circle sector we can define an angle
function that returns the angle to the z-axis for each point within the slice. Right: The winding number of a
path is defined as the sum of angle differences of segments, where each of the segments is contained in a
circle sector.
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normalized such that a winding number of 1 corresponds to a full circle around o.
Fig. 4.3 (right) illustrates the subdivision of a path into two segments, and their cor-
responding angle differences. The idea behind the subdivision is to capture all windings
around the obstacle. If we only computed the angle difference between the start point and
the end point, we would possibly not capture the winding direction, and furthermore we
would miss turns around an obstacle.

For an environment with more than one obstacle, we denote for a continuous path
p:[0,1] = R?\ {oy,...,0,,} the vector of winding numbers consisting of w,, (p) as w.
Two paths are homologous if and only if all winding numbers in w are equal [43].

Fig. 4.2 shows an example of two paths that are in the same homology class. Both paths
wind counter-clockwise around the left obstacle, and clockwise around the right obstacle.
As a result, the winding numbers of both paths are w = (%, —%), which makes them
homologic according to the definition above. This example shows that there are paths
for which the concepts of homotopy and homology differ. However, in most practical
situations identifying homology classes serves as a reasonable approximation to homotopy.
In the following, we present a method that efficiently generates trajectories in different
homotopy classes. Subsequently, we present our method for identifying the homology
class of trajectories efficiently for online navigation tasks.

4.2 Generating Homotopically Distinct Trajectories

To compute paths in different homotopy classes, our method computes a graph representa-
tion of the Voronoi diagram from a grid map of the environment. For any given path, the
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Figure 4.4: Overview of the proposed method to generate an abstract graph of the environment from the
Voronoi Diagram. (A) Voronoi diagram (red) of an office environment. (B) We add Voronoi cells around the
start and the goal location for a robust connection to the diagram. (C) Graph representation of the Voronoi
diagram with connected vertices for the start and goal location.
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Voronoi diagram contains a corresponding path in the same homotopy class [9]. Hence,
our graph representation faithfully captures the information about the different homotopy
classes, enabling efficient exploration of homotopic alternatives.

4.2.1 Discretized Voronoi Diagram

The generalized Voronoi diagram is defined as the set of points in free space to which
the two closest obstacles have the same distance [25]. We compute a discretized form
on an obstacle grid map bounded by occupied cells and represent it as a binary grid
map VD in which a cell (z,y) € N? can either belong to the Voronoi diagram or not, i.e.,
VD(z,y) € {true, false}. Fig. 4.4 (A) shows such a discretized Voronoi diagram over the
obstacle map and depicts the cells for which VD (z,y)=true in red.

Our approach builds upon the approach of Lau et al. [92] for an efficient, incrementally
updatable computation of the Voronoi diagram. This method employs a wavefront
algorithm to calculate distance transforms. It simultaneously starts wavefronts from each
obstacle cell that propagate distances to the closest obstacle over the grid map. Wherever
these wavefronts meet, it considers cells as candidates for the discretized Voronoi diagram
as they are approximately equidistant to at least two obstacle cells. In general, a cell in a
grid map will not exactly meet the Voronoi condition of being equidistant to two obstacle
cells. Therefore, if two cells are at the boundary of two wavefronts it inserts the one that
least violates the condition. It also takes thresholding measures to prevent Voronoi lines
from appearing between neighboring obstacle cells and performs pattern matching-based
post-processing to reduce discretization artifacts.

In this work, we add a further post-processing method that removes ‘loose ends’ of the
Voronoi diagram that typically reach into concave structures like room corners. We detect
such loose ends via pattern matching and process them until we reach a branching point
on the Voronoi diagram. As a result, we obtain a discretized Voronoi diagram as shown in
Fig. 4.4 (A): the Voronoi lines are sparse (no double lines) and four-connected, i.e., each
cell with VD (z,y) =true has up to four neighbors that are also contained in the Voronoi
diagram, see also the magnified part in Fig. 4.5 (right).
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Figure 4.5: Left: area in the Voronoi diagram that contains the start point. Highlighted are the branching

cells bl,, b2, connected to this area. The start vertex of the resulting graph is connected to these vertices.

Right: branching cells are connected to at least three neighbor cells.

We also employ the ‘bubble technique’ proposed by Lau et al. [92] for Voronoi diagrams.
Here, dummy obstacles at the start and the goal provide a robust way to connect to the
Voronoi diagram, see Fig. 4.4 (B) vs. (A).

4.2.2 Abstract Graph Representation of the Voronoi Diagram

From the discretized representation of the Voronoi diagram described in the previous
section, we build a graph that captures the connectivity of the free space. This reduces the
number of states compared to the original grid map representation of the Voronoi diagram.
Fig. 4.4 shows the Voronoi diagram in an office environment (A,B) and the corresponding
abstract graph (C).

In particular, vertices V' in the graph G = (V, E) represent the branching cells of the
Voronoi diagram, also known as Voronoi vertices in the literature. In branching cells more
than two lines meet. They thus correspond to locations that are equidistant to more than
two obstacles. We can easily identify such branching cells since they have at least three
neighbors in the Voronoi diagram. Fig. 4.5 (right) shows a close-up of such a branching
point. The edges F capture the connectivity between the branching cells, i.e., each edge
represents a connected line of cells that belong to the Voronoi diagram.

In addition, we need to connect the start and goal position to the graph. As described in
the previous section, we insert dummy obstacles at the start and goal location such that
they effectively become enclosed by ‘bubbles’ which are obstacle free by construction
of the Voronoi diagram. Using a floodfill algorithm we mark all cells inside these areas
and identify the attached branching cells {b{,,} and {},}, as illustrated in Fig. 4.5
(left). Then, we connect the corresponding graph vertices to the start and the goal vertex,
respectively. Finally, we remove the edges that connect the vertices corresponding to
{bliany and {1}, as illustrated by scissor symbols in Fig. 4.4 (C). This process removes
edges that result from the dummy obstacles to ensure that each simple path in the graph
corresponds to one unique homotopy class. Finally, we set the weights of the edges
according to the length of the lines in the Voronoi diagram. The £ best paths in the graph
then correspond to the k& shortest paths in the Voronoi diagram.

The abstract graph grows linearly with the number of obstacles in the environment [6].
This follows from viewing the Voronoi graph as a planar graph where the number of faces
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Figure 4.6: Computing the %k best paths from the Voronoi diagram. (D) Graph representation of the
Voronoi diagram. Each path in this graph corresponds to a homotopically distinct path from start to goal.
(E) Trajectories generated from the three shortest paths. (F) Optimized trajectories.

f corresponds to the number of obstacles. Since each vertex in the Voronoi graph has
a minimum degree of three, the sum over the degrees of all vertices ) _,, deg(v) is at
least three times the number of vertices |V'|. Furthermore, any undirected graph satisfies
> vev deg(v) = 2|E|. Hence, we have 2|E| > 3|V|. Combining this with the Euler
relation |V| — |E| + f = 2 for planar graphs leads to |E| < 3f and |V| < 2f, i.e., the
number of edges and vertices is linear in the number of obstacles.

4.2.3 Finding the Shortest Simple Paths in a Graph

In the graph introduced in the previous section different paths always correspond to
different homotopy classes in the environment. Therefore, searching for the %k best
homotopically different simple paths in this graph is equivalent to searching for the & best
simple paths. The best known algorithm [69] for this problem has a runtime complexity in

O(k(E] + [V]log [V])), (4.6)
which follows from the complexity of
O(IE| + [V]log [V) 4.7)

of Dijkstra’s algorithm [36]. As the number of vertices and edges in our graph depends
linearly on the number of obstacles m, it follows that our algorithms to extract the & best
homotopically different simple paths has a complexity in

O(k(mlogm)). (4.8)

To find these k best paths from the start vertex s to the goal vertex g, we adapt an extension
of Dijkstra’s algorithm [31]. In essence, this algorithm is the standard Dijkstra’s algorithm
that keeps expanding nodes until the goal node has been expanded not for the first but for
the kth time, as outlined in Alg. 1. In the worst case, each node will thus be expanded £
times.

The algorithm uses a priority queue B, which orders paths according to their costs.
Furthermore, we count the number ¢, of the currently expanded paths to each vertex v
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Algorithm 1 Computing the k best paths in a weighted graph G = (V| E') from start
seVtogoalgeV

Input: G = (V, E), s, 9, k

Output: Paths P

1: B+ {(S)} // priority queue containing paths ordered by their costs
2: P+ () /I set of k best paths from s to g
3: ¢, < OforallveV /I counter for each vertex
4: while B # () and |P| < k do

5 (v1,...,v,) < B.pop() // get path with lowest costs in B
6 Cy, < Cy, + 1

7: if v, = g then

8 P+ PU{(vi,...,v,)}

9 else if ¢, < k then

10: for all o' with (v,,v") € E do

11: q < <7)1, ey U, U’> // append edge to path
12: if ¢ contains no loop then /1 optional check
13: B.push(q)

14: end if

15: end for

16: end if

17: end while

of the graph. While the number of paths to the goal vertex g is less than & (line 4), we
extract the path that has the lowest costs from the priority queue B (line 5). If the last
vertex v, of this path is the goal vertex (line 7), we add it to the set of k best paths P
(line 8). Otherwise, if the number of paths to v is less than &, we expand the path by all
vertices that are adjacent to v and add it to B (lines 10—13). If we are only interested in
simple paths, we check for this condition in line 12. After termination of the algorithm, P
contains the k best (simple) paths from s to g.

4.2.4 From Discrete Paths to Trajectories

After computing the k best paths in the abstract graph, we need to generate the correspond-
ing path in the original 2D environment. To this end, we store for each edge v € V' in the
graph G the corresponding cells of the 2D grid map. Then, we can simply concatenate
the cells of all edges to retrieve the path in the grid map that corresponds to a path in the
abstract graph, as illustrated in Fig. 4.6 (D,E).

Depending on the application, it may be important to not only compute a geometrical
path, but a trajectory that also captures time information, i.e., a continuous mapping

p:[0,7] — R? (4.9)

that represents a 2D position at each time step . Such a representation allows us for
example to optimize trajectories with respect to higher order cost functions that represent
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for example accelerations. In general, however, such a function has infinite dimensionality.
We propose to use splines as a finite-dimensional representation of the trajectories. Splines
are piecewise defined polynomials with a finite degree of freedom. Splines are widely
used in motion planning since they satisfy certain smoothness conditions that are crucial
for navigation tasks. Find a more detailed introduction to splines in Sec. 5.1.1.

To compute a spline from a list of cells in a 2D grid, which is the result of the method
described above, we apply spline fitting techniques. In particular, a heuristic assigns
the internal spline parameter for each point by connecting the points by straight lines.
Subsequently, it is possible to compute the spline parameters that minimize the sum of
the squared distances from the spline to each point efficiently in closed form. Fig. 4.6 (F)
shows the trajectories that correspond to the three shortest paths in the Voronoi diagram
after optimization.

4.3 Identifying Homology Classes

If the navigation task involves winding constraints, we need a method to identify the
corresponding class of a trajectory. Furthermore, identifying the topological class of a
trajectory is useful for re-using previously optimized trajectories, instead of repeatedly
initializing an optimization with the path on the Voronoi graph. To maintain a set of
optimized trajectories, we need to efficiently decide whether two given trajectories belong
to the same class.

For efficiency reasons, we identify the homology class of trajectories instead of the
homotopy class, which is a suitable substitute for the concept of homotopy in practically
relevant scenarios [11]. According to the definition above, the vector of winding numbers

w(p) = (Wi(p),---,wi(P),-- - wm(P)) (4.10)

is invariant for all trajectories of one homology class. Here, the definition of winding
numbers for trajectories with time information is analogous to the definition of winding
numbers for geometrical paths. We compute the winding number for each obstacle in the
environment as illustrated in Fig. 4.7.

For each obstacle, we need to identify one representative point within the obstacle. To
determine this point for each obstacle, we use a flood fill algorithm to determine the cells
in each enclosed region in the Voronoi diagram. Since each of these regions correspond
to one connected obstacle, we take an arbitrary obstacle grid cell within the region as a
representative point for this obstacle. Then, we evaluate the trajectory at discrete time
steps and sum up the angle differences Aw according to Eq. (4.5). Fig. 4.7 illustrates
the computation of the winding number corresponding to one obstacle. For efficiency
reasons, we adapt the step size dynamically as we walk along the trajectory to compute
the winding numbers. If the angle difference between two steps falls below a threshold,
we increase the step size, and decrease it if the difference is above a threshold. During
navigation, we need to compute the angles each time the environment changes, since
homotopy classes can emerge or fall together.
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Figure 4.7: Computation of the winding numbers with respect to obstacles. The figure shows three paths
P1, P» and p that bypass the obstacle . The infinitesimal angles Aw sum up to the winding number w;
around the representative point p; of the obstacle. The two paths on the right yield the same winding number
w;i(py) = w;(p3) in contrast to the path on the left.

4.4 Experiments

In this section we present experiments that compare our method to alternative approaches
for computing paths in topologically distinct classes. We compared our approach with a
method that computes paths by extending the state space with the H -signature, which is
similar to the concept of winding numbers. A second experiment aims to show that our
approach is suitable for computing the globally optimal trajectory in an environment by
informed initialization more efficiently than related methods. Furthermore, we compared
initialization in homotopically distinct paths with sampling-based initialization. Our
experiments suggest that our method outperforms state-of-the-art methods in run-time,
which makes it applicable to online navigation tasks.

4.4.1 Runtime Evaluation

In a first experiment we compared the efficiency of our method for online computation
of paths in different homotopy classes with an existing method. Bhattacharya et al. [11]
propose a method to compute paths of distinct homotopy classes. They perform an A*
search on an arbitrary graph representation of the environment that they augment with the
H-signature to capture topological information. In contrast to the abstract Voronoi graph
we use in our approach, their graph may contain multiple paths to the goal within the
same homotopy class, which considerably increases the complexity of the graph search.

To compare our method with the one presented by Bhattacharya et al. [11], we used
the same environment as they used in their experiments, a 1,000 x 1,000 discretized
environment with circular and rectangular obstacles, as illustrated in Fig. 4.9. For our
method, we used an Intel® Core™?2 Duo with 2.6 GHz, which seems comparable to the
computer used by Bhattacharya et al. [11]. As Fig. 4.8 shows, our method outperforms
their approach by an order of magnitude in terms of run-time for the task of computing
trajectories in the k£ best homotopy classes. Our method needs to initialize only once
and can then answer queries for multiple start and goal positions incrementally. In our
experiments, our algorithm found all 249 possible simple paths on the Voronoi diagram in
0.7 s, including map initialization.
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Figure 4.8: Comparison of our approach to the one presented by Bhattacharya et al. [11] for the environment
shown in Fig. 4.9. As can bee seen, our approach is substantially faster. While the method proposed
by Bhattacharya et al. [11] computes the 10 best paths in 15.5 s, our approach finds all 249 possible simple
paths in 0.7 s, including map initialization.

The objectives of the compared algorithms are slightly different. Bhattacharyaetal. [11]
aim to find the %k best paths with respect to the A* cost function that differ in their
homotopy class, whereas our algorithm explores paths that lie on the Voronoi diagram.
See Fig. 4.9 for the differences between the resulting paths in corresponding homotopy
classes. However, the 20 best paths returned by both methods have an overlap of 17
homotopy classes for the scenario shown in Fig. 4.9. In any case, when using the paths
for initializing optimization methods, we are not interested in the exact shape of the initial
path but only in the corresponding homotopy class.

4.4.2 Optimizing Trajectories

In a second experiment we evaluated the applicability of our method to initialize trajectory
optimization methods. The goal is to optimize trajectories of the form p : [0, 7] — R?
with respect to a cost function that also captures dynamical constraints in all homotopy
classes. Here, we compared our method with the approach of Kim et al. [71], who
compute optimal trajectories within a particular homology class using a mixed-integer
quadratic program. Similar to Bhattacharya et al. [11], they utilize the H-signature to
identify homology classes.

In this experiment, we generated initial paths in all generated homotopy classes and con-
verted these paths into a spline-based trajectory representation, similar to Kim et al. [71].
We also used six spline segments to represent the trajectory, as they did in their experi-
ments. They used a representation of nine basis functions for each segment, whereas we
used cubic splines in our experiments.

Kim et al. [71] propose a cost function consisting of the integrated acceleration along

the trajectory
T dp(t) T
S R N I @1
0 0

They use constrained optimization, which prohibits intersection of the trajectories with a
set of convex obstacles. In contrast, we use RPROP [126], a gradient based optimization
method that performs unconstrained optimization. We therefore additionally introduce a
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Figure 4.9: The first three homotopically different paths computed by our method (top) and the correspond-
ing paths as computed by the method proposed by Bhattacharya et al. [11] (bottom). Our method computes
paths using the Voronoi diagram, therefore the paths have higher distance to obstacles.

penalty for proximity to obstacles. The resulting cost function for our approach is thus

=0 H p(t) — Oclosest =0

T 1 T
o) =0 [ gl [ porFa. @

where 0osest (1) is the position of the closest obstacle to the trajectory at time t. We
use a small value for 6, which allows the trajectories to closely approach the obstacles.
However, with the distance to the closest obstacle in the denominator the limit of the
cost function is infinity as the distance approaches zero, which prohibits intersection with
obstacles. For both approaches the total travel time 7" is fixed.

Fig. 4.10 shows the optimal trajectories found by Kim et al. [71], the trajectories of our
approach after convergence, as well as the trajectories of our approach when stopping
the optimization after 0.2 s. The optimal trajectories in the first row appear similar to the
optimized trajectories of our approach after convergence. The differences originate from
the slightly different representation of the trajectories themselves, and the difference in
the cost function. However, our approach was able to compute the trajectories orders of
magnitude faster than the approach of Kim et al. [71]. Our optimization converged in
less than 0.7 s for all classes, compared to 187 s. Even when stopping the optimization
after 0.2 s, our approach delivered reasonable trajectories that are suitable for a navigation
system that computes trajectories with 5 Hz.
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Figure 4.10: Comparison of our method with the approach presented by Kim et al. [71]. It shows that our
trajectory optimization converges faster to the local optimum within each homotopy class compared to the
existing method. Additionally, it shows that our method generates valid navigation paths even with a fixed
optimization time suitable for online navigation. Top: optimal trajectories with minimal acceleration for an
environment with two convex obstacles, computed by the method of Kim et al. [71]. Middle: trajectories
after convergence computed by our method, where we initialize the optimization with paths in all homotopy
classes. Bottom: trajectories computed by our method when stopping the optimization after 0.2 s. For each
trajectories the figure shows the computation time in seconds.
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Figure 4.11: Comparison of the initialization with RRT sampling and our method on a randomly generated
map. Left: the red trajectory shows the globally optimal path. Middle: initial trajectories from an RRT
method. The seventh sample, shown in red, is in the homotopy class of the globally optimal trajectory.
Right: initial trajectories on the Voronoi path. The fourth shortest path on the Voronoi graph, shown in red,
is in the homotopy class of the globally optimal trajectory.

4.4.3 Comparison to RRT Initialization

The final experiment in this section aims to show the advantage of using homotopy classes
for initializing optimization instead of using a sampling based initialization. In this
experiment, we used a cost function similar to the experiment above, where we in addition
optimized the total travel time. As a result, the overall cost function is a weighted sum of
the total travel time, the distance to obstacles, and the acceleration along the trajectory:

T 1 T
c(p :9T+9/ dt+9/ p()|* dt. (4.13)
) =0T +0 | 150~ ommeatE 02 ), PO

As a finite dimensional representation of trajectories, we used cubic splines with a
discretization of 1s. See section Sec. 5.1.1 for a detailed description of splines.

To compare the algorithms, we randomly generated 100 different navigation tasks on
a grid map of 4 X 4 m. In each map, we randomly sampled the size and position of 20
obstacles, and the start- and goal position of the agent. Fig. 4.11 shows an example of a
randomly generated map.

For each of these tasks, we computed initial paths using our proposed method in all
distinct loopless homotopy classes, and sorted them with respect to their path length. We
then converted the paths into a spline-based trajectory representation and optimized them
using RPROP [126], a gradient based optimization method. After convergence, we assume
that we found a unique local minimum within each homotopy class, and therefore the
globally optimal trajectory by selecting the optimized trajectory with the lowest cost. In
general, we cannot guarantee that there are not multiple local minima within a homotopy
class. However, in our experiment different initializations in the same homotopy class
always converged to the same trajectory given the cost function in Eq. (4.13). Fig. 4.11
shows the globally optimal path on the left.

As a baseline method, we used the RRT [94] method to sample paths that can be used
to initialize optimization. For the RRT method, we sampled a position from a uniform
distribution over the map with a probability of 0.9, and the goal position with a probability
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Figure 4.12: Comparison or our approach with RRT sampling to initialize an optimization method. The
figures show the number of samples needed to find a trajectory in the homotopy class of the globally optimal
trajectory. Left/Middle: histogram of the number of initialization needed for our method and for RRT in
100 runs. Right: Box plot comparing the two methods.

of 0.1. This guides the RRT towards the goal position, while allowing the search tree
to explore the whole state space. For each sample we extended the closest node of the
search tree by a straight line of 3 cm. For each randomly generated map, we generated
a maximum number of 100 initial paths until the globally optimal homotopy class was
found. Fig. 4.11 shows an example of an environment where the seventh RRT path
(middle), and the fourth shortest Voronoi path (right) was in the desired homotopy class.

To compare our method with RRT, we evaluated the number of samples needed until
the homotopy class that contains the globally optimal path was found. In our experiments,
the worst case in all 100 sampled environments for our method was that the 14th shortest
path on the Voronoi diagram represented the desired homotopy class. In comparison, the
RRT method did not find a single path in the desired class in three cases. Fig. 4.12 shows
the histogram for both methods, and a box plot that shows the statistics of the number of
samples needed in comparison.

As a result, this experiment suggests that our approach outperforms a state-of-the-art
sampling method in initializing trajectory optimization methods. Our method needs less
samples compared to the RRT method to find an initial trajectory in the homotopy class
that contains the globally optimal trajectory. Furthermore, we can guarantee that we
explore all classes, which is not the case for sampling based methods with a finite number
of samples.

4.5 Related Work

Our model considers trajectories in distinct homotopy classes, which result from the
different choices of how to bypass obstacles or other agents. Other authors also inves-
tigated methods to compute homotopically distinct paths for mobile robot navigation.
Bhattacharya et al. [11] introduce the concept of the H-signature, which is a unique
identifier for the homology class of a path, and propose to augment a graph representation
of the environment with this signature. They then perform an A* search on the augmented
graph to find the optimal path within a given homology class. For example, they apply



4.5. RELATED WORK 41

their method to an eight-connected grid map of the environment. The resulting graph
representation contains multiple paths to the goal of the same homology class, which in-
creases the complexity of the A* search. To lower the computational burden, we compute
an abstract graph in which each path corresponds to a unique homotopy class.

To find optimal trajectories with respect to cost functions that also capture higher-order
properties such as accelerations, Kim et al. [71] propose to cast the trajectory generation
problem as a mixed-integer quadratic program. They represent trajectories using a linear
combination of basis functions and utilize the H-signature to find optimal trajectories
of a particular homology class. With our work we also aim to optimize trajectories with
respect to higher-order cost functions. However, we propose to initialize optimization in
different homology classes instead of augmenting the trajectory space.

Vernaza et al. [148] point out that the vector of winding numbers around each obstacle
is equivalent to the H-signature used in the abovementioned work, and is therefore an
invariant for all trajectories of a given homology class. They present an algorithm that
computes paths that satisfy certain winding constraints. For example, their method is
applicable to compute optimal paths for a UAV that winds exactly twice around each
object in a surveillance task. We also use the vector of winding numbers to compute a
unique identifier that fully describes the homology class of a composite trajectory. Igarashi
and Stilman [60] apply homotopic path planning for tethered robots that are constrained
due to the cable that is attached to a basis.

Similar to our work, Banerjee and Chandrasekaran [9] generate an abstract graph
representation from a Voronoi diagram and perform graph search on this abstract graph.
They use the abstract representation of the free space for military applications such as
rapid re-routing should a path be suddenly blocked. Vela et al. [146] propose to use
Voronoi paths for the computation of potential routes for aircrafts, where the obstacles in
this case correspond to areas of bad weather that the aircraft should avoid. The previous
two approaches describe the general idea of using abstract graphs that correspond to
the Voronoi diagram for navigation tasks, whereas we present algorithms that efficiently
compute the Voronoi diagram, its abstract graph representation and the corresponding
trajectories in the 2D environment. In addition, we evaluate the applicability of our
approaches to online robot navigation in experiments.

As an alternative to Voronoi diagrams Demyen and Buro [34] propose Delaunay
triangulation to generate an abstract graph that represents the environment. Similar to our
work, resulting paths in this graph are then mapped back to a trajectory in the original
2D environment. Whereas Demyen and Buro [34] assume a polygonal representation
of the environment, we allow arbitrary obstacles on grid maps, which enables us to
incorporate real-world sensor data.

Sprunk et al. [136] perform trajectory optimization using a spline-based representation
of the trajectories that also captures higher-order properties. In contrast to our method,
they use heuristics to find admissible initial paths in a lower dimensional space. However,
the trajectory after optimization is not guaranteed to be in the optimal homotopy class. By
parallel initialization and optimization in different homotopy classes, we can overcome
this problem.
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4.6 Conclusion

In this chapter we presented a method to efficiently compute trajectories in homotopically
different classes. We described algorithms that efficiently compute the Voronoi diagram
of an environment, generate an abstract graph representation of this environment, and
find the shortest paths in this abstract representation. Each path in the abstract graph
corresponds to a homotopically distinct path in the environment. These paths can be
used for informed initialization of trajectory optimization schemes. Furthermore, we can
utilize our method for winding number constrained problems in navigation tasks. To
identify the class of a given trajectory, we presented methods to efficiently compute the
set of winding numbers, which is also important to re-use optimized trajectories during
navigation. We presented a set of experiments that suggest that our method outperforms
related methods in terms of runtime, which makes it applicable to online mobile robot
navigation. In the following chapter, we present a model of the interactive navigation
behavior of multiple agents. This model captures discrete navigation decisions, which
correspond to the different homotopy classes. Therefore, the techniques presented in
this chapter are a basis for the following approaches to socially compliant mobile robot
navigation.



Chapter 5

Socially Compliant Mobile Robot
Navigation

The range of applications for robots extends more and more from
gated factory halls to services in direct contact with humans. To in-
teract with humans in a socially compliant way, these robots need to
understand and comply with mutually accepted rules. In this chap-
ter, we present a novel approach to model the cooperative navigation
behavior of interacting agents. This model is able to predict the be-
havior of nearby pedestrians, as well as to plan suitable trajectories
for the robot itself. In particular, we unify prediction and planning,
taking into account the expected reactions of the humans to the
actions of the robot. Our model captures both, discrete navigation
decisions such as on which side to evade a pedestrian, as well as the
continuous form of trajectories with desired properties in velocities,
accelerations and the proximity to obstacles. During navigation, the
robot continuously considers multiple possible trajectories and se-
lects the one that is socially most acceptable in the current situation.
We implemented our approach on a real mobile robot and demon-
strate that it is able to successfully navigate in an office environment
in the presence of humans. Our experiments furthermore suggest
that our method outperforms traditional path planning methods
for navigating a mobile robot in populated environments.

In the future, more and more robots are expected to perform services in the direct vicinity
of humans. Instead of gated factory halls, these robots will work in a shared environment
with humans. Especially mobile service robots, or robots that conduct transportation
tasks in populated environments, should navigate in a socially compliant way to not
unnecessarily hinder nearby pedestrians.

Pedestrians navigate with ease through complex environments, even in densely crowded
areas. This seems to be possible due to mutually accepted rules [45], which becomes
apparent when encountering pedestrians of different cultures where the learned navigation
rules suddenly fail. For example, pedestrians in different cultures show a particular side
preference when evading each other [107]. Mobile robots that understand and follow such
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mutually accepted rules are able to navigate through populated environments in a socially
more compliant way. We believe that such robots are less hindrance to nearby pedestrians
and that this increases the acceptance of robots in human environments. Therefore, the
goal of our work is to endow mobile robots with a model of the natural navigation behavior
of pedestrians.

In this chapter, we present a novel approach to model cooperative navigation behavior
of multiple agents. The model uses features that capture the intent of pedestrians to
reach a target in the most comfortable way, in accordance with psychological studies.
We model the behavior in terms of a mixture distribution that captures both, the discrete
navigation decisions as well as the natural variance of the trajectories. To account for
the discrete choices to evade obstacles or other pedestrians on either side, we utilize our
method for online generation of homotopically distinct paths, which we described in the
previous chapter. Our model yields a probability distribution over composite trajectories,
i.e., the trajectories of all agents involved in an interaction. The exact shape of this
distribution depends on a set of features that capture important properties of natural
navigation behavior and on their weights. These weights provide a convenient way to
adapt the behavior to the specific requirements of the environment the robot is employed
in. In Chap. 6 we will present methods to learn the feature weights from demonstration.

A model as described above allows a mobile robot to reason about the natural navigation
behavior of nearby pedestrians and to predict their trajectories. However, predicting the
behavior of the environment is only one part of successful mobile robot navigation.
Obviously, the crucial step is to plan and follow trajectories that lead the robot to its goal
position. As pointed out by Trautman and Krause [141], mobile robot navigation fails
in densely populated environments unless the robot takes into account the interaction
between itself and the humans. Nearby humans will react to the actions of the robot, which
is why the robot has to adapt its behavior, which in turn will affect the humans. To break
up this infinite loop, we propose to unify prediction and planning and simultaneously
predict the movement of pedestrians and plan the path of the robot.

During navigation, our model allows a mobile robot to consider the interaction between
itself and a set of nearby pedestrians. The robot continuously computes the most likely
cooperative behavior that allows all agents involved in the navigation task to reach
their goal position as smoothly as possible. To this end, our method maintains a set
of optimized composite trajectories for each homotopy class, for which we describe an
efficient gradient-based optimization scheme. Each optimized composite trajectory in this
set represents a locally optimal behavior that corresponds to a specific discrete navigation
choice for each of the agents involved. Our model assigns probabilities to each of these
discrete choices. Selecting the most likely choice results in the socially most acceptable
solution for the given situation.

The most likely trajectory the robot chooses in a particular situation contains a predic-
tion for all other agents, as well as a plan for the motion from its current position to its
goal position. In this way, the robot is able to adapt its movement early on in an encounter,
avoiding sudden and jerky evasive movements. This is in contrast to reactive methods,
which evade dynamic obstacles in a purely reactive manner and do not generate long-term
plans for the robot.
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We implemented our approach on a real autonomous wheelchair and demonstrate that
it is able to successfully navigate in an office environment in the presence of humans.
Furthermore, a comparison suggests that our method outperforms traditional path planning
methods for navigating a mobile robot in dynamic environments.

The remainder of this chapter is organized as follows. First, in Sec. 5.1, we present a
model of the interactive navigation behavior of multiple agents. Sec. 5.2 focuses on the
application of this model to mobile robot navigation. In Sec. 5.3 we describe the setup of
the autonomous wheelchair that we use for our experiments, which we present in Sec. 5.4.
In Sec. 5.5 we discuss related work and conclude the chapter in Sec. 5.6.

5.1 Modeling Interactive Navigation Behavior

In this section, we present a model that captures the natural navigation behavior of
pedestrians and at the same time the planned trajectories of mobile robots. This model
assigns probabilities to composite trajectories, i.e., the behavior of all agents involved in
the navigation task.

5.1.1 Trajectories

We represent the planar movements of each agent in terms of its trajectory

p(t) = (ﬁ“’;g;) € R? (5.1)

that continuously maps time ¢ to the continuous configuration space R? of the agent.
This trajectory defines the position of an agent at time ¢. Our model uses trajectories
to predict the movements of pedestrians and to represent planned paths for a mobile
robot. To efficiently reason about trajectories, we need a finite-dimensional representation.
Furthermore, especially for planning paths for mobile robots it is important that the
trajectories satisfy certain smoothness conditions.

We found splines to provide a suitable representation of trajectories that meet these
requirements. Splines are piecewise polynomial functions with smoothness conditions
at the nodes where the pieces connect. Specifically, a cubic spline with m segments
represents for each interval [t;,;,1] with tg < t; <, the restriction p [, ¢,,,](f) of the
trajectory to the interval [t;, ;1] as a two-dimensional polynomial of degree three

o ax,jtg‘ + b:c,jt2 + Cth + de
p’[t.7'7tj+1}(t) - <ay,jt3 + by}th + Cth 4 dy’j . (52)
Instead of directly specifying the set of coefficients {a, ;, b, j, ... }, there are more conve-

nient ways to parameterize such a spline. The parameters of Bézier splines and B-Splines
are a set of 2D control points where the curve is completely contained in their convex hull.
They provide an intuitive way to modify the form of the spline, which is why they are
widely used in computer graphics [14]. In contrast, Catmull-Rom splines pass through
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Figure 5.1: Spline representation. Each control point represents the position and velocity at a discrete point
in time. This fully defines the spline segments, which are cubic 2D polynomials. We use equidistant control
points by dividing the total travel time T into segments that represent equal time intervals each.

all their control points [19], which is a convenient property when interpolating between
points.

In this work, we use cubic Hermite splines as a finite-dimensional representation of
trajectories. The parameters for a cubic Hermite spline are the position and the first
derivative

p(t;) = p; = (pm) and p(t;) = p; = (p”) (5.3)

py,] pyv]

at the end points of each spline segment, as illustrated in Fig. 5.1. This parameterization
has inherent C'! continuity, since adjacent spline segments share control points.
The z-component of the trajectory in the interval [t;,¢;,4] is given by

2p:c7j + pz,jAt - 2px,j+1 +px,j+lAt
=3Pz — 2D ;A + 3pg 11 — Drjr1 AL
p$|[tj,tj+ﬂ(t) — (U/3 u2 U 1) p i p 5J ) AZZ J+1 p J+1 , (5.4)
px,]
sz,j
where At = t;,, — t; is the time duration of this segment and

P (5.5)
tiv1 — 1
is the normalized spline segment parameter with 0 < « < 1. Since in our representation
the trajectory p(t) is a function over time ¢, the velocity v(t) coincides with the first
derivative of the spline. Therefore, the z-component of the velocity is the first derivative
of Eq. (5.4) with respect to time , i.e.,

1 6p:v,j + 3pac,jAt - 6pac,j+1 + 3pm,j+1At
vl () = 55 (u w 1) | —6pay — 4P AL + (csApa,,j+1 — % AL| . (5.6)
px,j t

Similarly, the z-component of the acceleration is the second derivative, i.e.,
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Figure 5.2: This figure shows a composite trajectory that comprises the 2D navigation behavior of three
agents. The points highlight the position of the three agents at time £y and at time ¢;, respectively.

_ 1 12pm,j + 6pz,jAt - 12px,j+1 -+ 6p$7j+1At
e it;.1,0] () = Ar2 (ul) (—6Pm,j — A AL+ 6y 1 — 2y 5.7)

The y-components of the position, velocity and acceleration can be computed analogously.
The closed form computation of these properties allow us to efficiently evaluate the feature
values that we introduce in Sec. 5.1.4 and Sec. 5.1.6.

The position of the last control point p,, represents the target position of the agent,
which the agent reaches at time ¢,,,. To control the time the agent needs to reach the target
position, we allow the total travel time 7" = ¢,,, — ¢, to vary and distribute the time of all
other control points uniformly along the trajectory, i.e., t; = to + T %

As a result, a trajectory for agent a; with m segments has 4(m -+ 1) + 1 degrees of
freedom in total, with parameters

P = (pgc,o,py707p:v,0’py,07 S apx,mapy,m7p:v,mapy,ma T) (58)

5.1.2 Composite Trajectories

In our model, we consider the behavior of a set of agents a; € A withi € {0,..,n}. In
the context of mobile robot navigation, this may be a robot or a team of robots, and
pedestrians in the vicinity of the robot. To represent the behavior of all agents a; € A, we
use composite trajectories

x(t) = (p™(t),...,p"(t)) € &, (5.9

where p* are trajectories as defined above. A composite trajectory encodes the interactive
navigation behavior in a certain situation, i. e., the state of each agent over time. Fig. 5.2
illustrates a composite trajectory for three agents that evade each other, and the position of
all agents at a specific point in time ;. In the following section we introduce a probabilistic
model that represents distributions over these composite trajectories. In this way we model
the cooperative behavior of all agents involved in the interaction process.

The parameterization of a composite trajectory is thus the combination of parameters
for the trajectories of each agent, i.e.,

P =(P™,... P™). (5.10)
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5.1.3 Modeling Continuous Navigation Behavior

We model the natural navigation behavior of interacting agents using a distribution over
composite trajectories. This distribution captures goal-directed navigation, i.e., it assigns
high probability to trajectories that lead the agents fast but safely and comfortably to their
goal positions. Since comfort is subjective and the requirements for the trajectories of
the robot change with the environment, we use an adjustable cost function to represent
the navigation goals. This cost function is a linear combination of features that capture
important properties of the navigation behavior. As a result, likely trajectories are a
trade-off between different navigation goals that might have antagonistic effects, such as
reaching a target as fast as possible and minimizing accelerations along the path.
The features that capture these navigation goals are functions

fiX >R (5.11)

that map composite trajectories x € X’ to real numbers f(x). We denote the vector that
comprises all features as f. The cost function

0"f(x) = 60:fi(x) (5.12)

that encodes the desired navigation behavior consists of a weighted sum of feature values,
where 0 is a weight vector that provides a convenient way to adjust the modeled behavior.
Based on this cost function, we model the interactive navigation behavior as an exponential

family distribution
1

Z(0)
where Z(0) is a normalization factor that enforces the distribution to integrate to one.
Therefore, we assume non-deterministic, utility optimizing agents that choose trajectories
with lower cost exponentially more likely. A distribution of this form is also the result of
a maximum entropy assumption when learning from demonstration, as we will describe
in detail in Chap. 6.

The fact that we model the interactive behavior of all agents using a joint distribution
over composite trajectories implies that we assume cooperative agents, i.e., the goal of all
agents is to minimize a common cost function, which is also known to all of the agents.
While we assume cooperative behavior, the individual behavior of agents can still differ.
For example, our model is able to prioritize one agent such that all other agents clear
the way of this agent, as illustrated in Fig. 5.3. Increasing the weight for the feature
that captures the travel time for the agent depicted in red yields a distribution in which
trajectories with a long travel time for this agent have lower probability. As a result, the
most likely composite trajectory changes. However, we still assume that all agents agree
on this common cost function, i.e., they all agree to prioritize one agent.

The behavior resulting from the model described above strongly depends on the form of
the features. In the following, we propose a set of features that model natural navigation
behavior of pedestrians and that also yield trajectories that are suitable for mobile robot
navigation.

po(x) = exp (—0"f(x)), (5.13)
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Figure 5.3: This figure illustrates the effect of changing feature weights to the output of our model. We show
for two different weight settings the most likely trajectory. Changing the feature weight that corresponds to
the time of the red agent from one to ten leads to a behavior where the blue agents clear the way.

5.1.4 Features Capturing Continuous Behavior

According to recent studies, pedestrians seem to consider various criteria for navigation,
which we model using a set of features [57]. In particular, we propose to use features that
model an intent to reach the target positions energy efficiently, taking into account veloci-
ties and proximity to other pedestrians and obstacles. These characteristics also apply to
the desired motion of a mobile robot that navigates through populated environments.

Each feature may capture the behavior of one agent or a group of agents G C A. This
allows us to conveniently model groups of homogeneous agents, such as a standard model
for pedestrians, but also to give distinct properties to individual pedestrians or robots.
For example, Fig. 5.3 shows a policy where the group of agents depicted in blue share a
common behavior.

Time

The incentive of a group G of agents to reach a certain target position as fast as possi-
ble [104] is captured by the feature

T

£ (x) = Z/ a Ldt=> T (5.14)

acG /1=0 acG

which is the sum of the elapsed time of all agents in the group A to reach their respective
target positions.
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Acceleration

Pedestrians typically aim to walk efficiently, avoiding unnecessary accelerations [57, 104].
Integrating the squared acceleration over the trajectory yields the feature

Ta
zgce]eration Z / ||p ||2 dt (515)

acCG
The x and y component of the acceleration are polynomials (Eq. (5.6)), therefore also the

squared acceleration is a polynomial and we can compute this integral in closed form.
Velocity

We model the goal to maintain a certain velocity that is uncomfortable to exceed [53]

using the feature
Ta
Velocny Z / ||p H2 dt (516)

aclG
that integrates the squared velocity over the trajectories. Similar to the acceleration, we
can also compute this feature in closed form.

Clearance to other agents

Pedestrians tend to evade other pedestrians, a behavior which we also expect from a
cooperative mobile robot. We assume that the evasive maneuvers depend on the distances
between the agents, yielding the feature

fietance (%) ZZ/ b(t)||2 dt. (5.17)

acG beA o lpe(t

Unfortunately, it is not possible to compute this feature in closed form due to a polynomial
in the denominator of the integrand. We therefore use numeric integration to evaluate
f& .. For efficiency reasons, we vary the intervals At of the numeric integration based
on the distance between two agents. We decrease the intervals At when two agents are
close to each other and allow larger intervals when they have a greater distance. In this
way, we assure that we accurately compute this feature when two agents are close to each
other.

Clearance to static obstacles

In addition to avoiding other agents, we model the proximity to walls and other static
obstacles with the feature

Ta 1
otacte (X) = / dt, (5.18)
e (;? t=0 || pa (t) - Oglosest(pa(t)) H2

where 02 (p) is the position of the closest obstacle to position p. Similar to f$ . we
apply numeric integration with variable sampling density to compute this feature value.
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Figure 5.4: Example of three homotopically distinct composite trajectories in the same situation. (a vs.
b): the blue agent passes the solid obstacle on opposite sides. (b vs. ¢): the two agents pass each other on
different sides.

5.1.5 Modeling Discrete Navigation Decisions

In the previous section we proposed a model that yields a distribution over composite
trajectories, where smooth and comfortable trajectories are more likely. In addition to
such continuous properties, the decision process of interacting agents often also comprises
discrete decisions, such as on which side to evade an other agent or whether to move
through a group of people that belong together. We can capture such characteristics in
terms of homotopy classes of the trajectories.

In addition to homotopy classes originating from static obstacles, which we introduced
in Chap. 4, we also consider homotopy classes that result from the interaction of multiple
agents. We define two composite trajectories as homotopic if the trajectories of each agent
can be continuously transformed into each other without intersecting with static obstacles
or the trajectories of other agents. In addition to the distinct ways to navigate around static
obstacles, this also captures the possibilities of each pair of agents to evade each other
either on the left side, or on the right side. Fig. 5.4 illustrates three distinct composite
trajectories. The composite trajectories depicted in (a) and (b) differ in one of the agent’s
decision to bypass the static obstacle on the other side. In (b) and (c), the agents pass each
other on distinct sides. Hence, the depicted trajectories (a), (b), and (c) are non-homotopic.
We denote the homotopy classes for the space of composite trajectories as ¢ € V.

To identify the classes, we utilize the winding numbers of the trajectories. As described
in Sec. 4.3, the winding numbers serve as an approximate identifier of homotopy. For
static obstacles, the winding number captures the rotation of the vector from the position
of the agent to a representative point of the obstacle along the trajectory. We apply the
same principle to pairs of agents. For the winding number of a pair of agents, however,
the representative point moves along the trajectory of the second agent. In this case, we
effectively compute the rotation of the vector p°(t) — p®(t) for a pair of agents a and b
along their trajectories.

Given a set of homotopically distinct classes, we model the behavior of multiple agents
as a two-stage process. First, the agents choose a discrete class 1) € W. Second, they
pick a certain manifestation of a composite trajectory within this class. We model the
second stage in terms of distributions over composite trajectories that we described in the
previous section. However, instead of one distribution over the space of all composite
trajectories x € X', we have a distribution pg (x) with x € 1 for each homotopy class 7).

We also model the first stage, i.e., the discrete navigation decisions, with an exponential
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Figure 5.5: We use a mixture distribution to model cooperative navigation behavior. The discrete probability
distribution Pg (1)) describes the choice of homotopy classes, whereas the continuous distributions py; (x)
describe which trajectories of the class the agents are likely to choose. The images show projections of the
probability over trajectories from the left to the right side of the obstacle.

family distribution that depends on features. Instead of a distribution over composite
trajectories,

1

Po(v) = 7 gy oxp (-©7a(v)) (5.19)

is a distribution over the homotopy classes 1) € W where the feature vector g is a function
over homotopy classes, and © is a weight vector.

Fig. 5.5 illustrates the two-staged decision process of our model. This example gives
rise to a distribution over three homotopy classes that result from static obstacles. For
each discrete choice, there is a continuous distribution over trajectories. In the following,
we propose features that allow us to model, for instance, cultural preferences of passing
other agents on the left or on the right, or how acceptable it is to split groups of people
that belong together.

5.1.6 Features Capturing Discrete Decisions

To represent important properties of natural navigation behavior in terms of homotopy
classes, we use features

g: VR (5.20)

that map homotopy classes ¢/ € W to real values. The following features use the winding
numbers w, which capture the sides on which an agent passes an obstacle, or the sides on
which a pair of agents passes each other. For static obstacles, w?’ denotes the winding
number of agent a with respect to obstacle o;. Similarly, w® denotes the winding number
for the interaction between agent a and agent b. For example, two agents that pass each
other on the right yield a positive w?, in contrast to a negative value for passing on the

a
left. The vector w that contains all winding numbers is an invariant for all composite
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trajectories of one homology class with fixed start- and goal positions. As a result, the
values of features that depend only on these winding numbers are invariant within a
homology class. In the following, we use winding numbers as a function of classes 1,
which corresponds to the winding numbers of an arbitrary composite trajectory within
this class.

Passing left vs. passing right

To capture the decisions to avoid other agents or obstacles on the left or on the right, we

consider the feature
g W) =>" wh. (5.21)

a€G beA
b#a

The value of this feature increases when two agents evade on the right instead of on the
left. For example, it yields a value of 1 for two agents that swap their positions on the
right, and a value of —1 for agents evading each other on the left. Therefore, a positive
weight for this feature introduces a bias to all composite trajectories in which the agents
of the respective group evade each other on the left. The same concept also applies to
static obstacles. If we want to model a bias for agents to pass static obstacles on a specific
side, we can easily add a feature that represents the winding numbers for static obstacles.

Group behavior

The following feature indicates if the agents of group G move in between a group of
agents that belong together. An agent that passes two members of a group on different
sides moves through the corresponding group. Therefore, we have

ggGroup(z/;) :Z {BeB| I, ceB:b,c#aNwlw <0}, (5.22)

acCG
where B3 is the set of groups of agents. In particular, this feature is a counter that increases
whenever an agent of group A moves in between the members of any of the groups B € B.
A nonzero, positive weight of this feature causes the robot to avoid trajectories that lead it
for example in between parents and their children, or a group of visitors in a museum tour.

Cost of the most likely composite trajectory

Furthermore, we allow the features to depend on the distribution over composite trajecto-
ries of the corresponding homotopy class. For example, the feature

gml,cost(¢) = min eTf(X) (5.23)

XEY

captures the cost of the most likely composite trajectory x of homotopy class v/, which
allows the model to reason about the homotopy class the agents choose in terms of the
cost of the composite trajectory that is most likely according to the distribution pg(x).
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Figure 5.6: This figure illustrates the effect of changing feature weights to the probability distribution of our
model. We show the distribution over trajectories of a single agent for three different weight settings, where
we project the trajectories to the 2D area. Increasing the feature weight that corresponds to the obstacle
distance gives lower probability to trajectories that are close to obstacles. A positive weight of the feature
that corresponds to the winding numbers around static obstacles introduces a bias to the left. The images
show projections of the distribution over trajectories from the left to the right of the obstacle.

Fig. 5.6 illustrates the resulting probability distribution from the two-staged process for
one agent in an environment with two static obstacles. With a low penalty for proximity
to obstacles, the most likely trajectories move straight through the narrow passage. When
increasing the weight of the feature corresponding to obstacles, evading the passage on
the outside becomes more likely, even if this causes longer trajectories. Furthermore, the
trajectories of all homotopy classes keep a greater clearance to the obstacles. In the last
example, we add a bias for evading obstacles on the left, which shows in the distribution
over the trajectories.

5.2 Socially Compliant Mobile Robot Navigation
In the previous section we described a probabilistic model to capture the cooperative

behavior of a group of agents. A mobile robot can use this model to predict the behavior
of nearby pedestrians and at the same time to plan socially compliant trajectories. In
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the following, we present methods to unify prediction and planning for mobile robot
navigation. Furthermore, we discuss practical considerations necessary for efficient
mobile robot navigation in complex environments.

5.2.1 Unify Prediction and Planning

The model we introduced above is able to predict the cooperative behavior of a group of
agents. Let us assume that the model accurately describes the natural navigation behavior
of pedestrians, and that we want a mobile robot to imitate human navigation behavior.
In this case, we can use the model during navigation to predict how a pedestrian would
react in the situation of the robot, including the interaction with other pedestrians. This
‘prediction’ is what the robot should execute to imitate human navigation behavior. As a
result, the robot navigates in a human-like way.

In practice, it might not always be desirable for the robot to imitate human navigation
behavior. However, the same principle also applies to a desired behavior of the robot that
is different from typical pedestrian behavior. By modifying the feature weights, the robot
‘predicts’ trajectories for itself that correspond to the desired behavior, still modeling the
behavior of nearby pedestrians and their reaction to the actions of the robot. Since the
features are meaningful properties of the navigation behavior, changing feature weights is
a convenient way to change, for example the desired velocity, the accelerations, or the
desired clearance to obstacles.

For a given situation, our model yields a probability distribution over composite
trajectories. From this distribution, the robot has to commit to one specific trajectory that
it follows. There are different ways of choosing such a trajectory. The robot could either
sample from the distribution, which would yield a non-deterministic behavior. For this,
the robot would apply ancestral sampling, in accordance to the two-stage process that we
described above, first sampling from the discrete set of homotopy classes and subsequently
selecting a composite trajectory from the chosen class, as in the example illustrated
in Fig. 5.5. However, it is not feasible to sample from the distribution online during
navigation. Furthermore, we would have to include a mechanism to avoid hysteresis, i.e.,
to stick to one plan and not to continuously change it.

We propose an alternative method to utilize our model for efficient mobile robot
navigation. During navigation, we choose the most likely state in both stages, selecting
the most likely homotopy class

~

1) = argmax exp (—@Tg(lp)) = argmin ©7 g(v)) (5.24)
pevw PYew

with respect to Eq. (5.19), and subsequently the most likely composite trajectory within
this homotopy class

%V = argmaxexp (—0"f(x)) = argmin 6" f(x) (5.25)
XE XEY

that ist given by Eq. (5.13). However, to evaluate the features g(v) that we described
in Sec. 5.1.6, we need to compute the cost of the most likely trajectory within each
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homotopy class. Computing x¥ for all classes 1) enables us to evaluate the probability
distribution over homotopy classes, and subsequently to select X¥ that corresponds to
the most likely homotopy class 1& If our model accurately captures socially compliant
behavior, this method results in the a best guess for the behavior of the pedestrians and
the socially most compliant plan for the robot.

In practice, due to the variability of human navigation behavior, the actual actions of
pedestrians may differ from the predictions captured in X¥. Furthermore, the environment
might change, such as doors could be closed that were previously open. Therefore, it is
important to update the plans continuously during navigation. As a result, it is crucial for
our method to optimize the trajectories online efficiently with a high frequency.

5.2.2 Efficiently Optimizing Trajectories

As outlined previously, we need to optimize the composite trajectories of all considered
homotopy classes online during navigation. We propose gradient-based optimization
techniques to efficiently optimize the parameters P in Eq. (5.10) of an initial composite
trajectory x with respect to its probability density as given in Eq. (5.25). To this end, we
compute the derivative of the feature vector f with respect to the spline control points P
of x using a combination of analytical and numerical differentiations. To optimize the
control points of composite trajectories using this gradient, we use the optimization
algorithm RPROP [126]
The gradients that lead to the most likely trajectory (Eq. (5.25)) are given by

007 f(x
a1 al ~a1 ~al al ( )(ll sal sa1 a (526)
O(Pa0s Piyos Palos Pyos - - - » P Dyl Prims Pyim, 11, ... )
dfi
= ZOZ al a1 a1 a1 Jil(X) a1 a1 a1 a (527)
p a(px,(]?py,07px,07py707 <+ Dims, Pysms, Poms Dymy 1 - )
=) 0:;Vfi(x). (5.28)

For the features accounting for acceleration and jerk we can compute the derivatives
in closed form, since these features are integrals over polynomials. For more complex
features for which we cannot compute the gradients analytically, such as the inverse
distance to obstacles, we apply a combination of numerical integration and analytical
derivatives. In more detail, applying numerical integration to features

Flx) = /t o(x, 1)t (5.29)

<Y wﬂx’ B) + o(x, ten) (5.30)
ty

allows us to compute the derivatives at each sampling point ¢,

Vix) = Z M(Vc(x, tr) + Ve(x, tig))- (5.31)

ty
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For the features listed in Sec. 5.1.4 it is feasible to compute the derivatives of the inner
function ¢(x, ;1) in closed form and therefore to efficiently compute the feature gradients
using numerical integration.

Since we want to compute the most likely trajectory within each homotopy class, it is
important to make sure that the homotopy class does not change during optimization. Due
to the features f§. . and f$ . (Sec. 5.1.4), the cost increases when the trajectories
approach other agents or static obstacles. As a result, the gradient-based optimization
tends to stay within the homotopy class of the initial guess. However, depending on the
step size of the gradient-based optimization, we cannot guarantee that the homotopy class
does not change. To overcome this limitation, we compute after each optimization step
the vector of winding numbers w with respect to static and dynamic obstacles. If this
vector changes within two optimization steps, we dismiss this step and proceed with a
lower step size.

The optimization of the composite trajectories in the different homotopy classes are
independent. We can therefore parallelize the optimization process to enable efficient
computation. However, in practice the resources in terms of available processor kernels
for the navigation algorithm are limited. In the following, we outline how to maintain a
set of relevant homotopy classes instead of exploring the space of homotopy classes from
scratch.

5.2.3 Maintaining a Set of Relevant Homotopy Classes

During navigation, the robot constantly optimizes composite trajectories of different
homotopy classes. The number of homotopy classes increases exponentially with the
number of pedestrians and obstacles in the environment. In practice it is therefore
not possible to consider all homotopy classes. To enable efficient online computation,
we propose to use heuristics that prune the homotopy classes that we consider during
navigation.

To this end we rely on the method to generate homotopically distinct paths that we
described in Chap. 4. This method returns the k-shortest trajectories on the Voronoi graph.
In this way, we rule out long trajectories or detours in the first place. Furthermore, this
method filters out trajectories containing loops. From these k-shortest trajectories for all
agents we generate all combinations, which results in composite trajectories in different
homotopy classes. However, they do not contain variants from the pairwise interactions
between agents. In the following we describe an algorithm that iteratively generates
relevant homotopy classes.

Alg. 2 describes this method in detail. The idea behind the algorithm is to consider
different outcomes of an interaction between two agents only when agents are likely to
interact in the first place, i.e., when they are close to each other at some point along their
trajectories. In this way, the algorithm ignores interactions between agents that are highly
unlikely. First, we initialize the set W’ with composite trajectories that arise from static
obstacles. For each element x in this set, our algorithm identifies a potential evasive
maneuver when two agents a and b come close to each other at some point along x. For
such a potential evasive maneuver, we want to reason about both possible outcomes,
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Algorithm 2 Finding the subset of relevant homotopy classes given a set of interacting

agents
1« \I];tatic

2: while unresolvedCollisions(¥’) do

3: for all x € ¥’ do

4: for all a, b with a # b do

5: if a and b interact in x and X, ¢ U’ then
6: U — W' U X o rab

7: end if

8: end for

9: end for

10: end while

1.e., passing left or passing right. To this end, we generate a composite trajectory X, o a»
in which the agents a and b pass on the other side compared to the original composite
trajectory. Our algorithm repeatedly looks for such potential evasive maneuvers as
described above until there are no unresolved collisions, or the maximum number of
allowed homotopy classes has been reached. The algorithm resolves collisions that occur
earlier first. In this way, even when limited to a small number of classes, we are able to
react to potential immediate interactions. During navigation, we repeat the method as
described above continuously, to always maintain a set of homotopy classes that captures
the likely navigation choices of the agents.

In all generated classes, we optimize the composite trajectories in each planning cycle.
The convergence time of optimization-based techniques typically decreases when the
initial guess is already close to the optimum. Thus, during navigation, it is desirable
to re-use previously optimized trajectories. In particular, from one planning cycle to
the next the current position of the robot as well as the environment does not change
substantially in most situations. Therefore, we propose to maintain a set of optimized
composite trajectories during navigation. Whenever a new homotopy class emerges due
to changes in the environment, we need to add a corresponding composite trajectory to
the set. On the other hand, when an obstacle vanishes, two homotopy classes merge. In
this case, we have two trajectories in the same homotopy class and we can delete one of
them, since both classes lead to the same composite trajectory after optimization. For
both cases, we identify the homotopy class of a given composite trajectory, for which we
rely on the winding numbers that we described in Sec. 4.1.2.

5.2.4 Integration with Global Path Planning

The time to optimize composite trajectories increases with the travel time of the agents.
Furthermore, the uncertainties in predicting cooperative behavior grow with the prediction
horizon. Therefore, we employ our method to represent the immediate behavior of all the
agents in the near future and represent more distant behavior by globally planned paths
independently for each agent. This enables a mobile robot to apply the proposed method
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Figure 5.7: This figure shows an example for the global A* plan, the intermediate target positions and a
resulting composite trajectory for an environment with two agents and one static obstacle. The dashed lines
correspond to the A* plan, the solid lines to the composite trajectory that captures the interactive behavior
in the time interval from g to tg + %,,.

even in large environments.

At time £, we apply our model of socially compliant navigation to compute trajecto-
ries within the time interval [t, t, + ¢,] and represent the behavior in the time interval
(to + tp, tena) using the output of a standard path planning algorithm for each agent. For
each agent a, i.e., the robot and all pedestrians that are detected by the robot, we generate
an initial trajectory Pgjq, to a global target position using A* search. In our experiments,
we assume known target positions for the agents. However, there exist approaches that we
could use to estimate the target position based on the observed trajectories [10, 160]. As a
cost function for global path planning we use the time to reach the target as well as the
distance to obstacles. We augment the A* path with a constant velocity profile for each
agent, which allows us to compute intermediate target positions given by Pgjgpy (to + tp)-
Subsequently, we use our model to compute a probability distribution of the composite
trajectory of all agents from their current positions to these intermediate target positions.

In our experiments, we typically set the planning horizon to ¢, = 10s. Fig. 5.7
illustrates an example of the integration with global path planning for an environment
with two agents and a static obstacle.

5.2.5 Online Path Planning

During navigation, it is necessary to update the current plan continuously to account
for changes in the environment, and for deviations from the prediction and the real
behavior of the pedestrians. In each planning cycle, the robot first updates a grid map
of the environment given the current sensor readings as well as the estimated position
and velocity of the pedestrians, as described in Sec. 5.3.1. Then, the robot computes a
trajectory and sends it to the controller for execution.

However, since we apply optimization, the trajectory generation consumes some time.
If the robot planned a trajectory with start point at the current state, it would already be at
a different state at the time the trajectory is optimized and ready for execution. As a result,
there would be a discontinuity in the trajectories the controller receives. To overcome this
problem, we use at each planning cycle the expected state of each agent at the time the
optimization is finished as start point for the path planning.

Fig. 5.8 illustrates this method. At time ¢;, the robot has just sent the red trajectory
to the controller. The robot r uses this trajectory to predict the position p”(¢;,1) of the
robot at time ¢;,1, where At = t;,1 — t; is the maximum allowed optimization time. It
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Figure 5.8: Online path planning. At time ¢;, the robot sends the red trajectory for execution to the controller
and has to initiate the next optimization. Therefore, it uses the sent trajectory to predict the robot’s pose at
time ¢;41 and sets the start pose of the trajectory to be optimized to p” (¢;41). After the optimization has
finished, the new trajectory (blue) connects smoothly to the previous trajectory (red).

subsequently sets the start point of all trajectories to p”(¢;11). By starting the optimization
at time ¢;, the new trajectory is ready at time ¢;;,. This method guarantees that the new
trajectory that we send to the controller smoothly connects to the previously executed
trajectory without discontinuities.

Obviously, this method is only applicable to the robot itself, for which we trust the
controller that it keeps the robot on the desired trajectories. For the pedestrians, we
use a constant velocity prediction within the time interval At. In our experiments, we
used a planning rate of 5 Hz. Therefore, the prediction error due to the constant velocity
prediction is relatively small.

5.3 Setup of a Robotic Wheelchair

For our experiments we equipped an electronic Permobil C500 wheelchair with controls
and sensors that enable the wheelchair to operate autonomously. A custom-made control
board interfaces the internal control to send virtual joystick commands to the wheelchair.
For odometry, we equipped each of the front wheels with wheel encoders. In addition,
we mounted two Hokuyo UTM-30LX laser scanners at the front of the wheelchair, as
illustrated in Fig. 5.9. For perception, localization and planning we mounted a desktop
computer with an Intel® Core™ 17-4770S 3.9 GHz processor to the back of the wheelchair.
The wheelchair is able to operate fully autonomously, not relying on external sensors or
processing devices. In the following, we describe the perception as well as the control
components of the wheelchair.

5.3.1 Perception

In order to perceive the environment, we localize the robot in a static grid map using
laser-based Monte Carlo Localization (MCL) [140]. This method maintains a probability
distribution over the pose of the robot based on the sensor readings of the wheel encoders
and the range measurements of the laser scanners. In particular, MCL represents the
distribution in terms of a set of particles that are samples drawn from the distribution. In
contrast to parameterized representations, such as Gaussian distributions, this method can
represent arbitrary, possibly multi-modal distributions.

The localization method returns the pose of the most likely particle as the current pose
estimate. Using this estimate, we integrate the laser scans into the static grid map in each
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Figure 5.9: Autonomous wheelchair used for the experiments. We equipped the Permobil C500 wheelchair
with wheel encoders, two laser range finders at the front and a control interface to send joystick commands
to the wheelchair. For processing the navigation algorithms, we mounted a small desktop computer at the
back of the wheelchair.

planning cycle. This allows our path planning method to also react to dynamic obstacles
that are not contained in the static map.

In addition, we estimate the position and velocity of pedestrians based on laser infor-
mation, since we treat pedestrians differently from other obstacles. For pedestrians, we
predict the behavior using our method to socially compliant robot navigation, in contrast
to other obstacles that we integrate into the obstacle grid map. In a first step, we discard
the laser beams that correspond to obstacles in the static map. After this background
subtraction only obstacles that were not originally mapped remain in the laser image.
Subsequently, we extract from the image objects that show typical characteristics of
pedestrians. In particular, we filter out objects that are too small, or too large to originate
from a potential pedestrian.

In each cycle, we then assign these observations to existing tracks of pedestrians, or
add a new track if the observation cannot be assigned to any of the existing tracks. Our
method classifies a given track as a pedestrian if it satisfies certain conditions such as
smooth movement and velocity limits. By smoothing the history of the track we also
estimate the current velocity of each pedestrian.

5.3.2 Controller

To navigate the wheelchair along a given trajectory, we apply a cascaded control scheme.
Since we only have access to the joystick input of the wheelchair, which does not directly
correspond to velocities, we implemented a PID controller for the velocity commands.
This controller takes as input the desired translational and angular velocity as well as the
current odometry measurements.

On top of this first controller, we rely on the dynamic feedback controller presented
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Figure 5.10: A robot controlled by our method navigates from its current position to its target position and
avoids a static obstacle in the process. The red dot illustrates the robot’s position at four individual time
steps, and the gray line visualizes the trajectory that the robot has already driven. When the robot detects
the unmapped static obstacle, it computes both possible homotopy classes and behaves according to the
most likely trajectory, depicted as a thick red line.

by Oriolo et al. [113] to steer the wheelchair on a given trajectory. It takes as input the
desired trajectory and odometry readings as error feedback. Our path planning algorithm
continuously replans and sends updated trajectories to the controller. Therefore, the
controller always executes the latest available trajectory data for a given time step. The
output of this controller is the translational and angular velocity, which it sends to the
low-level controller described above.

For safety reasons, we apply a collision avoidance system that can override any com-
mands from the trajectory planning module when necessary. Therefore, we constantly
extrapolate the current velocity and check the time to collision with any obstacle currently
detected by the laser scanners. Whenever the wheelchair reaches a critical point where
the deceleration necessary to avoid collision exceeds a threshold, the collision avoidance
module interferes and decreases the velocity commands.

5.4 Experimental Evaluation

The goal of this section is to demonstrate that our approach allows a mobile robot to
autonomously navigate in the presence of humans in a socially compliant way. In the
following experiments we used the wheelchair system as described above. For the
pedestrians, we assume known target positions.
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Figure 5.11: A robot controlled by our method avoids a static obstacle and a pedestrian. As soon as the
robot detects the pedestrian, it computes the possible cooperative behavior of the pedestrian (blue) and the
robot (red). The robot predicts for the pedestrian to evade the obstacle on the right. The pedestrian behaves
according to the prediction of the robot and thus the robot proceeds to follow its plan.

5.4.1 Robot Navigation in the Presence of Unmapped Static Obstacles

In a first experiment, the robotic wheelchair controlled by our method navigated through
a static environment. Fig. 5.10 visualizes the belief of the robot during the navigation task
in terms of the most likely trajectories for each homotopy class. The figure highlights the
most likely trajectories that are selected for navigation in thick red in four consecutive time
steps. The first image shows the trajectory from the start position of the robot to its target
position in the static map of the environment. In the second image, after having traveled
around the corner, the robot perceived a static obstacle in the middle of the corridor,
which is not part of the static map. As a result of that, the robot started reasoning about
the resulting homotopy classes, i.e., trajectories that pass this obstacle on the top (left
side) and about trajectories that pass this obstacle on the bottom (right side). The robot
preferred to pass the obstacle on the bottom since this trajectory has higher likelihood.
The third and the fourth figure show the robot pursuing the selected trajectory moving to
the target position. The gray lines show for each time step the trajectory driven by the
robot so far.
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Figure 5.12: Example interaction of the robot (red) with a pedestrian (blue) in the presence of a static
obstacle in the corridor. In the top left image, the robot predicts for the pedestrian to evade above the
obstacle (thick blue line). However, the pedestrian insists on passing on the other side. Thus, the robot
reevaluates the situation, and changes its plan to pass the obstacle on the left side, as illustrated in the two
bottom images.

5.4.2 Robot Navigation in the Presence of Unmapped Static Obstacles
and Humans

Fig. 5.11 visualizes a second experiment, where the robot navigated through the same
environment. In the third image, however, the robot suddenly encountered a pedestrian
moving in the opposite direction. Assuming cooperative behavior, the robot started
reasoning about composite trajectories comprising itself and the pedestrian. In other
words, the robot jointly reasoned about its own trajectory and the trajectory of the
pedestrian. As can be seen in the third and fourth image, the robot concluded that the
pedestrian most likely passes the static obstacle on the top, since this behavior has the
highest likelihood. As a result, the robot choose to pursue its original plan and passed
the obstacle on the bottom. In the fourth image the robot has lost track of the pedestrian
since it was occluded by the static obstacle. The gray line at the right side of the picture
corresponds to the pedestrian’s trajectory according to the perception of the robot.

Fig. 5.12 visualizes a third experiment in the same environment. The robot also
encountered the static obstacle and a pedestrian that moved in the opposite direction. In
the second image, the robot assigned highest likelihood to the homotopy class in which
the pedestrian passed the obstacle on the left, similar to the previous experiment. However,
in this experiment the pedestrian insisted on passing the static obstacle on the right, which
does not match the robot’s prediction, as illustrated in the third figure. Since the robot
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Figure 5.13: Results of the A* planning method. The left axis corresponds to the minimum distance
between two agents in all runs and the black solid line indicates the safety distance of 0.3 m/s that our
method was able to satisfy. At the point where the radius setting is high enough to allow the A* planner to
satisfy this distance, the robot has to stop in approximately 15% of the time as indicated by the dashed line.

constantly updated the probability distribution to the current state of the environment, it
was able to adapt the prediction of the cooperative behavior. As a consequence, the robot
changed its plan, decided to give way to the pedestrian and passed the obstacle on the left.

5.4.3 Comparison to a Traditional Path Planner

We conducted a set of experiments in which we evaluated the performance of our method
in comparison to previous approaches. As a representative of traditional path planning, we
implemented an A* path planner in configuration-time space that uses a constant velocity
prediction of the motion of the pedestrians. The A* cost function comprises penalties
for proximity of obstacles and the length of the path. We set the parameters of both the
A* planner as well as of our method to a desired velocity of the robot of 0.5m/s. Whenever
the path planner could not compute a valid path to the target position at any point in time,
we stopped the robot. In addition we stopped the robot whenever the distance between
the robot and the human fell below a safety distance.

Comparison in simulation

In a first experiment we acquired data of realistic evasive movements of two pedestrians
that evaded the wheelchair robot in a corridor. To this end, we manually steered the
wheelchair with a maximum velocity of 0.5m/s ten times in an encounter with two
pedestrians. Subsequently, we used these recorded trajectories for a comparison of our
method and the A* path planner. To allow for a fair comparison, we fixed the recorded
trajectories of the pedestrians, and used the method proposed in this chapter as well as the
A” planner to control the robot in simulation, where we set the target position of the robot
and the pedestrians to the last position observed in the original recordings. The minimal
distance during the manual runs was 0.3 m, which we in the following consider as the
safety distance the robot should always respect.

Our method was able to successfully navigate the simulated wheelchair to the target
position in all runs. At each point in time during the simulations, our method was able to
compute a path to the target position by modeling cooperative behavior of the pedestrians.
Furthermore, the distance between the robot and the pedestrians never fell below the
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Figure 5.14: Autonomous mobile robot navigation where a robotic wheelchair passes two pedestrians in a
hallway using the proposed socially compliant navigation approach. The bottom images depict the driven
trajectories (gray) and the interaction of the robot (red) with the pedestrians (blue) predicted by the robot.
At first, the pedestrians block the hallway such that a traditional path planning algorithm would be unable
to find a path to the target position. In contrast, our method expects the pedestrians to cooperatively engage
in joint collision avoidance and is able to find a path to the target position.

safety distance of 0.3 m. As a result, the robot was never blocked, i.e., our method never
stopped the robot during navigation and was able to smoothly evade the pedestrians.

In contrast, Fig. 5.13 shows the results of the A* planning method. The z-axis of the
plot corresponds to different settings of the radius of the humans and the robot. The A*
planner returns a path only if it is guaranteed to be collision free according to the agents’
radius along the whole path. For the prediction of the movement of the pedestrians we
used a constant velocity model. In this experiment we predicted the pedestrians movement
over a time horizon of 10s. Fig. 5.13 shows that for low values of the radius the robot
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Figure 5.15: This figures show the belief during planning in different situations for different methods. The
top row shows the dynamic A* planner using a constant velocity prediction. The middle row shows our
method, which predicts the cooperative behavior. The bottom row shows how a human driver resolves the
situation.

was never blocked, i.e., the planner was always able to compute a valid path to the target
position. However, as a result the minimum distance along the path was also very low,
since the low value for the radius allowed the A* planner to compute trajectories that have
a low clearance to obstacles. At the point where we set the radius high enough to always
satisfy the safety distance of 0.3 m in all runs, the robot was blocked in approximately
15% of the time. In practice, this means that the autonomous wheelchair would often
suddenly stop during execution, which increases the time to reach the target and, more
importantly, leads to an uncomfortable navigation behavior. This problem is referred to as
the ‘freezing robot problem’ by Trautman and Krause [141].

This experiment demonstrates the shortcomings of A*-like path planners when nav-
igating in the presence of humans. These approaches rely on computing a path to the
target position, which may be blocked by pedestrians at any point in time. In contrast,
the approach presented in this chapter predicts cooperative behavior of pedestrians and
is therefore able to navigate a robot efficiently and in a socially compliant way in the
presence of humans. In this experiment, we used fixed trajectories of the pedestrians to
provide the exact same conditions for both methods. However, this does not evaluate
the full interactive behavior of the methods. Humans react to the behavior of the robot,
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Figure 5.16: Comparison of our approach to socially compliant mobile robot navigation, a traditional path
planner, and manual steering. Our method is blocked considerably less compared to the A* planner, similar
to a human wheelchair user. This also results in smoother trajectories with less acceleration.

therefore only real robot experiments, which we present in the following, can evaluate the
interaction behavior.

Comparison with a real robot

To compare our method in a realistic encounter with humans, we conducted similar
experiments as described above in a hallway, this time with a real robot and real interaction
with humans. The two pedestrians as well as the robot always started at the same
positions in ten runs for each method. Fig. 5.14 depicts four successive time steps and the
predictions of our method during such an encounter. First, the pedestrians walked side by
side, blocking the corridor. Our method expected the humans to cooperatively engage in
cooperative collision avoidance. During the encounter, the robot repeatedly computed the
most likely cooperative interaction with the pedestrians, which allowed the wheelchair to
engage in a joint collision avoidance.

As a comparison, we also applied the A* planner to control the robotic wheelchair
in these encounters. Fig. 5.15 shows the planned path of our method, the A* planner,
and the observed path when manually steering the wheelchair, in comparable situations.
The figure shows one instance where each method choose to evade on the right side,
and one on the left side, respectively. The top row shows the prediction and the planned
path for the A* method. It shows that the A* method approached the pedestrians until
the safety distance has been reached, and started only then to evade the pedestrian. In
contrast, our method, depicted in the middle row, predictively computed a trajectory that
lead the robot smoothly around the pedestrians. As a result, the robot started moving to
one side at an early stage of the encounter, avoiding sudden and jerky evasive movements.
Furthermore, the figure shows the prediction of the pedestrians’ behavior. Our method
predicted that the pedestrians cooperatively evade the robot, which we can also observe
from real pedestrians, as shown in the bottom row.

Fig. 5.16 shows quantitative results averaged over the ten runs for both methods, and for
the observed behavior of pedestrians, respectively. It shows that the A* method stopped
on average 2 s in each run since the planner was not able to compute a collision free path
to the target position. In contrast, a human steering the wheelchair as well as our method
were able to proceed to the goal position smoothly in all runs. This is possible due to
their predictive abilities which allows the wheelchair to evade the oncoming pedestrians
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early in the encounter. The smooth behavior without stopping also reflects in the average
acceleration along the trajectories, which is an indicator for the comfort of the navigation
behavior. This experiment illustrates the advantages of our method over traditional path
planning methods in navigating a mobile robot in the presence of humans.

5.5 Related Work

Understanding the natural navigation behavior of pedestrians is of interest in psychological
research, but also in a variety of other fields such as animation, evacuation studies, and
robotics. Therefore, many authors proposed different approaches to model the typical
movements of pedestrians [13, 26, 49, 154, 155], which can be classified into steering
and optimization models [157].

Steering models regard humans as reactive agents that perform actions depending on
the current state of their environment. A popular method that falls in this category is the
social forces model by Helbing and Molnar [53]. Social forces consist of an attractive
force that pulls the agents towards the target position and repulsive forces that push the
agents away from obstacles. This models goal-directed behavior of pedestrians who avoid
collisions with obstacles and other pedestrians. To fit the shape of the forces to real
behavior of pedestrians, Helbing and Johansson [52] and Johansson et al. [65] propose
machine learning methods to learn their parameters from observations. Also learning from
observations, Lerner et al. [95] build a database from observed navigation behavior, and
select the nearest neighbor in this database to predict the navigation behavior of interacting
pedestrians. Hall [49] introduced the concept of proxemics, which defines distances up to
which people comfortably approach each other during an interaction. However, Luber
et al. [99] present experiments in which they show that during walking pedestrians
regularly intrude into the personal space of others. To obtain a more accurate model of
human interaction, they learn motion prototypes from observations of pairwise interactions.
Similar to the methods we present in this thesis, they use their model of human-human
interaction for socially-aware robot navigation. Other authors explicitly investigated the
interaction behavior between robots and pedestrians. Pacchierotti et al. [114] describe
an experiment in which pedestrians repeatedly encounter a mobile robot in a hallway,
whereas Miiller et al. [108] present an approach in which a robot makes use of nearby
pedestrians during navigation. They propose to have the robot select a pedestrian that
walks in the desired direction and to follow this person. In contrast to these methods, we
model humans and robots as utility-optimizing agents that prefer trajectories with lower
cost.

Other authors proposed different cost functions that capture human-like navigation
behavior. Hoogendoorn and Bovy [57] assume agents that minimize the walking dis-
comfort, which they model as a linear combination of accelerations and the distance to
obstacles. Pham et al. [116] propose to maximize the smoothness of the trajectories, and
Arechavaleta et al. [2] penalize the first derivative of the curvature. Mombaur et al. [104]
use optimization techniques to have a humanoid robot imitate human navigation behavior.
Similarly, to enable human-like navigation of a mobile robot, Kirby et al. [72] cast social
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conventions such as personal space, and a bias for evading pedestrians on the right, as
constraints in a global path planner. In our model, we use features that capture important
properties of natural navigation behavior, and optimize trajectories with respect to a cost
function that consists of a linear combination of these features. In contrast to the above-
mentioned approaches, we additionally model the behavior of multiple agents. This allows
a robot to capture natural interactions between pedestrians, and between pedestrians and
the robot itself.

Especially when navigating through populated areas it is crucial for a mobile robot to
assume cooperative behavior of the pedestrians to some extent. If the robot considers
pedestrians as obstacles that will not yield, it may not be able to plan a path through
these environments, which is referred to as the freezing robot problem by Trautman and
Krause [141]. In their work, they develop interactive Gaussian processes to allow a robot
to engage in joint collision avoidance, i.e., to plan paths by expecting other agents to
behave cooperatively to some extent. Social forces are also able to model cooperative
navigation behavior, since the modeled agents all follow the same rules. Similarly, van den
Berg et al. [143] present reciprocal velocity obstacles (RVO), which is a set of velocities
that potentially lead the agents into collision. If all of the agents select a velocity outside
of their reciprocal velocity obstacles, this approach guarantees collision free navigation of
all agents. This algorithm assumes that all agents take over half of the effort of evading
each other. Guy et al. [48] extend RVO to achieve a more human-like behavior.

Knepper and Rus [76] also present a method for cooperative collision avoidance.
They propose an approach inspired by the psychological aspect of civil inattention. An
interaction begins when the robot perceives a possible future collision with an agent such
as a pedestrian. The robot then decides whether a person is engaged, i.e., pays attention.
If this is the case, the robot makes a visible move to correct its trajectory by about half
of the amount required to fully avoid collision with the pedestrian, similar to the RVO
approach. Then, the robot sticks to this plan, showing civil inattention to avoid oscillating
behavior while each agent reacts to another agent’s reaction. We propose to solve this
problem by predicting the cooperative behavior of all agents involved in the navigation
task.

A further class of algorithms for predicting the navigation behavior of agents focuses
on learning a spacial distribution over the typical paths that the agents follow. Bennewitz
et al. [10] use expectation maximization methods to cluster trajectories of pedestrians that
were observed beforehand with a laser scanner. Similarly, Hu et al. [58] hierarchically
cluster trajectories of a visual tracking system. Vasquez Govea et al. [144] use growing
hidden Markov models to learn and update a distribution over trajectories based on the
construction of a topological map. Ikeda et al. [61] propose an algorithm to estimate
the position of subgoals that best describe observed trajectories. In contrast to these ap-
proaches, we propose a behavior model that is independent of a fixed map but generalizes
to different environments.

The optimization of trajectories that we perform is similar to the elastic bands approach,
which was introduced by Quinlan and Khatib [123] and also considers continuous trajec-
tories to the goal position. Elastic bands aim to compute collision free, smooth paths by
gradually deforming an initially coarse path to the goal. Fraichard and Delsart [42] extend
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elastic bands to deform the entire trajectory in the configuration-time space, similar to our
optimization approach, although they assume constant velocity models for all obstacles
instead of predicting the cooperative behavior of all agents.

For mobile robot navigation we utilize our novel model of interactive navigation behav-
ior. In particular, we repeatedly compute the most likely trajectory in each homotopy class
using gradient-based optimization. Many authors presented approaches to find optimal
trajectories with respect to a given cost function in the context of path planning for mobile
robots. For instance, Rios-Martinez et al. [ 129] minimize the risk of collision and the
risk of disturbing nearby pedestrians using rapidly exploring random trees [94]. Sprunk
et al. [136] use a spline-based representation of the trajectories and optimize the corre-
sponding control points to find time-optimized, curvature continuous trajectories that obey
acceleration and velocity constraints. Similarly, Gulati et al. [47] optimize trajectories for
an assistive mobile robot with respect to user comfort. Ratliff et al. [125] present a general
framework for trajectory optimization, which they apply to high-dimensional motion
planning for robots. It is well-known that such gradient-based optimization methods
often fail to find globally optimal solutions since they are prone to get stuck in local
minima. Kalakrishnan et al. [66] propose to use stochastic trajectory optimization to
overcome these local minima. However, large state spaces due to complex settings make it
infeasible to efficiently find globally optimal solutions by uniformly sampling trajectories.
In contrast to that, our model explores the state space by simultaneously searching regions
that belong to different homotopy classes, which often correspond to local minima.

5.6 Conclusion

In this chapter we presented a novel approach that allows a mobile robot to navigate in
the presence of pedestrians in a socially compliant way. The key aspect of our approach
is that we capture the cooperative behavior of all agents involved in the navigation task.
We unify prediction and planning by computing at the same time the most likely behavior
of nearby pedestrians, and a corresponding plan for the robot. In addition, we compute
trajectories to a distant goal point, which allows the robot to adapt its behavior early in
a predictive manner. This is in contrast to existing reactive methods for mobile robot
navigation and avoids sudden and jerky evasive movements. Our method relies on a
model of the interactive behavior of multiple agents that yields a probability distribution
over composite trajectories. An important part of this model is that it captures discrete
navigation decisions that correspond to homotopy classes of the environment. Therefore,
we leverage our approach for online computation of homotopically distinct paths that
we presented in the previous chapter. Our approach assumes cooperative agents, i.e., the
agents behave in a way that allows all involved agents to reach their target as comfortably
as possible. For example in evacuation scenarios, this assumption would fail. In this
case, it would be necessary to introduce game-theoretic aspects, where each agents
tries to increase its own utility. However, our experiments suggest that the assumption
of cooperative agents is reasonable for navigation under normal circumstances, such
as navigating in an office environment. We furthermore conducted experiments that
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compare our method to traditional path planning methods that show the advantage of
considering cooperative behavior when planning in populated environments. In the
following chapters, we present further applications of our model of natural navigation
behavior of cooperatively navigating agents.



Chapter 6

Teaching Mobile Robots by
Demonstration

Mobile service robots are envisioned to operate in environments
that are populated by humans and therefore ought to navigate in
a socially compliant way. Since the desired behavior of the robots
highly depends on the application, we need flexible means for teach-
ing a robot a particular navigation policy. We present an approach
that allows a mobile robot to learn how to navigate in the pres-
ence of humans while it is being tele-operated in its designated
environment. Furthermore, our approach enables a robot to learn
a model of human navigation behavior by observing pedestrians.
Our method uses the feature-based model of the interactive naviga-
tion behavior of multiple agents that we presented in the previous
chapter. This model maintains a probability distribution over the
trajectories of all the agents that allows the robot to cooperatively
avoid collisions with humans. We use inverse reinforcement learn-
ing techniques to learn model parameters that capture the observed
trajectories, which allows the robot to imitate demonstrated behav-
ior. In an experimental section we present a Turing test comparing
how human-like the trajectories of different methods appear. Fur-
thermore, we present experiments in which we teach a robot by
tele-operation.

6.1 Introduction

In the previous chapter, we described a model of the interactive navigation behavior of
multiple agents and its applications to mobile robot navigation. In this model, feature
weights parameterize the behavior of each agent and their interaction. We need to adjust
these feature weights to achieve accurate predictions of the pedestrian behavior on the one
hand, and to generate a desired behavior for the robot on the other hand. However, the
behavior of nearby pedestrians and also the desired navigation behavior of a robot highly
depends on the application at hand. For example, a cleaning robot should be unobtrusive
and not unnecessarily hinder people, whereas a transportation robot that supplies an
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Figure 6.1: Overview of the proposed method. The left side shows the learning process. The inverse
reinforcement learning method iteratively matches the empirical feature values from a set of demonstrations
D with expected feature values from the model. After convergence, the policy yields feature values similar
to the demonstrated behavior. A mobile robot can use such a model during navigation. It therefore

continuously maintains a probability distribution over trajectories and selects the most likely trajectory for
navigation. In this way, the robot replicates the learned behavior.

emergency room in a hospital must not delay its task by being overly cautious.

As an alternative to manual tuning of the model parameters for each application, we
propose a learning by demonstration approach. Learning by demonstrations gives us
flexible means to teach a robot how to navigate in its particular application, especially
for non-experts. In particular, our method allows a mobile robot to learn an appropriate
navigation policy while being tele-operated in its designated environment. During the
teaching phase, the robot learns the desired behavior in terms of the features that we
proposed in the previous chapter. Therefore, the robot learns physical properties such as
accelerations, velocities and distances to obstacles, as well as topological properties such
as a direction bias when evading others.

In addition to observing its own behavior, the robot can also observe nearby humans.
This includes the typical navigation behavior of individual pedestrians, but also the
interaction behavior between pedestrians, and their reaction to the robot itself. From these
observations, our learning method allows the robot to learn the feature weights that best
capture the natural navigation behavior of the pedestrians in the dedicated environment
of the robot. As we highlighted in the previous chapter, a mobile robot can utilize such
a model to predict the behavior of pedestrians and to react accordingly for a smooth,
socially compliant navigation behavior.

Our approach applies inverse reinforcement learning (IRL) to learn the feature weights
of the proposed model from demonstrations. In general, inverse reinforcement learning
means finding a cost function that explains observed behavior. The model we presented
in the previous chapter represents interactive behavior of humans and robots in terms of a
probability distribution over their trajectories. In addition, the model relies on features that
capture important properties of the behavior. This model allows us to compute expected
feature values of the distribution over trajectories in a given situation. Furthermore,
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the observed behavior yields empirical feature values, i.e., the feature values from the
observed trajectories. During learning, our goal is to adapt the model parameters in a
way such that the expected feature values match the empirical feature values. In other
words, we find the model which explains the observations in a sense that the observations
could be samples drawn from this distribution. Fig. 6.1 gives an overview of the proposed
approach. The left hand side shows the feature matching that results in a policy that
captures the observed behavior. A mobile robot can then use this policy for navigation
by computing the most likely interaction in each situation, as discussed in the previous
chapter.

The approach we introduced in the previous chapter models the distributions over
homotopy classes, as well as the distributions over composite trajectories in terms of
exponential family distributions. This form of a distribution is also the direct consequence
of feature matching with a maximum entropy assumption. Assuming maximum entropy
means that we want to find the ‘most general’ distribution that matches the features,
without implying any further assumptions. In the following, we outline how we can derive
the resulting distribution from first principles, and how we can learn the parameters using
gradient based optimization.

6.2 The Principle of Maximum Entropy and Feature
Matching

In general, the problem of learning from demonstration is to find a model that explains the
observed demonstrations and that generalizes to new situations. We model the behavior of
the observed agents in terms of probability distributions, therefore learning translates to
finding the distribution from which the observed samples x; € D are drawn. We capture
the relevant properties of the behavior in terms of a feature vector

f: X —-R" 6.1

that maps states x € X" to a vector of real values. This allows us to compute empirical
feature values fp of the demonstrations

fp = |D| Z f(x;), 6.2)

that encode the properties of the observed behavior we want to learn. Following Abbeel
and Ng [1], we aim to find the distribution p(x) that matches these empirical feature
values in expectation:

In general, however, there is not a unique distribution that matches the features. Ziebart
et al. [159] resolve this ambiguity by applying the principle of maximum entropy [64],
which states that the distribution with the highest entropy represents the given information
best since it does not favor any particular outcome besides the observed constraints.
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Following Ziebart et al. [159], we are interested in the distribution that matches the
feature expectations, as given in Eq. (6.3), without implying any further assumptions. In
this section, we outline how to apply their approach to continuous spaces. The principle
of maximum entropy states that the desired distribution maximizes the differential entropy

argmax H (p) = argmax/ —p(x) log p(x)dx, (6.4)

p p

subject to the constraint

/p(x) dx =1 (6.5)

that enforces the distribution to integrate to one, and subject to the constraints

Vi fin = By 0] = [ px) i) (66)

that enforce the empirical features values to match the expected feature values for all
features f;. Introducing Lagrangian multipliers « and 6; for these constraints yields the
maximization problem

p*,ar, 0" = argmax h(p, a, 9), (6.7)
p,a,0

where
h(p, ., 0) = / —p(x) log p(x) dx

—a ( /X p(x) dx — 1) _ Z 6, ( /X p(x) fi(x) dx — fm) (68)

Applying the Euler-Lagrange equation from the calculus of variations [40] to Eq. (6.8)
implies that the probability distribution p*(x) has the structure

1

pe(x) = 7(0) exp —07f(x), (6.9)

where Z(6) is a normalization factor to satisfy Eq. (6.5). Thus, the structure of the
distribution that maximizes entropy under the constraint of feature matching depends only
on the features. However, the parameter vector 8 depends on the training samples x; € D.
Unfortunately, it is not feasible to compute 6 analytically, but we can apply gradient-
based optimization techniques to determine 8*. The gradient is given by the derivative
of Eq. (6.8) with respect to the parameter vector:

0
a—0h<p, a, 0) = Epe(x) [f(X)] — fp. (610)
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There is also a different point of view that leads to the same result. If we assume an
exponential family distribution, as given in Eq. (6.9), the log-likelihood of the observed
behavior D is given by

1
Ly, (D) = log 7(6) exp —07fp, (6.11)
and its derivative with respect to 6 is given by
0
8_0Lp6 (D) = | po(x)f(x)dx — fp = E,, x[f(x)] — fp. (6.12)

Consequently, the problem of finding the maximum entropy distribution subject to feature
matching is equivalent to maximizing the likelihood of the training data when assuming
an exponential family distribution [64].

To summarize, our goal is to find the distribution that matches, in expectation, the
feature values of a set of demonstrations. By applying the principle of maximum entropy,
it follows that this distribution is an exponential family distribution. Therefore, finding the
desired distribution translates to computing the parameter vector 8 that leads to feature
matching. Computing 8* analytically is not feasible, but we can compute the gradient
with respect to these parameters and, consequently, apply gradient-based optimization.

We apply IRL to the model of interactive navigation behavior that we described in the
previous chapter. This model represents a two-staged process in which the possible out-
comes in each stage underly an exponential family distribution. The first stage represents
a distribution over homotopy classes, whereas the second stage represents a distribution
over composite trajectories. To learn the shape of the distribution in both stages, we apply
IRL.

First, we compute the empirical feature values f for all features that capture continuous
behavior (Sec. 5.1.4). For the observed situations, i.e., for the same environment and for
the same start and end positions, we compute the expected feature values ]Epg x) [f] within
the homotopy class of the corresponding observation. Here, we average over all training
examples, assuming identical continuous behavior over all homotopy classes. Given the
empirical and the expected feature values, Eq. (6.12) computes the gradient for the feature
weights 6, which we use for optimization. This IRL optimization eventually converges to
the feature weights 6” that explain the demonstrations on a continuous level. The result
of this first step are the feature weights that shape the distributions pz* (x) over composite
trajectories.

Subsequently, we learn the feature weights for the features g that affect the discrete
decisions (Sec. 5.1.6). Given the distributions pz* (x), we can compute the empirical
feature values g as well as the expected feature values E (,)[g]. This allows us to apply
IRL similar to the procedure described above, which results in the feature weights @*
that complete the model.
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6.3 Computing Feature Expectations

The process described above requires repeated computation of the feature expectations
o ) [f(x)] of the resulting probability distribution p, (x). In general, however, inference
for distributions over continuous trajectories is not analytically tractable. Monte Carlo
sampling methods provide means to approximate the expectations using a set of sample
trajectories drawn from the distribution. In particular, Markov chain Monte Carlo (MCMC)
methods [12] allow us to obtain samples from high-dimensional distributions. These
methods aim to explore the state space by constructing a Markov chain whose equilibrium
distribution is the target distribution.

Most notably, the widely-used Metropolis-Hastings algorithm [51] generates a Markov
chain in the state space using a proposal distribution and a criterion to accept or reject
the proposed steps. The choice of the proposal distribution strongly influences the
acceptance rate and thus the mixing time, which is the number of steps until the samples
sufficiently approximate the target distribution. In general, it is difficult to design a
proposal distribution that leads to satisfactory mixing. As a result, efficient sampling from
complex high-dimensional distributions is often not tractable in practice.

Our approach exploits the structure of the distributions over composite trajectories
to enable efficient sampling. First, the navigation behavior of physical agents shapes
the trajectories according to certain properties such as smoothness and goal-directed
navigation. As a result, the distributions over the composite trajectories of the same
homotopy class are highly peaked. Exploiting the gradient of the probability densities
allows us to guide the sampling process towards these regions of high probability.

To this end, we use the Hybrid Monte Carlo algorithm [37], which takes into account
the gradient of the density to sample from the distributions pg(x). The algorithm considers
an extended target density p}f(x, u) to simulate a fictitious physical system, in which
u € R" are auxiliary momentum variables. The method constructs a Markov chain by
alternating Hamiltonian dynamical updates and updates of the auxiliary variables, utilizing
the gradient of the density pz(x) with respect to x. After performing a number of these
steps, Hybrid Monte Carlo relies on the Metropolis-Hastings algorithm [12] to accept or
reject the candidate samples.

In theory, the Markov chain eventually explores the entire state space, independently of
the initial state. In practical applications with limited sampling time, however, the initial
guess considerably influences the sampling quality. We compute the most likely composite
trajectory within the class of each observation as described in Sec. 5.2.2, and use it as a
start point for the Markov chain. The regions of smooth, collision-free trajectories are
surrounded by regions of low probability, for example where two agents get close to each
other. The Markov chain is therefore unlikely to leave the homotopy class 7 of the initial
guess. However, to guarantee sampling within the correct homotopy class, we reject
samples outside the homotopy class .
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Figure 6.2: Turing test to evaluate whether the behaviors induced by our approach, an IRL approach with
Dirac approximation, and the social forces model by Helbing and Molnar [53] qualify as human. The
results suggest that the behavior induced by our approach most resembles human behavior.

6.4 Experiments

The learning method presented in this chapter serves two purposes. First, it allows a robot
to learn a model of pedestrian navigation behavior by observing their trajectories. Second,
it facilitates teaching-by-demonstration, where a robot learns a desired behavior by tele-
operating it in the designated environment. In this section, we present two experiments
that evaluate both parts. In a first experiment we present a Turing test that evaluates the
ability of our method to generate human-like trajectories, compared to previous methods.
In a second experiment we taught a real robot different behavior styles by demonstration
and applied the learned policy to autonomous navigation.

6.4.1 Learning Pedestrian Navigation Behavior — Turing Test

In a first experiment, we applied our approach to the problem of learning a model of
pedestrian behavior. Our goal was to learn a generative model that is able to compute
human-like trajectories. The dataset we used for learning comprises interactions of
three persons that we recorded in a motion capture system. To distract the persons from
the navigation task, we made them read and memorize newspaper articles at different
locations that were consecutively numbered. At a signal, they simultaneously walked to
the subsequent positions, which repeatedly gave rise to situations in which the participants
had to evade each other.

Based on this dataset, we learned a model of natural navigation behavior using the
inverse reinforcement learning technique proposed in this chapter. Our learning method
aims at minimizing the distance between the observed feature values and the expected
feature values of the model. However, reproducing feature values does not sufficiently
indicate if we actually capture natural navigation behavior. To evaluate how human-like
the resulting trajectories actually appear, we carried out a Turing test in which we compare
the trajectories generated by our approach to other methods. A Turing test is an experiment
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Figure 6.3: Teaching a robot distinct behavior styles by tele-operation. The images on the left show the
demonstrated trajectories for each of two different behavior styles. During demonstrating behavior A,
we manually steered the wheelchair slowly, but close to obstacles. When demonstrating behavior B, we
choose the same start and goal position, but increased the velocity as well as the clearance to obstacles. The
underlying grid in the images correspond to one meter in the real environment. The middle column shows
the same environment, start and goal position. The depicted trajectories, however, were recorded during an
autonomous run of the robot using the learned policies. The right column shows another set of autonomous
runs that suggest that the learned model also generalizes to different environments. Each of the images
shows trajectories of ten individual runs.

in which humans evaluate the ability of a machine to exhibit human-like behavior, which
is non-distinguishable from actual human behavior at best. We conducted a Turing test
in which we asked ten human subjects to distinguish recorded human trajectories from
trajectories generated by a machine.

For each of the recorded interactions of our dataset, we used different methods to
predict the interaction in the same situation. In particular, we predicted the behavior
using the learned model described in this chapter, a previous learning method proposed
by the author of this thesis [85], and the social forces method [53]. The previous method
presented in [85] is an IRL method that computes the feature expectations by means of
a Dirac approximation, which is in contrast to the sampling technique proposed in this
chapter. In Chap. 2.4 we describe the social forces method in more detail.

During the experiment, we presented animations of 40 runs that were randomly drawn
from the set of observations and predicted interactions to each of the participants of the
survey. For each run, we asked the participants whether they believe that the interaction
was recorded from real humans, or generated by a machine. Fig. 6.2 summarizes the
results of the survey. The human subjects correctly identified 79 % of all the human
demonstrations, but they mistook 68 % of the predictions of our approach, 40 % of the
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Figure 6.4: Mean velocity averaged over ten runs of the demonstrated and autonomous runs. Red: mean
velocity of the demonstrated behavior A, of the autonomous runs in the same environment (A I), and the
autonomous runs in a different environment (A II), using the learned policy. Blue: mean velocity of the
demonstrations and the autonomous runs for behavior style B. The error bars show the standard deviation
over ten runs each.

predictions of the Dirac approximation, and 35 % of the predictions of the social forces
algorithm for human behavior. In summary, the results of this Turing test indicate that
the behavior induced by our approach is significantly more human-like than the behavior
induced by the other two methods according to a one-sided paired sample t-test at a 95%
confidence level.

6.4.2 Teaching a Robot by Tele-Operation

In a second experiment, we used our method to teach a robot two distinct navigation
behaviors. To demonstrate the behavior, we manually navigated the wheelchair described
in Sec. 5.3. First, we steered the wheelchair close to the obstacles from the start to the
goal position at a low velocity, which we refer to as behavior style A in the following.
Second, we demonstrated behavior style B, for which we navigated the wheelchair with a
higher velocity further away from the obstacles. Fig. 6.3 (left) shows trajectories of the
two sets of demonstrations, and Fig. 6.4 shows the mean velocity of both runs.

Based on these demonstrations, we learned two behavior models using the IRL tech-
nique described previously in this chapter. During learning, our method adapts the feature
weights of the model such that the expected feature values correspond to the observed
values. As a result, we have two sets of feature weights, corresponding to the two distinct
behavior styles A and B.

We used these two models to autonomously navigate the wheelchair in the same envi-
ronment to be able to directly compare the resulting trajectories. Fig. 6.3 (middle) shows
that the characteristics of the demonstrated behavior also transfers to the autonomous
navigation. Whereas in the autonomous runs using model A the distance to the obsta-
cle was about 1 m, model B results in a distance of about 2m, corresponding to the
demonstrations. In addition, our method captured the velocity accurately, as shown in
Fig. 6.4.

To demonstrate the ability of the learned models to generalize, we additionally per-
formed experiments in a different environment. Fig. 6.3 (right) shows the distinct behavior
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especially when navigating around the second obstacle. However, during the narrow pas-
sage near the start position, both models navigate the wheelchair through the middle
of the passage, since there is no way around this passage. This shows that our method
learns a flexible behavior that adapts to the characteristics of the environment. This is
fundamentally different from learning for example a minimal allowed distance, which
would not allow the robot to navigate the narrow passage. Also when navigating in this
environment, the velocity profiles in Fig. 6.4 suggest that our method is able to imitate
characteristics from the demonstrations.

This experiment shows that our method is able to learn important navigation char-
acteristics from demonstration. In particular, this allows for convenient teaching of a
mobile robot by tele-operation, which is an interesting alternative to program a robot for
non-expert users. The learned models capture the navigation style in the environment in
which the behavior was demonstrated, but also generalize to different environments.

6.5 Related Work

There is a wide range of literature on learning policies from demonstrations [3]. To
imitate observed behavior, Atkeson and Schaal [5] developed novel approaches to map
features over the state space to actions. To allow for learning a more general policy from
demonstration, Ng and Russell [109] proposed inverse reinforcement learning (IRL),
which aims to find a cost function that explains the observed behavior. Similar to our
approach, Abbeel and Ng [1] suggest to model the cost function as a combination of
features that capture relevant aspects of the observed behavior. However, in general there
are infinitely many cost functions that lead to feature matching. To resolve this ambiguity,
Ziebart et al. [159] present maximum entropy IRL that relies on the principle of maximum
entropy [64] and, hence, aims at finding the policy with the highest entropy subject to
feature matching. Ziebart et al. [159] use a low dimensional, discrete state space to model
the observed behavior. In contrast, we learn trajectories in continuous spaces, which
allows us to take into account higher-order dynamics such as velocities and accelerations.

The applications of similar learning-from-demonstration approaches include learning
pedestrian navigation behavior by Ziebart et al. [160], modeling full body posture by
Vernaza and Bagnell [147], and route planning for outdoor mobile robots by Ratliff
et al. [124]. In particular, Ziebart et al. [161] use maximum entropy IRL to predict
the trajectories of pointing devices such as computer mouses. Furthermore, Kitani
et al. [74] propose a method that leverages maximum entropy IRL to learn the preferences
of pedestrians using scene features such as sidewalks. Our method is inspired by the
maximum entropy IRL approach by Ziebart et al. [159]. However, in addition to the
extension to continuous state spaces, we consider the interaction of multiple agents,
instead of predicting the trajectory of a single agent. This allows a mobile robot to include
the expected reaction of nearby pedestrians into planning.

Computing the feature expectations is important for a variety of IRL methods. Es-
pecially in continuous, high-dimensional state spaces this is a challenging problem.
Boularias et al. [16] use importance sampling to compute the gradient for model-free IRL.
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Other authors propose certain assumptions to overcome this problem. Whereas Kalakrish-
nan et al. [67] assume locally optimal demonstrations and add Gaussian noise to the model
parameters, Vernaza and Bagnell [147] assume a restricted low-dimensional form of the
feature functions. A previous work of the author of this thesis, to which we compare the
proposed method in the Turing test, uses a Dirac approximation to compute the expected
feature values. This approximation does not handle non-optimal demonstrations well. In
this chapter, we therefore proposed a sampling method that efficiently estimates feature
expectations by Hybrid Monte Carlo sampling [37]. Our method allows arbitrary features
for which we can compute the gradient with respect to the trajectory parameters.

6.6 Conclusion

In this chapter, we presented an approach that allows a robot to learn the parameters of its
navigation model from demonstration. This is useful for learning models of the natural
navigation behavior of pedestrians, which is an important part of socially compliant
mobile robot navigation. Furthermore, such a method allows us to teach a robot by
tele-operation. Our method relies on maximum entropy inverse reinforcement learning.
During learning, the proposed algorithm adapts feature weights to shape a probability
distribution over the trajectories of all the agents, i.e., the pedestrians and the robots. As
a result, the expected feature values of the learned model match the empirical feature
values of the observations. In an experimental evaluation, we conducted a Turing test to
compare our learning method to existing approaches. The Turing test suggests that our
model captures properties of the navigation behavior that are important for human-like
appearance. As outlined in the previous chapter, a robot that is endowed with a model that
accurately captures human-like behavior is able to predict the trajectories of pedestrians,
and to react in a socially compliant way. Furthermore, we conducted an experiment in
which we taught a robot two distinct behavior styles, which also generalize to different
environments. Such a method is particularly suited for non-technical users to conveniently
adjust the desired behavior of a mobile robot to their needs. Accurate models of the
interactive navigation behavior of multiple agents are also the basis of the applications
presented in the following chapters.






Chapter 7

Shared Autonomy Navigation

As outlined in the previous chapters, alternative ways to navigate
around obstacles typically correspond to different local minima of a
navigation cost function. In this chapter we make use of these local
minima to quickly compute a set of qualitatively different trajec-
tories. With a cost function that also captures safety and comfort
of the trajectories, the different alternatives are valid options for
navigation. We propose to utilize this set of trajectories in a shared
autonomy navigation system. Using such a system, a user is not
required to provide the low level steering commands for a mobile
robot, but only a high level selection of one of the alternative trajec-
tories. The low information content of such a decision makes the
proposed system also applicable for noisy high level user interfaces
such as brain computer interfaces. In experiments, we demon-
strate that our approach is able to operate a robotic wheelchair in
shared autonomy mode, where a user can quickly switch between
topologically different trajectories.

7.1 Introduction

In shared autonomy navigation scenarios, an artificial intelligent system takes over a
certain part of the task that is necessary to fulfill the ultimate goal, typically leaving only
high level decisions to the human. In this way, tedious or computationally complex parts
of the process do not unnecessarily burden the user, who can focus on the meaningful
decisions.

Shared autonomy systems already exist in a wide range of areas. Surgical robots, for
example, support surgeons by mapping movements of the controller to tool tips that are
typically attached to an endoscope. The robot thereby restricts the tool to safe areas, scales
the surgeons movement, and suppresses physiological tremor [28]. Shared autonomy has
also received attention in mobile manipulation tasks, where a human user chooses a high
level task, such as gripping an object, and the robot takes care of the motion planning of
the arms [118]. The same concept is applicable to shared autonomy navigation, which
is beneficial for complex navigation tasks, such as accurately controlling a quadrotor in
demanding scenarios [131]. Furthermore, shared autonomy navigation enables controlling
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Figure 7.1: Application of our approach in a shared autonomy wheelchair navigation scenario. Our method
quickly provides a set of homotopically different trajectories, as illustrated by the projected trajectories in
the image. The user can easily bias the selection of the trajectory used for navigation by high-level direction
preferences, such as moving the joystick left, or right.

a mobile robot with a slow and noisy interface, such as a brain computer interface, or
controlling the robot by tele-operation.

In this chapter, we propose a system for 2D shared autonomy navigation of a mobile
robot. In particular, the autonomous system takes care of the low level control by optimiz-
ing trajectories with respect to a navigation cost function. The user is only required to
choose from a small set of trajectories that correspond to feasible alternatives in the current
situation. For this, we utilize the proposed method to compute homotopically distinct
navigation paths in combination with parallel trajectory optimization, as introduced in
Chap. 5. In the following, we present two different modes of shared autonomy navigation.
First, we assume that we know the global goal location. The user is then able to select
different paths that lead to this target online during navigation by giving an orientation
bias. If there is no goal position known, we propose to provide local paths to nearby
subgoals. In each step, the user selects a trajectory from a discrete set, which the robot
uses for navigation. From this subgoal, the robot then generates a new set of navigation
choices, which gives the user the freedom to navigate the area as desired without the need
for low level control commands.

We apply our approach to shared autonomy wheelchair navigation, where the user can
influence which trajectory the system follows by providing high-level control input. This
enables handicapped users to control the wheelchair despite limited fine-motor skills.
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Figure 7.2: This figure shows the computation of the angle aey that is used as a parameter for the feature
modeling the preferred user direction.

Fig. 7.1 illustrates such an application in which the user can bias the trajectory selection
by deflecting the joystick left, or right.

7.2 Shared Autonomy Navigation with Known Targets

In Chap. 5 we described a method that allows a mobile robot to compute multiple
composite trajectories in parallel, and select the most appropriate for the current situation
online. This method maintains a set of composite trajectories that are locally optimized
with respect to a navigation cost function. Each of these trajectories corresponds to a
specific homotopy class of the environment. The robot is endowed with a feature-based
probability distribution over the homotopy classes, where the features capture important
properties of socially compliant behavior. For navigation, the robot selects the optimized
composite trajectory in the most likely class, with respect to this feature-based distribution.

We realize shared autonomy navigation for mobile robots by adding features that
incorporate user preferences online during navigation. The robot follows the trajectory
that has lowest cost according to a trade-off between these user preferences and the
parts of the cost function that penalize properties such as high velocities or closeness to
obstacles. Similar to the approaches presented in previous chapters, the feature weights
provide a convenient way to adjust the behavior, i.e., to decide how strongly the robot
should follow the user preferences.

Let us assume a wheelchair scenario in which the handicapped user is only capable
of issuing high-level commands rather than low-level controls. For example, such a
user might want to express navigation preferences by head posture [100], or by joystick
deflection. To achieve this with our approach, we introduce a feature fg;, that penalizes
the deviation o,y of a trajectory from the preferred user direction:

d(p) - daes ) |

—_— 7.1
100 [ e] 7D
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where d(p) is the direction of the trajectory and dg is the direction selected by the user,
as illustrated in Fig. 7.2. To compute d(p) we use the location of trajectory p at the time
At in the future, i.e., d(p) = p(to + At) — p(to).We use this feature only for evaluating
the costs of the optimized trajectories in the selection process, not for the optimization
itself.
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Figure 7.3: Abstract graph computation for local shared autonomy control. Left: Voronoi diagram of an
environment with five static obstacles and three additional start- or goal locations. Middle: Abstract graph
from the Voronoi Diagram, as described in Sec. 4.2.2. Right: pruned graph used to compute paths for local
shared autonomy control.

During navigation, the robot maintains a set of trajectories to the target position, similar
to the method we proposed in Sec. 5.2.3. For navigation, the robot selects the most likely
trajectory, i.e., the trajectory with the least cost. However, in contrast to the method for
fully autonomous socially compliant mobile robot navigation, the user can influence the
distribution over the trajectories by means of the new feature introduced above.

7.3 Shared Autonomy Navigation with Local Targets

In the previous section, we assumed that we know the global target of the robot, and let
the user bias the trajectory selection towards this target online during navigation. In this
section, we present a method that is applicable for scenarios where the goal is not known
beforehand, or changes during the navigation task. Since this method presents to the user
a fixed set of trajectories at a time, also interfaces that only allow binary selection, such
as brain computer interfaces, are applicable. Fig. 7.4 shows examples of a possible user
interface. Here, a binary selection could consist of the options next and select. In addition
to scenarios in which the user is located near the robot, or even in the robot such as in an
autonomous wheelchair, our method is also suitable for tele-presence applications.

The key idea of this method is that we present to the user a small set of qualitatively
different routes in the environment. After selection, the robot moves to the desired subgoal.
During the navigation to this position, or after the robot has arrived at the subgoal, the user
gets a prompt with a new set of valid trajectories. These routes should have the following
properties. First, they should be valid navigation trajectories, i.e., they should be collision
free and all the constraints of the robot should be met. Second, they should be ‘local’
enough to give a user the freedom to steer the robot to wherever he or she chooses.

We found Voronoi diagrams to be a suitable basis to compute such paths since it
captures the connectivity of the free space. Therefore, the vertices where two or more
Voronoi lines meet encode positions in the environment where there are multiple possible
further directions. To compute the different alternatives, we first compute the abstract
graph of the environment, as described in Sec. 4.2.2. First, we add as virtual obstacles
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Figure 7.4: Example path through the environment. In each step, the user selects one of the presented
trajectories. During the robot moves to this intermediate goal, the next selection appears. Such a system
gives a user more freedom compared to only a selection of final goal positions.

the current position of the robot as well as possible additional target positions into the
map and then compute the Voronoi diagram. See an example environment with five static
obstacles, and three additional positions in Fig. 7.3 (left). In the resulting abstract graph
there are often many connecting vertices close to each other, as visible in the center area
of Fig. 7.3 (middle). We propose to prune this abstract graph by successively merging
vertices that are closer than a threshold. Fig. 7.3 (right) shows the resulting graph in the
example after pruning. In this graph, the current position of the robot is one of the vertices
by construction. From this vertex, we select the connecting edges and project them back
to trajectories in the 2D environment. Then, we optimize each trajectory with respect to
our proposed navigation cost function.

In a shared autonomy setting, we present the set of optimized trajectories to the user,
who selects one of them using the interface. As soon as the robot receives the selection,
it moves along these paths to the next subgoal. During the time the robot moves to this
location, it updates the Voronoi Diagram to account for changes in the environment. We
also include the current subgoal for the next Voronoi computation, to guarantee that the
new position of the robot is a vertex in the abstract graph that will be presented to the user
next.

Fig. 7.4 shows an example path from the lower left corner of the environment to the
top right corner with three decision steps. The red trajectory corresponds to the selected
trajectory, the blue lines show the alternative trajectories the user could select in the
respective steps.

7.4 Experimental Evaluation

In this section we evaluate the performance of our method in shared autonomy navigation
with a real robot. Therefore, we implemented our method on the autonomous wheelchair
described in Sec. 5.3, using the joystick of the wheelchair as user interface.

7.4.1 Shared Autonomy Wheelchair Control

During this experiment, we navigated the autonomous wheelchair in a corridor with
obstacles, using the method described in Sec. 7.2 for shared autonomy with known targets.
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Figure 7.5: Shared autonomy control of a wheelchair in a corridor with two static obstacles. The figure
shows the best trajectory according to the cost function, which the wheelchair executes (red) and an
additional set of optimized trajectories in different homotopy classes (blue, dashed). The joystick in the
lower right indicates the direction preference of the user.

Our method computes trajectories in different homotopy classes and selects the most
likely for execution. We allowed the user to bias the system by adding the feature fg;, to
the cost function. During the experiment, we used the current deflection of the joystick as
the direction preference dges.

Fig. 7.5 shows how the wheelchair navigated the corridor in which we placed two
additional static obstacles: (A) Our system has computed a set of optimized trajectories in
different homotopy classes; (B) Without user preferences, the system selects and follows
the red trajectory since it has lowest costs with respect to the cost function that captures the
time to reach the target, velocity and acceleration constraints, and distances to obstacles;
(C) The wheelchair has discarded the trajectory alternatives that require turning around
since their cost has exceeded a threshold. The robot decides to evade the obstacle on the
right; (D) In front of the second obstacle, the user deflected the joystick to the left, which
biases the costs of the trajectories. As a result, the wheelchair selects the left trajectory
for navigation; (E) The wheelchair follows the left trajectory since it has the lowest cost
in this situation.

This experiment shows that our method is able to compute different alternatives to the
goal position online during navigation. The additional feature allows shared autonomy
that biases the choice of the selected trajectory. Such a system could allow a user with
fine motoric disabilities to safely navigate a wheelchair.
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7.5 Related Work

In this chapter, we utilize path alternatives that are based on the Voronoi diagram of the
environment for shared autonomy applications. We discussed related approaches in the
context of homotopically distinct paths and the usage of Voronoi diagrams in Sec. 4.5.

Shared autonomy is a suitable approach for tasks in which the manual control of all
degrees of freedom would be too complex for a human operator. Sa and Corke [131]
developed a shared autonomy method for a visual inspection task. It allows an unskilled
operator to steer a quadrotor close to the target object with only high level commands.
Okada et al. [112] describe a vehicle that is able to traverse rough terrain by adjusting the
robot’s frame to the shape of the terrain. Controlling all degrees of freedom is infeasible
in practice, therefore, the authors propose a shared autonomy navigation in which the
vehicle autonomously controls its frame. Pitzer et al. [118] present an approach towards
shared autonomy for robotic mobile manipulation. The system integrates the user into the
loop through collaborative object selection, whereas the robot autonomously performs the
grasping itself.

Mobile manipulation has also gained increasing interest in health care to support dis-
abled users. Chen et al. [22] describe an assistive mobile robot that performs manipulation
tasks together with a quadriplegic patient. To provide high level control, the patient moves
a cursor on a 2D screen using a head tracker. The investigated scenarios include fetching
items from drawers and even manipulation near to the patient’s body such as scratching
and shaving. A further assistive manipulation robot was proposed by Soyama et al. [135],
who describe a meal-assistance robot that optionally operates in a semi-automatic mode.

In healthcare, semi-autonomous systems are also used to reduce cognitive load on the
user. Many authors presented systems to assist wheelchair users. Wang et al. [150] and
Nguyen et al. [110] present a shared control scheme for autonomous wheelchairs. Similar
to our approach, they use the general direction of the user input, whereas the wheelchair
itself takes care of the low level commands. Based on the current information of the laser
sensors, the robotic wheelchair adapts the commands to actively avoid collisions with
obstacles. Whereas they reactively compute commands that avoid collisions, we propose
predictive planning by computing alternative trajectories to the goal location.

Other authors propose to substitute the joystick by brain computer interfaces (BCI).
Carlson and Millan [17] describe a BCI controlled autonomous wheelchair where the user
selects from the classes forward, left, and right. The wheelchair takes care of the low level
control to translate these signals to velocity commands. Similarly, Philips et al. [117]
describe a BCI controlled wheelchair also with the three classes forward, left, and right.
Every 0.5 s their interface sends a probability distribution to the shared control system.
To alter the distribution the system takes into account the obstacles in the environment
as well as a goal location. This is similar to the first mode of shared autonomy that we
proposed in this chapter. In our work we propose to maintain a probability distribution
over different goal-directed trajectories that we bias with respect to a preferred direction.

Bonarini et al. [15] also describe a project that aims at developing a shared autonomy
wheelchair platform. They highlight that BCI interfaces are prone to misclassify user
intent which is why they propose an additional confirmation step in the interface. This
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suggests that the required information from the user should be as low as possible especially
for BCI interfaces. In contrast to the abovementioned approaches, we use the user input to
select trajectories to a (sub)goal location, instead of directly mapping the desired direction
to movements. Our goal is to exploit the free space representation of Voronoi diagrams
to provide meaningful alternatives to the user even with a limited number of discrete
choices. Mandel and Frese [100] compare two different paradigms for semi-autonomous
wheelchair navigation. Their first method allows the user to select by speech a route from
a discrete set of paths on a Voronoi graph, similar to our method. Their second method
directly maps head poses to steering commands.

For tele-presence robots, similar techniques apply to overcome slow and noisy user
input. Robert et al. [130] describe a BCI controlled tele-presence robot with a two-class
interface. The same robotic system is presented by Carlson et al. [18], with an additional
class that instructs the robot to proceed with the default behavior of driving in the current
direction and avoiding obstacles. Geerinck et al. [44] present a tele-operation robot
platform that can either be steered manually using a joystick, or by several levels of
autonomy to reduce the human operator’s workload. In shared control mode, the robot
follows the general direction as specified by the user, but takes the initiative to choose its
own low level path to avoid obstacles.

In contrast to many of the aforementioned approaches that implement shared autonomy
in terms of local collision avoidance, we let the user select trajectories to (sub)goals. A
further advantage of this approach is that our method is suitable to show the alternative
trajectories to the user via a GUI, which increases the predictability of the robotic system.

7.6 Conclusion

In this chapter, we applied the methods described in previous chapters to shared autonomy
navigation. The key idea of our approach is to compute a set of optimized trajectories that
are valid for navigation, but which are qualitatively distinct. Our goal is to maintain a high
level of autonomy for the user and at the same time keep the cognitive burden low. To this
end, we proposed two different shared autonomy modes. First, we assume a known target
position and maintain a probability distribution over different trajectories, which can be
continuously biased by a direction preference of the user. Second, when no global goal
location is known to the system, we propose to present a discrete set of path alternatives
to local subgoals to the user. This allows also the usage of slow and noisy interfaces such
as BCI, or tele-operation. In experiments with a real robotic wheelchair we demonstrated
that our method is suitable for navigating real robots in shared autonomy mode.



Chapter 8

An Approach to Socially Compliant
Leader Following for Mobile Robots

A wide range of tasks for mobile robots demand that the robot
follows a human leader. This includes robotic co-workers in fac-
tories, autonomous shopping carts, or robotic wheelchairs that
autonomously navigate next to an accompanying pedestrian. Many
authors proposed follow-the-leader approaches for mobile robots,
which have also been applied to the problem of following pedestri-
ans. Most of these approaches use local control methods to keep the
robot at the desired position. However, they typically do not incorpo-
rate information about the natural navigation behavior of humans,
who strongly interact with their environment. In this chapter, we
propose to use a learned, predictive model of interactive navigation
behavior that enables a mobile robot to predict the trajectory of its
leader and to compute a far-sighted plan that keeps the robot at
its desired relative position. Extensive experiments in simulation
as well as with a real robotic wheelchair suggest that our method
outperforms state-of-the-art methods for following a human leader
in a wide variety of situations.

8.1 Introduction

In Chap. 5 we presented a model of the natural navigation behavior of pedestrians, and a
method to learn its parameters in Chap. 6. In this chapter, we present an application for
this model to allow a mobile robot to follow a human leader. There is a wide range of
applications for mobile robots for which it is desirable that the robot follows a human
leader. For example a robotic co-worker that provides tools to a human in a factory needs
to stay in a position where the human can reach the robot. Similarly, a mobile shopping
cart should always stay in a position where the human is able to place objects into it. A
further application is a robotic wheelchair that stays side by side to an accompanying
pedestrian, allowing interaction with the pedestrian during the navigation task.

When following a human leader, it is beneficial for the robot to reason about the natural
navigation behavior of pedestrians. During navigation, pedestrians interact with their
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environment, which includes obstacles, other nearby humans and also the robot itself.
A robot that has a better understanding of this interactive behavior is able to fulfill its
task in a socially compliant way, i.e., in a way that does not unnecessarily hinder nearby
pedestrians. Such a robot is able to predict the behavior of the humans and to plan
far-sighted trajectories that keep the robot close to its desired position in the long run.

There has been a wide range of research on controlling a group of robots in formation,
which have also been applied in the context of social robotics [105, 121]. Many of these
approaches utilize control-theoretic methods to steer the robot towards a virtual target
that moves along with the leader [29, 121]. However, these methods mostly neglect
information about the more complex navigation behavior of pedestrians that strongly
depends on the environment.

In this chapter, we propose to utilize the feature-based model of human navigation
behavior that we presented in Chap. 5 to predict the path of the leading pedestrian. This
model accounts for the intention of a human to reach a certain goal while maintaining a
comfortable velocity, avoiding strong accelerations, and staying clear of obstacles. We
can learn the individual characteristics of different pedestrians, or distinct behavior in
different environments from observation, as shown in Chap. 6.

The novelty of the approach presented in the following is a method that simultaneously
predicts the most likely trajectory of the pedestrian and computes the trajectory for the
robot that minimizes the distance to its desired relative position along the whole trajectory
in a forward-looking manner. Such a predictive planning method leads to a socially more
compliant behavior of the robot. In addition, planning long-term trajectories mitigates the
problem of local minima in a local control function, especially in the presence of arbitrary,
non-convex obstacles in the environment. We conducted a simulated comparison of our
method to related approaches as well as experiments with a real robot. Our results show
the applicability of the proposed approach to navigate a robotic wheelchair next to an
accompanying pedestrian.

8.2 A Socially Compliant Follow-the-Leader Approach

A better understanding of the natural navigation behavior of pedestrians enables a mobile
robot to follow a human leader in a socially more compliant way. In this section, we first
formalize the problem of following a leader. We consider the navigation task to stay close
to a fixed relative position with respect to its leader. To solve this task, we propose an
approach that predicts the trajectory of the pedestrian and at the same time computes a
forward-looking trajectory that minimizes the deviation to the desired position.

8.2.1 Problem Definition

In this work, we consider the 2D navigation behavior of a mobile robot and a leading
pedestrian. A trajectory p” of the human and p” of the robot are mappings p : R — R?
from time to a 2D position. As discussed in Sec. 5.1, the position of the robot or the
pedestrian at time ¢ is thus given by p(¢) and their velocity by p(¢). We assume a mobile
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Ji1p"(t) = p"(t)]dt

Figure 8.1: The desired position of the robot is a fixed location in the local coordinate system of the
pedestrian. The dashed curve illustrates the desired trajectory of the robot p” given the predicted trajectory
f)h of the pedestrian. Deviation from the desired trajectory yields an additional cost integrated along the
trajectory, as illustrated by the shaded area.

robot with a differential drive that is always oriented in driving direction. Similarly, we
assume that the pedestrian is always headed in walking direction. Thus, the orientation
a(t) at time ¢ is the direction of the vector p(t).

We define the desired position of the robot by a fixed position q = (¢, g,)” in the local
coordinate system of the pedestrian, i.e., the robot is supposed to always maintain the
same position relative to the human. Given the trajectory p”(¢) of the human, we can

compute the desired trajectory of the robot
p'(t) = p"(t) + R(e"(1))q, 8.1)

where R(a"(t)) is the rotation matrix of the human at time ¢. In practice the robot
cannot always follow this desired trajectory due to obstacles in the environment, or other
dynamic constraints. We cast the resulting navigation goal in a utility-optimizing manner,
where the cost function is a linear combination of the squared norm of the deviation from
the desired trajectory and an additional term g¢,,,(p”, ) that comprises acceleration and
velocity bounds and clearance to obstacles. Therefore, the desired trajectory minimizes
the navigation cost function

T
(p) = / (0:1D7(1) — D (D)2 + Oagoae (07, 1)) d, 8.2)
t

=0

where the weights 6; and 6, are model parameters to adjust the behavior to the given
application. Fig. 8.1 illustrates the predicted trajectory of the pedestrian, the offset in the
local reference frame of the pedestrian and the resulting desired trajectory of the robot.
The challenge of this approach is to predict the trajectory of the human, which determines
the desired trajectory of the robot p"(¢). To this end we utilize a predictive model of
natural human navigation behavior, which we presented in Chap. 5.
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8.2.2 Unifying Prediction and Planning

Our approach relies on an accurate model of human navigation behavior that allows the
robot to predict the movements of the leading pedestrian. To achieve a socially compliant
behavior of the robot, we want to explicitly model the fact that the human is also aware of
the robot and reacts to the actions of the robot.

Chap. 5 introduces a probabilistic model of such an interactive navigation behavior.
For given start and goal positions, the proposed model yields a distribution over the joint
space of the trajectories of each agent involved in the navigation process. This probability
distribution depends on a weighted sum of features f that capture important properties of
human navigation behavior. Each feature is a function that maps a composite trajectory,
i.e., the set of trajectories for all agents, to a real value. In Sec. 5.1.4 we proposed
features that describe the individual properties of each trajectory, such as the integrated
velocity and acceleration along the trajectory, and the time to reach the target. In addition,
we proposed features that describe interaction between the agents, such as their mutual
distance. A weight vector @ parameterizes the model and describes the importance of
each feature in the feature vector f.

In the special case of two agents h and r, the model yields the distribution

po(p",P") o exp(—07£(p", p")), (8.3)

where p" and p” are the trajectories of the two agents, as introduced in the previous section.
One can interpret 7 f(p”, p”) as a cost function. The agents are thus exponentially more
likely to select a trajectory with lower cost. To adapt the model to the individual navigation
behavior of different pedestrians or to a certain environment, we can learn the feature
weights 0 from observed data, such that the predicted trajectories accurately resemble
the navigation behavior of real humans in the designated environment. We described the
learning technique in Chap. 6.

In this chapter, we utilize the model described above to predict the trajectory of the
pedestrian, and to plan a trajectory for the robot next to the pedestrian at the same time. In
particular, we adopt the proposed features that capture accelerations, velocities, distances
to obstacles and the time to reach the target to predict the natural navigation behavior of
the pedestrian. In addition, we introduce the feature

T
frosmin('07) = [ [p70) B 0) . 8.4)

t=0
that describes the squared deviation from the desired position of the robot along the

trajectory, and
T

fnav(phapr) = / gnav(prat>dta (85)

t=0
to account for further navigation constraints of the robot, as described in Sec. 8.2.1.
During navigation, we compute the most likely composite trajectory (p”, p”) with respect
to the probability distribution given by Eq. (8.3). Due to the additional features fyeyiation
and f,,y, this most likely composite trajectory not only predicts the trajectory of the
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pedestrian, but also computes the trajectory of the robot that minimizes the navigation
cost function of the robot (Eq. (8.2)). In particular, this method accounts for the effect
that the pedestrian interacts with the robot, i.e., that the pedestrian behaves cooperatively
and navigates in a way that helps the joint navigation goal. By adjusting the weights of
the features we can adapt the level of cooperative behavior that we ascribe to the human.
Fig. 8.3 and Fig. 8.4 illustrate the predicted trajectory of the pedestrian and the planned
trajectory for the robot in two different scenarios.

In addition, the predictive model is beneficial in situations where the leading pedestrian
is not in the field of view of the robot’s sensors for some time. Instead of stopping the
navigation task, the robot is able to predict the trajectory of the pedestrian and to continue
its plan. When the human reappears in the observation of the robot, the people tracker
can use the prediction to solve the data association problem, i.e., to select the correct
pedestrian as leader.

The predictive model yields predictions of trajectories to known target positions. How-
ever, the final target position of the pedestrian is not known in general. In our experiments,
we interpolate the observed trajectory of the pedestrian to estimate its target position. In
environments where prior information of the typical paths of pedestrians is available, we
can also use more sophisticated methods to estimate their target position [10, 160].

8.3 Experiments

In this section, we describe a set of experiments using a real robotic wheelchair that
suggest that our method is applicable to successfully navigate alongside an accompanying
pedestrian in the presence of obstacles. Furthermore, we compare our approach in
simulation to two related methods. These experiments intend to show the advantages
of our predictive planning approach over local control methods, especially in situations
where the environmental conditions hinder the robot to stay close to its desired position.
During the navigation task, our method continuously computes the most likely composite
trajectory by optimizing its probability at a rate of 5 Hz.

8.3.1 Real Robot Experiments

In the following experiments, we use the method proposed in this chapter to navigate a
robotic wheelchair next to a pedestrian at a distance of 1 m. The wheelchair robot relies
on on-board sensors only, as we described in Sec. 5.3. It localizes itself in the environment
using Monte Carlo localization [140] and tracks the pedestrian using a laser based people
tracker. Fig. 8.2 shows the paths of the wheelchair and the pedestrian as observed by the
wheelchair in two different scenarios.

In the first run (Fig. 8.2 left), the robot’s desired position is on the left of the pedestrian.
It starts moving alongside the pedestrian, falls back behind the pedestrian during passing
the passage and catches up afterwards. Fig. 8.3 shows the predictions of the wheelchair
during the navigation task in the same run. As soon as the pedestrian starts to move, the
robot estimates the target position of the pedestrian by interpolating the current velocity
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Figure 8.2: Left: observed trajectories of the robot (red) and the human (blue) during navigation. The robot
falls back behind the pedestrian in the narrow passage. Middle: observed trajectories in an experiment
where the robot bypasses the obstacle on the lower side to meet the pedestrian after the passage. Right:
Experimental setup.

10 s into the future. We then use the method described above to compute the most likely
composite trajectory of the robot and the pedestrian. Right after the pedestrian starts to
move, the robot predicts a target position before the obstacle, and plans to stay next to the
pedestrian along the whole planning interval (A). In the second image (B), the predicted
target positions are behind the obstacle. Here, the robot plans to stay behind and to regain
the position to the left of the pedestrian after the narrow passage. The robot follows this
plan, as shown in the third (C) and fourth (D) image.

In the second run (Fig. 8.2 middle), we swap the position of the pedestrian and the
robot, which is supposed to keep its position on the right hand side of the pedestrian. The
figure shows that the robot stays next to the human at first, but decides to pass the obstacle
on the right side. Our system selects this variant that has a lower cost 8” f compared to
following the human through the narrow passage. Since the cost function models the task
of the robot, this means that the robot expects to better fulfill its task of staying close to
the human in addition to further navigation constraints by passing the obstacle on the
right.

Fig. 8.4 shows the predictions of the robot during this second run. As soon as the
pedestrian starts to move, the robot updates its plan to stay right next to the pedestrian
along the whole planned path (A). After the pedestrian approached the obstacle, the robot
needs to plan a path around the obstacle. Due to the geometry of the environment, there is
enough space on the lower side of the obstacle. Therefore, the robot decides to pass the
obstacle on this side, which allows the robot to stay at the human’s side as long as possible
(B, C). While the pedestrian is in the passage, the obstacle blocks the laser scanner and the
robot cannot observe the pedestrian (D). However, since the robot maintains predictions
about the movement of the pedestrian, it is able to follow its planned path until the tracker
observes the pedestrian again.

These experiments suggest that our method is applicable to navigate a real robot in
realistic scenarios. The autonomous wheelchair is able to predict the pedestrian’s behavior,
and to compute a suitable plan for the wheelchair online during navigation. Such a system
would allow a wheelchair user who is not able to steer the wheelchair him or herself to
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Figure 8.3: Predictions computed by the wheelchair at four successive time steps. The robot predicts the
human to pass the passage. Since the passage is too narrow for the robot (red) and the human (blue) to pass
it at the same time, the robot leaves its desired position and lets the human pass first. After the passage, the
robot resumes its desired position.

interact with an accompanying pedestrian during navigating to their goal location. In the
following, we present a comparison to related methods, which show the advantage of
predictive planning over reactive approaches.

8.3.2 Comparison

Fig. 8.5 and Fig. 8.6 show a comparison of our method in simulation to a social forces
(SF) based approach [8] and a velocity obstacles (VO) approach, similar to the method
proposed by Prassler et al. [121]. In their paper, they propose a velocity obstacles approach
to navigate an autonomous wheelchair. To allow for a fair comparison of the methods, we
scripted the pedestrian’s path on a rectangular path with a velocity of 0.5 m/s. The desired
position of the robot is 1 m to the left of the pedestrian for all experiments. We set the
parameters of all approaches such that the robot always kept a safety distance of at least
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Figure 8.4: Prediction computed by the wheelchair at four successive time steps. In this experiment, the
desired position of the robot is on the right hand side of the human. The robot stays at the human’s side as
long as possible. It then evades the obstacle on the right side and continues to move to its desired position
relative to the human.

0.25m to the pedestrian, as well as to obstacles in the environment.

Both, SF as well as VO compute control commands towards a virtual target position.
To compute this position, we adopt the method proposed by Prassler et al. [121]. They
linearly extrapolate the current velocity of the pedestrian in a small time horizon At to
avoid that the robot lags behind the desired position. We adjust At for both methods such
that the robot converges to the desired position when the pedestrian moves on a straight
line with 0.5 m/s.

In the test environments, the challenge for the robot is to catch up to the desired position
after the pedestrian takes turns on its path. Furthermore, there is a narrow passage in
which the robot cannot keep its desired position. Fig. 8.5 shows that all methods manage
to pass the passage. However, the bar plot on the right shows that our method is able to
stay closer to the desired position on average along the trajectory. This is due to the fact
that our method predicts the trajectory of the pedestrian and computes the trajectory of
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Figure 8.5: Comparing our method to velocity obstacles (VO) and social forces (SF) in simulation. The
desired position of the robot (red) is one meter to the left side of the human (blue). The bar plot shows that
our method stays closer to the desired position on average.
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Figure 8.6: Comparison to VO and SF that illustrates the advantages of our method over local control
methods. The trajectory of the simulated pedestrian is identical to the previous experiment, illustrated in
Fig. 8.5. However, the obstacles have a non-convex shape in this experiment. While our method predictively
plans a trajectory through the narrow passage, both VO and SF get stuck in the non-convex obstacle.

the robot that minimizes the deviation along the whole path, while also incorporating
properties of the robot, such as limited acceleration or velocity constraints. Such a long
term planning is better suited to accomplish the navigation task compared to greedily
approaching the desired position.

Fig. 8.6 shows a similar experiment with an additional obstacle that resembles an open
door in a typical indoor environment. The first image shows that our approach is able to
negotiate the passage in a similar way as in the first setup. The robot falls back behind the
pedestrian and catches up afterwards. Both SF as well as VO, however, get stuck behind
the open door, since there is a local minimum in their local control functions. The bar plot
reflects the advantage of the predictive planning in this experiment. Whereas our method
shows a similar mean deviation from the desired position as in the first experiment, SF
and VO gain a higher deviation whilst stuck in the local minima.

8.4 Related Work

In the past, many authors proposed methods to navigate a group of robots in formation. Liu
et al. [98] cast the joint path planning task of a robot formation as a linear programming
problem. Similar to our approach, they plan the trajectories to the target position of each
robot. However, Liu et al. control the group of robots in a central manner and each robot
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executes the optimal trajectory. Balch and Hybinette [8] propose to use social potential
fields that pull the robots towards attraction points to achieve a certain formation. Our
experiments include a comparison to a social potential-based approach.

A different problem arises when the task of the robot is to follow a leader whose goal
is unknown. Chiem and Cervera [24] and Huang et al. [S9] propose to compute a cubic
Beziér curve between the leading robot and the follower. The follower then navigates
along this trajectory, using a velocity controller. In addition, if the robot’s task is not only
to follow the same path but to stay in a certain formation, they propose to compute virtual
targets for each of the robots and compute Beziér curves to these target positions. However,
they follow the leading robot without active obstacle avoidance. Desai et al. [35] and
Das et al. [29] use control theoretic approaches to keep each robot close to its designated
position within the formation, also considering obstacles in the environment. If the desired
shape of the formation changes, they introduce control graphs to assign the robots to their
new position in the formation. Qin et al. [122] use artificial forces to navigate each robot
close to the desired position in a formation. Similarly, Tanner and Kumar [138] propose
to use navigation functions to keep a group of robots in a certain formation. Navigation
functions also lead the robot along the gradient of a smooth function, similar to artificial
forces, but there are no local minima allowed, except of the target position. In general,
however, it is difficult to design such a function for arbitrary environments [93]. Chen
and Wang [23] provide a survey on different approaches to robot formation control.

The abovementioned approaches use local control methods to steer the robot either
directly to the desired position in the formation, or to some local virtual target position. In
contrast, we predict the trajectory of the leader based on its current state and the state of
the environment. At the same time, we compute the trajectory that minimizes the distance
to the desired relative position along this trajectory while satisfying further constraints.
This prevents the robot from getting stuck in local minima of the cost function and allows
it to adapt the planned trajectories to the environment early on.

Similar methods have also been used to enable a robot to follow a human leader.
Pradhan et al. [120] utilize a navigation function method and set the tracked positions of
the pedestrian as virtual target positions. Therefore, the robot is only able to follow the
person, but not to stay at a fixed relative position. Prassler et al. [121] aim at coordinating
the motion of a human and a robot and also apply it to a robotic wheelchair. They propose
to use the velocity obstacles approach [39] to guide the robot to a local virtual target. We
compare our method to a similar approach in our experimental section. Most similar to
our approach is the work of Morales et al. [105]. They optimize a utility that encodes
the desired relative position as well as the walking comfort of the pedestrian. However,
they optimize the planned trajectory locally, whereas we optimize future trajectories to
a distant subgoal, which allows the robot to adapt its behavior to the environment in a
predictive manner.

Miiller et al. [108] and Stein et al. [137] proposed methods to select a pedestrian which
the robot follows. They aim to improve the navigation of a mobile robot by following
a pedestrian who walks in the same direction. In contrast, our goal is to stay close to a
desired position relative to a fixed pedestrian throughout the whole navigation task.
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8.5 Conclusion

In this chapter, we used our model of interactive navigation behavior to allow a mobile
robot to follow a leading person in a socially compliant way. Our approach uses the
feature-based model of natural navigation behavior to predict the trajectory of the leading
human. In contrast to previous approaches, our method allows the robot to compute far-
sighted plans that minimize the long-term deviation from the desired trajectory. In addition
to features that describe natural intents of navigating pedestrians, our method uses features
that capture the navigation goals of the robot. The resulting model thus unifies predictions
of the human’s behavior with path planning for the robot. In several experiments with
a robotic wheelchair we demonstrated that the proposed model is applicable to real
world scenarios such as navigating alongside an accompanying person in the presence of
obstacles. A comparison in simulation suggests that our method outperforms previous
models that rely on local control strategies.






Chapter 9

Learning Behavior Styles for
Autonomous Cars

It is expected that autonomous vehicles capable of driving with-
out human supervision will be released to market within the next
decade. For user acceptance, such vehicles should not only be safe
and reliable, they should also provide a comfortable user experience.
However, individual perception of comfort may vary considerably
among users. While some users might prefer sporty driving with
high accelerations, others might prefer a more relaxed style. Typi-
cally, a large number of parameters such as acceleration profiles,
distances to other cars, speed during lane changes, etc., charac-
terize a human driver’s style. Manual tuning of these parameters
may be a tedious and error-prone task. Therefore, we propose
a learning-from-demonstration approach that allows the user to
simply demonstrate the desired style by driving the car manually.
We model the individual style in terms of a cost function and use
feature-based inverse reinforcement learning to find the model pa-
rameters that fit the observed style best. Once the model has been
learned, a vehicle can use it to efficiently compute trajectories in au-
tonomous mode. We show that our approach is capable of learning
cost functions and reproducing different driving styles using data
from real drivers. Furthermore, we apply the learned policy for
navigating an autonomous car in simulation.

9.1 Introduction

In the previous sections, we described methods that allow mobile robots to navigate in
populated environments and to learn models from demonstrations. However, the focus of
these methods was on domestic robots that move in the direct vicinity of pedestrians. The
same approaches can also be applied in the context of self-driving cars. While highway
driving poses different properties and challenges, the main ideas of our methods still apply.
During navigation, there are also discrete decisions, such as staying in lane or to overtake,
and continuous properties of the trajectories within such a behavior class. Furthermore,
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Figure 9.1: A Bosch highly automated driving development vehicle.

especially for high-speed highway driving, it is important to plan predictively and adapt
the behavior of the car early in order to avoid dangerous situations. In this chapter, we
present a framework to model the decision process for navigating an autonomous car on
highways, and a method to learn individual driving styles from demonstrations.

Recent studies indicate that the pace of innovation and investment in self-driving
vehicles is accelerating and that consumers are open to the idea of such vehicles [78, 79].
Some of the key factors in user acceptance of autonomous vehicles are safety, reliability,
and comfort. Comfort is subjective and can be influenced by various factors including the
driving style, which is the way in which a driver habitually drives [38] and is a trade-off
between features such as speed, acceleration, jerk, distance to other vehicles, etc. Studies
suggest that driving styles vary across users [139]. To be comfortable for different users,
an autonomous vehicle should adapt its driving style according to user preferences in
addition to maintaining safety.

We can achieve different driving styles for an automated vehicle by varying the model
parameters of its motion planning algorithm. However, manual tuning of these parameters
is generally difficult because of the large number of parameters that may have antagonistic
effects. If at all possible, manual tuning is likely to be a tedious and time-consuming
process. Therefore, we propose a learning-from-demonstration approach to learn the
model parameters for each user from their observed driving style. We assume that the
desired driving style maximizes some notion of a reward, i.e., that there is a cost function
that explains the driver’s style. The challenge is to find the cost function that best explains
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the observed style and that also generalizes to different situations.

In this chapter, we use the feature-based inverse reinforcement learning method that we
presented in Chap. 6 to learn driving styles from demonstrations. The key parts of the
model that we used in the previous chapters also apply in the context of navigating an
autonomous car. Similar to the properties of the desired navigation behavior of social
robots, we use features that capture important properties of the driving style that we want
to reproduce. Our model comprises a cost function that is a linear combination of these
features. To find the feature weights that best fit the observed style we use the proposed
learning method.

Furthermore, the task of navigating a car consists of a combination of discrete and
continuous decisions. When driving on highways, there arise a number of discrete
decisions such as staying in lane, or overtake. For the trajectories within each of these
classes, it is important to also capture higher-order properties such as velocity, acceleration
and jerk, since acceleration and jerk have a strong influence on the comfort of the
passengers [63]. To capture these properties, we propose to use a continuous representation
of trajectories as proposed in Chap. 5.

Once the parameters have been learned, we use the resulting model to compute tra-
jectories online during autonomous driving tasks. To quickly react to changes in the
environment, it is important to efficiently reason about the trajectories. Thus, we exploit
the techniques for efficient trajectory optimization developed in the previous chapters.

In the remainder of this chapter we describe the state representation of trajectories for
autonomous cars and describe the inverse reinforcement learning approach. Furthermore,
we propose a set of features that are relevant to the task of highway driving and present
experiments that suggest that our method is suitable for learning individual driving styles
from demonstrated trajectories.

9.2 A Model for Autonomous Highway Driving

For representing trajectories of the autonomous car and learning individual navigation
behavior, we apply similar methods as those described in Chap. 5 and Chap. 6. In
particular, we model the navigation behavior as a two-stage process. The first stage
corresponds to a discrete navigation choice. The second stage selects a specific trajectory
from a continuous distribution within this class. We also learn individual navigation
behavior using feature-based IRL. However, different conditions and challenges arise in
the context of highway navigation at a high speed, compared to mobile robot navigation
in office environments. In the following, we describe a model that captures the navigation
behavior of autonomous cars on highways and highlight similarities and differences to
the methods proposed in the previous chapters.

9.2.1 Trajectory Representation

We represent the trajectories of cars using splines, similar to the representation described in
Chap. 5. However, for high-speed navigation it is important to satisfy curvature continuity
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of the trajectories. A trajectory with discontinuities in the curvature yields instantaneous
changes of the steering angle, which is obviously not possible for a real car. Using such a
trajectory for the control of a car could therefore lead to unexpected, dangerous behavior.

The curvature «(t) of a trajectory at time ¢ is a function of the acceleration and the
velocity of the trajectory

ay (1) va(t) — vy(t)a
(02(1)% + v, (1)?)

(t)

(t) = ©.1)

wjw| 8

Therefore, to achieve curvature continuity we require the acceleration to be a continuous
function over time. Using splines, this implies to increase their degree to five, instead
of cubic splines with a degree of three that we used for the experiments in the previous
chapters. For quintic splines, the restriction p|j, ;,,,](t) of the trajectory to a time interval
[t;, ;1] is a two-dimensional polynomial of degree five:
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Similar to cubic splines, we parameterize the spline using the position, velocity, and in
addition the acceleration

p) =y = (24) i) =, = (57) ana bt =y = (50) 0
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at the end points of each spline segment. Since two spline segments share control points,
the resulting trajectories are C? continuous, i.e., the acceleration and thus the curvature
are continuous.

For this representation, the z-component of the trajectory in the interval [t;, ;4] is
given by

W\ T [—ng + 5nq — 100y + 1005 — 51y -+ ns
u? 5ng — 20ny + 30ny — 2003 + Hn4d
’LL3 —10710 + 30711 — 30712 + 10%3

pa:’[tj,tj+1](t) = u2 10ny — 20m; + 10n, ) (94)
U —dng + dHny
1 No

where w is the normalized spline segment parameter
t—t;
u=—> 9.5)
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The variables n to ns are defined as follows:

no = Pz,j
ny = 0.2p, ;AL +py
ny = 0.05(, ;A" + 0.4p, ;AL + p,
ng = 0050, ;118" — 0.4p5 j 1 At + paj
ny = —0.2p, j 11 A + pe g1
N5 = Px,j+1;
where At = t;;1 — t; is the time duration of this segment.

The first derivative of the x component of the spline, which corresponds to the velocity
is given by

U4 5(—710 + 5711 — 10”2 + 10713 — 5714 + n5)
u? 4(5ng — 20n; + 30ny — 20n3 + 5n4)
Vgt 5401 (1) = | @2 3(—=10ng + 30n; — 30ny + 10n3) , (9.6)
ut 2(10ng — 20n; + 10ns)
1 —5710 + 5711

and the acceleration is given by

W\ T /20(=ng + 5ny — 10n5 + 1005 — 5ny + ns)
u? 12(5n9 — 20n1 + 30ny — 20n3 + 5n4)
Gallty b1 (t) = | 1 6(—10n0 + 30n; — 300y + 10n3) D
1 2(10ny — 20n, + 10ny)
In addition, the jerk is the third derivative
W\ T [60(—no + 5ny — 10ns + 10n5 — bny + ns)
Jality 0 (1) = ut 24(5ng — 20n; + 30ny — 20n3 + 5n4) ) (9.8)

1 6(—10710 + 30%1 — 30712 + 10713)

The y-components of the position, velocity, acceleration and the jerk are defined analo-
gously.

The behavior of the autonomous car depends also on the behavior of other vehicles
on the road. We therefore capture a set of trajectories for all vehicles as a composite
trajectory

x(t) = (p™(t),...,p*(t)) € X, 9.9)

where p® (1) is the trajectory of car a;.

9.2.2 Modeling Highway Navigation

The representation of the environment in the context of highway-driving is a set of lanes,
in comparison to a grid-based representation presented in the previous chapters. The lanes
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Figure 9.2: Illustration of three distinct discrete choices for car I: Stay in lane behind car 2, move to left
lane, move to right lane. The blue line illustrates the predicted movement of car 2, the red lines the best
trajectory within each of the three classes.

are defined as a series of waypoints in the middle of each lane, to which we refer as center
line. In our experiments, the lane information results from a previously mapped road
network. However, our algorithm is independent of the source of the lane information. We
could therefore also apply a lane classification method that runs online on the autonomous
car [142, 145, 151, 158]. In contrast of representing the robots as points, we model the
2D shape of the cars to guarantee collision-free trajectories. For the autonomous car as
well as all other vehicles that are currently detected on the road, we use a polygon to
represent their 2D shape.

In the following, we apply the model that we presented for mobile robot navigation in
Chap. 5 to autonomous cars. This model comprises a two-stage decision process. The
first stage corresponds to discrete navigation choices, for which we used homotopically
distinct paths. In the context of autonomous cars, we consider slightly different discrete
decisions. Here, we consider the choices of staying in lane, or changing lanes to the left,
or to the right. When changing lanes there may also arise further discrete decisions, for
example between which cars we should merge.

For each discrete choice, there is exists a continuous distribution over trajectories within
the corresponding class. Each of these continuous trajectories captures one possible
behavior of the car for a certain time interval. We model this distribution in terms
of an exponential family distribution that depends on features. Fig. 9.2 illustrates an
environment with three lanes and two cars, where our method controls car I. The red
trajectories show the optimal trajectories within each of the three discrete choices to
stay in lane, change to the left lane, of change to the right. The blue trajectory shows
the predicted trajectory for car 2. For robot navigation in populated environments, we
considered the cooperative navigation behavior of all agents. When navigating on a
highway, it could be dangerous to always assume cooperative behavior. For example,
when we approach an other car that has a lower velocity on the same lane, the optimal,
cooperative behavior would be for the other car to yield and change lanes. However, we
cannot plan with this cooperative assumption in practice, since it could potentially lead
to a fatal accident if the other car does not follow this joint plan. In our experiments we
apply a constant velocity model for all other vehicles. In particular, we assume that all
other vehicles stay in their lane and keep the current velocity. An additional intention
classification, which detects potential lane changes of other cars would be necessary for
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safe navigation with our method in practice.

A further difference to the model used in the previous chapters lies in the degrees of
freedom of the trajectories that we optimize. In the previous chapters, we set a specific
target for the robot and all other agents. During optimization, we fixed the first spline
control point as well as the position of the last control point for all trajectories. All other
control points as well as the total travel time of the agents were variables that we optimize.
This ensured that the agents eventually reached their target position. For navigation on
highways we have a more constrained environment, since all cars are supposed to stay
close to the center line of one of the lanes on the highway and maintain a given direction
at a certain desired velocity. Therefore, we let our optimization method also change the
position of the last control point but fix the total travel time. This results in a constant
planning time interval during navigation. Using features that penalize the distance to the
desired center line and that capture the desired velocity, the optimized trajectories stay
close to the desired lane.

9.2.3 Features

In the following, we propose features that capture relevant properties of driving styles such
as velocities, acceleration and distances to other agents, the distance to the desired lane,
and the desired speed. Each feature takes as input a composite trajectory that represents
the trajectories of all vehicles in a certain time interval, but computes statistics for a
specific vehicle a.

Acceleration

The acceleration of the car has an important influence on the subjective feeling of comfort.
Integrating the squared acceleration over the trajectory yields the feature

@ (x) = / 15°(6) |12 dt. 9.10)
t

Normal acceleration

Experimental studies showed that passengers of vehicles react very sensitive to lateral ac-
celerations [63]. Therefore, we use a feature that represents the acceleration perpendicular
to the direction of the lane.

@ ) = / (da (D ()F2(t) — dy (p*(£))2(1))° dt. ©.11)

t
where d(p) is the direction vector of the lane segment closest to the position p.

Jerk

For the comfort of passengers the jerk along the trajectory is also an important quantity:

ok (X) = /||'15“(t)\|2 dt. (9.12)
t
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Normal jerk

Similar to a feature for the normal acceleration, we also capture the lateral jerk perpendic-
ular to the direction of the lane

@mmw:/MMﬂmmw—%mwmmWQw ©.13)

t

Curvature

Since a real vehicle has typically a limited turning circle, we additionally introduce a
feature that represents the squared curvature

gmmmzﬂwwww ©.14)
t

Desired speed

To represent the deviation from a desired speed, we use the feature

ﬁhﬁ@=/h@hﬂm—wﬁww ©.15)
t

where v§. is the desired velocity of vehicle a. The desired speed could either be the speed
limit on the given highway, or a lower individual speed that is comfortable for the user.

Lane

When driving on highways, the vehicle should drive close to the center of the desired lane.
We represent this property by the feature

f&m@=[WW@@—W@Mt 9.16)

This feature is parameterized with a lane index k. The function 1(p, k) returns the point
on the centerline of lane k that is closest to point p.

Collision avoidance

Obviously the distance to other vehicles is important to avoid collisions. Therefore, we
introduce the feature

1
& = | —— dt, 9.17
fdlstance (X) /t Hca (t) ”2 ( )

where c®(t) is the closest distance of vehicle a to an other vehicle at time ¢. The value
of this feature increases as the car gets closer to any other vehicle. To compute c*(¢),
we determine the closest distance between the polygon shaped 2D outline of a car a and
all other vehicles in the vicinity. Here, we can exploit the fact that the relative position
between two vehicles does typically not change much from one sampling point to another.
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We apply an adaptation of the closest feature tracking method [97] to 2D. This technique
computes the edge or vertex of a polygon that is closest to another polygon and re-uses
the previous results iteratively, which improves the run-time compared to the brute force
approach.

Following distance

When following other vehicles, we aim at keeping a safety distance which is greater
than the minimum allowed distance between two vehicles perpendicular to the lanes. To
account for the distance to the following vehicle on the same lane, we propose the feature

Fou (%) = / max (0, o — d“(t)) dt, 9.18)
t

where d(t) is the current distance to the next vehicle along the lane and d the desired
following distance.

In addition, in accordance with the model described in Chap. 5, we use propose a set of
features for the discrete navigation choices.

Cost of the most likely composite trajectory

We use a feature accounting for the cost of the most likely trajectory within each class

Jmlcost () = min BT f(x), (9.19)

XEY

where the classes 1) € W correspond to lane changes in the context of highway navigation.

Changing lanes

Furthermore, we add a feature that represents a penalty for changing lanes:

0 if i = current
gchange<¢) - { 7 ' w w (920)

c, else

The two features bias the choice of discrete navigation decisions towards the class that
contains the most likely trajectory, i.e., the class in which the optimized trajectory has the
lowest cost 7 f(x). However, it avoids hysteresis by adding a penalty for changing lanes.

9.3 Learning Individual Driving Styles

For learning navigation styles from demonstration, we apply IRL, similar to the techniques
that we presented in Chap. 6. For convenience, we shortly recap the principle of maximum
entropy and feature matching in the context of car navigation.
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9.3.1 Maximum Entropy Inverse Reinforcement Learning

Given a set of NV observed trajectories X1, . .., Xy our goal is to learn a model that explains
the observations and that is capable of generating trajectories of similar characteristics
in other situations. However, it is not obvious what similar means in this context. For
example, if we have training examples from a certain highway, an unbiased learning
algorithm without any assumptions might learn that it is important to drive on this
exact highway. However, we rather want a system that learns acceleration profiles or
local obstacle avoidance behavior and that is able to generate similar trajectories on any
highway.

To introduce such domain knowledge, we propose a feature-based learning algorithm.
Each feature f}, is a function that maps a trajectory to a real value, capturing some relevant
characteristic. The vector of all features f is thus a function that maps trajectories to a
real vector

f:x— (fix),..., fu(x)) € R™ (9.21)

In this way, the empirical feature values of the observed trajectories f = 377 f(%;) encode
relevant properties of the demonstrations, such as accelerations, velocities, or distances to
other vehicles.

Our goal is to find a generative model that yields trajectories that are similar to the
observations, where the features serve as a measure of similarity. More specifically, given
a probabilistic model that yields a probability distribution over trajectories p(x | @), our
goal is to find the parameters @ such that the expected feature values match the observed
empirical feature values, i.e., .

Epyx[f] = . (9.22)

In general, there are many distributions with this property. Within the class of all
distributions that match features, Ziebart et al. [159] propose to select the one that
maximizes the entropy. Following the principle of maximum entropy, this distribution is
least biased estimation on the given data. The solution of the constrained optimization
problem of optimizing the entropy given the constraints in Eq. (9.22) has the form

p(x | 0) =exp (—0"f(x)). (9.23)

One can interpret 67 f (x) as a cost function, where agents are exponentially more likely
to select trajectories with lower cost. Unfortunately, it is not possible to compute 6
analytically, but we can compute the gradient of the Lagrange function of the constraint
optimization problem with respect to . It can be shown that this gradient is the difference
between the expected and the empirical feature values

Eppolf] — . (9.24)

There is an intuitive explanation for this gradient: when the expected value E, x| f%| for
a feature f} is too high, we should increase the corresponding weight 6, which in turn
assigns lower likelihood to any trajectories with high feature values f;(x). As a result,
the expected feature value E,x|g)[ fi] decreases. Sec. 6.2 provides more details about the
derivation of this learning algorithm.
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9.3.2 Maximum Likelihood Approximation

The main challenge of our learning approach is to compute the expected feature values
Ep, (x)[f]. For high-dimensional distributions it is generally not possible to compute the
integral

By o [f] = / p(x | 0)f(x)dx 9.25)

analytically. In Chap. 6 we described how to sample trajectories from the high-dimensional
space of trajectories using a Hamiltonian Markov chain Monte Carlo method. However,
this sampling method is computationally very expensive. Instead of computing the
expectations by sampling [85], a possible approximation of the expected feature values is
to compute the feature values of the most likely trajectory:

E,[f] = f(argmaxp(x | 9)). (9.26)

The resulting learning method is also known as inverse optimal control. With this
approximation, we assume that the demonstrations are in fact generated by minimizing a
cost function. This is in contrast to the assumption that demonstrations are samples from
a probability distribution. Our experiments suggest that this approximation is suitable in
the context of learning individual driving styles on highways.

9.3.3 Learning Individual Navigation Behavior

In this section, we outline the learning process when approximating the expectations using
maximum likelihood trajectories, as described in Sec. 9.3.2. Given a set of demonstrated
composite trajectories {Xi,...,Xy}, the following steps lead to the desired feature
weights 6 that capture the continuous navigation behavior.

1. Predict the movement of other vehicles on the road for all composite trajectories X;.

2. Compute the empirical feature vector f = 3, f4(%;) for all demonstrated trajecto-
ries, where a is the car from which we want to learn the navigation style.

3. Initialize the weight vector @ with arbitrary values.

4. For each demonstrated trajectory, fix the position, velocity and acceleration at the
first control point of p®, as well as all the control points of trajectories p®7“. Set the
desired lane k for feature f .(x, k) to the lane closest to the last control point of
the observed trajectory p®. Then optimize all demonstrated trajectories with respect
to the cost function 87 f(x). We denote the optimized trajectories by {x¢, ... ,x%}.

5. Compute the approximated expected feature values by evaluating the feature func-
tions for all optimized trajectories E,, ) [f] ~ £, = SV fe(x9).

6. The gradient for the optimization is given by £, — f, as stated in Eq. (9.24). Use
this gradient to update the current estimation of the weight vector 6.

7. Repeat from step 4 until convergence.
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Figure 9.3: Evolution of the norm of the difference between the empirical feature values and the expected
feature values during learning from a dataset of 20 observed trajectories.

9.4 Navigating an Autonomous Vehicle Using the Learned
Model

We integrated our method into a planning framework for autonomous vehicles. At each
planning cycle, we update the state of other perceived vehicles on the highway given
the current sensor readings. We predict the future behavior of these vehicles assuming
constant speed along their respective lanes. Based on this prediction, we use the method
described above to optimize the trajectory of the autonomous vehicle based on the learned
cost function.

We propose to maintain a set of optimized trajectories within each class, similar to
the approach presented in Chap. 5. In the context of highway navigation, each class
corresponds to either staying in lane, or a lane change maneuver. If we do not have a
representative for one of these classes, we initialize this class with an initial guess, which
is a trajectory from the current position of the car to the desired lane. At each planning
cycle we fix the position p{j, velocity pg, and acceleration pg of the first control point
in all classes according to the trajectory that we sent to the controller in the previous
planning cycle. (Find details on online path planning in Sec. 5.2.5). The remaining spline
control points p}, pj, and p; for j € {1,...,m} are variables for the optimization using
the learned cost function.

In particular, the feature f .(x, k) specifies to which lane a trajectory converges during
optimization. We set the value of & of this feature individually for each class. We optimize
the trajectories in each class in parallel, using the optimization algorithm RPROP [126]
and select the class that has the lowest cost ®”'g (1) for navigation.

The structure of the leaned cost function yields smooth, comfortable trajectories which
keep a safe distance to obstacles. When the navigation system detects a slower vehicle
ahead, our system predictively computes trajectories for different maneuvers. Depending
on the cost of the different variants, the autonomous car either decelerates and keeps a safe
distance, or it changes the lane to overtake the slower vehicle. In this case, the features
that capture the curvature, normal acceleration, and normal jerk guarantee a smooth lane
change that shows characteristics as demonstrated before.
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Figure 9.4: Demonstrated trajectory (blue), the initial guess (black), and the optimized trajectory with the
final learned policy (red). The trajectory shows a change of two lanes to the left. The dashed lines illustrate
intermediate policies during the learning phase.

9.5 Experiments

In this section we evaluate our method for learning autonomous navigation behavior from
demonstration. In particular, we present experiments in which we learn an individual
driving style from behavior recorded during real highway driving. Furthermore, we show
the applicability of our method to navigating an autonomous car in a realistic highway
simulation framework.

9.5.1 Data Acquisition

To record training data, we used the car shown in Fig. 9.1 that is equipped with a
range of sensors, which allow us to localize in an existing 3D map of the environment.
Furthermore, the car observes and tracks other vehicles in its vicinity. For the experiments
in this section, we recorded the driving style of a driver on a US highway in normal traffic.
From this dataset we manually selected 20 maneuvers of about 10 s length each as training
observations, including lane changes and changes of speed with a variety of different start-
and target velocities. Each observation consists of the trajectory of the car, the trajectories
of all other vehicles in the vicinity, and the lane information. For each sample, we set the
desired speed according to the last observed speed. Similarly, we set the desired lane to
the closest lane at the end of the observed trajectory. To avoid manual pre-selection of the
training data, we could also obtain samples in an interactive training session, where the
car issues commands such as “perform a lane change to the left lane now”.

9.5.2 Learning Individual Navigation Styles

The goal of the learning method is to find a weight vector @ of a policy that explains
the observed trajectories. Fig. 9.3 shows the deviation of the empirical features and the
approximated, expected feature values during learning from the set of observed trajectories.
After about 30 iterations, the feature weights converge.

Fig. 9.4 shows an observed trajectory of changing two lanes to the left. In addition
to the observed trajectory, the figure shows the initial guess as well as the trajectory
optimized with the learned policy. The learned policy yields a trajectory with similar
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Figure 9.5: Normal acceleration and normal jerk of a demonstrated trajectory (blue), the initial guess
(black), and the optimized trajectory with the final learned policy (red).
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Figure 9.6: Speed (left) and acceleration (right) of a demonstrated trajectory (blue), the initial guess (black),
and the optimized trajectory with the final learned policy (red). The dashed line shows the trajectory of a
car in a realistic simulation that accelerates from 23 m/s to 29 m/s using the learned policy.

characteristics compared to the observation. This is also shown in Fig. 9.5 which plots the
normal acceleration and the normal jerk during the lane change maneuver.

Fig. 9.6 shows the velocity and acceleration profiles for a different trajectory, where the
car accelerates from an initial velocity of 23 /s to a desired velocity of 29 m/s. The plots
show the observation, the initial guess, and the final learning result. Similar to the lane
change behavior, the learned method better replicates the behavior compared to the initial
guess.

In our experiments, the resulting trajectories after optimization do not fit the observation
perfectly. The reason for this is twofold. First, the learned policy is an average over the
set of different sample trajectories. Second, the observations do not exactly meet the
optimality criteria for any cost function that is a linear combination of the features we use.
However, the experimental results suggest that our algorithm learns the magnitude of the
quantities that contribute to the comfort of the users.

9.5.3 Autonomous Driving

We applied the learned policy to autonomous navigation, as described in Sec. 9.4. Our
system continuously computes the trajectory with lowest cost with 5 Hz and uses the
trajectory to control a car in a realistic simulation environment. To show that the learned
characteristics also apply to online navigation, we changed the desired velocity of the
simulated car from 23 /s to 29 m/s during navigation. This maneuvers is similar to
the demonstration sample shown in Fig. 9.6. This parameter change causes the car to
accelerate to the new desired velocity. The dashed line in Fig. 9.6 shows the acceleration
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Figure 9.7: Simulation experiment with two cars on a highway with three lanes. The gray lines correspond
to the centerlines of the lanes. The car controlled by our method (red) decides to stay in lane as long as the
predicted trajectory is not affected by the slower car in front (blue). As soon as the prediction for staying in
the current lane implies a deceleration, our method initiates a lane change. During the passing maneuver,
moving to the right is not viable option. The corresponding trajectory for a lane change to the right is
therefore only considered after finishing the passing maneuver. The gray arrow shows the constant velocity
prediction for the blue car.

of the simulated car during this maneuver. The acceleration profiles coincide with the
trajectories optimized offline for the same acceleration task. This experiment suggests that
the learned policy is suitable to autonomously control a car with similar characteristics as
observed from real drivers.

Fig. 9.7 shows an illustration of the navigation behavior on a highway with multiple
lanes, where a slower car blocks the current lane. The figure shows the optimized
trajectories for each of the three classes that correspond to the lanes of the highway. Our
algorithm selects the red trajectory for navigation since it has the lowest assigned cost.
First, the car in front does not interfere with the planned trajectory over the whole planning
horizon, causing the car controlled by our method to stay in lane. As soon as our method
predicts a necessary deceleration on the current lane, the cost distribution shifts and the
lane change becomes the best option. During the overtaking, merging to the right has a
very high cost and is not considered in this situation. After the passing maneuver, the
third option gets viable again, and is added to the set of variants as a result. Fig. 9.8 shows
a snapshot of the realistic highway navigation during the lane change maneuver.
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Figure 9.8: Snapshot of our realistic highway simulation. The figure shows the three optimized trajectories
in distinct classes that our method computed for the red car. The snapshot corresponds to ¢ = 2 s in Fig. 9.7.
The spheres along the trajectories illustrate the spline control points.

9.6 Related Work

In the past, machine learning techniques in various fashions have been used to improve
the performance of autonomous vehicles. In 1991, Pomerleau [119] used neural networks
to learn to steer a vehicle on a highway by observing a person drive. The network receives
live input from a camera on the vehicle and learns a control function of the steering angle
to keep the vehicle on track. Riedmiller et al. [127] use reinforcement learning to learn a
steering controller from scratch. The input is the deviation from the track and the speed of
the vehicle. Their approach learns a controller that is able to navigate the vehicle on the
track while driving a real car for 25 min. In this work, our goal is to learn a more complex
behavior that does not only allow the vehicle to stay in the current lane but to maintain a
desired speed, keep a safe distance to other vehicles, and also change lanes.

Abbeel and Ng [1] motivate the use of IRL for learning driving styles: “When driving,
we typically trade off many different desiderata [...] To specify a reward function for the
driving task, we would have to assign a set of weights stating exactly how we would like
to trade off these different factors. Despite being able to drive competently, the authors do
not believe they can confidently specify a specific reward function for the task of driving
well.” Abbeel and Ng apply their method to learn different behavior styles on a highway
simulation with three lanes and five discrete actions.

Babes et al. [7] introduced maximum likelihood inverse reinforcement learning. Similar
to Ziebart et al. [159] they maximize the likelihood of the data assuming an exponen-
tial family distribution. They furthermore introduce a method to automatically cluster
observed behavior styles and learn individual feature weights for each cluster. Chen
et al. [21] propose a method to automatically discover a set of relevant features in IRL
and Levine et al. [96] use Gaussian processes to learn the reward as a nonlinear function.
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In these approaches, the respective IRL algorithms are used to learn behavior patterns on
a discrete highway simulator with a small number of states and actions, similar to Abbeel
and Ng [1]. Silver et al. [134] apply maximum margin planning (MMP) to learn more
complex behavior for autonomous vehicles and show experiments in which learning by
demonstration significantly outperforms manual tuning of the parameters. MMP is an
IRL variant that aims to minimize the margin between the observations and the optimal
trajectory in an MDP by adjusting the cost of discrete state-action pairs.

In contrast to a discrete state and action space, we consider trajectories in continuous
state spaces. This allows our method to learn higher order properties such as lateral jerk,
which is important for the comfort of users. Furthermore, the continuous trajectories
computed by our approach are suitable for online control of an automated car.

The method we utilize in this chapter builds on previous approaches for learning
pedestrian navigation behavior as presented in Chap. 5 and Chap. 6. However, in the
context of highway driving we encounter different preconditions and challenges. For
example, in contrast to free movement in all directions, vehicles need to follow their
respective lanes. Furthermore, continuous acceleration and bounded jerk are necessary
for driving comfort especially when driving at a high speed.

Schwarting and Pascheka [132] propose a system to recursively resolve conflicts, by
cooperative decision making that is based on a cost function similar to ours. In our
experiments, we use a constant velocity for the other vehicles on the road. However, our
framework would also allow to integrate cooperative behavior, i.e., to also predict the
behavior of others based on the underlying cost function as presented in Chap. 5.

The approach presented in this chapter relies on a finite-dimensional representation
of trajectories. We choose to encode the 2D position along the trajectories using quintic
splines, similar to Sprunk et al. [136]. They optimize trajectories with respect to a user-
defined cost function for navigating a holonomic mobile robot. Gulati [46] proposes an
alternative trajectory representation. Instead of the positions along the trajectory, Gulati
parametrizes a trajectory using orientation and speed. This allows boundary conditions
with zero speed. However, in contrast to an efficient closed form representation, this
parametrization requires numerical integration to compute the position along the trajectory.
The learning approach proposed in this chapter is independent of the representation of
trajectories, as long as it allows computation of the features and their derivatives.

In our experiment, we use pre-build maps of the environment for localization and lane
detection. Other authors proposed to extract lane markings using the on-board sensors of
the car. Vacek et al. [142] use a particle filter to detect lanes given measurements from
virtual scan lines in a 2D camera image. Wang et al. [151] fit a spline-based lane model
into the road image. Zhao et al. [158] extend the method of Wang et al. by implementing
a Kalman filter to track the control points of the spline. Veit et al. [145] presents a
comparison on different features for extracting road markings from images.
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9.7 Conclusion

In this chapter, we presented an inverse reinforcement learning method to learn individual
driving styles for self-driving cars from demonstration. To this end, we adapted the feature-
based approaches for mobile robot navigation described earlier in this theses. In particular,
to capture the relevant properties of highway driving, we proposed a set of features
that model distances to other vehicles, the distance to the desired lane as well as higher
order properties such as velocities and accelerations. By matching observed empirical
feature values with the expected feature values of the model, the proposed method
allows us to learn a policy that represents an individual driving style. We model discrete
navigation decision as well as continuous properties, which allows a car to navigate
autonomously on highways with several lanes. Experiments carried out with observed
trajectories from a real car suggest that our method is able to reliably learn policies
from demonstration. Furthermore, experiments using a realistic highway simulation
demonstrate the applicability of the learned policies for autonomous navigation.
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Discussion

In this thesis we presented methods that allow a mobile robot to navigate in a socially more
compliant way compared to traditional path planning methods. To this end, we proposed
models that give a robot a better understanding of the natural navigation behavior of
interacting agents. This allows the robot to predict the behavior of nearby pedestrians,
and to plan a socially compliant path to a goal location at the same time. The key idea of
our novel model is that we explicitly integrate into the planning process the reactions of
pedestrians to the actions of the robot. Furthermore, during navigation a mobile robot can
use the models to predictively plan trajectories, which enables it to adapt its behavior at
an early stage of the interaction, in contrast to reactive planning methods.

After introducing traditional path planning methods, we presented a method for online
skeleton tracking of humans. Such a method enables a robot to estimate the pose of
humans, for learning their behavior, or for direct interaction. In contrast to existing
methods, our approach is fully automatic and does not need any user input such as
labeling the optical markers. In comparison experiments, we showed that our method
outperforms state-of-the-art commercial products.

As a basis for the models of interactive navigation behavior presented in this thesis,
we introduced the topological concept of homotopy, and outlined its application to path
planning. In particular, we presented an algorithm that efficiently computes homotopically
distinct paths using an abstract graph representation of the environment. Our models
utilize trajectories in different homotopy classes to capture discrete navigation decisions
such as evading an obstacle on the left, or on the right. Within each of these classes, we
capture the interactive behavior of multiple agents in terms of a probability distribution
over their trajectories. This exponential family distribution depends on a set of features
that capture important properties of an intention-driven behavior, i.e., reaching a goal
position quickly but comfortably.

To model the navigation behavior of interacting agents, we described a two-stage
decision process, where the agents first select a discrete class, and in a second step a
manifestation of the behavior within this class in the form of a continuous trajectory. A
mobile robot can use such a model to predict the behavior of nearby pedestrians, and at
the same time to plan its own paths. In contrast to traditional path planning approaches,
this allows the robot to reason about the effect of its actions to the pedestrians, and to
adapt its behavior appropriately. In an extensive set of experiments, also including a real
autonomous wheelchair, we evaluated our novel methods and compared them to related
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approaches.

Our models allow us to conveniently adapt the behavior to the application at hand by
changing the individual weights of the features. In many situations, however, manual
tuning of the feature weights may not be desirable. Therefore, we proposed an approach
to teach a robot a desired behavior by demonstration. Using this method, the robot can
learn the characteristics of its desired behavior by tele-operation, which is a convenient
way of programming a robot, especially for non-experts.

Our models are also applicable to shared autonomy navigation schemes. These methods
allow users to control the robot on a high level, leaving the low level control to the
autonomous system, which facilitates controlling complex systems while reducing the
cognitive burden to the user. We presented approaches in which the user influences the
navigation behavior by choosing from a set of qualitatively distinct navigation paths.
Furthermore, our methods allows a mobile robot to follow a human leader, who can freely
walk in the environment. In contrast to existing methods, we integrate a prediction of the
human’s behavior into planning, which allows the robot to fulfill its task more accurately
without hindering the leading human.

Our method is not only applicable to domestic robots. The general idea of continuous,
interactive navigation behavior combined with discrete decisions also applies to self-
driving cars. We described a model of optimization-based autonomous navigation on
highways. Furthermore, our approach also enables us to teach a car an individual behavior.
In this way, a user can teach the car by driving manually, instead of tedious parameter
tuning by an expert.

Throughout this thesis, we presented a theoretical description of the proposed methods,
a discussion of related work and extensive experiments that back up the claims made in the
different chapters. The contribution of this thesis is a set of techniques that enable mobile
robots to navigate in a socially compliant way. The key idea is that we capture not only the
isolated behavior of the robot, but also its effects on the humans. Furthermore, we predict
the trajectories of the humans, and plan trajectories for the robot over the full planning
time horizon. This enables the robot to plan far-sighted, in contrast to reactive methods
that are prone to sudden, uncomfortable evasive maneuvers. The methods proposed in
this thesis contribute to a new generation of robots that are able to take over more and
more services in the direct vicinity of humans.
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