Wissenschaftlicher Artikel
Improved charge carrier transport across grain boundaries in N‐type PbSe by dopant segregation
Zhang, Huaide
a
Shen, Minghao
Stenz, Christian
Teichrib, Christian
Wu, Riga
Schäfer, Lisa
Lin, Nan
Zhou, Yiming
Zhou, Chongjian
Cojocaru-Mirédin, Oana
1
Wuttig, Matthias
Yu, Yuan
b,
Personen-Informationen ausblenden
Bibliographische Angaben
Sprache:
englisch
Naturwissenschaften / Physik
Ausgabe / Version: Online first
Erscheinungsjahr: 2024
Abstract
Beschreibung
Verfügbarkeit
Lizenz
Zu diesem Eintrag kann keine Datei direkt zum Download angeboten werden.
Eventuell wird der Inhalt über eine andere Seite zugänglich gemacht. Bitte prüfen Sie daher, ob die Publikation über einen der folgenden Links verfügbar ist:
Beschreibung der Forschungsdaten
mehr
weniger
Relationen
Laden...
- referenziert (64)
- Mataré, H. F. “Carrier Transport at Grain Boundaries in Semiconductors.” Journal of Applied Physics, vol. 56, no. 10, Nov. 1984, pp. 2605–31. Crossref, https://doi.org/10.1063/1.333793.
- Wu, Riga, et al. “Strong Charge Carrier Scattering at Grain Boundaries of PbTe Caused by the Collapse of Metavalent Bonding.” Nature Communications, vol. 14, no. 1, Feb. 2023. Crossref, https://doi.org/10.1038/s41467-023-36415-1.
- Adamczyk, Krzysztof, et al. “Recombination Activity of Grain Boundaries in High-Performance Multicrystalline Si during Solar Cell Processing.” Journal of Applied Physics, vol. 123, no. 5, Feb. 2018, p. 055705. Crossref, https://doi.org/10.1063/1.5018797.
- Cao, Jianyun, et al. “Modulation of Charge Transport at Grain Boundaries in SrTiO3: Toward a High Thermoelectric Power Factor at Room Temperature.” ACS Applied Materials & Interfaces, vol. 13, no. 10, Mar. 2021, pp. 11879–90. Crossref, https://doi.org/10.1021/acsami.0c21699.
- Biswas, Kanishka et al. “High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures.” Nature 489.7416 (2012): 414–418.
- Kim, Sang Il, et al. “Dense Dislocation Arrays Embedded in Grain Boundaries for High-Performance Bulk Thermoelectrics.” Science, vol. 348, no. 6230, Apr. 2015, pp. 109–14. Crossref, https://doi.org/10.1126/science.aaa4166.
- Poudel, B. et al. “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys.” Science 320.5876 (2008): 634–638.
- He, Jian, and Terry M. Tritt. “Advances in Thermoelectric Materials Research: Looking Back and Moving Forward.” Science, vol. 357, no. 6358, Sept. 2017. Crossref, https://doi.org/10.1126/science.aak9997.
- Yu, Yuan, and Matthias Wuttig. “Metavalent Bonding Impacts Charge Carrier Transport across Grain Boundaries.” Nano Research Energy, vol. 2, Mar. 2023, p. e9120057. Crossref, https://doi.org/10.26599/nre.2023.9120057.
- Thomson, D. J., and H. C. Card. “Effects of Interface-Potential Nonuniformities on Carrier Transport across Silicon Grain Boundaries.” Journal of Applied Physics, vol. 54, no. 4, Apr. 1983, pp. 1976–80. Crossref, https://doi.org/10.1063/1.332210.
- Kuo, Jimmy Jiahong, et al. “Grain Boundary Dominated Charge Transport in Mg3Sb2-Based Compounds.” Energy & Environmental Science, vol. 11, no. 2, 2018, pp. 429–34. Crossref, https://doi.org/10.1039/c7ee03326e.
- Luo, Ting, et al. “Nb‐Mediated Grain Growth and Grain‐Boundary Engineering in Mg3Sb2‐Based Thermoelectric Materials.” Advanced Functional Materials, vol. 31, no. 28, May 2021. Portico, Crossref, https://doi.org/10.1002/adfm.202100258.
- Gottstein, Günter. Physical Foundations of Materials Science. Springer Berlin Heidelberg, 2004. Crossref, https://doi.org/10.1007/978-3-662-09291-0.
- Sato, Yukio, et al. “Atomic Structures and Electrical Properties of ZnO Grain Boundaries.” Journal of the American Ceramic Society, vol. 90, no. 2, Jan. 2007, pp. 337–57. Portico, Crossref, https://doi.org/10.1111/j.1551-2916.2006.01481.x.
- Feng, Bin, et al. “Atomic Structures and Oxygen Dynamics of CeO2 Grain Boundaries.” Scientific Reports, vol. 6, no. 1, Feb. 2016. Crossref, https://doi.org/10.1038/srep20288.
- Feng, Bin, et al. “Direct Observation of Oxygen Vacancy Distribution across Yttria-Stabilized Zirconia Grain Boundaries.” ACS Nano, vol. 11, no. 11, Oct. 2017, pp. 11376–82. Crossref, https://doi.org/10.1021/acsnano.7b05943.
- Liebscher, Christian H., et al. “Strain-Induced Asymmetric Line Segregation at Faceted Si Grain Boundaries.” Physical Review Letters, vol. 121, no. 1, July 2018. Crossref, https://doi.org/10.1103/physrevlett.121.015702.
- Bishara, Hanna, et al. “Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure.” ACS Nano, vol. 15, no. 10, Oct. 2021, pp. 16607–15. Crossref, https://doi.org/10.1021/acsnano.1c06367.
- Hansen, N., et al. “Effect of Grain Boundaries and Grain Orientation on Structure and Properties.” Metallurgical and Materials Transactions A, vol. 42, no. 3, July 2010, pp. 613–25. Crossref, https://doi.org/10.1007/s11661-010-0292-5.
- Rohrer, Gregory S. “Grain Boundary Energy Anisotropy: A Review.” Journal of Materials Science, vol. 46, no. 18, Sept. 2011, pp. 5881–95. Crossref, https://doi.org/10.1007/s10853-011-5677-3.
- Ly, Thuc Hue, et al. “Misorientation-Angle-Dependent Electrical Transport across Molybdenum Disulfide Grain Boundaries.” Nature Communications, vol. 7, no. 1, Jan. 2016. Crossref, https://doi.org/10.1038/ncomms10426.
- Cummings, Aron W., et al. “Charge Transport in Polycrystalline Graphene: Challenges and Opportunities.” Advanced Materials, vol. 26, no. 30, June 2014, pp. 5079–94. Portico, Crossref, https://doi.org/10.1002/adma.201401389.
- Hu, Chaoliang, et al. “Carrier Grain Boundary Scattering in Thermoelectric Materials.” Energy & Environmental Science, vol. 15, no. 4, 2022, pp. 1406–22. Crossref, https://doi.org/10.1039/d1ee03802h.
- Watanabe, Tadao. “Grain Boundary Engineering: Historical Perspective and Future Prospects.” Journal of Materials Science, vol. 46, no. 12, Mar. 2011, pp. 4095–115. Crossref, https://doi.org/10.1007/s10853-011-5393-z.
- Zhang, Q. G., et al. “Influence of Grain Boundary Scattering on the Electrical Properties of Platinum Nanofilms.” Applied Physics Letters, vol. 89, no. 11, Sept. 2006. Crossref, https://doi.org/10.1063/1.2338885.
- Carvillo, Paulo, et al. “Thermoelectric Performance Enhancement of Calcium Cobaltite through Barium Grain Boundary Segregation.” Inorganic Chemistry, vol. 54, no. 18, Sept. 2015, pp. 9027–32. Crossref, https://doi.org/10.1021/acs.inorgchem.5b01296.
- Bueno Villoro, Ruben, et al. “Grain Boundary Phases in NbFeSb Half‐Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials.” Advanced Energy Materials, vol. 13, no. 13, Feb. 2023. Portico, Crossref, https://doi.org/10.1002/aenm.202204321.
- Wang, Zhizhi, et al. “Grain Boundary Complexions Formed by Chemical Plating of Cu Enhance the Thermoelectric Properties of Sn0.94Mn0.09Te.” Scripta Materialia, vol. 228, Apr. 2023, p. 115315. Crossref, https://doi.org/10.1016/j.scriptamat.2023.115315.
- Gault, Baptiste, et al. “Atom Probe Tomography.” Nature Reviews Methods Primers, vol. 1, no. 1, July 2021. Crossref, https://doi.org/10.1038/s43586-021-00047-w.
- Cojocaru-Mirédin, Oana, et al. “Correlative Microscopy and Techniques with Atom Probe Tomography: Opportunities in Materials Science.” MRS Bulletin, vol. 47, no. 7, July 2022, pp. 680–87. Crossref, https://doi.org/10.1557/s43577-022-00369-4.
- Raghuwanshi, Mohit, et al. “Interconnection between Trait, Structure, and Composition of Grain Boundaries in Cu(In,Ga)Se2 Thin‐Film Solar Cells.” Advanced Functional Materials, vol. 30, no. 31, June 2020. Portico, Crossref, https://doi.org/10.1002/adfm.202001046.
- Liu, Zihang, et al. “Demonstration of Ultrahigh Thermoelectric Efficiency of ∼7.3% in Mg3Sb2/MgAgSb Module for Low-Temperature Energy Harvesting.” Joule, vol. 5, no. 5, May 2021, pp. 1196–208. Crossref, https://doi.org/10.1016/j.joule.2021.03.017.
- Qin, Yongxin, et al. “Contrasting Cu Roles Lead to High Ranged Thermoelectric Performance of PbS.” Advanced Functional Materials, vol. 31, no. 34, June 2021. Portico, Crossref, https://doi.org/10.1002/adfm.202102185.
- Zhou, Chongjian, et al. “Exceptionally High Average Power Factor and Thermoelectric Figure of Merit in N-Type PbSe by the Dual Incorporation of Cu and Te.” Journal of the American Chemical Society, vol. 142, no. 35, Aug. 2020, pp. 15172–86. Crossref, https://doi.org/10.1021/jacs.0c07712.
- You, Li, et al. “Realization of Higher Thermoelectric Performance by Dynamic Doping of Copper in N-Type PbTe.” Energy & Environmental Science, vol. 12, no. 10, 2019, pp. 3089–98. Crossref, https://doi.org/10.1039/c9ee01137d.
- Babinsky, K., et al. “A Novel Approach for Site-Specific Atom Probe Specimen Preparation by Focused Ion Beam and Transmission Electron Backscatter Diffraction.” Ultramicroscopy, vol. 144, Sept. 2014, pp. 9–18. Crossref, https://doi.org/10.1016/j.ultramic.2014.04.003.
- Yu, Yuan, et al. “Revealing Nano-Chemistry at Lattice Defects in Thermoelectric Materials Using Atom Probe Tomography.” Materials Today, vol. 32, Jan. 2020, pp. 260–74. Crossref, https://doi.org/10.1016/j.mattod.2019.11.010.
- Chookajorn, Tongjai, et al. “Design of Stable Nanocrystalline Alloys.” Science, vol. 337, no. 6097, Aug. 2012, pp. 951–54. Crossref, https://doi.org/10.1126/science.1224737.
- Nie, J. F., et al. “Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries.” Science, vol. 340, no. 6135, May 2013, pp. 957–60. Crossref, https://doi.org/10.1126/science.1229369.
- Feng, Bin, et al. “Atomically Ordered Solute Segregation Behaviour in an Oxide Grain Boundary.” Nature Communications, vol. 7, no. 1, Mar. 2016. Crossref, https://doi.org/10.1038/ncomms11079.
- Yu, Yuan, et al. “Atom Probe Tomography Advances Chalcogenide Phase‐Change and Thermoelectric Materials.” Physica Status Solidi (a), Sept. 2023. Portico, Crossref, https://doi.org/10.1002/pssa.202300425.
- Zhu, Min, et al. “Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.” Advanced Materials, vol. 30, no. 18, Mar. 2018. Portico, Crossref, https://doi.org/10.1002/adma.201706735.
- Maier, Stefan, et al. “Discovering Electron‐Transfer‐Driven Changes in Chemical Bonding in Lead Chalcogenides (PbX, Where X = Te, Se, S, O).” Advanced Materials, vol. 32, no. 49, Nov. 2020. Portico, Crossref, https://doi.org/10.1002/adma.202005533.
- Arora, Raagya, et al. “Metavalent Bonding Origins of Unusual Properties of Group IV Chalcogenides.” Advanced Materials, vol. 35, no. 7, Dec. 2022. Portico, Crossref, https://doi.org/10.1002/adma.202208724.
- Wuttig, Matthias, et al. “Revisiting the Nature of Chemical Bonding in Chalcogenides to Explain and Design Their Properties.” Advanced Materials, vol. 35, no. 20, Mar. 2023. Portico, Crossref, https://doi.org/10.1002/adma.202208485.
- Kooi, Bart J., and Matthias Wuttig. “Chalcogenides by Design: Functionality through Metavalent Bonding and Confinement.” Advanced Materials, vol. 32, no. 21, Apr. 2020. Portico, Crossref, https://doi.org/10.1002/adma.201908302.
- Yu, Yuan, et al. “Doping by Design: Enhanced Thermoelectric Performance of GeSe Alloys Through Metavalent Bonding.” Advanced Materials, vol. 35, no. 19, Mar. 2023. Portico, Crossref, https://doi.org/10.1002/adma.202300893.
- Hu, Lipeng, et al. “In Situ Design of High‐Performance Dual‐Phase GeSe Thermoelectrics by Tailoring Chemical Bonds.” Advanced Functional Materials, vol. 33, no. 17, Jan. 2023. Portico, Crossref, https://doi.org/10.1002/adfm.202214854.
- He, Cong, et al. “Unusual Solute Segregation Phenomenon in Coherent Twin Boundaries.” Nature Communications, vol. 12, no. 1, Feb. 2021. Crossref, https://doi.org/10.1038/s41467-021-21104-8.
- Cantwell, Patrick R., et al. “Grain Boundary Complexions.” Acta Materialia, vol. 62, Jan. 2014, pp. 1–48. Crossref, https://doi.org/10.1016/j.actamat.2013.07.037.
- Zhu, Yingcai, et al. “Multiple Valence Bands Convergence and Strong Phonon Scattering Lead to High Thermoelectric Performance in P-Type PbSe.” Nature Communications, vol. 13, no. 1, July 2022. Crossref, https://doi.org/10.1038/s41467-022-31939-4.
- Heleskivi, J., and T. Salo. “On the Hall Voltage in an Inhomogeneous Material.” Journal of Applied Physics 43.2 (1972): 740–742.
- Darvishi Kamachali, Reza. “A Model for Grain Boundary Thermodynamics.” RSC Advances, vol. 10, no. 45, 2020, pp. 26728–41. Crossref, https://doi.org/10.1039/d0ra04682e.
- Seah, M. P. “Grain Boundary Segregation.” Journal of Physics F: Metal Physics, vol. 10, no. 6, June 1980, pp. 1043–64. Crossref, https://doi.org/10.1088/0305-4608/10/6/006.
- An, Decheng, et al. “Retarding Ostwald Ripening through Gibbs Adsorption and Interfacial Complexions Leads to High-Performance SnTe Thermoelectrics.” Energy & Environmental Science, vol. 14, no. 10, 2021, pp. 5469–79. Crossref, https://doi.org/10.1039/d1ee01977e.
- Liu, Dongrui, et al. “Lattice Plainification Advances Highly Effective SnSe Crystalline Thermoelectrics.” Science, vol. 380, no. 6647, May 2023, pp. 841–46. Crossref, https://doi.org/10.1126/science.adg7196.
- Ge, Bangzhi, et al. “Engineering an Atomic-Level Crystal Lattice and Electronic Band Structure for an Extraordinarily High Average Thermoelectric Figure of Merit in n-Type PbSe.” Energy & Environmental Science, vol. 16, no. 9, 2023, pp. 3994–4008. Crossref, https://doi.org/10.1039/d3ee01226c.
- Ghosh, S., et al. “Grain Boundary Scattering in Aluminium-Doped ZnO Films.” Thin Solid Films, vol. 205, no. 1, Oct. 1991, pp. 64–68. Crossref, https://doi.org/10.1016/0040-6090(91)90472-a.
- Zhang, Qian et al. “Study of the Thermoelectric Properties of Lead Selenide Doped with Boron, Gallium, Indium, or Thallium.” Journal of the American Chemical Society 134.42 (2012): 17731–17738.
- Jood, Priyanka, et al. “Na Doping in PbTe: Solubility, Band Convergence, Phase Boundary Mapping, and Thermoelectric Properties.” Journal of the American Chemical Society, vol. 142, no. 36, Aug. 2020, pp. 15464–75. Crossref, https://doi.org/10.1021/jacs.0c07067.
- Rajashree, C., et al. “Properties of Cd Doped PbS Thin Films: Doping Concentration Effect.” Surface Engineering, vol. 31, no. 4, Apr. 2015, pp. 316–21. Crossref, https://doi.org/10.1179/1743294415y.0000000014.
- Bueno Villoro, Ruben, et al. “Composite Design of Half-Heusler Thermoelectrics: Selective Doping of Grain Boundary Phases in NbFeSb by InSb.” Materials Today Physics, vol. 38, Nov. 2023, p. 101240. Crossref, https://doi.org/10.1016/j.mtphys.2023.101240.
- Luo, Ting, et al. “Dopant-Segregation to Grain Boundaries Controls Electrical Conductivity of n-Type NbCo(Pt)Sn Half-Heusler Alloy Mediating Thermoelectric Performance.” Acta Materialia, vol. 217, Sept. 2021, p. 117147. Crossref, https://doi.org/10.1016/j.actamat.2021.117147.
- Zhang, Chaohua, et al. “Grain Boundary Complexions Enable a Simultaneous Optimization of Electron and Phonon Transport Leading to High‐Performance GeTe Thermoelectric Devices.” Advanced Energy Materials, vol. 13, no. 3, Nov. 2022. Portico, Crossref, https://doi.org/10.1002/aenm.202203361.
Laden...
Korrekturanfrage
Vielen Dank für Ihre Korrekturanfrage. Wir werden uns um Ihre Anfrage kümmern und uns ggf. über die angegebene E-Mail-Adresse bei Ihnen zurückmelden. Bitte haben Sie Verständnis dafür, dass die Korrektur unter Umständen einige Tage dauern kann.
Es ist ein Fehler aufgetreten. Bitte versuchen Sie es später noch einmal.