
Workflow Generation with Planning

Dissertation zur Erlangung des Doktorgrades
der Technischen Fakultät der

Albert-Ludwigs-Universität Freiburg im
Breisgau

vorgelegt von
BENEDICT WRIGHT

Dekanin:
Prof. Dr. Hannah Bast

Erstgutachter und Betreuer der Arbeit:
Prof. Dr. BERNHARD NEBEL

Zweitgutachter:
Prof. Dr. ANDREAS PODELSKI

Datum der mündlichen Prüfung: 24.07.2019

iii

Abstract
Automated planning is the field of research with the goal of enabling agents
to act in an intelligent way to reach a certain goal. In business applications,
this corresponds to generating workflows, describing how objectives are to
be reached. In this thesis, a method for creating such workflows automati-
cally, from formal data specifications with the help of planning is described.
Even though, this provides functional workflows for the developed digital
preservation system, it lacks functionality considering usability issues, essen-
tial for human computer interaction. These usability constraints can be mod-
eled using soft goals, which add optional constraints to the resulting plan.
These constraints do not need to be fulfilled by the plan, however increase
the quality of the result. A method for dealing with these soft constraints
in classical planning is introduced, using conditional effects for tracking the
constraints, and state-dependent action costs for guiding the search.

A prominent approach for solving such planning problems is heuristic search,
which uses so called heuristic estimates to guide the search towards achiev-
ing the goal condition. When combining state-dependent action costs with
conditional effects, some problems arise, which leads to the heuristic func-
tions becoming relatively uninformed, providing inferior guidance. There-
fore, a theory on treating both state-dependent action costs and conditional
effects combined is introduced, which reduced the problems when dealing
with them independently. This approach is based on an edge-valued multi-
valued decision diagram (EVMDD) representation of the cost function and
the conditional effects. Here, the existing theory of EVMDDs over arithmetic
functions is generalized to EVMDDs over monoids, as to be able to represent
the cost functions and conditional effects in one EVMDD combined.

As workflows involving human users, can consist of actions for which the
outcome is not a priory known, soft trajectory constraints are introduced
to the fully observable nondeterministic setting. This thesis provides a basic
understanding on how these constraints can be interpreted in this setting,
and how existing heuristic functions can be augmented, as to guide the
search towards a goal, fulfilling the constraints.

iii

iv

Zusammenfassung
Das Forschungsgebiet der automatisierten Handlungsplanung hat zum Ziel,
Agenten das intelligente Handeln zu ermöglichen, um ein vorgeschriebenes
Ziel zu erreichen. Im Bereich der Geschäftsanwendungen entspricht dies
dem Erzeugen von Arbeitsprozessen, welche beschreiben, wie ein vorgege-
benes Ziel erreicht werden soll. In dieser Arbeit wird eine neue Methode
vorgestellt, welche es erlaubt, mit Hilfe einer formalen Datenspezifikation
und automatischer Handlungsplanung solche Arbeitsprozesse zu generie-
ren. Auch wen die vorgestellte Methode korrekte Arbeitsprozesse erzeugt, so
mangelt es ihr an Funktionalität, um benutzerfreundliche Prozesse zu erstel-
len. Solch eine Funktionalität ist allerdings essenziell, wenn diese Prozesse
Mensch-Maschinen Interaktionen beinhalten. Solche Benutzeranforderun-
gen können jedoch mit Hilfe optionaler ziele modelliert werden, welche
zusätzliche Anforderungen an den resultierenden Plan stellen. Diese Ziele
müssen jedoch nicht erfüllt sein, tragen jedoch zur Qualität des Planes bei.
Eine Methode solche optionalen Ziele zu erreichen wird in dieser Arbeit
vorgestellt und basiert auf einer Kompilierung in konditionalen Effekten,
um den Zustand der Ziele zu verfolgen, und zustandsabhängigen Kosten,
um die Suche effizient zu leiten.

Ein gängiger Ansatz um solche Planungsprobleme zu lösen ist die heuristi-
sche Suche. Hierbei, wird ein Suchalgorithmus (z.B. A∗) mit Hilfe einer heu-
ristischen Schätzfunktion in Richtung des Zieles geleitet. Wenn jedoch kon-
ditionale Effekte und zustandsabhängige Kosten gemeinsam verwendet wer-
den, können Probleme auftreten, welche die Genauigkeit der heuristischen
Schätzung negativ beeinträchtigt. Dies kann so weit gehen, dass die Heuris-
tik vollkommen uninformativ wird. Zu diesem Zweck wird in dieser Arbeit
eine Methode vorgestellt, um diese beiden Konzepte gemeinsam zu betrach-
ten, um den eingeführten Fehler wieder zu beheben. Dieser Ansatz basiert
auf der Repräsentation der konditionalen Effekte und der zustandsabhängi-
gen Kosten als kanten-gewichteter mehrwertiger Entscheidungsdiagramme
(englisch edge-valued multi-valued decision diagrams kurz EVMDD) darge-
stellt. Hierfür wird die existierende Theorie über EVMDDs für arithmetische
Ausdrücke, auf Ausdrücke über Monoide erweitert.

Da Arbeitsprozesse, welche menschliche Interaktion berücksichtigen, oft auch
Aktionen mit unbestimmtem Ausgang beinhalten, wird in dieser Arbeit das
Konzept der optionalen Ziele auf das Planungsproblem mit nichtdeterminis-
tischen Aktionen erweitert. Hierfür, bietet diese Arbeit ein generelles Ver-
ständnis über die Interpretation solcher optionalen Ziele im nichtdetermi-
nistischen Planungsumfeld. Des weiteren wird eine Theorie präsentiert, wie
bestehende heuristik Funktionen angepasst werden können, um die Suche
in Richtung der Erfüllung der optionalen Ziele zu lenken.

iv

v

Acknowledgments

As with every work, a PhD thesis is not created by a single individual, but
is rather the result of years of collaboration with many people. Additionally
to professional collaborations, the support received by all sorts of people is
essential for succeeding in such an endeavor. I therefore want to use this
space to thank all those, without whom this work would not have been pos-
sible. First and foremost, I want to thank my supervisor Prof. Bernhard
Nebel, for offering me a position in his research group, and provided me
with all the resources required to do my research, as well as travel to con-
ferences, and meetings with other research groups. Additionally, I want to
thank him for providing an environment, in which I could develop and pur-
sue my own Ideas, in an atmosphere of open mindedness and collaboration.
I would also like to thank all of my colleagues for the insightful discussions,
and making the department such a pleasurable place for research and ed-
ucation. Especially, I would like to thank Robert Mattmüller and Florian
Geißer for the close cooperation on various research topics. My thanks to-
wards Robert Mattmüller cannot be emphasized enough, as his endurance,
patience, and feedback in teaching me the necessary formal skills in writ-
ing scientific work, was essential for me to be able to finish my research
and publications. Thank you Johannes Aldinger, Yusra Alkhazraji, Thorsten
Engesser, Florian Geißer, Andreas Hertle, Felix Lindner, Robert Mattmüller,
Tim Schulte, David Speck, and Stephan Wölfl for their support and ongo-
ing friendship. A special thanks goes to Uli Jakob and Petra Geiger who
worked so hard over the years to keep the infrastructure up and running,
and handling all sorts of office management and bureaucracy issues. Many
thanks go to my friends, Michael Hödl, Mario Wellik, Wolfdietrich Aichel-
burg, and Andreas Huss, for their encouragement and support at all times.
Thank you to my training partners, especially Christian Kehl, Yvonne Kehl,
Michael Naroska, and Franziska Sauter at my karate club, and my piano
teacher Mechthild Ehlich for the mental and physical compensation, dur-
ing times of stress. Finally, I want to thank my family Helena Aspernig for
all her support. Thank you to my mother Margret Holt, my father David
Wright,and my sisters Claire and Suzanne, for supporting me during all the
ups and downs throughout the years, not only during my research, but also
in the years leading up to it. Without their support this would not have been
possible, and I am very thankful for having such a great family.

Thank you!

v

vi

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel ange-
fertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen
Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Insbe-
sondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs- oder
Beratungsdiensten (Promotionsberaterinnen oder Promotionsberater oder
anderer Personen) in Anspruch genommen. Niemand hat von mir unmittel-
bar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zu-
sammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Die Arbeit
wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
einer anderen Prüfungsbehörde vorgelegt.

Freiburg, Januar 2019. (Benedict Wright)

vi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Outline . 3
1.3 Contribution . 3

2 Mathematical Foundations 6
2.1 Edge-Valued Multi-Valued Decision Diagrams 7
2.2 Linear Temporal Logic . 21

3 Planning Foundations 24
3.1 Classical Planning . 25
3.2 Planning with State-Dependent Action Costs 35
3.3 Fully Observable Nondeterministic Planning 43

4 Planning with conditional effects and
state-dependent action costs 48
4.1 Conditional Effects Revisited 48
4.2 Combining State Dependent-Action Costs and

Conditional Effects . 60

5 Planning with soft trajectory constraints 74
5.1 State trajectory constraints . 75
5.2 Evaluation . 89

6 Soft trajectory constraints in FOND planning 99

7 Application in Digital Preservation 110
7.1 OntoRAIS . 112

8 Future Work 133

9 Conclusion 135

List of Figures 137

vii

viii Contents

List of Tables 138

List of Algorithms 139

Bibliography 140

viii

Chapter 1

Introduction

Artificial intelligence(AI) in computer science is the attempt of creating so
called intelligent agents. These agent should be able to act in an environ-
ment pursuing an individual goal. The field of AI consist of multiple disci-
plines, such as reasoning and knowledge representation, machine learning,
and planning.

This work is concerned with the field of automatic planning. In planning,
an agent is tasked with reaching a goal, by applying a sequence of actions
(Russell and Norvig, 2016). Even though this definition suggests, that plan-
ning requires the presence of a physical or virtual agent such as in robotics,
basically any problem consisting of internal state representation and a set
of actions transforming this state can be modeled. In the field of domain in-
dependent planning, general solving approaches are investigated, which do
not rely on any knowledge of the underlying problem domain. In classical
planning the assumption is, that a single agent acts in a fully determinis-
tic environment. Thus, the system has full knowledge over its current and
future states (what happens after executing a certain action). These kind
of problems can be modeled using the planning domain definition language
(PDDL) (McDermott et al., 1998). Additionally, to the classical setting, mul-
tiple extensions where proposed over the years, such as non-deterministic
(Cimatti et al., 2003) or probabilistic planning, where the effects of an ac-
tion may occur non deterministically, or with a certain probability. Many
more formalisms exist such as for multi-agent planning or epistemic plan-
ning. However, this work focuses on classical planning and fully observable
non-deterministic planning (FOND). In FOND planning, the agent has full
knowledge over its internal state, and the environment (as in classical plan-
ning), however the effects of an action may occur non-deterministically.

Classical planning has been well analyzed over the years (Bäckström and
Nebel, 1995; Bylander, 1994), and finding a solution is in general PSPACE-

1

2 Chapter 1. Introduction

hard. However, applying heuristic search yields satisfying results to many
domains. In heuristic search, the problem of finding a plan is reduced to the
search in a graph, where nodes represent states, and edges represent action
outcomes. Often such actions also come with a cost, thus the edges are also
labeled with the cost of applying the action. The problem of finding a plan
is then solved by finding a path in the graph from an initial state to a goal
state. In optimal planning, this is extended to finding the shortest or cheap-
est path. As the search space is exponential in the input size (the number
of variables), classical depth-first or breadth first search is intractable. In
planning a heuristic search is therefore used. This approach uses an estima-
tor, or heuristic, annotating every node with an estimated distance to a goal
state. Then the search can expand the most promising nodes first leading to
a more goal oriented search.

Additionally, to reaching a certain goal, it is often desirable to be able to
add optional requirements. These can be in the form of soft goals, or soft
trajectory constraints (Gerevini and Long, 2005). Soft goals, are additional
goal conditions, that an agent might fulfill. However, not doing so does not
result in a faulty behavior (e.g. a service robot that tries to have the kitchen
cleaned at the end of its task). On the other hand soft trajectory constraints
add constraint on how the goal is reached (e.g. first serving dinner and then
cleaning the kitchen). Again, not fulfilling the constraints does not result in
faulty behavior.

1.1 Motivation

The main aspect of business applications such as digital preservation sys-
tems, is that of performing certain business processes, formally described in
workflows. These workflows describe how a certain goal is reached, ensur-
ing formal correctness, and the following of business policies. During the de-
velopment of the research archival system OntoRAIS described in Chapter 7,
it came apparent, that creating and maintaining all the required workflows
manually was tedious and error prone. Therefore, a method of automati-
cally generating workflows using planning was derived, and implemented
(Section 6). However, the resulting workflows, although being correct, did
not fulfill the users expectations on how these processes where executed.
Adding constraints to how a goal is reached is the area of state trajectory
constraints, in particular, soft trajectory constraints. Therefore, a theory
of handling soft trajectory constraints in classical planning was derived, for
which the foundations first had to be laid. This led to the development of the
combined treatment of conditional effects and state-dependent action costs
(described is Section 4.2), and the underlying data structure of EVMDDs
over arbitrary monoids (described in Section 2.1).

2

Chapter 1. Introduction 3

1.2 Outline

Chapter 2 first introduces the mathematical foundations such as edge-valued
multi-valued decision diagrams (EVMDD) and linear temporal logic (LTL)
are introduced. Additionally, the theory of EVMDDs over monoids, devel-
oped by the author and other members of the work group, is presented.
Then Chapter 3 introduces the basic planning formalism used throughout
the rest of the Thesis, including classical planning, planning with state-
dependent action costs, and fully observable nondeterministic planning.

Chapter 4 then revisits conditional effects presenting different methods of
representing and compiling them away. Most notably, a theory on represent-
ing conditional effects as EVMDDs is presented in Section 4.1. Section 4.2
then discusses the problems that arise when dealing with conditional effects
and state-dependent action costs combined. A solution based on the gener-
alized theory of EVMDDs over effect cost tuples is then presented. Also a
method of compiling away conditional effects with state dependent action
costs based on these EVMDDs is presented.

Chapter 5 introduces state trajectory constraints to the classical planning
setting. A method of compiling away these constraints is then presented,
facilitating conditional effects and state-dependent action costs.

The notion of state trajectory constraints is then expanded to the fully ob-
servable nondeterministic setting in Chapter 6. Providing a basic theory
on how to guide the planning process in to fulfilling these constraints, by
defining constraint aware heuristics.

Finally, Chapter 7 introduces a digital preservation system, developed for
the BrainLinks-BrainTools cluster of excellence at the Albert-Ludwigs Uni-
versity of Freiburg. The requirements towards a preservation system are
introduced, and the developed system described. Additionally, a method
for automatically generating workflows, for digital preservation, based on
formal data specification and planning is introduced.

1.3 Contribution

This thesis presents the contributions by the author to the field of AI plan-
ning, and computer science in general:

• EVMDDs: Edge-Valued Multi-Valued Decision Diagrams(EVMDDs) are
used to represent decision diagrams branching over multiple multi
valued variables. Additionally, the edges are annotated by a label.

3

4 Chapter 1. Introduction

This thesis presents a novel theory on EVMDDs over Monoids, cre-
ated in collaboration with Robert Mattmüller, Florian Geißer and Bern-
hard Nebel. This theory goes beyond EVMDDs for arithmetic expres-
sions, and provides the required background for representing state-
dependent action costs and conditional effects in a combined EVMDD.
The work presented in Chapter 2 is based on the work presented in
Mattmüller et al. (2018) and Mattmüller et al. (2017), but provides
more details and proofs, omitted in the original publications.

• Conditional effects and state-dependent action costs: When deal-
ing with conditional effects in a setting that also contains state-de-
pendent action costs, one major issue arises, when treating these in-
dependently from each other. The problem being that in relaxed or
abstracted planning tasks, the more expensive effect may be reached
by the cheaper cost. This is the result of taking the minimum cost,
and maximum effect when executing an action in the relaxed or ab-
stracted task. The Section 4.1 describes how conditional effects can
be represented using EVMDDS. Section 4.2 then discusses in depth
how EVMDDs can be used represent conditional effects together with
state-dependent action costs, as published in the conference papers
Mattmüller et al. (2018) and Mattmüller et al. (2017).

• Soft trajectory constraints: Soft trajectory constraints in planning
are used to specify additional optional constraints towards how a goal
state is reached. In this thesis a theory on compiling tasks with soft tra-
jectory constraints into tasks without soft trajectory constraints is pre-
sented. Section 5 present this theory first presented in the conference
papers Wright et al., 2018b and Wright et al., 2018c together with
an empirical evaluation. This work was done in collaboration with
Robert Mattmüller and Bernhard Nebel. Additionally, a theory for soft
trajectory constraints in fully observable nondeterministic planning is
introduced. This theory has not been published prior to this work, and
was done in collaboration with Robert Mattmüller.

• Digital Preservation: During the years leading up to this thesis, a dig-
ital preservation system was developed for the BrainLinks-BrainTools
cluster of excellence at the Albert-Ludwigs University of Freiburg. This
was done to tackle the increasing amount of research data created by
researchers in all different fields of research. For this a method of
automatically generating workflows was developed using formal data
specifications from an ontology and fully observable nondeterministic
planning, and is presented in Section 6. In the process of this project,
a conference paper (Wright et al., 2018a) was produced, discussing
the necessity and the benefits of such a digital preservation system in
research facilities such as universities.

4

Chapter 1. Introduction 5

References to Author’s Contributions

Mattmüller, Robert, Geißer, Florian, Wright, Benedict, and Nebel, Bernhard
(2018). “On the Relationship Between State-Dependent Action Costs and
Conditional Effects in Planning.” In: Proceedings of the 32nd AAAI Confer-
ence on Artificial Intelligence (AAAI 2018).

Wright, Benedict, Brunner, Oliver, and Nebel, Bernhard (2018a). “On the
Importance of a Research Data Archive”. In: Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18).

Wright, Benedict, Mattmüller, Robert, and Nebel, Bernhard (2018b). “Com-
piling Away Soft Trajectory Constraints in Planning”. In: Proceedings of
the 2018 Conference on Principles of Knowledge Representation and Reaso-
ing (KR 2018).

Wright, Benedict, Mattmüller, Robert, and Nebel, Bernhard (2018c). “Com-
piling Away Soft Trajectory Constraints in Planning”. In: Proceedings of
the 2018 Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS 2018).

Mattmüller, Robert, Geißer, Florian, Wright, Benedict, and Nebel, Bernhard
(2017). “On the Relationship Between State-Dependent Action Costs and
Conditional Effects in Planning.” In: Proceedings of the 9th Workshop on
Heuristics and Search for Domain-Independent Planning (HSDIP 2017).

Wright, Benedict and Mattmüller, Robert (2016). “Automated Data Manage-
ment Workflow Generation with Ontologies and Planning.” In: Proceed-
ings of the 30th Workshop on Planen/Scheduling und Konfigurieren/Entwer-
fen (PUK 2016).

5

Chapter 2

Mathematical Foundations

In this chapter some mathematical foundations and terminologies are in-
troduced, which is used throughout the rest of this thesis. As this work is
concerned with planning as heuristic search over the state space, first the
concept of state is introduced.

Definition 1 (State). Let V = {v1, . . . , vm} be a set of multi valued variables
where 〈d1, . . . , dn〉 is called the domain Dv of v. The notation |Dv| is used
meaning the domain size n of the variable v. Then s is a state if it assigns
each variable v ∈ V exactly one value of its domain.

In the following chapters (Chapter 3.2, Chapter 5) arithmetic expressions
are augmented by logical expressions. This adds flexibility to defining cost
functions (Chapter 3.2) over state variables, as it adds the functionality of
conditional arithmetic terms.

Definition 2 (Iverson Brackets). Let P be a logic expression over facts,
then the interpretation of Iverson brackets in state s is as follows:

[P]s =

{
1 if s |= P

0 if s 6|= P

For example let x = {0, 1, 2} and y = {0, 1, 2, 3} be two multi valued vari-
ables, then using Iverson brackets the expression

[x = 1] · y2

can be defined. This evaluates to y2 only if x = 1 and 0 otherwise. In
planning this could correspond to: “If condition x = 0 holds the cost of this
action is y2 otherwise 0”.

6

Chapter 2. Mathematical Foundations 7

2.1 Edge-Valued Multi-Valued Decision Diagrams

In general an Edge-Valued Multi-Valued Decision Diagram (EVMDD from
here on) is a decision diagram, which can branch over multiple variables
with multiple values. Each outgoing edge e from a node v corresponds to a
decision over the variable value. Additionally, each edge e is annotated by
a label.

Here the definition of EVMDDs over integers (Ciardo and Siminiceanu, 2002)
is generalized using monoids for more general use in different applications.

Definition 3 (Monoid). Let T be a set of elements and • a binary operator
T × T → T and e ∈ T then M = 〈T , •, e〉 is a monoid if:

∀a, b, c ∈ T : (a • b) • c = a • (b • c)
∀a ∈ T : e • a = a • e = a

In words e is the neutral element with regards to T and the associative
operator •. Additionally, if for any two elements x, y ∈ T , x • y = y • x then
M us a commutative monoid (CM).

Definition 4 (Partially ordered set). Let ≤ be a binary relation over a set
P such that:

1. a ≤ a
2. a ≤ b and b ≤ a then a = b

3. a ≤ b and b ≤ c then a ≤ c
Then ≤ is called reflexive, antisymmetric, and transitive. If such a ≤ exists
for P , then P is a partially ordered set.

Definition 5 (Greatest lower bound). Let S be a subset of a partially or-
dered set (P,≤), then a ∈ P is a lower bound of S if a ≤ x for all x ∈ S.
Such an a is a greatest lower bound if for all lower bounds y from S, y ≤ a.

Definition 6 (Meet-semilattice ordered monoid (MSM)). Let M = 〈T , •,
e,≤〉 be a monoid with a partially ordering relation ≤, then T is a meet
semilattice if ≤ on T has a greatest lower bound for any non empty finite
subset T ′ ⊆ T , denoted as

∧
T ′.

Definition 7 (Monus Operator .− (Amer, 1984)). Let M = 〈T , •, e〉 be a
commutative monoid. Let a, b ∈ T and a relation ≤ on T defined as a ≤ b
iff there exists a c ∈ T with c 6= e such that a + c = b. Then ≤ is reflexive
and transitive, and antisymmetric by definition, resulting in a partial order
over T . If for all a, b ∈ T there exists a unique smallest c ∈ T such that
a ≤ b + c then M is called a monoid with monus (MM) and c is this monus
with a .− b = c.

7

8 Chapter 2. Mathematical Foundations

Definition 8 (Meet-semilattice ordered commutative monoid with mo-
nus (MCMM)). Let M = 〈T , •, e〉 be a meet semilattice ordered monoid,
• is commutative and there exists a monus operator .−. If • is distributable
over the greatest lower bound operator

∧
i. e., a • (b

∧
c) = (a • b)∧(a • c)

and (b
∧
c) • a = (b • a)

∧
(c • a) for all a, b, c ∈ T , and

∧
T = e, then

M = 〈T , •, e, .−〉 is a meet-semilattice ordered commutative monoid with
monus.

In the following work the monus operator is often omitted in the definition
as it is given by the set T and the operator •.
Example 1 (MCMM). Let M = 〈N,+, 0〉 be a monoid with the natural or-
der ≤, the greatest lower bound defined by the minimum (min), and the
monus operator − the clamped minus operator such that for two elements
a, b ∈ N with b > a then a − b = 0. Then M is a meet semilattice ordered
commutative monoid with monus.

Definition 9 (EVMDD over meet semilattice ordered MCMM). An EV-
MDD over the variables V and the MCMM M = 〈T , •, e〉 is a tuple E = 〈κ, f〉,
where κ ∈ T and f is a directed acyclic graph consisting of two types of
nodes:

1. The single terminal node denoted with 0.

2. Nonterminal nodes v = 〈v, χ0, . . . , χk, w0, . . . , wk〉, where v ∈ V, k =
|Dv| − 1, children χ0, . . . , χk are terminal or non terminal nodes of E
and w0, . . . , wk ∈ T and

∧
i=0,...,k wi = e.

The elements from v are referred to as v(v), χi(v) and wi(v). Edges be-
tween nodes and their children are implicitly given by the nonterminal
nodes and the weight of an edge from v to χi(v) is wi(v). Note that this is a
real generalization of EVMDDs over groups (Roux and Siminiceanu, 2010).

An EVMDD over a monoid M = 〈T , •, e〉 and variables V denotes a function
S → T where S is a set of states, where each state defines a unique valu-
ation of variables v ∈ V. Evaluating the EVMDD for a given state s ∈ S is
done by following the unique path given by the values of v and applying the
operator • to the encountered edge labels. For an EVMDD over the monoid
M = 〈N,+, 0〉 this means adding up all values in the edge labels.

Definition 10. An EVMDD E = 〈κ, f〉 over a MCMM M = 〈T , •, e〉 and vari-
ables V represents the function κ + f from states over V to T where f is
the function denoted by f . The terminal node 0 denotes the constant func-
tion e, and a node v = 〈v, χ0, . . . , χk, w0, . . . , wk〉 represents the function
f(s) = ws(v) + fs(v)(s), where fs(v) is the function represented by the child
χs(v). In the rest of this thesis the notation E(s) representing κ + f(s) is
used.

8

Chapter 2. Mathematical Foundations 9

Definition 11 (Reduced EVMDD). An EVMDD E is Shannon-reduced if
there exists no internal node v = 〈v, χ0, . . . , χk, 0 . . . , 0〉, such that χ0 =
. . . = χk. If E is Shannon-reduced and it is isomorphism reduced, meaning
that there are no two nonterminal nodes v1,v2 such that v1 = v2, then E is
called reduced.

Definition 12 (Quasi-Reduced EVMDD (Ciardo and Siminiceanu, 2002)).
An EVMDD E is quasi-reduced if on every path from root to terminal node
no variable is skipped.

In the remainder of this thesis it is assumed that quasi-reduced EVMDDs are
also isomorphically reduced.

Definition 13 (Ordered EVMDD). An EVMDD E is ordered if on every path
from root to terminal all variables appear in the same order.

The position of a variable in the ordering is hereafter referred to by its
level. As a shortcut the level of an EVMDD will refer to the level of the
top most variable. The EVMDD in Figure 2.1a represents the arithmetic

a

b

c c

0

0

0

1

1

0

0

0

1

0

0

2

1

4

2

0

0

0

1

0

2

(a) Ordering: 〈a, b, c〉

c

a a a

b b b

8

0

0

0

1

0

2

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

1

0

0

0

1

0

0

0

1

(b) Ordering: 〈c, b, a〉

Figure 2.1: Visual representation of the quasi-reduced EVMDDs over the
monoid M = 〈N,+, 0〉 representing the arithmetic function a2 +2bc+8, and
variable orderings (top to bottom) 〈a, b, c〉, and 〈c, b, a〉.

function a2 + 2bc + 8 with the variable domains |Da| = 2, |Db| = 2, and
|Dc| = 3. The variable ordering(top to bottom) is 〈a, b, c〉. The graph is
then interpreted in a way such that grey nodes are decisions over variable
valuations. Each node together with its incoming edge corresponds to a sub

9

10 Chapter 2. Mathematical Foundations

EVMDD E = 〈κ, f〉 where the value in the white box corresponds to κ and
the remaining graph corresponds to f . Each outgoing edge is labeled with its
corresponding variable valuation k and leads to the child node χk with the
weight wk in the white box. Given a variable valuation a = 1, b = 1, c = 1,
by following the corresponding edges and summing up all the weights w on
the way, the result is 8 + 1 + 0 + 2 which is equivalent to a2 + 2bc+ 8 = 11.
As can be seen Figure 2.1b, representing the same arithmetic function with
the same domains, but with a different variable ordering 〈c, a, b〉, has great
influence on the number of nodes in the EVMDD. This in turn has a great
effect on the time required for evaluating the EVMDD for a given variable
valuation.

2.1.1 EVMDD construction

The construction of EVMDDs is based on the apply (Lai et al., 1996) algo-
rithm, which was originally developed for binary decision diagrams (EVBDD)
over a single monoid 〈N, •, e•〉. The idea behind the algorithm is to take two
EVBDDs 〈cf , f〉, 〈cg, g〉 and an operator • and returns a new EVBDD 〈ch, h〉
such that ch + h = (cf + f) • (cg + g), where cf , cg, ch are constants and
f, g, h are functions denoted by the EVBDD over the same monoid. This
notion is extended to EVMDDs with two arbitrary monoids and an binary
operator ⊗E . Let L = 〈L, •L, eL〉, R = 〈R, •R, eR〉, and T = 〈T , •T , eT 〉
be three MCMMs and let ⊗ : L × R → T be an operator. Furthermore,
let f : S → L and g : S → R be two functions over a fixed state space
S, by slight abuse of notation ⊗ is also an operation on these functions
such that (f ⊗ g)(s) = f(s) ⊗ g(s). Now let E(.) be the construction of
an reduced ordered EVMDD Ef from a given function f . Let ⊗E be a op-
eration on EVMDDs that mimics the ⊗ such that Ef⊗g = Ef ⊗E Eg. This
⊗E operation is achieved by the extended notion of the apply procedure
usually referred to in the literature as apply(⊗E , Ef , Eg). This apply proce-
dure produces a new EVMDD Et by traversing both input EVMDDs Ef , Eg
synchronously from top to bottom, propagating edge labels down, applying
apply recursively to sub graphs. In the base case where the EVMDDs only
consist of an edge to the terminal node, the ⊗E operator is applied to the
edge labels such that wt = wl ⊗E wr with wl the incoming edge label of El
and wr the incoming edge label of Er . After the recursive call, the great-
est lower bound

∧
of all outgoing edge labels is subtracted from the edge

labels using the .− operation, and applied to the incoming edge again using
the ⊗E operator. This results in that for all nodes in the resulting EVMDD Et
the greatest lower bound of all outgoing edges is the neutral element et. Fi-
nally, the Shannon-reduction is applied , which, for an EVMDD E〈κ, f〉 with
f = (v, χ0, . . . , χ|Dv |−1, w0, . . . , w|Dv |−1) returns the EVMDD as follows:

10

Chapter 2. Mathematical Foundations 11

• if ∀0 ≤ i ≤ |Dv| − 1 : wi = e and each ∃k : χi = k is the same, return
〈e, χk〉

• else return E

In words the Shannon-reduction returns the single sub-EVMDD if all outgo-
ing edges lead to the same child and have the same edge weights.

If, during the recursive traversal the two EVMDDs come out of sync, and the
decision variables do not match (the decision variables in the nodes have
different levels), the two EVMDDs need to be aligned. This is done once
to each of the input EVMDDs and is depicted in Algorithm 2 and works as
follows. Taking two EVMDDs Ef = 〈κf , ff 〉, Eg = 〈κg, fg〉 as input if the
level of Ef is higher or equal to the level of Eg the input weight κf of Ef
is pushed down, thus for each edge represented as child node and weight
〈χ,w〉 a new EVMDD with κ + w as input weight and χ as root node is
created. If however, the level of Eg is higher than the level of Ef a copy of
Ef is created for every child in Eg. This can be seen as simply pushing down
the weights of Ef until the both EVMDDs are aligned. The code from this
apply operation is depicted in Algorithm 1.

In the rest of this work, it is assumed that the functions for which the
EVMDDs are constructed are given as syntactic terms such as multivari-
ate polynomials, or logical expressions, and can therefore be represented
as an abstract syntax tree or AST. For a given function f over the MCMM
M = 〈T , •, e〉 the EVMDD is generated by first creating the AST. Then,
for each leaf, one of two base EVMDDs is created. One representing con-
stant, consisting of the terminal node and an edge with the constant κ as
its edge weight 〈κ,0〉. For an AST leaf representing a decision variable
var, a EVMDD consisting of a incoming edge with edge weight e leading
to a decision node representing the variable v, and an edge for each do-
main value d ∈ Dv of v with the domain value as edge weight leading to
the terminal node is created (κ,v). The decision node hereby consist of
v = 〈v,0, . . . ,0, d0, . . . , d|Dv |−1〉. Then these basic EVMDDs are combined
using the apply operator and operators specified by the internal AST nodes.

Example 2 (EVMDD construction). Let f = a2 +2bc+8 be a function over
the monoid M = 〈N,+, 0〉 with variable domains Da = {0, 1},Db = {0, 1},
and Dc = {0, 1, 2} and ordering (a, b, c). First the AST is created as depicted
in Figure 2.2. Then for each leaf of the AST, a base EVMDD is created
by Algorithm 3 and Algorithm 4 as shown in Figure 2.3. Then, for each
inner node of the AST, the EVMDDs from the child nodes are merged using
the apply algorithm together with the operator from the AST node. For
the inner node representing b ∗ c, the two EVMDDs do not have the same
level, therefore, they must first be aligned by Algorithm 2 called once for
each direction (align(Eb,Ec) and align(Ec,Eb)). The results of the alignment

11

12 Chapter 2. Mathematical Foundations

Algorithm 1: APPLY algorithm for two EVMDDs
input : Two EVMDDs Ef = 〈κf , ff 〉, Eg = 〈κgfg〉, and an operator •
output: A third EVMDD E such that E = Ef • Eg = Ef•g

1

2 // Terminal Case
3 if terminal(Ef , Eg, •):
4 return 〈κf • κg,0〉
5

6 // Check if sub EVMDD already created (Isomorphism
reduction)

7 if inCache(Ef , Eg, •)):
8 return cached EVMDD
9

10 // Allign the EVMDDs to have the same current level
11 maxlevel = max(level(f),level(g))
12 v = variableAtIndex(maxLevel)
13 d = |Dv| − 1
14 Cf = align(Ef ,Eg)
15 Cg = align(Eg,Ef)
16

17 // Recursively call APPLY for all children
18 for i = 0 in d:
19 κi, fi = APPLY(Cif ,Cig,•)
20

21 // Calculate the greatest lower bound m and create a new
EVMDD with κ = m and the weights to the children are
κi

.−m
22 m =

∧
(κ1, . . . , κd)

23 E = 〈m, (v, f0, . . . , fd, κ0
.−m, . . . , κd .−m)〉

24 // Apply shannon reduction
25 E = shannon-reduce(E)
26

27 return E

12

Chapter 2. Mathematical Foundations 13

Algorithm 2: ALIGN algorithm for two EVMDDs with same variable
ordering

input : Two EVMDDs Ef = 〈κf , ff 〉, Eg = 〈κgfg〉
output: A set of EVMDDs with the same level as Ef

1

2 // Ef has the same or higher variable level
3 if level(Ef)≥ level(Eg):
4 // Create an EVMDD E = 〈κ, f〉 for each child fi of

ff = (v, f0, . . . , fd, w0, . . . , wd)

5 return 〈κf • w0, f0〉,. . ., 〈κf • wd, fd〉
6 else:
7 // create copies of Ef for each child of

fg = (v, f0, . . . , fk, w0, . . . , wk)
8 return Ef , . . . , Ef︸ ︷︷ ︸

k−times

Algorithm 3: Create an EVMDD for a constant
input : A constant κ
output: A EVMDD representing the constant κ

1 return 〈κ,0〉

Algorithm 4: Create an EVMDD for a variable
input : A variable description v, and a domain D = {d0, . . . , dn}
output: A EVMDD representing the variable v

1 // Create a child EVMDD for each value in D that leads to
the terminal node

2 return 〈e, (v,0, . . . ,0︸ ︷︷ ︸
n−times

, d0, . . . , dn)〉

13

14 Chapter 2. Mathematical Foundations

is shown in Figure 2.4. The apply algorithm is called recursively until the
terminal case is reached, which after aligning looks as shown in Figure 2.5.
Then for every edge leading to the terminal node the × operator is applied
pairwise to the edges (0,0 × 1,0 × 2). Recovering from the recursive call
and pushing the greatest lower bound (0) up and repeating for the 1 edge
of Eb the resulting EVMDD is shown in Figure 2.6a. After repeating this
process for every internal node of the AST, the resulting EVMDD is shown
in Figure 2.6b.

a a 2 b c 8

× ×

×

+

+

Figure 2.2: The AST over the expression a2 + 2bc+ 8

a

0

0

0

1

1

(a) a

b

0

0

0

1

1

(b) b

c

0

0

0

1

1

2

2

(c) c

2

(d)
2

8

(e)
8

Figure 2.3: Visual representation of the EVMDDs created by Algorithm 3
and Algorithm 4.

2.1.2 EVMDD evaluation

Given a EVMDD E〈κ, f〉 over a monoid M = 〈T , •, e〉 evaluating over a given
state s is performed by traversing the graph top to bottom accumulating
the edge labels by applying the operator •, denoted as E(s). For arithmetic
expressions this corresponds to adding up all edge values on the path from κ
to the terminal node. For every node v = (v, f0, . . . , fk, w0, . . . , wk) evaluate
the child fi such that i = s[v] and return κ+ evaluate(〈wi, fi〉, s).

14

Chapter 2. Mathematical Foundations 15

0

0

1

1

(a) Ef (Eb)

c c

0

0

0

1

1

2

2

0

0

0

1

1

2

2

(b) Eg (Ec)

Figure 2.4: Eb and Ec aligned where the inputs are Ef = Eb and Eg = Ec

0 0 0

(a) C ′
f

0 1 2

(b) C ′
g

Figure 2.5: Alignment for the last recursive call of APPLY with Eb and Ec and
the operator × on the 0 edge of Eb

Example 3 (EVMDD evaluation). Recalling Example 2 evaluating the ex-
pression f = a2 + 2bc + 8 represented by the EVMDD in Figure 2.6b over
the state s = {a = 1, b = 1, c = 1} is achieved by traversing the EVMDD top
to bottom following the corresponding edges. This corresponds to the path
highlighted red in Figure 2.7 resulting in the summation 8+1+0+2, which
corresponds to 12 + 2 ∗ 1 ∗ 1 + 8.

Theorem 1. Let El = 〈κl, fl〉, and Er = 〈κr, fr〉 be two EVMDD and • the
applied operator. Then E{l•r} = apply(El, Er, •)

Proof. The proof over the correctness goes inductively over the base case
with fl = 0 and fr = 0 where both EVMDDs represent a constant function.
In this case a new base EVMDD 〈κl • κr,0〉 is created. For the case of two
EVMDDs consisting of one decision node only, such that

fl = (v,0, . . . ,0, wl0 , . . . , wl|Dv |−1
)

fr = (v,0, . . . ,0, wr0 , . . . , wr|Dv |−1
)

Then the resulting EVMDD E is a result of the pairwise application of • such

15

16 Chapter 2. Mathematical Foundations

b

c

0

0

0
0

1

0

0

1

1

2

2

(a) Resulting shannon-
reduced EVMDD from
calling APPLY on Eb and
Ec with the operator ×

a

b

c

8

0

0

1

1

0

0
0

1

0

0

2

1

4

2

(b) The shannon-reduced
EVMDD representing a2 +
2bc+ 8 with domains Da =
{0, 1}, Db = {0, 1}, Dc =
{0, 1, 2}

a

b

c

8

0

0

1

1

0

0
0

1

0

0

2

1

4

2

Figure 2.7: Evaluation of the EVMDD over state s = {a = 1, b = 1, c = 1}

that E = 〈κl • κr, f〉 with

fl = (v,0, . . . ,0, wl0 • wr0 , . . . , wl|Dv |−1 • wr|Dv |−1)

For EVMDDs consisting of multiple variables the EVMDDs are assumed to be

16

Chapter 2. Mathematical Foundations 17

Algorithm 5: Evaluate an EVMDD on a given state
input : An EVMDD E = 〈κ, f〉 over a monoid M = 〈T , •, e〉, and a

state s over variables V
output: An element m from T

1

2 // Terminal Case
3 if f = 0:
4 return κ
5

6 // Evaluate the child fi of E with
f = (v, f0, . . . , fk, w0, . . . , wk) such that i = s[v]

7 i = s[v]
8 return κ• evaluate(〈wi, fi〉, s)

aligned as this can be achieved using the align algorithm. While traversing
both EVMDDs the weights are pushed down to the base case by applying the
•. Then the base EVMDDS are handled by the base-case. Finally the result-
ing edge weights are distributed over the edges of the EVMDD by pulling up
the greatest lower bound of all outgoing edge weights at every node using
the .− operator on the edge weights w and the • operator on the incoming
edge-weights κ.

Theorem 2 (Correctness of construction). Let E be an EVMDD over the
monoid M = 〈T , •, e〉, constructed as shown above, representing the func-
tion f , and a given state space S, then f(s) = E(s) for every s ∈ S.

Proof. By Definition 10 an EVMDD E = 〈κ, f〉 represents the function f over
the MCMM M = 〈T , •, e〉. It is easy to see that for the base cases where f is
either a constant or a single variable this is true, as they are represented by
the EVMDDs 〈κ,0〉 for constants and 〈e, (v,0, . . . ,0, d0, . . . , d|Dv |−1)〉. The
inductive case where two EVMDDs El,Er are combined using an operator
⊗ defined on T follows the correctness of the apply algorithm (Lai et al.,
1996). Hereby, the apply algorithm is applied for every internal AST node
n which represents an operator in f on the EVMDDs created by the child
nodes of n.

Definition 14 (Canonicity of a node). A node v in E is canonical iff v is the
terminal node 0, or has the form v = (v, χ0, . . . , χ|Dv |−1, w0, . . . , w|Dv |−1)
such that the greatest lower bound over all outgoing edge weights is the
neutral element:

|Dv |−1∧

i=0

wi = e .

17

18 Chapter 2. Mathematical Foundations

Definition 15 (Canonicity). An EVMDD E = 〈κ, f〉 is canonical iff all nodes
are canonical.

Theorem 3. All EMVDDs constructed by above process are canonical.

Proof. In above construction all nodes are canonical, as for every node v =
(v, χ0, . . . , χ|Dv |−1, w0, . . . , w|Dv |−1) in f the greatest lower bound

|Dv |−1∧

i=0

wi = m

over all outgoing edge weights is "removed" from the edge weights by wi
.−

m (Algorithm 1 line 23) and pushed up to the incoming edge weight κ.
Therefore the resulting EVMDD is also canonical.

Theorem 4 (Reduced). All EMVDDs constructed by above process are iso-
morphism and shannon-reduced.

Proof. Note that the definition of the EVMDDs does not allow for multiple
identical nodes, thus ensuring isomorphism, reduction. However during the
execution of the algorithm such duplication can occur and thus must be
accounted for. This is achieved by caching already created nodes and doing
a simple lookup for already stored subgraphs (Algorithm 1 line 7). The
shannon-reduction is achieved by calling the shannon-reduce algorithm in
Algorithm 1 line 25 for every created sub-EVMDD.

Theorem 5 (Ordered). All EMVDDs constructed by above process are or-
dered.

Proof. By requiring a fixed variable ordering as input to the construction
algorithm and the alignment of both EVMDDs in the apply algorithm (Algo-
rithm 1 line 14 and line 15) ordering is ensured during construction of the
EVMDD.

Definition 16 (Redundancy freedom). The EVMDD E = 〈κ, f〉 over MCMM
M = 〈T , •, e〉 with the monus operator • is redundancy free iff for every pair
of edge weights (a, b) on any path from root to terminal node the condition
(a • b) .− b = a holds.

Theorem 6 (Redundancy freedom). All EMVDDs constructed by above
process are redundancy free.

Proof. In Algorithm 2 line 5 weights are pushed down towards the terminal
node, where the operator • is applied to two consecutive edges a, b. In the
recovery of the recursion, the greatest lower bound over all outgoing edge
weights

∧
{w0,...,w|Dv |−1}

is pushed back up using the .− operator on the

18

Chapter 2. Mathematical Foundations 19

outgoing edge weights(see Canonicity). This ensures that (a • b) .− b = a
holds for every pair of edges.

Theorem 7 (Uniqueness). Let Ef = 〈κf , ff 〉, Eg = 〈κg, fg〉 be reduced or-
dered redundancy free EVMDDs over the same monoid M = 〈T , •, e〉 and
a fixed variable ordering level, representing the functions f : S → T and
g : S → T respectively and where constructed as described above. Then
f = g if and only if Ef and Eg are isomorphic.

The following lemma and proof is a generalization of the one given by
Geißer (2018) which considers the special case of the MCMM M = 〈Q+,+, 0〉
and strongly follows the same structure.

Lemma 1. Let vf and vg be two reduced, ordered, redundancy free EVMDD
nodes with the same level, resulting from above construction. Furthermore,
let f : S → T be the function denoted by vf and g : S → T be the functions
denoted by vg, then f = g iff vf and vg are isomorphic.

Proof. Base case: Let both nodes vf and vg be terminal nodes with

level(vf) = level(vg) = 0 .

Then the encoded function is f = g = e, and by definition the nodes are
isomorphic.
Inductive case level(vf)=level(vg)= l > 0: Assume Lemma 1 holds for
all nodes v with level(v)≤ l − 1. Let S be the set of states s such that
s(v) = i with i = {0, . . . , k} then the notation χf for the function denoted
by χf,i, wf for wf,i, χg for the function denoted by χg,i, and wg for wg,i
are used. First assume f = g, then χf (s) • wf = χg(s) • wg for s ∈ S, as
χf (s)•wf denotes f and χg(s)•wg denotes g. Since every node is canonical
(Theorem 3) and the EVMDD is redundancy free (Theorem 6), it holds that∧
s∈S χf (s) = e =

∧
s∈S χg(s). From this follows that

∧
s∈S χf (s)•wf = wf

and
∧
s∈S χg(s) • wg = wg. This implies that χf = χg and by the induction

hypothesis that χf,i and χg,i are isomorph. As i can be have any arbitrary
value in 0 ≤ i ≤ k it follows that vf and vg are isomorph. Secondly,
assume vf and vg are isomorphic, then wf = wg. Since χf,i and χg,i are
isomorphic, it follows by the induction hypothesis that χf = χg and thus
χf • wf = χg • wg. As i is arbitrary it follows that f = g.

Proof of Theorem 7. Assume the f = g. As every node is canonical and the
EVMDD is redundancy free, it follows that there exists a state s such that∧
s∈S ff (s) • κf = f(s) = g(s) =

∧
s∈S fg(s) • κg. Therefore, ff and fg must

encode the same function f .− κf and from Lemma 1 follows that they are
isomorph.
Now assume κf = κg, and ff and fg are isomorphic. Ef encodes the function
f = κf • f ′ where f ′ is the function encoded by ff and Eg encodes the

19

20 Chapter 2. Mathematical Foundations

function g = κg • g′ where g′ is the function encoded by fg. Following
Lemma 1 ff and fg encode the same functions, thus f ′ = g′, and since
κf = κg, g = κg • κ′g = κf • κ′f = f .

20

Chapter 2. Mathematical Foundations 21

2.2 Linear Temporal Logic

Linear Temporal Logic (LTL) (Pnueli, 1977) allows reasoning over discrete
time series or state trajectories. For this a LTL formula ϕ is interpreted over
a (infinite) sequence of states. In the general literature these states are also
called worlds w and the state trajectories infinite discrete time series. In
addition to the logic operators ∧,¬, LTL adds the unary operator © and
the binary operator U . The unary NEXT operator ©ϕ states that in the
next world ϕ must hold. UNTIL ϕUψ on the other hand states that in the
future ψ will hold and until then ϕ holds. Let µ be a infinite state sequence
µ = (s0, s1, . . .), then the truth value of a given LTL formula ϕ over a set
of propositional symbols P at a given time instance i = 0 − ∞ written as
µ, i |= ϕ is given by the following interpretation:

µ, i |=p ∈ P iff p ∈ µ(i)

µ, i |=ϕ ∧ ψ iff µ, i |= ϕ and µ, i |= ψ

µ, i |=¬ϕ iff notµ, i |= ϕ

µ, i |=© ϕ iff µ, i+ 1 |= ϕ

µ, i |=ϕUψ iff ∃j ≥ i, µ, j |= ψ and ∀k|i ≤ k < j, µ, k |= ϕ

Additionally to the standard abbreviations ∨ (or),→(implies), >(true), and
⊥(false), it is common to use the following abbreviations:

3ϕ =>Uϕ,ϕ will eventually be true (finally ϕ)

2ϕ =¬3¬ϕ,ϕ will be true in every future world. (globally ϕ)

ϕRψ =¬(¬ϕU¬ψ), ψ holds until ϕ holds, or forever. (ϕ releases ψ)

ϕWψ =(ϕUψ ∨2ϕ), ϕ holds until ψ or forever(ϕ weak until ψ).

Definition 17 (Büchi automaton (BA)). A Büchi automaton (Büchi, 1990)
is a tuple B = (Q,Σ,∆, Q0, F):

• Q the finite set of states.

• Σ the finite alphabet.

• ∆ : Q× Σ→ 2Q a transition relation.

• Q0 the set of initial state.

• F ⊆ Q the set of accepting states.

An input α for B is then an infinite sequence over the alphabet Σ, α =
(a1, a2, a3, . . .). A run of B on an input α is an infinite sequence ρ =
(r0, r1, r1, r2, . . .) of states if r0 ∈ Q0 and for each ri, i ≥ 1, ri ∈ ∆(ri−1, ai).
The automaton accepts an input word α if at least on state a ∈ F is visited
infinitely often by the run over the word.

21

22 Chapter 2. Mathematical Foundations

Gerth et al. (1995) introduced an algorithm for creating such a Büchi au-
tomaton for a given LTL formula.

Theorem 8. (Gerth et al., 1995) For any LTL formula ϕ over the propo-
sitions P there exists a Büchi automaton B as constructed by Gerth et al.
(1995) that accepts exactly all the sequences over (2P)α that satisfy ϕ.

2.2.1 Linear Temporal Logic on Finite Traces

LTLf (De Giacomo and Vardi, 2013) extends the notion of linear temporal
logic to that over finite traces, thus the sequence of worlds is finite. The
formula share the same syntax but LTLf adds the shortcut λ = ¬ © >,
which becomes true in the last state of the finite sequence of states. Let
µ be a sequence of states then the length of the sequence is denoted as
length(µ) and last = length(µ) − 1, then the interpretation for a time step i
(0 ≤ i ≤ last) is defined as:

µ, i |=p ∈ P iff p ∈ µ(i)

µ, i |=ϕ ∧ ψ iff µ, i |= ϕ and µ, i |= ψ

µ, i |=¬ϕ iff not µ, i |= ϕ

µ, i |=© ϕ iff i < last and µ, i+ 1 |= ϕ

µ, i |=ϕUψ iff ∃j|i ≤ j ≤ last, µ, j |= ψ and ∀k|i ≤ k < j, µ, k |= ϕ

µ, i |=λϕ iff i = last and µ, i |= ϕ

Additionally one more LTLf specific abbreviation is introduced:
 ϕ = ¬© ¬ϕ if λ does not hold in the next state then ϕ must hold in the
next state (weak next ϕ).

Definition 18 (Nondeterministic finite automaton (NFA)). A NFA is a
tuple N = 〈Q,Σ,∆, q0, F 〉 consisting of:

• Q the set of states.

• Σ the alphabet consisting of a finite set of input symbols.

• ∆ : Q× Σ→ 2Q the transition function.

• q0 the initial state.

• F ⊆ Q the set of accepting states.

Let µ = a1, . . . , an be a word over the alphabet Σ, then the automaton N
accepts the word ω if there exists a sequence of states r0, . . . , rn in Q with
r0 = q0, ri+1 ∈ ∆(ri, ai+1) for i = 0, . . . , n − 1, and rn ∈ F . Thus, the

22

Chapter 2. Mathematical Foundations 23

difference to above Büchi automata is the acceptance condition, where here
only the last state must be accepting.

De Giacomo et al. (2014) provide an algorithm for constructing such a NFA
for any LTLf formula.

Theorem 9. Let ϕ be an LTLf formula and Nϕ the NFA constructed as de-
scribed in De Giacomo et al. (2014), then for every finite trace π over Σ
satisfies ϕ, iff the automaton Nϕ accepts the input π (De Giacomo et al.,
2014).

23

Chapter 3

Planning Foundations

The main target of planning is to decide which action to take in a given
situation. The main application areas hereby cover high-level planning of
intelligent agents, autonomous systems, and problem solving. In contrast to
specialized algorithms, planning utilizes a general-purpose problem descrip-
tion, and special algorithms for solving problems formalized in this fashion.
Planning can be categorized depending on if the actions are deterministic,
non-deterministic or probabilistic, and if the state of the world is fully or
only partially observable, thus if the agent has full knowledge of its con-
text. Often planning with deterministic actions in a fully observable setting
is called classical planning. In this setting the agent starts in a fully spec-
ified initial state and has a goal description, together with actions it can
take to reach the goal. The aim of planning is then to find a, possibly opti-
mal, sequence of actions that changes the initial state step by step to reach
the goal. When non-deterministic actions are present, planning produces a
policy stating in which state which action should be applied, as the nonde-
terminism introduces branchings during execution.

This work focuses on classical planning (deterministic actions, fully observ-
able world) and FOND planning (Fully observable non-deterministic). The
following section formalizes planning using the classical setting. Then this
setting is extended to add expressiveness. Section 3.2 introduces state-
dependent action costs, where the cost of an action depends on the state
in which it is executed. Section 4.1 then adds conditional effects, similar
to state-dependent action costs, only that the outcome of an action depends
on the state in which it is executed. The combination of conditional effects
and state-dependent action costs is then discussed in Section 4.2. Section 5
then adds optional constraints towards the plan, adding controll over how
goals are achieved. Finally, Section 3.3 introduces non-determinism, where
the outcome of an action is not deterministic.

24

Chapter 3. Planning Foundations 25

3.1 Classical Planning

In classical planning full knowledge of the world is assumed, thus the plan-
ner has full knowledge over the initial state, the current state, the goal state,
and the precondition and outcome of each action. No unforeseen action can
manipulate any part of the planning task. Any interaction with a changing
environment is disregarded in this setting. Additionally every action is de-
terministic, meaning that they have one distinct set of effects in every state.

A fact is a pair (v, d) where v ∈ V and d ∈ Dv and F is the set of all facts.
F is considered consistent if no two facts v = d and v = d′ such that d 6= d′

are in F .

Definition 19 (Partial Variable Assignment). Given the set of all facts F ,
a partial variable assignment is a consistent set ξ ⊆ F assigning values to
variables for some variables v ∈ V.

Definition 20 (State). If the partial variable assignment s assigns a value to
each v ∈ V, then s is called a state.

Let S denote the set of all states in Π, and s(v) denote the value of the
variable v in state s.

Definition 21 (Action). An action a ∈ A is a tuple a = 〈pre, eff〉 of pre-
conditions and effects, where pre is a partial variable assignment and eff =
{eff0, . . . effn} is a conjunction of conditional effects effi = 〈ϕi � (v := d)〉
where the effect condition ϕi is a propositional formula over V and v := d a
fact with v ∈ V and d ∈ Dv. An action a is applicable in a state s if s |= pre.
The changes obtained by applying a in s is then defined in the form of the
changeset (Rintanen, 2003) over the actions effect.

If every atomic effect in eff occurs at most once, and there exist no nested
effects or conditions then this is called effect normal form or ENF. An addi-
tional requirement towards conditional effects is that they are non contra-
dicting thus if there are two effects e, e′ ∈ eff with e = ϕi � (w := d′) and
e′ = ϕj � (w := d′′) and d′ 6= d′′ then there exists no reachable state s such
that s |= ϕi ∧ s |= ϕj

Definition 22 (Classical Planning Task). A classical planning task Π is a
tuple 〈V,A, s0, s?, ca〉, where V is a set of multi valued variables each with
a finite domain Dv, A is a set of actions, s0 the initial state, and s? a goal
condition, and c : A → N a mapping function from actions to costs.

Definition 23 (Changeset). Let s be a state in S and e an effect in ENF over
v ∈ V. Then the changeset denoted as [eff]s (effect applied in state s) is

1. [eff1 ∧ · · · ∧ effn]s = [eff1]s ∪ · · · ∪ [effn]s ,

25

26 Chapter 3. Planning Foundations

2. [ϕ� f]s = {f} if s |= ϕ, and [ϕ� f]s = ∅, otherwise.

Applying an action a in state s then yields a new state s′ where s(v)′ =
[eff]s(v) for all v where [eff]s(v) is defined, and s(v)′ = s(v) for all v where
[eff]s(v) is undefined. The notation s[a] for s′, denoting the state after ap-
plying changes from a is used throughout the rest of this thesis. Addition-
ally, let δ(s, (a0, . . . , an)) be the state after applying the sequence of actions
(a0, . . . , an) in state s, defined as follows:

δ(s, []) = s

δ(s, [(a1, . . . , an), a0]) = δ(s, (a1, . . . , an))[a0]

Let π = (a0, . . . , an−1) be a sequence of actions from the set of actions
A, then π is a plan for Π if a0 is applicable in s0 and there exists a set
of states si . . . sn such that ai is applicable in si and si+1 = si[ai] for all
i = 0, . . . , n − 1, and sn is a goal state. A state s is a goal state if s |=
s?. The corresponding sequence of states µπ = (s0, s1, . . . , sn) created by
sequentially applying actions a in π with si+1 = si[ai] is then called the state
trajectory induced by π.

Plan quality Two kinds of planning problems can be distinguished: Satis-
ficing and optimal planning. In satisficing planing, the aim is to find a plan
that satisfies the goal condition, plan length or plan costs are not consid-
ered. Plan length corresponds to the number of actions taken to reach the
goal state sn |= s? from the initial state s0. Given a plan π = (a0, . . . , an)
The plan cost is then defined as c =

∑n
i=0 cai . In optimal planning the goal

is to find the optimal plan regarding some metric.

Definition 24 (Satisficing Plan). A satisficing plan is any plan that reaches
the goal state. The quality of the plan is given by total cost c(π) of the plan.

Definition 25 (Optimal Plan). A plan π for planning task Π with some c(π)
is optimal if there exists no other plan π′ for the same planning task Π with
c(π′) such that c(π′) < c(π).

Example 4 (Logistics Domain Example). Illustrated in Figure 3.1 is a
short example of the logistics domain, with Π = 〈V,A, s0, s?, ca〉 formal-
ized as follows:

• There exist 3 locations {Freiburg, Vienna, Graz} 2 packages {PkgRed,
PkgGreen} and one truck.

• For every package p ∈{PkgRed, PkgGreen} a variable atLocPkg(p) with
domain {Freiburg, Vienna ,Graz, Truck} is created.

• For the truck a variable atLocTruck with domain {Freiburg, Vienna,
Graz} is created.

26

Chapter 3. Planning Foundations 27

The possible actions A are then:

• For every “connected” location a move action is created:

– move(Freiburg,Vienna) = 〈atLocTruck = Freiburg,
atLocTruck=Vienna〉

– move(Vienna,Freiburg) = 〈atLocTruck = Vienna,
atLocTruck=Freiburg〉

– move(Vienna,Graz) = 〈atLocTruck = Vienna,
atLocTruck=Graz〉

– move(Graz,Vienna) = 〈atLocTruck = Graz,
atLocTruck=Vienna〉

• For every package and location pair a pickup and drop off action is
created:

– pickup(PkgRed,Freiburg) = 〈atLocTruck = Freiburg∧
atLocPkg(PkgRed) = Freiburg,
atLocPkg(PkgRed) = Truck〉

– dropoff(PkgRed,Freiburg) = 〈atLocTruck = Freiburg∧
atLocPkg(PkgRed) = Truck,
atLocPkg(PkgRed) = Freiburg〉

– . . .

All action costs ca are set to unit costs.

In the initial state, as shown in Figure 3.1a, the package PkgRed is in Vienna
and the package PkgGreen is in Graz and the truck is in Freiburg. The goal
is to deliver both packages to Freiburg, as shown in Figure 3.1b. Note that
there exist multiple solutions to this task including the following:

1: move(Freiburg,Vienna)� pickup(PkgRed)� move(Vienna,Graz)
� pickup(PkgGreen)� move(Graz, Vienna)� move(Vienna, Freiburg)
� dropoff(PkgRed)� dropoff(PkgGreen)

2: move(Freiburg,Vienna)� move(Vienna,Graz)� pickup(PkgGreen)
� move(Graz, Vienna)� pickup(PkgRed)� move(Vienna, Freiburg)
� dropoff(PkgRed)� dropoff(PkgGreen)

The search tree corresponding to this task is shown in Figure 3.2. Irrelevant
paths, such as moving back and forth between two locations, in the search
are removed.

As shown by Bylander (1994) determining whether a plan exists is PSPACE-
complete. Even if the restriction to the formalism is made, that actions can

27

28 Chapter 3. Planning Foundations

Freiburg Vienna

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Graz

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

(a) Initial State

Freiburg

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

Vienna Graz

(b) Goal State

Figure 3.1: Logistics domain example with three cities one truck and two
packages.

Freiburg Vienna

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Graz

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

Freiburg Vienna Graz

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

Freiburg Vienna Graz

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

Freiburg Vienna Graz

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

Freiburg Vienna Graz

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

Freiburg Vienna Graz

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A
Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

Freiburg Vienna Graz

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Freiburg Vienna Graz

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Freiburg Vienna Graz

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Freiburg Vienna Graz

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Freiburg Vienna Graz

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

Freiburg Vienna Graz

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Freiburg

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

Vienna Graz

Figure 3.2: Search graph: Irrelevant paths disregarded

28

Chapter 3. Planning Foundations 29

not have negative effects (facts that have been achieved stay achieved), the
problem of finding a solution is still NP-complete (Bylander, 1994). Du to
this complexity, naive approaches exhaustively searching the state space are
not feasible for any kind of problem apart from the very smallest.

Planning as heuristic search. One approach of finding a plan π for a
given planning task Π = 〈V,A, s0, s?, ca〉 is to apply a heuristic search algo-
rithm over the state space S. A heuristic search algorithm uses a so called
heuristic function h : S → N providing a numeric quality measure to a state
s. The value of a given state is also referred to as the h-value. One search
algorithm using this h-value is greedy best first search. A second measure
for evaluating the quality of a given state is the g-value (abbreviated with
g) indicating the cost of reaching the current state. Note that each state
can have multiple g-values as they may be reached by multiple paths in the
search. A well known algorithm using this g-value only is Dijkstra’s algo-
rithm (Dijkstra, 1959). The most common algorithm for heuristic search
uses a combination of h-value and g-value is the A* algorithm (Hart et al.,
1968) using f = g + h as the states quality measure. During the search a
graph consisting of nodes n = 〈s, g, h〉 storing a planing state s, a g-value and
a h-value are created. Edges in the graph e = 〈n, a, ca, n′〉 with n = 〈s, g, h〉
and n′ = 〈s′, g′, h′〉 are labeled with the action a such that s′ = s[a], and
g′ = g + ca.

Given a node n = 〈s, g, h〉 the search algorithm then expands this node by
applying every action applicable in s resulting in new states S ′. For each
s′ ∈ S ′ reached from applying action a a new node n′ = 〈s′, g′, h′〉 is cre-
ated and connected to its predecessor n via the edge e = 〈n, a, can′〉. This
is done until a state is reached that fulfills the goal condition s?. Some al-
gorithms then continue the search to prove that the found plan is optimal,
or to try and improve the plan quality. This however, is dependent on the
actual algorithm. The main difference in the above algorithms is how they
select the next node to expand. Greedy best first search expands the node
with the lowest h-value, whereas Dijkstra’s algorithm expands the node with
the lowest g-value. A* then combines the both by selecting the node with
the lowest f = g + h value. Note that this description is a simplification of
the actual algorithms, but provide some intuition on how heuristic search
works in general. Also, these three algorithms are by no means all possi-
ble algorithms, nor is this forward search approach the only possible way
of finding solutions to planning tasks. Well known planners working with
this paradigm are the Fast Forward Planning System (Hoffmann and Nebel,
2001) and the Fast Downward Planning System (Helmert, 2006).

A classical example illustrating such a planning task Π = 〈V,A, s0, s?, ca〉
is the logistics domain (Helmert, 2008), where a sequence of actions is re-

29

30 Chapter 3. Planning Foundations

quired to move a truck from one location to another, loading and unloading
packages, with the goal being that all packages are at their destination.

As mentioned before, heuristics guiding the search towards a goal state are
required. Such heuristics give an estimate of how far a given state is to
fulfilling the goal condition (reaching a goal state). A simple heuristic for
path planning could be the Euclidean distance between the current posi-
tion(current state) and destination(goal state). It is clear to see that this
does not represent the exact distance, due to the fact that roads do not con-
nect all locations by a straight line. However, states in which the Euclidean
distance to the destination is smaller are more likely to lead to the actual
destination. In domain independent planning, a more general definition of
a heuristic is required:

Definition 26 (Heuristic). A heuristic function h : S → R ∪ {∞} maps a
state to a heuristic value, estimating the distance from the state s to the goal
s?.

Many heuristic functions exist for classical planning, and are an intense field
of research. Some of the more common heuristics are briefly discussed here,
as to give a better understanding, and intuition of what heuristics are and
how they work. The baseline heuristic used is the so called blind heuristic
hblind which, as the name already suggests, corresponds to the search with-
out heuristic estimate, apart for a goal state. This heuristic assigns a value
of 1 to all states that do not fulfill the goal condition and 0 to states fulfilling
the goal condition.

More complex heuristics work on the basis of first reducing the search space,
thus making the problem easier, and from this easier problem, calculating
estimates for the original planning task. Two methods are introduced in the
next few paragraphs. The first being task relaxation, where the idea is to
keep every fact that has become true once true for ever, and the second is
task abstraction where variables and values are merged and treated as one
variable value.

Definition 27 (Relaxed planning task). Let Π = 〈V,A, s0, s?, ca〉 be a plan-
ning task and Π’ be the relaxed task with Π′ = Π. A relaxed state s+ then
assigns to each v ∈ V a non empty set s+(v) ⊆ Dv. Let S+ be the set of
all relaxed states. s+ subsumes s if for all v ∈ V, s(v) ∈ s+(v). An action
a = 〈pre, eff〉 is applicable in the relaxed state if pre(v) ∈ s+(v) for all v ∈ V
where pre(v) is defined. Applying a in s+ results in s+′ = s+ ∪ {eff(v)} 1.

Definition 28 (Relaxed reachability). A fact v = d is relaxed reachable
from a state s+ in a relaxed planning task if there exists a possible empty

1It is not entirely clear as to whom this formulation can be attributed, but it can be traced
down to Helmert (2006) or Kupferschmid et al. (2006).

30

Chapter 3. Planning Foundations 31

sequence of actions (a0, . . . , an) applicable in s+, with the induced state
trajectory (s+, . . . , sn) such that v = d is in sn.

In words, states in a relaxed plan assign a set of values to each variable, thus
each value that was achieved once stays achieved, variables in the relaxed
task therefore, can reside in multiple states at once. This reduces the search
space, as each value only needs to be reached once. This can be exploited
to generate a heuristic estimate of the original task such as hmax and hadd

(Bonet and H. Geffner, 2001).

Example 5 (Relaxed Planning Task). Recalling the Example 4 if in the
initial state the action move(Freiburg, Vienna) is applied, the effect will be
that the Truck is now in two locations simultaneous Freiburg and Vienna:

Freiburg Vienna

P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Graz

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

(a) Initial State

Freiburg Vienna Graz
P
ac

k
ag

e-
A

Package-A

P
ack

age-A

Package-A

Package-B

P
ac

k
ag

e-
B

Package-B

P
ack

age-B

(b) Relaxed State

Figure 3.3: Relaxed planning task. After applying move(Freiburg, Vienna)
the Truck now is in two locations simultaneous.

hmax and hadd Heuristics: The basic idea of hmax and hadd (Bonet and H.
Geffner, 2001) is to estimate the cost of achieving each fact f ∈ s? from any
state s. Let A(f) be the set of achievers of f , i.e. the actions a = 〈pre, eff〉
such that f is made true in eff.

hmax is defined by the recursive function (Equation 3.1-Equation 3.3). For
a set of facts F the hmax value is the maximum over all hmax values of the
individual facts (Equation 3.2). For a fact f the value of hmax is either 0
if the fact is already in the set of achieved facts (initially s0) or for every
achiever a = 〈pre, eff〉 ∈ A(f) of f , the hmax value of the facts in pre are
calculated recursively and added to the cost of ca. Then from this set the
minimum is taken (Equation 3.3). To calculate hmax for any given state s,
this is done by setting the set of initially achieved facts to s (Equation 3.1).

hmax(s) = hmax
s (s?) (3.1)

hmax
s (sp) = max

f∈sp
(hmax
s (f)) (3.2)

hmax
s (f) =

0 if f ∈ s
min

a∈A(f)
[hmax
s (pre(a)) + ca] if f 6∈ s (3.3)

31

32 Chapter 3. Planning Foundations

For hadd Equation 3.2 is simply replaced by hadd
s (sp) =

∑
f∈sp h

add
s (f).

Alternatively to task relaxation, tasks can also be abstracted. In general,
this approach tries to reduce the complexity of the search by abstracting the
variables merging variable values and treating them as one. Thus for a given
abstract state s′ the different variable values are treated as one.

When all the values of a single variable are merged to one value (the dif-
ferent states of the variable become indistinguishable, thus the variable can
be completely removed), this is called projection abstraction (Figure 3.4a).
When only some values of a variable are merged in to one, this is called do-
main abstraction (the domain of a variable is abstracted Figure 3.4b), and
if the abstraction is a Cartesian projection over the variables, then this is
called Cartesian abstraction (Figure 3.4c). Alternatively, values from differ-
ent variables can also be merged in to one value. This is the most general
case of abstraction (Figure 3.4d).

x x x

y

y

y

1 2 3

1

2

3

1/1 1/2 1/3

2/1 2/2 2/3

3/1 3/2 3/3

(a) Projection Abstraction

x x x

y

y

y

1 2 3

1

2

3

1/1 1/2 1/3

2/1 2/2 2/3

3/1 3/2 3/3

(b) Domain Abstraction

x x x

y

y

y

1 2 3

1

2

3

1/1 1/2 1/3

2/1 2/2 2/3

3/1 3/2 3/3

(c) Cartesian Abstraction

x x x

y

y

y

1 2 3

1

2

3

1/1 1/2 1/3

2/1 2/2 2/3

3/1 3/2 3/3

(d) General Abstraction

Figure 3.4: Different types of task abstractions

In the following projection abstraction is described, as it is commonly used
in pattern database heuristics (introduced later on in this section).

Definition 29 (Projection abstraction). Let Π = 〈V,A, s0, s?, ca〉 be a
planning task with states S, and let V ′ ⊆ V be a subset of the variables.
Then let s′0 = {v = s0(v)|v ∈ V ′} and s′? = {v = s?(v)|v ∈ V ′}. An action

32

Chapter 3. Planning Foundations 33

a = 〈pre, eff〉 is applicable in a abstract state sa iff pre(v) = sa(v) for all v ∈
V ′ where pre(v) is defined. The effect of the action is then sa(v)′ = [eff]sa(v)
for all v ∈ V ′ where [eff]sa(v) is defined, and sa(v)′ = sa(v) for all v where
[eff]sa(v) is undefined.

This task abstraction reduces the overall state space making the search for
a solution in Π′ easier. Even though the solution to the abstract task Π′ is
not a correct solution to the original task Π, this abstraction can be used to
calculate heuristic values for the original task, by searching for a solution in
the abstracted task and using the cost of the solution as heuristic value for
the original task.

hcpdb Heuristic: Alternatively task abstraction can be used to reduce the
search space of the original task, making it easy to search for a solution in
the abstract task. The c(µπ) of the abstracted task solution is then used as
heuristic value for the original task. A common class of heuristics, which uti-
lizes task abstraction are pattern database heuristics. Let P be an abstraction
from Π, yielding ΠP . If P is small enough it is tractable to calculate the opti-
mal cost of achieving the goal condition in any state of ΠP , by breadth-first
search, as the state space is bounded by

∏
v∈P |Dv| the product of the do-

mains of all variables in the pattern P . These costs are then stored in a table
called the pattern database for pattern P . Multiple such pattern databases
can then be combined to calculate a heuristic value for the original task.
Such a combination can be taking the maximum or the sum of the val-
ues, but depend on the patterns and the actual heuristic. One such pattern
database heuristic is the canonical pattern database heuristic(hcpdb) (Haslum
et al., 2007). The heuristic function defined by hcpdb is

hC(s) = max
S∈A

∑

P∈S
hP (s) (3.4)

where C = {P1, . . . , Pn} is a collection of patterns and A the collection of
all additive subsets of C. Two patterns Pi and Pj are additive if the set
of actions that effect a variable in Pi is disjoint from the set of actions that
affect any variable in Pj . The main issue that remains is then how to actually
create the patterns, as this determines the quality of the heuristic value, and
the time it takes to calculate this value. hcpdb constructs the patterns by a
search over nodes where a node is a pattern collection, and its neighbors are
modifications to this collection. Initially, the pattern collection C consists
of one pattern for each variable from the goal condition containing only
this variable C =

⋃
v∈s?{{v}}. From a given collection C a new collection

C ′(and neighbor of C) is created by selecting a single pattern P ∈ C and
a variable v 6∈ P and adding a new pattern to C ′ = C ∪ {P ∪ v}. After
expanding the current collection C ′ the best neighbor is selected for the next

33

34 Chapter 3. Planning Foundations

iteration, and terminates when now significant improvement is detected,
or a given storage limit is exceeded. The corresponding pattern databases
are calculated in each iterative step and stored in a global table, for later
lookup. What is still missing now is the calculation of the best neighbor of
a collection C. For this Haslum et al. (2007) introduce a approximating
function

1

m

∑

{ni|hC(ni)<h
C′(ni)}

Ncb−hc(ni) (3.5)

where m ∈ N and n a sample of m nodes from the search tree, cb a cost
bound, and Nk the number of nodes in the search tree with accumulated
cost (g-value) of at most k. This formula gives a measure of how much the
search improves if the pattern collection C ′ is used instead of the collection
C.

For finding optimal plans, heuristics in general must be admissible.

Definition 30 (Admissible Heuristic). Let h?(s) be the true cost to the
goal, then a heuristic h is admissible if for all states s ∈ S, h(s) ≤ h?(s),
thus it never overestimates the costs to the goal.

In some special cases like the A* algorithm without revisiting already pro-
cessed nodes, for optimality the heuristic must not only be admissible, but
also consistent.

Definition 31 (Consistent Heuristic). A heuristic h is consistent if for all
states s ∈ S and all actions a ∈ A applicable in s, h(s) ≤ ca + h(s′) where
s′ = s[a].

The consistency requirement is a form of the triangle inequality, which in
this case says that the path from s to s? can not be longer than the path
from s to s? via s′.

Planning formalism PDDL After introducing the basic principles of AI
planning in the sections above, a more practical definition of a planning
task is required. For this reason, the planning community has introduced
PDDL (Planning Domain Definition Language) as a language for describ-
ing planning tasks in a more abstract way (PDDL 1.2 (McDermott et al.,
1998), PDDL 2.1 (Fox and Long, 2003), PDDL 2.2 (Edelkamp and Hoff-
mann, 2004), PDDL 3.0 (Gerevini and Long, 2005)). Even though, this is
not the only language for specifying planning tasks, it is used by almost all
implemented modern systems, especially Fast-Downward(Helmert, 2006)
which is used as a platform to implement and test work presented later on
in this theses.

34

Chapter 3. Planning Foundations 35

3.2 Planning with State-Dependent Action Costs

In real world problems, the execution of an action is often related to a cost
of doing so. For instance driving from location A to location B requires the
use of fuel, which comes at some cost. In the classical setting this can be
modeled by the action costs ca. However, in many situations, the cost of
an action is not only dependent of the action itself, but also on the state
in which it is executed. Returning to our Example 4, the cost of moving
from any location to another may be dependent on whether a package is
on the truck or not, as additional weight increases fuel consumption. Addi-
tionally the cost of moving from Vienna to Graz will be significantly lower
than moving from Freiburg to Vienna, as the distances are very different.
Although these state dependent costs can be removed by adding additional
actions such as Move-Freiburg-Vienna-No-Package, Move-Vienna-Freiburg-No-
Package, Move-Vienna-Graz-No-Package, and Move-Graz-Vienna, for each pos-
sible combination of the state variables, representing action costs in a state
dependent way gives way to a more compact and natural representation of
the domain.

State-dependent action costs can be represented as the sum over tuples ca =
{(ϕ1, c1) . . . (ϕn, cn)} where ϕi is a logical formula over facts f ∈ F and ci
is a constant (Ivankovic et al., 2014). The cost of applying an action a in
state s is c(a, s) =

∑
(ϕ,c)∈ca [ϕ]s ∗ c. This can be extended to cost functions

that can represent arithmetic terms over state variables (Geißer et al., 2015)
resulting in the following definitions.

Definition 32 (Planning Task with State-Dependent Action Costs). Let
V be a set of variables, A a set of actions, s0 an initial state, and s? a goal
condition. Furthermore, let ca be a cost function ca : S → N assigning a
cost for application of an action a to each state where a is applicable. Then
Π = 〈V,A, s0, s?, ca〉 is a planning task with state-dependent action costs.

Example 6. Recalling the logistics task from Example 4 using state-depen-
dent action costs, it is possible to model the fact that the cost of moving from
one city to another is dependent of packages loaded in the truck. Let the
predicates location(Package-Red, Truck) and location(Package-Green, Truck)
state the facts, that the red and green packages are loaded in the truck
respectively. Then the cost function for the move actions is

cmove(s) =[location(Package-Red,Truck)] ∗ 2+

[location(Package-Green,Truck)] ∗ 2 + 1

This states, that for every package that is located in the truck the cost of
applying the move action is increased by 2, and the cost of moving without
package is 1.

35

36 Chapter 3. Planning Foundations

3.2.1 Expressing SDAC as EVMDD

Let ca(s) : S → N be a arithmetic cost function. The EVMDD representing
this cost function is then constructed as follows (Mattmüller et al., 2018)
(following the construction schema from Section 2.1.1):

1. Create an abstract syntax tree from ca(s) with inner nodes represent-
ing arithmetic, Iverson and Boolean operators, and leaf nodes repre-
senting variables and constants.

2. For each leaf node an EVMDD Ei is created: For a constant a the EV-
MDD Ei = 〈a,0〉 is created. For a variable v the EVMDD Ei = 〈0, f〉
with f = (v,0, . . . ,0, 1, . . . , k) and k = |D(v)| − 1 is created.

3. For inner nodes representing an operator •, the child EVMDDs Ei, Ej
are combined by applying the APPLY procedure with the • operator.
Iverson brackets: If an inner node represents an Iverson bracket, the
children of this node must be Boolean operators. In this case the EV-
MDD created for the inner node is on the monoid B = ({>,⊥},∨,⊥)
identical to the construction in Section 4.1. When evaluating the Iver-
son bracket node, which only has one direct child, APPLY is called
with a special operator � : {>,⊥} → {1, 0}. This operator takes one
EVMDD and maps > → 1 and ⊥ → 0.

Proposition 1. Let ca : S → N be an arithmetic cost function and Ec the
EVMDD representation as constructed above, then ca(s) = Ec(s) for each
state s ∈ S.

Proof. By definition of EVMDDs over the monoid N = 〈N,+, 0〉 (Ciardo
and Siminiceanu, 2002), ca(s) = Ec(s).

As was seen in Section 3.1, heuristics are used to solve planning tasks. How-
ever, up until now only state-independent action costs where considered.
During the search this is no problem as the evaluation of the actions cost
can be executed on the current state. However, when calculating the heuris-
tic on abstracted or relaxed tasks, this is non-trivial, as variables may as-
sume more than one value at the same time, making the evaluation of the
cost function non trivial. In the following section a relaxation heuristic with
state dependent action costs is discussed.

3.2.2 hadd with State-Dependent Action Costs

Missing in the original definition of relaxed planning tasks (Definition 27), is
the notion of state dependent action costs. As the idea of relaxation heuris-
tics based on the accumulation semantics (Hoffmann, 2005) (facts that have

36

Chapter 3. Planning Foundations 37

become true at one point stay true) is to estimate the cost of reaching the
goal, and for admissibility (Definition 30) the cost may never be overesti-
mated, the interpretation of ca(s+) in the relaxed state s+ is the minimum
of ca(s) for all unrelaxed states s that are subsumed by s+. Let Sc be all
possible evaluations of variables occurring in ca(s), and let A(f) be the set
of actions that make the fact f true. The new definition of hadd is then:

hadd(s) = hadd
s (s?)

hadd
s (sp) =

∑

f∈sp
hadd
s (f)

hadd
s (f) =

0 if f ∈ s
min

a∈A(f)
[hadd
s (pre(a)) + Csa] if f 6∈ s

Csa = min
ŝ∈Sc

[ca(ŝ) + hadd
s (ŝ)]

Cs
+

a is the evaluation of Ca in state s+ (Geißer et al., 2015). If ca(s) is a
constant function then Cas = ca(∅) + hadds(∅) = ca, this definition reduces
to the original definition of hadd.

The major problem here is that the number of unrelaxed states s subsumed
by s+ can be exponential in the number of state variables (Geißer et al.,
2015), making the evaluation of Cs

+

a intractable. A compact representation
of ca is therefore essential, which can be achieved using EVMDDs.

Geißer et al. (2015) introduces two possibilities of calculating Csa from hadd

with state dependent action costs . The first approach is to calculate the
heuristic value on a transformed planning task without SDAC, and the sec-
ond being a transformation of the relaxed planning graph. The heuris-
tic based on task transformation will be introduced here, whereas for the
relaxed planning graph transformation, the reader is referred to Florian
Geißers PhD Thesis (Geißer, 2018b).

There exists multiple ways of compiling away SDAC, in order to calculate
the correct Csa value. The first, naive way is to create a new action for each
possible variable valuation in ca. Thus, for an action a a set of new actions
as̃ is created such that as̃i ∈ as̃ is only applicable in state s̃i. Formally:
as̃i = 〈pre∧∧f∈s̃i f, eff〉. It is simple to see, that this results in a exponential
blow up, in the number of variables in ca.

Example 7 (Naive SDAC action compilation). Let a be an action with cost
function ca = x2 + 2yz + 8 with the variable domains Dx = 2, Dy = 2, and

37

38 Chapter 3. Planning Foundations

Dz = 3. Then the resulting actions as̃ are:

a{x=0,y=0,z=0} = 〈pre ∧ x = 0 ∧ y = 0 ∧ z = 0, eff〉 cost = 8

a{x=0,y=0,z=1} = 〈pre ∧ x = 0 ∧ y = 0 ∧ z = 1, eff〉 cost = 8

a{x=0,y=0,z=2} = 〈pre ∧ x = 0 ∧ y = 0 ∧ z = 2, eff〉 cost = 8

a{x=0,y=1,z=0} = 〈pre ∧ x = 0 ∧ y = 1 ∧ z = 0, eff〉 cost = 8

a{x=0,y=1,z=1} = 〈pre ∧ x = 0 ∧ y = 1 ∧ z = 1, eff〉 cost = 10

a{x=0,y=1,z=2} = 〈pre ∧ x = 0 ∧ y = 1 ∧ z = 2, eff〉 cost = 12

a{x=1,y=0,z=0} = 〈pre ∧ x = 1 ∧ y = 0 ∧ z = 0, eff〉 cost = 9

a{x=1,y=0,z=1} = 〈pre ∧ x = 1 ∧ y = 0 ∧ z = 1, eff〉 cost = 9

a{x=1,y=0,z=2} = 〈pre ∧ x = 1 ∧ y = 0 ∧ z = 2, eff〉 cost = 9

a{x=1,y=1,z=0} = 〈pre ∧ x = 1 ∧ y = 1 ∧ z = 0, eff〉 cost = 9

a{x=1,y=1,z=1} = 〈pre ∧ x = 1 ∧ y = 1 ∧ z = 1, eff〉 cost = 11

a{x=1,y=1,z=2} = 〈pre ∧ x = 1 ∧ y = 1 ∧ z = 2, eff〉 cost = 13

resulting in 12 new actions.

Theorem 10. (Geißer et al., 2015) Let Π be a planning task with state de-
pendent action costs and Π′ the naively compiled task without state depen-
dent action costs. Furthermore, let s be a state of Π, then hadd

Π (s) = hadd
Π′ (s).

Alternatively, the EVMDD structure can be exploited to create a more com-
pact compilation resulting in less actions (Geißer et al., 2015; Mattmüller et
al., 2018). In short this is similar to the conditional effects compilation intro-
duced in Section 4.1. However, instead of applying effects in the compiled
actions, the new actions collect partial costs. Note that Nebel’s compilation
on conditional effects is not generalized to state-dependent action costs, as
it is unclear what the branching factors would be.

EVMDD compilation of state-dependent action costs Let Π = 〈V,A, s0,
s?, ca,s〉 be a planning task with state dependent action costs. Also, let sem
be a semaphore variable with domain Dsem = {0, 1} and Vaux = {auxa|a ∈
A} with domains Dauxa = size(Eca) the size of the actions cost functions
EVMDD, then V ′ = V ∪ {sem} ∪ Vaux. Let

fξ(s) = s ∪ {auxa = 0|aux ∈ Vaux} ∪ {sem = 0}

be the mapping function from states in Π to states in Π′, then s′0 = fξ(s0)
and s′? = fξ(s?). The actions A′ are then created as follows:

38

Chapter 3. Planning Foundations 39

For every action a = 〈pre, eff〉 with cost function ca,s an EVMDD Ec = 〈κ, f〉
is constructed as shown in Section3.2.1 and all nodes in Ec are topological
enumerated denoted as idx(v). Then three types of new actions are created.

1. A init action ainit = 〈pre∧ sem = 0∧aux = 0, aux = idx(v0)∧ sem = 1〉
with cost κ is created.

2. For each non terminal node v = (v, χ0, . . . , χk, w0, . . . , wk) and all
children χd with label wd and 0 ≤ d ≤ |D(v)| − 1, a new action
av,d,idx = 〈auxa = idx(v) ∧ v = d, auxa = idx(χd)〉 with cost wd is
created.

3. Finally the action afinal = 〈auxa = |Ec| + 1, auxa = 0 ∧ sem = 0 ∧ eff〉
with cost 0 resetting the auxiliary variable auxa and the semaphore
variables sem is created,

The new task without state dependent action costs is Π = 〈V ′,A′, s′0, s′?, ca〉.

Note that for a correct calculation of the hadd heuristic it is necessary to
have branches over all variables in every branch, therefore quasi reduced
EVMDDs (Ciardo and Siminiceanu, 2002) are used.

Example 8 (SDAC EVMDD compilation). Let a be the same action with the
same cost as in Example 7, the EVMDD for this cost function is then depicted
in Figure 3.5. The EVMDD compilation then results in the following actions:

x

y

z z

8

0

0

1

1

0

0

0

1

0

0

2

1

4

2

0

0

0

1

0

2

Figure 3.5: The EVMDD representing x2 + 2yz + 8 with domains (Dx =
2,Dy = 2,Dz = 3)

39

40 Chapter 3. Planning Foundations

ainit := 〈pre ∧ sem = 0 ∧ aux = 0, aux = 1 ∧ sem = 1〉 cost = 8

ax1 := 〈aux = 1 ∧ x = 0, aux = 2〉 cost = 0

ax2 := 〈aux = 1 ∧ x = 1, aux = 2〉 cost = 1

ay1 := 〈aux = 2 ∧ y = 0, aux = 3〉 cost = 0

ay2 := 〈aux = 2 ∧ y = 1, aux = 4〉 cost = 0

az01 := 〈aux = 3 ∧ z = 0, aux = 5〉 cost = 0

az02 := 〈aux = 3 ∧ z = 1, aux = 5〉 cost = 0

az03 := 〈aux = 3 ∧ z = 2, aux = 5〉 cost = 0

az11 := 〈aux = 4 ∧ z = 0, aux = 5〉 cost = 0

az12 := 〈aux = 4 ∧ z = 1, aux = 5〉 cost = 2

az13 := 〈aux = 4 ∧ z = 2, aux = 5〉 cost = 4

afinal := 〈aux = 5, sem = 0 ∧ aux = 0 ∧ eff〉 cost = 0

Evaluating this in state s = {x = 1, y = 1, z = 1} results in the action
sequence (ainit, ax1 , ay1 , az11 , afinal, resulting an the total cost of 12 + 2 ∗
1 ∗ 1 + 8 = 11

Definition 33. Given an action a = 〈pre, eff〉 with cost function ca and a set
of EVMDD compiled actions â over the cost EVMDD Ec, then fπ(s, a) is the
sequence of actions in â such that

fπ(s, a) = (f
a,0
π (s), f

a,+
π (s), f

a,final
π (s)) (3.6)

with:

1. fa,0π (s) is the init action from step 1 of the construction and is applica-
ble in state fξ(s).

2. fa,+π (s) is defined recursively over the EVMDD Eeff and is the sequence
of actions from step 2 of the construction. For the terminal node 0,
f
a,+
π (s) denotes the empty sequence of actions. For each non terminal

node v = (v, χ0, . . . , χk, w0, . . . , wk), fa,+π (s) is the action av,s(v),idx(v)

followed by the action sequence fa,+
π,s(v)

(s) where fa,+
π,s(v)

(s) is the func-
tion denoted by the child χs(v).

3. fa,final
π (s) is the final action from step 3 of the construction.

Additionally let fc(s, a) =
∑
a′∈fπ(s,a) ca′ be the total cost of the action se-

quence.

Lemma 2. For every action a ∈ A and every state s ∈ S such that a is
applicable in s, δ(fξ(s), fπ(s, a)) = fξ(δ(s, a)), and the total cost fc(s, a) is
ca(s).

40

Chapter 3. Planning Foundations 41

s s′

fξ(s) fξ(s
′)

a

fξ fξ

fπ(s, a)

Figure 3.6: Applying the original action a in state s on the original task Π
and applying fξ to the resulting state s′ = [a]s is equivalent to applying the
sequence of actions fπ(s, a) to the transformed state fξ(s).

Proof. Let a = 〈pre, eff〉 be an action in A with cost ca(s) applicable in state
s, t = s[a] and Ec = 〈κ, f〉 be the EVMDD representing the cost function
ca(s). By construction, fa,0π (s) is the action ainit, from step 1 of the EVMDD
compilation, applicable in fξ(s) as fξ(s) |= pre ∧ sem = 0 ∧ aux = 0 with
the constant costs κ. Then f

a,+
π (s) denotes the sequence of compiled ac-

tions consistent to state s, collecting the partial costs from f . This is ensured
by tracking the current node of Ec in aux and applying the edge labels as
constant costs in the actions (step 2 of the compilation). Finally, fa,final

π (s)
consists of the afinal action applying the original action effects eff and reset-
ting the sem and aux variable. Therefore, fπ(s, a) is a sequence of actions
corresponding to a path in Ec consistent to state s gathering the partial costs
of the visited edge labels. Thus, δ(fξ(s), fπ(s, a)) = fξ(δ(s, a)) holds and
fc(s, a) = ca(s) = Ec(s).
Definition 34 (Plan equivalence). Given a plan π = (a1, . . . , ak) for Π =
〈V,A, s0, s?, ca〉 with the induced state sequence s = (s0, . . . , sk) such that
ai is applicable in si−1 and results in state si for all i = 1, . . . , k, and sk |= s?.
Given a second plan π′ = (a′1 . . . , a

′
l) for Π′ = 〈V ′,A′, s′0, s′?, c′a′〉 with the

induced state sequence s′ = (s′0, . . . , s
′
l) such that a′i is applicable in s′i−1

and results in state s′i for all i = 1, . . . , l and sl |= s′?. Let fξ : s 7→ s′ be
a mapping from states in s to states in s′ such that s ⊆ fξ(s) for all states
s ∈ s. The plans π and π′ are equivalent iff there exists an injective and
strictly monotonous mapping σ : {0, . . . , k} → {0, . . . , l} such that for every
u = 0, . . . , k, s′

σ(u)
= fξ(su) and σ(0) = 0 and σ(k) = l, and c(π) = c(π′).

Additionally, for any state s′i with σ(u) < i < σ(u+1) such that s′i |= s′? then
s′
σ(u)
|= s′?.

Definition 35 (Task plan-equivalence). Two planning tasks Π and Π′ are
plan-equivalent iff for every plan π in Π there exists an plan π′ in Π′ such
that π, π′ are equivalent and for every plan π′ in Π′ there exists an plan π in
Π such that π, π′ are equivalent.

Proposition 2. Every planning task Π with SDAC is plan-equivalent to its

41

42 Chapter 3. Planning Foundations

EVMDD compiled task Π′ without SDAC.

Proof. Let Π = 〈V,A, s0, s?, ca〉 be a planning task with SDAC and Π =
〈V ′,A′, s′0, s′?, c′a〉 be its EVMDD compiled task without SDAC constructed as
above. Furthermore, let π = (a1, . . . , ak) be a plan for Π with the induced
state sequence s = (s0, . . . , sk+1) with sk+1 |= s? and total costs

c(π) =

k∑

i=1

cai(si−1)

Following Lemma 2, for each action a in π, the state s ∈ s in which a is
executed, and t = s[a], an action sequence fπ(s, a) in A′ exists, such that
δ(fξ(s), fπ(s, a)) = fξ(δ(s, a)) and fc(s, a) = ca(s). Applying this transfor-
mation for every action in π results in a new equivalent plan π′ with identical
total costs. Additionally, as the goal condition s′? is augmented with sem = 0
no intermediate state s′ created by applying fπ(s, a) in state fξ(s) can exist
such that s′ |= fξ(s

′
?). Following this, and the fact that by construction every

sequence of actions fπ(s, a) can be associated with a action a from the origi-
nal task, it can be seen that for every plan π′ in Π′ there exists an equivalent
plan π in Π.

Showing the other that for every plan π in Π there exists an equivalent plan
π′ in Π′ follows the same schema.

42

Chapter 3. Planning Foundations 43

3.3 Fully Observable Nondeterministic Planning

Up until now, the planning task Π has always been fully observable and
deterministic, meaning the planner has full knowledge over the state, and
each action has a deterministic effect. However, in real life this is a vast
oversimplification, as some actions may have multiple possible outcomes.
One such action might be the act of a robot picking up an object from a table.
As the robot gripper is a physical object interacting with its environment, a
lot of things can go wrong. The gripper might not hold on to the object
hard enough resulting in the robot dropping the object. For a planning task
this results in the action effect either the object being in the robot gripper
or not. This setting is called fully observable non-deterministic planning
or FOND planning (Cimatti et al., 2003). This setting might be extended to
partially observable worlds, where the agent also only has partial knowledge
of the current state of the world. This is known as partially observable
non-deterministic planning or POND-planning. Both these settings can be
again extended to also incorporate probabilities of certain action outcomes
also known as Markov decision process planning or MDP planning.

In systems in which users interact with software, the setting is exactly that
of FOND, as the outcome of a users action is not known apriory. Such user
actions can therefore be modeled as a non-deterministic action. On the
other hand, the software knows its internal representation and thus has full
knowledge of the current state it resides in. As Chapter 7 is concerned
with generating workflows for user interaction with software systems, this
chapter will only focus on FOND planning.

For the FOND setting, the definition of actions (Definition 21) must be re-
visited and adapted to the new setting.

Definition 36 (FOND action). An action a is a tuple a = 〈pre, eff〉 where
the precondition pre is a partial variable assignment and a non-deterministic
effect eff = {eff1, . . . , effn}. Each effi is a deterministic effect in the form of
(w := d) with w ∈ V and d ∈ Dw.

Definition 37 (FOND action application). An action a = 〈pre, eff〉 with
eff = {eff1, . . . , effn} is applicable in state s if s |= pre. Applying an action
in state s, results in a set of new states T = {s1 = [eff1]s, . . . , sn = [effn]s}
(one for every non-deterministic effect), denoted as T = s[a]

As actions might have multiple outcomes, the result of FOND planning task
is not a sequence of actions, but rather a mapping from states to actions,
also called policy. The following definitions are taken from Cimatti et al.
(2003).

Definition 38 (Policy). A policy π is a mapping π : S → A∪{⊥} from states

43

44 Chapter 3. Planning Foundations

to actions such that for all s ∈ S, π(s) ∈ A(s) ∪ {⊥}, where A(s) is the set
of actions applicable in state s and ⊥ means that the policy is undefined in
that state. Let Sπ = {s ∈ S|π(s) 6= ⊥} be the set states for which the policy
π is defined.

Definition 39 (Policy properties). Let s, s′ be two states in S. Then s′ is
reachable from state s iff there is a sequence s0, . . . , sn with s0 = s and
s′ = sn such that for all i = 0, . . . , n − 1, si+1 ∈ si[a]. A state s′ is called
reachable from state s following the policy π if s′ is reachable in n steps or
less following the policy π. Let Sπ(s) ⊆ S be the set of states reachable from
state s that do not fulfill the goal condition.

A (partial) policy is closed with respect to state s ∈ S iff Sπ(s) ⊆ Sπ, or in
words if every state reachable from s following π is defined in π.

A policy is proper with respect to a state s iff a goal state can be reached
from all states s′ ∈ Sπ(s), thus from any state reachable by the policy a goal
state can be reached.

A policy is acyclic in respect to state s iff there exists no state s′ ∈ Sπ(s) such
that s′ is reachable from state s′ in n > 0 steps following the policy π .

Definition 40 (Weak, Strong Cyclic, and Strong policies).

• A policy is weak if the goal state s? can be reached from the initial
state s0 following π.

• A policy is strong cyclic if it is closed and proper.

• A policy is strong if it is closed, proper, and acyclic.

Example 9 (FOND planning).
Consider the FOND planning task Π consisting of a set of blocks which

should be rearranged in to stacks by robot gripper (also referred to in the
literature as Blocksworld domain). The status of every block is described
by its location on(other-block) on another block or on-table on the table, or
gripped in the robot gripper. Additionally, the fact clear states if another
block is on top of the block or not, and the variable empty-gripper states if
the robot gripper is currently empty or not. For the three block example
illustrated in Figure 3.7, this can be formalized as follows:

• There exist 3 blocks {R,G,B}.

• For each block b ∈ {R,G,B} a position pos variable exists with do-
mains Dpos = {on(b′)|b′ ∈ {R,G,B} \ {b} ∪ {on-table, in-gripper}.

44

Chapter 3. Planning Foundations 45

BR G

(a) Initial state s0 of the
blocksworld example

B

R

G

(b) Goal condition s? of the
blocksworld example

Figure 3.7: Blocksworld example

• For each block b ∈ {R,G,B} a variable indicating if it is clear clear(b)
with domain Dclear = {>,⊥} exists.

• A Boolean variable gripped with domain Dgripped = {>,⊥}.
The initial state s0 is

s0 ={pos(R) = on-table, pos(G) = on-table, pos(B) = on-table,
clear(R) = >, clear(G) = >, clear(B) = >,
gripped = ⊥}

The goal condition is then

s? = {pos(R) = on(G), pos(B) = on(R), pos(G) = on-table}
The set of nondeterministic actions are:

• For every pair of blocks b, c ∈ {R,G,B} there is a pickup(b,c) action
with two possible effects, one being that the block b is held by the
gripper, or the block b falling on to the table:

pre = {gripped = ⊥, clear(b) = >, pos(b) = on(c)}
eff1 = {gripped = >, clear(c) = >, pos(b) = in-gripper}
eff2 = {clear(c) = >, pos(b) = on-table}

• For every block b ∈ {R,G,B} there is a pickup-from-table(b) action,
where the first effect is that the gripper holds the block. The second
effect is empty and represents the failure of picking up the block:

pre = {gripped = ⊥, clear(b) = >, pos(b) = on-table}
eff1 = {gripped = >, pos(b) = in-gripper}
eff2 = ∅

45

46 Chapter 3. Planning Foundations

• For every pair of blocks b, c ∈ {R,G,B} there is a put-on-block(b,c)
action, where one effect represents the successful placing of block b
on block c and the second effect is the failure of doing so resulting in
block b falling on to the table.

pre = {gripped = >, clear(c) = >, pos(b) = in-gripper}
eff1 = {gripped = ⊥, clear(c) = ⊥, pos(b) = on(c)}
eff2 = {gripped = ⊥, pos(b) = on-table}

• For every block b ∈ {R,G,B} there is a put-on-table(b) action, which
can not fail as, dropping the block b also result sin the block being on
the table:

pre = {gripped = >, pos(b) = in-gripper}
eff1 = {gripped = ⊥, pos(b) = on-table}

Using these actions a possible policy for reaching a goal state is (noted as a
state action mapping s→ a):

{pos(R) = on-table, pos(G) = on-table, pos(B) = on-table,

clear(R) = >, clear(G) = >, clear(B) = >, gripped = ⊥}
→ pick-up(R)

{pos(R) = in-gripper, pos(G) = on-table, pos(B) = on-table,

clear(R) = >, clear(G) = >, clear(B) = >, gripped = >}
→ put-on(G)

{pos(R) = on(G), pos(G) = on-table, pos(B) = on-table,

clear(R) = >, clear(G) = ⊥, clear(B) = >, gripped = ⊥}
→ pick-up(B)

{pos(R) = on(G), pos(G) = on-table, pos(B) = in-gripper,

clear(R) = >, clear(G) = ⊥, clear(B) = >, gripped = >}
→ put-on(R)

There exist multiple approaches for solving such a problem. Three cate-
gories of such planners can be identified (T. Geffner and H. Geffner, 2018),
Decision diagram based planners such as Gamer (Kissmann and Edelkamp,
2009), graph search planner such as MyND (Mattmüller, 2013), and sys-
tems using classical approaches with determinization such as PRP (Muise
et al., 2012)

As Chapter 7 is only concerned with user interaction, and thus every policy
must result in a successful execution, for the rest of this thesis only strong

46

Chapter 3. Planning Foundations 47

cyclic policies are considered. As plans generated by planning systems, al-
though being correct, might not correspond to a users expectations towards
how a goal is reached (more on this in Section 6), soft trajectory constraints
are introduced to FOND planning. These, constraints help in producing
policies more in line with the users expectations.

47

Chapter 4

Planning with conditional
effects and state-dependent
action costs

4.1 Conditional Effects Revisited

As introduced in Section 3.1 the effects of an action can be expressed as con-
ditional effects. These effects do not always trigger when the corresponding
action is executed, but rather when additional conditions hold. Often this
makes modeling actions more natural and easier to conceive of. Take the
scenario for example, where an agent can move on a grid given by x and y
coordinates one step at a time. Instead of defining an action to move right
for every possible position in which the agent is able to do so, it would be
nicer to define an action move-right whose outcome depends on the current
position of the agent.

Example 10 (Conditional effects). Let the planning task Π be the task of
an agent moving on a grid trying to reach some target location. Let the
variables in Π be pos-x={0,1,2} and pos-y={0,1,2}, with pos-x=0 and pos-
y=0 be the top right corner in Figure4.1. The move-right-down action can
now be defined as move-right-down= 〈{}, eff〉 with the effect eff being the

48

Chapter 4. Planning with conditional effects and
state-dependent action costs 49

Figure 4.1: Agent moving on a grid layout trying to reach the goal destina-
tion. The agents location is indicated in red, whereas the goal location is
indicated in green.

conjunction of the following conditional effects:

〈pos-x = 0 ∧ pos-y = 0� pos-x = 1〉
〈pos-x = 0 ∧ pos-y = 0� pos-y = 1〉
〈pos-x = 1 ∧ pos-y = 0� pos-x = 2〉
〈pos-x = 1 ∧ pos-y = 0� pos-y = 1〉
〈pos-x = 0 ∧ pos-y = 1� pos-x = 1〉
〈pos-x = 0 ∧ pos-y = 1� pos-y = 2〉
〈pos-x = 1 ∧ pos-y = 1� pos-x = 2〉
〈pos-x = 1 ∧ pos-y = 1� pos-y = 2〉

As can be seen the move-right-down action is always applicable (even when
the agent is at the right most position) but has effects that depend on the
current position of the agent. Similar, the actions move-left, move-down,
move-up, and the remaining diagonal move actions can be defined.

As shown, the effect of an action with conditional effects can be calculated
using the changeset from Definition 23. Here now an alternative method
is presented using EVMDDs. This EVMDD representation is especially im-
portant when combining with state dependent action costs introduced in
Section 3.2 and Section 4.2. An EVMDD representing conditional effects eff
is constructed over the monoid F = (2F ,∪, ∅) such that [eff]s = Eeff(s). The
EVMDD representing the conditional effects from Example 4.1 is depicted
in Figure 4.2.

Calculating the changeset with EVMDDs. One question is how to calcu-
late the changeset [e]s in a given state s. Here a method using EVMDDs is
introduced. The EVMDD Ee = 〈κ, f〉 over the monoid F = (2F ,∪, ∅), where

49

50
Chapter 4. Planning with conditional effects and

state-dependent action costs

pos-x

pos-y

∅

{pos-x=1}

0

{pos-x=2}
1

∅

2

{pos-y=1}

0

{pos-y=2}

1

∅

2

Figure 4.2: The EVMDD representing the conditional effects from Exam-
ple 4.1

∧ apply(∪)

. . . � apply(�) . . .

∨ apply(∨) z′ := 0

= apply(=) = apply(=)

x 1 y 1

x

⊥

⊥

0

>

1

{z′ := 0}

Figure 4.3: The abstract syntax tree for the conditional effects (. . . ∧ 〈(x =
1 ∨ y = 1)� z = 0〉 ∧ . . .), annotated with EVMDD constructions.

κ represents unconditional effects and f represents the function over condi-
tional effects eff = (ϕ1� f1)∧ . . .∧ (ϕn� fn) is created in the following way
(Mattmüller et al., 2018):

1. For each ϕi an abstract syntax tree (AST) is generated with inner
nodes representing Boolean connectives, and leaf nodes representing
constants > and ⊥ or facts v = d with v ∈ V and d ∈ D(v), and is
visualized in Figure 4.3.

2. For each leaf node an EVMDD over the monoid B = ({>,⊥},∨,⊥)
is created: For constants the EVMDD is either E = 〈>,0〉 for true or
E = 〈⊥,0〉 for false. For a fact v = d the EVMDD is E = 〈⊥, f〉 where
f = (v,0 . . .0, w0, . . . , wk) with k = |D(v)|−1 and wd = > and wi = ⊥
for all i 6= d.

3. Then leaf EVMDDs are combined using the APPLY procedure (Algo-

50

Chapter 4. Planning with conditional effects and
state-dependent action costs 51

rithm 1) with the boolean connective operators from the inner nodes
from the expression tree. The resulting EVMDD Eϕi then correctly
represents the Boolean expression ϕ and evaluating the EVMDD (Al-
gorithm 5) in a state s for which ϕ is true, results in a path through
the EVMDD with exactly one edge with label > resulting in s |= ϕ iff
Eϕi(s) = >.

4. For each effect fact f a constant EVMDD Ef = 〈{f ′},0〉 is generated
(Figure 4.2 z′ := 0).

5. The conditional effect EVMDD Eei for conditional effect ϕi � fi is cre-
ated by applying the operator � : {>,⊥} × 2F → 2F to Eϕi and Efi
where > � F ′ = F ′ and ⊥ � F ′ = ∅ for F ′ ⊆ F . In words, the edge
with label > is replaced by the label representing the fact f ′ and edges
with label ⊥ are replaced by the empty set ∅.

6. Finally all conditional effect EVMDDs are combined using the union
operator ∪ resulting in an EVMDD Eeff representing the actions effects.

Proposition 3. Let eff be an effect in ENF, and let Eeff be the EVMDD repre-
senting eff constructed as above, and let s be a state. Then [eff]s = Eeff(s).

Proof. Let s be a state and ϕ� f a conditional effect. Then by Definition 23
[eff]s = {f} iff s |= ϕ, and ∅ otherwise. Let Eeff be the EVMDD representing
the conditional effect ϕ� f , then by construction of Eϕ, Eϕ(s) = > if s |= ϕ
and ⊥ otherwise. Following above construction, this results in Eeff(s) = {f}
iff s |= ϕ and ∅ otherwise. Therefore, [eff]s = Eeff(s). For non conditional
effects this obviously also holds, as ϕ = >. For conjunctions of effects,
eff = (eff0, . . . , effn) the combined EVMDD is constructed by combining each
individual effect EVMDD with the ∪ operator. By construction, this implies
that for conjunctions of effects eff, [eff]s = Eeff(s).

Alternatively to calculating the changeset, a common approach of dealing
with conditional effects is to simply compile them away. In the following,
three schemata for compiling planning tasks with conditional effects into
tasks without conditional effects are presented:

Exponential Compilation. The naive approach to compiling away con-
ditional effects is to simply create a new action for each possible combi-
nation of the conditional effects. This, however, leads to exponentially
many actions in the number of the variables in the effect preconditions
(
∏
v∈vars(ϕ)Dv), with vars(ϕ) the variables occurring in ϕ.

Example 11 (Exponential compilation of move-right-down from Exam-
ple 4.1). Given the move-right-down action from Example 4.1 creating an

51

52
Chapter 4. Planning with conditional effects and

state-dependent action costs

action for each possible variable evaluation, leads to the following sets of
actions:

a1 := 〈pos-x = 0 ∧ pos-y = 0, pos-x = 1 ∧ pos-y = 1〉
a2 := 〈pos-x = 0 ∧ pos-y = 1, pos-x = 1 ∧ pos-y = 2〉
a3 := 〈pos-x = 0 ∧ pos-y = 2, ∅〉
a4 := 〈pos-x = 1 ∧ pos-y = 0, pos-x = 2 ∧ pos-y = 1〉
a5 := 〈pos-x = 1 ∧ pos-y = 1, pos-x = 2 ∧ pos-y = 2〉
a6 := 〈pos-x = 1 ∧ pos-y = 2, ∅〉
a7 := 〈pos-x = 2 ∧ pos-y = 0, ∅〉
a8 := 〈pos-x = 2 ∧ pos-y = 1, ∅〉
a9 := 〈pos-x = 2 ∧ pos-y = 2, ∅〉

In this case 9 new action where created.

Nebel’s Compilation. An alternative compilation reducing the number of
newly created actions was introduced by Nebel (2000). Here, the origi-
nal action a is converted to ENF and split into multiple new actions, two
for each conditional effect (as and af). The action as corresponds to the
successful application of the effect (the effect condition ϕ evaluates to true
in the current state) and af corresponds to not applying the effect (ϕ was
false). Additionally, a tracking variable is introduced, enforcing one of the
action pairs to be performed for each pair of new actions. To ensure that
earlier actions do not affect the outcome of a later action, the effects are
first applied to a copy of the original variables, and later applied to the orig-
inal variables. For this, another set of actions is added, one for each effect
variable. Additionally to ensure that all conditional effects are applied, a
aux variable in introduced, enumerating every conditional effect and ensur-
ing correct progression. As can be seen this compilation has three times as
many actions as conditional effects in the original action. In our toy exam-
ple (Example 12), this however, is significantly more than the exponential
compilation. The benefit of Nebel’s compilation is only apparent in more
complex effect conditions.

Example 12 (Nebel’s compilation of move-right-down from Example 4.1).
Converting the move-right-down action from Example 4.1 in to ENF results

52

Chapter 4. Planning with conditional effects and
state-dependent action costs 53

in:

〈pos-x = 0 ∧ (pos-y = 0 ∨ pos-y = 1), pos-x = 1〉
〈pos-x = 1 ∧ (pos-y = 0 ∨ pos-y = 1), pos-x = 2〉
〈(pos-x = 0 ∨ pos-x = 1) ∧ pos-y = 0, pos-y = 1〉
〈(pos-x = 0 ∨ pos-x = 1) ∧ pos-y = 1, pos-y = 2〉

Then the Nebel’s compilation results in the following actions:

ainit :=〈pre ∧ aux = 0, aux=1〉
a1,s :=〈aux = 1 ∧ pos-x = 0 ∧ (pos-y = 0 ∨ pos-y = 1),

aux = 2 ∧ pos-x′ = 1〉
a1,f :=〈aux = 1 ∧ ¬(pos-x = 0 ∧ (pos-y = 0 ∨ pos-y = 1)),

aux = 2〉
a2,s :=〈aux = 2 ∧ pos-x = 1 ∧ (pos-y = 0 ∨ pos-y = 1),

aux = 3 ∧ pos-x′ = 2〉
a2,f :=〈aux = 2 ∧ ¬(pos-x = 1 ∧ (pos-y = 0 ∨ pos-y = 1)),

aux = 3〉
a3,s :=〈aux = 3 ∧ (pos-x = 0 ∨ pos-x = 1) ∧ pos-y = 0,

aux = 4 ∧ pos-y′ = 1〉
a3,f :=〈aux = 3 ∧ ¬((pos-x = 0 ∨ pos-x = 1) ∧ pos-y = 0),

aux = 4〉
a4,s :=〈aux = 4 ∧ (pos-x = 0 ∨ pos-x = 1) ∧ pos-y = 1,

aux = 5 ∧ pos-y′ = 2〉
a4,f :=〈aux = 4 ∧ ¬((pos-x = 0 ∨ pos-x = 1) ∧ pos-y = 1),

aux = 5〉
ax=1 :=〈aux = 5 ∧ pos-x′ = 1, aux = 6 ∧ pos-x = 1〉
ax=2 :=〈aux = 5 ∧ pos-x′ = 2, aux = 6 ∧ pos-x = 2〉
ay=1 :=〈aux = 6 ∧ pos-y′ = 1, aux = 7 ∧ pos-y = 1〉
ay=2 :=〈aux = 6 ∧ pos-y′ = 2, aux = 7 ∧ pos-y = 2〉
afinal :=〈aux = 7, aux = 0〉

The first action ainit starts the actions sequence by checking the original
precondition and setting the auxiliary variable. The following action a1,s to
a4,f are the new action tuples each covering one of the original conditional
effects. Finally, actions aX=1 to ay=2 copy the temporary variable values

53

54
Chapter 4. Planning with conditional effects and

state-dependent action costs

back to the original variables. The final action afinal then resets the aux-
iliary variable. Note that all other actions from the planning task may not
be executed while the action sequence is executed. This can be archived by
adding aux = 0 to the precondition of every other action.

EVMDD Compilation. Alternatively conditional effects can also be com-
piled away using the EVMDD representation as described above. Let Π =
〈V,A, s0, s?, ca〉 be the original task with conditional effects. Let sem be a
semaphore variable with domainDsem = {0, 1}, Vaux = {auxa|a ∈ A} index-
ing variables with domains Dauxa = {0, . . . , size(Ea)} and Vc = {v′|v ∈ V}
copies of the original variables with domains Dv′ = Dv. Let V ′ = V ∪ Vc ∪
Vaux ∪ {sem} be the new state variables.

Let fξ(s) = s ∪ {aux = 0|aux ∈ Vaux} ∪ {v′ = s(v)|v′ ∈ Vc} ∪ {sem = 0}
be a mapping from states in Π to states in Π′, then let s′0 = fξ(s0) be the
new initial state. Let s′? = s? ∪ {sem = 0} be the augmented goal state. The
actions A′ are then created as follows:

For every action a = 〈pre, eff〉 inA, an EVMDD Eeff = 〈κ, f〉 is created and the
nodes in Eeff are topologically enumerated denoted as idx (v). The notion
of copied variables is extended to facts such that f = (v = d) corresponds
to f ′ = (v′ = d) and sets of facts w = {f1, . . . fn} correspond to w′ =
{f ′1, . . . f ′n}.

Four types of new actions are created, where for the first three action cost 0
is assumed:

1. An init action ainit = 〈pre∧sem = 0∧auxa = 0, auxa = idx(v0)∧sem =
1∧κ′〉 is created. This action ensures, that the precondition of the orig-
inal action holds, that no other compiled action is executed, and that
the execution starts with the first action in this sequence (action cor-
responding to the incoming edge from Eeff). The effect of this action
sets the indexing variable to the index of the first node v0 in f , sets
the semaphore variable sem = 1 and applies any unconditional effect
stated by the label κ of the incoming edge.

2. For each nonterminal node v = (v, χ0, . . . , χk, w0, . . . , wk) and all
children χd with label wd and 0 ≤ d ≤ |D(v)| − 1, a new action
av,d,idx(v) = 〈auxa = idx(v) ∧ v = d,w′d ∧ auxa = idx (χd)〉 is created.

3. Let Veff = {v0, . . . , vn} ⊆ V be the variables changed in eff, then a
new action for every variable vi ∈ Veff and for every value d ∈ D(vi) is
created: av=d = 〈auxa = |Eeff|+i∧v′ = d, v = d∧auxa = |Eeff|+i+1〉.

4. Finally the action afinal = 〈auxa = |Eeff| + n + 1, auxa = 0 ∧ sem = 0〉
with cost c(afinal) = c(a) is added, ensuring that auxa is reset to 0, the

54

Chapter 4. Planning with conditional effects and
state-dependent action costs 55

semaphore variable sem is set to 0, and the original action costs are
applied.

The new task without conditional effects is then Π′ = 〈V ′,A′, s′0, s′?, c′a〉.
Note that during the copy actions (3), the value of any variable v is only set
to the value of its copy v′. As v′ is initialized to the value v in the initial state
it always holds that v = v′ before action ainit is executed and after action
afinal is executed.

Depending on the structure of the original actions, sometimes the Nebel
compilation is preferable and sometimes the EVMDD compilation. Analyz-
ing this in depth is left for future work.

Example 13 (EVMDD compilation of move-right-down action). Given the
operator move-right-down from Example 4.1 the conditional effects can be
represented as the logical expression

(pos-x = 0 . pos-x = 1)∧
(pos-x = 1 . pos-x = 2)∧
(pos-y = 0 . pos-y = 1)∧

(pos-y = 1 . pos-y=2)

From this the EVMDD shown in Figure 4.2 can be constructed.

ainit := 〈{pre ∧ aux == 0 ∧ sem = 0}, {aux = 1 ∧ sem = 1}〉
ax,0,1 := 〈{aux == 1 ∧ pos-x == 0}, {aux = 2 ∧ pos-x′ = 1}〉
ax,1,1 := 〈{aux == 1 ∧ pos-x == 1}, {aux = 2 ∧ pos-x′ = 2}〉
ax,2,1 := 〈{aux == 1 ∧ pos-x == 2}, {aux = 2}〉
ay,0,2 := 〈{aux == 2 ∧ pos-y == 0}, {aux = 3 ∧ pos-y′ = 1}〉
ay,1,2 := 〈{aux == 2 ∧ pos-y == 1}, {aux = 3 ∧ pos-y′ = 2}〉
ay,2,2 := 〈{aux == 2 ∧ pos-y == 2}, {aux = 3}〉
ax=0 := 〈{aux == 3 ∧ pos-x′ == 0}, {aux = 4 ∧ pos-x = 0}〉
ax=1 := 〈{aux == 3 ∧ pos-x′ == 1}, {aux = 4 ∧ pos-x = 1}〉
ax=2 := 〈{aux == 3 ∧ pos-x′ == 2}, {aux = 4 ∧ pos-x = 2}〉
ay=0 := 〈{aux == 4 ∧ pos-y′ == 0}, {aux = 5 ∧ pos-y = 0}〉
ay=1 := 〈{aux == 4 ∧ pos-y′ == 1}, {aux = 5 ∧ pos-y = 1}〉
ay=2 := 〈{aux == 4 ∧ pos-y′ == 2}, {aux = 5 ∧ pos-y = 2}〉
afinal := 〈{aux == 5}, {aux = 0, sem = 0}〉

55

56
Chapter 4. Planning with conditional effects and

state-dependent action costs

From the actions above, the ones copying the values from the primed vari-
ables v′ back to the unprimed variables v can be optimized. This can be
achieved, by removing all those where the value of v′ was not changed by
the action. in this case this would result in removing actions ax=0 and ay=0.

Definition 41. Given an action a = 〈pre, eff〉 in A and a set of EVMDD
compiled actions â over the effect EVMDD Eeff. Then fπ(s, a) is a sequence

of actions a in â applicable in fξ(s), as follows: fπ(s, a) = (f
a,0
π (s), fa,+π (s),

f
a,−
π (s), fa,final

π (s))

1. fa,0π (s) is the init action from step 1 of the construction.

2. fa,+π (s) is defined recursively over the EVMDD Eeff and returns the se-
quence of actions from step 2 of the construction applicable in state
s. For the terminal node 0, fa,+π (s) denotes the empty sequence of
actions. For each non terminal node v = (v, χ0, . . . , χk, w0, . . . , wk),
f
a,+
π (s) is the action av,s(v),idx(v) followed by the action sequence

f
a,+
π,s(v)

(s) where fa,+
π,s(v)

(s) is the function denoted by the child χs(v).

3. fa,−π (s) denotes the sequence of copy actions from step 3 of the con-
struction dependent of the values in Vc.

4. fa,final
π (s) is the final action from step 4 of the construction.

Recalling Example 13, the parts from above definition correspond to the ac-
tions: fa,0π (s) is ainit. Then fa,+π (s) is the sequence of actions corresponding
to the EVMDD edges ax,0,1, . . . , ay,2,2, and f

a,−
π (s) is the sequence of copy

actions ax=1, . . . , ay=2. Finally, fa,final
π (s) is afinal.

The following lemma states that the transformed state fξ(t) reached by ap-
plying the unary sequence of actions [a] in state s from the original task is
equal to applying the sequence of actions fπ(s, a) retrieved from the compi-
lation in the transformed state fξ(s). Better illustrated by the commutative
diagram in Figure 4.4.

Lemma 3. For every action a ∈ A and every state s ∈ S such that a is
applicable in s, δ(fξ(s), fπ(s, a)) = fξ(δ(s, a)).

Proof. Let a = 〈pre, eff〉 be an action from A applicable in state s, t = s[a]
and the EVMDD Eeff = 〈κ, f〉 representing the effects. By construction
f0
π(s, a) is the action ainit = 〈preinit, effinit〉 form step 1 of the EVMDD com-

pilation. This action is applicable in fξ(s) as fξ(s) |= preinit = pre ∧ sem =
0∧auxa = 0. Additionally all effects from κ are applied in κ′ (recall the nota-
tion κ′ meaning the copies of the set of facts). By definition fa,+π (s) denotes
the sequence of compiled actions from step 2 consistent to state s. This is

56

Chapter 4. Planning with conditional effects and
state-dependent action costs 57

s δ(s, a)

fξ(s)
fξ(δ(s, a)) =

δ(fξ(s), fπ(s, a))

a

fξ fξ

fπ(s, a)

Figure 4.4: Transition diagram of first applying action and transforming the
results to the compiled state space, or first transforming the state in to the
compiled state space and applying the compiled action sequence.

ensured by tracking the current node of Eeff the action sequence is in, using
the aux variable, and applying the correct edge label effects by checking the
value of v. The sequence of actions then corresponds to the path through the
EVMDD consistent with state s where each edge is represented by an action.
As the edge label effects are only applied to copies of the variables Vc chang-
ing the value of a variable earlier in the sequence does not interfere with pre-
condition evaluations later on. Only once the copy actions fa,−π (s) are exe-
cuted, are the values copied to the actual variables V. Following this action
sequence and the correctness of the EVMDD evaluation, the changeset of the
sequence of actions fa,+π (s), f

a,−
π (s) without Vc,Vaux, and sem, corresponds

to the changeset of the original action [a]s. Finally f
a,final
π (s) is the last

action afinal from the construction step 4, resetting the auxa and sem vari-

able. The resulting sequence of actions (f
a,0
π (s), f

a,+
π (s), f

a,−
π (s), f

a,final
π (s))

therefore fulfills δ(fξ(s), fπ(s, a)) = fξ(δ(s, a)).

Proposition 4. Every planning task Π with conditional effects is plan-equi-
valent to its EVMDD compiled task Π′ without conditional effects.

Proof. Let Π = 〈V,A, s0, s?, ca〉 be a planning task with conditional effects,
and Π′ = 〈V ′,A′, s′0, s′?, c′a〉 the EVMDD compiled task without conditional
effects created as described above. Furthermore, let π = (a1, . . . , ak) be a
plan for Π with the induced state sequence s = (s0, . . . , sk+1) with sk+1 |=
s? and total costs c(π).

Following Lemma 3, for each action a in π, the state s ∈ s in which it is
executed and t = [a]s, an action sequence fπ(s, a) in A′ exists such that
δ(fξ(s), fπ(s, a)) = fξ(t). Applying this transformation for each action in
π results in the new equivalent plan π′ for Π′. Furthermore, the total cost
from π is preserved in π′, as the cost ca for every action a in π is only applied
once in every sequence of actions fπ(s, a) of the compiled task Π′.

Additionally, as the goal condition s′? is augmented with sem = 0, no inter-
mediate state s′ created by applying fπ(s, a) in state fξ(s) can exist such that

57

58
Chapter 4. Planning with conditional effects and

state-dependent action costs

s′ |= fξ(s
′
?). Following this, and the fact that by construction every sequence

of actions fπ(s, a) can be associated with an action a from the original task,
it can be seen that for every plan π′ in Π′ there exists an equivalent plan π
in Π.

4.1.1 Discussion

As planning is PSPACE-hard in the size of the input, the size of the task rep-
resentation is critical. Adding only a small number of variables or actions
can greatly increase the number of possible states the planner must search
through. Therefore, when transforming a task with conditional effects into
a task without conditional effects, one major criterion is the increase of the
search space. However, a second major criterion is the friendliness towards
the applied heuristic during search. Friendliness hereby relates to how much
better or worse the heuristic value becomes in relation to the true cost of
reaching the goal from a given state. In this section the three introduced
compilations are theoretically analyzed and compared in regards of size and
heuristic friendliness using the hadd heuristic introduced earlier in this the-
sis. As the name implies the exponential compilation is exponential in the
size of the input and therefore provides the largest increase in size of the
three compilations. On the other hand, when using the hadd heuristic the
heuristic value hadd

exp of the compiled task is equal to the heuristic value of
the original task hadd

exp = hadd, as calculating hadd value for the precondi-
tions pre(a) of an achiever of a given fact f takes the effect preconditions
into account. Due to the fact that the effect conditions where simply lifted to
the actions precondition this presents no change when calculating the hadd

value. In contrast the Nebel compilation has a linear growth in the num-
ber of conditional effects, however multiple problems arise when it comes
to the heuristic value. Recalling the nature of relaxation heuristics such as
hadd facts that have been reached once stay true during the calculation of
the heuristic. The Nebel compilation introduces an aux variable which en-
sures that all conditional effects from the original action are handled in the
compilation. However, once the action was applied once, the aux variable
already has all possible values, thus in a repeated application of the same
action the handling of every conditional effect can no longer be guaranteed.
This leads to an unnecessary underestimation of the actual heuristic value.
Recalling the example shown in the Nebel compilation, let the first applica-
tion of the action sequence result in always applying ai,f for 1 ≤ i ≤ 4, thus
the conditional effects never triggered. In a second application of the same
action the aux variable already holds all values from 0 to 7. Let pos-y=1
then only actions a4,s and ay=2 will be executed resulting in pos-y=2 and
all other actions will be ignored. Depending on the actual implementation,
the original action costs will either be applied in ainit or afinal. These actions

58

Chapter 4. Planning with conditional effects and
state-dependent action costs 59

however are not reapplied, thus the cost of achieving pos-y=2 is 0 instead
of the original action costs. Additionally, recalling the definition of hadd the
cost of making a fact true is calculated using min[hadds(pre)+ca], where the
cost of achieving the precondition is added to the cost of achieving the fact.
As the Nebel compilation adds a new action for every conditional effect, and
these conditions can reason over the same facts multiple times, calculating
the cost over the sequence of actions might require adding hadds(pre) mul-
tiple times. This can result in an over approximation of the heuristic value.
Both problem combined can lead to an arbitrarily uninformed heuristic. The
EVMDD compilation tries to find a middle ground. It is worst case exponen-
tial, however in practice shows much smaller size increases, and does not
suffer all the problems the Nebel compilation has. As every decision vari-
able from the conditional effects are only checked once, the hadds(pre) of
achieving a fact f is also only calculated once. Even though the EVMDD
compilation has a similar issue regarding the values of its aux variable, as
already reached values are kept, the implication is not quite so bad. This is
due to the fact, that aux may only assume values that lie on the path from
the root node to the terminal node of the corresponding EVMDD. Thus, ac-
tions corresponding to outgoing edges of not yet visited nodes require that
the aux variable aux first assume the correct value. Additionally, both the
Nebel and the EVMDD compilation suffer from the fact that the once a com-
piled action is executed the semaphore variable sem has both values 0 and
1. Thus, it can no longer be ensured that other actions can be executed
during the execution of a compiled action sequence. One solution to the
problem with the aux and sem variables however, is to forbid it’s relaxation
or abstraction in the heuristic calculation.In the relaxation case, this implies
that any fact representing a value of the sem and aux variables do not re-
main achieved during the rest of the search, but rater keep the concrete
value from the unrelaxed task. The same holds for the abstractions, where
the two variable values may not be abstracted. in conclusion, the EVMDD
compilation provides a compacter representation as the exponential compi-
lation, and a more heuristic friendly structure than the Nebel compilation.
However, it is still exponential in the worst case, and provides less accurate
heuristic values than the exponential compilation.

59

60
Chapter 4. Planning with conditional effects and

state-dependent action costs

4.2 Combining State Dependent-Action Costs and
Conditional Effects

The previous two sections introduced conditional effects and state depen-
dent action costs. This section focuses on how conditional effects and state-
dependent action costs are related, and the issues that arise when using both
together in a single planning task.

During the search for the plan, SDAC and conditional effects work nicely to-
gether, as the current state is fully specified. However, problems arise when
using relaxation heuristics, where variables from the effect conditions and
state-dependent action cost function may take on multiple values, and they
have variables in common. Calculating the cost of an action will therefore
result in choosing the variable values minimizing the cost function, whereas
calculating the effect will take the union over all possible effects. This is best
illustrated by the following example where the task is to climb a mountain,
where the base of the mountain is at the bottom left of the 6 × 6 grid and
peak is at the top right corner. The slope becomes steeper, the further up
the mountain, thus the cost of moving becomes higher the higher up the
mountain the agent is. There are only four actions

move-right = 〈∅, (x = 0� x = 1) ∧ . . . ∧ (x = 4� x = 5)〉, cost = x+ 2y

move-left = 〈∅, (x = 5� x = 4) ∧ . . . ∧ (x = 1� x = 0)〉, cost = x+ 2y

move-up = 〈∅, (y = 0� y = 1) ∧ . . . ∧ (y = 4� y = 5)〉, cost = x+ 2y

move-down = 〈∅, (y = 5� y = 4) ∧ . . . ∧ (y = 1� y = 0)〉, cost = x+ 2y

These actions are always applicable and the effect is dependent on the cur-
rent position. The goal is to move from the initial left bottom position to
the right top goal position. This task is illustrated in Figure 4.5. A possible
optimal solution is to first apply move-right five times followed by move-up
five times. Both have a total plan cost of 75.

Calculating the cost for applying move-right in a relaxed state s+ = {x =
0, x = 1, x = 2, x = 3, x = 4, y = 0} (highlighted in Figure 4.5) will add the
fact x = 5 resulting in the new state s+′ = {x = 0, x = 1, x = 2, x = 3, x =
4, x = 5, y = 0}. The true cost for this action would be 4 as applying this
action in state {x = 4, y = 0} for reaching the state where x = 5 is true is
x + 2y = 4. However, as the action costs are minimized the cost function
will use the variable values {x = 0, y = 0} resulting in the cost of applying
the action being 0. The same behavior can be observed for all other actions,
resulting in a initial heuristic value of hadd(s0) = 0 instead of the optimal
h?0 = 75.

Additionally, the heuristic value may even increase towards the goal. Given

60

Chapter 4. Planning with conditional effects and
state-dependent action costs 61

x = 0
y = 0

x = 1
y = 0

x = 2
y = 0

x = 3
y = 0

x = 4
y = 0

x = 5
y = 0

x = 0
y = 1

x = 1
y = 1

x = 2
y = 1

x = 3
y = 1

x = 4
y = 1

x = 5
y = 1

x = 0
y = 2

x = 1
y = 2

x = 2
y = 2

x = 3
y = 2

x = 4
y = 2

x = 5
y = 2

x = 0
y = 3

x = 1
y = 3

x = 2
y = 3

x = 3
y = 3

x = 4
y = 3

x = 5
y = 3

x = 0
y = 4

x = 1
y = 4

x = 2
y = 4

x = 3
y = 4

x = 4
y = 4

x = 5
y = 4

x = 0
y = 5

x = 1
y = 5

x = 2
y = 5

x = 3
y = 5

x = 4
y = 5

x = 5
y = 5

S

G

Figure 4.5: Climbing example. Initial position bottom left, goal position top
right. Darker shades indicate higher costs to move.

the initial state s0 = {x = 0, y = 0}. From above calculation, the heuristic
hadd(s0) will be 0, as applying move-right and move-up in the relaxed initial
state always costs 0. However, calculating the heuristic value hadd(s1) for
the successor state s1 = {x = 1, y = 1} will result in hadd(s1) = 1. Thus, the
heuristic value actually increases, the closer to s? the search gets, resulting
in a completely uninformed heuristic.

A solution to this problem however exists. SDAC and conditional effects
must not be treated separately by taking the minimum of the action cost,
and the union of effects, but rather the interaction must be accounted for.
For the above example this means, that the union of effects is taken, but a
different cost is applied to each effect.

4.2.1 Relaxed planning with state-dependent action costs and
conditional effects

As before in Section 3.2, dealing with the combination of conditional effects
and state-dependent action costs is trivial during the search where each
variable v only consists of on value d ∈ Dv within the state s ∈ S. However,
problems arise when the state contains multiple values for each variable, as
stated above.

First a new definition of the change set from Definition 27 is introduced,
where instead of a set of facts, a set of pairs of facts and associated costs is
used.

Definition 42 (Changeset with SDAC and CE). Let s+ be a relaxed state

61

62
Chapter 4. Planning with conditional effects and

state-dependent action costs

and a = 〈pre, eff〉 be an action with precondition pre and effect eff in ENF
with a cost function c : S → N. Then the changeset of eff in s+ is [eff]c

s+
=⊔

s∈S:s⊆s+JeffKcs with:

Jeff1 ∧ . . . ∧ effnK
c
s = Jeff1K

c
s ∪ . . . ∪ JeffnK

c
s

Jϕ� fKcs = {(f, c(s))} if s |= ϕ

Jϕ� fKcs = ∅ if s 6|= ϕ
⊔

j

Ej = {(f, n) ∈
⋃

j

Ej |∀(f, l) ∈
⋃

j

Ej : l ≥ n}.

where e ∈ eff and
⊔

the minimizing union.

The changeset [eff]c
s+

consists of all facts f that can be achieved by applying
a in any state s with s ⊆ s+. Additionally every fact f is associated with the
minimal cost at which f can be achieved.

Computing this changeset however comes at a high cost, as there may exist
exponentially many states s (in the number of the state variables V) such
that s ⊆ s+. It can also be shown by reduction from SAT that computing the
changeset is NP-hard.

Proof. Computing the change set from Definition 42 is NP-hard, even for
unit costs, as a reduction from SAT shows: A propositional formula ϕ is
satisfiable iff (f, 1) ∈ [ϕ � f]c

s+
, where ca = 1 for all s, and s+(v) = Dv for

all v ∈ V.

Recalling that SDAC can be represented as EVMDD over the monoid N =
(N,+, 0) and conditional effects as EVMDD over the monoid F = (2F ,∪, ∅).
The combination of both EVMDDs may be constructed using the monoid
X = N ×F .

Definition 43 (Product EVMDD). Let L and R be two MSOCMMs, and Ef
and Eg two EVMDDs representing the functions f : S → L and g : S → R
respectively. Then Ef ,g is defined as Ef ⊕ Eg with ⊕ : L×R → L×R being
the identity function ⊕(l , r) = (l , r) for (l, r) ∈ L ×R.

Proposition 5. Given f and g as in the above definition. Assume a fixed
variable ordering and let s ∈ S. Then Ef ,g (s) = (f (s), g(s)).

Proof. Following the definition of Algorithm 1, apply(Ef , Eg , •) = Ef •g . Us-
ing the the identity operator • = ⊕, Ef ,g = Ef ⊕ Eg = apply(Ef , Eg ,⊕) =
Ef⊕g . By definition of the EVMDD product (Definition 43) and the ap-
ply algorithm and its correctness follows: Ef ,g (s) = Ef⊕g (s) = (f , g)(s) =
(f (s), g(s)) (Mattmüller et al., 2018).

62

Chapter 4. Planning with conditional effects and
state-dependent action costs 63

x

y

{}

{x = 1}

0

{x = 2}

1

{x = 3}

2

{x = 4}

3

{x = 5}

4

{ }

5

{}

0

{}

1

{}

2

{}

3

{}

4

{ }

5

Figure 4.6: Shannon reduced conditional effect EVMDD for the move-right
action.

Corollary 1. Let c : S → N be an arithmetic expression with Ec its rep-
resenting EVMDD and e : S → F be a conditional effect in ENF rep-
resented by the EVMDD Ee. If Ec,e = Ec ⊕ Ee and s ∈ S a state, then
Ec,e(s) = (Ec(s), Ee(s)) = (c(s), [e]s).

Reviewing the example action move-right from above, the two EVMDDs rep-
resenting the conditional effects and the cost function are depicted in Fig-
ure 4.7 and Figure 4.6 respectively. The application of apply with the ⊕
operator on these two EVMDDs results in the combined EVMDD depicted in
Figure 4.8.

The size of the product EVMDD Ef ,g = Ef ⊗E Eg is limited by the product of
the sizes of the factors of Ef and Eg. However, in the case that both EVMDDs
Ef and Eg share the same topology (as is the case in Figures 4.6, and 4.7),
the combined EVMDD has the same topology as the two input EVMDDs.
Additionally, if Ef and Eg do not share any variables,the resulting EVMDD is
simply the second EVMDD ”glued“ to the end of the first EVMDD.

Using this combined EVMDD E(c,e) a polynomial time (in the size of the
EVMDD) algorithm, taking as input the relaxed state s+ is presented for
calculating the changeset (Mattmüller et al., 2018). For this the EVMDD
E(c,e) is traversed along the topological ordering from top to bottom (root
node to terminal node) restricting the edges to those consistent to s+. For
each encountered node v a set F of fact cost tuples 〈f, cf 〉 consisting of
an entry for each achieved fact along any path from the root node to v
together with its cheapest achieving cost cf . Additionally the cost n of the
cheapest path to v is stored. The notation E(c,e)(s+)(v) is used denoting the

63

64
Chapter 4. Planning with conditional effects and

state-dependent action costs

x

y

0

0

0

1

1

2

2

3

3

4

4

5

5

0

0

1

1

2

2

3

3

4

4

5

5

Figure 4.7: Cost function EVMDD for the move-right action.

x

y

0

{}

0

{x = 1}

0

1

{x = 2}

1

2

{x = 3}

2

3

{x = 4}

3

4

{x = 5}

4

5

{ }

5

0

{}

0

1

{}

1

2

{}

2

3

{}

3

4

{}

4

5

{}

5

Figure 4.8: Combination of cost and effect EVMDD for the move-right action.

64

Chapter 4. Planning with conditional effects and
state-dependent action costs 65

evaluation of E(c,e) with the state s+ up to the node v. The evaluation of
the whole EVMDD is then E(c,e)(s+)(0) with 0 the terminal node.

Formally, let v1 . . .vt be a topological ordering, corresponding to the vari-
able ordering from the construction, of E(c,e) where vt is the terminal node
0. For the base case i = 1 the node v1 has only the dangling incoming edge
with the label κ = (c, E) with c ∈ N the constant cost term, and E ∈ F
the set of unconditional effects of the action. E(c,e)(s+)(v1) = (F, c) with
F = {(f, cf)|f ∈ E, cf = c}.

For i > 1, let vi be an interior node of E(c,e), and vj be a node corresponding
to a decision variable vj in E(c,e), with cost cj such that an edge e with
label (c′, E’) with the edge constraint vj = dj ∈ D(vj) with (vj = dj) ∈
s+ exists from vj to vi. Let F old = {(f, c′ + c)|(f, c) ∈ Fj}, the fact cost
tuples of node vj plus the cost from the edge label reaching vi. Then let
Fnew = {(f, c′ + cj)|f ∈ E’} be the new facts added by the edge label from
e. The new fact costs set is then Fi = F old tFnew. Determining ni for node
vi the minimum of nj + c′ and ni is calculated every time the node vi is
reached by some parent node vk. Obviously, on the first encounter of vi,
ni = nj + c. Finally, the result of evaluating E(c,e) in state s+ at node vi is
E(c,e)(s+)(vi) = (Fi, ni).

Proposition 6. Let s+ be a relaxed state and a = 〈pre, eff〉 an action with
effects in ENF and a cost function c : S → N. Let E(c,e) be the product of
the cost function EVMDD Ec and the effect EVMDD Eeff. With the above
described evaluation procedure [eff]c

s+
= E(c,e)(s+).

Proof. [eff]c
s+

and E(c,e)(s+) are by definition functional sets of fact cost pairs
(f, c) where each fact only occurs once. this follows from the usage of the
minimizing union operator t in both [eff]c

s+
and E(c,e)(s+) evaluations.

1. The sets of facts in [eff]c
s+

and E(c,e)(s+) are identical: By definition
a fact f is in [eff]c

s+
iff there exists an unrelaxed state s ⊆ s+ such

that the effect condition is satisfied in s, written f ∈ [eff]s. This is
equivalent to f being in Eeff according to Proposition 3, which accord-
ing to the product construction is equivalent to f being in a label on
the path of E(c,e) corresponding to s. This in turn is equivalent to
f ∈ E(c,e)(s+), since during the evaluation process of E(c,e) the labels
of all paths given by all s ⊆ s+ are collected, and never discarded.

2. The costs assigned to the facts in [eff]c
s+

and E(c,e)(s+) are identical:
In [eff]c

s+
, for fact f , by definition this is the minimal cost c(s) at which

f can be achieved in any state s ⊆ s+. Let s be such a state minimiz-
ing c(s) at which fact f is achieved, then (f, c(s)) is also in E(c,e)(s+):

65

66
Chapter 4. Planning with conditional effects and

state-dependent action costs

From Proposition 1 it is known that c(s) is the sum of edge labels in
Ec for the path spanned by s. By definition of the product construc-
tion the same labels from Ec are also present in E(c,e) for s. More-
over, evaluating E(c,e) with s the same path will be traversed (thus the
same labels visited). The cost associated with f in E(c,e) along the
path given by s is first determined after the edge where f appears as
label, and the cost is the cost given by the label and the prefix (min-
imal cost nj of reaching the parents node vj) .From there whenever
the fact f is propagated, the cost c′ from the corresponding edge is
added to the facts cost as given by the definition of F oldj . The cost
c(s) coming from evaluating over s is never removed in a minimizing
union operation t, since s is already the minimizing state. From this
follows: E(c,e)(s+)(f) ≤ [eff]c

s+
(f). For E(c,e)(s+)(f) strictly smaller

than [eff]c
s+

(f) there must exists a minimizing state s′ ⊆ s+ such that
E(c,e)(s+)(f) < [eff]c

s+
(f). However, this state s′ would also have to be

taken in to account when calculating [eff]c
s+

(f), this is a contradiction,
thus E(c,e)(s+)(f) = [eff]c

s+
(f).

Example 14 (Changeset for relaxed states with SDAC and CE). Illustrat-
ing above procedure, recall the combined EVMDD from Figure 4.8, given
a relaxed state s+ = {x = {1, 2}, y = {3, 4}}, then at decision node x the
intermediate result is E(c,e)(s+)(vx) = (Fx, nx), with Fx = ∅, and nx = 0.
In the decision node y the intermediate result is: E(c,e)(s+)(vy) = (Fy, ny),
with Fy = ∅ t {(x = 2, 1)} t {(x = 3, 2)} = {(x = 2, 1), (x = 3, 2)}, and
ny = 1, as the cheapest path in s+ is the edge e1 with cost label 1. Fi-
nally, the result in the terminal node v0 is E(c,e)(s+)(v0) = (F0, n0) with
F0 = {(x = 2, 1+3)}t{(x = 3, 2+3)}t{(x = 2, 1+4)}t{(x = 3, 2+4)} =
{(x = 2, 4), (x = 3, 5)}, and n0 = 4.

Compiling away SDAC together with CE. Alternatively to calculating the
changeset for relaxed state with conditional effects and state dependent ac-
tion costs, it is also possible to use the EVMDD structure to compile away
conditional effects and state dependent action costs together, similar to the
approaches described in Sections 4.1 and 3.2.

Let Π = 〈V,A, s0, s?, ca(s)〉 be a planning task with conditional effects and
state-dependent action cost. Let sem be a semaphore variable with domain
D = {0, 1}, Vaux = {auxa|a ∈ A} indexing variables with domains D =
{0, . . . , size(Ea)} and Vc = {v′|v ∈ V} with Dv′ = Dv. Then, V ′ = V ∪Vaux ∪
Vc ∪ {sem} are the new state variables. Let fξ(s) = s ∪ {auxa = 0|auxa ∈
Vaux} ∪ {v′ = s(v)|v′ ∈ Vc} ∪ {sem = 0} be the mapping from states in
Π to states in Π′, with fξ(s0) = s′0 and s′? = s? ∪ {sem = 0}. For each

66

Chapter 4. Planning with conditional effects and
state-dependent action costs 67

action a = 〈pre, eff〉 in A with cost function ca(s) a quasi-reduced product
EVMDD Ec,e = 〈κ, f〉 with κ = 〈c, e〉 is created and its nodes topologically
enumerated, denoted as idx(v).

Then four types of actions are created:

1. The action ainit = 〈pre ∧ sem = 0 ∧ auxa = 0, e′ ∧ sem = 1 ∧ auxa =
idx(v0)〉 with cost c is created.

2. For each non terminal node v = (v, χ0, . . . χk, w0, . . . , wk) and all chil-
dren χd with label wd = 〈cd, ed〉 and 0 ≤ d ≤ |D| − 1, a new action
av,d,idx(v) = 〈auxa = idx(v) ∧ v = d, e′d ∧ auxa = idx(χd)〉 with cost cd
is created.

3. Let Veff = {v0, . . . vn} ⊆ V be the variables changed in eff, then a new
action for every variable vi ∈ Veff and for every value d ∈ D(vi) with
cost 0 is created: av=d = 〈auxa = |Ec,e| + i ∧ v′ = d, v = d ∧ auxa =
|Ec,e|+ i+ 1〉.

4. Finally the action afinal = 〈auxa = |Ec,e| + n + 1, auxa = 0 ∧ sem = 0〉
with cost 0 is added, resetting auxa and sem to 0.

Example 15. Given the move-right action from above, and its product EV-
MDD Ec,e depicted in Figure 4.8, the compilation results in the following set
of actions:

ainit := 〈pre ∧ aux = 0 ∧ sem = 0, aux = 1 ∧ sem = 1〉 cost = 0

ax0 := 〈aux = 1 ∧ x = 0, aux = 2 ∧ x′ = 1〉 cost = 0

ax1 := 〈aux = 1 ∧ x = 1, aux = 2 ∧ x′ = 2〉 cost = 1

ax2 := 〈aux = 1 ∧ x = 2, aux = 2 ∧ x′ = 3〉 cost = 2

ax3 := 〈aux = 1 ∧ x = 3, aux = 2 ∧ x′ = 4〉 cost = 3

ax4 := 〈aux = 1 ∧ x = 4, aux = 2 ∧ x′ = 5〉 cost = 4

ax5 := 〈aux = 1 ∧ x = 5, aux = 2〉 cost = 5

ay0 := 〈aux = 2 ∧ y = 0, aux = 3〉 cost = 0

ay1 := 〈aux = 2 ∧ y = 1, aux = 3〉 cost = 2

ay2 := 〈aux = 2 ∧ y = 2, aux = 3〉 cost = 4

ay3 := 〈aux = 2 ∧ y = 3, aux = 3〉 cost = 6

ay4 := 〈aux = 2 ∧ y = 4, aux = 3〉 cost = 8

ay5 := 〈aux = 2 ∧ y = 5, aux = 3〉 cost = 10

ac1 := 〈aux = 3 ∧ x′ = 1, aux = 4 ∧ x = 1〉 cost = 0

ac2 := 〈aux = 3 ∧ x′ = 2, aux = 4 ∧ x = 2〉 cost = 0

ac3 := 〈aux = 3 ∧ x′ = 3, aux = 4 ∧ x = 3〉 cost = 0

ac4 := 〈aux = 3 ∧ x′ = 4, aux = 4 ∧ x = 4〉 cost = 0

67

68
Chapter 4. Planning with conditional effects and

state-dependent action costs

ac5 := 〈aux = 3 ∧ x′ = 5, aux = 4 ∧ x = 5〉 cost = 0

ac6 := 〈aux = 4 ∧ y′ = 1, aux = 5 ∧ y = 1〉 cost = 0

ac7 := 〈aux = 4 ∧ y′ = 2, aux = 5 ∧ y = 2〉 cost = 0

ac8 := 〈aux = 4 ∧ y′ = 3, aux = 5 ∧ y = 3〉 cost = 0

ac9 := 〈aux = 4 ∧ y′ = 4, aux = 5 ∧ y = 4〉 cost = 0

ac10 := 〈aux = 4 ∧ y′ = 5, aux = 5 ∧ y = 5〉 cost = 0

afinal := 〈aux = 5, aux = 0 ∧ sem = 0〉 cost = 0

As already mentioned in Example 13 the copy actions can again be opti-
mized, as variable y′ is never altered by the actions. Thus, actions ac6 to
ac10 can be removed.

Definition 44. Given an action a = 〈pre, eff〉 in A with cost ca and a set of
EVMDD compiled actions â over the combined EVMDD E(c,e), then fπ(s, a)
is a sequence of actions in â applicable in fξ(s) analog to Definition 41.

The following lemma states that the transformed state fξ(t) reached by ap-
plying the unary sequence of actions [a] in state s from the original task is
equal to applying the sequence of actions fπ(s, a) retrieved from the com-
pilation in the transformed state fξ(s). Also, the cost of applying action a
in state s is equal to the total cost of applying the sequence fπ(s, a) in state
fξ(s): fc(s, a) = ca(s).

Lemma 4. For every action a ∈ A and every state s ∈ S such that a is
applicable in s, δ(fξ(s), fπ(s, a)) = fξ(δ(s, a)) and fc(s, a) = ca(s).

Proof. Let a = 〈pre, eff〉 be an action from A with cost ca(s) applicable in
state s and t = s[a] and Ec,e = 〈κ, f〉 its the product EVMDD represent-
ing (c, eff). Then following Lemma 3, Lemma 2 and the correctness of
the product over EVMDDs Eeff and Ec, δ(fξ(s), fπ(s, a)) = fξ(δ(s, a)) and
fc(s, a) = ca(s).

Proposition 7. Every planning task Π with conditional effects and state-
dependent action costs is plan-equivalent to its product EVMDD compiled
task Π′ without conditional effects or state-dependent action costs.

Proof. Let Π = 〈V,A, s0, s?, ca〉 be a planning task with conditional effects
and state-dependent action cost, and Π′ = 〈V ′,A′, s′0, s′?, c′a〉 the EVMDD
compiled task without conditional effects and state-dependent action costs
created as described above. Furthermore, let π = (a1, . . . , ak) be a plan
for Π with the induced state sequence s = (s0, . . . , sk+1) with sk+1 |= s?
and total costs c(π). Following Lemma 4 for each action a ∈ π, the state
s ∈ s in which it is executed and t = [a]s, an action sequence fπ(s, a) in

68

Chapter 4. Planning with conditional effects and
state-dependent action costs 69

A′ exists such that δ(fξ(s), fπ(s, a)) = fξ(t) and fc(s, a) = ca(s). Applying
this transformation for each action in π results in the new equivalent plan
π′ for Π′ with identical total costs. Additionally, as the goal condition s′?
is augmented with sem = 0 no intermediate state s′ created by applying
fπ(s, a) in state fξ(s) can exist such that s′ |= fξ(s

′
?). Following this, and the

fact that by construction every sequence of actions fπ(s, a) can be associated
with an action a from the original task, it can be seen that for every plan π′

in Π′ there exists an equivalent plan π in Π with identical total cost.

4.2.2 Discussion

As with the conditional effect compilation from Section 4.1, the EVMDD
compilation is compared to the exponential compilation regarding size and
heuristic friendliness. Let the exponential compilation create a new action
for every possible variable value combination of the variables in the cost
function and the conditional effects, as described in Section 4.1. As before,
the exponential compilation, while being exponential in size, retains the
original heuristic values for relaxation heuristics hmax and hadd. This is due
to the fact that the preconditions pre(f) of a fact f , when calculating hmax or
hadd, already take both the effect conditions and the actions preconditions
in to account. In contrast, the EVMDD compilation provides a more complex
representation in practice, while being worst case exponential. It however
trades the compact representation with heuristic friendliness. As before in
Section 4.1 this compilation also suffers from abstraction or relaxation of
the aux and sem variables, resulting in an underestimation of the actual
heuristic value. Again this can be solved by ensuring that the aux and sem
variables are not relaxed or abstracted (Geißer, 2018a).

Moreover, this section shows that it is important not to treat all variables
in a planning task as independent. Often some variable values will depend
on other variable values, thus the search can be guided more efficiently if
this correlation of variables is taken in to account. Frances and H. Geffner
(2015) discuss such a correlation of variables in a scenario where n vari-
ables X1, . . . , Xn have an initial value of 0 and the goal is, by applying
an increment on individual variables, to reach the inequality Xi < Xi+1.
Considering binary variables only one possible encoding for this problem
would be as follows: One predicate val(i, k) for each value Xi = k, and
predicate less(i, j) for each inequality Xi < Xi+1 and the goal defined by
the conjunction of less(i, i + 1) for each variable 0 < i < n − 1. The sin-
gle action available is increment(v) with cost 1, which increments the value
of any given variable. Calculating hmax would result in an initial heuristic
value of 1 as each goal can be achieved by applying increment(v) once for
every variable . In the relaxed task every variable then hast the values {0, 1}

69

70
Chapter 4. Planning with conditional effects and

state-dependent action costs

fulfilling every inequality requirement. Taking the maximum cost over all
these actions results in a heuristic value of 1. Taking hadd instead would
result in an heuristic value of the sum of action costs being n− 1. Whereas,
the correct value for reaching the goal would be i actions for each child
Xi : 1 + 2 + 3 + . . . + n − 1 = n(n − 1)/2. It is clear to see, that these
variables may not be treated separately, but rather in the context in which
they are set by the goal condition. This shows, that there are many settings
in which variables may not be treated as independent, but rather depend on
each others values. One such correlation between variables in conditional
effects and state-dependent action costs was shown in this section, together
with a possible solution. However, as illustrated above, there are many more
settings in which variables are interdependent. This work is seen as a step
in the right direction, but more work is required to fully understand how
correlating variables may be treated throughout in planning.

4.2.3 Empirical evaluation

The EVMDD compilation for state-dependent action costs ignoring condi-
tional effects and the compilation combining the two concepts are evaluated
using the Asterix domain (Speck, 2018). In this domain the comic character
is tasked with bringing the Edleweiss to the village. This can be achieved in
two ways. First by climbing the mountain with increasing cost the higher
one gets (x∗y with x and y the coordinates on the mountain). Alternatively,
Asterix can first go to the Forrest, fend of the Romans, gather some Mistle-
toe, and brew a magic potion. With this potion, climbing the mountain
becomes much easier, as it reduces the cost for climbing to 1. When using
the hmax heuristic (Figure 4.9), no difference between the two compilations
can be detected. Even the initial heuristic value equal to 4 for every instance.
As expected, the plan quality is also identical in every instance, due to the
fact that hmax is admissible. This acts as a sanity check, to show that the
properties of the heuristics are really preserved in compilation. Second the
two heuristics hadd (Figure 4.10) and hff (Figure 4.11) are compared. Here
one can see that when using hadd the number of node expansions is much
higher when using the combined compilation, as compared to the SDAC
only compilation. Even though this might indicate worse performance in
regards to the search time, one can see, that this results in better plan qual-
ity (lower total costs). On the other hand, when using the hff heuristic, the
number of node expansions is way lower when using the combined compi-
lation. Here now significant difference in plan quality can be measured. The
initial heuristic value for both heuristics, is higher when using the combined
compilation. This emphasizes the initial claim, that without combined treat-
ment, the heuristic provides high cost effects to low action costs. As a side
mark, one should note, that only relaxation heuristics where used here, as

70

Chapter 4. Planning with conditional effects and
state-dependent action costs 71

using abstraction heuristics with EVMDD compilations poses multiple chal-
lenges described in detail in Geißer (2018). In summary, one can say that
with this approach, one can improve the quality of the resulting plan, or
improve the runtime, depending on the chosen heuristic function.

0 1000000 2000000 3000000 4000000 5000000
SDAC Expansions

0

1000000

2000000

3000000

4000000

5000000

SD
AC

 C
E

Ex
pa

ns
io

ns

(a) Node expansions

3.996 3.998 4.000 4.002 4.004
SDAC initial h-value

3.994

3.996

3.998

4.000

4.002

4.004

4.006

SD
AC

 C
E

in
iti

al
 h

-v
al

ue

(b) Initial h-value-values

20 40 60 80 100 120 140 160
SDAC plan cost

20

40

60

80

100

120

140

160

SD
AC

 C
E

pl
an

 c
os

t

(c) Plan Quality

Figure 4.9: Results for SDAC only compilation vs SDAC with CE compilation
and hmax heuristic

71

72
Chapter 4. Planning with conditional effects and

state-dependent action costs

0 500 1000 1500 2000 2500
SDAC Expansions

0

500

1000

1500

2000

2500

SD
AC

 C
E

Ex
pa

ns
io

ns

(a) Node expansions

0 2000 4000 6000 8000
SDAC initial h-value

0

2000

4000

6000

8000

SD
AC

 C
E

in
iti

al
 h

-v
al

ue

(b) Initial h-value-values

25 50 75 100 125 150 175 200
SDAC plan cost

25

50

75

100

125

150

175

SD
AC

 C
E

pl
an

 c
os

t

(c) Plan Quality

Figure 4.10: Results for SDAC only compilation vs SDAC with CE compila-
tion and hadd heuristic

72

Chapter 4. Planning with conditional effects and
state-dependent action costs 73

0 500000 1000000 1500000 2000000 2500000 3000000 3500000
SDAC Expansions

0

50000

100000

150000

200000

250000

300000

SD
AC

 C
E

Ex
pa

ns
io

ns

(a) Node expansions

0 200 400 600 800
SDAC initial h-value

0

200

400

600

800
SD

AC
 C

E
in

iti
al

 h
-v

al
ue

(b) Initial h-value-values

20 40 60 80 100 120 140 160
SDAC plan cost

20

40

60

80

100

120

140

160

SD
AC

 C
E

pl
an

 c
os

t

(c) Plan Quality

Figure 4.11: Results for SDAC only compilation vs SDAC with CE compila-
tion and hff heuristic

73

Chapter 5

Planning with soft trajectory
constraints

In real world applications, it is often necessary to not only find a valid plan
regarding the goal condition, but to add additional requirements towards
how the plan is achieved.

Example 16. Recalling Example 4, let ϕ be the requirement that the green
package in Graz must be picked up first due to time constraints. Thus the
planner would now disregard picking up the red package in Vienna first and
drive directly to Graz to pick up the green package first. As can be seen,
this not only adds flexibility to modeling how the goal is achieved, but in
some cases even reduce the search space. In this example this is achieved by
disregarding all plans that pick up the red package in Vienna before driving
to Graz, basically removing half of the search tree from Figure 3.2.

This kind of constraint is considered to be hard, as it is a required condition
for the plan to be valid. On the other hand, sometimes it is useful to be
able to additionally be able to state optional or soft constraints towards
the plan. These, in contrast to the hard constraints, are not required to be
fulfilled by the plan, but rather have an impact on the resulting plan quality.
Therefore soft constraints are usually associated with some kind of numeric
value indicating how important the constraint is.

Example 17. Recalling Example 4 again, an optional goal might be to bring
the red package to Freiburg as fast as possible. Thus, a more desired plan
might be to first bring the red package to Freiburg and then drive to Graz.
As can be seen, this is not an optimal plan for the original task without the
constraints. However, depending on the importance of the constraint (the
importance outweighs additional cost), this might be an optimal plan for the
constrained task. If the importance is set too low the planner would most

74

Chapter 5. Planning with soft trajectory constraints 75

likely disregard it, on the other hand increasing the importance will at some
point result in the optimal plan fulfilling the constraint.

5.1 State trajectory constraints

PDDL 3.0 (Gerevini and Long, 2005) adds state trajectory constraints to the
PDDL language expressed as temporal modal operators over first order for-
mulas consisting of state predicates (facts). PDDL 3.0 introduces following
modal operators, where ϕ and ψ are first order formulas over predicates and
n and m are natural numbers:

• at-end ϕ: ϕ must hold in the goal state (goal condition).

• always ϕ: ϕ must hold in every state of the plan.

• sometime ϕ: ϕ must hold at some point in the plan.

• within n ϕ: ϕ must hold within the next n states of the plan.

• at-most-once ϕ: ϕ must hold at most once during the whole plan.

• sometime-after ϕ ψ: ψ must hold at some point after ϕ holds.

• sometime-before ϕ ψ: ψ must hold before ϕ holds.

• always-within n ϕ ψ: ϕ must hold within n states after ψ holds.

• hold-during n m ϕ: ϕ must hold between the nth state and the mth

state.

• hold-after n ϕ: ϕ must hold after the nth state.

Definition 45. Each PDDL 3.0 modal operator can be represented by an
LTLf formula over state predicates.

• at-end ϕ := λ ∧ ϕ
• always ϕ := 2ϕ
• sometime ϕ := 3ϕ
• within m ϕ :=

∨
0≤i≤m© . . .©︸ ︷︷ ︸

i

ϕ

• at-most-once ϕ := 2(ϕ→ ϕW¬ϕ)

• sometime-after ϕ ψ := 2(ϕ→ 3ψ)

• sometime-before ϕ ψ := (¬ϕ ∧ ¬ψ)W(¬ϕ ∧ ψ)

• always-within m ϕ ψ := 2(ϕ→ ∨
0≤i≤m© . . .©︸ ︷︷ ︸

i

ψ)

75

76 Chapter 5. Planning with soft trajectory constraints

• hold-during m k ϕ :=© . . .©︸ ︷︷ ︸
m

(
∧

0≤i≤k© . . .©︸ ︷︷ ︸
i

ϕ)

• hold-after m ϕ :=© . . .©︸ ︷︷ ︸
m

3ϕ

Note, that it might sometimes be beneficial to be able to reason about ac-
tion trajectory constraints instead of state trajectory constraints (e.g action
aa must be performed before action ab). However, this can be easily trans-
formed into state trajectory constraints by adding a predicates execa and
execb that are only true if the action has been performed. Thus these con-
straints will not be considered in this work.

To be able to verify if a given plan is valid in regards to a trajectory con-
straints, it is no longer sufficient to check if a state (goal state) fulfills the
goal condition, but rather if the whole state trajectory fulfills constraints,
and the last state fulfills the goal condition.

Definition 46 (Planning task with hard trajectory constrains). Given a
set of state trajectory constraints Φ = 〈ϕ1, . . . , ϕk〉, a planning task with
state trajectory constraint is then defined as Π = 〈V,A, s0, s?, ca,Φ〉 with
V,A, s0, s?, and, ca as defined in the state-dependent action cost setting
(Definition 32). A plan π with its induced state trajectory µπ = 〈s0, s1, s2,
. . . , sn〉 with µπ |= s? is then a valid plan for Π if sn |= s? and µπ |= ϕ for
every ϕ ∈ Φ.

Soft trajectory constraints are, as hard trajectory constraints, requirements
towards the induced state trajectory. However, the fulfillment is optional,
meaning a plan that does not fulfill the soft trajectory constraint does not
become invalid. Not fulfilling such a constraint, may be the result of too
high costs for doing so, or the specification of contradicting constraints. Re-
calling the Example 4 of the truck transporting packages from one location
to another, a constraint might be to visit every city only once (at-most-once
at-truck(Vie) and at-most-once at-truck(Graz) and at-most-once at-truck(Fr)).
As in the example the city Graz is only reachable via Vienna it is not possible
to bring the package from Graz to Freiburg without visiting Vienna twice. In
other settings where Graz may be directly connected to Freiburg this con-
straint however might be satisfiable. A soft trajectory constraint therefore
only impacts the quality of a plan rather than its validity. For this, constraints
can be associated with a numeric value indicating its relative importance in
respect to other constraints and general action costs.

Definition 47 (Planning task with soft trajectory constraints). Given a
set of state trajectory constraint importance value tuples Φ = 〈(ϕ1, ω1), . . . ,
(ϕk, ωk)〉 a planning task with state trajectory constraint is then defined as
Π = 〈V,A, s0, s?, ca,Φ〉 with V,A, s0, s?, and, ca as defined in the state-

76

Chapter 5. Planning with soft trajectory constraints 77

dependent action cost setting (Definition 32). A plan π = 〈a0, . . . , an−1〉
with its induced state trajectory µπ = 〈s0, s1, . . . , sn〉 is then a valid plan for
Π if sn |= s?. The total cost c(µπ) of π is then the sum of actions plus the
importance of every trajectory constraint as penalty for every constraint not
fulfilled by µπ.

n−1∑

i=0

cai +
∑

ϕ∈Φ

(ωϕ|µπ 6|= ϕ) (5.1)

From this definition, it can be seen, that selecting the actual numeric value
ω indicating the importance is crucial, as this influences if a soft trajectory
constraint will be satisfied or not. If ω is chosen too low, any additional
action taken to fulfill this will come with higher cost than the penalty for
not achieving it. On the other hand scaling ω too high might result in very
high plan costs as the planner will try to fulfill them no matter what the
action costs for fulfilling it are.

A simple approach to dealing with trajectory constraints in planning is to
track them during the search. For this an automaton for the corresponding
LTL formula is created, and its state updated after every action. However,
this requires that not only the planner be adapted, but also the heuristic
functions must be redefined as to support trajectory constraints. Alterna-
tively, trajectory constraints can be compiled away (Edelkamp, 2006), en-
abling of-the-shelf planners to plan with state trajectory constraints. Given
a planning task with trajectory constraints Π = 〈V,A, s0, s?, ca,Φ〉 a non-
deterministic finite automaton A for every trajectory constraint ϕ ∈ Φ is
created. Each edge of the NFA is hereby labeled with conditions over propo-
sitions of the planning task. The planning task is then augmented with
the predicate at(q,A) stating that automaton A is in state q, and a pred-
icate accepting(A) which is true if A is in an accepting state. Then syn-
chronization actions are added, which take the current state of the au-
tomaton, and the transition condition from the automaton edges and sets
the new state of the automaton. Finally, the preconditions of the orig-
inal actions are augmented by a synchronize flag, stating that these ac-
tions may only be executed after the synchronization actions where per-
formed (one for every constraint). Thus the resulting plan with n con-
straints is a alternating execution of original actions and synchronization ac-
tions: (a0, sync0,ϕ1 , . . . , sync0,ϕn , . . . , am, syncm,ϕ1 , . . . , syncm,ϕn). Finally
the goal specification is augmented to also require every automaton to be
in an accepting state. This approach can also be be extended to soft tra-
jectory constraints by adding the penalty for not achieving the constraint to
the plan metric instead of invalidating the plan (removing the accepting ?a -
automaton from the goal condition).

Note that De Giacomo et al. (2014) provide an algorithm for directly con-

77

78 Chapter 5. Planning with soft trajectory constraints

structing NFAs from the LTLf formula, whereas the original algorithm by
Edelkamp (2006) uses LTL formula and therefore must take a detour via
Büchi automata. Also note that the NFA interpretation of LTL formula is not
generally valid, but holds for the formula required for PDDL 3.0 constraints.

An alternative approach for tracking the state of trajectory constraints is to
incorporate the tracking of the automatons state within the original actions.
This can be achieved by adding conditional effects consisting of the current
automatons state, and the transition conditions from the edges to the orig-
inal actions (basically merging the transition actions from above in to the
original actions) (J. A. Baier and McIlraith, 2006).

A special case of soft trajectory constraints are soft goals, considering only
constraints towards the goal state. These can be either expressed as optional
goal conditions, or using the PDDL 3.0 temporal modal operator at-end over
facts: at-endf , where f is a fact. For this special case Keyder and H. Geffner
(2009) showed that soft goals can be compiled away. For a given soft goal
p = (at-end f) two actions are added to the end of the action sequence,
one called the collect(p) action, applying zero action costs if the soft goal p
is fulfilled, or forgo(p) with a numeric penalty cost if the soft goal was not
fulfilled (the fact f does not hold in the goal state). Additionally a new fact
is added to the new goal condition indicating that one of the two actions
was executed, thus adding the penalty of not achieving the soft goal to the
total cost of the plan.

Example 18. Let x = 1 be a soft goal over the binary variable x with as-
signed value 5, and the goal condition s?. Then the Keyder and H. Geffner
(2009) compilation adds two new actions:

collectx=1 : 〈x = 1, donex=1 = 1〉 0

forgox=1 : 〈x = 0, donex=1 = 1〉 5

The goal condition is then adapted to s? = s? ∪ {donex=1 = 1}. Whenever
x = 1 is violated, the action forgox=1 will add the penalty of 5, and the
action collectx=1 will add no penalty if the soft goal is achieved. Note that
additional bookkeeping facts ensuring that the collect and forgo actions are
executed last are required.

An alternative representation of soft trajectory constraints was introduced
by J. A. Baier et al. (2009), where each constraint is represented by a
parametrized non deterministic automaton. In contrast to the other ap-
proaches using NFAs or Büchi automata, PNFAs do not require the planning
task to be grounded, but rather have lifted expressions on their edges(predicates
over typed variables). The benefit of this approach being that for constraints
over a whole type of objects, only a single automaton is constructed. Assum-
ing an example with two objects A and B of type package and the constraint

78

Chapter 5. Planning with soft trajectory constraints 79

forall (p - package) sometime-after (loaded(p)) (delivered(p)) (Figure 5.1,
stating that every package that has been loaded at some point must be un-
loaded at a future time step. Then a predicate state(s,O,A) is added to the

q0start

q1

q2

loaded x =⇒ delivered x

loaded x =⇒ delivered x

loaded x

delivered x

>

delivered x

Figure 5.1: Parametrized NFA for the constraint forall(x - package) sometime-
after(loaded x) (delivered x). Adapted from J. A. Baier et al. (2009).

planning task indicating in which state s of the automaton A the object O
resides in. Note, that due to the non-determinism, each object may reside
in multiple states at once. In contrast to other approaches, state transitions
are not coded in to the planning task, but are rather handled by the plan-
ner internally. This is achieved by applying the transitions of the automata
(setting the predicates) independently after every planning action is exe-
cuted. Thus every state of the planning task holds all information required
to identify the state of every automaton object tuple, without requiring ex-
pensive synchronization actions (Edelkamp, 2006) or automaton tracking
in conditional effects (J. A. Baier and McIlraith, 2006).

Here now a novel approach (first published in (Wright et al., 2018c; Wright
et al., 2018b))for compiling away soft trajectory constraints utilizing condi-
tional effects and state-dependent action costs is presented, providing track-
ing functionality with conditional effects and heuristic guidance using state-
dependent action costs.

First an automata representation of the soft trajectory constraints in the
planning task is introduced:

Definition 48 (Automata semantics of planning tasks with state trajec-
tory constraints). The transition system of a planning task
Π = 〈V,A, s0, s?, ca,Φ〉 can be represented as a DFAA(Π) = 〈Σ, Q,∆, q0, Qa〉
with Σ = S(V ′), where V ′ = V(Φ) are the variables relevant to the trajec-
tory constraints only. The transition function ∆ consists of transitions of the
form 〈s, s|V ′, s′〉, where s|V ′ is s restricted to the variables in V ′.

As can be seen, the resulting automaton lacks some essential information.
For reconstructing the plan from a given trace of the automaton, information

79

80 Chapter 5. Planning with soft trajectory constraints

about the actions is required. This can be achieved by simply adding the
action to the label of each transition. Same holds for action costs, which can
also be simply added as label to the transition. Also missing is the semantic
representation of the trajectory constraints which is added in the form of
the product of the task automaton and a DFA representing the trajectory
constraint. Let N (ϕ) be an NFA representing the trajectory constraint ϕ
(De Giacomo et al., 2014). Then this NFA can be transformed into a DFA
using the standard powerset construction (Rabin and Scott, 1959). Note
that this results in a double exponential blowup, as the NFA can already be
exponential in the size of ϕ and the determinization of an NFA adds another
exponential increase in size. However, note that for the LTLf subset used
in PDDL 3.0 constraints, the exponential blowup for the NFA cannot occur
(J. A. Baier et al., 2009). Then the DFA A(ϕ) = 〈Σ, Q,∆, q0, Qa〉 represents
ϕ where the input alphabet Σ is the set of all states S(V ′), where again
V ′ = V(ϕ) are the variables relevant to ϕ. The DFA A(ϕ) accepts a finite
input trace µπ over Σ with, λ being true exactly in the last state of µπ,
iff the induced state trajectory µπ of a plan π fulfills ϕ(µπ |= ϕ). For a
hard trajectory constraint ϕ, a planning task Π and the product automaton
A× = A(Π) × A(ϕ) the induced state trajectory µπ from plan π satisfies ϕ
iff µπ is accepted by A×. For soft trajectory constraints the same automaton
construction can be used, however the product automaton must also accept
traces for which the trajectory constraints are not fulfilled. Rather than
not accepting traces where the soft trajectory constraints are violated, this
should be represented in the plan costs, and thus in the plan quality. In the
following, a method using such a product construction for compiling away
soft trajectory constraints is presented.

Tracking soft trajectory constraints. Let Π = 〈V,A, s0, s?, ca,Φ〉 be a
planning task with soft trajectory constraints, and a numeric importance ωϕ
for every ϕ ∈ Φ, and the metric function c(µπ). Ignoring transition costs
and action names the semantics of Π is captured by the product automaton
A× = A(Π) × ∏ϕ∈ΦA(ϕ) as described above. However, for compiling
away soft trajectory constraints, the automaton is not explicitly constructed,
but rather a new planning task Π′ such that A(Π′) is isomorphic to A× is
created. The planning task Π′ is constructed by adding a tracking variable
τϕ to Π for every ϕ ∈ Φ. This variable keeps track of the current state of
A(ϕ). The actions of Π′ are those from Π augmented by conditional effects
taking care of the correct evolution of τϕ, thus encoding the soft trajectory
constraints in to the actions.

Formally, let A(ϕ) = 〈Σ, Q,∆, q0, Qa〉 be the DFA for a soft trajectory con-
straint ϕ, and τ a variable tracking the state of A(ϕ) with domain Dτ = Q.
Then Π′ = 〈V ′,A′, s′0, s′?, c′, ∅〉 is the new planning task with V ′ = V ∪

80

Chapter 5. Planning with soft trajectory constraints 81

{(τϕ|ϕ ∈ Φ)}, s′0 = s0 ∪ {(τϕ = q0|ϕ ∈ Φ)}, and s′? = s?. The actions
A′ = {a′|a ∈ A} where a′ = 〈pre′, eff′〉 are constructed as:

pre′ = pre

eff′ = eff ∧
∧

〈q,σ,q′〉∈∆

(((τϕ = q) ∧ σ)� τϕ := q′)

In words, the actions from Π are augmented such that conditional effects
tracking the state of τϕ are added for every transition in A(ϕ). States in
A(Π′) are then isomorphic to pairs (s, q) where s is a state from A(Π) and q
is the state of A(ϕ) before reading s. Finally, an artificial last action lastop is
required, reading the last state of A(Π) and progressing A(ϕ) accordingly.
This last action is the equivalent to reading the λ symbol from LTLf.

0

1

2
¬at(PackageGreen,Truck)∧¬at(PackageRed,Truck)

¬at(PackageGreen,Truck)∧at(PackageRed,Truck)

at(PackageGreen,Truck)

Figure 5.2: DFA of sometime-before at(PackageGreen,Truck)
(at(PackageRed,Truck).

Example 19. Recalling the logistics example (Example 4), a soft trajectory
constraint might be to first pickup the green package before the red package
(Figure 5.2):

sometime-beforeat(PackageGreen,Truck)at(PackageRed,Truck)

Let τ be the tracking variable for the soft trajectory constraint, then the
compilation create a new action a′ = 〈pre′, eff′〉from an action a = 〈pre, eff〉
as follows:

pre′ =pre

eff′ =eff∧
((τ = 0 ∧ ¬at(PackageGreen,Truck)∧

at(PackageRed,Truck))� τ = 1)∧
((τ = 0 ∧ at(PackageGreen,Truck))� τ = 2)

As can be seen, edges that lead to the same node as they originate can be
ignored.

81

82 Chapter 5. Planning with soft trajectory constraints

Definition 49. Two automata

A = 〈Σ, Q,∆, q0, Qa〉 and

A′ = 〈Σ, Q′,∆′, q′0, Q′a〉

over the same alphabet Σ are isomorphic iff there exists a structure preserv-
ing bijection β : Q → Q′ such that β(q0) = q′0, and q ∈ Qa iff β(q) ∈ Q′a
for all q ∈ Q, and that 〈q, σ, q′〉 ∈ ∆ iff 〈β(q), σ, β(q′)〉 ∈ ∆′ for all q, q′ ∈ Q,
σ ∈ Σ.

Proposition 8. Up to preservation of accepting states, A(Π′) is isomorphic
to A(Π)×A(ϕ).

Proof. Let A(Π) be the automaton representation of planning task Π =
〈Σ, Q,∆, q0, Qa〉. Let A(ϕ) = 〈Σ, Qϕ,∆ϕ, q

ϕ
0 , Q

ϕ
a 〉 be the soft trajectory

constrain automaton representing the LTLf formula. Finally let A(Π′) =
〈Σ, Q′,∆′, q′0, Q′a〉 be the product automaton all with the same alphabet
Σ = S(V(ϕ)). Then A× = A(Π)×A(ϕ) = 〈Σ, Q×,∆×, q×0 , Q×a 〉, with Q× =

Q×Qϕ, q×0 = (q0, q
ϕ
0), Q×a = Qa×Qϕa , and a transition 〈(q, qϕ), σ, (q′, qϕ′)〉 ∈

∆× iff (q, σ, q′) ∈ ∆ and (qϕ, σ, qϕ′) ∈ ∆ϕ. The bijection β : Q× → Q′ is
then given by β((s, q)) = s ∪ {τϕ = q}. β by definition preserves the initial
state as β((s0, q0)) = s0 ∪ {τϕ = q0}. The accepting states are not preserved
in Π′ as the acceptance or violation of ϕ should only be reflected in the cost
of the plan. Therefore, for goal states, it holds that q× = (q, qϕ) ∈ Q×a iff
q ∈ Qa.

There is a transition ((q, qϕ), σ, (q′, qϕ′)) ∈ ∆× iff (q, σ, q′) ∈ ∆ and (qϕ,
σ, qϕ′) ∈ ∆ϕ. Since (q, σ, q′) ∈ ∆ there must be an action a applicable in
q and q′ = q[a]. With the construction of Π′ from Π and the definition
of the changeset (Definition 23), this implies that the modified action a′ is
applicable in β(q, qϕ) and because (qϕ, σ, qϕ′) ∈ ∆ϕ, β(q′, qϕ′) = β(q, qϕ)[a′]
this means that (β(q, qϕ), σ, β(q′, qϕ′)) ∈ ∆′.

For the other direction the proof follows the same structure: There is a
transition (β(q, qϕ), σ, β(q′, qϕ′)) ∈ ∆′ iff (q, σ, q′) ∈ ∆ and (qϕ, σ, qϕ′) ∈
∆ϕ. Since (β(q, qϕ), σ, β(q′, qϕ′)) ∈ ∆′ there is an action a′ ∈ A′ such that
β(q′, qϕ′) = β(q, qϕ)[a′]. Removing the conditional effects introduced in the
construction of Π′ the original action from Π is retrieved, thus there is a
transition (q, σ, q′) ∈ ∆. Similar, as the construction only added conditional
effects tracking the state of the automaton A(ϕ) there is also the transition
(qϕ, σ, qϕ′) ∈ ∆ϕ.

Up until now the main focus was on tracking the soft trajectory constraint
within the planning task using conditional effects. One part still missing is
the adaptation of the task such that the objective function introduced above
is properly represented in the plans total cost. For this, two approaches are

82

Chapter 5. Planning with soft trajectory constraints 83

introduced. The first, called Goal action penalty compilation, a generaliza-
tion of Keyder and H. Geffner (2009) to soft trajectory constraints, adding
a penalize action to the end of the plan. The second, called General action
penalty compilation, then takes greater advantage of state-dependent action
costs to guide the search towards fulfilling the constraints.

Goal action penalty compilation. To be able to evaluate the quality of
a plan in regards to the soft trajectory constraints, penalties are added for
every constraint not fulfilled by the plan. This is achieved by adding a new
propositional variable penalized to Π′ that is initially false and required to be
true in the goal condition s′? = s? ∪ {penalized}. Additionally, a new action
penalize = 〈s? ∧ ¬penalized, penalized〉 is introduced requiring the original
goal to be satisfied, and the penalize action not yet executed. The cost
function of this penalize action then determines the penalty value of the plan
by adding all soft trajectory constraint values ωϕ as its action cost for which
the plan π 6|= ϕ. This is achieved by simply testing if the tracking variables τ
encode accepting or non accepting DFA states in the current planning state.
Formally: cpenalize =

∑
ϕ∈Φ[τϕ /∈ Qϕa]ωϕ where [τϕ /∈ Qϕa] = 1 if τϕ = q and

q 6∈ Qϕa for some q ∈ Qϕ, and 0 otherwise. [τϕ /∈ Qϕa] can be easily evaluated
by rewriting it as

∑
q∈Qϕ\Qϕa [τϕ = q], where [τϕ = q] is 1 if s(τϕ) = q, and 0

otherwise.

Example 20. Recalling above Example 19, let the value of the soft trajectory
constraint be ω = 5 and the original goal be to bring both packages to
Freiburg, then the penalize action is as follows:

pre =(at-location PackageGreen Freiburg)

∧ (at-location PackageRed Freiburg)

eff =penalized

With cost function: c = [τ = 2] ∗ 5 stating that if the tracking variable τ has
the value 2 representing a non-accepting state of the DFA from Figure 5.2,
the penalize operator adds the soft trajectory penalty value of 5. Note that if
τ = {1, 0} the action has cost 0 adding no additional penalties to the plans
total cost.

Proposition 9. Let Π′ be the compiled task from Π. Then an optimal plan
for Π′ is also an optimal plan for Π disregarding the penalize action.

Proof. Proposition 8 shows that the compilation is sound and complete.
The only thing missing for optimality preserving is the objective function
equality. The objective function can be seen as the sum of two parts c(π) +
penalty(π), where c(π) is the sum of action costs and penalty(π) the penalty
for not achieved soft trajectory constraints. Up until the penalize action the

83

84 Chapter 5. Planning with soft trajectory constraints

objective function sums up all action costs identical to the original task, as
the action costs are not altered in the compilation, c(a) =

∑
a∈π c(a). The

penalize action then adds a penalty for each soft trajectory constraint not
fulfilled by π, penalty(π) =

∑
ϕ∈Φ[τϕ /∈ Q

ϕ
a]ωϕ. This results in the same

objective function for Π′ and Π (Wright et al., 2018b).

As an alternative representation of the cost function, a new propositional
variable is_violated can be introduced, which is true if τϕ represents a non-
accepting state of the DFA. The cost function can then be rewritten as

∑

ϕ∈Φ

[is_violatedϕ]wϕ .

This is briefly introduced to show the relation with the compilation of Keyder
and H. Geffner (2009). As shown earlier, state-dependent action costs and
conditional effects can be compiled away. If this EVMDD compilation on
the penalize action is analyzed, it can be shown, that the resulting auxiliary
actions are identical to the collect , forgo and end actions of the Keyder and
H. Geffner (2009) compilation. This shows, that the goal action compilation
extends the soft goal compilation of Keyder and H. Geffner (2009) to soft
trajectory constraints.

Proposition 10. The EVMDD-based action compilation of the penalize ac-
tion, generalizes the Keyder and H. Geffner (2009) compilation to soft state
trajectory constraints.

Proof. For every soft trajectory constraint ϕ ∈ Φ a new variable is_violatedϕ
is introduced, which is true iff the corresponding tracking variable τ repre-
sents a non-accepting state of the DFA. The penalize then has the cost func-
tion

∑
ϕ∈Φ[is_violatedϕ]wϕ. The EVMDD representation of this cost function

is then depicted in Figure 5.3. The EVMDD compilation of penalize then cre-
ates a new action for every edge of the EVMDD and adds some bookkeeping
machinery for ensuring the right action sequence is executed (see EVMDD
compilation Section 3.2.1). These new actions then correspond exactly to
the collect , forgo and end actions of the Keyder and H. Geffner (2009) com-
pilation as annotated in Figure 5.3. (Wright et al., 2018b)

Independently of which of the two cost functions is used, it can be seen
that the penalize guides the search towards fulfilling the soft trajectory con-
straints, as states that accept the trajectory constraint will have lower heuris-
tic values(h-value). This is due to the fact, that the penalize operation has
lower costs of application if the constraints are satisfied. However, as the
penalize is always the last action of the plan, the search algorithm is only in-
formed on the acceptance of a trajectory constraint when applying the last
action, even though the constraint might already be fulfilled earlier on in

84

Chapter 5. Planning with soft trajectory constraints 85

is_violatedϕ1

. . .

is_violatedϕn

0

0

0

wϕ1

1

0

0

wϕn−1

1

0

0

wϕn

1

end

collect ϕ1 forgo ϕ1

collect ϕn−1 forgo ϕn−1

collect ϕn forgo ϕn

Figure 5.3: EVMDD compilation of the penalize action and the Keyder and
H. Geffner (2009) collect ,forgo and end actions annotated in red

the plan without the possibility of it becoming false again. This results in
the heuristic value being unnecessarily high even when already close to the
solution. Therefore, an alternative approach adding penalties, or rewards
(negative penalties) as soon as they occur is desirable, resulting in a more
informed heuristic value, and a more informed search.

General action penalty compilation. The previous approach showed how
the search can be guided towards fulfilling soft trajectory constraints. How-
ever, the achievement of these is only represented in the final penalize ac-
tion. Thus, up to the final action, the heuristic is relatively uninformed.
A more desirable, approach would be to apply a penalty as soon as a soft
trajectory constraint is violated, thus guiding the search more effective. In
the following, a method is introduced, that adds rewards or penalties to ac-
tions whenever the DFA of a soft trajectory constraint enters or leaves an
accepting state. This not only results in an informed h-value but also a more
informative g-value, as the penalties and rewards are represented in it.

Let Π = 〈V,A, s0, s?, ca〉 be a planning task with soft trajectory constraints.
Furthermore, let Π′ = 〈V ′,A′, s′0, c′a〉 be a compiled task that only tracks
the states of the soft trajectory constraints ϕ ∈ Φ as constructed above,
Aϕ = 〈Σ, Q,∆, q0, Qa〉 be the DFA for soft trajectory constraint ϕ ∈ Φ, and
τϕ be the tracking variable in V tracking the state of Aϕ. Then, information
about the acceptance of a soft trajectory constraint ϕ in a state s is already
present, as τϕ represents an accepting or non-accepting state in Aϕ.

Whenever an action a ∈ A′ changes the value of τϕ transitioning from a state

85

86 Chapter 5. Planning with soft trajectory constraints

q to a state q′ in A(ϕ), a reward or a penalty can be added to the cost of a.
If q is an accepting state and q′ is a non-accepting state, a penalty is added.
On the other hand, if q is a non-accepting state and q is an accepting state, a
reward is added. The partial cost of transitioning from s to s′ in the planning
task with trajectory constraint ϕ ∈ Φ is then ω(s(τϕ), s′(τϕ)), where ω :
Q × Q → Z is a function mapping state transitions to reward or penalty
values. In the case of a transition from an accepting to a non-accepting
state ω(s(τϕ), s′(τϕ)) is set to a positive penalty value. In the case of a
transition from a non-accepting to an accepting state ω(s(τϕ), s′(τϕ)) is set
to reward, or negative value. For the concrete value (positive or negative)of
ω(s(τϕ), s′(τϕ)) the original soft trajectory constraints weight ω is used.

The new cost function c′a of a = 〈pre, eff〉 is then

pϕ =
∑

〈q,δ,q′〉∈Aϕ
[τϕ = q ∧ δ] ∗ ω(q, q′)

c′a = ca +
∑

ϕ∈Φ

pϕ

Here transitions 〈q, δ, q′〉 ∈ Aϕ with q = q′ can be ignored.

Note that to ensure the correct application of penalties and rewards, the
initial state of the automata needs to be taken in to account. If the initial
state of the automaton is non-accepting, transitioning to an accepting state
will apply a negative action cost(reward) without applying the penalty for
entering a non-accepting state first, resulting in the total reward/penalty of
this soft trajectory constraint being ≤ 0. The problem here is, that entering
the initial state is not taken in to account. Therefore a new initial action
init is introduced to A′ applying penalties ω for each ϕ ∈ Φ with its DFA
Aϕ = 〈Σ, Q,∆, q0, Qa〉 where s0(τϕ) 6= q0. Formally the action costs of this
initial action is

c =
∑

ϕ∈Φ

(ω|s0(τϕ) 6= q0)

Example 21 (General action cost function). Recalling the above logistics
example (Example 19) with the action a = 〈pre, eff〉 and its compilation:

pre′ =pre

eff′ =eff∧
((τ = 0 ∧ ¬(at(PackageGreen,Truck)∧

(at(PackageRed,Truck))� τ = 1)∧
((τ = 0 ∧ (at(PackageGreen,Truck))� τ = 2)

86

Chapter 5. Planning with soft trajectory constraints 87

A soft trajectory constraint ϕ = sometime-before (at(PackageGreen,Truck)
(at(PackageRed,Truck) (Figure 5.2) with value ω = 5, then the new cost
function is:

c′a = ca + [τ == 0 ∧ (at(PackageGreen,Truck)] ∗ 5

One major issue now is however, that negative action costs can arise due
to the fact of entering accepting states. This is that case when the original
action cost ca is less than the value of the reward function ω(s(τ), s′(τ)) the
cost of applying the action in state s is then c− ω(q, q′) ≤ 0.

As ω(s(τ), s′(τ)) can not be applied twice in a row without negating it in
between (leaving or entering an accepting state) it is guaranteed that no
negative action cycles can occur during the search, resulting in non negative
total costs c(µπ) ≥ 0. Having such negative action cost cycles would result
in non-termination of the search, as some states can be reached by ever
cheaper paths.

Note that the fact that ω(s(τ), s′(τ)) can be applied only once before sub-
tracting it again (and vice versa) also ensures that minimizing over the total
costs c(µπ) in this compiled task amounts to the same as minimizing c(µπ)
in the original task.

The absence of negative action cost cycles enables this approach to be ap-
plied in any existing planning system, supporting negative action costs. Cur-
rently, Fast Downward (Helmert, 2006) with blind heuristic supports such
negative action costs. However, it is desirable to be able to use more in-
formed heuristics, or planners that do not support negative action costs.
Therefore removing the negative action costs is desirable. To remove neg-
ative action costs, a more flexible way of specifying the ω(s(τ), s′(τ)) value
is introduced in the form of a transition cost table (Table 5.1). The above
described transition costs are hereby captured by Table 5.1a, where state
transitions from accepting to non accepting are set to the original ω, and
the transition from a non-accepting state to an accepting state is set to −ω.
All other transitions are set to 0.

Table 5.1b shows the cost function shifted by ω (adding it to every entry of
the table) resulting in no negative action costs. Leaving an accepting state is
now penalized harder, as it is now 2ω. Remaining in a non-accepting state is
now also penalized by ω. This turns out to be beneficial, as this incentivises
early fulfillment of soft trajectory constraints, as remaining in non-accepting
states is penalized. However, remaining in an accepting state is now also
penalized providing the unwanted effect of penalizing the remaining in an
accepting state. This negative behavior is fixed by Table 5.1c, where this
malicious entry is simply replaced by 0.

87

88 Chapter 5. Planning with soft trajectory constraints

Table 5.1: State Transition Costs

(a) Metric Preserving Costs

From
To

Accepting ¬ Accepting

Accepting 0 wϕ
¬ Accepting −wϕ 0

(b) Positively Shifted Costs

From
To

Accepting ¬ Accepting

Accepting wϕ 2wϕ
¬ Accepting 0 wϕ

(c) Adapted Positively Shifted Costs

From
To

Accepting ¬ Accepting

Accepting 0 2wϕ
¬ Accepting 0 wϕ

The resulting cost function (regardless of which concrete transition cost ta-
ble is used) is informative regarding both the h-value and the g-value. How-
ever, choosing cost transition tables 5.1b or 5.1c will result in higher total
costs c(µπ), as the penalties are added multiple times instead of only once
for every time an accepting state is left.

Proposition 11. Let Π′ be the compiled task from Π with metric preserving
costs (Table 5.1a). Then an optimal plan for Π′ is also an optimal plan for
Π (without penalize and init action).

Proof. Proposition 8 shows that the compilation is sound and complete. The
objective function of the original task is penalty(π) + cost(π), where cost(π)
is the sum of all original action costs and penalty(π) is the sum of all penal-
ties of not achieved soft trajectory constraints. Using metric preserving costs
(Table 5.1a) it follows that at each step of the plan the current c(µπ) is the
sum of all applied action costs plus the sum of all penalties for leaving an
accepting state minus the rewards for entering an accepting state of the cor-
responding soft trajectory constraint automata A. Thus for any state the
current total cost is the sum of action costs applied up until the state plus
the penalties for any currently not achieved soft trajectory constraint. This
obviously holds in the first state after applying the init action as this sim-
ply adds the penalties for any soft trajectory constraint not in an accepting
state in the initial state of the plan. Any subsequent action then adds a
penalty for each transition from an accepting state to a non-accepting state,
in the underlying A(s), or subtracts the same value if the transition is from

88

Chapter 5. Planning with soft trajectory constraints 89

a non-accepting state to an accepting state. Thus after applying an action,
the current total cost c(µπ) is updated by adding the original action cost
and applying the penalty or reward, reflecting the current state of the soft
trajectory constraints. In the goal state, this is equal to penalty(π) + cost(π),
the original metric of the task Π.

Equally, from Proposition 11 it is clear, that the other state transition cost
tables (Table 5.1b and Table 5.1c) do not preserve this property, as at every
step in which the tracking variable τ represents a non-accepting state, the
penalty is applied. Thus, optimality is no longer preserved. This is especially
critical in planning tasks without any hard goals, as doing nothing results
in collecting every penalty only once (in the init action). For any plan with
length longer than 1 and for which the soft trajectory constraint can not be
achieved in one action this results in the optimal plan being the empty plan
(disregarding init and penalize actions). Whereas, the expected plan would
try and minimize the penalties.

The above approach using metric preserving costs (Table 5.1a) can also be
seen as a form of potential-based reward shaping (Ng et al., 1999) from
Markov decision processes, where R(s, a, s′) is the reward gathered from
going from state s to s′ with action a. In this case, negative action costs
represent rewards and positive costs represent penalties. The shaped reward
function is then R′(s, a, s′) = R(s, a, s′) + F (s, a, s′) where F is the shaping
function defined as F (s, a, s′) = γ·θ(s′)−θ(s), where θ is a potential function
defined over states. In this case, θ(s) =

∑
ϕ∈Φ[is_violatedϕ]wϕ, with the

discount factor γ = 1.

5.2 Evaluation

The compilation was implemented using the translate scripts from the Fast-
Downward planning system (Helmert, 2006), producing an intermediate
file that is then used as input to the Fast Downward planner and the Symple
planning system (Speck et al., 2018b; Speck et al., 2018a). The experiments
where then executed on a subset of the benchmark problems from the fifth
international planning competition (IPC-5 (Dimopoulos et al., 2006)) with
the added Rovers domain from the IPC-3. The original competitions where
for satisficing planning only, thus the benchmarks where not designed for
optimal planners. Instead of developing own benchmarks, the original set-
tings where sampled, such that for every planning task 7 new instances
where generated. For this, only a subset of the soft trajectory constraints
where considered (0%, 5%, 10%, 20%, 30%, 50%, 100% respectively),
whereas the original hard goals where not altered.

89

90 Chapter 5. Planning with soft trajectory constraints

Optimal solutions

In Table 5.2 the coverage for optimal planning with the goal action compila-
tion using the blind heuristic hblind, the canonical pattern database heuris-
tic hcpdb (Haslum et al., 2007), the maximum heuristic hmax (Bonet and
H. Geffner, 2001), and the merge and shrink heuristic hms (Sievers et al.,
2014) using Fast-Downward is presented along side the coverage for the
symbolic planner Symple. As can be seen, for the Fast-Downward planner,
the hmax heuristic performs slightly better than the other heuristics, with
exception of open stacks where the merge and shrink heuristic hms and the
pattern database heuristic hcpdb outperform the maximal heuristic. A rea-
son for the overall bad performance when using the hms heuristic is due
to the conditional effects not being factored, leading to bad heuristic esti-
mates (Helmert et al., 2014). Table 5.2 also shows that for the goal action
compilation the symbolic planner Symple outperforms all other approaches,
emphasizing the benefit of using compilations over native implementations.
Nevertheless, compilations also introduce a certain overhead. In the case
of the goal action compilation, this comes in the form of the conditional ef-
fects used for tracking the status of every soft trajectory constraint. In some
cases this consist of tracking over 1600 soft trajectory constraints. These
tasks however, where not solved, as even building all the automata, and
compiling the tracking effects is infeasible. In contrast the general action

Fast Downward Symple
hblind hcpdb hmax hms

open stacks 5.00% 16.43% 7.14% 13.93% 32.14%
pathways 13.81% 13.33% 19.52% 0.00% 40.95%
rovers 19.29% 18.57% 22.86% 7.86% 34.29%
storage 12.36% 8.88% 14.09% 0.00% 21.81%
trucks 22.14% 0.00% 22.14% 0.00% 0.00%

Table 5.2: Goal action compilation results for optimal planning

compilation with metric preserving penalty function (Table 5.1a) was exe-
cuted only on the blind hblind heuristic, as it is the only admissible heuristic
supporting negative action costs. This is due to the fact that it simply assigns
1 to non goal states and 0 to goal states. Therefore, the heuristic is relatively
uninformed only guided by the g-value of the nodes. This is reflected in the
coverage (Table 5.3), where the only improvement was made in the path-
ways domain. On the other hand, it does provide promising results, when
comparing the number of expanded nodes (Figure 5.4) which are slightly
lower in the general action compilation. Combined with heuristics, support-
ing negative action costs, this promises to provide better results.

As the shifted and adapted penalty functions (Table 5.1b and Table 5.1c)

90

Chapter 5. Planning with soft trajectory constraints 91

Fast Downward
hblind

open stacks 2.86%
pathways 48.10%
rovers 9.29%
storage 10.81%
trucks 13.21%

Table 5.3: General action compilation with metric preserving transition
costs results for optimal planning

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Preserving Costs 1e7

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Go
al

 a
ct

io
n

co
m

pi
la

tio
n

1e7

Figure 5.4: Node expansions for goal action compilation and general action
compilation with preserving costs

are not metric preserving, analyzing them for optimality must be taken with
caution. Optimality, in this case is only optimal in regards to the new task,
NOT the original task. However, the results in Tables 5.4 and 5.5 illustrate,
that with improved heuristic friendliness, the coverage can be increased.
This emphasizes the fact that heuristics supporting negative action costs
would also improve the results of the metric preserving penalty function.

Fast Downward Symple
hblind hcpdb hmax hms

open stacks 2.86% 14.29% 2.86% 13.96% 25.56%
pathways 48.10% 45.71% 48.10% 20.00% 71.90%
rovers 6.43% 6.43% 6.43% 6.43% 33.09%
storage 10.81% 9.07% 10.81% 7.72% 59.26%
trucks 12.50% 0.00% 11.43% 0.00% 0.00%

Table 5.4: General action compilation with positively shifted transition costs
results for optimal planning

91

92 Chapter 5. Planning with soft trajectory constraints

Fast Downward Symple
hblind hcpdb hmax hms

open stacks 2.86% 14.29% 2.86% 13.96% 25.28%
pathways 48.10% 45.71% 48.10% 20.00% 74.29%
rovers 10.00% 10.00% 10.00% 7.86% 40.71%
storage 10.81% 9.07% 10.81% 7.53% 56.09%
trucks 13.21% 0.00% 12.86% 0.00% 0.00%

Table 5.5: General action compilation with adapted transition costs results
for optimal planning

Satisficing solutions

When running the planning tasks on a satisficing setting (finding nonopti-
mal plans using the hff heuristic), obviously the coverage increases. One
drawback, here is that only the goal action compilation, and the general ac-
tion compilation with the shifted cost and adapted costs are supported, as
negative action costs are not supported by non of the non-admissible heuris-
tics implemented in the Fast Downward planning system. Additionally, the
Symple planning system does not support negative action costs nor satisfy-
ing planning. Therefore, Symple was not used for this setting. Even though
the shifted and adapted penalty functions are not metric preserving, the
quality of the resulting plans can be compared, by ignoring the plan length
or action costs, focusing purely on the soft constraint penalties. Note that
for the pathways domain no hard goals where specified, thus the goal was
to maximize the achieved soft trajectory constraints. As the general action
compilation with shifted or adapted penalty adds penalties for remaining in
non-accepting states of the constraints, the empty plan is sometimes optimal
in the sense that doing nothing becomes the viable option. This obviously
does not reflect the original intent of the task, and is a fragment of the non
metric preserving compilations. In Figure 5.5 the results for the three com-
pilations are presented, showing that in the cases where a plan was found,
the plan quality is very high, as the real penalty (collected for not achiev-
ing the constraints) is way lower than the total possible penalty (Maximal
penalty if no constraint where fulfilled).

Analyzing the results for the rovers domain (Figure 5.6), it becomes appar-
ent, the the different compilations sometimes result in a high variance, con-
cerning the coverage.Although all compilations provide results with relative
low penalties, the number of solved tasks is highest for the goal action com-
pilation (50 in total), whereas the general action compilations where only
able to solve 26 (shifted transition costs) and 9 (adapted transition costs)
instances. This is the result of the necessity of compiling away conditional
effects together with state-dependent action costs (Section 4.2), adding a

92

Chapter 5. Planning with soft trajectory constraints 93

large overhead to the planning task (First adding conditional effects and
state dependent action costs, and then compiling them away again). A mas-
sive improvement here would be to natively implement the changeset se-
mantics (Definition 42) in to the planning system, removing the necessity of
compiling away the state dependent action costs and conditional effects.

For the storage domain (Figure 5.7), it can be seen, that the goal action
compilation again produced the best results, not only for coverage, but also
in quality, with high penalties in both general action compilations. Similar
results are observed for the trucks domain (Figure 5.8).

Fast Downward
preserving shifted adapted goal action

open stacks 0 % 14.29% 14.29% 86.79%
pathways 0 % 48.10% 48.10% 63.33%
rovers 0 % 19.29% 22.14% 51.43%
storage 0 % 10.81% 10.81% 28.19%
trucks 0 % 39.29% 45.00% 86.07%

Table 5.6: Coverage of Fast Downward with satisficing planning

Symple
preserving shifted adapted goal action

open stacks 0 % 24.64% 24.29% 0 %
pathways 0 % 71.90% 74.29% 0 %
rovers 0 % 32.86% 40.71% 0 %
storage 0 % 30.89% 29.34% 0 %
trucks 0 % 0 % 0 % 0 %

Table 5.7: Coverage of Symple with satisficing planning

Comparing the results for the goal action compilation to the results of the
original IPC-5 competition, Table 5.8 shows the times each configuration
produced a plan with the lowest penalty. The two planners considered for
comparison where HPlan-P (J. Baier et al., 2006) and MIPS-XXL (Edelkamp
et al., 2006). These two planners where awarded with the Distinguished
Performance in Satisficing Planning (SimplePreferences Domains) and Distin-
guished Performance in Satisficing Planning (QualitativePreferences Domains)
awards, and therefore provide a reasonable basis for comparison. Simple
preferences hereby refer to soft goal constraints (at-end constraints), and
qualitative preferences are any other kind of soft trajectory constraint. Even
though, modern hardware provides much better performance, the aim was
to find plans with lower penalty, disregarding planning time. As can be
seen in Table 5.8 the goal action compilation provides slightly better results
compared to the others.

93

94 Chapter 5. Planning with soft trajectory constraints

Goal Action C. HPlan-P MIPS-XXL
wins 45 38 35

Table 5.8: Comparison to original IPC-5

94

Chapter 5. Planning with soft trajectory constraints 95

Instance0

500

1000

1500

2000

Real Penalty
Max Penalty

(a) Goal action compilation

Instance0

200

400

600

800

1000

1200

1400
Real Penalty
Max Penalty

(b) General action compilation with shifted transi-
tion costs

Instance0

200

400

600

800

1000

1200

1400
Real Penalty
Max Penalty

(c) General action compilation with adapted tran-
sition costs

Figure 5.5: Results for the pathways domain with satisficing planing

95

96 Chapter 5. Planning with soft trajectory constraints

Instance0

200

400

600

800

1000

1200

1400 Real Penalty
Max Penalty

(a) Goal action compilation

Instance0

50

100

150

200

250

300 Real Penalty
Max Penalty

(b) General action compilation with shifted transi-
tion costs

Instance0

50

100

150

200

250

300 Real Penalty
Max Penalty

(c) General action compilation with adapted tran-
sition costs

Figure 5.6: Results for the rovers domain with satisficing planing

96

Chapter 5. Planning with soft trajectory constraints 97

Instance0

1000

2000

3000

4000

5000

6000

7000

8000
Real Penalty
Max Penalty

(a) Goal action compilation

Instance0

100

200

300

400

500 Real Penalty
Max Penalty

(b) General action compilation with shifted transi-
tion costs

Instance0

100

200

300

400

500 Real Penalty
Max Penalty

(c) General action compilation with adapted tran-
sition costs

Figure 5.7: Results for the storage domain with satisficing planing

97

98 Chapter 5. Planning with soft trajectory constraints

Instance0

50

100

150

200

250 Real Penalty
Max Penalty

(a) Goal action compilation

Instance0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Real Penalty
Max Penalty

(b) General action compilation with shifted transi-
tion costs

Instance0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Real Penalty
Max Penalty

(c) General action compilation with adapted tran-
sition costs

Figure 5.8: Results for the trucks domain with satisficing planing

98

Chapter 6

Soft trajectory constraints in
FOND planning

As with classical planning, one can also formulate trajectory constraints to-
wards the resulting policy. Here, the same PDDL 3.0 constraints are used,
but as policies are not a linear sequence of actions the semantics of the tra-
jectory constraints is slightly modified. Two possible interpretations are that
all execution paths from the initial state s0 to the goal state s? following
the policy π must fulfill the trajectory constraint ϕ (universal interpretation
A.ϕ), or that it is sufficient to have at least one execution path fulfilling
the constraint (existential interpretation E .ϕ) (Pistore and Vardi, 2007). In
some cases these A.ϕ and E .ϕ however, are to strict and more flexible in-
terpretations are required, such as the two length combination AE .ϕ and
EA.ϕ. These state that for every prefix there exists a suffix fulfilling ϕ or
that there exists a prefix such that every suffix fulfills ϕ respectively (Pistore
and Vardi, 2007).

In FOND planning, one could use the quality of a policy determined by the
number state action pairs. However, when dealing with soft trajectory con-
straints, the smallest policy is not always the best policy (in regards to the
constraints) as they may ignore constraints all together. It is therefore of-
ten beneficial to take larger policies into account that fulfill the constraints.
Therefore, an alternative quality measure is used, based on the Bellman op-
timality equation (Bellman and Dreyfus, 2015; Bertsekas et al., 2005) used
in MDP planning, which basically calculates the expected total cost of exe-
cuting an action in a given state.

Definition 50 (Policy trace). A policy trace

µ = (〈s0, a0〉), . . . , 〈sn−1, an−1〉, 〈sn, ∅〉)

for policy π in planning task Π is a sequence of state action pairs with:

99

100 Chapter 6. Soft trajectory constraints in FOND planning

• s0 is the initial state of the planning task Π

• sn accepts the goal condition (sn |= s?)

• si+1 ∈ si[ai] for all i = 0, . . . , n

Let Mπ be the set of all possible traces µ consistent with π,

Definition 51 (Policy quality in FOND planning). Given a policy π, a goal
condition s? and a state s. The quality of s in π is then calculated by the
equations:

V π(s) =

{
0 ifs |= s?

Qπ(s, π(s)) otherwise
(6.1)

Qπ(s, a) = ca +
∑

s′∈S
P[s′|s, a] · V π(s′) (6.2)

where the probability of reaching state s′ after applying action a in state s,
P[s′|s[a]] is assumed to be uniformly distributed over all possible outcomes
of a. The quality of a policy π is then Qπ = V π(s0), and an optimal policy
is then a policy with the lowest expected cost π? = argminπ∈ΠV

π(s0).

This definition is equivalent to the expected total cost c(µ) over all possible
traces µ ∈Mπ from the initial state s0 to the goal state s?.

Qπ = E[c(µ)|µ ∈ π] (6.3)

c(µ) =
∑

i∈µ
cai (6.4)

Equation 6.1 can be rewritten iteratively:

Qπ =

{
0 ifs0 |= s?∑
µ∈Mπ

P(µ|π) ∗ c(µ) otherwise
(6.5)

P(µ|π) =
∏

i∈µ
P[si+1|si, ai] (6.6)

with
∏
i∈µ P[si+1|si, ai] = 0 for infinite traces µ = (s0, s1, . . .). This defini-

tion can then be easily adapted to incorporate soft trajectory constraints by
adding the penalties to the total cost c(µ) of the given trace. Given a set of
soft trajectory constraints Φ and their associated value ωϕ the cost of a trace
is defined as:

cγ(µ) =
∑

i∈µ
cai +

∑

ϕ∈Φ|µ6|=ϕ
ωϕ (6.7)

100

Chapter 6. Soft trajectory constraints in FOND planning 101

Minimizing Qπ will then result in the planning system trying to achieve
universal achievement of the soft trajectory constraints (A.ϕ). As soft tra-
jectory constraints are not required to be fulfilled in the goal state, some soft
constraints might not be achieved at all and others only on some traces, re-
sulting in existential achievement(E .ϕ) of the constraints. An optimal plan,
fulfilling all constraints however will achieve universal achievement(A.ϕ).

The following section describes a method of planning in FOND with state
trajectory constraints using the heuristic search algorithm LAO∗, which
given a consistent heuristic generates the optimal policy.

Guiding the search towards fulfilling the soft trajectory constraints.

For a FOND planning task Π with soft trajectory constraints Φ, the same
approach as described in Chapter 5 can be applied. However, to be able
to apply the reward shaping described in the general action compilation
(Section 5.1) an equivalent definition of state-dependent action costs needs
to be added to the FOND setting. As the effect of an action is not only
dependent on the current state but also on a non-deterministic choice, the
action cost function would have to be state and possibly effect dependent.
This can be modeled by adding a state-dependent action cost function to
every possible outcome of the action:

Definition 52 (State- and effect-dependent action costs). Given an action
a = 〈pre, eff〉 with non-deterministic effects eff = 〈eff1, . . . , effn〉 then a cost
function ca(s)effi : S → N for every effi ∈ eff is defined assigning a cost of
application to every possible outcome of the action a.

As the compilation introduced in Section 5 increases the search space signifi-
cantly (worst case double exponential), an alternative approach was chosen
for the FOND setting.

Given a FOND planning task with soft trajectory constraints Π = 〈V,A, s0,
s?,Φ〉 the first step is to track the state of each soft trajectory constraint
ϕ ∈ Φ, and secondly adapt the heuristic to guide the search in to fulfilling
them.

Tracking soft trajectory constraints in FOND planning. Given a FOND
planning task Π = 〈V,A, s0, s?,Φ〉 with the set of variables V, a set of non-
deterministic actions A, an initial state s0, a goal definition s? and a set
of soft trajectory constraints Φ. First a deterministic finite automaton Aϕ
is created for every soft trajectory constraint ϕ ∈ Φ. Then, for every Aϕ a
tracking variable τϕ with domain Dτϕ = size(Aϕ) tracking state of Aϕ along
the current trace is added to V and initialized in s0 to the initial state of

101

102 Chapter 6. Soft trajectory constraints in FOND planning

Aϕ. Then for updating the tracking variables τ the definition of the action
application (Definition 37) is altered:

Definition 53 (Action application with trajectory constraint tracking).
Given an action a = 〈pre, eff〉 with precondition pre and a non deterministic
effect eff = {eff1, . . . , effn} the result of applying action a in state s is defined
as the new set of states

S ′ = {s′1, . . . , s′n}

with si = update(eff1, s)

The update(effi, s) function takes the effect effi and applies it to state s such
that s′i = [effi]s. Additionally, for every soft trajectory constraint ϕ ∈ Φ
the corresponding tracking variable τϕ is updated. This is done by checking
every outgoing transition 〈q, δ, q′〉 for q = s(τϕ). If s′i |= δ then s′i(τϕ) = q′.

Guiding the search. Now that the status of the soft trajectory constraints
can be tracked during the search process, it needs to be guided towards ful-
filling them. In contrast to the previous work described in Section 5, the ac-
tion costs are not altered, as to keep the planning task compact and prevent
state-dependent action costs. Therefore, an alternative way of informing the
heuristic is required. For this the transition cost table (Table 5.1) is revis-
ited, and the heuristic value h(s) augmented by the penalty/reward value.
A slight generalization of heuristics is used, defining heuristics over state
traces µ = (s0, . . . , sn), instead of states, where l(µ) denotes the last state
of the trace µ. This is done, as the heuristic value taking state trajectory
constraints into account, depends on the trace µ for reaching the current
state, and the trace µ′ of reaching a goal state.

The optimal soft trajectory constraint aware heuristic h∗(µ) minimizing the
expected cost of reaching the goal state s? from any current state last(µ) is
given by

h∗(µ) = min
πl(µ)∈Π

E
[
ch(µ, µ′)|µ′ ∈Mπl(u)

]
(6.8)

ch(µ, µ′) =

|µ|∑

i=0

cai +
∑

ϕ∈Φ|(µ,µ′) 6|=ϕ
ωϕ (6.9)

where πl(µ) is a strong cyclic policy starting at l(µ), and Mπl(u)
the set of all

traces consistent with πl(u). This can be rewritten as the sum over expected

102

Chapter 6. Soft trajectory constraints in FOND planning 103

values:

h∗(µ) = min
πl(µ)∈Π

(

E
[
c(µ′)|µ′ ∈Mπl(u)

]
+

E

 ∑

ϕ∈Φ|(µ,µ′) 6|=ϕ
ωϕ

 |µ′ ∈Mπl(u)

)

(6.10)

Calculating h∗ is however equivalent of finding an optimal plan. Therefore,
a new heuristic function based on classical heuristics is needed. Given a
trace µ, and a set of soft trajectory constraints Φ with their associated values
ωϕ, the new heuristic function is given by

h′(µ) = hc(l(µ)) + min
πl(µ)∈Π

E

 ∑

ϕ∈Φ|(µ,µ′) 6|=ϕ
ωϕ

 |µ′ ∈Mπ

 (6.11)

where hc is a classical heuristic using the all outcome determinization 1

ignoring the soft trajectory constraints to calculate the heuristic of a state in
a FOND task. As

p(µ) = min
πl(µ)∈Π

E

 ∑

ϕ∈Φ|(µ,µ′) 6|=ϕ
ωϕ

 |µ′ ∈Mπ

in general, is still hard to compute, three possible approximations are pre-
sented.

Zero penalty approximation. The trivial way of approximating p is to
simply ignore it by replacing p by 0, resulting in h′(µ) = hc(l(µ)). However,
this is uninformative regarding the soft trajectory constraints.

Relaxed reachability approximation. The idea here is, that given the
tracking variable τϕ for a soft trajectory constraint ϕ, storing the status of
the underlying DFA A = 〈Σ, Q, q0, Qa〉. If τϕ can not assume the value of an
accepting state τϕ ∈ Qa in the relaxed planning task starting at l(µ), add the

1Every possible outcome of an action is encoded in to a new action, and the planner
selects the most suitable outcome.

103

104 Chapter 6. Soft trajectory constraints in FOND planning

penalty ωϕ for ϕ to the heuristic value. Formally p(µ) is replaced by p+(µ)
with

p+(µ) =
∑

ϕ∈Φ

ω ∗ [(τϕ = v for some v 6∈ Qa) is relaxed reachable from l(µ)]

(6.12)
For this, it is necessary to calculate the relaxed plan such as in the hmax or
hadd heuristic. For better performance, a second approximation is provided,
not relying on any additional calculations during search.

Automaton reachability approximation. Alternative to the checking if
the abstract planning task may assume an accepting value of τϕ it is also
possible to simply check if reaching an accepting state in the DFA A =
〈Σ, Q, q0, Qa〉, ignoring edge labels, is possible from the current value of
τϕ in state l(µ). This can be done by a simple automaton reachability check
from the current value of τϕ, to any accepting state q ∈ Qa. This can be ef-
fectively computed by simply precomputing for every a state q ∈ Q if there
exists an accepting state q? ∈ Qa such that q? is reachable from q ignoring
edge labels. Formally p(µ) is replaced by pA(µ) with

pA(µ) =
∑

ϕ∈Φ

ωϕ ∗ [Aϕ(l(µ)(τ)) ∩Qa = ∅] (6.13)

(6.14)

where Aϕ(v) is the set of states in Aϕ reachable from state v ignoring edge
labels.

Proposition 12. If hc is admissible then the heuristic function h′ with re-
laxed reachability approximation is admissible.

Proof. Following the inequality

min(f(x)) + min(g(x)) ≤ min(f(x) + g(x)) for all x ∈ R (6.15)

h∗(µ) can be approximated by its lower bound h∗(µ) = a(µ) + p(µ), where

a(µ) = min
πl(µ)

(
E
[
c(µ′)|µ′ ∈Mπl(µ)

])
+ (6.16)

p(µ) = min
πl(µ)

E

 ∑

ϕ∈Φ|(µ,µ′) 6|=ϕ
ωϕ

 |µ′ ∈Mπl(µ)

 (6.17)

Let h∗c be the classical perfect soft trajectory constraint agnostic heuristic
function over the all outcome determinization. Then

h∗c(µ) ≤ a(µ) (6.18)

104

Chapter 6. Soft trajectory constraints in FOND planning 105

as the all outcome determinization chooses the cheapest possible outcome
for an action, and the minimum over the possible outcomes is strictly less or
equal to the expected value:

h∗c(µ) = min
πl(µ)

(
min

[
c(µ′)|µ′ ∈Mπl(µ)

])
≤

min
πl(µ)

(
E
[
c(µ′)|µ′ ∈Mπl(µ)

])
= a(µ)

(6.19)

Thus, it is sufficient to show that the penalties p+ gathered by the relaxed
reachability approximation is less or equal to p (p+ ≤ p). This is now shown
for a single soft trajectory constraint ϕ, as the generalization for all soft
trajectory constraints follows by simply summing up all constraint penalties.
This is now shown on a case-by-case basis:

• If there exists a trace µ′ ∈ Mπ so that (µ, µ′) |= ϕ holds, then the
fact τϕ = q for some q ∈ Qa is reachable from l(µ), and therefore
also relaxed reachable from l(µ). Thus, p+(µ) = 0 but p ≥ 0 as the
expected value in p may contain traces for which ϕ is not fulfilled
(p+ ≤ p).

• If for all traces µ ∈ Mπ it holds that (µ, µ′) 6|= ϕ, then p(µ) = ωϕ and
as p+(µ) ≤ ωϕ, it follows that p+ ≤ p.

From this follows that p+ ≤ p, and because hc ≤ h∗c (for admissible heuristic
functions hc)

h′(µ) = hc(l(µ)) + p(µ) ≤ h∗c(l(µ)) + p(µ) ≤ a(µ) + p(µ) ≤ h∗(µ) (6.20)

holds by definition of h′, admissibility of hc, Equation 6.18 and p+ ≤ p, and
Equation 6.15.

Corollary 2. If hc is admissible then the heuristic function h′ with automa-
ton reachability approximation is admissible.

Proof. As every accepting state q ∈ Qa reachable in the relaxed task is also
reachable in the automaton reachability.

Additionally there may exist accepting states q ∈ Qa that are reachable
in the automaton, but not reachable in the relaxed task. This follows,
that some automaton transition requirements might never become true (un-
reachable in the planning task).

As a final remark to soft trajectory constraint aware heuristics concerns the
goal awareness.

105

106 Chapter 6. Soft trajectory constraints in FOND planning

Proposition 13 (Goal awareness). As soft trajectory constraints add posi-
tive penalties to the original heuristic hc if the constraint is not fulfilled. This
leads to a heuristic value (as calculated in Equation 6.11) h′ > 0 in states s
that fulfill the goal condition s |= s? but do not fulfill the constraints. How-
ever, if all traces fulfill the soft constraints, there will be no penalty added
to the goal state heuristic values. Thus, only in this case goal awareness is
preserved.

One drawback of this approach is that it is planner specific and needs to
be implemented for every planning system that requires soft trajectory con-
straints. On the other hand, this approach keeps planning task compacter,
as no additional actions, conditional effects or state-dependent action costs
are required.

Note that this approach can be extended to hard trajectory constraints by
adding the fact that each τϕ must represent an accepting state to the goal
condition, similarly to trajectory constraints defined in Section 5. For the
case of hard constraints Camacho et al. (2017) provides a more general
method not restricting the LTL formula to the ones provided by PDDL 3.0,
compiling the FOND task with hard LTL constraints (or temporally extended
goals) to a classical FOND task. In general, these FOND tasks with tem-
porally extended goals are 2EXPTIME-complete (De Giacomo and Rubin,
2018).

Empirical Evaluation

For the empirical evaluation, the above concept was implemented into the
MyND (Mattmüller, 2013) planner. The benchmark set consisted of the
same domains and instances as the ones used in Section 5.2. Addition-
ally, the existing blocksworld domain with nondeterministic actions (Exam-
ple 9) was augmented to include soft trajectory constraints (blocksworld-stc
in Table 6.1). The experiments where then executed with the hmax and hff

heuristic with the automaton reachability approximation. As can be seen
in Table 6.1 in most cases the coverage of the MyND implementation is
comparable to the coverage by the compilation approach executed by Fast
Downward and Sympl (Compared with their best results in optimal and sat-
isficing configuration). In the case of the augmented blocksworld domain
blocksworld-stc the coverage was almost 100% as the generated instances
where smaller than the deterministic domains or the unaltered blocksworld
domain, and the number of soft trajectory constraints was also lower. As al-
ready discussed previously, a more informed heuristic such as in the relaxed
reachability approximation would further improve the overall coverage of
the approach, especially when using the hmax heuristic. Additionally, a more

106

Chapter 6. Soft trajectory constraints in FOND planning 107

informed heuristic, could also improve on the overall quality of the found
policies, as with the automaton reachability approximation the policies of-
ten do not fulfill many soft trajectory constraints, as depicted in Figure 6.1,
Figure 6.4, and Figure 6.5.

Fast Downward Symple MyND
hff hmax hff hmax

open stacks 86.79% 7.14% 32.14% 68.57% 0.00%
pathways 63.33% 19.52% 40.95% 46.67% 40.95%
rovers 51.43% 22.86% 34.29% 67.86% 19.29%
storage 28.19% 14.09% 21.81% 51.42% 49.41%
trucks 86.07% 22.14% 0.00% 36.07% 13.93%
blocksworld – – – 70.00% 30.00%
blocksworld-stc – – – 93.88% 93.88%

Table 6.1: Comparing goal action compilation with MyND implementation
on deterministic instances

0

1000

2000

3000

4000

Real Penalty
Max Penalty

Figure 6.1: Open stacks domain maximal penalty vs. gathered penalty

107

108 Chapter 6. Soft trajectory constraints in FOND planning

0

1000

2000

3000

4000

5000

6000

7000 Real Penalty
Max Penalty

Figure 6.2: Pathways domain maximal penalty vs. gathered penalty

0

2000

4000

6000

8000

10000

12000

14000
Real Penalty
Max Penalty

Figure 6.3: Rovers domain maximal penalty vs. gathered penalty

0

1000

2000

3000

4000

5000

6000 Real Penalty
Max Penalty

Figure 6.4: Storage domain maximal penalty vs. gathered penalty

108

Chapter 6. Soft trajectory constraints in FOND planning 109

0

200

400

600

800

1000 Real Penalty
Max Penalty

Figure 6.5: Trucks domain maximal penalty vs. gathered penalty

0

20

40

60

80

100

120

140
Real Penalty
Max Penalty

Figure 6.6: Blocksworld domain maximal penalty vs. gathered penalty

109

Chapter 7

Application in Digital
Preservation

A major issue, when dealing with digital content is the loss of data. This
can be the result of missing or faulty data management. In the case of
university research, the additional issue of frequent staff change is added to
the problem. Data that is stored on laptops, tablets, USB sticks and other
individual devices may be lost due to hardware failure or the fact that the
employee responsible for the data leaves the university. Many institutions
provide some kind of central storage system, where employees may store
their data. However, in most cases, no regulation on what data is required
to be stored on the central server are in place, nor any guidelines on how the
data is organized exist. This leads to the case, that most users develop their
own unique way of storing and organizing data on laptops, private drives,
USB sticks and the central server. This leads to a decentralized and, for an
outsider, unorganized storage of data. This leads to irretrievable data, in the
sense that it is known to exist, but it is unknown where or in what format.
This results in a massive workload on the side of researchers trying to recall
and built upon existing results. Additionally, from a systems administrators
perspective, it is unknown which data may be deleted freeing resources for
other users, resulting in data from users long gone still occupying resources.
One solution to these issues is digital preservation. It provides guidelines,
software, and hardware to store data for a long time in an organized and
retrievable way. The main topics of digital preservation include among other
things:

1. Data appraisal provides policies describing which data needs to be
archived, and which data is explicitly not archived. For instance publi-
cations are usually archived along with software used to generate the
underlying data. On the other hand the generated data itself must not

110

Chapter 7. Application in Digital Preservation 111

be archived, if it can be regenerated from the software.

2. Data identification deals with the problem of uniquely identifying
data by assigning (system)unique resource identifiers, and descriptive
meta data. In the case of a publication, such meta data may consist of
the title and where it was published.

3. Data integrity ensures the integrity of the digital files by providing
means to protect the files from intentional or unintentional alterations,
as well as means of identifying these changes. A classical way of iden-
tifying alterations is to store a hash value alongside the files.

4. Data characterization deals with identifying the kind of data which is
archived, and in which format it is stored. Additionally, it also provides
means of identifying how a given file may be read or interpreted at a
later stage. In the case of a publication, this will usually identify the
file as a PDF or WORD file, and associate the respective readers, or
format specifications for the file type.

5. Data sustainability deals with the issues concerning longevity of a
file. It may enact processes for file conversion from older obsolete
formats to newer open standards.

6. Data authenticity provides means of ensuring that the files stored in
the archive are the files they claim to be.

7. Data access provides measures to ensure regulated file access such as
access control and security.

To support the BrainLinks-BrainTools cluster of excellence at the Albert-
Ludwigs University of Freiburg in their goal of applying digital preserva-
tion to their research process, a software called OntoRAIS was developed.
This software deals with the issues of integrity, characterization, authentic-
ity and access as defined in the above list. As research data, in contrast to
data from cultural heritage, is usually more short lived, with data usually
obsolete within a couple of years (with exception of publications), due to
research advances, data sustainability was not a priority in this project.

The rest of this chapter introduces OntoRAIS (Ontology based Research
Archival Information System) and its components. One major issue when
dealing with such information systems is the constant evolution of the soft-
ware and its context. Thus, processes that are executed using the software
need to be specified in a flexible way, which can adapt to changing require-
ments. For this a light weight workflow description language is presented
in Section 6, followed by a method for generating such workflows applying
FOND planning.

111

112 Chapter 7. Application in Digital Preservation

7.1 OntoRAIS

The OntoRAIS system consist of four major modules (Figure 7.1). The client
applications providing user friendly interaction with the services provided
by the server application. The server provides services for ingesting and an-
notating files, user management, process management, and access control.
The storage is a simple redundant storage drive an is not closer described in
this work. Finally, OntoRAIS facilitates ontology based data access (consist-
ing of the library QUEST, an Ontology, a set of mappings , and a database,
described in more detail in Section 7.1.2) to retrieve data from the database
in a meaningful way .

Figure 7.1: OntoRAIS system architecture

7.1.1 Clients

Two clients were implemented, providing interaction with the back end ser-
ver via a traditional WEB API based on HTTP(S). The web client hereby pro-
vides an interface for the core functionality of adding new files, and anno-
tating and linking them to each other. Additional to adding new files to the
archive, a major use case is the access of existing files. Therefore the client
provides interfaces for searching, accessing, and downloading files. Fur-
thermore a simple project management system was implemented such that
people and files can be assigned to projects reflecting the research projects

112

Chapter 7. Application in Digital Preservation 113

carried out by the individual research groups within the cluster. Figure 7.2
shows the view of an archived object, and Figure 7.3 shows the view of a
research project in the archive. Figure 7.4 shows the meta data entry step
of the process ingesting an article to the archive. Additionally, the web

Figure 7.2: Object view in web client

client provides the interface for managing the archive itself such as user and
process management. One shortcoming of the web client is the fact that the
HTTP protocol is not suitable for large file uploads. Additionally, the web
client does not integrate in to existing research workflows too well, as it
requires the user to fully ingest all files together with all the meta data at
once, and the fact that it needs to be executed in the browser. Therefore, a
light weight desktop client was developed, providing only the basic upload
functionality together with a minimum of meta data required for later iden-
tification. The missing meta data, links, and project assignments can then
be later added using the web client.

7.1.2 Server

This is the main component of the archiving system, it provides a web API
for interacting with the systems components, and manages the stored data.
It is responsible for performing integrity checks, and provides user access

113

114 Chapter 7. Application in Digital Preservation

Figure 7.3: Project view in web client

Figure 7.4: View of ingest process in web client

114

Chapter 7. Application in Digital Preservation 115

Figure 7.5: View of the desktop client

control to the individual resources. One outstanding feature of the archi-
tecture is that it applies ontology based data access to manage the underly-
ing data. Hereby, business objects are modeled using an Ontology, and the
data is stored in a database. This adds a semantic layer on top of the data
layer, adding flexibility to defining data and relations. In contrast to classical
database driven applications, the data is not queried using SQL but rather
the SPARQL query language. This approach combines the expressiveness of
ontologies with the storage capabilities of databases. In the following this
method is briefly introduced.

Ontology based data access

Definition 54 (Ontologies). A ontology signature is a tuple

〈NC ,NR,NO〉

where NC is a set of concept names, NR a set of role names, and NO a set
of individuals. The ontology O itself is a tuple

〈T -Box,A-Box〉

where the T -Box consists of concept assertions, stating how concepts and
roles are related to each other, and the A-Box consists of concept and role
assertions.

115

116 Chapter 7. Application in Digital Preservation

Depending on the underlying description logic (DL) the available concept
construction rules vary. In the rest of the thesis the ALCQ fragment (Baader
et al., 2010) is used.

Definition 55 (ALCQ). The ALCQ language is constructed by the follow-
ing rules:

ALCQ := ⊥|>|A|¬C|C uD|C tD|∃R.C|∀R.C| ≤ nR.C| ≥ nR.C

where >,⊥ are the universal an empty concepts respectively. A is an atomic
concept and ¬C the negation. C u D and C t D are the intersection and
union of two concepts. Finally, ∃R.C,∀R.C,≤ nR.C,≥ nR.C are quantified
concept constructors.

When dealing with modern ontology languages such as OWL (W3C, 2012)
roles are often defined as relations between domain types and range types.
Formally, this is defined as

domain(R) = C := ∃R.> v C
range(R) = C := > v ∀R.C

with R ∈ NR and C a concept, stating that the domain (left hand side) or
range (right hand side) of the role r may only be of type C.

From above definitions, the possible T -Box and A-Box assertions can be
defined:

Definition 56 (T -Box assertions). The T -Box consist of the following type
assertions:

1. C v D (general inclusion axioms) with C,D a concept, stating that
the set of individuals of concept C is a subset of the set of individuals
of concept D.

Note that the domain domain(R) = C and range range(R) = C assertions,
are a simple abbreviation for such an assertion.

Definition 57 (A-Box assertions). TheA-Box consists of two possible types
of assertions:

1. i R j (role assertion) with i, j ∈ NO and R ∈ NR stating that i is in
relation R with j.

2. i : C (concept assertion) with i ∈ NO and C ∈ NC stating that indi-
vidual i is of concept C.

Ontology based data access is then the process of accessing data stored in a
database through a semantic layer provided by an ontology (Bagosi et al.,
2014).

116

Chapter 7. Application in Digital Preservation 117

Definition 58 (Ontology based data access system). An ontology based
data access system is a tuple D = 〈O,B,M〉, where O is an ontology sig-
nature together with a T -Box. B is a relational database storing the A-Box
assertions, and M is a set of mappings ψ(C) → ϕ(C) from concepts and
roles to database entries, where ψ is a SPARQL (W3C, 2013) query over O
with free variables X, and ϕ is a SQL query over B returning values for X
(Bagosi et al., 2014).

Example 22. Using the ontop (Bagosi et al., 2014) framework and an on-
tology O with the signature:

NC = {BOOK,TITLE}
NR = {hasTitle}
NO = {1, The Description Logic Handbook}

and an empty T -Box.

The mapping for BOOK inM could be defined as:

ψ(BOOK) := ?id : BOOK

ϕ(BOOK) := SELECT id FROM books_table

and the mapping for hasTitle could be defined as:

ψ(hasTitle) := ?id hasTitle ?title

ϕ(hasTitle) := SELECT id, title FROM title_table

Note, that the columns from the SQL select queries correspond to the free
variables (marked by ?) from the SPARQL query. Given the database tables
in Table 7.1 the induced A-Box is then

1 : BOOK

1 hasTitle “The Description Logic Handbook”

stating that the individual 1 is a book with the title “The Description Logic
Handbook”.

books_table title_table
id id title
1 1 The Description Logic Handbook

Table 7.1: Database tables for BOOK and hasTitle

While ontology based data access provides ways of retrieving an A-Box
from a database, it doe not provide ways of storing new assertions. This

117

118 Chapter 7. Application in Digital Preservation

is due to the view update problem (Tomasic, 1988), that, given a projection
from multiple databases/tables to a singe view, find the minimum necessary
changes to the underlying databases/tables, such that the wanted update to
the view is realized. In this work the QUEST library (Bagosi et al., 2014)
was used which provides all required OBDA functionality for the OntoRAIS
application.

Objects in the server’s data layer are modeled using such an ontology. Hereby,
every class in the data layer represents a concept in the ontology, and mem-
bers of the classes represent roles. Additionally every class has a member
for storing the unique identifier of the object. Instantiating an object then
consist of a SPARQL query to the ontology based data access system. For
adding new instances, corresponding to an A-Box assertion, the underlying
database needs to be updated. In general this is nontrivial and is an instance
of the view update problem. However, by applying rigid restrictions to how
the mappings in M are defined, this can be circumvented. Therefore, the
requirements towards the mappings M is such that each SQL query in ϕ
consists of a single SELECT statement over a single table only. This SELECT
query can then easily be used to generate update, delete, and insert state-
ments using simple query rewriting:

Example 23 (Transforming simple SELECT queries). From a given simple
SELECT query of the form

SELECT id, col1, . . . , coln FROM table

the insert, delete and update queries can be rewritten as:

UPDATE table SET col1 = v1, . . . , coln = vn WHERE id = id

INSERT INTO table(id, col1, . . . , coln) VALUES (id, v1, . . . , vn)

DELETE FROM table WHERE id = id

Once the data layer of the application is modeled, processes for interacting
and modifying the data is required. Thus, a way of modeling the processes
or workflows for the individual business cases is needed. The main busi-
ness case for a digital preservation system is the ingestion of new data to
the archive. In general this process will consist of uploading files, entering
meta data, and linking to projects, authors, and related work. Most existing
preservation systems are aimed at archival experts such as librarians or cus-
todians. Therefore, one aim of this project was to develop user interfaces
focused on research employees, with limited knowledge of digital preser-
vation. Additionally, to the optimized user interfaced, the workflows also
needed optimization in regards to usability and effectiveness, reducing the
workload and mental burden of the users. Therefore, a individual workflow
for every data type is required. As creating these workflows manually is

118

Chapter 7. Application in Digital Preservation 119

tedious, error prone, and need to be updated whenever the requirements
towards the system changes, an automated approach is desirable. In the
following a method for generating such workflows is presented.

Automatic workflow generation

The workflows considered here are for adding new documents to the archive.
However, this can be generalized to any kind of data driven workflow, where
the target is the entry of some information to a knowledge base (e.g. user
creation).

Such a workflow consist of two types of actions, one for collecting infor-
mation such as user interaction or web service calls, and the second for
actually creating the A-Box assertions and adding new individuals to NO.
In this setting it is assumed that the T -Box stays unaltered.

Additionally, one must distinguish two types of concepts. Primitive concepts,
which are always atomic concepts, and correspond to primitive data types
such as strings. In the example above this would be TITLE, which corre-
sponds to a simple string. And on the other hand complex concepts, such as
ARTICLE from above example, which do not correspond to a single primitive
value. Workflows may only be generated for a single complex concept.

Formally: Given a concept CT , generate a workflow (consisting of above
mentioned action types) such that after executing the workflow, a set of
new individuals has been added to NO and a set of A-Box assertions has
been created, ensuring that all relevant data has been added. Relevant
data is considered to be any related concept CT

′ and role R such that
domain(R) = CT

′ ∈ T -Box and range(R) = CT ∈ T -Box for some R ∈ NR
or vice versa. Thus, the set of individuals added to NO consists of an indi-
vidual of type CT and an individual for all possible primitive concepts CT

′.
If the concept CT

′ is complex, it is assumed, that a separate workflow is
required for creating such an individual, and therefore already exists at exe-
cution time of the workflow. The newA-Box assertions are then all required
concept assertions for the new individuals, together with their associated
role assertions. Note that for existing individuals the role assertions con-
necting to new individuals are still asserted to the A-Box. Note that there
could exist cyclic relevances between two concepts A and B, such that both
workflows for A and B require the presence of an individual of the concept.
However, as the individuals of complex concepts are assumed to already ex-
ist during workflow generation, this is not an issue that needs to be dealt
with here.

119

120 Chapter 7. Application in Digital Preservation

Example 24. Recalling Example 22 and adding the T -Box assertions

domain(hasTitle) = BOOK

range(hasTitle) = TITLE

Creating the workflow for the concept BOOK, the relevant data is then hasTi-
tle and TITLE. Given that TITLE is a primitive concept of type string, the
workflow would consist of two activities:

1. User input for the title string

2. Add two individuals b of concept BOOK and t of concept TITLE to NO,
and add the A-Box assertion b hasTitle t.

The rest of this section describes how planning can be used to generate such
a workflow. The approach uses FOND planning, thus the resulting work-
flows do not consider concurrency. However, branching dependent on the
actions outcomes is supported. As the workflows in the OntoRAIS appli-
cation are single user and sequential, this restriction is sufficient. Extend-
ing this to workflows, executed in parallel by multiple users, would require
changing to a different planning setting such as temporal planning (plan-
ning with action durations and concurrency), or the use of action debinding
and deordering (Waters et al., 2006).

First a planning task is generated using information from the ontology O, a
target concept CT , and a schematic planning description Π̂. In schematic
planning descriptions, actions and predicates may consist of free or typed
variables, which are instantiated before the actual planning task is executed.
This provides a more abstract syntax for describing the predicates and ac-
tions. The language used for the schematic planning description is PDDL
(McDermott et al., 1998; Fox and Long, 2003; Edelkamp and Hoffmann,
2004; Gerevini and Long, 2005). A schematic planning description consist
of the triple Π̂ = 〈T, P,A〉, where T is a typing system consisting of types
and derived types, P is a set of n-ary predicates consisting of a name and a
list of typed arguments, andA is a set of lifted actions each consisting of a set
of typed input parameters, a set of preconditions, and a set of effects. The
planner does not consider cardinality, as it is assumed that creating multiple
entities of the same type is merely a repetition of the same actions. Execut-
ing the planner on the grounded version of the planning task results in a
policy π, stating which action needs to be executed in which state. This pol-
icy π is then converted into a workflow, by converting planning actions in to
workflow activities. At this point the cardinality restrictions from the ontol-
ogy are added to the activities. Finally, similar activities can be merged into
a single workflow step, resulting in an executable workflow (Figure 7.6).

120

Chapter 7. Application in Digital Preservation 121

O Planner

Workflow GeneratorWorkflow-Executer

Target (CT)

Π̂
Concepts
Roles

Policy (π)Cardinality ConstraintsAssertions

workflow

Figure 7.6: Overview of the workflow generation architecture

Creating the schematic planning task. First the schematic planning de-
scription is created. In this case the typing system T consists of two top level
types concept-type and role-type. For each atomic concept C ∈ NC a cor-
responding type tC is added to T as subtype of concept-type . For each role
R ∈ NR a corresponding type tR is added to T as subtype of role-type.

The objects in the concrete planning task represent either individuals al-
ready in NO or new individuals that are added to the set NO during the
execution of the final workflow. Additionally, each required role assertion
(o R o′) is represented by an object oR in the planning task with the type
tR. This is required by the planning task, as to be able to assign individuals
to the corresponding roles.

Example 25. The description of the schematic planning task will be ac-
companied by examples using the ontology O = 〈T -Box,A-Box〉 and the

121

122 Chapter 7. Application in Digital Preservation

signature 〈NC ,NR,NO〉, with:

NC =

{Article, Publication,Textual,DigitalArchiveObject,ArchiveObject,
Person, File,Keyword,Title}

NR =

{isAuthorOf, hasFile, hasKeywork, hasTitle}
T -Box =

Article < Publication < Textual <
DigitalArchiveObject < ArchiveObject < >,
Keyword < String,Title < String,

domain(isAuthor) = Person, range(isAuthor) = ArchiveObject,
domain(hasFile) = DigitalArchiveObject, range(hasFile) = File,
domain(hasKeyword) = ArchiveObject,
range(hasKeyword) = Keyword,
domain(hasTitle) = ArchiveObject, range(hasTitle) = Title,

The set of individuals NO and the A-Box are empty.

The following predicates are defined in P . The first a predicate identifies if
an object is to be added to NO or if it can be selected from the existing set
of individuals in NO. This corresponds to objects of primitive concept types
or complex concept types. Additionally, this predicate is static, as it can not
be altered during either the planning phase nor the workflow execution. For
each concept C ∈ NC , P contains the predicate

selectable(o − tC).

Example 26. selectable(o− Article), selectable(o− Publication), selectable(o−
Textual),. . .

The workflows considered here are concerned with creating new individu-
als, thus information about these individuals must be collected. The next
four predicates state how the information was gathered. These predicates
are mutually exclusive, as each data may only be acquired once. For each
primitive concept C ∈ NC , P contains the predicates

gathered(o − tC) and

generated(o − tC).

The predicate gathered states that o has been gathered from the user via
some input method, whereas generated states that o has been generated by
an external application.

122

Chapter 7. Application in Digital Preservation 123

Example 27. gathered(o − Keyword), generated(o − Keyword), gathered(o −
Title), generated(o − Title)

For each complex concept C ∈ NC , P contains the predicates

user-selected(o − tC) and

server-selected(o − tC).

The predicate user-selected states that the user has selected o from the ex-
isting set of individuals NO. Whereas, server-selected states that an external
application has preselected the individual from the set of existing individu-
als NO.

Example 28. user-selected(o - Article), server-selected(o - Article), user-selected(o
- Publication), server-selected(o - Publication), user-selected(o - Textual), server-
selected(o - Textual),. . .

When executing a workflow that gathers information, it is usually required
that the user review the entered information to ensure correctness. For this
P contains a predicate for each concept C ∈ NC , marking any object as
reviewed.

reviewed(o − tC).

Example 29. reviewed(o - Article), reviewed(o - Publication), reviewed(o -
Textual),. . .

The following predicate is required as to ensure that during planning, roles
are associated with the correct domain and range. This predicate is static, as
the configuration of a role can not be altered during planning or workflow
execution. Thus, for each R ∈ NR with domain(R) = C and range(R) = C ′,
P contains the predicate

role(o − tC , r − tR, o
′ − tC′).

Example 30. role(o − Person, r − isAuthorOf, o′ − ArchiveObject),role(o −
DigitalArchiveObject, r − hasFile, o′ − File),. . .
where a concrete instance could be:

role(Franz Baader, BaaderisAuthorOfTheDLHandbook, The DL Handbook).

Finally, the last two predicates are required to state if an individual of the
target concept CT and all the individuals of the relevant concepts and roles
have been added to NO and a corresponding concept or role assertion has
been made to the A-Box. Thus, for each R ∈ NR, P contains a predicate

asserted-role(r − tR)

stating the role assertion has been added to the A-Box.

123

124 Chapter 7. Application in Digital Preservation

Example 31. asserted-role(r − isAuthorOf),asserted-role(r − hasFile),. . .

Note, that a single predicate asserted-concept is sufficient to mark new indi-
viduals as added to NO and to mark that a corresponding A-Box assertion
has been made, as no new individual can exist without a corresponding
concept assertion. For each concept C ∈ NC P contains the predicate

asserted-concept(o − tC)

stating that the individual o has been added toNO, and that a corresponding
concept assertion has been made to A-Box.

Example 32. asserted-concept(o− Article), asserted-concept(o− Publication),
asserted-concept(o − Textual), . . .

The set A of action schemas consists of three types of actions: user inter-
actions gathering, selecting, and reviewing data; web service calls for file
uploads or the automatic extraction of information from a document; and
application internal actions representing concept and role assertions to the
A-Box and the adding of a new individual to NO. Adding new individuals
toNO is not explicitly handled by an extra action, as new concept assertions
always correspond to new individuals.

1. User interaction

gather(o − concept-type) :=

〈¬gathered(o) ∧ ¬generated(o) ∧ ¬selectable(o),

gathered(o)〉

This action corresponds to a simple user input in the final workflow, gather-
ing a value for the stated property. The gathered property hereby refers to
an individual for a primitive concept. It takes an object of a certain concept
type as parameter, requiring it to not yet be gathered, or generated. The
result of this action is then that the object is marked as gathered, indicating
that the user has entered the data.

user-select(o − concept-type) :=

〈¬user-selected(o) ∧ ¬server-selected(o)∧
selectable(o), user-selected(o)〉

Similar to gather this action represents user interaction, selecting an indi-
vidual from a complex concept already in NO. The precondition ¬ server-
selected(o) ensures that objects already preselected by a web service are not
re-selected. The selected object is then marked as user-selected(o).

The differentiation between data gathered or selected by the user and
data generated or selected by an external application is done, as to be able

124

Chapter 7. Application in Digital Preservation 125

to review these at different stages of the workflow, and to be able to dis-
tinguish them later on in the workflow generation. Usually data generated
or selected by an external application is reviewed directly after the action
has finished, whereas user data is usually reviewed in a summary at a later
stage. This is also the reason for having two distinct review actions, one for
objects gathered or selected by the user, and one for objects generated or
selected by an external application:

review-all() :=

〈∅,
∀o − concept-type : (gathered(o) ∨ user-selected(o))� reviewed(o)〉

This action does not have any parameters or preconditions and simply sets
all objects already gathered or selected as reviewed. This is a shortcut to
reviewing all objects individually.

review-generated(o − concept-type) :=

〈generated(o) ∨ server-selected(o),

reviewed(o)〉

Data generated or selected by an external application needs to be reviewed
at a different stage as data entered by the user, as they may contain errors
created by the application. Therefore above action reviews this data, and
set is as reviewed.

2. Web service calls

The following actions describe interactions between the application and
external services. The definition of the corresponding schematic actions de-
pend on the individual applications. Hereby, the schematic action must re-
flect the data flow performed by the application (data generated, selected,or
asserted). In the following this is described using two examples such as a
file upload action upload and an automated meta data extraction action
extract-data.

upload(f − File) :=

〈¬asserted-concept(f),

asserted-concept(f)〉

The upload action takes a file object f as parameter, and requires it to not
yet be asserted (the file does not yet exist in the archive). The effect then
sets the predicate asserted-concept(f) to true, indicating that the individual
representing the file has been added to NO, the concept assertion f : File
has been made to A-Box, and the file has been uploaded. As the inter-
nal proceedings of the external application are of no interest to the current

125

126 Chapter 7. Application in Digital Preservation

workflow, the upload is not modeled by the action. It is assumed, that the
web application providing the upload service implements its own process
for uploading and storing the file.

extract-data(f − File, k − Keyword, t − Title) :=

〈asserted-concept(f)∧
¬generated(k) ∧ ¬gathered(k)∧
¬generated(t) ∧ ¬gathered(t)∧
∃o − concept-type : (

∃r − hasFile : role(o, r, f)∧
∃r′ − hasKeyword : role(o, r′, k)∧
∃r′′′ − hasTitle : role(o, r′′′, t)),

(generated(k) ∧ generated(t)) ∨ >〉
This action requires a file object f, a keyword object k, and a title object
t. The file parameter f indicates which file the extractor will be working
with, and the rest of the parameters are the values that are then set to
either selected or generated. The preconditions are, that no data has been
acquired yet, and that there exists a corresponding role for setting the new
individuals in to relation with another individual. This indicates that the
external application has generated a keyword and the title. Note that this
action has two possible outcomes, as extracting meta data from files not
always succeeds. Also, only one keyword and author is considered in this
action, as cardinality is handled by the workflow generator later on in the
process.

3. Application internal actions

Finally two actions for making roles assertions and concept assertions
to the A-Box are required. These correspond to save procedures, storing the
gathered data in the underlying database.

assert-role(d − concept-type, p − role-type, r − concept-type) :=

〈¬asserted-role(p) ∧ asserted-concept(d)∧
asserted-concept(r) ∧ role(d, p, r),

asserted-role(p)〉
This action takes a role identified by the triple (d, p, r). The preconditions
state that domain and range are reviewed before they can be put into rela-
tion to each other. Additionally the role(p, d, r) predicate must exist, stating
that it is a legal role assertion. As a result the role assertion represented by
the triple 〈d, p, r〉 is made to the A-Box.

assert-concept(o− concept-type) :=

〈¬asserted-concept(o) ∧ reviewed(o), asserted-concept(o)〉

126

Chapter 7. Application in Digital Preservation 127

Stating that the individual o has been added to NO, and that a concept
assertion to the A-Box has been made.

Creating the concrete planning task After the schematic planning prob-
lem has been defied, the planning instance is created, by defining the re-
quired objects O, the initial state s0, and the goal condition s?. As men-
tioned in the beginning of this section, the goal of the resulting workflow
is to add a new individual to NO, along side all “relevant” data. The target
concept for which the workflow is generated is referred to as CT and repre-
sents a complex concept in NC . The concrete planning task is then created
as follows:

• A object oCT
of type tCT

is added to the set of planning object O. The
predicate asserted-concept(oCT

) is set to false in the initial state s0 and
is required to be true in the goal condition s?.

• For each relevant primitive concept C ∈ NC an object o of type tC
representing this new individual is added to O. Additionally, the pred-
icate asserted-concept(o) is set to false in s0 and to true in the goal
condition s?.

• For each relevant complex concept C an object o of type tC represent-
ing this individual is added toO, and the predicates asserted-concept(o)
and selectable(o) are set to true in s0.

• For each relevant role R ∈ NR an object p of type tR representing
the role assertion is added to O. Additionally, for each relevant role
R ∈ NR with domain(R)=C and range(R) = C ′ and the objects o of
type tC and o′ of type tC′ (already in O) the predicate role(d, p, r) is
set to true and asserted-role(o) is set to false in s0 and asserted-role(o)
is required to be true in s?.

From policy to workflow. For the above planning instance, a policy π is
generated. This policy describes when which action is executed. From this
policy π a workflow is generated, adding cardinality restrictions from the on-
tology to the role assertions. Further more, the concrete objects introduced
by the planning task are removed and replaced by free variables, which are
then concretized during workflow execution.

Definition 59 (Workflow). A workflow is a policy π : 2V → A from state
over variables V to activities A. These activities are functions a : 2V → 2V

modifying the states over V.

To create the workflow, first a directed acyclic graph G representation of the
policy π is created. In this graph each node n corresponds to a planning state

127

128 Chapter 7. Application in Digital Preservation

and the outgoing edges correspond to the possible outcomes of the action
a = π(s) applied in state s according to π. From this graph, a workflow is
generated by traversing the graph, and creating an activity a for every node
n, and an entry in the transition system ∆ for every outgoing edge from n.

Depending on the action a = π(s(n)) a new activity is created:

• a = gather(o − tC), a = select(o − tC): A new activity is created, that
implements gathering information from the user (distinguishing between
selection from the set of existing individuals and the input of new values).
In the planning task o is a placeholder for an individual of type tc stemming
from a role r where the target concept CT was either in the domain or range.
From this role, the cardinality determines the required amount of o. Hereby,
the new values are associated with the object o from the planning task,
as to be able to identify them in later steps of the workflow. This activity
is therefore responsible for gathering the appropriate amount of objects of
type tc from the user.

• a = review(o− tC), a = review-all(): A new activity is created reviewing
either all already entered information, or the information associated with
the planning object o, acquired in a previous activity.

• a = upload(f−File) or other web service calls: A new activity is created,
which is able to call external services and stores the results. Similar to the
activities corresponding to gather or select actions, the cardinality of the
underlying roleR is used to state how many objects the service call provides.
Note that there currently exists no means of knowing how many individuals
a certain service all will produce. Therefore, the activity executes the action
(e.G. file upload). If the result fulfills the cardinality restriction, the next
activity can be performed, otherwise the same action is repeated (second
file upload).

• a = assert-concept(o− concept-type), assert-role(o− concept-type, r −
role-type, o′ − concept-type): A new activity is created, which per-
forms the actual A-Box assertion and inserts the new individual to NO.
In the case of assert-concept(o − concept-type), the individuals created
and associated with o in the previous activities are added to NO and cor-
responding concept assertion are made to A-Box. Similar in the case of
assert-role(o − concept-type, r − role-type, o′ − concept-type) an
A-Box assertion is created for all individuals from previous activities, asso-
ciated with o and o′.

The workflow then maps states to activities, where the activities modify the
state variables, and the workflow policy is taken from the original policy π
from the planning task. However, the original policy π does not consider
cardinality restrictions. Therefore, the workflow policy is adapted as to be

128

Chapter 7. Application in Digital Preservation 129

able to distinguish states that fulfill the cardinality restrictions, and those
that do not.

For example, if a state s(n) has two successor states s(n1) and s(n2) and
these are distinguishable only by the facts gathered(o)=true and gathered(o)=
false, and the ontology requires N individuals of o, the policy would state:

〈s(n) ∧ amount(o) = N → a(n1)

〈s(n) ∧ amount(o) 6= N〉 → a(n2)

where gathered(o) = true is translated in to the right amount of objects o be
gathered.

This process results in a set of activities A connected to their successor ac-
tivities. To streamline the resulting workflow, activities with the same types
of actions can be merged in to one activity. Hereby, all activities that aggre-
gate information such as gather and select may be merged. Also, all assert
activities may be combined into a single activity. Note that every activity
may only consist of a single action that has multiple possible outcomes, to
ensure correct branching.

The resulting workflow collects all relevant data for a given concept CT in
the amount required by the ontology, and then creates all necessary entries
in NO and makes all the required A-Box assertions.

Example 33. Returning to the motivation of this work, generating a work-
flow for adding a new Article to a digital preservation system, is now de-
scribed using the definitions from Example 25. From this the planning task
is generated as described above. The resulting policy is shown in Figure 7.7
and in Figure7.8 where states where replaced by the actions to be executed
in those states, together with the streamlined workflow, with dashed lines
indicating how the original actions where merged in to workflow activities.

Usability Improvements using Soft Trajectory Constraints As can be
seen in Figure 7.8 the resulting workflow, being correct, does not necessar-
ily reflect a user expectation towards the order of steps. It may be more
intuitive, if the process starts by selecting the file gather(filename) followed
by the upload(filename1,file1). Improvements, concerning usability can be
achieved by adding soft trajectory constraint to the planning task such as
within 3 asserted(file) stating that the file file is asserted within the first
three states (s1: filename is not selected, a1: select filename, s2: filename
is selected, a2: upload file, s3: file is asserted). A second major usability
issue concerns user feedback. Whenever a system takes automated actions,
the user should be provided with some kind of visual feedback. In the case
of the automatic meta data extraction action extract-data, this is realized by

129

130 Chapter 7. Application in Digital Preservation

reviewing the generated data. In Example 33 this happens directly after the
extraction action is performed. However, in more complex settings, this is
not the case. Especially, when there is meta data that is not provided by the
extraction process. The constraint

(sometime-within 2 generated(obj) reviewed(obj)

would ensure, that within 2 states of the object being generated, it is also
reviewed, ensuring that the user is given feedback and the chance to edit
the input as soon as possible. Depending on the actual workflow, the actions
taken, and the environment, different constraint may be defined, addressing
different usability issues.

130

Chapter 7. Application in Digital Preservation 131

{ selectable(person1) ¬selectable(article1) ¬selectable(file1) ¬selectable(filename1)
¬selectable(keyword1) ¬selectable(title1) role(article1,hasFile,file1) role(article1,hasTitle,title1)

role(article1,hasKeyword,keyword1) role(person1,isAuthorOf,article1) }

{selected(person1)}

{gathered(filename1)}

{asserted(file1)}

{}

{gathered(keyword1)}

{gathered(title1)}

{reviewd(keyword1)}

{gathered(keyword1)
gathered(title1)}

{reviewed(keyword)}

{reviewd(title1)}

{asserted-concept(article1)}

{asserted-concept(title1)}

{asserted-role(hasFile)}

{asserted-role(hasTitle)}

{asserted-role(hasKeyword)}

{asserted-role(isAuthorOf)}

Figure 7.7: Policy of the planning task from Example 33 with only the dif-
ferences in the states represented.

131

132 Chapter 7. Application in Digital Preservation

Actions in policy π

user-select(person1)

gather(filname1)

upload(filename1 file1)

extract-data(file1,keyword1,title1)

gather(keyword1)

gather(title1)

review(keyword1)

review(title1)

review-generated(keyword1)

review-generated(title1)

assert-concept(article1)

assert-concept(title1)

assert-role(article1, hasFile, file1)

assert-role(article1, title, title1)

assert-role(article1, keyword, keyword1)

assert-role(person, isAuthorOf, article1)

Streamlined workflow

aacquire

aupload

aextract

areview aacquire-2

areview-2

aassert

Figure 7.8: Converting a policy π to a workflow

132

Chapter 8

Future Work

Here, now a short introduction to open questions, that arose during the
work on the presented topics, is given.

Variable interdependence: As shown in Chapter 4.2 and by Frances and
H. Geffner (2015), it is not uncommon to have variables that depend on
each others values. some of these dependencies could be indirect, such
as a constraint a > b stating that the value of variable a must always be
strictly larger than that of b, or more direct such as a = b + 1. Currently
work in the field variable interdependence is limited. However, a deeper
understanding of how variables interact with each others could dramatically
improve the efficiency of not only the search but also the grounding process,
as unreachable facts and states could be pruned before the actual search is
started.

Trajectory constraints: Soft and hard trajectory constraints have been an-
alyzed in the past and are well understood (Wright et al., 2018b; Edelkamp,
2006; Keyder and H. Geffner, 2009; J. A. Baier et al., 2009; Torres and J. A.
Baier, 2015; to name only a few). However, from a modelers perspective, it
is sometimes easier to define such constraints in the form of action trajectory
constraints (e.g. stating that an action a is to be performed before action b).
This has already been mentioned in the PDDL 3.0 definition (Gerevini and
Long, 2005). However, as of the authors knowledge, no further work has
been done on this topic. One rather simple way of dealing with these action
trajectory constraints is to compile them to state trajectory constraints. This
could be achieved by adding a predicate executed-action-a to the planning
task, which is only set to true by action a.

Alternatively to compiling soft trajectory constraints in to the planning task

133

134 Chapter 8. Future Work

as described in Chapter 5, it is often beneficial to the support constraints
directly in the planner. This reduces the overhead introduced by conditional
effects, state-dependent action costs or other means of tracking the con-
straints and guiding the search. For this however, soft trajectory constraint
aware heuristics are required. Such heuristics would have to add penalties
to not only heuristic values of states that already violate constraints (with-
out the possibility of recovering) but also such states that lead towards non
accepting states. For this, similar to the FOND setting, heuristic functions
need to be defined not only over states, but over the whole state trajectory.

Fully observable non-deterministic planning As discussed in Section 3.3
heuristics guiding the search towards fulfilling soft trajectory constraints
are essential for solving tasks with these constraints. A initial analysis was
provided. However, the two heuristic approximations (relaxed reachability
and automata reachability) are relatively uniformed, as they only provide
penalty, if there is no way for the evaluated state to fulfill a given constraint.
A more informed heuristic would be based on the expected penalty for a
given node. Thus, also adding a penalty to the heuristic value of a node if
there exists a path that does not fulfill the constraint. Additionally, nodes
that already fulfill soft trajectory constraints such that they can not be vio-
lated later should be favored in the search.

134

Chapter 9

Conclusion

In this theses a generalized theory of EVMDDs on monoids was introduced,
providing flexible ways of modeling decision diagrams over different types.
This extends the previous work on EVMDDs where they were only defined
over arithmetic expressions (Ciardo and Siminiceanu, 2002). The correct-
ness of the construction and the theory was then proven, when the un-
derlying monoids M = 〈T , •, e〉 are meet-semilattice, ordered, commuta-
tive, and there exists a monus operator .−on the underlying set T . These
EVMDDs where then utilized, representing conditional effects, and state-
dependent action costs in planning tasks. For both, conditional effects, and
state-dependent action costs, a compilation scheme was presented, based on
the EVMDD representation. Following an introductory example, illustrating
the problems when dealing with conditional effects and state-dependent ac-
tion costs separately, a theory was presented, dealing with these conjointly.
Also, a combined compilation based on the EVMDD representation was pre-
sented. The planning formalism was then extended to soft trajectory con-
straints, providing two compilations, for incorporating these constraints into
a classical planning task with conditional effects and state-dependent action
costs. Then soft trajectory constraints are introduced in the dully observable
non-deterministic planning setting. A method of tracking these constraints
within the planning task is introduced, followed by an analysis of possible
heuristic functions, guiding the search towards fulfilling these constraints.

Finally, a digital preservation application is presented. This application uses
ontology based data access to manage the data in a meaningful way. Ad-
ditionally, a method based on a formal data definition, using ontologies,
and FOND planning is introduced, generating workflows for the different
data types supported by the archive. As these workflows are on the one
hand correct and lead to correct ingestion of new files, they also break the
users expectation of how files should be added. Therefore, soft trajectory

135

136 Chapter 9. Conclusion

constraints are added to improve usability of the workflows.

136

List of Figures

2.1 Visual representation of the quasi-reduced EVMDDs over the
monoid M = 〈N,+, 0〉 representing the arithmetic function
a2 + 2bc + 8, and variable orderings (top to bottom) 〈a, b, c〉,
and 〈c, b, a〉. 9

2.2 The AST over the expression a2 + 2bc+ 8 14
2.3 Visual representation of the EVMDDs created by Algorithm 3

and Algorithm 4. 14
2.4 Eb and Ec aligned where the inputs are Ef = Eb and Eg = Ec . 15
2.5 Alignment for the last recursive call of APPLY with Eb and Ec

and the operator × on the 0 edge of Eb 15
2.7 Evaluation of the EVMDD over state s = {a = 1, b = 1, c = 1} 16

3.1 Logistics domain example with three cities one truck and two
packages. 28

3.2 Search graph: Irrelevant paths disregarded 28
3.3 Relaxed planning task. After applying move(Freiburg, Vienna)

the Truck now is in two locations simultaneous. 31
3.4 Different types of task abstractions 32
3.5 The EVMDD representing x2 + 2yz + 8 with domains (Dx =

2,Dy = 2,Dz = 3) . 39
3.6 SDAC task transformation . 41
3.7 Blocksworld example . 45

4.1 Agent moving on a grid layout trying to reach the goal desti-
nation. The agents location is indicated in red, whereas the
goal location is indicated in green. 49

4.2 The EVMDD representing the conditional effects from Exam-
ple 4.1 . 50

4.3 The abstract syntax tree for conditional effects. 50
4.4 Transition diagram of first applying action and transforming

the results to the compiled state space, or first transforming
the state in to the compiled state space and applying the com-
piled action sequence. 57

137

138 List of Figures

4.5 Climbing example. Initial position bottom left, goal position
top right. Darker shades indicate higher costs to move. . . . 61

4.6 Shannon reduced conditional effect EVMDD for the move-
right action. 63

4.7 Cost function EVMDD for the move-right action. 64
4.8 Combination of cost and effect EVMDD for the move-right ac-

tion. 64
4.9 Results for SDAC only compilation vs SDAC with CE compila-

tion and hmax heuristic . 71
4.10 Results for SDAC only compilation vs SDAC with CE compila-

tion and hadd heuristic . 72
4.11 Results for SDAC only compilation vs SDAC with CE compila-

tion and hff heuristic . 73

5.1 Parametrized NFA . 79
5.2 DFA of the sometime-before constraint 81
5.3 EVMDD compilation of the penalize action and the Keyder

and H. Geffner (2009) collect ,forgo and end actions anno-
tated in red . 85

5.4 Node expansions for goal action compilation and general ac-
tion compilation with preserving costs 91

5.5 Results for the pathways domain with satisficing planing . . . 95
5.6 Results for the rovers domain with satisficing planing 96
5.7 Results for the storage domain with satisficing planing 97
5.8 Results for the trucks domain with satisficing planing 98

6.1 Open stacks domain maximal penalty vs. gathered penalty . . 107
6.2 Pathways domain maximal penalty vs. gathered penalty . . . 108
6.3 Rovers domain maximal penalty vs. gathered penalty 108
6.4 Storage domain maximal penalty vs. gathered penalty 108
6.5 Trucks domain maximal penalty vs. gathered penalty 109
6.6 Blocksworld domain maximal penalty vs. gathered penalty . . 109

7.1 OntoRAIS system architecture 112
7.2 Object view in web client . 113
7.3 Project view in web client . 114
7.4 View of ingest process in web client 114
7.5 View of the desktop client . 115
7.6 Overview of the workflow generation architecture 121
7.7 Policy from Example 33 . 131
7.8 Converting a policy π to a workflow 132

138

List of Tables

5.1 State Transition Costs . 88
5.2 Goal action compilation results for optimal planning 90
5.3 General action compilation with metric preserving transition

costs results for optimal planning 91
5.4 General action compilation with positively shifted transition

costs results for optimal planning 91
5.5 General action compilation with adapted transition costs re-

sults for optimal planning . 92
5.6 Coverage of Fast Downward with satisficing planning 93
5.7 Coverage of Symple with satisficing planning 93
5.8 Comparison to original IPC-5 94

6.1 Comparing goal action compilation with MyND implementa-
tion on deterministic instances 107

7.1 Database tables for BOOK and hasTitle 117

139

List of Algorithms

1 APPLY algorithm for two EVMDDs 12
2 ALIGN algorithm for two EVMDDs with same variable ordering 13
3 Create an EVMDD for a constant 13
4 Create an EVMDD for a variable 13
5 Evaluate an EVMDD on a given state 17

140

Bibliography

Amer, K (1984). “Equationally complete classes of commutative monoids
with monus”. In: Algebra Universalis 18.1, pp. 129–131.

Baader, Franz, Calvanese, Diego, McGuinness, Deborah, Nardi, Daniele, and
Patel-Schneider, Peter F., eds. (2010). The Description Logic Handbook:
Theory, Implementation, and Applications. Paperback edition. Cambridge
University Press.

Bäckström, Christer and Nebel, Bernhard (1995). “Complexity results for
SAS+ planning”. In: Computational Intelligence 11.4, pp. 625–655.

Bagosi, Timea, Calvanese, Diego, Hardi, Josef, Komla-Ebri, Sarah, Lanti, Da-
vide, Rezk, Martin, Rodriguez-Muro, Mariano, Slusnys, Mindaugas, and
Xiao, Guohui (2014). “The ontop framework for ontology based data ac-
cess”. In: Chinese Semantic Web and Web Science Conference. Springer,
pp. 67–77.

Baier, Jorge A., Bacchus, Fahiem, and McIlraith, Sheila (2009). “A heuristic
search approach to planning with temporally extended preferences”. In:
Artificial Intelligence Journal (AIJ) 173.5–6, pp. 593–618.

Baier, Jorge A. and McIlraith, Sheila (2006). “Planning with Temporally Ex-
tended Goals Using Heuristic Search”. In: Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS06).

Baier, Jorge, Hussell, Jeremy, Bacchus, Fahiem, and McIlraith, Sheila (2006).
“Planning with temporally extended preferences by heuristic search”. In:
ICAPS 2006, p. 20.

Bellman, Richard E and Dreyfus, Stuart E (2015). Applied dynamic program-
ming. Vol. 2050. Princeton university press.

Bertsekas, Dimitri P, Bertsekas, Dimitri P, Bertsekas, Dimitri P, and Bert-
sekas, Dimitri P (2005). Dynamic programming and optimal control. Vol. 1.
3. Athena scientific Belmont, MA.

Bonet, Blai and Geffner, Hector (2001). “Planning as heuristic search”. In:
Artificial Intelligence 129.1-2, pp. 5–33.

Büchi, J Richard (1990). “On a decision method in restricted second order
arithmetic”. In: The Collected Works of J. Richard Büchi. Springer, pp. 425–
435.

141

142 Bibliography

Bylander, Tom (1994). “The computational complexity of propositional STRIPS
planning”. In: Artificial Intelligence 69.1-2, pp. 165–204.

Camacho, Alberto, Triantafillou, Eleni, Muise, Christian J., Baier, Jorge A.,
and McIlraith, Sheila (2017). “Non-Deterministic Planning with Tempo-
rally Extended Goals: LTL over Finite and Infinite Traces”. In: Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI),
pp. 3716–3724.

Ciardo, Gianfranco and Siminiceanu, Radu (2002). “Using edge-valued de-
cision diagrams for symbolic generation of shortest paths”. In: Interna-
tional Conference on Formal Methods in Computer-Aided Design. Springer,
pp. 256–273.

Cimatti, Alessandro, Pistore, Marco, Roveri, Marco, and Traverso, Paolo (2003).
“Weak, strong, and strong cyclic planning via symbolic model checking”.
In: Artificial Intelligence 147.1-2, pp. 35–84.

De Giacomo, Giuseppe, De Masellis, Riccardo, and Montali, Marco (2014).
“Reasoning on LTL on Finite Traces: Insensitivity to Infiniteness”. In: Pro-
ceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI), pp. 1027–
1033.

De Giacomo, Giuseppe and Rubin, Sasha (2018). “Automata-Theoretic Foun-
dations of FOND Planning for LTLf and LDLf Goals”. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence (IJ-
CAI 2018), pp. 4729–4735.

De Giacomo, Giuseppe and Vardi, Moshe Y (2013). “Linear Temporal Logic
and Linear Dynamic Logic on Finite Traces”. In: Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI), pp. 854–
860.

Dijkstra, Edsger W (1959). “A note on two problems in connexion with
graphs”. In: Numerische mathematik 1.1, pp. 269–271.

Dimopoulos, Yannis, Gerevini, Alfonso, Haslum, Patrik, and Saetti, Alessan-
dro (2006). “The benchmark domains of the deterministic part of IPC-5”.
In: Abstract Booklet of the competing planners of (ICAPS 06), pp. 14–19.

Edelkamp, Stefan (2006). “On the Compilation of Plan Constraints and Pref-
erences”. In: Proceedings of the Sixteenth International Conference on In-
ternational Conference on Automated Planning and Scheduling. ICAPS 06.
AAAI Press, pp. 374–377.

Edelkamp, Stefan and Hoffmann, Jörg (2004). “PDDL2. 2: The Language for
the Classical Part of IPC-4—extended abstract—”. In: International Plan-
ning Competition, p. 2.

Edelkamp, Stefan, Jabbar, Shahid, and Naizih, M (2006). “Large-scale opti-
mal PDDL3 planning with MIPS-XXL”. In: Proceedings of the Fifth Interna-
tional Planning Competition, pp. 28–30.

Fox, Maria and Long, Derek (2003). “PDDL2. 1: An extension to PDDL for
expressing temporal planning domains”. In: Journal of artificial intelli-
gence research 20, pp. 61–124.

142

Bibliography 143

Frances, Guillem and Geffner, Hector (2015). “Modeling and Computation
in Planning: Better Heuristics from More Expressive Languages”. In: Pro-
ceedings of the Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2015).

Geffner, Tomas and Geffner, Hector (2018). “Compact policies for non-deterministic
fully observable planning as SAT”. In: Proceedings of the Twenty-Eighth
International Conference on Automated Planning and Scheduling (ICAPS
2018), pp. 88–96.

Geißer, Florian (2018a). “Cartesian Heuristics for Planning with State-dependent
Action Costs”. PhD. University of Freiburg, Germany.

Geißer, Florian (2018b). “Cartesian Heuristics for Planning with State-dependent
Action Costs”. PhD thesis. Albert-Ludwigs-Universität Freiburg.

Geißer, Florian, Keller, Thomas, and Mattmüller, Robert (2015). “Delete Re-
laxations for Planning with State-Dependent Action Costs”. In: Proceedings
of the 24th International Joint Conference on Artificial Intelligence (IJCAI
2015).

Gerevini, Alfonso and Long, Derek (2005). Plan constraints and preferences
in PDDL3. Tech. rep. Technical Report 2005-08-07, Department of Elec-
tronics for Automation, University of Brescia, Brescia, Italy.

Gerth, Rob, Peled, Doron, Vardi, Moshe Y, and Wolper, Pierre (1995). “Sim-
ple on-the-fly automatic verification of linear temporal logic”. In: Protocol
Specification, Testing and Verification XV. Springer, pp. 3–18.

Hart, Peter E, Nilsson, Nils J, and Raphael, Bertram (1968). “A Formal Basis
for the Heuristic Determination of Minimum Cost Paths”. In: IEEE Trans-
actions on Systems Science and Cybernetics 4.2, pp. 100–107.

Haslum, Patrik, Botea, Adi, Helmert, Malte, Bonet, Blai, and Koenig, Sven
(2007). “Domain-independent construction of pattern database heuristics
for cost-optimal planning”. In: AAAI. Vol. 7, pp. 1007–1012.

Helmert, Malte (2006). “The fast downward planning system”. In: Journal
of Artificial Intelligence Research 26, pp. 191–246.

Helmert, Malte (2008). Understanding planning tasks: domain complexity
and heuristic decomposition. Vol. 4929. Springer.

Helmert, Malte, Haslum, Patrik, Hoffmann, Jörg, and Nissim, Raz (2014).
“Merge-and-shrink abstraction: A method for generating lower bounds in
factored state spaces”. In: Journal of the ACM (JACM) 61.3, p. 16.

Hoffmann, Jörg (2005). “Where ’Ignoring Delete Lists’ Works: Local Search
Topology in Planning Benchmarks”. In: Journal of Artificial Intelligence
Research 24, pp. 685–758.

Hoffmann, Jörg and Nebel, Bernhard (2001). “The FF planning system: Fast
plan generation through heuristic search”. In: Journal of Artificial Intelli-
gence Research 14, pp. 253–302.

Ivankovic, Franc, Haslum, Patrik, Thiébaux, Sylvie, Shivashankar, Vikas, and
Nau, Dana S (2014). “Optimal Planning with Global Numerical State Con-
straints.” In: ICAPS.

143

144 Bibliography

Keyder, Emil and Geffner, Hector (2009). “Softgoals Can Be Compiled Away”.
In: Journal of Artificial Intelligence Research (JAIR), pp. 547–556.

Kissmann, Peter and Edelkamp, Stefan (2009). “Solving Fully-Observable
Non-deterministic Planning Problems via Translation into a General Game”.
In: KI 2009: Advances in Artificial Intelligence. Ed. by Bärbel Mertsching,
Marcus Hund, and Zaheer Aziz. Springer Berlin Heidelberg, pp. 1–8.

Kupferschmid, Sebastian, Hoffmann, Jörg, Dierks, Henning, and Behrmann,
Gerd (2006). “Adapting an AI planning heuristic for directed model check-
ing”. In: International SPIN Workshop on Model Checking of Software. Springer,
pp. 35–52.

Lai, Yung-Te, Pedram, M., and Vrudhula, S. B. K. (1996). “Formal verifica-
tion using edge-valued binary decision diagrams”. In: IEEE Transactions
on Computers 45.2, pp. 247–255.

Mattmüller, Robert (2013). “Informed Progression Search for Fully Observ-
able Nondeterministic Planning”. PhD thesis. Albert-Ludwigs-Universität
Freiburg.

Mattmüller, Robert, Geißer, Florian, Wright, Benedict, and Nebel, Bernhard
(2017). “On the Relationship Between State-Dependent Action Costs and
Conditional Effects in Planning.” In: Proceedings of the 9th Workshop on
Heuristics and Search for Domain-Independent Planning (HSDIP 2017).

Mattmüller, Robert, Geißer, Florian, Wright, Benedict, and Nebel, Bernhard
(2018). “On the Relationship Between State-Dependent Action Costs and
Conditional Effects in Planning.” In: Proceedings of the 32nd AAAI Confer-
ence on Artificial Intelligence (AAAI 2018).

McDermott, Drew, Ghallab, Malik, Howe, Adele, Knoblock, Craig, Ram, Ash-
win, Veloso, Manuela, Weld, Daniel, and Wilkins, David (1998). “PDDL-
the planning domain definition language”. In:

Muise, Christian J, McIlraith, Sheila, and Beck, J Christopher (2012). “Im-
proved Non-Deterministic Planning by Exploiting State Relevance.” In:
Proceedings of the Twenty-Second International Conference on Automated
Planning and Scheduling (ICAPS 2012).

Nebel, Bernhard (2000). “On the Compilability and Expressive Power of
Propositional Planning Formalisms”. In: Journal of Artificial Intelligence
Research (JAIR) 12, pp. 271–315.

Ng, Andrew Y., Harada, Daishi, and Russell, Stuart J. (1999). “Policy Invari-
ance Under Reward Transformations: Theory and Application to Reward
Shaping”. In: Proceedings of the 16th International Conference on Machine
Learning (ICML), pp. 278–287.

Pistore, Marco. and Vardi, Moshe Y (2007). “The Planning Spectrum - One,
Two, Three, Infinity”. In: Journal of Artificial Intelligence Research 30, pp. 101–
132.

Pnueli, Amir (1977). “The temporal logic of programs”. In: Foundations of
Computer Science, 1977., 18th Annual Symposium on. IEEE, pp. 46–57.

144

Bibliography 145

Rabin, Michael O. and Scott, Dana (1959). “Finite automata and their deci-
sion problems”. In: IBM Journal of Research and Development 3.2, pp. 114–
125.

Rintanen, Jussi (2003). “Expressive equivalence of formalisms for planning
with sensing”. In: Proceedings of the 13th International Conference on Au-
tomated Planning and Scheduling (ICAPS 2003), pp. 185–194.

Roux, Pierre and Siminiceanu, Radu (2010). “Model-Checking with Edge-
Valued Decision Diagrams”. In:

Russell, Stuart J and Norvig, Peter (2016). Artificial intelligence: a modern
approach. Malaysia; Pearson Education Limited.

Sievers, Silvan, Wehrle, Martin, and Helmert, Malte (2014). “Generalized
Label Reduction for Merge-and-Shrink Heuristics.” In: AAAI, pp. 2358–
2366.

Speck, David (2018). “Symbolic Planning with Edge-Valued Multi-Valued
Decision Diagrams”. MA thesis. University of Freiburg.

Speck, David, Geißer, Florian, and Mattmüller, Robert (2018a). “Symbolic
Planning with Edge-Valued Multi-Valued Decision Diagrams”. In: Proceed-
ings of the Twenty-Eighth International Conference on Automated Planning
and Scheduling (ICAPS 2018). AAAI Press, pp. 250–258.

Speck, David, Geißer, Florian, and Mattmüller, Robert (2018b). “SYMPLE:
Symbolic Planning based on EVMDDs”. In: Ninth International Planning
Competition (IPC-9): planner abstracts, pp. 82–85.

Tomasic, Anthony (1988). “View update translation via deduction and an-
notation”. In: ICDT ’88. Ed. by Marc Gyssens, Jan Paredaens, and Dirk Van
Gucht. Springer Berlin Heidelberg.

Torres, Jorge and Baier, Jorge A. (2015). “Polynomial-Time Reformulations
of LTL Temporally Extended Goals into Final-State Goals”. In: Proceedings
of the 24th International Joint Conference on Artificial Intelligence (IJCAI),
pp. 1696–1703.

W3C (2012). OWL 2 Web Ontology Language Document Overview (Second
Edition). Tech. rep. W3C.

W3C (2013). SPARQL 1.1 Overview. Tech. rep. W3C.
Waters, Max, Nebel, Bernhard, Padgham, Lin, and Sardina, Sebastian (2006).

“Plan Relaxation via Action Debinding and Deordering”. In: Proceedings of
the Fifth International Planning Competition, pp. 39–42.

Wright, Benedict, Brunner, Oliver, and Nebel, Bernhard (2018a). “On the
Importance of a Research Data Archive”. In: Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18).

Wright, Benedict and Mattmüller, Robert (2016). “Automated Data Manage-
ment Workflow Generation with Ontologies and Planning.” In: Proceed-
ings of the 30th Workshop on Planen/Scheduling und Konfigurieren/Entwer-
fen (PUK 2016).

Wright, Benedict, Mattmüller, Robert, and Nebel, Bernhard (2018b). “Com-
piling Away Soft Trajectory Constraints in Planning”. In: Proceedings of

145

146 Bibliography

the 2018 Conference on Principles of Knowledge Representation and Reaso-
ing (KR 2018).

Wright, Benedict, Mattmüller, Robert, and Nebel, Bernhard (2018c). “Com-
piling Away Soft Trajectory Constraints in Planning”. In: Proceedings of
the 2018 Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS 2018).

146

	Introduction
	Motivation
	Outline
	Contribution

	Mathematical Foundations
	Edge-Valued Multi-Valued Decision Diagrams
	Linear Temporal Logic

	Planning Foundations
	Classical Planning
	Planning with State-Dependent Action Costs
	Fully Observable Nondeterministic Planning

	Planning with conditional effects and state-dependent action costs
	Conditional Effects Revisited
	Combining State Dependent-Action Costs and Conditional Effects

	Planning with soft trajectory constraints
	State trajectory constraints
	Evaluation

	Soft trajectory constraints in FOND planning
	Application in Digital Preservation
	OntoRAIS

	Future Work
	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

