
Dissertation

On Planning with
State-dependent Action Costs

Florian Geißer

2018
Faculty of Engineering

Albert-Ludwigs-Universität Freiburg im Breisgau

Dean:
Prof. Dr. Hannah Bast, University of Freiburg, Germany

PhD advisor and first reviewer:
Prof. Dr. Bernhard Nebel, University of Freiburg, Germany
Second reviewer:
Prof. Dr. Bernd Becker, University of Freiburg, Germany

Date of defense:
January 14th, 2019

Abstract

Automated Planning is an established research field of Artificial Intelligence.
While in probabilistic planning models, such as Stochastic Shortest Path prob-
lems, the cost of an action can be state-dependent, the classical deterministic
planning literature mostly considers the cost of actions to be constant. There-
fore, even if a planning task naturally admits state-dependent costs, the mod-
eler has to distribute these costs over multiple copies of the action. This does
not only introduce additional burden on the modeler, but it also hides struc-
ture which may be apparent in the action cost function and may provide useful
information for planning algorithms.

In this thesis we do away this restriction to constant costs, by considering
classical planning with state-dependent action costs. We show how we can make
use of edge-valued multi-valued decision diagrams (EVMDDs) to represent the
action cost functions and provide compilations of state-dependent action cost
tasks to classical tasks with constant costs, which allows us to leverage cla-
ssical planning tools. These compilations are polynomial in the size of the
underlying EVMDDs. While their size is worst-case exponential, for many
commonly encountered cost functions this results in a classical planning task
with compact size.

Heuristic search is one of the most prominent tools in classical planning to
produce optimal solutions. Two well-known families of heuristics are delete
relaxation and abstraction heuristics. We generalize both families to plann-
ing with state-dependent action costs and show how we can use the EVMDD
representation to efficiently compute the generalized heuristics. Furthermore,
we provide a theoretical analysis of our introduced compilations, showing that
many heuristics are invariant under compilation, i.e. the compilation preserves
the heuristic estimates and does not lead to a loss of information. We empiri-
cally evaluate how these theoretical results behave in practice, by comparing
different compilations and heuristics on a benchmark set consisting of tasks
with state-dependent action costs.

i

Zusammenfassung

Handlungsplanung ist ein etablierter Forschungsbereich der künstlichen Intel-
ligenz. Während in probabilistischen Planungsmodellen, wie beispielsweise
in “Stochastic Shortest Path” Problemen, die Kosten einer Aktion zustandsab-
hängig sein können, wird in der klassischen Planungsliteratur meist von kon-
stanten Aktionskosten ausgegangen. Selbst wenn ein Planungsproblem von
Natur aus zustandsabhängige Aktionskosten beinhaltet muss der Modellierer
des Problems somit diese Kosten über mehrere Kopien der ursprünglichen
Aktion verteilen. Das hat nicht nur einen erhöhten Aufwand für den Model-
lierer zur Folge, sondern dadurch wird auch die Struktur der ursprünglichen
Kostenfunktion verborgen, die jedoch nützliche Informationen für Planungs-
algorithmen liefern könnte.

In dieser Dissertation beseitigen wir diese Einschränkung auf konstan-
te Aktionskosten, indem wir klassische Handlungsplanung mit zustandsabhän-
gigen Aktionskosten betrachten. Wir zeigen, wie wir von kantengewichteten
mehrwertigen Entscheidungsdiagrammen (“edge-valued multi-valued decision
diagrams”, kurz EVMDDs) Gebrauch machen können um die Kostenfunktio-
nen darzustellen. Basierend auf dieser Darstellung liefern wir Kompilierungen,
mit denen ein Planungsproblem mit zustandsabhängigen Kosten in ein klas-
sisches Planungsproblem mit konstanten Kosten transformiert werden kann,
was es uns erlaubt etablierte klassische Planungsalgorithmen zu verwenden.
Die Größe dieser Kompilierungen ist polynomiell in der Größe der entspre-
chenden Entscheidungsdiagramme. Dies führt zwar im schlimmsten Fall zu
exponentiell großen Planungsproblemen, für viele übliche Kostenfunktionen
ist die Größe jedoch kompakt.

Um Planungsprobleme optimal zu lösen ist heuristische Suche eine der
meistgenutzten Techniken der klassischen Handlungsplanung. Zwei weit ver-
breitete Heuristikfamilien sind die sogenannte Delete Relaxierung, sowie Ab-
straktionsheuristiken. Wir generalisieren diese beiden Familen auf Planungs-
probleme mit zustandabhängigen Aktionskosten und zeigen wie man die Dar-
stellung der Kostenfunktion als EVMDD nutzen kann um diese Generalisie-

iii

iv

rung effizient zu berechnen. Außerdem liefern wir eine theoretische Analyse
unserer eingeführten Kompilierungen. Wir zeigen, dass viele dieser Heuris-
tiken invariant unter Kompilierung sind, das heißt die Heuristik erhält ihre
Werte in der Kompilierung und wir verlieren durch den Kompilierungsprozess
keine Informationen bezüglich der Heuristik. In einer empirischen Untersu-
chung bewerten wir unsere theoretischen Resultate in der Praxis. Wir ver-
gleichen verschiedene Heuristiken unter verschiedenen Kompilierungen auf
einem Datensatz, der aus mehreren Planungsproblemen mit zustandsabhän-
gigen Aktionskosten besteht.

Acknowledgments

In the years during my doctoral process (and before!) there have been numer-
ous people who contributed along the way, up to this final outcome and I want
to use this space to thank these fantastic people. First and foremost, I want
to thank my advisor Bernhard Nebel, who not only offered me a position in
his wonderful research group five years ago, but who also made it possible for
me to meet various people around the world, be it by attending international
conferences or by visiting foreign research groups. These interactions led to
valuable input by multiple researchers. Additionally, Bernhard gave me the
freedom to pursue my own ideas which led to the research presented in this
thesis. Finally, without the established relaxed and productive atmosphere in
his research group I certainly would not have had the endurance required to
finish this thesis over the last month.

Next, I want to express my deepest gratitude to my friend and colleague
Robert Mattmüller, who accompanied my research beginning from my Mas-
ter’s degree up to this moment. Robert teached me to appreciate the beauty
of formal correctness and without him many results given in this thesis would
not have been possible. It has been (and hopefully will continue to be) a
pleasure to work with him in all these years.

While Robert contributed very much to my proficiency in formal correct-
ness, Thomas Keller guided me over the years to increase my proficiency with
the C++ programming language, by inviting me five years ago to work with
him on the PROST planner. This has been a fun and fascinating journey and
I’m glad the long number of issue tickets we still have to process indicates that
we will continue to work together.

Of course I also want to thank all my other colleagues for making our
group such a great place to work and giving rise to compelling scientific and
casual discussions. Thank you Johannes Aldinger, Thorsten Engesser, Felix
Lindner, Tim Schulte, David Speck, Benedict Wright, and all the other col-
leagues who left our group over the last couple of years, especially Christian
Dornhege, Andreas Hertle and Manuela Ortlieb for a continued friendship

v

vi

over the years, and Dali Sun for the years of work we had together on the
Karis system. Finally, I also want to thank Ulrich Jakob for his continued work
in keeping our infrastructure running and Petra Geiger for handling all the
amount of office work which comes up during so many years.

I am also very grateful to Thomas Keller, Robert Mattmüller and David
Speck for proofreading my thesis while being limited by my extremely sportive
timeline. Especially Robert has to be pointed out, who spent quite some time
and has made me aware of many minor and major issues.

Another group to which I have to express my gratitude is the planning
group of Malte Helmert in Basel. Our joint reading group has given rise to
many exciting discussions and one could be sure that whenever attending any
conference there would be someone from either Freiburg or from Basel to talk
to.

Next, I want to thank Sylvie Thiébaux for providing me the opportunity to
work in her group and continuing AI research on the other side of the world!

In the end, work is not all that counts, and luckily there have been multiple
people enriching my life in other parts than AI. Therefore, I thank my friends
for supporting me over the years and allowing distractions from the daily work
life. First, thank you Tim Schulte and Robert Grönsfeld, the two people which
remained in Freiburg from our group of bachelor students meeting more than
10 years ago. Of course I do not want to miss out our other friends: Kim
Bischof, Mirko Brodesser, André Doser, Philipp Lerche and Kyanoush Seyed
Yahosseini (cwh!). Hundreds of miles distance have not undermined our
friendship, so let’s keep it this way and just raise the scale by an order of
magnitude.

Zu guter Letzt möchte ich meiner Familie danken, insbesondere meinen
Eltern Karl-Heinz und Jutta. Ohne ihre andauernde Unterstützung wäre dies
alles nicht möglich gewesen und ihre Hilfe war insbesondere in den letzten
von Umzugstress geplagten Tagen von unschätzbarem Wert. Ein Sohn kann
sich keine bessere Familie wünschen.

Thank you!

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 4
1.3 Relation to Published Work 5

2 Planning with State-Dependent Costs 9
2.1 Planning Tasks . 9
2.2 Modeling State-dependent Action Costs 18
2.3 Representing State-dependent Action Costs 20
2.4 Planning Task Compilations 39

3 Delete Relaxation Heuristics 53
3.1 Delete-relaxed Planning Tasks 53
3.2 Approximative Delete Relaxation Heuristics 61
3.3 Summary . 75

4 Abstraction Heuristics 77
4.1 Projection Abstractions . 81
4.2 General Cartesian Abstractions 91
4.3 Summary . 100

5 Empirical Evaluation 101
5.1 Benchmark Set . 101
5.2 Compilation Results . 106
5.3 Search Results . 108
5.4 Discussion . 114

6 Further Reading and Future Work 123
6.1 Delete Relaxation . 123
6.2 Cartesian Abstractions and Cost Partitioning 124

vii

viii CONTENTS

6.3 Conditional Costs and Conditional Effects 125
6.4 General Action Cost Functions 125
6.5 Probabilistic Planning . 126

7 Conclusion 129

List of Figures 131

List of Tables 133

List of Algorithms 135

Bibliography 137

CHAPTER 1
Introduction

Reasoning, planning and problem solving are all conceived to be parts of what
is generally understood as intelligence. In the context of Artificial Intelligence,
the related established research field is Automated Planning (or AI planning),
where an agent has to reach a given goal by applying a sequence of actions
(Russel and Norvig 2010). While modern applications, such as high-level
planning for socially interacting robots (Petrick and Foster 2013) or behaviour
planning of AI agents in video games (Orkin 2006) fall clearly in the category
of AI planning, the field also includes applications which are not immediately
considered as planning problems, such as greenhouse logistics (Helmert and
Lasinger 2010), organic synthesis (Masoumi et al. 2015), or penetration test-
ing (Hoffmann 2015).

Particularly useful is the sub-field of domain-independent planning, which
explores general techniques which do not rely on domain-dependent knowl-
edge and can thus be applied to a variety of applications. Most often, these
application domains can be modeled in an appropriate planning language: the
planning domain definition language (McDermott et al. 1998) allows to model
fully observable, deterministic, static planning problems. These problems are
generally considered as classical planning problems. Over the years, the lan-
guage has received multiple extensions, which allow, for example, expressing
conditional (or state-dependent) effects. If the problems are non-deterministic,
the probabilistic planning domain definition language (PPDDL) (Younes and
Littman 2004) empowers the user to reflect the probabilistic nature of the
problem in the model. The relational dynamic influence diagram language
(Sanner 2010) is another formalism, which gives the modeler even more lee-
way in the ability to model their task by allowing more complex expressions
than PPDDL permits. The tasks modeled with these languages are often un-
derstood as factored Markov Decision Processes (MDPs).

While the probabilistic aspect most prominently distinguishes a classical
planning problem from an MDP, there is another, more subtle, difference: in
many probabilistic planning tasks (for example, in the problems of the Inter-

1

2 CHAPTER 1. INTRODUCTION

national Probablistic Planning Competition), rewards (or costs) obtained after
the application of actions are often state-dependent. While the focus of proba-
bilistic planning is usually the probabilistic nature of the problem and not the
state-dependent aspect, the latter still remains if we disregard the probabilis-
tic portion. Therefore, we remain with a classical planning problem, but with
state-dependent action costs.

In classical planning, however, action costs are normally considered to
be constant. As a consequence, naturally arising state-dependent costs, such
as the fuel consumption based on the distance to reach another location or
the increased fuel-requirement of a vehicle depending on its load, have to be
distributed over multiple copies of the original action, instead of being rep-
resented as a state-dependent cost function. This does not only increase the
burden on the modeler and allow additional room for errors, but it also con-
ceals structure, which may be present in the action cost function and could be
exploited algorithmically. In this thesis, we do away with the restriction of cl-
assical planning to constant costs, by considering classical planning tasks with
state-dependent action cost. Therefore, our setting is fully observable, static,
and most importantly also deterministic. Moreover, we are mostly concerned
with optimal planning, i.e. we must guarantee that the solution minimizes the
cost.

Classical planning is theoretically (and practically) well-understood (Bäck-
ström and Nebel 1995; Bylander 1994): in general, finding any solution is
already PSPACE-hard, as is finding an optimal solution. Nevertheless, many
different techniques have been successfully employed on a variety of domains.
One of the most prominent techniques to obtain a satisficing or even optimal
solution is heuristic search, where a distance estimator, the heuristic, guides
the search towards a solution. Over the years, different heuristics have been
developed, often excelling in some, but never in all domains. However, all of
these heuristic are only defined for tasks with constant cost actions. The ques-
tion is therefore: can we generalize classical planning heuristics to tasks with
state-dependent action cost and can we make use of established classical plann-
ing tools to solve such tasks. To answer this question, we discuss how we can
represent state-dependent action costs, such that we can exhibit and exploit
the structure of the cost function. This representation allows us on one hand
to generalize two well-known classes of heuristics: delete relaxation heuris-
tics (Bonet et al. 1997; McDermott 1996) and Cartesian abstraction heuristics
(Seipp and Helmert 2018), which include pattern database heuristics (Cul-
berson and Schaeffer 1998; Edelkamp 2001). On the other hand, it allows
us to come up with different compilation schemes, which transforms a state-
dependent action cost task to a classical planning task, while preserving heu-
ristic accuracy.

1.1. CONTRIBUTIONS 3

1.1 Contributions

This thesis makes the following contributions to the field of AI planning:

• Compiling a task with state-dependent action cost to a classical planning
task with constant cost allows to use established classical planning tools
to generate solutions for such problems. A straightforward compilation
of state-dependent action costs has exponential overhead. We present
alternative compilations that make use of edge-valued multi-valued de-
cision diagrams (EVMDDs), which symbolically represent the action cost
function. This compilation preserves optimal plan costs and is polyno-
mial in the size of the decision diagrams. While in the worst-case, the
size of these diagrams grows exponentially, size only grows polynomially
for many common types of cost functions.

• Delete relaxation heuristics are a well-known family of heuristics used to
guide search. We generalize the optimal delete-relaxation heuristic h+,
as well as two approximations: the additive heuristic hadd and the max-
imum heuristic hmax . We present a theoretical analysis, which shows
that the decision diagrams representing the cost functions can be used
to efficiently evaluate action costs for Cartesian sets of states, which
includes relaxed states. Furthermore, we show that h+ and hadd are
invariant under the presented compilations, i.e. the estimate obtained
from the generalized heuristic is preserved in the compiled task. For
hmax , we show that we can achieve invariance if we consider a certain
class of decision diagrams. These results allow the use of these heuris-
tics with a classical planner to solve tasks with state-dependent action
costs.

• Abstraction heuristics are often more powerful than delete relaxation
heuristics and are still considered as some of the strongest heuristics
the classical planning literature has to offer. In our theoretical analysis
we generalize abstraction heuristics to tasks with state-dependent ac-
tion costs and show how we can efficiently compute abstract transition
weights for Cartesian abstractions.

We show that any type of abstraction heuristic is invariant under expo-
nential compilation. For the compilations based on decision diagrams,
Cartesian abstraction heuristics are invariant under these compilations,
if non-deterministic transitions in the abstraction do not have differ-
ent weights and if the abstraction preserves variables introduced by the
compilation. This generalizes a previous result which has shown in-
variance for Cartesian abstractions with non-deterministic transitions.
As projection abstractions never induce non-deterministic transitions,
we can carry over this result to pattern database heuristics. We show

4 CHAPTER 1. INTRODUCTION

how to achieve invariance for the canonical pattern database heuristic
and discuss how to adapt the hiPDB approach to make use of this result.
Therefore, we have an efficient compilation which yields strong admis-
sible heuristic estimates based on pattern database heuristics.

For arbitrary Cartesian abstractions, we show that the compilation still
provides informative admissible estimates. We discuss how we can gen-
eralize the counterexample-guided abstraction refinement algorithm to
include state-dependent action costs, by introducing cost divergence as
a fourth type of flaw. This result allows the generation of Cartesian ab-
stractions for tasks with state-dependent action costs.

• Finally, we provide an empirical evaluation analyzing the aforemen-
tioned theoretical results in practice. We modified the Fast Downward
planner (Helmert 2006b) to be able to deal with state-dependent ac-
tion costs and implemented the different compilation schemes. This
allows us to compare the interaction between different compilations
and heuristics on a benchmark set consisting of several tasks with state-
dependent action costs. We analyze the heuristic accuracy, as well as the
overall performance for different configurations of heuristic and compi-
lation.

1.2 Outline

The thesis is structured as follows: in Chapter 2 we introduce the preliminar-
ies, specifically a formal definition of planning tasks with state-dependent action
costs. We discuss how we can model such tasks and how to use decision dia-
grams to symbolically represent the action cost function. We also give some
brief results regarding the interaction of edge-valued decision diagrams and
Cartesian sets of states. Finally, we introduce different compilations which
allow the transformation to a classical planning task.

Chapter 3 introduces and generalizes delete relaxation heuristics. In partic-
ular, we generalize the optimal delete relaxation heuristic, as well as two ap-
proximations: the additive and the maximum heuristic. We theoretically eval-
uate the different compilations in terms of heuristic invariance for all three
heuristics.

We then introduce abstraction heuristics in Chapter 4. Once again, we gen-
eralize the definition of abstraction heuristics to tasks with state-dependent
action costs. We first analyze projection abstractions and discuss how we can
adapt the iterative hill-climbing search for pattern collections. The second
part of this chapter deals with Cartesian abstractions and we show how we
can come up with Cartesian abstractions for our tasks.

While all of the aforementioned chapters provide only theoretical insights,
Chapter 5 provides an empirical evaluation of the different compilations we

1.3. RELATION TO PUBLISHED WORK 5

proposed. We analyze if the theoretical results are reflected in practical per-
formance by evaluating a benchmark set consisting of several tasks with state-
dependent action costs.

We conclude the thesis by providing further discussion and related work
in Chapter 6 and give a final summary of the obtained results in Chapter 7.

1.3 Relation to Published Work

Many of the results given in this thesis are published in proceedings of signifi-
cant AI and automated planning conferences. In particular, the following two
papers provide the backbone of this thesis:

• Florian Geißer, Thomas Keller, and Robert Mattmüller (2015). “Delete
Relaxations for Planning with State-Dependent Action Costs”. In: Pro-
ceedings of the 24th International Joint Conference on Artificial Intelli-
gence (IJCAI 2015). Ed. by Qiang Yang and Michael Wooldridge. AAAI
Press, pp. 1573–1579

We formally introduce planning with state-dependent action costs and
generalize the additive delete relaxation heuristic to such tasks. We also
present the EVMDD-based compilation and show that the additive heu-
ristic is invariant under this compilation. This paper forms the basis for
the different compilations introduced in Chapter 2, as well as for most
of the theoretical results we give for the additive heuristic in Chapter 3.

• Florian Geißer, Thomas Keller, and Robert Mattmüller (2016). “Abstrac-
tions for Planning with State-Dependent Action Costs”. In: Proceedings
of the Twenty-Sixth International Conference on Automated Planning and
Scheduling (ICAPS 2016). Ed. by Amanda Coles, Andrew Coles, Stefan
Edelkamp, Daniele Magazzeni, and Scott Sanner. AAAI Press, pp. 140–
148

We define abstract planning tasks with state-dependent action costs and
discuss the evaluation of cost functions in abstract states. We show that
EVMDDs allow an efficient computation of abstract cost values if the
abstraction is Cartesian. We also generalize the CEGAR approach to
planning tasks with state-dependent action costs. The paper introduces
the local minimization of EVMDDs for Cartesian states, which we intro-
duce in Chapter 2 and also includes many of the results we give in the
second part of Chapter 4.

The following papers also discuss state-dependent action costs, but have a
different focus than this thesis:

6 CHAPTER 1. INTRODUCTION

• Thomas Keller, Florian Pommerening, Jendrik Seipp, Florian Geißer,
and Robert Mattmüller (2016). “State-dependent Cost Partitionings for
Cartesian Abstractions in Classical Planning”. In: Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI 2016). Ed.
by Subbarao Kambhampati. AAAI Press, pp. 3161–3169

We generalize general cost-partitioning to state-dependent general cost
partitioning, which dominates the state-independent version. We also
take a look at saturated cost partitioning, and define its state-dependent
counterpart. This allows the combination of different abstraction heuris-
tics generated by the CEGAR algorithm to form admissible estimates.
We evaluate the performance of the state-dependent saturated cost par-
titioning on classical planning tasks.

• Robert Mattmüller, Florian Geißer, Benedict Wright, and Bernhard Ne-
bel (2018). “On the Relationship Between State-Dependent Action Costs
and Conditional Effects in Planning”. In: Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence (AAAI 2018). AAAI Pr-
ess, pp. 6237–6245

We consider the interaction between state-dependent action costs and
conditional effects. We show that independently handling both leads
to a loss of information. We then generalize EVMDDs to allow functions
defined over different monoids, which allows us to represent conditional
costs and effects in a single decision diagram, which can be efficiently
used to compute conditional costs and effects for arbitrary Cartesian
states. The EVMDD library used in the empirical evaluation given in
Chapter 5 was developed during this work.

• David Speck, Florian Geißer, and Robert Mattmüller (2018). “Sym-
bolic Planning with Edge-Valued Multi-Valued Decision Diagrams”. In:
Proceedings of the Twenty-Eighth International Conference on Automated
Planning and Scheduling (ICAPS 2018). Ed. by Mathijs de Weerdt, Sven
Koenig, Gabriele Röger, and Matthijs Spaan. AAAI Press

We study EVMDD-based symbolic search for optimal planning. In par-
ticular, we define EVMDD-based representations of symbolic states and
transition relations, and introduce and evaluate an EVMDD-based sym-
bolic version of the A? algorithm. The benchmark set for tasks with
state-dependent action costs is the benchmark set we also use for the
evaluation in Chapter 5.

The following papers have been published during my doctoral process, but
are not related to classical planning or planning with state-dependent action
costs per se:

1.3. RELATION TO PUBLISHED WORK 7

• Florian Geißer, Thomas Keller, and Robert Mattmüller (2014). “Past,
Present, and Future: An Optimal Online Algorithm for Single-Player
GDL-II Games.” In: Proceedings of the 21st European Conference on Artifi-
cial Intelligence (ECAI 2014). Ed. by Torsten Schaub, Gerhard Friedrich,
and Barry O’Sullivan. IOS Press, pp. 357–362

• Thomas Keller and Florian Geißer (2015). “Better Be Lucky Than Good:
Exceeding Expectations in MDP Evaluation”. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence (AAAI 2015). AAAI Press,
pp. 3540–3547

• Dali Sun, Florian Geißer, and Bernhard Nebel (2016). “Towards ef-
fective localization in dynamic environments”. In: 2016 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, IROS 2016,
pp. 4517–4523

Finally, I also contributed to the probabilistic planning system PROST (Kel-
ler and Eyerich 2012), which provided the initial spark to take a deeper look
into planning with state-dependent costs.

• Together with Thomas Keller, we submitted the PROST planner to the
5th International Probabilistic Planning Competition (IPPC 2014).

PROST was the winner of the Boolean MDP Track.

• In 2018, together with David Speck, the PROST planner was modified to
include a heuristic based on symbolic search with ADDs. We submitted
this planner (dubbed PROST-DD) to the 6th International Probabilistic
Planning Competition (IPPC 2018).

PROST-DD was the winner of the discrete MDP track.

CHAPTER 2
Planning with State-Dependent Costs

2.1 Planning Tasks

In AI planning, we are interested in automatically finding a solution (a plan)
for a given problem (a planning task). In this chapter, we formally define
the different pieces that form a planning task. To illustrate the following
definitions, we will use a planning task from the class of logistics problems,
depicted in Figure 2.1. In this example task, we have a single truck, located
initially at position A, which has to transport packages from A and B to C. The
cost to drive between locations increases with increasing truck load.

There are many ways to model such tasks, but in this thesis we will rely on
a variation of the SAS+ framework (Bäckström and Nebel 1995), where states
and conditions are represented by sets of variable-value pairs.

For the following definitions, we assume that V is a set of finite-domain
variables, that is, each variable v ∈ V is associated with a finite domain

A

B C

Figure 2.1: Logistics planning task. Two packages are at locations A and B
and have to be transported to location C. Initially, the truck is at location A.

9

10 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

Dv = {0, . . . , |Dv|−1}. If Dv = {0, 1}, we call v a binary variable. For some
examples, we will use variables where the domain is specified by object names
instead of integer domain values, e.g. the position of the truck might be A, B
or C. Formally, such a variable would have domain {0, 1, 2}, and we only use
named domain values for illustration.

Definition 1 (Fact). A fact is a pair (v, d), alternatively written as (v
.
= d),

where v ∈ V and d ∈ D.

A fact expresses that some variable is assigned to some particular domain
value. In our logistics problem, we have the variables t-at with Dt-at =
{A,B,C} and p1-at and p2-at with domain {A,B,C,t}, which indicate the
position of the truck and the packages, respectively.

With sets of facts, i.e. a mapping of variables to their domain values, we
can express states and conditions.

Definition 2 (Partial variable assignments and states). A partial variable
assignment is a function s : V →

⋃
v∈V Dv, such that s(v) ∈ Dv for all v ∈ V.

Given a partial variable assignment s, we denote the variables for which s is
defined as vars(s). If s assigns a value to each v ∈ V, s is called a state. The
set of all states is denoted as S.

We often denote (partial) states with a set representation, i.e. a partial
variable assignment is represented by a consistent set of facts. Sometimes, we
also use a logical representation. For example, we denote the initial state of
our logistics task with (t-at

.
= A)∧(p1-at

.
= A)∧(p2-at

.
= B), and the goal is

represented by the partial state (p1-at
.
=C)∧(p2-at

.
=C).

Throughout the thesis we will often consider Cartesian sets of states, which
have a property which later turns out to be beneficial in our context. We use
the definition given by Seipp and Helmert (2018).

Definition 3 (Cartesian sets). A set of states sC over variables v1, . . . , vn
is called Cartesian if it is of the form D1 × . . . × Dn, where Di ⊆ Dvi for
i ∈ {1, . . . , n}. Given a state s ∈ S, we say that sC subsumes s, if s ∈ sC .
Furthermore, we write sC(vi) for Di.

Figure 2.2 gives an example of different Cartesian and non-Cartesian sets
of states. A set of states is Cartesian if we can express it as a Cartesian product
of domain values. Let us for the moment assume we only have two variables

2.1. PLANNING TASKS 11

p1-at and p2-at. Figure 2.2a depicts the Cartesian sets

s1
C = {A} × {A,B}

= {(p1-at
.
=A) ∧ (p2-at

.
=A), (p1-at

.
=A) ∧ (p2-at

.
=B)},

s2
C = {C, t} × {C, t}

= {(p1-at
.
=C) ∧ (p2-at

.
=C), (p1-at

.
= t) ∧ (p2-at

.
= t),

(p1-at
.
=C) ∧ (p2-at

.
= t), (p1-at

.
= t) ∧ (p2-at

.
=C).

On the other hand, Figure 2.2b depicts the set {(p1-at
.
=A) ∧ (p2-at

.
=B),

(p1-at
.
= B) ∧ (p2-at

.
= A)}, which we can’t express as a Cartesian prod-

uct between domain values. Intuitively, if we consider the domain of each
variable as a separate coordinate axis and states as entries in the resulting
n-dimensional matrix, then a set of states is Cartesian if we can form an n-
dimensional rectangle around the states (after rearranging columns/rows if
necessary).

Seipp and Helmert (2018) show that the intersection of Cartesian sets is
Cartesian, and the set of goal states is also Cartesian. Additionally, while a
Cartesian set of states can subsume exponentially many states it can still be
represented compactly, by only storing the domain values of the set.

The previous definitions allow us to model representations of the world.
However, we still need ways to manipulate states of the world, i.e. actions
which transform one state of the world into another state.

Definition 4 (Action). An action is a pair a = 〈pre, eff〉 of partial variable
assignments (or: sets of facts), called preconditions and effects. By pre(a) we
refer to the precondition of a. Similarly, eff(a) refers to the effect of a.

An action a is applicable in state s iff pre ⊆ s. Applying a to s yields the
state s′ with s′(v) = eff(a)(v) where eff(a)(v) is defined, and s′(v) = s(v)
otherwise. We write s[a] for s′. Given a Cartesian set of states sC , we say that
a is applicable in sC if there exists a state s′ ∈ sC such that a is applicable in
s′. Note that the set of states in which a is applicable is also Cartesian (Seipp
and Helmert 2018).

We have two kinds of actions in our logistics problem. Actions which allow
us to drive the truck to a different location, and load and unload actions, which
allow us to load and unload packages to and from the truck. For example, the
drive action drive-AB = 〈(t-at

.
= A), (t-at

.
= B)〉 requires the truck to be at

location A, and after application of the action, the truck is located at location
B. Similarly, we have actions drive-BA, drive-AC, drive-CA, drive-BC and
drive-CB. For the load actions, we have load-p1 = 〈(t-at

.
= A) ∧ (p1-at

.
=

A), (p1-at
.
= t)〉 which allows to load package p1 into the truck, if the truck

and the package are located at A. Similarly, we have load-p2, which allows to
load package p2 at location B. Finally, actions unload-p1 and unload-p2 allow

12 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

A B C t

A

B

C

t

(a) Example for Cartesian sets of states.

A B C t

A

B

C

t

(b) Example for non-Cartesian sets of states.

Figure 2.2

us to unload a package at location C, if the package is in the truck and the
truck is located at C.

With these definitions, we can already define classical planning tasks,
where actions do not have an associated cost. In this thesis, however, we
are concerned with tasks with an underlying cost function on the actions.

Definition 5 (Action cost function). The action cost function ca : S → Q+

of action a specifies the non-negative cost of applying action a in state s. The
set of actions A induces a global cost function c : A × S → Q+, such that
c(a, s) = ca(s) for all s ∈ S. If it is clear from the context we will also simply
write cost function instead of action cost function.

In general, this definition allows us to specify arbitrary cost functions, but
allowing arbitrary cost functions can easily lead to undecidability. For exam-
ple, the problem whether a Diophantine equation has an integer solution is
undecidable (Cutland 1980). We could define c(a, s) = 1 if some Diophantine
equation based on s has an integer solution. We could also define c(a, s) = 1 if
there is a solution for a planning problem beginning in s, essentially defining

2.1. PLANNING TASKS 13

a whole planning task in the cost function. In this thesis, we will focus on cost
functions we can evaluate in polynomial time (given a state) and which are
typically specified as a function term, e.g. a multivariate polynomial. More
formally, we distinguish three different cases:

Definition 6 (Cost function term). Let ca be a cost function. Then ca is
either:

1. A constant function, i.e. ca(s) = q, for q ∈ Q+, s ∈ S.

2. A function ca(s) = s(v), for s ∈ S, v ∈ V, i.e. the result of ca is the
domain value of v in s. We will often write ca = v for such functions.

3. The result of an operator ◦ : Q × Q → Q applied to two functions
f, g : S → Q.

Such a cost function may only depend on a subset of state variables, called
the support of ca, which we denote by vars(ca) = {va1 , . . . , v

a
k}. It will then

be convenient to think of ca as a function ca : Dva1 × . . . × Dvak → Q+. More

formally, vars(ca) = {v|∃s, s′ ∈ S s.t. s(v) 6= s′(v) and ca(s) 6= ca(s′)}. Note
that with this definition there may be variables in a function term which do
not contribute to the support, e.g. the term y+x−x has only y as support. We
will be able to compute the support by relying on a canonical representation
of cost functions, cf. Section 2.3.

For our logistics problem, we have a constant cost of 1 for the load and
unload actions. The cost of the drive actions is state-dependent: the more
packages loaded in the truck, the higher the cost to drive. The cost of all
drive actions is specified by the term cdrive(s) = [p1-at(s) = t] + [p2-at(s) =
t] + 1. For clarity, we surround subterms with the Iverson bracket operator
[·] (Iverson 1962), which converts a Boolean value to a number (false to 0,
true to 1). However, in terms of Definition 6 above, we can see = as a binary
operator with (f = g)(s) = 1 if f(s) = g(s), and (f = g)(s) = 0, otherwise.
Thus, if only one package is loaded into the truck, driving to another location
induces a cost of 2, while driving without any package induces a cost of 1. The
support of a drive action consists therefore of the variables p1-at and p2-at.
To ease notation, we will stop mentioning the state in the cost function, and
instead write cdrive = [p1-at = t] + [p2-at = t] + 1, i.e. a variable in a cost
function term refers to the state value of that variable.

We now have all definitions required to formalize a planning task:

Definition 7 (Planning task). A planning task is a tuple Π = (V,A, sI , s?, c)
consisting of the following components:

• V = {v1, . . . , vn} is a finite set of finite-domain state variables,

• A is a set of actions,

14 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

• state sI ∈ S is called the initial state,

• s? is a partial state which specifies the goal condition,

• c : A× S → Q+ is the global cost function of Π.

A state s is a goal state iff s? ⊆ s. We denote the set of goal states by S?
and say variable v is a goal variable if v ∈ vars(s?). We call Π a unit-cost task
if for all a, a′ ∈ A : ca(s) = ca′(s

′) for all s, s′ ∈ S. We call it a constant-cost
task, if for all a ∈ A : ca(s) = ca(s′). Otherwise, we call Π a state-dependent
action cost task, or simply planning task. If we talk about classical planning,
we assume that planning tasks are either unit-cost or constant-cost tasks. In
such cases, we will also simply write ca instead of ca(s).

Example 1. For the sake of completeness, we give the complete definition of
our logistics task:

• V = {t-at, p1-at, p2-at}

• Dt-at = {A,B,C}, Dp1-at = Dp2-at = {A,B,C, t}

• A = {

load-p1 = 〈(t-at
.
=A) ∧ (p1-at

.
=A), (p1-at

.
= t)〉,

load-p2 = 〈(t-at
.
=B) ∧ (p2-at

.
=B), (p2-at

.
= t)〉,

unload-p1 = 〈(t-at
.
=C) ∧ (p1-at

.
= t), (p1-at

.
=C)〉,

unload-p2 = 〈(t-at
.
=C) ∧ (p2-at

.
= t), (p2-at

.
=C)〉,

drive-AB = 〈(t-at
.
=A), (t-at

.
=B)〉,

drive-BA = 〈(t-at
.
=B), (t-at

.
=A)〉,

drive-AC = 〈(t-at
.
=A), (t-at

.
=C)〉,

drive-CA = 〈(t-at
.
=C), (t-at

.
=A)〉,

drive-BC = 〈(t-at
.
=B), (t-at

.
=C)〉,

drive-CB = 〈(t-at
.
=C), (t-at

.
=B)〉}

• sI = (t-at
.
=A) ∧ (p1-at

.
=A) ∧ (p2-at

.
=B)

• s? = {(p1-at
.
=C), (p2-at

.
=C)}

• cload-p1
= cload-p2

= cunload-p1
= cunload-p2

= 1,

• cdrive-AB = cdrive-BA = cdrive-AC = cdrive-CA = cdrive-BC = cdrive-CB =

[p1-at = t] + [p2-at = t] + 1.

Throughout the thesis we make the following assumptions.

2.1. PLANNING TASKS 15

Assumption 1 (No trivially inapplicable actions). We assume that there are
no trivially inapplicable actions, i.e. pre does not contain facts (v

.
= d) and

(v
.
=d′) for some v ∈ V and values d 6= d′.

Assumption 2 (No trivially unsolvable tasks). We assume the planning task
not to be trivially unsolvable, i.e. s? does not contain two facts (v

.
= d) and

(v
.
=d′) for some v ∈ V and values d 6= d′.

Assumption 3 (Precondition and action cost variables are disjoint). We
assume that for all actions, no variable mentioned in the action precondition is
required to compute the action cost, i.e. vars(ca) ∩ vars(pre(a)) = ∅.

All these assumptions can be guaranteed by a simple preprocessing step.
In the case of trivially inapplicable actions we just remove the actions from the
task. In the case of trivially unsolvable tasks we can immediately return that
the task is unsolvable. For the last assumption, assume there are variables in
vars(ca) which are also mentioned in the precondition of a. Let v be such a
variable, i.e. v ∈ vars(pre(a))∩ vars(ca). In this case, the value of v is already
determined by pre(a) in each state s where a is applicable: s(v) = pre(a)(v).
We can therefore transform ca and substitute v with pre(a)(v). The resulting
function will be equivalent to ca in all states where a is applicable. We require
one more assumption about the Cartesian sets of states we consider in this
thesis.

Assumption 4 (Cartesian domains are not empty). Let sC = D1× . . .×Dn
be a Cartesian set of states. We assume Di 6= ∅ for i ∈ {1, . . . , n}.

We now finally define what a solution to a planning task is.

Definition 8 (Plan). Let Π be a planning task and let π = 〈a0, . . . , an−1〉
be a sequence of actions from A. We call π applicable in state s0 if there
exist states s1, . . . , sn such that ai is applicable in si and si+1 = si[ai] for all
i = 0, . . . , n − 1, and denote sn with s0[π]. We call π an s-plan for Π if it is
applicable in s and if sn ∈ S?. If s = s0 then we also simply say π is a plan
for Π. The cost of an s0-plan π is the sum of action costs along the induced
state sequence, i.e., cost(π) =

∑n−1
i=0 cai(si). An optimal s-plan is an s-plan

that minimizes cost(π).

In our example task, there are infinitely many plans to reach the goal,
since we can drive endlessly around as long as we drop both packages at C
at some point. However, there are only three optimal plans, i.e. plans with
minimal cost. We can load p1, drive to C and unload p1, drive to B, load p2,
and drive back to C and unload the package. This requires two load and two
unload actions with a total cost of 4, two drive actions with a single package
loaded with a total cost of 4 and one drive action with no package loaded with
a total cost of 1, i.e. the total plan cost is 4 + 4 + 1 = 9. Another plan is to

16 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

load p1, drive to B, load p2 and drive to C and unload both packages. Again,
we have two load and two unload actions with a total cost of 4. But this
time one drive action loaded with a single package with cost 2 and one drive
action loaded with both packages with a cost of 3, and therefore total plan
cost 4 + 2 + 3 = 9. The third plan is the same, but we swap the order in which
we unload the packages. Note that if we would increase the unconditional
cost of driving to 2 instead of only 1 we would end up with the latter two
plans being the only optimal plans (with a cost of 11).

2.1.1 Heuristic Search

Finding a plan or even proving that one exists for a classical planning problem
is already PSPACE-hard (Bäckström and Nebel 1995; Bylander 1994). Finding
an optimal plan is still PSPACE-hard, but in practice usually much harder
than finding any plan (Helmert 2003). As we require cost functions to be
evaluatable in polynomial time, these results carry over to planning with state-
dependent action costs.

Although it is unlikely that there exists a polynomial time planning algo-
rithm, there are still powerful tools which allow to find plans for a variety of
domains of different difficulty and size (Helmert 2006a; Torralba and Pom-
merening 2018). One of the most powerful tools to find a plan is heuristic
search, where we reason over the transition system induced by the planning
task.

Definition 9 (Transition system). A planning task Π induces a labeled, weig-
hted transition system TΠ = (S, L, T, sI , S?) with state space S, transition la-
bels L, transition relation T ⊆ S × L × Q+ × S, initial state sI and goal
states S?. Labels L correspond to the actions of Π, and for each action a ∈ A
and state s ∈ S there is a transition (s, a, w, s[a]) with label a and weight

w = ca(s) if and only if a is applicable in s. We write s
a,ca(s)
−→ s[a] for (s, a,

ca(s), s[a]).

Example 2. Figure 2.3 depicts the transition system of the logistics task of
Example 1. Each node represents the values for the variables in order t-at,
p1-at, p2-at. Drive action labels are omitted, and instead the cost of drive
actions are denoted between states. The initial state is marked in grey, goal
states are marked by double lined nodes. Two (of the three) cheapest cost
plans are highlighted red and blue, respectively.

A cheapest path in TΠ from the initial state to some goal state is therefore
a sequence of actions which corresponds to an optimal plan for Π. Thus, the
problem of finding an optimal plan is equivalent to the problem of finding
a cheapest path in the transition system from the initial state to some goal
state. The A? algorithm (Hart et al. 1968) is a best-first search algorithm
and has been applied successfully in many different branches of AI, such as

2.1. PLANNING TASKS 17

AAB

CAB

1

BABAAt

BAt

2
CAt

AACBAC

CAC

1

Att

Ctt

3

Btt

ACt

BCt

2
CCt

AtB

2
BtB CtB

ACBBCB

CCB

1

AtC

2
BtC CtC ACC BCC

CCC

1

load p2

load p2

load p2

load p1

load p1

load p1

unload p2

unload p2

unload p2

unload p1

unload p1

unload p1

Figure 2.3: Transition system of the logistics task in Example 1. Each node
depicts a state for variables t-at, p1-at, p2-at. Labels for drive actions are omit-
ted, instead the numbers between nodes represent the cost of the drive ac-
tions. Two plans are highlighted in red and blue. Both plans have a cost of
9.

route-planning (Bast et al. 2016), video games, or multi-agent planning (Sil-
ver 2005). In optimal AI planning, A? is one of the most commonly used
algorithms to find optimal plans. The algorithm estimates the minimum cost
of reaching a goal from the initial state via a function f(s) = g(s) + hΠ(s)
and progressively “expands” states s with minimum f -value. Here, g(s) is the
cost of a current path from sI to s. The heuristic hΠ estimates the distance
from some state s of Π to a goal state. From now on, we will omit labeling
the heuristic with the corresponding task and the task will be clear from the
context. A heuristic is a function h : S → N ∪ {∞} and the perfect heuristic
h? maps each state s ∈ S to the cost of an optimal s-plan, or to ∞ if no such
plan exists. In the following, we present some important concepts regarding
heuristics.

Definition 10 (Heuristic properties). Let Π be a planning task and TΠ its
transition system with state space S. Let h : S → N ∪ {∞} be a heuristic. We

18 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

say that h is goal-aware if h(s) = 0 for s ∈ S?. We say that h is admissible if it
never overestimates the true cost, i.e. if h(s) ≤ h?(s) for all s ∈ S. Finally, h
is consistent, if h(s) ≤ ca(s) + h(s[a]) for all a ∈ A and s ∈ S.

Furthermore, given two heuristics h and h′, we say that h dominates h′ if
and only if h(s) ≥ h′(s) for all s ∈ S.

If an admissible heuristic is used, the A? algorithm returns optimal plans.
Heuristics which are goal-aware and consistent are admissible (Russel and
Norvig 2010) and heuristics which are admissible are goal-aware. While there
are exceptions (Holte 2010), search is in general more efficient if an admissi-
ble heuristic yields a high estimate, and the search for more powerful admis-
sible heuristics has dominated the field of optimal classical planning for many
years.

For tasks with state-dependent action costs, computing the g-value of a
state is simple: the algorithm just has to evaluate the action cost function
given a state s and add the g-value of the predecessor state. Heuristics, how-
ever, have been developed for tasks with constant action costs, and this brings
up the question if and how we can generalize different heuristics to tasks with
state-dependent action costs. But before we delve into such questions, we
first discuss how we can express state-dependent action costs from the mod-
eling perspective, and take a look at different representations of action cost
functions.

2.2 Modeling State-dependent Action Costs

Most research in planning is concerned with classical planning, and all tasks of
the previous International Planning Competitions (Muise 2015) only involve
unit or constant action cost. While there are extensions to classical planning,
e.g. numeric planning (Fox and Long 2003), or planning with constraints
and preferences (Gerevini and Long 2005), none of these explicitly mention
state-dependent action costs. In the following, we discuss how we can model
state-dependent action cost tasks with current planning formalisms.

2.2.1 PDDL

The planning domain definition language (PDDL) (McDermott et al. 1998),
originally introduced in 1998, is the prevalent language to model planning
tasks and also the language used in the various International Planning Com-
petitions (ICAPS competitions 2018). Therefore, there exists a large bench-
mark set which has grown over the years, and the language itself has received
various extensions. The plan metric field, introduced with PDDL 2.1 (Fox and
Long 2003) allows to specify, among others, that plan costs should be mini-
mized. Action costs can then be expressed with an (INCREASE TOTAL-COST k)
effect, which denotes that applying the action has an effect of a cost increase

2.2. MODELING STATE-DEPENDENT ACTION COSTS 19

of k. Conditional effects allow actions to have effects which only trigger if
some condition is met, independent of the unconditional action effect. This
already allows us to model simple tasks with state-dependent action costs. For
example, our logistics planning problem might model the drive actions with
a conditional effect where the condition is that package p1 is loaded in the
truck, and the effect is (INCREASE TOTAL-COST 1).

This allows us to arbitrarily sum up different conjunctions of facts, but
we are still not able to efficiently express subtraction or multiplication in our
cost functions. In principle, we can also use conditional effects to represent
arbitrary state-dependent cost functions, simply by enumerating all possible
partial states of the support of the action cost, and expressing each partial
state as a condition of a conditional effect. However, such a task will be of
exponential size in the number of variables in the support. We will come back
to this later, when we define different compilations of state-dependent action
cost tasks into classical planning tasks, in Section 2.4.

PDDL 2.1 also extended the language with the ability to specify numeric
expressions, which is the foundation for the field of planning with numeri-
cal state variables (in short: numeric planning), where the domain of a vari-
able may assume real numbers, and actions can have arbitrarily complex ef-
fects, including multiplication and subtraction. Ivankovic et al. (2014) already
recognized that state-dependent action costs can be represented with unre-
stricted numeric PDDL. However, while classical planning is PSPACE-hard,
numeric planning is undecidable (Helmert 2002), and various work is con-
cerned with extending concepts from classical planning to numeric planning
(Aldinger and Nebel 2017; Eyerich et al. 2009; Scala et al. 2017). As such,
while we can express complex cost functions with numeric PDDL, it is out of
scope for our research in classical planning with state-dependent action costs.

With PDDL 3.0 (Gerevini and Long 2005), plan constraints and preferences
were introduced. These also allow to model state-dependent action costs, as
“preferences in action preconditions may incur a penalty when applying the
action in a state where the preference is unsatisfied” (Ivankovic et al. 2014).
Ceriani and Gerevini (2015) make use of this relation and present a compila-
tion of always preferences, conditions which should hold in every state visited
by application of a plan, to a classical planning problem with action costs.
The PDDL 3.0 planner HPLAN-P (Baier et al. 2007) compiles preferences in
action preconditions away by introducing a counter which tracks the number
of preference violations. In the plan metric, this counter is used to increase
the cost of the overall plan. In principle, this can be seen as another form of
achieving state-dependent action costs by making use of conditional effects
together with plan metric properties.

20 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

2.2.2 Fast Downward Input Language

While extensions to PDDL allow to express state-dependent action costs, all
extensions incur a strong addition to the planning formalism itself. PDDL
2.1 allows numeric planning, and PDDL 3.0 allows in principle to express
arbitrary formulae in linear temporal logic. As a consequence, any planner
supporting one of these fragments of PDDL has to be able to solve a super-
set of state-dependent action cost tasks. However, in this thesis, we are more
concerned with understanding state-dependent action costs, and therefore ex-
amine this topic in the purest possible setting, i.e. classical planning extended
with state-dependent action costs. While a planner-independent formalism
to express classical planning tasks with state-dependent action costs would
be preferable, proposing yet another planning formalism is out of the scope
of this thesis, and requires cooperation among the planning community. We
therefore mention another practical way to express state-dependent action
costs, which is more concerned with the planner input language itself, as op-
posed to an expressive language usable by different planning engines.

The Fast Downward planning system (Helmert 2006b) is a state-of-the-
art planning system which is used and extended by many researchers around
the world. In the optimal planning track of the recent International Plann-
ing Competition (Torralba and Pommerening 2018), 11 out of 12 planners
(this excludes multiple versions of the same planning system) are based or
make heavy use of Fast Downward. In principle, Fast Downward consists of
two components: a translator component takes a PDDL domain and problem
file, applies various transformations (Helmert 2009) (e.g. invariant synthe-
sis, reachability analysis) and returns a file used by the search component.
This internal file represents an SAS+ planning task formulation, and as such
also contains fields that express variables and domains, as well as actions and
their cost. Later in the thesis, we will evaluate different approaches to state-
dependent action cost planning, and their implementation is based on Fast
Downward. Therefore, we express our planning tasks in the input language
format of Fast Downward. To allow state-dependent action cost we only have
to modify the action cost field in this specification.

2.3 Representing State-dependent Action Costs

Expressing state-dependent action costs is important for modeling planning
problems, but it does not answer the question of how to algorithmically deal
with state-dependent costs. When we are not interested in heuristics and ap-
ply a simple forward search algorithm (e.g. A? with h(s) = 0 for all states s)
it suffices to be able to compute the action cost for a given state, e.g. repre-
senting the action cost function as a C-like programming function. However,
we will see that it may be beneficial to view the action cost function on a more
“symbolic” level, and exhibit and exploit structure hidden in the cost function.

2.3. REPRESENTING STATE-DEPENDENT ACTION COSTS 21

To achieve this, we will use decision diagrams as a representation of our cost
functions. Decision diagrams play an important role in formal verification of
digital circuits and communication protocols (Clarke et al. 1999) and have
also been applied to other areas of AI, such as constraint logic programming
(Codognet and Diaz 1996), stochastic planning (Hoey et al. 1999), comput-
ing shortest paths (Bahar et al. 1997), discrete optimization (Bergman et al.
2016), and heuristic search (Edelkamp and Reffel 1998; Hansen et al. 2002).
In the past decade, decision diagrams have also been successfully applied to
AI planning (Edelkamp and Helmert 2001; Edelkamp and Kissmann 2009;
Torralba 2015). Here, decision diagrams are used to symbolically represent
sets of states and action transitions, and a “symbolic planner” performs se-
arch on sets of states instead of doing explicit state-space search. In 2014,
the symbolic planner SYMBA∗ was the winner of the International Planning
Competition (Edelkamp et al. 2015). While we are not concerned with the
question of how to plan with symbolic representations, we will apply sym-
bolic representations of cost functions and reason over these representations.
Therefore, we give a brief introduction to several types of decision diagrams,
and focus on so called edge-valued multi-valued decision diagrams later on.

2.3.1 Binary Decision Diagrams

The most prominent representative of decision diagrams, and also the pre-
decessor for many other diagrams, are so called Binary Decision Diagrams
(BDDs) (Akers 1978; Bryant 1986; Lee 1959). They are based on Boole’s ex-
pansion theorem (Boole 1854), which is also often called Shannon expansion.

Theorem 1 (Boole’s expansion theorem). Let f : {0, 1}n → {0, 1} be a
function with n ∈ N and let f |xi=1 be the function where xi is substituted with
1 in f (analogously with 0) for i ∈ {1, . . . , n}. Then f(x1, . . . , xn) = ¬xi ·
f |xi=0 +xi · f |xi=1.

A BDD over binary variables V = {v1, . . . , vn} is a directed acyclic graph
and represents a Boolean function f : {0, 1}n → {0, 1}. A BDD has a single
root node and two terminal nodes 0 and 1, also called the 0-sink and the 1-
sink. A non-terminal node v is associated with variable v ∈ V and denotes the
Boolean function (¬v ∧ χlow) ∨ (v ∧ χhigh), where χlow and χhigh are succes-
sors of v corresponding to the functions where v is false (χlow), true (χhigh),
respectively. Evaluation of f then equates to the traversal of the BDD starting
at the root node and traversing edges corresponding to the assignment of the
variables until a terminal node is reached. If the 0-sink is reached, the value of
f is 0, otherwise it is 1. Figure 2.4a depicts a BDD for function f = x0∧x1∧¬y.

BDDs have several properties which make them preferable for representa-
tion and transformation of Boolean functions (Bryant 1986). First, for many
commonly-encountered functions, the size of the BDD is relatively small. Sec-
ond, the complexity of any operation on two functions is bounded by the

22 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

x0

x1

y

0 1

0 1

0 1

01

(a) BDD representing f = x0 ∧ x1 ∧ ¬y

x

y

0 1

0 1 2

3

01

(b) MDD representing f = (x
.
=3)∧(y

.
=0)

Figure 2.4

product of the BDD sizes for these functions. Finally, by imposing restrictions
on the ordering of the decision variables in the BDD and by eliminating re-
dundant vertices, a BDD is a canonical form of a function, i.e. every function
has a unique BDD representation. Such BDDs are sometimes called reduced
ordered binary decision diagrams (ROBDDs).

In principle, BDDs can also be applied to problems where variables have a
non-binary domain. The key idea is to encode each variable vi with dlog2|Dvi |e
additional variables. However, we can generalize the definition of BDDs to
multi-valued decision diagrams (MDDs), which naturally allow for variables
with non-binary domain by having more than two outgoing edges for each
node (Miller 1993; Srinivasan et al. 1990). Figure 2.4b depicts an MDD for
function f = (x

.
=3)∧ (y

.
=0), i.e. the function maps only state s with s(x) = 3

and s(y) = 0 to 1.

2.3.2 Multi-terminal Decision Diagrams

Another way to generalize BDDs is to seek for a representation of functions
with non-Boolean codomain, i.e. the function maps to other sets than to
{0, 1}. For this, Clarke et al. (1993a,b) generalize BDDs to have multiple
(more than two) terminal nodes, which can then represent arbitrary integers.
They call this type of diagrams multi-terminal binary decision diagrams (MTB-
DDs) and allow the values of terminal nodes to be of arbitrary sets, but they
primarily represent matrices in their work. Bahar et al. (1993, 1997) extend
this concept: they develop a theory of MTBDDs which represent functions
f : {0, 1}n → M , where M is the carrier of some algebraic structure and the
values of terminal nodes are therefore of type M . While these diagrams are
still MTBDDs, they use the term algebraic decision diagram (ADD) instead, to
emphasize their use for arbitrary algebraic structures, and they evaluate them

2.3. REPRESENTING STATE-DEPENDENT ACTION COSTS 23

x0

x1 x1

y y y

0 2 4 6

0 1

0 1 0 1

0 1 0 1 0 1

(a) ADD

x0

x1

y

0

0

0
0

2
1

0

0

2

1

0

0

2

1

(b) EVBDD

Figure 2.5: ADD and EVBDD representation of f = 2x0 + 2x1 + 2y.

on a number of different applications, including shortest-path problems and
solving systems of linear equations. Figure 2.5a depicts an ADD for function
f = 2x0 + 2x1 + 2y, where the carrier set is N.

2.3.3 Edge-valued Decision Diagrams

So far we have seen two ways of extending BDDs: allowing for more than
two terminal nodes (ADDs/MTBDDs), and allowing for non-terminal nodes
with more than two children (MDDs). Another form of decision diagram
changes the way the diagram is evaluated by extending edges with weights.
Lai and Vrudhula1 (1992) introduced edge-valued binary decision diagrams
(EVBDDs), which are more suited if one seeks to represent arithmetic, instead
of Boolean functions. They apply them to several applications, such as integer
linear programming, spectral transformations, and multiple-output decom-
position of Boolean functions. EVBDDs have three important distinctions to
BDDs: the root node has a dangling incoming edge, there is only a single
terminal node 0, and edges are weighted. Instead of denoting a Boolean func-
tion, a node v in the EVBDD associated with (binary) variable v denotes the
arithmetic function (1 − v)(wlow + χlow) + v · (whigh + χhigh), where wlow
and whigh are weights on the edges to the children χlow and χhigh. Again,
these children represent arithmetic functions themselves. While for BDDs,
the evaluation of function f depends on the terminal node, for EVBDDs, the
evaluation of function f equates to the sum of the edge weights along the
path corresponding to the assignment of the variables. Figure 2.5b depicts an
EVBDD for function f = 2x0 + 2x1 + 2y.

If the value of wlow is fixed to 0, then reduced and ordered EVBDDs
also have the canonical property. Additionally, EVBDDs can be exponentially

1S. Vrudhula published this work as S. Sastri.

24 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

more compact than ADDs (Lai et al. 1996). Take for example the function
f =

∑n
i=1 2i · vi. The EVBDD representation of f requires n + 1 nodes, since

the weights can encode the partial values of f corresponding to the value of
variable vi. The ADD representation of f , however, requires 2n+1 − 1 nodes,
as the terminal nodes have to represent all possible values that f can take on.

While EVBDDs never require more nodes than ADDs, there is an important
difference between the time complexity of operations performed on them. For
BDDs and ADDs the complexity is bounded by the product of the BDD (ADD)
sizes; this is not necessarily the case for EVBDDs. We won’t describe the de-
tails here (and refer to Lai et al. (1996) instead), but note that if the EVBDD
operations satisfy some specific properties (called the additive property and
the bounding property), then time complexity is greatly reduced. Addition-
ally, EVBDDs can also be used to represent Boolean functions. In this case
they have the same size and require the same time complexity for performing
operations. We should mention, however, that in practice the edge-weighted
nature of EVBDDs makes them inferior to BDDs for Boolean function repre-
sentation, due to the additional overhead of representing edge weights.

2.3.4 Edge-valued Multi-valued Decision Diagrams

The generalization of EVBDDs to multi-valued variables is called Edge-valued
Multi-valued Decision Diagram (EVMDD) (Ciardo and Siminiceanu 2002) (of-
ten also denoted as EV+MDD) and will be the primary data structure we will
use to represent cost functions in planning tasks with state-dependent action
costs. In general, EVMDDs may also be defined over other algebraic structures
(Mattmüller et al. 2018), but we restrict our definitions to the case where an
EVMDD represents a cost function c : S → Q+. Therefore, we will formally
introduce EVMDDs and also formally define reduced and ordered EVMDDs,
and note that this is analogous to the requirements on reduced and ordered
BDDs (ADDs, EVBDDs). Obviously, the aforementioned comparison of EVBDD
and ADD sizes also holds for EVMDDs.

Definition 11 (Edge-valued multi-valued decision diagram). An EVMDD
over a finite set of variables V is a tuple E = 〈κ, f〉, where κ ∈ Q+ is a
constant value and f is a directed acyclic graph consisting of two types of
nodes: (1.) There is a single terminal node denoted by 0. (2.) A nonterminal
node v is a tuple (v, χ0, . . . , χk, w0, . . . , wk) where v ∈ V is a variable, k =
|Dv|−1, the children χ0, . . . , χk are terminal or nonterminal nodes of E , and
w0, . . . , wk ∈ Q+ s.t. mini=0,...,k wi = 0 are the weights assigned to the edges
to the children.

By κ we refer to the input weight of E , and by f we also refer to the
root node of E . We refer to the components of v as var(v), χi(v) and wi(v).
Edges of E between parent and child nodes are implicit in the definition of the
nonterminal nodes of E . The weight of an edge from v to χi(v) is wi(v). We

2.3. REPRESENTING STATE-DEPENDENT ACTION COSTS 25

denote the number of nodes in E with |E|. The following definition specifies
the arithmetic function denoted by a given EVMDD.

Definition 12 (Arithmetic function denoted by the EVMDD). An EVMDD
E = 〈κ, f〉 denotes the arithmetic function κ + f where f is the function
denoted by f . The terminal node 0 denotes the constant function 0, and
(v, χ0, . . . , χk, w0, . . . , wk) denotes the arithmetic function over S given by
f(s) = fs(v)(s) + ws(v), where fs(v) is the arithmetic function denoted by
child χs(v). We write E(s) for κ+ f(s).

This means that, given an EVMDD Ef encoding function f : S → Q+, and
given a state s, the value f(s) can be read from Ef as the sum of edge weights
along the unique EVMDD path corresponding to s, Ef (s).

In the graphical representation of an EVMDD E = 〈κ, f〉, f is represented
by a rooted directed acyclic graph and κ by a dangling incoming edge to the
root node of f . The terminal node is depicted by a rectangular node labeled
0. Edge labels d are written next to the edges, edge weights wd in boxes on
the edges.

Example 3. Consider the cost function of the drive actions of the logistics task
presented in Example 1: cdrive-AB = [p1-at = t] + [p2-at = t] + 1. Figure 2.6
depicts the EVMDD representation of cdrive-AB. Evaluating state s = (t-at

.
=

A)∧ (p1-at
.
= t)∧ (p2-at

.
= t) corresponds to the sum of the edge weights along

the path (p1-at
.
= t) and (p2-at

.
= t), resulting in a cost of 3.

p1-at

p2-at

0

1

0

A

0

B
0

C
1

t

0

A

0

B
0

C
1

t

Figure 2.6: EVMDD of the drive cost function [p1-at = t] + [p2-at = t] + 1.

The EVMDD in Example 3 is already ordered. Informally speaking, an
EVMDD is ordered if we can assign an ordering on the variables, and nodes in
the EVMDD respect that ordering, i.e. the variable corresponding to a node in

26 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

the EVMDD has a higher order than the variable corresponding to one of the
child nodes.

Definition 13 (Ordered EVMDD). An EVMDD E is ordered if there exists an
ordering level : V → {1, . . . , |V|} on the variables such that for every non-
terminal node v, either χi(v) is a terminal node, or we have level(var(v)) >
level(var(χi(v))), for i ∈ {0, . . . , |Dvar(v)|−1}. If v is the terminal node, then
level(v) = 0.

Given an EVMDD E = 〈κ, f〉, the order of E is level(var(f)). We will some-
times denote the ordering as a tuple (vn, . . . , v1) which means level(vi) =
i, i ∈ {1, . . . , n}. This can be understood as “vn appears above vn−1” in the
graphical representation.

For EVMDDs, we will define two different properties of reducedness. The
reduced property for EVMDDs corresponds to the same property for BDDs, but
we will also define the quasi-reduced property, which guarantees that every
path from the root node to the terminal node involves all variables.

Definition 14 (Reduced EVMDD). An ordered EVMDD is reduced if there is
no nonterminal node v = (v, χ1, . . . , χk, 0, . . . , 0) with χi = χj for all i, j ∈
{1, . . . , k}. 2

Definition 15 (Quasi-reduced EVMDD, Ciardo and Siminiceanu 2002). An
ordered EVMDD is quasi-reduced if there are no two nonterminal nodes u,v
such that u = v, and all edges span exactly one level, i.e. level(var(χi)) =
level(v) − 1, i ∈ {1, . . . , k} for all nonterminal nodes v = (v, χ1, . . . , χk, w1,
. . . , wk).

Reduced and ordered EVMDDs are sometimes called ROEVMDDs. From
now on we assume that all EVMDDs are either reduced or quasi-reduced ac-
cording to some given ordering. As we do not care about uniqueness, we may
use different, appropriate variable orderings for different cost functions. This
may be beneficial, since different orderings have different effects on the size of
an EVMDD. In particular, a good ordering can result in an exponentially more
compact EVMDD. Take for example (Edelkamp and Kissmann 2011; Speck
2018) the two EVMDDs in Figure 2.7, where both diagrams depict the same
function, but the size of one is polynomial in the number of variables (2.7a),
while the other is exponential (2.7b). This raises the question if we can come
up with an optimal ordering. Unfortunately, computing an optimal ordering
is already co-NP-complete for BDDs (Bryant 1986). Given a BDD for a func-
tion f , it is even NP-complete to decide if there exists a BDD for f with some

2 In the literature, there is also the additional requirement that there are no two different
nonterminal nodes u,v such that var(u) = var(v) and for all i ∈ {1, . . . , k} χi(u) = χi(v)
and wi(u) = wi(v). As nodes, according to our definition, do not have a name (or identity),
this implies u = v, therefore this requirement is redundant.

2.3. REPRESENTING STATE-DEPENDENT ACTION COSTS 27

x1

y1

x2

y2

x3

y3

0

0

0

0
0

1

0

0

1

1

0

0
0

1

0

0

1

1

0

0
0

1

0

0

1

1

(a) variable order x1, y1, x2, y2, x3, y3.

x1

x2 x2

x3 x3 x3 x3

y1 y1 y1 y1

y2 y2

y3

0

0

0

0

0

1

0

0
0

1

0

0

0

1

0

0

0

1
0

0

0

1

0

0 0

1

0
0 0

1

0

0

1

1

0

0

1

1 0

0

1

1 0

0

1

1

0

0

1

1

0

0

1

1

0

0

1 1

(b) variable order x1, x2, x3, y1, y2, y3.

Figure 2.7: Two EVMDDs with different variable orderings for function f =
(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3).

size bound b (Bollig and Wegener 1996). Additionally, for some BDDs the
size of the diagram is exponential, independent of the underlying ordering.
Edelkamp and Kissmann (2011) show this for a BDD which encodes the goal
condition of the game Connect Four. Their result carries over to the EVMDD
case, as the representation is nearly identical (instead of edges in the BDD
connecting to the 1 node, edges in the EVMDD have a weight of 1 and con-
nect to the terminal node).

Nevertheless, for many functions, EVMDDs are quite compact and there
exist techniques to come up with decent variable orderings. The static order-
ing approach determines an ordering prior to construction, and this order is
maintained throughout all decision diagram operations. Most static order-
ings are based on heuristics. A comprehensive overview on some possible
heuristics for BDDs and MDDs which also work for EVMDDs can be found in
a survey by Rice and Kulhari (2008). Dynamic ordering (Rudell 1993) on the
other hand performs reordering of variables in-between operations on the dia-
gram. Such algorithms apply shifting of groups of symmetric variables (Panda
and Somenzi 1995), simulated annealing (Bollig et al. 1995), or techniques

28 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

based on genetic algorithms (Drechsler et al. 1995). However, we note that
since we are only interested in the representation of cost functions, and not in
subsequent operations performed on this representation, dynamic orderings
are not important for this work.

Sometimes we are required to speak more formally about paths in an EV-
MDD. If the EVMDD is quasi-reduced, then every path in the EVMDD corre-
sponds to a unique valuation of the cost function.

Definition 16 (Path). Let E be an EVMDD with nodes v0, . . . ,vn. A sequence
p = 〈vn, dvn , . . . , v1,dv1 ,v0〉 is a path from vn to v0 if for i ∈ {n, . . . , 1} and
vi = 〈vi, χ0, . . . , χk, w0, . . . , wk〉 we have vi−1 = χdvi

. Given a path p, we
denote with cost(p) the sum of weights along the path and with sp the partial
state corresponding to this path, i.e. sp = (vn

.
=dvn)∧ . . . ∧(v1

.
=dv1).

Finally, we give the proof that reduced and ordered EVMDDs are a canonic
representation, i.e. there exists a unique (up to isomorphism) representation
of each function f : S → Q+. The proof is adapted from Ciardo and Si-
miniceanu (2002); their proof is for codomain N ∪ {∞} and only covers one
direction, but the adaptation is quite straightforward.

Definition 17 (EVMDD isomorphism). Let Ef = 〈κf , f〉 and Eg = 〈κg,g〉 be
two EVMDDs. Then f and g are isomorphic, if there exists a bijective function
σ from the nodes of f to the nodes of g such that for any node v in f , if
σ(v) = v′, then either both v and v′ are terminal nodes, or both are non-
terminal nodes with var(v) = var(v′), σ(χi(v)) = χi(v

′) and wi(v) = wi(v
′)

for all i ∈ {0, . . . , |Dvar(v)|−1}. If κf = κg, then Ef and Eg are isomorphic.

Lemma 1. Let level be some variable ordering, and f and g be two reduced and
ordered (according to level) EVMDD nodes. Let f : S → Q+ and g : S → Q+ be
the functions denoted by f and g, respectively. If var(f) 6= var(g) then f 6= g.

Proof. Since f and g are nodes of ordered and reduced EVMDDs, if we have
var(f) 6= var(g), then either level(var(f)) > level(var(g)) or level(var(f)) <
level(var(g)). Let without loss of generality level(var(f)) > level(var(g)).
Since f is reduced, there are states s and s′ with s(var(f)) = d, s′(var(f)) = d′

such that f(s) 6= f(s′). However, such a state does not exist for g. Assume
such a state exists, then there would have to be some successor node v of g
with var(v) = var(f). Since f and g underlie the same ordering, and since
level(var(f)) > level(var(g)), this is a contradiction.

Theorem 2 (EVMDD canonicity). Given some variable ordering level , let Ef =
〈κf , f〉 be a reduced ordered EVMDD encoding function f : S → Q+ and let
Eg = 〈κg,g〉 be a reduced ordered EVMDD encoding function g : S → Q+ .
Then, f = g if and only if Ef and Eg are isomorphic.

We first show that two isomorphic nodes encode the same function:

2.3. REPRESENTING STATE-DEPENDENT ACTION COSTS 29

Lemma 2. Let level be some variable ordering, and f and g be two reduced and
ordered (according to level) EVMDD nodes. Let f : S → Q+ and g : S → Q+ be
the functions denoted by f and g, respectively. Then f = g, if and only if f and g
are isomorphic.

Proof. By induction over the level of f .
Base case level(f) = 0: Both nodes f and g are terminal nodes and encode

the function f = 0 = g, and are, by definition, isomorphic.
Inductive step level(f) = l > 0: Assume the claim is true for all nodes v

with level(v) ≤ l − 1. Let i ∈ {1, . . . , k} and Si be the set of states s with
s(var(f)) = i. We write χf for the function denoted by χi(f), wf for wi(f), χg
for the function denoted by χi(g), and wg for wi(g).

First, assume that f = g. Then, χf (s) + wf = χg(s) + wg for s ∈ Si,
since χf + wf denotes f and χg + wg denotes g, respectively. Since there
is always a zero-weighted path from a node to the terminal node, we have
mins∈Si χf (s) = 0 = mins∈Si χg(s), and therefore the minimum values that
χf (s) + wf and χg(s) + wg can have are wf and wg, respectively. Then,
wf = mins∈Si χf (s) + wf = mins∈Si χg(s) + wg = wg. This implies that
χf = χg and by induction hypothesis that χi(f) and χi(g) are isomorphic.
Since i is arbitrary, and by contraposition of Lemma 1, it follows that f and g
isomorphic.

Now, assume that f and g are isomorphic, then wf = wg. Since χi(f) and
χi(g) are isomorphic, we get by induction hypothesis that χf = χg, and thus
χf + wf = χg + wg. Again, since i is arbitrary, it follows that f = g.

This brings us to the simple proof for Theorem 2.

Proof. Assume that f = g. Since all nodes have at least one outgoing edge
with weight 0, there exists a state s with κf = f(s) = g(s) = κg. Therefore
f and g must encode the same function f − κf and it follows from Lemma 2
that they are isomorphic.

Now assume κf = κg, and f and g are isomorphic. Ef encodes function
f = κf + f ′, where f ′ is the function encoded by f . Analogously, Eg encodes
function g = κg + g′. From Lemma 2 it follows that f and g encode the same
function, therefore f ′ = g′. Since κf = κg, we have g = κg + g′ = κf + f ′ =
f.

2.3.5 Construction

We now discuss how to construct an EVMDD for a cost function c : S → Q+,
given a fixed variable order level and a fixed state space S. According to
Definition 6, we have to distinguish three cases:

1. c represents a constant function ca(s) = q, for q ∈ Q+, s ∈ S,

2. c represents a function c(s) = s(v), for s ∈ S, v ∈ V,

30 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

3. c is the result of an operator ◦ : Q × Q → Q applied on two functions
f, g : S → Q.

Construction for the first case is straightforward: the corresponding EV-
MDD Ec for c = q with q ∈ Q+ is Ec = 〈q,0〉, i.e. an EVMDD with input value
q and the terminal node as its root node. For the second case, c = v for some
v ∈ V, the corresponding EVMDD is Ec = (v,0, . . . ,0, 0, . . . , |Dv|−1), i.e. the
weight of each edge is the corresponding domain value of that edge, and all
edges lead to the terminal node. Observe that if s(v) = d, then Ec(s) = d.

Construction for the last case is more involved. A central operation for this
construction is the apply procedure (Lai et al. 1996). Let ◦ : Q+ ×Q+ → Q+

be an operator and f : S → Q+ and g : S → Q+ be two functions. We
can, by slight abuse of notation, view ◦ as an operator on f and g with
(f ◦ g)(s) = f(s) ◦ g(s). Now, let E(·) be the construction that turns a func-
tion f into the reduced ordered EVMDD Ef representing f . We would like
to have an operator ◦E that mimics the behaviour of ◦ on EVMDDs, i.e. such
that Ef◦g = Ef ◦E Eg. The apply procedure does exactly that. In the litera-
ture, the application of ◦ on the EVMDD level, Ef ◦E Eg, is usually written as
apply(◦, Ef , Eg).

Algorithmically, the apply procedure traverses both input EVMDDs Ef and
Eg from top to bottom in a synchronized manner, propagating edge weights
downward, recursively applying ◦ to pairs of corresponding subgraphs with
the same edge constraint, and pulling up excess edge weights again when the
recursive computation has terminated. In the base case, when both EVMDDs
represent constant functions encoded in their bottom-most edge labels wf (in
Ef) and wg (in Eg), those get combined into the new edge label wf ◦ wg.

Algorithm 1 describes a basic version of the apply procedure. In line 2,
function terminal_case checks if the base case applies, i.e. if both EVMDDs
represent constant functions. Then, apply returns an EVMDD with the com-
bined constants (via ◦) as new input weight, and the terminal node 0 as root
node. Otherwise, a new EVMDD is generated for each child of Ef and Eg (lines
7 and 8). We will describe this for Ef as input to algorithm 2: in the case that
the order of Ef is greater or equal to the order of Eg (line 3 of algorithm 2),
the input weight of Ef is pushed down along the edges, i.e. for each edge
(χ,w) an EVMDD with κ+ w as input weight and χ as root node is returned.
If the order of Ef is lower (line 4 of algorithm 2), Ef is just copied k+ 1 times,
where k + 1 denotes the number of children of Eg. This case can be seen as
some sort of alignment, i.e. we push down the weights along the edges of
the higher ordered EVMDD only, until both EVMDDs are aligned on the same
level.

Back in the main algorithm, line 10 recursively calls apply for each pair of
the returned EVMDDs. Finally, in line 12 the final EVMDD Eh is constructed.
The input weight val of this EVMDD is the minimum input weight of all EV-
MDDs returned by the recursive call. The root node h of Eh is associated with

2.3. REPRESENTING STATE-DEPENDENT ACTION COSTS 31

Algorithm 1: APPLY algorithm for two EVMDDs.

1 Function APPLY(◦, Ef = 〈κf , f〉, Eg = 〈κg,g〉)
2 if terminal_case(Ef , Eg, ◦) then
3 return Eh = (κf ◦ κg,0)

/* process Ef and Eg according to their ordering */

4 max_level = max(level(var(f)), level(var(g)))
5 v = var(max_level)
6 k = |Dv|−1

7 E0
f , . . . , E

k
f = SUB_EVMDDS(Ef ,max_level , k)

8 E0
g , . . . , Ekg = SUB_EVMDDS(Eg,max_level , k)

/* recursive call for each child */

9 foreach i ∈ {0, . . . , k} do
10 〈κih,h

i〉 =APPLY(◦, E if , E
i
g)

/* normalize resulting EVMDD Eh */

11 val = min(κ1
h, . . . , κ

k
h)

12 Eh = 〈val , (v,h0, . . . ,hk, κ0
h − val , . . . , κkh − val)〉

/* reduce EVMDD Eh */

13 Eh = reduce(Eh)
14 return Eh

Algorithm 2: Algorithm to generate sub-EVMDDs.

1 Function
SUB_EVMDDS(E = 〈κ,v = (v, χ0, . . . , χk, w0, . . . , wk)〉,max_level , k)

/* E is ordered on the same level or before the other EVMDD */

2 if level(v) = max_level then
3 return 〈κ+ w0, χ0〉, . . . , 〈κ+ wk, χk〉

/* E is ordered after the other EVMDD */

4 return E , . . . , E
looomooon

k+1 times

32 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

the root node variable of the higher ordered EVMDD, the children of h are the
EVMDDs returned by the recursive call, and the weights are the input weights
of these EVMDDs minus the minimum value. As a result, Eh will be normal-
ized in the sense that the minimum weight of all children is 0. Before Eh is
returned it gets reduced (line 13). If we only require quasi-reducedness, we
could change the reduction algorithm, however, quasi-reduced EVMDDs result
in more nodes and therefore it might be more efficient to only quasi-reduce
the final resulting EVMDD.

One important note we have to make is that usually a cache is used to
store apply results for functions f, g with operator ◦. This cache is checked
after line 3, to immediately return the resulting EVMDD if it was previously
computed. Without this cache, apply might have an exponential number of
recursive calls, even if both input EVMDDs and the resulting EVMDD are only
polynomial in size.3 If a cache is used, we can further modify the algorithm
(Lai et al. 1996) and check after the recursive call (line 10) if all EVMDDs
〈κih,h

i〉 have the same input weight and the same root node. This would
result in a node where all edges have weight 0 and lead to the same successor
node, and such a node would get reduced later on. Instead of generating
this node, we can immediately return an EVMDD where the root node is h0

and the input weight is κ0
h. With this modification, and if a cache is used,

an EVMDD is already reduced before line 13 and we can omit the reduction
call. Furthermore, similarly to the EVBDD case, the code has to be slightly
adapted if one wants to exploit operators ◦ which satisfy the additive property
(κf + f) ◦ (κg + g) = (κf ◦ κg) + (f ◦ g). In this case, the complexity of the
apply operation is polynomial in the size of Ef and Eg (Lai et al. 1996).

The apply algorithm allows us to generate EVMDDs for functions that
are represented in a syntactic form, e.g. as terms of multivariate polyno-
mials. Such terms can be represented as an abstract syntax tree (AST). Be-
fore we give an example of this, we want to mention that we can also con-
struct EVMDDs by applying Boole’s expansion theorem in a top-down fashion
(Mattmüller et al. 2017). Additionally, if the function is given in tabular form,
i.e. each row in the table represents a state and its cost, we can construct
the path corresponding to each state, assign the cost to the edge connected
to the terminal node, and reduce the diagram after all state paths have been
constructed (Hooker 2013).

Example 4. Consider the cost function for a drive action from the logistics
task in Example 1. For this example, we will use the formal domain definition
with Dp1-at = Dp2-at = {0, 1, 2, 3}, where the numbers correspond to the
previous domain values. Then we have c(s) = [p1-at = 3] + [p2-at = 3] + 1.
Note that we treat = as a binary operator with (f = g)(s) = 1 if f(s) = g(s),
and (f = g)(s) = 0, otherwise. Figure 2.8 illustrates the construction process.

3 In the literature, this cache is often introduced “for efficiency reasons”. While this is
certainly true, it may not completely reflect the importance of this cache.

2.3. REPRESENTING STATE-DEPENDENT ACTION COSTS 33

The AST of c is illustrated in grey. EVMDDs generated during the construction
process are illustrated in red (to reduce clutter terminal nodes are depicted
as circles). For example, the term p2-at = 3 generates an EVMDD for p2-at,
where each edge weight is set to the domain value of the corresponding edge,
and an EVMDD for 3, which consists of a single node with input weight 3.
Then, the apply algorithm is called for operator =.

+ apply(+)

+apply(+) 1

=apply(=) =apply(=)

3 p1-at 3 p2-at

3

1

p2-at

0

0

0

1

1

2

2
3

3

p2-at

0

0

0

0

1

0

2
1

3

Figure 2.6

Figure 2.8: AST of cost function [p1-at = 3] + [p2-at = 3] + 1 is illustrated
in grey. EVMDDs generated during the construction process are illustrated
in red. Figure 2.6 is the previously shown final EVMDD with named domain
values.

2.3.6 EVMDDs and Cartesian sets

We will frequently discuss planning techniques which are based on Cartesian
sets of states. Most of these techniques are used to compute admissible heu-
ristic estimates and therefore we are often required to compute the minimum
cost of an action a applicable in a Cartesian set of states sC .

Definition 18 (Cartesian action cost). Let sC be a Cartesian set of states and
a an action. Then, costa(sC) = mins∈sC ca(s).

Interestingly, an action a applicable in sC is always applicable in a state
which minimizes the cost function.

34 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

Lemma 3. Let sC be a Cartesian set of states and a an action such that a is
applicable in sC . Let smin be the set of states which minimizes the cost in sC , i.e.
smin = {s|s = argmins′∈sC ca(s)}. Then, a is applicable in some state in smin.

Proof. Follows from the definition of Cartesian sets and Assumption 3. Since
sC is Cartesian it is of the form D1 × . . . × Dn. We can construct the subset
of these states sC |pre such that a is always applicable in each s ∈ sC |pre
by restricting Di to pre(a) where pre(a) is defined. Now, from Assumption
3 follows that vars(ca) ∩ vars(pre(a)) = ∅, which means that sC agrees with
sC |pre on the domain values defined over vars(ca). In particular, the valuation
which minimizes the cost also appears in sC |pre. Thus, smin ∩ sC |pre 6= ∅,
concluding the proof.

In principle, we could compute the minimum cost by computing the cost
of a in each state contained in sC . However, for Cartesian sets which subsume
exponentially many concrete states this is infeasible. It turns out that we can
make use of the corresponding cost function EVMDD to efficiently compute
the minimum cost given a Cartesian set of states, by locally minimizing the
paths in the EVMDD. Figure 2.9 depicts the underlying intuition. On the left
we have the Cartesian set of states sC = {A} × {C, t} × {B, t}, i.e. the truck
is in all states at position A, but package 1 is either at location C or in the
truck, and package 2 is either at location B or in the truck. On the right
we have the EVMDD of the cost function of a drive action. Paths which are
consistent with a state in sC are marked red. Obviously, evaluating each path
separately corresponds to evaluating each state in sC . But observe that instead
of evaluating the EVMDD globally we can also evaluate the EVMDD locally, i.e.
we first evaluate edges of the node corresponding to p1-at, choose the edge
with minimum weight, and then choose the cheapest outgoing edge of the
node corresponding to p2-at.

Definition 19 (Local EVMDD minimization). Let sC be a Cartesian set of
states, a an action and E = 〈κ, f〉 the EVMDD of ca. The arithmetic function
of E in terms of local minimization over sC is given by κ+ fL, where fL is the
function denoted by f . The terminal node 0 denotes the constant function 0,
and (v, χ0, . . . , χk, w0, . . . , wk) denotes the arithmetic function given by

fL(sC) = min
d∈sC(v)

(fLd (sC) + wd),

where fLd (sC) is the arithmetic function denoted by child χd. We write EL(sC)

for κ+ fL(sC).

Theorem 3. Let sC be a Cartesian set of states, a an action and E = 〈κ, f〉 the
EVMDD of ca. Then ca(sC) = EL(sC).

2.3. REPRESENTING STATE-DEPENDENT ACTION COSTS 35

A

B C

(a) Cartesian set of states sC .

p1-at

p2-at

0

1

0

A

0

B
0

C
1

t

0

A

0

B
0

C
1

t

(b) EVMDD of the drive cost function,
paths consistent with sC are marked red.

Figure 2.9

Proof. By definition, ca(sC) = mins∈sC ca(s) = mins∈sC E(s). We now show
by induction over the depth of E that mins∈sC E(s) = EL(sC). For the base
case, f = 0, we have mins∈sC E(s) = κ + 0 = EL(sC). Let v = var(f) and
assume the assumption holds for nodes below f , i.e.

min
s∈sC

´

Es(v′)(s) + ws(v′)

¯

= min
d∈sC(v′)

(fLd (sC) + wd),

for v′ 6= v. By definition of E(s) we have

min
s∈sC

E(s) = min
s∈sC

pκ+ f(s)q

= κ+ min
s∈sC

f(s)

= κ+ min
s∈sC

fs(v)(s) + ws(v).

Since sC is Cartesian it is of the form D1 × . . .×Dn. Let i be the index of the
corresponding domain of v, i.e. Di ⊆ Dv. Then, we get

36 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

min
s∈sC

fs(v)(s) + ws(v)

= min
d1,...,dn∈

∏
j∈{1,...,n}Dj

´

fdi((v1
.
=d1) ∧ . . . ∧ (vn

.
=dn)) + wdi

¯

= min
di∈Di

min
d1,...,dn∈

∏
j∈{1,...,n}\iDj

´

fdi((v1
.
=d1) ∧ . . . ∧ (vn

.
=dn)) + wdi

¯

= min
d∈sC(v)

´

fdi(sC) + wdi

¯

,

where the last equation holds because the value of di does not matter for
evaluation of fdi(sC). From the induction assumption we then get

min
d∈sC(v)

´

fdi(sC) + wdi

¯

= min
d∈sC(v)

´

fLdi
(sC) + wdi

¯

,

concluding the proof.

Thus, when we are required to compute the cost of an action for a Carte-
sian set of states we can locally minimize the corresponding EVMDD E . This
minimization is linear in the size of E . Therefore, if E is small computing
the cost for a Cartesian set is efficient. We will later see examples where this
matters. Also note that the local minimization corresponds to computing a
cheapest path from the root node to the terminal node, by use of Dijkstra’s
algorithm (Dijkstra 1959).

In the following, we give an example for a non-Cartesian set of states and
why local minimization is not precise in this case.

Example 5. Let us again assume that the logistics task only contains variables
p1-at and p2-at and let S = {(p1-at

.
=A)∧(p2-at

.
= t), (p1-at

.
= t)∧(p2-at

.
=A)}.

Clearly, S is not Cartesian. Figure 2.10 depicts the EVMDD of the drive action
and the corresponding paths in the EVMDD. Local minimization would yield
a cost of 1, but applying the cost function in any state of S induces a cost of 2.

We finish this section about decision diagrams by introducing a second
form of EVMDDs, which we have already seen before under another name.

2.3.7 Flattened EVMDDs

To analyze the time complexity of operations based on EVBDDs, Lai (1993)
introduces (reduced ordered) flattened EVBDDs. The idea behind flattened
EVBDDs is that the edge weights are pushed all the way down to the terminal
node. As several paths may have different sums of edge weights, flattened
EVBDDs consist of multiple terminal nodes, each terminal node is associated
with an integer, corresponding to the cost of a (or multiple) path(s) in the

2.3. REPRESENTING STATE-DEPENDENT ACTION COSTS 37

p1-at

p2-at

0

1

0

A

0

B
0

C
1

t

0

A

0

B
0

C
1

t

Figure 2.10: EVMDD of the drive cost function, paths consistent with S are
marked red.

EVBDD. As a consequence, flattened EVBDDs are analogous to ADDs. We now
introduce flattened EVMDDs, which are the natural generalization of flattened
EVBDDs to multi-valued variables, and are thus analogous to MTMDDs. We
use the term flattened EVMDD since it often allows a simpler view on the
problem, if the EVMDD representation is already given.

Definition 20 (Flattened EVMDD). A flattened EVMDD EFf = f over a finite
set of variables V is a directed acyclic graph consisting of two types of nodes:
(1.) A nonterminal node v is a tuple (v, χ0, . . . , χk) where v ∈ V is a variable,
k = |Dv|−1, and the children χ0, . . . , χk are terminal or nonterminal nodes
of EFf . (2.) A non-terminal node w = w is associated with an integer w ∈ Q+.

Again, f is the root node of EFf . Reduced, ordered, flattened EVMDDs are
defined in the same way as reduced ordered EVMDDs.

Definition 21 (Arithmetic function denoted by the flattened EVMDD). A
flattened EVMDD EFf = f , denotes the arithmetic function f . A terminal node
w = w denotes the constant function w. A non-terminal node (v, χ0, . . . , χk)
denotes the arithmetic function over S given by f(s) = fs(v)(s), where fs(v)
is the arithmetic function denoted by child χs(v).

Example 6. Consider again the cost function of the drive actions of the logis-
tics task presented in Example 1: cdrive-AB = [p1-at = t] + [p2-at = t] + 1.
Figure 2.11 depicts the flattened EVMDD representation of cdrive-AB.

A flattened EVMDD representing function f has as many terminal nodes
as values in the domain of f . While flattened EVMDDs can have exponentially
more nodes than the corresponding EVMDD, we will see that it can sometimes

38 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

p1-at

p2-at p2-at

1 2 3

A

B

C

t

A B
C

t
A

B

C

t

Figure 2.11: Flattened EVMDD of the drive cost function [p1-at = t]+[p2-at =
t] + 1.

be beneficial to represent cost functions with flattened EVMDDs, with one
caveat: the efficient local minimization we gain from EVMDDs is not possible
with flattened EVMDDs, since all edge weights are 0. Thus, if the minimization
plays a critical role, flattened EVMDDs are inferior to plain EVMDDs, even if
they would have the same size.

2.3.8 Other types of decision diagrams

There also exist a few other types of decision diagrams, which are now briefly
mentioned here. Affine Algebraic Decision Diagrams (AADDs), introduced by
Sanner and McAllester (2005) for probabilistic reasoning, can be seen as
a generalization of EVMDDs. They allow to compactly represent functions
which have additive and multiplicative structure, but their evaluation method
is more involved than that of EVMDDs, which makes them less straightforward
to apply to our setting.

All of the above decision diagrams relied on Boole’s expansion theorem
but there also exist decision diagrams which rely on other types of expan-
sion. Functional Decision Diagrams (FDDs) (Kebschull et al. 1992) rely on
the (positive and negative) Davio expansion (also called the Reed-Muller ex-
pansion (Muller 1954; Reed 1954)) and are more suitable to represent XOR-
intensive functions. Becker et al. (1995) show that there are classes of func-
tions for which BDDs are exponentially more compact than FDDs, but also
the other way around. Furthermore, Becker and Drechsler (1995) show that
these expansion types are the only types that help to reduce the size of deci-
sion diagrams (if another technique, Complemented Edges (Brace et al. 1990)
is additionally applied). Due to this, Drechsler and Becker (1998) propose
Kronecker Functional Decision Diagrams (KFDDs), which are based on both
Shannon and Davio expansion, to combine the advantages of BDDs and FDDs.
While it would be interesting to see how these types of decision diagrams can

2.4. PLANNING TASK COMPILATIONS 39

be applied to our setting, we settle for now on representing cost functions
with EVMDDs.

2.4 Planning Task Compilations

Now that we have a representation of state-dependent action costs which ex-
hibits the structure underlying the cost function, we will look at different
ways to make use of this representation during the planning process. Much
of the research in AI planning is concerned with classical planning and heuri-
stic search, and we will see that the generalization of many heuristics is not
straightforward applied to tasks with state-dependent action costs. One way
to circumvent the definition and analysis of the generalized version of such
heuristics is to compile state-dependent action costs away, i.e. transform the
task into an equivalent problem where the costs of actions are constant, and
apply well known classical planning heuristics to the compiled problem. We
first formally define the compilation of a planning task.

Definition 22 (Compilation). Let Π = 〈V, A, sI , s?, c〉 and Π′ = 〈V ′, A′, s′I ,
s′?, c

′〉 be two planning tasks. A compilation is a tuple of functions C = 〈CV ,
CA, CS , C?, Cc〉 that induces a mapping from Π to Π′, such that V ′ = CV(Π),
A′ = CA(Π), s′I = CS(Π, sI), s′? = C?(Π), and c′ = Cc(Π).

Given a compilation C we denote Π′ with ΠC and say ΠC is the compilation
of Π under C, or simply compilation of Π. If it is clear from the context, we
will also simply write C(s) instead of CS(Π, s). We will often examine how
different heuristics behave under compilation. For this, the notion of heuris-
tic invariance under compilation will be important. Informally, a heuristic is
invariant under compilation if it produces the same estimates in the original
and the compiled task.

Definition 23 (Heuristic invariance under compilation). Let Π be a plan-
ning task and C a compilation. A heuristic h is invariant under C if h(s) =
h(CS(s)) for all s ∈ S.

In the following, we will define a compilation from a task with state-
dependent action costs to a classical planning task which is based on a com-
monly known compilation of conditional effects.

2.4.1 Exponential Compilation

The first type of compilation, proposed by Ivankovic et al. (2014), is based on
a compilation of a planning task with conditional effects into a classical plan-
ning task. A planning task with conditional effects may have actions where
some effects of an action only occur in certain states (specified by the ef-
fect condition). Conditional effects can be compiled away with exponential

40 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

overhead (Gazen and Knoblock 1997) by introducing new actions for each
possible subset of conditional effects, and appending the effect conditions to
the action precondition. For planning tasks with state-dependent action costs
the corresponding compilation thus generates new actions for each possible
assignment of variables in the support of the cost function, and the cost of an
action is the function evaluation under this assignment.

Definition 24 (Exponential compilation). Let Π = 〈V,A, sI , s?, c〉 be a plan-
ning task. Let a = 〈pre, eff〉 be an action and p a partial variable assignment.
Then ap = 〈pre∪p, eff〉. Now, let P (ca) be a set of partial variable assignments
such that P (ca) = {p|vars(p) = vars(ca), and∀v ∈ vars(ca) : p(v) ∈ Dv},
i.e. the set of consistent variable assignments over the support of ca. Then
EXP(a) = {ap|p ∈ P (ca)} and we define EXP(c) such that EXP(c)(ap, s) =
ca(p) for all s ∈ S.

The exponential compilation of Π, denoted as ΠEXP, is the compilation
with EXPV(Π) = V, EXPS(s) = s, EXPs?(Π) = s?, EXPA(Π) = {a′|a′ ∈
EXP(a) for all a ∈ A}, and EXPc(Π) as above.

Example 7. The key idea of the exponential compilation is to have a constant
cost action for each possible assignment of the action cost function and add
this assignment to the precondition of the new action. Let us consider the
drive actions of our logistics planning task. We have an action drive-AB =
〈(t-at

.
=A), (t-at

.
=B)〉 with cost function [p1-at = t] + [p2-at = t] + 1. Since

the support consists of two variables with four domain values each, we get 16
possible partial variable assignments. To ease illustration, we write a instead
of drive-AB. Exponential compilation then results in the following actions:

a(p1-at
.
=A)∧(p2-at

.
=A) = 〈(p1-at

.
=A) ∧ (p2-at

.
=A) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=A)∧(p2-at

.
=B) = 〈(p1-at

.
=A) ∧ (p2-at

.
=B) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=A)∧(p2-at

.
=C) = 〈(p1-at

.
=A) ∧ (p2-at

.
=C) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=A)∧(p2-at

.
=t) = 〈(p1-at

.
=A) ∧ (p2-at

.
= t) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=B)∧(p2-at

.
=A) = 〈(p1-at

.
=B) ∧ (p2-at

.
=A) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=B)∧(p2-at

.
=B) = 〈(p1-at

.
=B) ∧ (p2-at

.
=B) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=B)∧(p2-at

.
=C) = 〈(p1-at

.
=B) ∧ (p2-at

.
=C) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=B)∧(p2-at

.
=t) = 〈(p1-at

.
=B) ∧ (p2-at

.
= t) ∧ (t-at

.
=A), (t-at

.
=B)〉

2.4. PLANNING TASK COMPILATIONS 41

a(p1-at
.
=C)∧(p2-at

.
=A) = 〈(p1-at

.
=C) ∧ (p2-at

.
=A) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=C)∧(p2-at

.
=B) = 〈(p1-at

.
=C) ∧ (p2-at

.
=B) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=C)∧(p2-at

.
=C) = 〈(p1-at

.
=C) ∧ (p2-at

.
=C) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=C)∧(p2-at

.
=t) = 〈(p1-at

.
=C) ∧ (p2-at

.
= t) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=t)∧(p2-at

.
=A) = 〈(p1-at

.
= t) ∧ (p2-at

.
=A) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=t)∧(p2-at

.
=B) = 〈(p1-at

.
= t) ∧ (p2-at

.
=B) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=t)∧(p2-at

.
=C) = 〈(p1-at

.
= t) ∧ (p2-at

.
=C) ∧ (t-at

.
=A), (t-at

.
=B)〉

a(p1-at
.
=t)∧(p2-at

.
=t) = 〈(p1-at

.
= t) ∧ (p2-at

.
= t) ∧ (t-at

.
=A), (t-at

.
=B)〉,

and the action cost is either 1 for actions based on partial assignments where
no package is in the truck, 2 for actions based on assignments where a single
package is in the truck, and 3 for action drive-AB(p1-at

.
=t)∧(p2-at

.
=t). Similarly,

we get 16 actions for each of the other drive actions, resulting in a total num-
ber of 4 + 6 · 16 = 100 actions in the compiled task.

Note that the exponential compilation of Π shares the same state space as
Π. Additionally, it preserves the transition system induced by Π.

Lemma 4 (Exponential compilation preserves transitions). Let Π be a plan-

ning task. There is a transition s
a,ca(s)
−→ s[a] in T (Π) with label a and weight

ca(s), if and only if there is a transition s
a′,ca′(s)−→ s[a′] in T (ΠEXP) with label

a′ and weight ca′(s), and ca′(s) = ca(s).

Proof. Follows from the definition of ΠEXP: set a′ = ap, such that ca(p) =
ca(s).

Corollary 1. Let Π be a planning task, then:

1. ΠEXP is a classical planning task,

2. |AEXP|=
∑
a∈A

∏
v∈vars(ca)|Dv|,

3. There exists a plan π = 〈a0, . . . , an−1〉 for Π, if and only if there exists a
plan π′ = 〈a′0, . . . , a

′
n−1〉 for ΠEXP, with a′i ∈ EXP(ai) for i ∈ {0, . . . , n−

1}, and cai(sI [a0] . . . [ai−1]) = ca′i
(sI [a

′
0] . . . [a′i−1]). Therefore cost(π) =

cost(π′).

Proof. The first statement follows from the construction of ΠEXP. For the
second, there are |P (ca)| actions for each a ∈ A and |P (ca)|=

∏
v∈vars(ca)|Dv|,

as we enumerate all possible valuations of variables in the support. For the
last statement, consider that the transition systems of both tasks share the
same structure.

42 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

While the exponential compilation is not a practical approach for deal-
ing with state-dependent action costs, it serves as a useful tool to theoretically
evaluate other types of compilation, or to evaluate the generalization of classi-
cal planning approaches, as an (optimal) plan for the exponential compilation
can be transformed to an (optimal) plan for the original task.

2.4.2 EVMDD-based Compilation

The next type of compilation is based on EVMDDs and is polynomial in the
size of the largest action cost EVMDD. Therefore, if our cost functions have a
compact representation, then this compilation will be compact as well. The
crucial insight is that edges in the EVMDD can be thought of as auxiliary ac-
tions with state-independent constant costs that are only allowed to be applied
if the tested state variable matches the value corresponding to the edge. To
that end, we introduce an additional auxiliary variable auxa for each original
action a that keeps track of where we currently stand in the evaluation of the
corresponding EVMDD.

Definition 25 (EVMDD-based action compilation). Let a = 〈pre, eff〉 be an
action with cost function ca and let Eca = 〈κ, f〉 be a corresponding EVMDD
representation. Let idx : v → {1, . . . , |Eca |} be a topological ordering of Eca ,
i.e. a bijective function numbering the nodes of Eca such that for every non-
terminal node v and each child χi(v) : idx (v) < idx (χi(v)), and idx (0) = |f |.

Let auxa be a variable with Dauxa = {0, . . . , |f |}. For each v = (v, χ0,. . . ,
χk,w0, . . . , wk) and each i = 0, . . . , k we get an action

a(v
.
=i),idx (v) = 〈(auxa

.
= idx (v)) ∧ (v

.
= i), (auxa

.
= idx (χi(v)))〉

with cost c(a(v
.
=i),idx (v), s) = wi for all s ∈ S. We denote the set of actions

induced by v as av = {a(v
.
=i),idx (v)|i = 0, . . . , k} and the set of actions induced

by Eca as aE =
⋃

v∈I a
v, where I denotes the set of non-terminal nodes in

Eca .

Additionally, we require an initial action which corresponds to the precon-
dition of the original action and initiates the chain of EVMDD actions, and
a concluding action, which applies the effects of the action. For this, we in-
troduce a global semaphore variable lock, to ensure that we don’t interweave
two EVMDD evaluations (of two different actions) at once and instead process
EVMDD paths sequentially.

Definition 26 (Initial and concluding action). Let a = 〈pre, eff〉 be an action
and lock a binary variable. Then we have an initial action apre and a concluding
action aeff with

apre =〈pre ∧ (lock
.
=0) ∧ (auxa

.
=0), (lock

.
=1) ∧ (auxa

.
=1)〉

aeff =〈(auxa
.
= |f |), eff ∧ (auxa

.
=0) ∧ (lock

.
=0)〉

2.4. PLANNING TASK COMPILATIONS 43

with cost c(apre, s) = κ, c(aeff , s) = 0, for all states s ∈ S.

Example 8. Let us apply the EVMDD compilation to the action drive-AB =
〈(t-at

.
= A), (t-at

.
= B)〉 from our logistics task. The EVMDD of cdrive-AB is

depicted in Figure 2.12 and is the same as in Figure 2.6. The domain of
the auxiliary variable auxdrive-AB is {0, 1, 2, 3} since the EVMDD consists of 3
nodes. In the following, we write a for drive-AB and aux for auxdrive-AB, and
we get the following actions:

(aux
.
=0)

p1-at (aux
.
=1)

p2-at (aux
.
=2)

0 (aux
.
=3)

1

0

A

0

B
0

C
1

t

0

A

0

B
0

C
1

t

Figure 2.12: EVMDD of the drive-AB cost function annotated with corre-
sponding auxiliary variable values in the EVMDD compilation.

apre =〈(t-at
.
=A) ∧ (lock

.
=0) ∧ (aux

.
=0), (lock

.
=1) ∧ (aux

.
=1)〉

a(p1-at
.
=A),1 =〈(aux

.
=1) ∧ (p1-at

.
=A), (aux

.
=2)〉

a(p1-at
.
=B),1 =〈(aux

.
=1) ∧ (p1-at

.
=B), (aux

.
=2)〉

a(p1-at
.
=C),1 =〈(aux

.
=1) ∧ (p1-at

.
=C), (aux

.
=2)〉

a(p1-at
.
=t),1 =〈(aux

.
=1) ∧ (p1-at

.
= t), (aux

.
=2)〉

a(p2-at
.
=A),2 =〈(aux

.
=2) ∧ (p2-at

.
=A), (aux

.
=3)〉

a(p2-at
.
=B),2 =〈(aux

.
=2) ∧ (p2-at

.
=B), (aux

.
=3)〉

a(p2-at
.
=C),2 =〈(aux

.
=2) ∧ (p2-at

.
=C), (aux

.
=3)〉

a(p2-at
.
=t),2 =〈(aux

.
=2) ∧ (p2-at

.
= t), (aux

.
=3)〉

aeff =〈(aux
.
=3), (t-at

.
=B) ∧ (lock

.
=0) ∧ (aux

.
=0)〉

44 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

We have an action cost of 1 for a(p1-at
.
=t),1, a(p2-at

.
=t),2 and apre. These

correspond to edges in the EVMDD with a weight of 1. All other actions have
a cost of 0.

Definition 27 (EVMDD compilation). Let Π = 〈V,A, sI , s?, c〉 be a planning
task. The EVMDD compilation of Π, denoted as ΠDD, is the compilation where

• DDV(Π) = V ∪ {lock} ∪ {auxa|a ∈ A}

• DDA(Π) =
⋃
a∈A{apre} ∪ aE ∪ {aeff},

• DDS(s) = s ∧ (lock
.
=0)

∧
a∈A(auxa

.
=0),

• DDs?(Π) = s? ∧ (lock
.
=0)

∧
a∈A(auxa

.
=0),

• and costs as above.

We will often write sDD for DDS(s). If A consists of state-dependent
and constant cost actions, then we can also only compile actions with state-
dependent cost, and preserve constant cost actions.

The semaphore variable prevents evaluating multiple EVMDDs (i.e. costs)
concurrently. Without a semaphore variable, one could concurrently activate
two action sequences, where the concluding effect of the first sequence in-
creases the cost of the second sequence. Before this concluding effect is en-
abled, the second action sequence can be triggered with cheaper costs than
possible. Consider the following example:

Example 9. Consider a planning task with binary variables x and y and two
actions ax = 〈>, (x .

= 1)〉 with cax = y and ay = 〈>, (y .
= 1)〉 with cay = x.

Consider state s = (x
.
=0) ∧ (y

.
=0). After application of one action, the other

(distinct) action will have a cost of 1. Now consider the EVMDD compilation,
but without a semaphore variable. Then, beginning from s, the sequence of

actions 〈apre
x , a

(y
.
=0),1

x , a
pre
y , a

(x
.
=0),1

y , aeff
x , aeff

y 〉 is possible, with a total cost of 0.

With a semaphore variable, it is not possible to apply a(x
.
=0),1

y between a
pre
x

and aeff
x , and every sequence of (distinct) actions induces at least a cost of 1.

Note that we could also use the input weight as the cost of the concluding
action, instead of the cost of the initial action. However, putting the uncondi-
tional cost in front of the action sequence can be helpful for search, where the
cost may already disqualify the initial action from being considered. However,
as we will mostly use compilation as a means to produce heuristic values, this
will not be of importance to us.

While EVMDD-based compilation does not preserve plan length, it pre-
serves plan costs.

2.4. PLANNING TASK COMPILATIONS 45

Lemma 5 (EVMDD compilation preserves costs). Let Π be a planning task.

There is a transition s
a,ca(s)
−→ s[a] in T (Π) with label a and weight ca(s), if

and only if there is a sequence of transitions in T (ΠDD) starting in DDS(s) and
ending in DDS(s′), and the sum of the weights is exactly ca(s).

Proof. We first show sufficiency. Let there be a transition s
a,ca(s)
−→ s[a] with la-

bel a and weight ca(s), and let Eca = 〈κ, f〉 be the EVMDD corresponding to ca.
State sDD determines a unique path through the EVMDD, which uniquely cor-
responds to an action sequence a0, . . . , ak+1 (for some k ∈ {0, . . . , level(f)})
with a0 = apre and ak+1 = aeff . By construction,

∑k+1
j=0 caj (s) = ca(s). Fur-

thermore, also by construction, apre is applicable in sDD iff a is applicable in
s, and aeff applies effects such that s′DD corresponds to s′.

For necessity we have to show that there is no other transition sequence
from s to s′ in T (ΠDD). For this it suffices to see that semaphore variable lock
prohibits “interleaving” more than one EVMDD evaluation at the same time,
and that each auxa makes sure that the corresponding EVMDD is traversed in
the unique correct order. More formally, in every state sDD of T (ΠDD) with
sDD(lock) = 1, only a unique action is applicable, and the next decision to
be made only occurs when the semaphore is reset to zero by a concluding
action.

Corollary 2. Let Π be a planning task, then:

1. ΠDD is a classical planning task,

2. |ADD| is in the order of maxa∈A|Eca |,

3. There exists a plan π for Π, if and only if there exists a plan π′ for ΠDD

such that for each action a in π there is a sequence of actions in π′ which
is uniquely determined by the state where a is applied, and the cost of this
sequence of actions is equal to the cost of a applied in this state. Therefore,
cost(π) = cost(π′).

Proof. The first two follow from construction of ΠDD. The last statement
follows from Lemma 5 and that the goal condition of ΠDD ensures that we
cannot pad a plan with irrelevant partial starting actions to obtain another
different plan.

Thus, we now have a compilation of tasks with state-dependent action
costs, which is polynomial in the size of the cost function representation. If
the EVMDD representations of the cost functions are small, then we have
an efficient compilation which also preserves plans (modulo intermediate ac-
tion sequences introduced by the compilation) and plan cost. Furthermore,
this compilation has an additional benefit which will be of advantage when
we consider different types of heuristics: if we have a Cartesian set of states

46 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

A

B C

(a) Cartesian set of states sC .

apre

p1-at

p2-at

0 aeff

1

0a(p1-at
.
=C),1

A

0

B
0

C
1 a(p1-at

.
=t),1

t

0

A

0a(p2-at
.
=B),2

B
0

C
1 a(p2-at

.
=t),1

t

(b) EVMDD of the drive-AB cost function.
Paths which are consistent with sC are
marked red.

Figure 2.13

sC and an action a applicable in states of sC , then we will have an action
sequence applicable in the corresponding Cartesian set of compiled states
DDS(sC) = {sDD|s ∈ sC}, which is induced by a path in the EVMDD of a
which is consistent with sC . Figure 2.13 depicts the underlying idea for this.
Once again, the Cartesian set of states sC = {A}×{C, t}×{B, t} implies four
consistent paths in the EVMDD of the cost function representation. Every path
then induces a sequence of actions, starting with the initial action apre, then
either contain a(p1-at

.
=C),1 or a(p1-at

.
=t),1 and then a(p2-at

.
=B),2 or a(p2-at

.
=t),2,

and aeff . The cheapest cost of these sequences of actions is 1, which corre-
sponds to the minimum cost of applying the drive action in any s ∈ sC .

Lemma 6. Let a be an action in Π and let Eca = 〈κ, f〉 be a corresponding
EVMDD representation. Let sC be a Cartesian set of states, let s ∈ sC and let
a ∈ A be an action applicable in s. Let P sC be the set of paths from f to 0
consistent with sC , i.e. p ∈ P sC if sp ⊆ s′ for some s′ ∈ sC . Then, for each
p ∈ P sC there is a sequence of actions π = 〈apre, an, . . . , a1, a

eff〉, such that π
is applicable in sDD and sDD[π] coincides with s[a] in all facts not introduced by
compilation. Furthermore, mins′∈sC ca(s′) ≤ cost(π) = cost(p). Additionally,
there exists p ∈ P sC such that mins′∈sC ca(s′) = cost(π).

Proof. A path p = 〈vn, dvn , . . . , v1,dv1 ,v0〉 with vn = f and v0 = 0 implies a
sequence of actions π = 〈apre, an, . . . , a1, a

eff〉, where ai = a(var(vi)
.
=di),idx (vi)

= 〈(auxa
.
= idx (vi) ∧ (var(vi)

.
= di), (auxa

.
= idx (vi−1)〉, i.e. the action in-

duced by the EVMDD compilation corresponding to this variable assignment,

2.4. PLANNING TASK COMPILATIONS 47

for i ∈ {1, . . . , n}. Now, π is applicable in sDD, since, by definition, apre is
applicable in sDD, and each ai is applicable after 〈apre, . . . ai+1〉 was applied
in sDD, since p is consistent with s. Thus, aeff is also applicable and its effects
coincide with a in all variables not introduced by compilation. Then, sDD[π]
also coincides with s[a]. By construction, we have mins′∈sC ca(s′) ≤ cost(π),
since p corresponds to s and the sum of the weights is exactly ca(s). Further-
more, there has to be a path p? corresponding to the state which minimizes
the action cost function, and then cost(π) = mins′∈sC ca(s′).

This result will be important when we consider the behaviour of the EV-
MDD compilation for heuristics which are based on Cartesian sets of states.
There is one caveat though: the compilation introduces |A|+1 additional vari-
ables, as we have one auxiliary variable auxa for each action a ∈ A and
additionally the semaphore variable lock. This might not sound much, but
for some heuristics the number of auxiliary variables plays an important role.
We therefore introduce a second type of EVMDD compilation, which results
in nearly the same planning task, but only requires two additional variables.
The idea is that instead of having separate auxiliary variables auxa for each
action a, we have a single variable aux and the domain of this variable is Daux

= {0, . . . ,
∑
a∈A|Dauxa |}. Informally, instead of resetting the numbering of

EVMDD nodes between actions we continue the numbering. This can be seen
as a bijective function which numbers the nodes of all EVMDDs.

Definition 28 (Variable-compact EVMDD-based action compilation). Let
A = {a1, . . . , an} and Ei the EVMDD corresponding to the action cost func-
tion of ai. By abuse of notation we define an index idx on each E such that
idx (E0) = 0 and idx (Ei+1) = idx (Ei) + |Ei| for i ∈ {0, . . . , n− 1}.

Let a = 〈pre, eff〉 and aux be a variable withDaux = {0, . . . , idx (En)+|En|}.
For each v = (v, χ0, . . . , χk,w0, . . . , wk) of E = Eca and each i = 0, . . . , k we
get an action

a(v
.
=i),idx (E)+idx (v) =

〈(aux
.
= idx (E) + idx (v)) ∧ (v

.
= i), (aux

.
= idx (E) + idx (χi(v)))〉

with constant cost wi. As before, we denote the set of actions induced by v as
avE and the set of actions induced by E as aE (and they are defined analogous
to Definition 25). Which definition we use will be clear from the context.

Example 10. Consider the logistics task and actions drive-AB and drive-BA.
Both actions have the same cost function. However, this action compilation as-
signs different auxiliary domain values to the nodes. Figure 2.14a depicts the
EVMDD of drive-AB. Nodes are annotated with the corresponding auxiliary
domain values. Figure 2.14b depicts the EVMDD of drive-BA. The EVMDDs
have the same structure, but the index function idx assigns different domain
values to these nodes. Intuitively, the index function numbers the EVMDD
nodes continuously throughout all EVMDDs.

48 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

(aux
.
=0)

p1-at (aux
.
=1)

p2-at (aux
.
=2)

0 (aux
.
=3)

1

0

A

0

B
0

C
1

t

0

A

0

B
0

C
1

t

(a) EVMDD for cost function of drive-AB.

p1-at (aux
.
=4)

p2-at (aux
.
=5)

0 (aux
.
=6)

1

0

A

0

B
0

C
1

t

0

A

0

B
0

C
1

t

(b) EVMDD for cost function of drive-BA.

Figure 2.14

Definition 29 (Variable-compact EVMDD compilation). Let Π = 〈V, A, sI ,
s?, c〉 be a planning task. The variable-compact EVMDD compilation of Π is
defined in the same way as ΠDD, but actions are compiled with Definition 28.

As already mentioned, variable-compact EVMDD compilation only intro-
duces two additional variables. In all other regards it behaves the same as the
original EVMDD compilation, but the original compilation is sometimes easier
to depict as we can treat auxiliary values separately. Therefore, all results in
this thesis will also be applicable to variable-compact EVMDD compilation4.
Which compilation we use will be clear from the context.

It might not come to a surprise that we can also define a compilation
which is very similar to the original EVMDD compilation, but is based on
flattened EVMDDs instead of EVMDDs. Each node generates an action and
its precondition and effect is defined exactly as in Definition 25. However, all
actions induced by non-terminal nodes have a cost of 0. We also have an initial
action with cost 0, and for each terminal node w = w we have a concluding
action aw with cost w.

Definition 30 (Flattened EVMDD-based action compilation). Let a = 〈pre,
eff〉 be an action with cost function ca, lock a variable and let EFca = f be a
corresponding flattened EVMDD representation. Let idx : v → {1, . . . , |Eca |}
be a topological ordering of EFca , i.e. a bijective function numbering the nodes

4We do point that out here and do not repeat this in each proof about EVMDD compi-
lation. It will be clear from the proof that a result for EVMDD compilation also holds for
variable-compact EVMDD compilation, if requirements on the auxiliary variables are modified
accordingly.

2.4. PLANNING TASK COMPILATIONS 49

of EFca such that for every non-terminal node v and each child χi(v) : idx (v) <
idx (χi(v)), and for two nodes wi, wj we have idx (wi) 6= wj . Then, each non-
terminal node v of EFca induces a set of actions av, defined as in Definition 25
but with a cost of 0. Additionally, each terminal node w = w of EFca induces
an action aw = 〈(auxa

.
= idx (w)), (auxa

.
= 0) ∧ (lock

.
= 0) ∧ eff〉 with cost w.

Finally, we have an initial action apre = 〈pre ∧ (lock
.
= 0) ∧ (auxa

.
= 0), (lock

.
=

1) ∧ (auxa
.
= 1)〉 with cost 0. We denote the set of actions induced by EFca as

aE
F
ca = {apre} ∪

⋃
v∈I a

v, where I denotes the set of non-terminal nodes in
EFca .

Example 11. Consider the EVMDD compilation of action drive-AB = 〈(t-at
.
=

A), (t-at
.
= B)〉 from our logistics task. The flattened EVMDD of cdrive-AB is

depicted in Figure 2.11. The domain of the auxiliary variable auxdrive-AB is
{0, . . . , 6}. Again, we write a for drive-AB and aux for auxdrive-AB, and we
get the following actions:

apre =〈(t-at
.
=A) ∧ (lock

.
=0) ∧ (aux

.
=0), (lock

.
=1) ∧ (aux

.
=1)〉

a(p1-at
.
=A),1 =〈(aux

.
=1) ∧ (p1-at

.
=A), (aux

.
=2)〉

a(p1-at
.
=B),1 =〈(aux

.
=1) ∧ (p1-at

.
=B), (aux

.
=2)〉

a(p1-at
.
=C),1 =〈(aux

.
=1) ∧ (p1-at

.
=C), (aux

.
=2)〉

a(p1-at
.
=t),1 =〈(aux

.
=1) ∧ (p1-at

.
= t), (aux

.
=3)〉

a(p2-at
.
=A),2 =〈(aux

.
=2) ∧ (p2-at

.
=A), (aux

.
=4)〉

a(p2-at
.
=B),2 =〈(aux

.
=2) ∧ (p2-at

.
=B), (aux

.
=4)〉

a(p2-at
.
=C),2 =〈(aux

.
=2) ∧ (p2-at

.
=C), (aux

.
=4)〉

a(p2-at
.
=t),2 =〈(aux

.
=2) ∧ (p2-at

.
= t), (aux

.
=5)〉

a(p2-at
.
=A),3 =〈(aux

.
=3) ∧ (p2-at

.
=A), (aux

.
=5)〉

a(p2-at
.
=B),3 =〈(aux

.
=3) ∧ (p2-at

.
=B), (aux

.
=5)〉

a(p2-at
.
=C),3 =〈(aux

.
=3) ∧ (p2-at

.
=C), (aux

.
=5)〉

a(p2-at
.
=t),3 =〈(aux

.
=3) ∧ (p2-at

.
= t), (aux

.
=6)〉

a1 =〈(aux
.
=4), (t-at

.
=B) ∧ (lock

.
=0) ∧ (aux

.
=0)〉

a2 =〈(aux
.
=5), (t-at

.
=B) ∧ (lock

.
=0) ∧ (aux

.
=0)〉

a3 =〈(aux
.
=6), (t-at

.
=B) ∧ (lock

.
=0) ∧ (aux

.
=0)〉

Actions a1, a2, a3 have a cost of 1,2,3, respectively; all other actions have
a cost of 0.

50 CHAPTER 2. PLANNING WITH STATE-DEPENDENT COSTS

Definition 31 (Flattened EVMDD compilation). Let Π = 〈V,A, sI , s?, c〉 be
a planning task. The flattened EVMDD compilation of Π, denoted as ΠFDD, is
the compilation where

• FDDV(Π) = DDV(Π),

• FDDA(Π) =
⋃
a∈A a

EFca ,

• FDDS(s) = DDS(s),

• FDDs?(Π) = DDs?(Π),

• and costs as above.

For flattened EVMDD compilation we get the same results as for EVMDD
compilation. As the proofs are analogous to the proofs for the EVMDD compi-
lation, we won’t repeat them here. Every path still corresponds to the cost of
the action applied in a state, the only difference is that the path costs are now
summed up in the concluding actions, instead of distributed over intermediate
actions.

Corollary 3. Let Π be a planning task, then:

1. ΠFDD is a classical planning task,

2. |AFDD| is in the order of maxa∈A|EFca |,

3. There exists a plan π for Π, if and only if there exists a plan π′ for ΠFDD

such that for each action a in π there is a sequence of actions in π′ which
is uniquely determined by the state where a is applied, and the cost of this
sequence of actions is equal to the cost of a applied in this state. Therefore,
cost(π) = cost(π′).

The results for Cartesian sets of states are also the same. We won’t repeat
them here, but we note that this compilation introduces a large amount of
zero cost actions and, additionally, the cheapest sequence of actions can only
be determined when all concluding actions were evaluated. Note also that we
can define flattened variable-compact EVMDD compilation in the same way
as variable-compact EVMDD compilation.

The remaining question is how these compilations perform when heuris-
tics are involved. It is important to point out that when we consider how a
heuristic performs under some compilation C we are only interested in the
heuristic estimates, but not in the behaviour of the underlying search algo-
rithm on the compiled task. Since we have a corresponding state in the com-
piled task for each state in the original task (by application of CS) we can
perform search on the original task, and when we are required to compute
the heuristic estimate of a state s, we can compute the heuristic estimate of

2.4. PLANNING TASK COMPILATIONS 51

CS(s). This way of separating search and heuristic computation has multiple
advantages: first, sometimes the heuristic does not care about specific parts of
the compilation, e.g. some heuristics do not require the semaphore variable
in the EVMDD compilation. Since search is not affected by the compilation
we can in such cases just leave out the semaphore. Next, even if the EVMDDs
underlying the EVMDD compilation are compact in size compilation still in-
creases the size of the state space, which may increase memory consumption
as the A?-algorithm has to store already expanded states in the closed list.
Finally, note that our definition of heuristic invariance only compares states
for which we have a one to one correspondence (via CS), but EVMDD com-
pilation introduces many intermediate states. In his Master’s thesis, Wacker
(2017) investigates how search behaves on the original task in comparison
to the compiled task, with a compilation invariant but inadmissible heuristic
as guidance (thus, the plans are not optimal). He shows that the compila-
tion often produces worse plans (in terms of costs), since intermediate states
(and their heuristic estimates) affect search negatively, and that the search
algorithm has to be adapted to avoid such pitfalls. We can circumvent these
adaptations by employing search on the original task, and only perform com-
pilation to compute heuristic estimates.5

With that in mind, the next chapter investigates a well known family of
classical planning heuristics, presents a generalization of such heuristics to
tasks with state-dependent action costs, and investigates how these heuristics
behave in the compiled task.

5This was actually pointed out by Malte Helmert during the defense of Wacker (2017).

CHAPTER 3
Delete Relaxation Heuristics

The first family of heuristics that we investigate for planning tasks with state-
dependent action costs is the family of delete relaxation heuristics (Bonet et
al. 1997; McDermott 1996). Delete relaxation heuristics were proposed more
than 20 years ago, when most planning tasks were modeled in the STRIPS
formalism which separates add effects, effects which make propositions true,
and delete effects, effects which make propositions false. A delete-relaxed ver-
sion of a planning task is then identical to the original task, except that actions
drop their delete effects. Optimal planning in the delete-relaxed task is NP-
hard (Bylander 1994), but approximations like the additive heuristic hadd and
the maximum heuristic hmax are usually fast to compute.

3.1 Delete-relaxed Planning Tasks

Since we assume that our planning tasks are defined over finite-domain state
variables, we have to generalize the notion of delete relaxation to this setting.
The idea is that state variables accumulate their values, rather than switching
between them, and a relaxed state contains variables which may hold several
values at once.1

Definition 32 (Relaxed states). A relaxed partial variable assignment is a
function s+ : V →

⋃
v∈V 2Dv with s+(v) ⊆ Dv (instead of s(v) ∈ Dv). If s+

assigns at least one value to each v ∈ V, s+ is called a relaxed state. The set
of all relaxed states is called S+. Given an unrelaxed state s ∈ S, we say that
s+ subsumes s, if and only if for all v ∈ V, s(v) ∈ s+(v), and write s ∈ s+ if
s+ subsumes s.

1“It is not entirely clear to whom the original formulation of monotonic relaxation for
multi-valued variable domains should be attributed”, see the footnote of Domshlak et al.
(2015) on page 75.

53

54 CHAPTER 3. DELETE RELAXATION HEURISTICS

In the relaxed setting, action preconditions and effects are still partial vari-
able assignments, but their semantics change. An action is applicable if the
relaxed state satisfies its precondition, and the relaxed successor state “adds”
the effects to the current state. Formally, an action a = 〈pre, eff〉 is relaxed
applicable in s+ if and only if pre(v) ∈ s+(v) where pre(v) is defined. If it
is clear from the context we also just say a is applicable in s+. Applying a
in s+ results in s+′, with s+′(v) = s+(v) ∪ {eff(v)} if eff(v) is defined, and
s+′(v) = s+(v) otherwise. Again, we write s+[a] for s+′.

The remaining piece we require for our definition of relaxed tasks is the
relaxed version of an action cost function. Since a relaxed state subsumes
multiple concrete states, the question is what cost to associate with the relaxed
state. The underlying idea of relaxation heuristics is to approximate the cost of
a plan in the original task, and often we want to achieve admissible heuristics.
Therefore, we define the action cost in a relaxed state to be the minimum cost
of all states subsumed by the relaxed state.

Definition 33 (Relaxed action cost function). Let ca : S → Q+ be an ac-
tion cost function. Then c+a is the relaxed action cost function with c+a (s+) =
mins∈s+ ca(s). Again, the set of actionsA induces a global relaxed cost function
c+ : A× S+ → Q+, such that c+(a, s+) = c+a (s+) for all s+ ∈ S+.

We are now able to formalize the delete-relaxed version of a planning task.

Definition 34 (Delete relaxation). Let Π = (V,A, sI , s?, c) be a planning
task. Then Π+ = (V,A, s+

I , s?, c
+) is the delete relaxation of Π, where s+

I
assigns to each variable v ∈ V the singleton set {sI(v)}. The set of all states
of Π+ is denoted with S+.

Take our logistics task from Example 1. In the delete relaxation, whenever
we load a package into the truck, in the subsequent relaxed state the location
of the package takes on both values: it is located in the truck and at the
same time located at its previous location. For example, Figure 3.1 depicts the
relaxed state s+ = (t-at

.
=A) ∧ (p1-at

.
=A) ∧ (p1-at

.
= t) ∧ (p2-at

.
=B), which

is reached by applying action load-p1 in the initial state. Here, package p1 is
simultaneously at location A, and in the truck.

For classical planning tasks, the delete relaxation is often much easier to
solve. Finding a (not necessary optimal) plan in the delete relaxation of a
classical planning task can be done in polynomial time. Finding an optimal
plan is, however, still NP-hard (Bylander 1994). Nevertheless, the plan cost of
an optimal plan in the relaxed setting can be used as an admissible heuristic
for the original task at hand.

Example 12. Consider the logistics task from Example 1. Figure 3.2 depicts
the transition system of the relaxed task. Unreachable states are omitted.
Relaxed states are shown in a column-like way: the first column contains

3.1. DELETE-RELAXED PLANNING TASKS 55

A

B C

Figure 3.1: Relaxed state where the box is at position A and at the same time
in the truck.

domain values of facts for v = t-at, the second one for v = p1-at, and the third
column stands for v = p2-at. The initial state is marked in grey, a goal state is
marked by double lines. Transitions induced by drive actions are colored red,
transitions induced by load actions are colored blue, and transitions induced
by unload actions are colored orange. Self-loops are omitted. Additionally,
note that all actions have a cost of 1, since every relaxed state reachable from
the initial state subsumes a state where the cost to drive is 1 (a state where
both packages are at their start location). There are many optimal plans with
a cost of 6.

Definition 35 (Optimal delete relaxation). Let Π = (V,A, sI , s?, c) be a
planning task and s ∈ S a state. The optimal delete relaxation heuristic h+(s)
is the cost of an optimal s+-plan in Π+, where s+ assigns to each variable
v ∈ V the singleton set {s(v)}

To be able to compute a delete relaxed optimal plan for a task with state-
dependent action costs we have to include the notion of relaxed costs. The
problem with this definition is not that much a conceptual, but rather a com-
putational one, as there can be exponentially many unrelaxed states s sub-
sumed by a single relaxed state s+. However, observe that relaxed states are
Cartesian sets of states.

Lemma 7 (Relaxed states are Cartesian sets of states). A relaxed state s+

is a Cartesian set of states.

Proof. Follows from the definition of s+. For each v ∈ V we have s+(v) ⊆ Dv,
therefore we can write s+ as

Ś

v∈V s
+(v), which is exactly the definition of a

Cartesian set of states.

Thus, when we have to compute the cost of a relaxed state we can make
use of the local minimization introduced in Definition 19.

56 CHAPTER 3. DELETE RELAXATION HEURISTICS

A A B

A
A
t
B

A
C

A B
A
B

A B

A
B

A
t
B

A
C

A
t
B

A
B
C

A B
A
B

A
B
t

A
B

A
t
B
t

A
B
C

A
t
B

A
C

A
C
t
B

A
B
C

A
B
t

A
B
C

A
C
t
B

A
B
C

A
t
B
t

A
B
C

A
B
C
t

A
B
C

A
C
t

B
t

A
B
C

A
t

B
C
t

A
B
C

A
C
t

B
C
t

Figure 3.2: Transition system of the relaxed logistics task.

3.1. DELETE-RELAXED PLANNING TASKS 57

We now have a look into compilation approaches and investigate how
these behave in the delete relaxed setting. Our first result shows that h+ is
invariant under exponential compilation.

Theorem 4. Let Π be a planning task, Π+ its delete relaxation, and ΠEXP+
the

delete relaxation of its exponential compilation. Let s+ be a state in Π+.

(a) If there exists an s+-plan π for Π+, then there exists an s+-plan πEXP for
ΠEXP+

, with cost(π) = cost(πEXP).

(b) If there exists an s+-plan πEXP for ΠEXP+
, then there exists an s+-plan

π for Π+ with cost(π) ≤ cost(πEXP). If πEXP is optimal, then cost(π) =
cost(π′).

Proof. Since exponential compilation works on the same states as the original
task, and since delete relaxation only changes the cost function of actions, we
have s+ = EXPS(s+).

(a) Assume π = 〈a0, . . . , an−1〉 is a plan for Π+. Consider without loss of
generality action a = a0 applied in s+. Let s be a state subsumed by s+

such that ca(s) = c+a (s+), i.e. a state subsumed by s+ with minimal cost.
By construction of the exponential compilation there is some action a′,
applicable in s, such that ca′(s) = ca(s). Thus, a′ is also applicable in
s+. Since this holds for all actions of π, we get a plan π′ and cost(π) =
cost(π′).

(b) Assume πEXP = 〈a′0, . . . , a
′
n−1〉 is a plan for ΠEXP+

. Consider a′ = a′0,
applied in s+. Since actions (with state-dependent costs) in the original
task have strictly fewer preconditions than actions in the compiled task,
there is a corresponding action a ∈ A, applicable in s+. Since a′ is ap-
plicable in s+, the state s corresponding to the cost of a′ is subsumed by
s+. Then c+a (s+) = mins∈s+ ca(s) ≤ c+

a′ . If π′ is optimal, then mins∈s+
ca(s) = c+

a′ , because otherwise there would be an action a′′ applicable in
s+ with cheaper cost.

Corollary 4. The optimal delete-relaxation heuristic h+ is invariant under ex-
ponential compilation.

Proof. Follows from Theorem 4. Then, h+(s) = h+(EXP(s)).

As a consequence, instead of applying delete relaxation to the original
task, we can use its exponential compilation to compute h+. While we avoid
the issue that a relaxed state subsumes in the worst case exponentially many

58 CHAPTER 3. DELETE RELAXATION HEURISTICS

original states, we just shifted the computational overhead to the computation
of the compilation. The obvious question is now, if we get a similar result for
the EVMDD-based compilation. One particular property of this compilation
is that by initiating a sequence of “intermediate” actions (based on the EV-
MDD structure), we make sure that no other chain of actions can be executed
“concurrently”. In the delete relaxed setting we can not enforce this sequen-
tial execution of a chain of actions, as every state reachable from the initial
state contains the semaphore fact (lock

.
= 0). Therefore, one could assume

that this compilation is not invariant under relaxation. Fortunately, it turns
out that this is not the case. The key argument is that in the relaxed setting of
the original task, after applying an action we can always choose the cheapest
fact combination for the subsequent actions. This corresponds to concurrently
evaluating intermediate actions in the compiled task.

Example 13. Consider Example 9, where we have two actions ax = 〈>, (x .=
1)〉 with cax = y, ay = 〈>, (y .=1)〉 with cay = x, and state s = (x

.
=0)∧(y

.
=0).

In the relaxed setting, after applying ax, the successor state contains facts (x
.
=

0) and (x
.
=1), therefore application of ay has a cost of 0. On the other hand, in

the relaxation of the EVMDD compilation, the action sequence 〈apre
x , a

(y
.
=0),1

x ,

a
pre
y , a

(x
.
=0),1

y , aeff
x , aeff

y 〉 is now allowed, since every successor state contains
the condition (lock

.
=0). Furthermore, since in actions in the delete relaxation

preserve previous facts, the sequence 〈apre
x , a

(y
.
=0),1

x , aeff
x , a

pre
y , a

(x
.
=0),1

y , aeff
y 〉 is

also allowed.

Example 13 exhibits an important property of the EVMDD compilation:
the semaphore variable is not necessary in the delete relaxed setting. For the
remainder of this section, we assume that Π is a planning task, Π+ its delete
relaxation, and ΠDD+

the delete relaxation of its EVMDD compilation. Given
a relaxed state s+ of Π+, we denote with s+DD the state s+ ∪ {(auxa

.
=0)|a ∈

A}, where A are actions in Π.

Lemma 8. Let sI be the initial state of Π. All states s+ in ΠDD+
which are

reachable from DD(sI) contain the fact (lock
.
=0).

Proof. By definition of the EVMDD compilation we have DD(sI) = sI∧(lock
.
=

0)∧
∧
a∈A(auxa

.
=0). Actions in the delete relaxation only add facts to relaxed

states, therefore the statement holds.

As a consequence, when we are only interested in delete relaxation heuris-
tics, we do not have to include the semaphore variable in the compilation.

Since relaxed states are Cartesian sets, we know from Lemma 6 that every
path in the EVMDD induces a sequence of actions in the EVMDD compiled
task. Furthermore, while in the delete relaxed setting the auxiliary values
are not reset after applying such a sequence, we could in theory immediately

3.1. DELETE-RELAXED PLANNING TASKS 59

apply the concluding action again, without going through another chain of
intermediate nodes. However, this would imply that we want to achieve the
effect of an action a second time, which is not necessary in the delete relaxed
setting2. With this in mind, we now give the proof that h+ is invariant under
compilation. For this, we show that an optimal plan in the relaxed original
task has the same cost as an optimal plan in the relaxation of the compiled
problem.

Theorem 5. Let Π be a planning task, Π+ its delete relaxation, and ΠDD+

the delete relaxation of its EVMDD compilation. Let s+ be a state in Π+ and
s+′ = s+DD.

(a) If there exists an optimal s+-plan π for Π+, then there exists an optimal
s+′-plan π′ for ΠDD+

, with cost(π) = cost(π′).

(b) If there exists an optimal s+′-plan π′ for ΠDD+
, then there exists an opti-

mal s+-plan π for Π+ with cost(π) = cost(π′).

Proof. (a) Assume π = 〈a0, . . . , an−1〉 is an optimal s+-plan for Π+. We
prove by induction over the plan length that for each ai, i ∈ {0, . . . , n−
1}, there has to be a cheapest sequence of actions πai in ΠDD+

with
cai(s

+) = cost(πai), such that ai+1 is applicable in s+DD
i+1 = s+DD

[πa0]
. . . [πai] if i 6= n− 1. Then, the sequence 〈πa0 , . . . πan−1〉 is an optimal
plan for s+DD with cost cost(π).

For the base case a0, Lemma 6 implies that there exists a sequence of
actions πa0 , such that ca0(s+) = cost(πa0) and s+′[πa0] coincides with
s+[a0] in all facts not introduced by the compilation. Now, assume the
induction hypothesis holds for a0, . . . , ai−1 and consider action ai and
state s+

i = s+[a0] . . . [ai−1]. By induction hypothesis, ai is applicable
in s+DD

i . We can not immediately apply Lemma 6, as s+DD
i contains

additional facts (auxaj
.
=d) for some j < i and d 6= 0, i.e. s+

i 6= s+DD
i .

However, these facts only affect actions in DD(aj), and the effect of aj
is already achieved in s+DD

i . Since π is optimal, aj is never applied
twice, and we have ai 6= aj . Therefore, the action sequence πai induced
by Lemma 6 for s+

i is also the cheapest action sequence applicable in
s+DD

i . If i 6= n − 1, then ai+1 is applicable in s+DD
i+1, as the concluding

action of πai has the same effect as ai (minus auxiliary fact).

(b) We now show the other direction by proving that given an optimal plan
πDD = 〈apre

j . . . , aeff
0 , . . . , aeff

n−1〉, we can construct an action sequence

2Note that this is not the case if actions have conditional effects, since in this case it might
be required to apply an action multiple times, to achieve different effects.

60 CHAPTER 3. DELETE RELAXATION HEURISTICS

π = 〈a0, . . . , an−1〉 with aeff
i ∈ DD(ai) for i ∈ {0, . . . , n − 1}, such that

s+DD
i = s+DD

[a
pre
j][. . .][aeff

i−1] coincides with s+
i = s+[a0] . . . [ai−1] in

all variables not introduced by compilation. We show this by induction
over the number of concluding actions in πDD. Since the last action of
πDD has to be a concluding action (otherwise πDD is not optimal), we
then have a plan for Π+.

In the base case, there are no concluding actions in πDD. Therefore
s+DD

[πDD] and s+DD can only differ in variables introduced by the
EVMDD compilation and then the empty plan π = 〈〉 is an s+-plan. For
the induction step, consider aeff

i . Before aeff
i is applicable, πDD has to

include actions apre
i , a0

i , . . . , a
k
i , where apre

i enables3 a0
i , a

k
i enables aeff

i ,

and aji enables aj+1
i for j ∈ {0, . . . , k − 1}. To see this, note that s+DD,

by definition, does not contain (auxai
.
=d) with d 6= 0, and for aeff

i to be
applicable, we have to set auxai to the corresponding value via a chain
of intermediate actions, beginning with a

pre
i . Thus, pre(a

pre
i) ∈ s+DD

i .
Now consider ai, such that aeff

i ∈ DD(ai). By induction hypothesis,

s+DD
i and s+

i coincide in variables not introduced by the compilation.
In particular, this means that pre(a

pre
i) ∈ s+

i. Since pre(ai) ⊂ pre(a
pre
i),

ai is also applicable in s+
i. Furthermore, eff(ai) and eff(aeff

i) coincide

in non-auxiliary facts, therefore, s+
i[ai] and s+DD

i [aeff
i] also coincide in

non-auxiliary facts, concluding the proof by induction.

What is left is to show that cost(πDD) = cost(π) and that π is optimal.
To see this, note that for each ai in π, there is a corresponding (not nec-
essarily sequential) action sequence apre

i , a0
i , . . . , a

k
i , aeff

i in πDD. Since
πDD is optimal, and since compilation does not introduce actions with
negative cost, each a

j
i is applied exactly once and enables an auxiliary

fact. Thus, this sequence corresponds to a minimal path p in the EVMDD
of cai , and cost(p) is exactly the cost of cai applied in sp, otherwise there
would be a state s subsumed by s+

i with cheaper cost, and then this
state would imply a path in the EVMDD leading to a cheaper sequence
of actions, which is not possible, since πDD is optimal. With the same
argument π has to be optimal, concluding the proof.

Corollary 5. The optimal delete-relaxation heuristic h+ is invariant under EV-
MDD compilation.

Proof. Follows from Theorem 5. Then, h+(s)=h+(DD(s)).

3ai enables aj in s, iff. ai is applicable in s, aj not applicable in s, and aj applicable in
s[ai].

3.2. APPROXIMATIVE DELETE RELAXATION HEURISTICS 61

This is a promising result, since the EVMDD compilation is polynomial in
the size of the EVMDD representation. Furthermore, when we separate sea-
rch and heuristic computation, Lemma 8 allows us to remove the semaphore
variable from the compiled task. For the remainder of this chapter we will
assume that the EVMDD compilation does not include a semaphore variable.

While the compilation approach deals with the issue (assuming compact
EVMDDs) that computing relaxed costs may depend on exponentially many
unrelaxed states, the computation of h+ in itself is still NP-hard. Therefore,
h+ is usually not an efficient heuristic and we have to rely on approximations.
We will now investigate how two of these approximations behave on tasks
with state-dependent action costs.

3.2 Approximative Delete Relaxation Heuristics

Over the years, there have been different proposals for approximations to h+.
The additive heuristic hadd (Bonet et al. 1997) is a polynomial approximation
which assumes that subgoals are independent (achieved with no side-effects).
It is inadmissible, but usually quite fast to compute. The maximum heuristic
hmax (Bonet and Geffner 1999) is very similar to hadd , since it only replaces
a sum operation during the computation of hadd with the max operator. It
is admissible, but usually less informed. Both heuristics are equivalent to h+

when all actions have a single precondition and the goal depends on a sin-
gle fact (Keyder and Geffner 2008). Unlike hadd and hmax , the FF heuristic
hFF (Hoffmann and Nebel 2001) makes no independence assumption and in-
stead computes a (not necessary optimal) plan for the relaxed task, which is
possible in polynomial time for unit cost tasks. This heuristic is still a strong
heuristic for satisficing (i.e. non-optimal) planning, but it ignores (constant)
action costs. The set-additive heuristic hsa (Keyder and Geffner 2008) is a
variation of hadd which is cost sensitive. It collects the “best support” of propo-
sitions on the plan path, which is a set of actions encoding the “best” actions
to achieve these propositions. Finally, the cost-sharing heuristic hcs (Mirkis
and Domshlak 2007), motivated by work on heuristic search for probabilis-
tic reasoning, generalizes the additive, the maximum and the FF heuristic by
building relaxed planning graphs up to an upper bound of the plan length and
propagating cost vectors through the graph.

While relaxation heuristics are still a powerful tool for satisficing planning,
for optimal planning they are either not admissible (and therefore not suitable
for A?) or are outperformed by other classes of heuristics. We therefore only
consider two types delete relaxation heuristics, which both have the property
of having a simple mathematical formulation, as well as being inherently able
to handle non-uniform action costs: the additive heuristic and the maximum
heuristic. While the former is an inadmissible heuristic and therefore not
useful for optimal planning, it can still be used to better guide non-satisficing

62 CHAPTER 3. DELETE RELAXATION HEURISTICS

planners for tasks with state-dependent action costs. We investigate how these
two heuristics interact with the state-dependent action cost setting and move
then on to a more powerful class of heuristics. We start with the definition of
hadd . For this, we first require the notion of fact achievers.

Definition 36 (Achievers). Let f be a fact. We denote with A(f) the set of
achievers of f , i.e. the set of actions a = 〈pre, eff〉 with f ∈ eff.

Definition 37 (Additive heuristic). Let Π be a classical planning task. The
additive heuristic hadd is defined as follows:

hadd (s) = hadds (s?) (3.1)

hadds (sp) =
∑
f∈sp

hadds (f) and (3.2)

hadds (f) =

{
0 if f ∈ s
mina∈A(f)

´

hadds (pre(a)) + ca

¯

otherwise,
(3.3)

where sp stands for a partial state and f for a fact.

The underlying idea of the additive heuristic is that it sums up the cost of
all achievers of goal facts, and recursively does this summation for the pre-
conditions of achievers of these facts. If facts in the goal are not independent,
then this is an overestimation of the cost, because a single action may achieve
multiple facts. Therefore, hadd is not admissible. It is a delete relaxation heu-
ristic since it assumes that actions always add facts, but never delete facts. In
the case of zero-cost actions, to ensure that hadd (and as we will see therefore
also hmax) is well-defined, one has to initialize the hadd values with∞. Then,
the greatest fix point is always unique. See also the discussion in the footnote
of Röger et al. 2014, p. 2.

For tasks with state-dependent action costs, the question is how to gener-
alize Equation 3.3. Consider the following example.

Example 14. Consider a planning task with binary variables x, y, g and the
following actions: ag = 〈>, (g .= 1)〉, with cag = 2x + 4y, a¬x = 〈>, (x .

= 0)〉
with constant cost 4 and a¬y = 〈>, (y .=0)〉 with constant cost 1. Let s = (x

.
=

1) ∧ (y
.
=1) ∧ (g

.
=0) and s? = (g

.
=1). To reach the goal, we have to apply ag.

If we apply ag immediately, we can achieve (g
.
=1) with a cost of 6. However,

if we first apply a¬y, we pay a cost of 1, but reduce the cost of applying ag by
4. This allows us to reach the goal with a cost of 3, instead of 6.

Example 14 reveals that the generalization of the additive heuristic to
state-dependent action costs should not only minimize over all achievers of
a fact f , but also minimize over all possible situations where the achiever
is applicable. We can see a similar behaviour of hadd when we analyze the
heuristic under the exponential compilation.

3.2. APPROXIMATIVE DELETE RELAXATION HEURISTICS 63

Example 15. Consider Example 14 and the exponential action compilation
EXP(ag):

a
(x
.
=0)∧(y

.
=0)

g = 〈(x .=0) ∧ (y
.
=0), (g

.
=1)〉, cost : 0

a
(x
.
=1)∧(y

.
=0)

g = 〈(x .=1) ∧ (y
.
=0), (g

.
=1)〉, cost : 2

a
(x
.
=0)∧(y

.
=1)

g = 〈(x .=0) ∧ (y
.
=1), (g

.
=1)〉, cost : 4

a
(x
.
=1)∧(y

.
=1)

g = 〈(x .=1) ∧ (y
.
=1), (g

.
=1)〉, cost : 6

Then, we get the following heuristic values:

hadds ((x
.
=0)) = 4, hadds ((x

.
=1)) = 0,

hadds ((y
.
=0)) = 1, hadds ((y

.
=1)) = 0,

hadds ((g
.
=1)) = min{hadds ((x

.
=0) ∧ (y

.
=0)) + 0,

hadds ((x
.
=1) ∧ (y

.
=0)) + 2,

hadds ((x
.
=0) ∧ (y

.
=1)) + 4,

hadds ((x
.
=1) ∧ (y

.
=1)) + 6}

= min{4 + 1 + 0, 0 + 1 + 2, 4 + 0 + 4, 0 + 0 + 6}
= 3

Basically, what happens in the example is that we minimize over the action
cost and the heuristic estimate we need to achieve this cost. This observation is
the basis for our formal definition of the additive heuristic for tasks with state-
dependent action cost.

Definition 38 (Generalized additive heuristic). Let Π be a planning task.
Recall that P (ca) is the set of consistent partial variable assignments over the
support of ca. The additive heuristic hadd is defined as in Definition 37, but
Equation 3.3 is replaced by the base case below:

hadds (f) =

{
0 if f ∈ s
mina∈A(f) minp∈P (ca)

´

hadds (pre(a) ∪ p) + ca(p)
¯

otherwise.

(3′)

Note that since the estimation for a partial state is the sum of the estima-
tions of the individual facts, and since the action precondition and the support
of the action cost are disjoint, we can also write

min
a∈A(f)

˜

hadds (pre(a)) + min
p∈P (ca)

´

hadds (p) + ca(p)
¯

¸

.

64 CHAPTER 3. DELETE RELAXATION HEURISTICS

We first show that the generalized version of hadd behaves like the classical
version for actions with constant cost:

Lemma 9. Let all actions in A have constant cost, and let s be a state and f /∈ s
a fact. Then hadds (f) = mina∈A(f)

´

hadds (pre(a)) + ca

¯

.

Proof. We have hadds (f) = mina∈A(f) minp∈P (ca)

´

hadds (pre(a) ∪ p) + ca(p)
¯

.

Since a has constant cost, P (ca) = {∅} and hadds (pre(a)) + ca = minp∈P (ca)
´

hadds (pre(a) ∪ p) + ca(p)
¯

.

We won’t show the computation of the generalized version of hadd for
Example 15, as it is pretty similar to the computation under the exponential
compilation. This should not come as a surprise, as the exponential compi-
lation is the inspiration of the generalization of the additive heuristic. As a
consequence, this heuristic is invariant under the exponential compilation.

Theorem 6. The generalized additive heuristic hadd is invariant under exponen-
tial compilation.

Proof. By construction of hadd and Lemma 9. We denote with A(f) ⊆ A
achievers in Π and with AEXP(f) ⊆ EXPA(Π) achievers in ΠEXP. Let s be
a state, s′ = EXP(s), and a an action in Π, such that a ∈ A(f) for some
fact f /∈ s. Then, EXP(a) = {ap|p ∈ P (ca)}, where ap = 〈pre ∪ p, eff〉 with
cap = ca(p), and therefore also ap ∈ AEXP(f). Thus,

hadds′ (f) = min
a∈AEXP(f)

´

hadds (pre(a)) + ca

¯

= min
a∈A(f)

˜

min
p∈P (ca)

´

hadds (pre(a) ∪ p) + ca(p)
¯

¸

= hadds (f).

While this result allows us to compute the additive heuristic for tasks
with state-dependent action costs, the compilation still introduces exponen-
tial overhead. We therefore now show that hadd is also invariant under the
EVMDD compilation. The idea behind the proof is that in order to compute
the heuristic estimate of an auxiliary fact aux corresponding to a node in the
EVMDD, we have to minimize over the achievers of this fact. The achievers
are the actions corresponding to edges leading to that node; their cost is deter-
mined by the edge weight, and their precondition is the predecessor auxiliary
fact, together with the fact enabling this edge. Figure 3.3 depicts the idea
behind the proof, applied to Example 14. Depicted is the EVMDD of the cost

3.2. APPROXIMATIVE DELETE RELAXATION HEURISTICS 65

function of ag. For each weight, there is a dashed edge leading to the corre-
sponding fact enabling this edge, annotated with the hadd -value of this fact.
Then, we can compute the hadd -value of an auxiliary fact, by minimizing over
the edge weights plus the hadd -values of the corresponding facts. Intuitively,
we minimize recursively along the EVMDD path, and in the end choose the
path corresponding to the partial state which minimizes the heuristic estimate
and the action cost of this partial state. We first show that the heuristic esti-
mate of an auxiliary fact of a node v can be expressed as the minimum over
the weights and heuristic estimates among the paths to v.

(y
.
=0)

hadd

(x
.
=0)

hadd

(x
.
=1)

hadd

(y
.
=1)

hadd

x
(aux

.
=1)

y
(aux

.
=2)

0

0

0

0

2

1

0

0

4

1

+4

+0

+1

+0

Figure 3.3: Proof sketch of Lemma 10 based on Example 14. At each decision
node, the heuristic minimizes over the sum of the edge weight and the hadd -
value of the corresponding fact. For example, the estimate of (aux

.
= 2) is the

minimum of 0 + 4 (for fact (x
.
=0)) and 2 + 0 (for fact (x

.
=1)).

Lemma 10. Let s be a state and sDD = DD(s) the corresponding state in the
EVMDD compilation. Let a = 〈pre, eff〉 be an action with cost function ca, auxa

the auxiliary variable introduced by the compilation, and let Eca = 〈κ, f〉 be
the corresponding EVMDD representation and v some node of Eca . We denote
with P (v) the set of paths from the root node to v and as before with cost(p)
the sum of weights along a path p and with sp the partial variable assignment
corresponding to p. Then

hadd
sDD((auxa

.
= idx (v))) = hadd

sDD(pre) + min
p∈P (v)

´

hadd
sDD(sp) + cost(p)

¯

Proof. Proof by induction over the level of v.
Base case level(v) = |vars(ca)|: In the base case, v = f . Then idx (v) = 1

and the single achiever of (auxa
.
=1) is apre = 〈(aux .=0)∧pre, (aux

.
=1)〉 with

66 CHAPTER 3. DELETE RELAXATION HEURISTICS

cost κ. Therefore hadd
sDD(auxa

.
= 1) = hadd

sDD(auxa
.
= 0) + hadd

sDD(pre) + κ. Since

(auxa
.
=0) ∈ sDD we have hadd

sDD(auxa
.
=1) = 0 + hadd

sDD(pre) + κ. Since v is the
root node, there is a single path with weight κ, and the corresponding partial
variable assignment is the empty set. Therefore

hadd
sDD((auxa

.
= idx (v))) = hadd

sDD(pre) + κ

= hadd
sDD(pre) + hadd

sDD(∅) + κ

= hadd
sDD(pre) + min

p∈P (v)

´

hadd
sDD(sp) + cost(p)

¯

.

Inductive step level(v) = i− 1: Assume the claim is true for nodes v′ with
level(v′) ≥ i. By definition of hadd and Lemma 9, we have

hadd
sDD((auxa

.
= idx (v)) = min

a′∈A((auxa
.
=idx (v))

´

hadd
sDD(pre(a′)) + ca′

¯

.

Let v′ be some parent of v, Fv′ the corresponding fact enabling the edge
from v′ to v and wv′ the weight of this edge. Then, there exists an achiever
a′ = 〈(auxa .

= idx (v′)) ∧ Fv′ , (auxa
.
= idx (v))〉 with ca′ = wv′ . Therefore,

hadd
sDD(pre(a′)) = hadd

sDD((auxa
.
= idx (v′))+hadd

sDD(Fv′). By induction hypothesis,
the claim holds for node v′ and therefore

hadd
sDD(pre(a′)) = hadd

sDD(pre) + min
p∈P (v′)

´

hadd
sDD(sp) + cost(p)

¯

+ hadd
sDD(Fv′).

Minimizing over all achievers of (auxa
.
= idx (v)) corresponds to minimiz-

ing over all predecessors of v, denoted as Prv, and thus

min
a′∈A((auxa

.
=idx (v))

´

hadd
sDD(pre(a′)) + ca′

¯

= min
v′∈Prv

˜

hadd
sDD(pre) + min

p∈P (v′)

´

hadd
sDD(sp) + cost(p)

¯

+ hadd
sDD(Fv′) + ca′

¸

= min
v′∈Prv

˜

hadd
sDD(pre) + min

p∈P (v′)

´

hadd
sDD(sp) + cost(p)

¯

+ hadd
sDD(Fv′) + wv′

¸

= hadd
sDD(pre) + min

v′∈Prv

˜

min
p∈P (v′)

´

hadd
sDD(sp) + cost(p)

¯

+ hadd
sDD(Fv′) + wv′

¸

.

Now, note that the inner minimization minimizes over the paths to the prede-
cessors, and the outer minimization minimizes over the possible edges from
the predecessor to v. This is equal to minimizing over all possible paths to v,
and therefore

hadd
sDD(auxa

.
= idx (v)) = hadd

sDD(pre) + min
p∈P (v)

´

hadd
sDD(sp) + cost(p)

¯

.

3.2. APPROXIMATIVE DELETE RELAXATION HEURISTICS 67

With this, we are now able to show that hadd is invariant under EVMDD
compilation, as long as the EVMDDs we use to represent cost functions are
quasi-reduced. We require quasi-reducedness, since otherwise a path in the
EVMDD might skip some facts and we lose their heuristic estimates.

Theorem 7. The generalized additive heuristic hadd is invariant under EVMDD
compilation, if the EVMDDs are quasi-reduced.

Proof. Let Π be a planning task, s be a state and sDD = DD(s) the correspond-
ing state in the compiled task. We have to show that hadd (s) = hadd (sDD). We
have hadd (s) = hadds (s?) and hadd (sDD) = hadd

sDD(DDs?(Π)). Since DDs?(Π) =

s? ∪ {(auxa
.
= 0)|a ∈ A} and sDD(auxa) = 0 for all a ∈ A it suffices to show

that hadds (s?) = hadd
sDD(s?). Furthermore, since hadd for a set of facts is the

sum of the estimates of the single facts we have to show hadds (f) = hadd
sDD(f)

for some fact f .
We do this by induction over the number of steps required to achieve f

from s. In the base case, f is already achieved and we have f ∈ s, then
f ∈ sDD and hadds (f) = 0 = hadd

sDD(f).
In the inductive case, the statement holds for all facts achieved from s in i

steps, and f is achieved in i+1 steps. We have to minimize over the achievers
of f . By definition of the EVMDD compilation, for each achiever a ∈ A(f) in
the original task there is an achiever aeff ∈ A(f) in the compiled task with
precondition (auxa

.
= |f |), f ∈ eff(a) and cost 0. We have to show that

hadds (pre(a)) + min
p∈P (ca)

´

hadds (p) + ca(p)
¯

= hadd
sDD(auxa

.
= |f |).

Since idx (0) = |f | we get from Lemma 10

hadd
sDD(auxa

.
= |f |) = hadd

sDD(pre(a)) + min
p∈P (0)

´

hadds (sp) + cost(p)
¯

.

Since the EVMDD is quasi-reduced, every path from the root node to the ter-
minal node 0 corresponds to a partial state of P (ca). Furthermore, by con-
struction of the EVMDD, the weights among the path from the root node to 0
correspond exactly to the cost of the corresponding partial state, therefore

min
p∈P (ca)

´

hadd
sDD(p) + ca(p)

¯

= min
p∈P (0)

´

hadd
sDD(sp) + cost(p)

¯

and we have

hadd
sDD(auxa

.
= |f |) = hadd

sDD(pre(a)) + min
p∈P (ca)

´

hadd
sDD(p) + ca(p)

¯

.

Since pre(a) and p have to be achievable in i−1 steps (otherwise pre(a) would
not be applicable, and hadd

sDD(p) would be∞), we get by induction hypothesis:

68 CHAPTER 3. DELETE RELAXATION HEURISTICS

hadds (pre(a)) + min
p∈P (ca)

´

hadds (p) + ca(p)
¯

=

hadd
sDD(pre(a)) + min

p∈P (ca)

´

hadd
sDD(p) + ca(p)

¯

.

With this, it follows hadd (s) = hadd (sDD), concluding the proof.

3.2.1 The maximum heuristic hmax

While the additive heuristic accumulates the heuristic estimates of goal facts,
the maximum heuristic hmax only accounts for the maximum cost over all
achievers of goal facts. As a consequence, hmax is an admissible heuristic.
Below we give the definition of the maximum heuristic for classical planning
tasks.

Definition 39 (Maximum heuristic). Let Π be a classical planning task. The
maximum heuristic hmax is defined as follows:

hmax (s) = hmax
s (s?) (3.4)

hmax
s (sp) = max

f∈sp
hmax
s (f) and (3.5)

hmax
s (f) =

{
0 if f ∈ s
mina∈A(f) phmax

s (pre(a)) + caq otherwise,
(3.6)

where sp stands for a partial state and f for a fact.

The only difference between the maximum and the additive heuristic is
the maximization in Equation 3.5. Since this maximization is also possible for
tasks with state-dependent action costs, we can use Equation 3′ of the gener-
alization of the additive heuristic and thus formally define the generalization
of the maximum heuristic.

Definition 40 (Generalized maximum heuristic). Let Π be a planning task.
The maximum heuristic hmax is defined as in Definition 39, but Equation 3.6
is replaced by the base case below:

hmax
s (f) =

{
0 if f ∈ s
mina∈A(f)

´

minp∈P (ca) phmax
s (pre(a) ∪ p) + ca(p)q

¯

otherwise.

(3′)

Unlike in the additive case, we are not able to separate the heuristic es-
timate of the precondition from the estimates of the partial state facts, i.e.
write

min
a∈A(f)

˜

max{hmax
s (pre(a)), min

p∈P (ca)
phmax
s (p) + ca(p)q}

¸

,

3.2. APPROXIMATIVE DELETE RELAXATION HEURISTICS 69

since max(a, b)+c 6= max(a, b+c) for arbitrary a, b, c ∈ Q+. We will come back
to this observation when we investigate how hmax behaves under EVMDD
compilation.

As it was the case for the additive heuristic, hmax also behaves like its
classical counterpart when only constant action costs are involved.

Lemma 11. Let Π be a classical planning task, s a state, and f /∈ s a fact. Then
hmax
s (f) = mina∈A(f) phmax

s (pre(a)) + caq.

Proof. We have hmax
s (f) = mina∈A(f) minp∈P (ca) phmax

s (pre(a) ∪ p) + ca(p)q .
Since a has constant cost, P (ca) = {∅} and then

min
p∈P (ca)

phmax
s (pre(a) ∪ p) + ca(p)q = hmax

s (pre(a)) + ca.

Similarly, hmax is also invariant under exponential compilation.

Theorem 8. The generalized maximum heuristic hmax is invariant under expo-
nential compilation.

Proof. The proof is analogous to the proof of Theorem 6.

For the additive heuristic, a key argument for its invariance under EVMDD
compilation is that we can construct the estimate of an auxiliary fact of a
node v, by minimizing over estimates of auxiliary fact and enabling edge fact
of predecessor nodes, and adding the corresponding edge weight. For hmax ,
this is not possible. In principle, the underlying issue is that max(a, b) + c 6=
max(a, b+ c), and as a result large heuristic estimates for facts enabling edges
in the upper parts (nodes with higher level) of the EVMDD can “absorb” the
cost of the path leading to nodes in the lower part of the EVMDD.

Example 16. Consider the planning task of Example 15 again. As a reminder,
we have the actions ag = 〈>, (g .= 1)〉, with cag = 2x + 4y, a¬x = 〈>, (x .= 0)〉
with constant cost 4 and a¬y = 〈>, (y .=0)〉 with constant cost 1, and we have
state s = (x

.
=1) ∧ (y

.
=1) ∧ (g

.
=0) and goal s? = (g

.
=1). We write ca for cag .

Then, hmax (s) = hmax
s ((g

.
= 1)) = minp∈P (ca) phmax (p) + ca(p)q. Each p

consists of a partial state defined over x and y and we have

s¬x¬y = (x
.
=0) ∧ (y

.
=0), hmax

s ((x
.
=0)) = 4,

s¬xy = (x
.
=0) ∧ (y

.
=1), hmax

s ((x
.
=1)) = 0,

sx¬y = (x
.
=1) ∧ (y

.
=0), hmax

s ((y
.
=0)) = 1,

sxy = (x
.
=1) ∧ (y

.
=1). hmax

s ((y
.
=1)) = 0.

70 CHAPTER 3. DELETE RELAXATION HEURISTICS

Thus,

hmax
s ((g

.
=1)) = min{hmax (s¬x¬y) + ca(s¬x¬y), hmax (s¬xy) + ca(s¬xy),

hmax (sx¬y) + ca(sx¬y), hmax (sxy) + ca(sxy)}
= min{max{4, 1}+ 0, max{4, 0}+ 4,

max{0, 1}+ 2, max{0, 0}+ 6}
= 3.

(y
.
=0)

h = 1

(x
.
=0)

h = 4

(x
.
=1)

h = 0

(y
.
=1)

h = 0

x
h(aux

.
=1)

= 0

y h(aux
.
=2)

= min(4, 2)

0 h(aux
.
=3) = min(2, 6)

0

0
max(0, 4) + 0

2
max(0, 0) + 2

0
max(2, 1) + 0

4
max(2, 0) + 4

Figure 3.4: EVMDD for cost function 2x+ 4y, annotated with hmax values.

Now, consider the EVMDD compilation of ag. Figure 3.4 depicts the EV-
MDD of ca already annotated with the h-values of auxiliary facts which follow
now. We denote auxa with aux and have sDD = s ∧ (aux

.
= 0). We get the

following actions for DD(a):

a
pre
g =〈(aux

.
=0), (aux

.
=1)〉, cost : 0

a
(x
.
=0),1

g =〈(aux
.
=1) ∧ (x

.
=0), (aux

.
=2)〉, cost : 0

a
(x
.
=1),1

g =〈(aux
.
=1) ∧ (x

.
=1), (aux

.
=2)〉, cost : 2

a
(y
.
=0),2

g =〈(aux
.
=2) ∧ (y

.
=0), (aux

.
=3)〉, cost : 0

a
(y
.
=1),2

g =〈(aux
.
=2) ∧ (y

.
=1), (aux

.
=3)〉, cost : 4

aeff
g =〈(aux

.
=3), (g

.
=1) ∧ (aux

.
=0)〉, cost : 0

3.2. APPROXIMATIVE DELETE RELAXATION HEURISTICS 71

We then get the following hmax values:

hmax
sDD((x

.
=0)) = 4, hmax

sDD((x
.
=1)) = 0,

hmax
sDD((y

.
=0)) = 1, hmax

sDD((y
.
=1)) = 0,

hmax
sDD((aux

.
=0)) = 0, hmax

sDD((aux
.
=1)) = 0,

And for the auxiliary variables we have:

hmax
sDD((aux

.
=2)) = min{ hmax

sDD((aux
.
=1) ∧ (x

.
=0)) + 0,

hmax
sDD((aux

.
=1) ∧ (x

.
=1)) + 2}

= min{ max{0, 4}+ 0,max{0, 0}+ 2}
= 2,

hmax
sDD((aux

.
=3)) = min{ hmax

sDD((aux
.
=2) ∧ (y

.
=0)) + 0,

hmax
sDD((aux

.
=2) ∧ (y

.
=1)) + 4}

= min{ max{2, 1}+ 0,max{2, 0}+ 4}
= 2,

⇒ hmax
sDD((g

.
=1)) = 2,

whereas hmax
s ((g

.
=1)) = 3.

Theorem 9. The generalized maximum heuristic hmax is not invariant under
EVMDD compilation compilation.

Proof. In Example 16, we have a state s with hmax (s) 6= hmax (DD(s)).

In principle, we could have used a simpler example, where the cost func-
tion only depends on a single variable, and some constant costs are “absorbed”
by the heuristic. However, Example 16 also shows that it does not matter if
we have the constant action cost as part of the concluding action, instead of
the initial action.

Interestingly, this issue does not arise if we rely on flattened EVMDDs (Def.
20). Then, all non-concluding actions have a cost of 0 and the heuristic esti-
mate of the effect minimizes over the estimates of the auxiliary values corre-
sponding to the concluding actions and their cost.

Example 17. Consider Example 15 again, with the flattened EVMDD compi-
lation of action ag. Figure 3.5 depicts the flattened EVMDD of cag = 2x+ 4y.
We denote auxag with aux and have sDD = s ∧ (aux

.
= 0), with s = (x

.
=

1) ∧ (y
.
=1) ∧ (g

.
=0). We get the following actions for FDD(ag):

72 CHAPTER 3. DELETE RELAXATION HEURISTICS

(y
.
=0)

h = 1

(x
.
=0)

h = 4

(x
.
=1)

h = 0

(y
.
=1)

h = 0

x h(aux
.
=1) = 0

yh(aux
.
=2)

= max(0, 4)
y h(aux

.
=3)

= max(0, 0)

0

h(aux
.
=4)

= max(4, 1)

2

h(aux
.
=6)

= max(0, 1)

4

h(aux
.
=5)

= max(4, 0)

6

h(aux
.
=7)

= max(0, 0)

0 1

0
1 0

1

Figure 3.5: Flattened EVMDD for cost function 2x+ 4y, annotated with hmax

values.

a
pre
g =〈(aux

.
=0), (aux

.
=1)〉, cost : 0

a
(x
.
=0),1

g =〈(aux
.
=1) ∧ (x

.
=0), (aux

.
=2)〉, cost : 0

a
(x
.
=1),1

g =〈(aux
.
=1) ∧ (x

.
=1), (aux

.
=3)〉, cost : 0

a
(y
.
=0),2

g =〈(aux
.
=2) ∧ (y

.
=0), (aux

.
=4)〉, cost : 0

a
(y
.
=1),2

g =〈(aux
.
=2) ∧ (y

.
=1), (aux

.
=5)〉, cost : 0

a
(y
.
=0),3

g =〈(aux
.
=3) ∧ (y

.
=0), (aux

.
=6)〉, cost : 0

a
(y
.
=1),3

g =〈(aux
.
=3) ∧ (y

.
=1), (aux

.
=7)〉, cost : 0

a0g =〈(aux
.
=4), (g

.
=1) ∧ (aux

.
=0)〉, cost : 0

a4g =〈(aux
.
=5), (g

.
=1) ∧ (aux

.
=0)〉, cost : 4

a2g =〈(aux
.
=6), (g

.
=1) ∧ (aux

.
=0)〉, cost : 2

a6g =〈(aux
.
=7), (g

.
=1) ∧ (aux

.
=0)〉, cost : 6

3.2. APPROXIMATIVE DELETE RELAXATION HEURISTICS 73

We then get the following hmax values:

hmax
sDD((x

.
=0)) = 4, hmax

sDD((x
.
=1)) = 0,

hmax
sDD((y

.
=0)) = 1, hmax

sDD((y
.
=1)) = 0,

hmax
sDD((aux

.
=0)) = 0, hmax

sDD((aux
.
=1)) = 0,

hmax
sDD((aux

.
=2)) = hmax

sDD((aux
.
=1) ∧ (x

.
=0)) + 0 = max{0, 4}+ 0 = 4,

hmax
sDD((aux

.
=3)) = hmax

sDD((aux
.
=1) ∧ (x

.
=1)) + 0 = max{0, 0}+ 0 = 0,

hmax
sDD((aux

.
=4)) = hmax

sDD((aux
.
=2) ∧ (y

.
=0)) + 0 = max{4, 1}+ 0 = 4,

hmax
sDD((aux

.
=5)) = hmax

sDD((aux
.
=2) ∧ (y

.
=1)) + 0 = max{4, 0}+ 0 = 4,

hmax
sDD((aux

.
=6)) = hmax

sDD((aux
.
=3) ∧ (y

.
=0)) + 0 = max{0, 1}+ 0 = 1,

hmax
sDD((aux

.
=7)) = hmax

sDD((aux
.
=3) ∧ (y

.
=1)) + 0 = max{0, 0}+ 0 = 0,

hmax
sDD((g

.
=1)) = min{hmax

sDD((aux
.
=4)) + 0, hmax

sDD((aux
.
=5)) + 4,

hmax
sDD((aux

.
=6)) + 2, hmax

sDD((aux
.
=7)) + 6}

= min{4 + 0, 4 + 4, 1 + 2, 0 + 6} = 3

Note that the heuristic estimate in the compiled task corresponds to the heu-
ristic estimate in the original task.

If we rely on flattened EVMDDs, we can give results similar to the additive
heuristic.

Lemma 12. Let s be a state and sFDD = FDD(s) the corresponding state in
the flattened EVMDD compilation. Let a = 〈pre, eff〉 be an action with cost
function ca, auxa the auxiliary variable introduced by the compilation, and let
Eca = 〈κ, f〉 be the corresponding EVMDD representation and v some node of
Eca . We denote with P (v) the set of paths from the root node to v and with sp
the partial variable assignment corresponding to path p. Then

hmax
sFDD(auxa

.
= idx (v)) = min

p∈P (v)

´

hmax
sFDD(sp ∪ pre)

¯

.

Proof. The proof by induction is similar to the proof of Lemma 10. Note
that all non-concluding actions have a cost of 0. In the base case, we have
idx (v) = 1 and the single achiever is apre with cost 0. Thus, hmax

sFDD(auxa
.
=

1) = hmax
sFDD(pre). Since sp is the empty partial state, the claim holds.

In the induction step, assume the claim holds for nodes v′ with higher level
than v. Let v′ be some parent of v and Fv′ the corresponding fact enabling
edge. Then, there exists an achiever a′ = 〈(auxa .

= idx (v′)) ∧ Fv′ , (auxa
.
=

74 CHAPTER 3. DELETE RELAXATION HEURISTICS

idx (v))〉 with cost 0. Therefore,

hmax
sFDD(pre(a′)) = hmax

sFDD((auxa
.
= idx (v′)) ∪ Fv′)

= max{hmax
sFDD((auxa

.
= idx (v′))), hmax

sFDD(Fv′)}.

By induction hypothesis, the claim holds for node v′ and we have

hmax
sFDD(pre(a′)) = max{ min

p∈P (v′)

´

hmax
sFDD(sp ∪ pre)

¯

, hmax
sFDD(Fv′)}

= min
p∈P (v′)

´

max{hmax
sFDD(sp ∪ pre), hmax

sFDD(Fv′}
¯

= min
p∈P (v′)

´

hmax
sFDD(sp ∪ pre ∪ Fv′)

¯

,

where the last equality is obtained by definition of hmax . Again, since mini-
mizing over all achievers of (auxa

.
= idx (v)) corresponds to minimizing over

all predecessors of v, we get

min
a′∈A(auxa

.
=idx (v))

hmax
sFDD(pre(a′))

= min
v′∈pred. of v

min
p∈P (v′)

hmax
sFDD(pre ∪ sp ∪ Fv′)

= min
p∈P (v)

hmax
sFDD(sp ∪ pre),

concluding the proof.

This brings us to the final theorem of this section, showing that hmax is
invariant under quasi-reduced flattened EVMDD compilation.

Theorem 10. The generalized maximum heuristic hmax is invariant under flat-
tened EVMDD compilation, if the EVMDDs are quasi-reduced.

Proof. Let Π be a planning task, s be a state and sFDD = FDD(s) the cor-
responding state in the compiled task. We have to show that hmax (s) =
hmax (sFDD). The proof is analogous to the proof of Theorem 7. The only
difference lies in the inductive case of the proof for

hmax
s (f) = min

a∈A(f)
min

p∈P (ca)
phmax
s (pre(a) ∪ p) + ca(p)q = hmax

sFDD(f).

Let a ∈ A(f) be an action in the original task achieving f . In the compiled
task, instead of a single concluding action aeff we have multiple concluding
actions, each corresponding to a terminal node in the quasi-reduced, flattened
EVMDD. Let aw = 〈(auxa

.
= idx (w)), eff(a) ∧ (auxa

.
=0)〉 be such a concluding

action. Then, by Lemma 12 we have hmax
sFDD(pre(aw)) = minp∈P (w) h

max
sFDD(sp∪

pre). By construction of the flattened EVMDD, caw = ca(sp), where sp is a

3.3. SUMMARY 75

partial state corresponding to a path from the root node to w. Therefore, we
get

hmax
sFDD(f) = min

aw∈AFDD(f)
min

p∈P (w)

´

hmax
sFDD(sp ∪ pre)

¯

+ ca(sp).

Since the two minimizations correspond, by construction, to minimizing over
p ∈ P (ca) we can, with similar reasons to Theorem 7, apply the induction
hypothesis and are done.

This brings up an interesting question: does the additional information we
get from the heuristic by representing the cost functions as flattened EVMDDs
outweigh the overhead in representation size? If EVMDDs and flattened EV-
MDDs are of similar size, then it clearly makes sense to use flattened EVMDDs
instead, at least when we use the maximum heuristic. But what if the size
differs drastically? We will come back to this question when we empirically
evaluate the maximum heuristic for both compilations (cf. Chapter 5).

3.3 Summary

We conclude our theoretical evaluation of relaxation heuristics by summariz-
ing the previous results in Figure 3.6. The optimal delete relaxation heuristic
h+ is invariant under both types, exponential and EVMDD compilation (Figure
3.6a). For the approximations, the additive heuristic is also invariant under
both types of compilation, if the EVMDDs are quasi-reduced. The maximum
heuristic, however, is only invariant under exponential compilation. For EV-
MDD compilation, we can only guarantee invariance if we rely on flattened
quasi-reduced EVMDDs.

In the upcoming chapter, we introduce abstraction heuristics, which are
usually more powerful than relaxation heuristics and also (sometimes) based
on Cartesian sets.

76 CHAPTER 3. DELETE RELAXATION HEURISTICS

Π ΠEXPΠDD

h+(s) h+(EXP(s))h+(DD(s))
= =

(a) Invariance results for h+.

Π ΠEXPΠDD

hadd (s) hadd (EXP(s))hadd (DD(s))

hmax (s) hmax (EXP(s))hmax (DD(s))

= =

≤ =

(b) Invariance results for hadd and hmax .

Figure 3.6: Theoretical summary of Chapter 3.

CHAPTER 4
Abstraction Heuristics

While relaxation heuristics relax the problem by not considering negative ef-
fects of actions, abstraction heuristics rely on a transformation of the prob-
lem which only reflects some parts of the original problem by aggregating
multiple states together into abstract states. There has been a plethora of
research on abstractions for classical planning and different types of abstrac-
tions have been introduced over the years. Pattern database heuristics were
initially introduced by Culberson and Schaeffer (1998) to compute admissi-
ble consistent heuristics for sliding tile puzzles and Rubik’s Cube problems
(Korf 1997) and later adopted by Edelkamp (2001) for general classical plan-
ning problems. They rely on so called projection abstractions, which can be
seen as the “simplest” type of abstraction. Cartesian abstractions are more
general than projection abstractions. Seipp and Helmert (2013) introduced
Cartesian abstractions to planning by adapting the counterexample-guided
abstraction refinement (CEGAR) algorithm (Clarke et al. 2000) to compute
iteratively more fine-grained abstractions, resulting in potentially more ac-
curate heuristics than what is possible with projection abstractions. Finally,
Merge-and-Shrink abstractions (Dräger et al. 2009; Helmert et al. 2014) form
an even more general class of abstractions than Cartesian abstractions, as
every abstraction can be represented (not necessarily compactly) as a merge-
and-shrink abstraction (Helmert et al. 2015). They rely on factored transition
systems which are repeatedly merged by computing the product of two systems
and shrunk by applying an abstraction to the product.

We start by giving the necessary definitions. In the following, we base
our notation of abstractions on the work of Seipp and Helmert (2018) and
extend it to transition systems with weighted transitions. As already noted,
an abstraction aggregates multiple states into abstract states, but preserves
transitions.

Definition 41 (Abstraction). Let Π be a planning task and TΠ = (S, L, T, sI ,
S?) the transition system induced by Π. An abstraction relation ∼ for Π is an

77

78 CHAPTER 4. ABSTRACTION HEURISTICS

equivalence relation on S. Equivalence classes of ∼ are called abstract states.
Given a state s, we write s∼ for the equivalence class to which s belongs and
call the function mapping s to s∼ the abstraction function.

The abstract transition system induced by ∼ is T ∼Π = (S∼, L, T∼, sI∼, S∼?),
where

• S∼ = {s∼|s ∈ S},

• T∼ = {s∼
a,ca(s)
−→ s[a]∼ |s

a,ca(s)
−→ s[a] ∈ T} and

• S∼? = {s∼|s ∈ S?}.

Sometimes T ∼Π is also called an induced abstraction, which can be under-
stood as the abstraction does not introduce additional behaviour. In principle,
we can also have a non-induced abstraction, where any of the components of
T ∼Π (i.e. S∼, L, T∼ or S∼?) is enlarged (Seipp and Helmert 2018), but we note
that all of the abstractions we consider here are induced abstractions. Addi-
tionally, we note that an (induced) abstraction can have non-deterministic
transitions, i.e. two transitions with the same label lead to different abstract
successor states.

As we did already with relaxed states, we will call states of the original
transition system concrete states and states in the abstract transition system
abstract states. We will also say s∼ subsumes s′, if s′∼ = s∼, i.e. s and s′

belong to the same abstract state. The definition of abstract transitions might
seem straightforward but warrants discussion. For each transition between
two states there is a transition between the corresponding abstract states with
the weight corresponding to the weight of the original transition. In partic-
ular, this implies that multiple transitions between two abstract states may
have different weights even if they are induced by the same action. Thus,
in the worst case the abstract transition system has as many transitions as
the concrete transition system. However, we will see that for some types of
abstractions the transitions collapse even when actions have state-dependent
action costs, and that for some other types of abstractions we can approximate
the weights while still obtaining admissible estimates.

In the following, we will see an example of an abstraction applied on our
logistics example task.

Example 18. Consider the logistics task in Example 1 and its transition system
depicted in Figure 2.3. Figure 4.1 depicts an abstraction of the logistics task,
such that states with matching domain values for the p1-at and p2-at variables
belong to the same partition. Note that an optimal plan now simply consists
of load and unload actions and has a cost of 4.

Based on abstract transition systems, we are now able to define abstraction
heuristics.

79

AAB

CAB

BABAAt

BAt

CAt

AACBAC

CAC Att

Ctt

Btt

ACt

BCt

CCt

AtB

BtB CtB

ACBBCB

CCB

AtC

BtC CtC ACC BCC

CCC

load p2

load p2

load p2

load p1

load p1

load p1

unload p2

unload p2

unload p2

unload p1

unload p1

unload p1

Figure 4.1: Transition system induced by an abstraction of the logistics task
in Example 1. Round nodes depict concrete states, which are subsumed by
abstract states, shown as rectangles. Self-loops are omitted. An optimal plan
with cost 4 in the abstract transition system is highlighted in blue.

Definition 42 (Abstraction heuristic). Let Π be a planning task and ∼ be
an abstraction relation. Then, the abstraction heuristic h∼(s) is the cost of an
optimal plan of T ∼Π starting in s∼, or∞ if no such plan exists.

Abstraction heuristics are admissible heuristics. Before we discuss differ-
ent types of abstractions, we give some results which hold for arbitrary ab-
stractions. First, every abstraction heuristic is invariant under exponential
compilation. The underlying reason is that the exponential compilation pre-
serves transitions (cf. Lemma 4) and therefore each transition in the abstrac-
tion of the original task is also a transition in the abstraction of the compiled
task and the other way around.

Example 19. Consider a planning task Π with two binary variables x, y and
an action a = 〈(x .=0), (x

.
=1)〉 with ca = y + 1. Let sI = (x

.
=0) ∧ (y

.
=1) and

s? = (x
.
= 1) ∧ (y

.
= 1). Now, consider an abstraction relation ∼, such that we

80 CHAPTER 4. ABSTRACTION HEURISTICS

have the following abstract states: s∼1 = {(x .
= 0) ∧ (y

.
= 0), (x

.
= 0) ∧ (y

.
= 1)},

s∼2 = {(x .=1) ∧ (y
.
=1)}, s∼3 = {(x .=1) ∧ (y

.
=0)}.

Then, we have h∼(sI) = 2 = h∼(EXP(sI)). To see this, consider Fig-
ure 4.2. On the top, we have the abstract transition system induced by Π.
On the bottom, we have the transition system induced by ΠEXP. Note that
every transition from the original transition system is also contained in the
transition system induced by the compilation, but the figure omits self-loops
induced by drive actions. Additionally, note that we have non-deterministic
transitions, i.e. two transitions with the same label which lead to different
abstract successor states.

(x
.
=0) ∧ (y

.
=0)

(x
.
=0) ∧ (y

.
=1)

(x
.
=1) ∧ (y

.
=0)

(x
.
=1) ∧ (y

.
=1)

1

a

2

a

(a) Abstract transition system induced by Π.

(x
.
=0) ∧ (y

.
=0)

(x
.
=0) ∧ (y

.
=1)

(x
.
=1) ∧ (y

.
=0)

(x
.
=1) ∧ (y

.
=1)

1

a(y
.
=0)

2

a(y
.
=1)

(b) Abstract transition system induced by ΠEXP.

Figure 4.2: Abstract transition systems of Example 19. Abstract states are de-
picted as rectangles. Transitions are annotated with the corresponding action.
Self-loop transitions are omitted.

Theorem 11. Let Π be a planning task and ∼ an abstraction relation. Then, h∼

is invariant under exponential compilation.

Proof. Follows from Lemma 4. Since both transition systems share the same
structure, their abstract transition systems also share the same structure and
therefore h∼(s) = h∼(EXP(s)).

Note that general abstraction heuristics are not invariant under EVMDD
compilation. Depending on the type of abstraction they can yield arbitrarily
worse heuristic estimates. To see this, consider that if the information of the
auxiliary and semaphore variables are lost due to abstraction, only the cost
of the concluding action applies. But even if the semaphore and auxiliary
variables are preserved by the abstraction, invariance is only given if the ab-
straction obeys some restrictions. We will discuss this in more detail in the
following sections, when we consider how projection and Cartesian abstrac-
tions behave under EVMDD compilation.

4.1. PROJECTION ABSTRACTIONS 81

In principle, there are two requirements on an abstraction heuristic: first,
the resulting heuristic should yield informative estimates and second, the heu-
ristic should be efficient to compute. Strong abstraction heuristics fulfill both
of these requirements. The question is, do classical planning abstractions still
fulfill these requirements if we consider the more general setting of state-
dependent action costs? With this question in mind, we will investigate two
types of abstraction heuristics: projection abstractions and their generaliza-
tion, Cartesian abstractions. Projection abstractions are the underlying type
of abstractions used in pattern database heuristics. They not only serve as a
good introduction to the topic of abstraction heuristics, but are also used in
some of the strongest abstraction heuristics in the literature (Seipp and Hel-
mert 2018). Cartesian abstractions generalize projection abstractions, and,
as we will see, they are invariant under EVMDD compilation, if the underly-
ing abstraction guarantees some properties. Therefore, the theoretical results
obtained for Cartesian abstractions are immediately applicable to projection
abstractions.

4.1 Projection Abstractions

Pattern database (PDB) heuristics were initially introduced by Culberson and
Schaeffer (1998) to compute admissible consistent heuristics for sliding-tile
puzzles and Rubik’s Cube problems (Korf 1997) and later adopted by Edel-
kamp (2001) for general classical planning problems. Informally, a pattern
database heuristic precomputes the goal distances of small abstract transition
systems (based on the pattern) and stores them in a perfect hash table. The
heuristic estimate of a concrete state is then retrieved by looking up the goal
distance of the corresponding abstract state. Depending on the pattern, the
combination of different patterns may yield an admissible heuristic estimate.

Patterns are based on so-called projections. A projection is an abstraction
that fully preserves some variables (the pattern), and completely ignores the
rest.

Definition 43 (Projection abstractions). Let Π be a planning task with vari-
ables V and let P ⊆ V. Let sçP denote the partial variable assignment defined
on P with sçP(v) = s(v) for all v ∈ P. The projection ∼P is defined as
s1 ∼P s2 if and only if s1çP = s2çP . We call P the pattern of ∼P . Further-
more, we write hP for the projection abstraction heuristic h∼P .

We have already seen an example of a projection: the abstract transi-
tion system of Example 18 is induced by a projection abstraction, where
P = {p1-at, p2-at}. Then, the heuristic of the initial state sI = (t-at

.
=

A) ∧ (p1-at
.
= A) ∧ (p2-at

.
= B) is hP(sI) = 4. A pattern database usually

precomputes the goal distances of all abstract states for each pattern and
stores them in a perfect hash table with look-up time linear in the abstract

82 CHAPTER 4. ABSTRACTION HEURISTICS

state description length (Edelkamp 2001). With the above requirements on
abstraction heuristics in mind, we can ask the two questions: what is a good
selection of patterns (that yields informative estimates) and given a pattern,
how can we efficiently compute the pattern database.

For classical planning tasks, the second question is answered by a partic-
ularly useful theorem for syntactic projections. The syntactic projection of a
planning task Π regarding a pattern P is the planning task ΠçP where all ref-
erences to state variables that are not contained in the pattern are removed
from all parts of the task description. The theorem says that if Π is an SAS+

task, then the transition system induced by ΠçP has the same structure as the
abstract transition system T ∼Π induced by the projection ∼P .1 The question is,
whether we can reproduce this result for planning tasks with state-dependent
action costs. For this, we have to formally define the syntactic projection of a
planning task with state-dependent action costs.

Definition 44 (Syntactic Projection). Let Π = (V,A, sI , s?, c) be a planning
task and let P ⊆ V. The syntactic projection ΠçP is the planning task (P, AçP ,
sIçP , s?çP , cçP), where

• AçP = {açP |a ∈ A} with açP = 〈preçP , effçP〉 for a = 〈pre, eff〉, and

• cçP(açP , sçP) = mins′∈S|sçP⊆s′ c(a, s
′) for all s ∈ S, a ∈ A.

The definition of the syntactic projection of an action is straightforward:
we only consider variables included in the projection and ignore all other vari-
ables. Our definition of the syntactic projection of the action cost warrants
explanation for two reasons: first, the projection of an action, açP , is only de-
fined as a tuple of partial variable assignments and has no identity. Therefore,
two different concrete actions could formally result in a single abstract action,
and we could not obtain the original action and in particular the original cost
function required for the abstract cost function. A formally correct definition
would therefore have to label the abstract actions, such that we can retrieve
the original action from the labeling. We abuse notation instead, and just note
that we can always retrieve the original action (and its cost function), since
every projection of an action will result in a unique abstract action. Second,
we define the cost of an action applied in an abstract state s∼ as the mini-
mum action cost of all concrete states subsumed by s∼. This has an important
implication: the transition system induced by ΠçP does not have the same
structure as the abstract transition system T ∼PΠ , as the weights of the tran-
sitions differ (an example follows below). However, this definition has two
useful properties: first, we can efficiently compute abstract costs by local min-
imization of the EVMDD corresponding to ca, as abstract states in a projection

1This was stated by Sievers et al. (2012), but they do not give a reference. Proving this
theorem is also a recurring exercise in the planning lecture of Malte Helmert (e.g. Helmert
et al. 2017). The proof will be given in Theorem 12.

4.1. PROJECTION ABSTRACTIONS 83

are Cartesian sets (cf. Theorem 3). And second, the minimum goal distances
(i.e. optimal plans) of both (abstract) transition systems are still equal. As
a result, if we are only interested in optimal plans, we can make use of the
syntactic projection to compute a transition system with behaviour similar to
the transition system induced by the projection.

Example 20. Consider the logistics planning task of Example 1 and the pat-
tern P = {t-at}, i.e. we only consider information about the truck. Then, we
get the syntactic projection ΠçP with

• P = {t-at}, Dt-at = {A,B,C}

• A = {drive-AB = 〈(t-at
.
=A), (t-at

.
=B)〉,

drive-BA = 〈(t-at
.
=B), (t-at

.
=A)〉,

drive-AC = 〈(t-at
.
=A), (t-at

.
=C)〉,

drive-CA = 〈(t-at
.
=C), (t-at

.
=A)〉,

drive-BC = 〈(t-at
.
=B), (t-at

.
=C)〉,

drive-CB = 〈(t-at
.
=C), (t-at

.
=B)〉},

• sI = (t-at
.
=A),

• s? = >,

• ca(s∼) = min
s∈s∼

p[p1-at(s) = t] + [p2-at(s) = t] + 1q for all actions a ∈ A.

Note that we omit actions without effect (i.e. load and unload actions)
from the task description. To compute the action cost function we can make
use of the EVMDD of the original action cost function. Whenever we want to
compute the cost of an abstract state s∼, we locally minimize the correspond-
ing EVMDD. Figure 4.3a depicts the transition system induced by ΠçP . Figure
4.3b depicts an example of the local minimization of the associated cost EV-
MDD. Since all abstract states include a state where both packages are not
in the truck the cost of each drive action for each abstract state is 1. Finally,
Figure 4.3c depicts the abstract transition system of the original task. Note
that we have multiple outgoing transitions, but a transition with minimum
cost always has a corresponding transition in TΠçP . Self-loops are omitted.

Obviously, we don’t have the same result as we have for classical plann-
ing, since transitions in the abstract transition system of the original task have
different weights than transitions in the transition system induced by the syn-
tactic projection. Apart from the weights, however, both transition systems
have the same structure. Moreover, the definition of the abstract cost function
implies that both transition systems admit the same optimal plans.

84 CHAPTER 4. ABSTRACTION HEURISTICS

A

C

B
1

1 1

(a) TΠçP .

p1-at

p2-at

0

1

0

A

0

B
0

C
1

t

0

A

0

B
0

C
1

t

(b) EVMDD of cdrive.

A

C

B

1

1

3

2

2
2

3

3

1

(c) T ∼P
Π .

Figure 4.3: Depiction of Example 20

Theorem 12 (Syntactic projection vs. projection). Let Π be a planning task
and let P be a pattern for Π. Then, TΠçP has the same structure as T ∼PΠ apart
from weights. Moreover, each optimal plan of ΠçP is an optimal plan in T ∼PΠ ,
and the other way around.

Proof. Recall that ΠçP = (P, AçP , sIçP , s?çP , cçP) and T ∼Π = (S∼, L, T∼,
sI
∼, S∼?), where ∼ denotes ∼P . We denote members of ΠçP with a prime,

e.g. S ′, L′ and T ′ denote states, labels and transitions in the transition system
induced by ΠçP . We now show that there is a bijection ϕ : S ′ → S∼ with

(a) ϕ(sIçP) = sI
∼,

(b) s?çP ⊆ s′ ∈ S ′ if and only if ϕ(s′) ∈ S∼? ,

(c) There is a transition s′
a′,w−→ t′ ∈ T ′ for some a′ ∈ L′ and some weight w

if there is a transition ϕ(s′)
a,w−→ ϕ(t′) ∈ T∼ for some a ∈ L,

(d) There is a transition ϕ(s′)
a,w−→ ϕ(t′) ∈ T∼ for some a ∈ L and some

weight w if there is a transition s′
a′,w′−→ t′ ∈ T ′ for some a′ ∈ L′ and

some weight w′ ≤ w.

For ϕ, we choose the identity function ϕ(s′) = s′:

(a) By construction, since s∼ = sçP we have sI∼ = sIçP .

(b) For sufficiency, let there be a state s′ ∈ S ′ such that s?çP ⊆ s′. We can
construct a concrete state s such that s′ = sçP and s? ⊆ s. We choose

4.1. PROJECTION ABSTRACTIONS 85

s(v) = s?(v) if v ∈ P, s(v) = d if v /∈ P and (v
.
= d) ∈ s?, and arbitrary

state values otherwise. Clearly, s? ⊆ s and therefore sçP ∈ S∼? .

For necessity, let s′ ∈ S∼? . Then, there is a concrete state s ∈ S? with
sçP = s′ and s? ⊆ s and thus also s?çP ⊆ s. Since s agrees with sçP on
variables in P we have s?çP ⊆ sçP and thus s?çP ⊆ s′.

(c) Let s′
a′,w′−→ t′ ∈ T ′. Then, we have an action a ∈ A and states s, t ∈ S

such that sçP [açP] = tçP with sçP = s′, tçP = t′ and c(a, s) =
mins′∈S|sçP⊆s′ c(a, s

′) = w′. Similar to before, we now construct a con-
crete state s′′ such that

s′′(v) =

s(v) if v ∈ P ∪ vars(ca)

d if v /∈ P and (v
.
=d) ∈ pre(a)

arbitrary otherwise.

s′′ is well-defined, as we require vars(pre(a)) to be disjoint with vars(ca)
(Assumption 3). Clearly, a is applicable in s′′ since açP is applicable in
sçP and also c(a, s′′) = w′, since s′′ agrees with s on the variables in the
cost function of a. Now let t′′ = s′′[a]. For variables v ∈ P which are not
affected by a we have t′′(v) = s′′(v) = s(v) = sçP = tçP = t since açP
does also not affect v. For variables v ∈ P where a has an effect with
(v

.
= d) we have t′′(v) = d = tçP(v) = t(v), since açP also contains the

effect (v
.
= d). Therefore s′′

a,w′−→ t′′ ∈ T and thus s′′çP
a,w′−→ t′′çP ∈ T∼.

Since s′′çP = sçP = s′ and t′′çP = tçP = t′ we have s′
a,w′−→ t′ ∈ T∼.

(d) Let s′
a,w−→ t′ ∈ T∼. Then, there exists an action a = 〈pre, eff〉 ∈ A and

states s, t ∈ S such that s[a] = t with sçP = s∼ = s′, tçP = t∼ = t′

and w = c(a, s). Now, consider action a′ = açP = 〈preçP , effçP〉 ∈
AçP . Since a is applicable in s we have pre ⊆ s and also preçP ⊆ s.
Furthermore, preçP only contains variables in P, therefore preçP ⊆
sçP . Since we assume that there are no trivially inapplicable actions,
açP is therefore also applicable in s′. Furthermore, for v ∈ P, we have

a′ has no effect (v
.
=d)⇔ ahas no effect (v

.
=d)⇔ t(v) = s(v) and

a′ has an effect (v
.
=d)⇔ ahas an effect (v

.
=d)⇔ t(v) = d.

Together with t′ = tçP we thus get t(v) = t′(v) and therefore s′
açP ,w

′
−→

t′ ∈ T ′. Furthermore, we have w′ = c(açP , sçP) = mins′∈S|sçP⊆s′ c(a,

s′) and thus w′ ≤ w = c(a, s).

86 CHAPTER 4. ABSTRACTION HEURISTICS

Therefore, a transition in ΠçP with weight w always has a corresponding
transition in T ∼PΠ with weight w. Moreover, there is no cheaper transition
T ∼PΠ between the same states, therefore ΠçP and T ∼PΠ admit the same opti-
mal plans.

Given a pattern P, we now have an efficient way (given that the cost EV-
MDDs are compact) to generate the abstract transition system induced by ∼P .
The question is how this result enables us to compute the pattern database for
a given pattern P. As we already mentioned, a pattern database stores the
shortest goal distances of all abstract states in a hash table. For this, efficient
implementations of PDB heuristics perform a search of the abstract state space
in backward direction, starting from the goal states of the task (Sievers et al.
2012). This can be efficiently done with Dijkstra’s algorithm (Dijkstra 1959),
which is a special case of the A? algorithm, where h(s) = 0 for all states
s. Sievers et al. (2012) describe two implementations of PDB heuristics for
classical planning tasks.

The baseline implementation first constructs the abstract state space (with
backward edges) by relying on the syntactic projection and uses Dijkstra’s
algorithm to compute abstract goal distances afterwards. This can be done
quite efficiently, by starting from the goal states of the task and searching
towards all other states. These distances are then stored in a hash table with
a perfect hash function, called the rank of an abstract state. Our result for the
syntactic projection of tasks with state-dependent action costs thus enables us
to implement PDB heuristics in the same way.

However, the second implementation described by Sievers et al. (2012)
vastly outperforms the baseline implementation for PDBs with a large num-
ber of abstract states. Their approach can be summarized in three steps: first,
they perform a precompilation step to make all actions injective, i.e. to enforce
that whenever an action has variable v in its effect, then v also is contained
in the precondition. This allows them to compute the regression2 (backward
application) of an action a via forward application of an action â which corre-
sponds to the backward application of a. The second step uses a data structure
called successor generator (Helmert 2006b, p. 216) to efficiently compute the
predecessor states of any state expanded during Dijkstra’s algorithm. Finally,
they avoid generation of states altogether, by immediately computing the hash
value (the rank) of a successor state, given the hash value of the predecessor
state and action â. We could now discuss how to adapt their approach to tasks
with state-dependent action costs. This would require us to define the action
cost function of the “backward” action â and also to come up with a way to
compute the action cost given just the hash value of a state, instead of the
state itself. But do we really have to do this? What if we can instead rely once
again on the compilation of state-dependent action costs and just apply the

2The regression of action a and state s′ computes the set of predecessor states which lead
to s′ by application of a.

4.1. PROJECTION ABSTRACTIONS 87

PDB heuristic computation on the compiled task? To answer this question,
we have to consider if the PDB heuristic is invariant under exponential and
EVMDD compilation.

From Theorem 11 we already know that every abstraction heuristic is in-
variant under exponential compilation. The obvious question is now if we can
achieve a similar result for EVMDD compilation. While the exponential compi-
lation does not modify the variables of the original task, EVMDD compilation
adds auxiliary and semaphore variables, which are necessary to guarantee
sequential application of intermediate actions. It comes to no surprise that
without these variables we lose important information.

Example 21. Consider again the planning task Π of Example 19 with two
binary variables x, y and an action a = 〈(x .

= 0), (x
.
= 1)〉 with ca = y + 1,

sI = (x
.
= 0) ∧ (y

.
= 1) and s? = (x

.
= 1) ∧ (y

.
= 1). In the EVMDD compilation,

we get the following actions:

apre =〈(aux
.
=0) ∧ (lock

.
=0) ∧ (x

.
=0), (aux

.
=1) ∧ (lock

.
=1)〉, cost : 1

a(y
.
=0),1 =〈(aux

.
=1) ∧ (y

.
=0), (aux

.
=2)〉, cost : 0

a(y
.
=1),1 =〈(aux

.
=1) ∧ (y

.
=1), (aux

.
=2)〉, cost : 1

aeff =〈(aux
.
=2), (x

.
=1) ∧ (aux

.
=0) ∧ (lock

.
=0)〉, cost : 0

Now, consider the pattern P = {x}. Figure 4.4a depicts the abstract tran-
sition system induced by ∼P . Since auxiliary facts are not preserved by the
abstraction, we have an action which immediately achieves (x

.
= 1) with cost

0.

Obviously, this example shows that in general, PDB heuristics are not in-
variant under EVMDD compilation. But, what if we can achieve some form
of quasi-invariance by lifting the pattern to the auxiliary and semaphore vari-
ables? Figure 4.4b depicts the abstract transition system of the previous exam-
ple induced by the pattern PDD = {x, aux, lock}. The cost of reaching a goal
state is 1, which corresponds to h∼(sI). As it turns out, this result is generally
applicable for PDB heuristics. The proof relies on Theorem 15 about Carte-
sian abstractions, which we will introduce later when we generalize projection
heuristics. Strictly speaking, we could have avoided this forward reference if
we introduced Cartesian abstractions first, but since projection abstractions
are easier to convey they serve as a better starting point to abstractions in
general. As Section 4.2 does not rely on the definitions and results given here
the ambitious reader may also skip to Section 4.2 and come back after the
proof of Theorem 15.

Theorem 13 (PDB heuristics are quasi-invariant under EVMDD compila-
tion). Let Π be a planning task and let P be a pattern for Π. Let PDD =
P ∪ {lock} ∪ {auxa|a ∈ A}. Then, hPDD(DD(s)) = hP(s) for all s ∈ S of Π.

88 CHAPTER 4. ABSTRACTION HEURISTICS

(x
.
=0) (x

.
=1)1 apre

0

a(y
.
=0),1

1

a(y
.
=1),1

0

aeff

(a) Abstract transition system induced by ∼P .

(x
.
=0)

(aux
.
=0)

(lock
.
=0)

(x
.
=0)

(aux
.
=1)

(lock
.
=1)

(x
.
=0)

(aux
.
=2)

(lock
.
=1)

(x
.
=1)

(aux
.
=0)

(lock
.
=0)

1

apre

0

a(y
.
=0),1

1

a(y
.
=1),1

0

aeff

(b) Abstract transition system induced by ∼PDD .

Figure 4.4

Proof. By definition, projection heuristics are Cartesian. Furthermore, from
Theorem 12 we know that the transition system of the syntactic projection
TΠçP has the same structure as T ∼Π . In particular, this implies that there
are no transitions corresponding to non-deterministic actions (since TΠçP is a
planning task and planning tasks have no non-deterministic actions). Then, it
follows from Theorem 15 that hPDD(DD(s)) = hP(s) for all s ∈ S of Π.

This is an important result, as it allows us to apply the efficient imple-
mentation of Sievers et al. (2012) on the EVMDD compilation by use of PDD.
There is one caveat though: EVMDD compilation results in |A|+1 additional
variables. Since the abstract transition system grows with the number of vari-
ables included in the pattern, PDD would result in an exponential blow-up of
the abstract transition system. Fortunately, we can circumvent this problem
by applying the variable-compact EVMDD compilation (cf. Definition 28) in-
stead. What is left to discuss is our first question: what is a good collection of
patterns that yields informative heuristic estimates?

In their work about iterative construction of pattern databases, Haslum
et al. (2007) establish some results about the heuristic functions produced by
different collections of patterns. Recall (Def. 10) that a heuristic h dominates
a heuristic h′, if and only if h(s) ≥ h′(s) for all s ∈ S.

Proposition 1 (Edelkamp 2001; Haslum et al. 2007). Let A ⊆ V and B ⊆ V
be two patterns. The heuristic h(s) = max(hA(s), hB(s)) is admissible and
dominates both hA and hB . Furthermore, if A ⊆ B then hB dominates hA.

4.1. PROJECTION ABSTRACTIONS 89

If the set of actions that affect some variable in A is disjoint from the set of
actions that affect any variable in B, then the heuristic h(s) = hA(s) + hB(s)
is also admissible. In this case we say that the patterns are additive3. A set of
patterns is additive if and only if all patterns in the set are pairwise additive.

The additivity property is an important criterion, as it allows to combine
the heuristic estimates of multiple projection abstraction heuristics to form a
more powerful admissible heuristic and was already important in the initial
work of Edelkamp (2001) on PDBs for classical planning. Based on the above
properties, Haslum et al. (2007) propose the canonical heuristic function hC

of a pattern collection (i.e. a set of patterns) C.

Definition 45 (Canonical heuristic). Let s be a state, C a set of patterns, and
let A be the set of all maximal (with regard to set inclusion) additive subsets
of C. The canonical heuristic function of C is

hC(s) = max
S∈A

∑
P∈S

hP(s).

The canonical heuristic is an admissible heuristic for classical planning
tasks. Therefore, it is also admissible for the EVMDD compilation. However,
there is one subtle issue: given two additive patterns A and B, the above
condition of additivity does not consider the patterns ADD and BDD to be ad-
ditive anymore. The reason for this is that each initial action apre affects the
semaphore variable lock (or alternatively, the auxiliary variable aux), which
is contained in both patterns ADD and BDD. Thus, when lifting the patterns
to the additional variables, we can’t use the additivity criterion to detect their
additive behaviour. As a result, a direct search for sets of patterns on the com-
piled task will not achieve strong canonical heuristic estimates, as most of the
patterns won’t be regarded as additive. Fortunately, the result of Theorem 13
implies that the canonical heuristic can be lifted to the EVMDD compilation:

Corollary 6. Let s be a state, C a set of patterns, and let A be the set of all
maximal (with regard to set inclusion) additive subsets of C. Then,

hC(s) = max
S∈A

∑
P∈S

hPDD(DD(s)).

Proof. Follows from Theorem 13, since hPDD(DD(s)) = hP(s).

Thus, a set of patterns which results in a strong canonical heuristic es-
timate can be lifted to the auxiliary and semaphore variables and results in
a strong heuristic estimate for the compiled task. What is left is to discuss
how to compute such a set of patterns. We hope to be able to apply the tech-
niques by Haslum et al. (2007) on tasks with state-dependent action costs,

3 It is important to note that this condition is only sufficient for additivity, not necessary.

90 CHAPTER 4. ABSTRACTION HEURISTICS

generate a collection of patterns for the original task, and lift this pattern to
compute PDB heuristics on the compiled task. We briefly review the approach
of Haslum et al. (2007) to compute sets of patterns and also describe the dif-
ference to the computation performed by Fast Downward (Helmert 2006b),
the planner used in later experiments.

Their approach to compute sets of patterns is an iterative hill-climbing
search in the search space of collections of patterns, i.e. each state in the
search space corresponds to a pattern collection and the neighbours of a state
are defined by modifications to the collection represented by the current state.
More precisely, a neighbour of a state representing a collection of patterns
C = {P1, . . . ,Pk} is constructed by selecting a pattern Pi ∈ C, a variable
v /∈ Pi, and adding the new pattern Pk+1 = Pi ∪ {v}.

The initial state of the search is the collection with one pattern for each
goal variable and in each iteration the neighbourhood of expanded pattern
collections is evaluated and the best neighbour is chosen to be the current col-
lection in the next iteration. The search ends if either the size limit is reached
(which is a parameter of the hill climbing search) or if the current collection
does not result in significant improvement. Evaluating the neighbourhood,
i.e. ranking the relative quality of the pattern collections plays an important
part in this search. Haslum et al. (2007) base their method to evaluate the
neighbourhood on a formula to estimate the number of nodes expanded by
tree search developed by Korf et al. (2001). Given a collection C, they evalu-
ate the neighbour C ′ of C by sampling a number of states (from the planning
problem) and count for how many states C ′ provides a better heuristic esti-
mate than C. To sample states, they use random walks up to depth d, where
d is estimated by the current heuristic and adjusted by the average cost/depth
ratio. Additionally, they avoid redundant evaluation by performing a static
and statistical analysis on which variables to add to improve the heuristic
value of a pattern P. The implementation in Fast Downward differs in some
minor details (Fast Downward website 2018). For our case, the most impor-
tant difference is how the depth d is estimated. In this implementation, the
estimation is calculated by dividing the current heuristic estimate for the ini-
tial state (multiplied by some factor c to account for heuristic inaccuracy) by
the average action costs of the planning task. For example, if h(sI) = 10 and
the average action cost is 2, then d = c · 10/2 = c · 5, i.e. the search samples
states up to depth 5c.

The summary of this approach reveals two important parts we have to
consider when we want to apply this technique to EVMDD compiled tasks.
First, the initial state of the pattern collection search consists of one pattern for
each goal variable. In the compilation, this would mean that we have a pattern
consisting of lock and a pattern consisting of aux. However, by Theorem 13
we already know that given a pattern P with aux /∈ P and lock /∈ P the
PDB heuristic is only invariant if we consider P ∪ {lock, aux}. Therefore, for
EVMDD compilation we will initialize the pattern search with the patterns

4.2. GENERAL CARTESIAN ABSTRACTIONS 91

{v, lock, aux} for each goal variable v and adapt the additivity check such that
lock and aux are always considered additive with the original variables. What
is left is to discuss how the depth of the random walk is estimated. First,
note that our theorem about heuristic invariance only holds for states in the
EVMDD compilation which have a corresponding state in the original task (i.e.
states where auxiliary and semaphore values are 0). However, when sampling
states in the compiled problem, we might end up at an intermediate state. In
principle, we do not care about heuristic estimates of intermediate states (as
search itself works on the original task, and only the heuristic is applied to
the compiled task). Therefore, whenever we sample an intermediate state,
we apply subsequent actions until the state corresponds to an original state.
Furthermore, taking the average action costs in the EVMDD compilation may
have different effects on the depth, depending on the original cost function.
Consider the previous Example 21. In the EVMDD compilation, we have 4
actions resulting in an average action cost of 0.5. For simplicity, let us assume
the heuristic is perfect, i.e. the goal distance of the initial abstract state (x

.
=

0) ∧ (aux
.
=0) ∧ (lock

.
=0), which is 1, is the optimal plan cost, and we do not

account for heuristic inaccuracy (i.e. c = 1). Then, the depth where a state is
sampled will be d = 1/0.5 = 2. However, if we increase the number of domain
values for y, then the average action cost will rise and with it depth d, even
though the action costs are not relevant in this case.

In general, it is not easy to say what a “good” depth setting is. Even in the
constant cost case, dividing by the average action cost might underestimate
the depth by a fair amount if an optimal plan mostly consists of the application
of cheap actions. Furthermore, even for an accurate depth estimate, the hill-
climbing search might get stuck in local optima, and thus terminating the
search for additional patterns early. Scherrer et al. (2015) indeed show that by
extending the search beyond the current horizon (thus yielding larger pattern
collections), performance of the heuristic can be improved. Such an approach
might also be of use when the average depth based on the EVMDD compilation
results early in a local optima. With this we conclude our discussion of PDB
heuristics, and note that the empirical evaluation given in Chapter 5 includes
a comparison of different hill-climbing configurations.

4.2 General Cartesian Abstractions

Now that we have achieved some promising results for projection abstractions
we want to investigate a more general class of abstractions: Cartesian ab-
stractions. The term Cartesian abstraction was coined in the model-checking
literature by Ball et al. (2001) and, as we already mentioned, Cartesian ab-
stractions generalize projection abstractions. We will first discuss how general
Cartesian abstractions behave under EVMDD compilation and then once again
investigate how to efficiently generate Cartesian abstractions which result in

92 CHAPTER 4. ABSTRACTION HEURISTICS

strong heuristic estimates.

Definition 46 (Cartesian abstractions). An abstraction induced by ∼ is cal-
led Cartesian if all its abstract states are Cartesian sets and we then say ∼ is a
Cartesian abstraction relation. We call domain values d ∈ Di consistent with
an abstract state s∼, and also refer to Di as s∼(vi).

We have already seen that relaxed states are also Cartesian sets. The im-
portant difference to Cartesian abstractions is that delete relaxation does not
partition the state space, i.e. the delete relaxed state space is not induced by
an equivalence relation ∼. Note that the abstraction given in Example 19 is
Cartesian. Moreover, if we apply the EVMDD compilation on this example, we
will see that arbitrary Cartesian abstractions are not invariant under EVMDD
compilation, even if we preserve auxiliary and semaphore variables.

Theorem 14 (Cartesian abstraction heuristics are not invariant under EV-
MDD compilation). Let Π be a planning task and ∼ a Cartesian abstraction
relation. Then, h∼ is not invariant under EVMDD compilation even if ∼ does not
aggregate the semaphore and auxiliary variables in the compiled task.

Proof. Consider Example 19 and the associated EVMDD compilation, which is
shown in Example 18. Figure 4.5 depicts the abstract transition system of the
compiled task. As we can see, h∼(DD(sI)) = 1, while h∼(sI) = 2.

(x
.
=0)

(y
.
=0)

(y
.
=1)

(aux
.
=0)

(lock
.
=0)

(x
.
=0)

(y
.
=0)

(y
.
=1)

(aux
.
=1)

(lock
.
=1)

(x
.
=0)

(y
.
=0)

(y
.
=1)

(aux
.
=2)

(lock
.
=1)

(x
.
=1)

(y
.
=0)

(aux
.
=0)

(lock
.
=0)

(x
.
=1)

(y
.
=1)

(aux
.
=0)

(lock
.
=0)

1

apre

0

a(y
.
=0),1

1

a(y
.
=1),1

0

aeff

0

aeff

Figure 4.5: Abstract transition system of the EVMDD compilation of Example
19.

In principle, the reason why the heuristic is not invariant under EVMDD
compilation is that the abstraction induces non-deterministic actions. This
non-determinism is only reflected in the concluding action aeff , but not in
the intermediate actions which are responsible for the different action cost
in the original transition system. Therefore, path costs in the abstract transi-
tion system of the compiled task may be cheaper than in the original abstract

4.2. GENERAL CARTESIAN ABSTRACTIONS 93

transition system. Indeed, if all non-deterministic transitions in the induced
abstract transition system of the original task do not differ in their weight,
then the abstraction heuristic is invariant under EVMDD compilation.

Theorem 15. Let Π be a planning task and ∼ a Cartesian abstraction. Let ∼DD
be the corresponding abstraction in ΠDD which does not aggregate semaphore
and auxiliary variables. If T ∼Π does not contain any two transitions s

a,w−→ t and

s
a,w′−→ t′ with w 6= w′, then h∼DD(DD(s)) = h∼(s) for all s ∈ S of Π.

Proof. A similar statement was shown recently by Bergdoll (2018) in his Mas-
ter’s thesis, who investigates a generalization of the EVMDD compilation that
additionally transforms planning tasks with conditional effects to classical
planning tasks. He shows that h∼DD produces the same estimates as h∼ on the
exponential compilation, if T ∼Π does not contain any non-deterministic tran-
sitions. While our assumptions are less strict (we only require equal weights
for non-deterministic transitions), the generalization requires only some small
adaptations.

From Lemma 5 we know that for every transition in Π leading from s to t
with weight w there is a sequence of transitions in ΠDD leading from DD(s)
to DD(t) with labels 〈apre, . . . , aeff〉 and sum of weights equal to w, and the
other way around. We now show that this also holds in the abstract transition
system, i.e. there is a transition s∼

a,w−→ t∼ if and only if there is a sequence of
transitions from DD(s)∼ to DD(t)∼ with sum of weights w.

Sufficiency is straightforward. Since every abstract transition in T ∼Π is in-
duced by a transition in TΠ with label a we also have a sequence of transitions
induced by action a in TΠDD with sum of weights w (Lemma 5) and since
semaphore and auxiliary variables are preserved by ∼DD this sequence also
exists in T ∼DD

ΠDD .
For necessity, we have to show that if there is a sequence of transitions

in T ∼DD
ΠDD with labels 〈apre, . . . , aeff〉 and sum of weights w between two non-

intermediate states ŝ and t̂ (i.e. semaphore and auxiliary values are 0), then
there exists a corresponding transition in T ∼Π with label a and weight w.

Let s be a state in TΠ, such that DD(s) ∈ ŝ and apre is applicable in DD(s).
Then, the original action a which induces apre is, by construction of the com-
pilation, applicable in s and leads to state t with weight w′ = ca(s). Since
∼ behaves exactly like ∼DD for variables not introduced by the compilation
we have that t ∈ t∼ if and only if DD(t) ∈ t̂. With this, we have established
that there is a corresponding transition in T ∼Π . What is left is to show that
the weight of this transition is w, i.e. w = w′ = ca(s). We show this by
contraposition.

Assume this is not the case. That means there exists another sequence of
actions π = 〈apre, . . . , aeff〉, starting from ŝ leading to t̂, and sum of weights
equal to w′. This is possible for two reasons: first, due to non-deterministic

94 CHAPTER 4. ABSTRACTION HEURISTICS

transitions the intermediate actions may correspond to the application of a
which leads to a state subsumed by another abstract state, i.e. there exists
a state s′ ∈ ŝ such that s′[a] ∈ t̂′ 6= t̂. However, if w 6= w′ then this would
mean that T ∼Π contains two transitions starting from the same abstract state
with the same action label and different weights, which contradicts the initial
assumption.

The second reason such a sequence may exist that without loss of general-
ity there are two intermediate actions a1 = 〈(aux

.
= i) ∧ (x

.
=p), (aux

.
=j)〉 and

a2 = 〈(aux
.
=m) ∧ (y

.
= q), (aux

.
=n)〉 (for some variables x, y, domain values

p, q and i, j,m, n ∈ Daux) in π such that (x
.
= p) and (y

.
= q) are responsible

for cost w′. Since π is applicable, a1 and a2 are also applicable (in their re-
spective intermediate states). Since intermediate states only differ from ŝ in
auxiliary and semaphore variables that means that there exist concrete states
sx, sy ∈ ŝ with sx(x) = p and sy(y) = q. However, since ∼DD behaves like
∼ for variables of Π and since w 6= w’ we also have s′(x) 6= p ∨ s′(y) 6= q
for all s′ ∈ s∼. This contradicts the requirement on s∼ being Cartesian, since
from sx(x) = p and sy(y) = q it follows that there exists a state s′′ ∈ s∼ with
(x

.
=p) ∧ (y

.
=q) ⊆ s′′. Therefore w = w′.

Thus there is a corresponding sequence of transitions in the abstract transi-
tion system of ΠDD if and only if there is a transition in the abstract transition
system of Π. Since every state (and therefore every goal state) s of Π has a
corresponding counterpart in ΠDD (namely DD(s)) we have that the optimal
abstract path costs to a goal state are equal, i.e. h∼DD(DD(s)) = h∼(s) for all
s ∈ S of Π, concluding the proof.

While this theorem is important for projection abstractions, its importance
for Cartesian abstractions is not quite clear, as only some Cartesian abstrac-
tions have the non-determinism property. However, we can show another
useful property of the EVMDD compilation for arbitrary Cartesian heuristics,
which we first show informally by examining once again the abstract transi-
tion system depicted in Figure 4.5. Observe that the optimal path between
the abstract initial state and the abstract goal state corresponds to the min-
imization of the transitions induced by the EVMDD compilation. Now, note
that this minimization exactly corresponds to the local minimization of the
EVMDD given a Cartesian set of states. We have already seen this behaviour
in Figure 2.13 when we investigated the relationship between Cartesian sets
and the EVMDD compilation (cf. Lemma 6). The following theorem formal-
izes this observation.

Theorem 16. Let Π be a planning task and ∼ a Cartesian abstraction relation.
Let ∼DD be the corresponding abstraction relation in ΠDD which does not ag-
gregate semaphore and auxiliary variables. For each transition s∼

a,w−→ s[a]∼ in
T ∼PΠ there is a sequence of transitions in T ∼P

ΠDD which starts in DD(s)∼, goes to
DD(s[a])∼ and the cheapest path is exactly mins′∈s∼ ca(s′).

4.2. GENERAL CARTESIAN ABSTRACTIONS 95

Proof. Follows from Lemma 6. Since ∼DD preserves auxiliary and semaphore
variables we have (aux

.
= 0), (lock

.
= 0) ∈ DD(s)∼. Furthermore, since ∼ is a

Cartesian abstraction relation DD(s)∼ is a Cartesian set, therefore the Lemma
is applicable.

We now have multiple useful properties of Cartesian abstractions. If the
Cartesian abstraction does not result in transitions corresponding to non-
deterministic actions, then the underlying abstraction heuristic is compilation
invariant. But even if there are such non-deterministic transitions, we still get
an admissible heuristic value, and depending on the granularity of the Carte-
sian set where the transition occurs this heuristic might still be very accurate.

4.2.1 CEGAR for tasks with state-dependent action costs

What is left is to discuss how to generate Cartesian abstractions. For this, Seipp
and Helmert (2018) adapt the counterexample-guided abstraction refinement
(CEGAR) algorithm (Clarke et al. 2000) from the model checking community.
Intuitively, the CEGAR algorithm starts initially with a very coarse abstraction
consisting of a single abstract state. It then iteratively computes a plan for
the current abstract transition system, tries to apply the plan to the concrete
task, and iteratively refines the abstraction by partitioning an abstract state
into finer abstract states such that the reason why the plan was inapplicable
vanishes. Algorithm 3, adapted from Seipp and Helmert (2018), describes the
CEGAR procedure in detail. In line 2, the initial abstract transition system is
built, which just consists of a single abstract state subsuming all states. This is
easy for classical planning tasks, as we have a single transition for each action
a ∈ A (possibly representing exponentially many transitions induced by a),
but in the presence of state-dependent action costs, a may induce potentially
exponentially many transitions with different weights. To solve this problem,
we once again underestimate the true transition cost, by setting the weight
of a transition induced by a to the cost of a applied in the (single) abstract
state sI∼, i.e. the minimum cost of all states subsumed by sI∼. With this,
abstract goal distances are still an admissible heuristic, but as a consequence
the abstract transition system built by CEGAR is not an abstraction in the sense
of Definition 41, at least in regard to transition weights.

The algorithm then proceeds iteratively with its refinement, until some ter-
mination condition is satisfied, which usually consists of time and/or memory
constraints. In the refinement step, the algorithm first computes a goal trace,
i.e. a sequence of transitions reaching the goal in the current abstract transi-
tion system. If no goal trace is found, then the task is shown to be unsolvable
(line 5). Otherwise, the algorithm tries to find a flaw in the current trace. For
this, the plan induced by the trace is applied to the concrete task Π until either
the goal is reached, or the plan is for some reason not applicable to Π. In the
first case, we have found a plan for the concrete task and can immediately

96 CHAPTER 4. ABSTRACTION HEURISTICS

return the plan (line 8). Otherwise, the abstract transition system is refined
to fix the flaw and the CEGAR algorithm proceeds with its next iteration. The
remaining question is what is a flaw and how is the flaw fixed.

Algorithm 3: CEGAR algorithm to generate Cartesian abstractions.

1 Function CEGAR()
2 T ′ = TRIVIALABSTRACTION()
3 while terminal condition is not triggered do
4 τ ′ = FINDGOALTRACE()
5 if no goal trace found then
6 return task is unsolvable

7 ϕ = FINDFLAW(τ ′)
8 if no flaw found then
9 return τ ′

10 T ′ =REFINE(T ′, ϕ)

11 return ts′

Formally, a flaw ϕ = 〈s, sC〉 is a pair of a concrete state s and a Cartesian
set sC ⊆ s∼, such that applying the abstract plan obtained from τ to Π failed
because s /∈ sC . We won’t give the concrete algorithm sketch to the FINDFLAW

function, and instead just repeat the formal description given by Seipp and
Helmert (2018). Let τ = 〈s′0

a1,w1−→ s′1, . . . , s
′
k−1

ak,wk−→ s′k 〉, i.e. s′i is an abstract
state. The FINDFLAW algorithm then tries to apply the plan π = 〈a1, . . . , ak〉 to
Π, i.e. it tries to find a sequence of transitions 〈s0

a1,w1−→ s1, . . . , sk−1
ak,wk−→ sk

〉 in TΠ where s0 = sI , si∼ = s′i for i ∈ {0, . . . , k} and sk ∈ S?. Starting from
the initial state s0, the next action in π is iteratively applied until one of the
following scenarios is encountered.

I Inapplicability: ai is not applicable in the concrete state si. The returned
flaw is 〈si, sC〉, where sC is the set of concrete states in si∼ in which ai
is applicable.

II Successor divergence: For abstract and concrete transitions s′i
ai,wi−→ s′i+1

and si
ai,wi−→ si+1 we have that si∼ = s′i but si[ai]

∼ 6= s′i+1, i.e. the con-
crete successor state is not consistent with the abstract successor state.
This might happen if the abstract transition system is non-deterministic.
Then, the returned flaw is 〈si, sC〉 where sC is the set of concrete states
in si∼ from which s′i+1 is reachable by applying ai.

III Goal divergence: The last state sk is not a goal state. Then, the returned
flaw is 〈sk, sC〉 where sC is the set of concrete goal states in s∼.

4.2. GENERAL CARTESIAN ABSTRACTIONS 97

Seipp and Helmert (2018) show that in all these cases sC is a Cartesian
set. If none of these conditions occur and Π is a classical planning task, then π
is an optimal plan for Π. However, if Π contains actions with state-dependent
costs, then there is an additional potential source for error: the cost implied
by an abstract transition does not correspond to the actual cost of applying
the action in the concrete transition system. Consider the following example.

Example 22. Consider a planning task Π with two binary variables x, y and
two actions a1 = 〈>, (x .=1)∧(y

.
=1)〉 with ca1 = 2x+1, and a2 = 〈>, (x .=0)∧

(y
.
=1)〉 with ca1 = 1. Let sI = (x

.
=1)∧ (y

.
=0) and s? = (x

.
=1)∧ (y

.
=1). Now,

consider an abstraction relation ∼, such that we have the following abstract
states: s∼1 = {(x .

= 0) ∧ (y
.
= 0), (x

.
= 1) ∧ (y

.
= 0)}, s∼2 = {(x .

= 0) ∧ (y
.
= 1)},

s∼3 = {(x .=1) ∧ (y
.
=1)}.

Figure 4.6 depicts the abstract transition system. Since all abstract costs
are 1, the optimal abstract plan is π1 = 〈a1〉 with cost 1, and π1 is also a
concrete plan with cost 3. However, the optimal concrete plan is π2 = 〈a2, a1〉
with concrete and abstract cost 2.

(x
.
=0) ∧ (y

.
=0)

(x
.
=1) ∧ (y

.
=0)

(0
.
=1) ∧ (y

.
=1)

(x
.
=1) ∧ (y

.
=1)

1

a1

1

a2

1 a2

Figure 4.6: Example of an abstract transition system resulting in cost diver-
gence.

We therefore introduce a fourth type of flaw.

IV Cost divergence: For abstract and concrete transitions s′i
ai,w

′
−→ s′i+1 and

si
ai,w−→ si+1 we have that si∼ = s′i and si[ai]

∼ = s′i+1, but w 6= w′,
i.e. the cost in the abstract transition system is not consistent with the
cost in the concrete transition system. Let (i) v ∈ vars(cai) and (ii)
let d, d′ ∈ s∼(v) be two values that contribute different partial costs
in the evaluation of cai(si

∼) and d = s(v). Then, the returned flaw is
〈si, sC〉, where sC = si

∼\{d}. Intuitively, sC contains states s for which
cai(s) 6= w.

While the first constraint is self-explanatory (it only makes sense to select
a variable that influences the action cost), the motivation for the second is
best illustrated with another example.

98 CHAPTER 4. ABSTRACTION HEURISTICS

Example 23. Consider an action a with the cost function that is encoded
by the EVMDD depicted in Figure 4.7 for two variables x and y with Dx =
{0, 1, 2} = Dy, and let s∼ be the abstract state that is indicated by the high-
lighted edges. Both x and y satisfy (i), but only x satisfies condition (ii), since
both partial costs incurred by y are 2. This can also be observed from the cost
of applying a in the contained concrete states, which are ca((x

.
= 0) ∧ (y

.
= 1))

= ca((x
.
=0) ∧ (y

.
=2)) = 2 and ca((x

.
=1) ∧ (y

.
=1)) = ca((x

.
=1) ∧ (y

.
=2)) = 3

and hence independent of variable y.

x

y

0

0

0

0

1
1

2

2

0

0

2
1

2

2

Figure 4.7: EVMDD of Example 23.

The remaining question is now how to refine the abstract transition system
(line 10). Given a flaw ϕ = 〈s, sC〉, we want to split s∼ into two abstract
states r and t such that ϕ can not occur in subsequent iterations. Seipp and
Helmert (2018) show (Property P6 from Theorem 1) that it is always possible
to partition s∼ into two Cartesian sets that separate s from sC and they also
show that this partitioning is proper, i.e. both subsets (r and t) are proper
subsets of s∼. Thus, in every iteration an abstract state in T ′ is split into two
new abstract states r and t such that s ∈ r and sC ⊆ t, and T ′ is updated by
replacing s∼ with r and t. What is left is to describe how to split s∼ and how
to update T ′.

For the former, Seipp and Helmert (2018) argue that the only way of split-
ting s∼ into two Cartesian sets r and t is to choose a single variable v with
s(v) /∈ sC(v) and partition s∼(v) into r(v) and t(v), while preserving all other
abstract domains. As a consequence, one has to determine how to choose v
and how to partition v(s). Based on empirical results, they determine v by
choosing a variable which has been refined the most in s∼, which outper-
formed two other strategies based on random selection and min-refinement
(choosing a variable which has been refined the least), respectively. For the

4.2. GENERAL CARTESIAN ABSTRACTIONS 99

partitioning of s∼(v), they decide to put the remaining values of s∼(v) \
({s(v)} ∪ sC(v)) into r, as this is more likely to increase the average heuri-
stic value. In case of cost divergence (IV), we could also select a variable
in the support of the cost function which is refined the most. The partition-
ing, however, is already determined, as s∼(v) \ ({s(v)} ∪ sC(v)) = ∅, i.e. sC
already contains the remaining domain values.

Finally, we discuss how to update T ′. Since only a single abstract state s∼

is split into two new abstract states r and t, we only have to update incoming
and outgoing transitions of s∼ (including self-loops), by rewiring them to
either r or t. In their simple approach, Seipp and Helmert (2018) do this
by evaluating for each original transition incoming to (or outgoing from) s∼

with action a, if there is a corresponding transition for r and t (note that both
can happen simultaneously). They also present a more efficient procedure,
which only considers transitions induced by the variable v on which the split
of s∼ was based. In our case, the only difference we have are the additional

transition weights. However, since the weight w of a transition s′i
a,w′−→ s′i+1 is

based on the cost of a in s′ (i.e. the minimum cost of all states subsumed by
s′), determining the existence of a transition is not different to the approach by
Seipp and Helmert (2018). The weight can then be determined once again by
local minimization of the cost function EVMDD based on r and t, respectively.
What is left is to update the initial state and the goal state of T ′, which is easy,
since t can never be the abstract initial state and r can never be the abstract
goal state (Seipp and Helmert 2018). This concludes our adaptation of the
CEGAR algorithm to tasks with state-dependent action costs.

Unfortunately, using a single abstraction obtained from the CEGAR algo-
rithm as the basis for an abstraction heuristic is not competitive with other
types of abstraction heuristics, such as iteratively generated PDB heuristics.
Therefore, Seipp and Helmert (2018) use cost partitioning (Katz and Domsh-
lak 2007, 2010) to come up with different diverse abstractions for which the
heuristic estimates can be combined admissibly. Cost partitioning distributes
the action cost of the original task over multiple task copies such that the
sum of the abstraction heuristics of the task copies is still admissible, and
therefore generalizes the canonical PDB heuristic. This led to the introduction
of state-dependent cost partitioning (Keller et al. 2016) (also called transition
cost partitioning in Pommerening 2017), which generalizes cost partitioning,
allows cost partitioning to be used for tasks with state-dependent action costs,
and also allows to make use of state-dependent action costs for computing
heuristics on classical planning tasks. We will discuss this in more detail in
chapter 6.

100 CHAPTER 4. ABSTRACTION HEURISTICS

4.3 Summary

We conclude our theoretical evaluation of abstraction heuristics by summariz-
ing the previous results in Figure 4.8. First, for arbitrary abstraction relations
∼, h∼ is invariant under exponential compilation since their abstract transi-
tion systems share the same structure (Figure 4.8a). For EVMDD compila-
tion we have different results. EVMDD compilation is invariant for projection
heuristics (Figure 4.8b), if we lift the pattern to the auxiliary and semaphore
variables. If ∼ is Cartesian, then we have h∼ invariance if T ∼Π does not con-
tain non-deterministic transitions and if we preserve auxiliary and semaphore
variables. Finally, if there are non-deterministic transitions, then T ∼DD

ΠDD still
provides admissible estimates.

Π

TΠ

T ∼Π

ΠEXP

TΠEXP

T ∼
ΠEXP

∼ ∼

EXP

≈

≈

(a) Exponential compilation is h∼ in-
variant.

Π

ΠçP

TΠçP

ΠDD

ΠDDçPDD

TΠDDçPDD

Synt.
Proj.

Synt.
Proj.

hP quasi-invariant

DD

(b) EVMDD compilation is hPDD in-
variant.

Π

TΠ

T ∼Π

ΠDD

TΠDD

T ∼DD
ΠDD

∼ ∼DD

DD

sometimes h∼ invariant

(c) EVMDD compilation result if ∼ is Cartesian.

Figure 4.8: Theoretical summary of Chapter 4.

CHAPTER 5
Empirical Evaluation

The theoretical results presented in Chapter 3 and 4 indicate that we can
obtain informative heuristics for tasks with state-dependent action costs by
considering task compilations. In this section, we are now interested if these
theoretical stronger estimates warrant the additional overhead introduced by
compilation. For this, we performed different experiments on the benchmark
set provided by Speck et al. (2018), which was introduced to compare sym-
bolic planning approaches for tasks with state-dependent action costs. Most
domains were adapted from different planning competitions by transforming
some actions to actions with state-dependent action costs. In Geißer et al.
2016, another benchmark set based on the determinization of probabilistic
planning tasks is provided (i.e. probabilistic effects are replaced with de-
terministic ones). However, due to the determinization these benchmarks
provide no challenge for classical planners. We will therefore focus on the
benchmarks provided by Speck et al. (2018) and give a brief introduction of
the different domains and highlight the role of the action cost function in each
domain.

5.1 Benchmark Set

5.1.1 ASTERIX

In this domain, Asterix must collect the Edelweiss flower, located on top of
a mountain. Asterix can climb the mountain and the action cost function of
the climb action describes the slope of the mountain. However, Asterix can
also choose to first gather a mistletoe and bring it to Getafix who brews him
a magic potion. This potion allows Asterix to climb the mountain directly
(inducing a cost of 1 in this case). There is one caveat though: to gather a
mistletoe Asterix has to ask Obelix to knock out some Romans who hide in the
woods. Each knock-out action induces some constant cost. Therefore, for an
optimal plan we have to decide if the cost incurred by knocking-out Romans

101

102 CHAPTER 5. EMPIRICAL EVALUATION

outweighs the cost of climbing the mountain directly. The tasks differ in the
number of Romans and size of the mountain. Figure 5.1 depicts the EVMDD
of the climb cost function (1−p)+(p ·(1+(x ·(4−y)))), where x and y specify
coordinates of the mountain and p specifies whether the potion was obtained.
As there are only few coordinates (Dx =Dy = {0, 1, 2}) this is one of the easier
instances. We point out that this is the only domain that also incorporates
actions with conditional effects. As a consequence, our theoretical results do
not explicitly hold for this scenario, and some configurations are not able to
deal with conditional effects without further modification, even for classical
planning tasks.

p

x

y y

0

1

0

1

0

0

0

0

2

1
4

2

2

0

1

1

0

2

4

0

2

1

0

2

Figure 5.1: EVMDD corresponding to the cost of the climb action in ASTERIX.

5.1.2 GREEDY-PEGSOL

The GREEDY-PEGSOL domain is an adaptation of the classical planning domain
PEGSOL, which is based on the Peg Solitaire board game. Here, the goal is to
remove all but one peg from the board, by selecting a peg to jump over (and
therefore remove) adjacent pegs into a free hole. A single move consists of
multiple actions, starting with begin-move, selecting actions according to the
jumps, and ending with end-move. There are two version of this domain:
in the first version, state-dependent costs are induced at the end of a move
(i.e. at action end-move) and the cost of the action is equal to the sum of

5.1. BENCHMARK SET 103

pegs left on the board. Therefore an optimal plan prefers to remove as many
pegs as possible in the first few moves. In the second version (indicated by
GREEDY-PEGSOL2) the state-dependent costs are induced at the beginning of
each move. In both versions, the remaining actions (different than begin-move
and end-move) induce zero costs. The tasks differ in the arrangement of pegs
on the board, but the number of pegs in the domain is always 20 (although
in some instances some pegs may already have been removed in the initial
state). We won’t depict the EVMDD of the cost function here, as this function
already contains 20 variables (20 pegs on the board). However, since the cost
is just the sum of pegs, the EVMDDs have one non-terminal node for each peg
(i.e. 20 non-terminal nodes) and are of similar nature to the EVMDDs in the
COLORED GRIPPER domain (although only two domain values per variable).

5.1.3 COLORED GRIPPER

This domain builds upon the well-known GRIPPER domain (McDermott 2000),
where a robot equipped with two arms (the grippers) has to rearrange balls
from one room to another. In this version, balls and rooms are either colored
red or blue. Initially, all balls are located in the blue room, and the goal is
to transport all balls to the red room. The cost of moving between rooms is
penalized by the number of balls located in a room that does not match the
ball color. Picking up a ball induces a cost of zero. Therefore, an optimal
plan has to first transport all red balls to the red room, before transporting the
blue balls. The tasks differ in the number of balls (but there are always two
rooms). Figure 5.2 depicts the EVMDD of the move cost function

((2− b0) · b0 · 2) + ((2− b1) · b1 · 2) + |1− b2|·(2− b2)) + (|1− b3|·(2− b3)),

where bi specifies if ball i is either in the gripper, in the blue, or in the red
room.

5.1.4 OPENSTACKS

The original OPENSTACKS domain (Fink and Voß 1999) is based on a com-
binatorial optimization problem in which a manufacturer receives different
orders, where each order consists of a combination of different items. The
manufacturer can only produce one item at a time (but they produce the total
quantity required for all orders). An order is open as soon as one of its items is
produced, and each open order requires a stack, representing the temporary
storage space for the order. In the original problem, an optimal plan has to
arrange production of the items such that the number of open stacks is min-
imized. In the state-dependent action cost version, the cost of each action is
the number of currently open stacks. Therefore, the goal of this version cor-
responds to minimizing the integral over all open stacks (as opposed to the
maximum) (Speck 2018). The tasks differ in the number of items and orders.

104 CHAPTER 5. EMPIRICAL EVALUATION

b0

b1

b2

b3

0

0

0

gripper

2

red
0

blue

0

gripper

2

red
0

blue

0

gripper

0

red
2

blue

0

gripper

0

red
2

blue

Figure 5.2: EVMDD corresponding to the cost of the move action in COLORED

GRIPPER.

Note that since the number of open stacks is encoded as a single counter vari-
able, the action cost function is just the value of this variable. Therefore, the
EVMDD representing the action costs consists of a single non-terminal node,
with one edge per possible number of open stacks (up to 100 possible open
stacks for harder instances).

5.1.5 TRAVELING SALESMAN

In the TRAVELING SALESMAN domain different cities are randomly distributed
on a 256 × 256 grid and the goal is to visit each city exactly one time. The
cost of traveling between cities is the Manhattan distance metric and cities
are pairwise connected (i.e. every city is reachable from every other city). An
optimal plan thus has to find a cheapest path without visiting any city twice.
The tasks differ in the number of cities, but not in the grid size. Figure 5.3
depicts parts of the EVMDD of the visit cost function |x − 70|+|y − 212| for
a city located at position (70, 212) on the grid. Note that since there are 256
domain values for x and y the EVMDD has a total number of 512 edges.

5.1. BENCHMARK SET 105

x

y

0

0

70

0

69

1

. . . 184

254

185

255

212

0

211

1

. . . 42

254

43

255

Figure 5.3: EVMDD corresponding to the cost of the visit action in TRAVELING

SALESMAN.

5.1.6 Planner setup

While the original (unit/constant) domains are modeled in PDDL, the state-
dependent action cost domains are modeled in the Fast Downward (Helm-
ert 2006b) internal input language (cf. Section 2.2.2). The Fast Downward
planning system is a state-of-the-art tool to solve classical planning tasks and
incorporates many search algorithms and heuristics. For the experiments, the
planner was modified such that search algorithms are able to deal with state-
dependent action costs by building an EVMDD for each action cost function.
Whenever search has to compute the cost of an action for state s, the cor-
responding EVMDD is evaluated with input s. Note that the underlying Fast
Downward version our extension is based on is of March 2017. However, for
the heuristics we compare there have not been significant changes since that
time.

As we already mentioned at the end of Chapter 2, when we compare
heuristics and different compilations we only evaluate the heuristic on the
compiled task, but search itself will always search on the original task. There-
fore, the way we handle state-dependent action costs in the search is used for
all configurations, i.e. even if we use MTMDD or exponential compilation,
evaluating state-dependent action costs during search is done by evaluating
the corresponding EVMDD. With this, we make sure that our results are only
influenced by the performance of the heuristic. That being said, one could
also think of other methods to evaluate state-dependent action costs. For ex-

106 CHAPTER 5. EMPIRICAL EVALUATION

ample, we could parse the action cost functions and transform them to C-like
programming functions which are then called during run-time.

To construct different decision diagrams used in the compilation process
we rely on different libraries. EVMDDs are constructed and evaluated with the
LeMon library (Geißer and Wright 2018), which was initially developed dur-
ing the work of Mattmüller et al. (2018). Flattened EVMDDs (MTMDDs) are
constructed with the Meddly library (Badar and Miner 2011). For both types
of diagrams the underlying variable ordering is based on the Fan-In heuristic1

(Malik et al. 1988), although we note that this only affects the Asterix do-
main, as the size of the diagrams in the other domains is independent of the
ordering. All experiments were conducted with the downward-lab framework
(Seipp et al. 2017b) on a cluster of machines based on Intel Xeon E5-2650v2
2.60GHz processors with 64GB DDR3 1866MHz ECC registered memory. Each
task was limited to a single core. The time limit was set to 30 minutes and the
memory limit to 4GB RAM for all runs. We begin our evaluation by analyzing
the different compilations in terms of size and computation time.

5.2 Compilation Results

The compilation of a planning task is computed initially once, and then used
for any heuristic computation afterwards. We are interested in the exponential
compilation and in different types of EVMDD compilations: EVMDD compila-
tion with quasi-reduced EVMDDs is required to guarantee invariance for the
additive heuristic hadd . For pattern database heuristics, we have invariance
even in the case of fully-reduced EVMDDs. Finally, we require flattened quasi-
reduced EVMDDs to guarantee invariance of the maximum heuristic hmax .

Two factors are most important for our types of compilation: first, the
initial time it requires to produce the compiled task. The more time the com-
pilation process takes, the less time is remaining for search itself. Second, the
number of actions generated by the compilation, as this affects the size of the
resulting compiled planning task. While the number of variables introduced
by compilation is also important, we can always rely on the variable-compact
EVMDD compilation to limit the number of additional variables.

We begin by analyzing the number of additional actions. First, quasi-
reduced and fully-reduced EVMDD compilation only differ in the number of
actions in the ASTERIX domain, in the other domains the size of the EVMDDs
does not differ. Figure 5.4 shows that even in ASTERIX, quasi-reduction results
at most in a couple of hundred additional actions. In the figure, every point
corresponds to an instance. The y-axis depicts the number of actions in the
fully-reduced EVMDD compilation, the x-axis depicts the number of actions
in the quasi-reduced EVMDD compilation. The diagonal black line serves as a

1This ordering heuristic orders the variables according to their depth in the corresponding
abstract syntax tree. Variables which appear deeper in the AST are considered more important.

5.2. COMPILATION RESULTS 107

separation to better estimate the differences of the two compilations: points
under the line correspond to instances which have less actions in the fully-
reduced compilation. Note the logarithmic scale.

102 103 104 105
102

103

104

105

105

105

Quasi-reduced EVMDD compilation

Fu
lly

-r
ed

uc
ed

EV
M

D
D

co
m

pi
la

ti
on

Number of actions in the compilation

Figure 5.4: Comparison of compiled actions in the Asterix domain between
quasi- and fully-reduced EVMDDs.

In Figure 5.5a, we see the comparison between the EVMDD compilation
and the flattened EVMDD compilation. Since we require flattened EVMDD
compilation for the invariance of the maximum heuristic hmax , the flattened
EVMDDs have to be quasi-reduced. For ASTERIX and OPENSTACKS, the size
of the compilation is around the same, although for the larger instances there
is still a difference of a couple of thousand actions. However, for the re-
maining domains flattened EVMDD compilation produces multiple orders of
magnitude more actions than ordinary EVMDD compilation, up to 1.5 million
actions for the largest TRAVELING SALESMAN instance. It will therefore be
interesting if the additional information in the maximum heuristic outweighs
the large increase in the task size. Note that we have only two points per
GREEDY-PEGSOL domain, since most instances use the same cost function.

Interestingly, for some domains we have a similar picture when we com-
pare the EVMDD compilation with the exponential compilation, depicted in
Figure 5.5b. For OPENSTACKS, the exponential compilation results in margi-
nally fewer actions than EVMDD compilation. Since the cost function depends
only on a single variable, EVMDD compilation introduces initial and conclud-

108 CHAPTER 5. EMPIRICAL EVALUATION

ing actions, which are not required in the exponential compilation. Interest-
ingly, for all TRAVELING SALESMAN and most ASTERIX instances, exponential
compilation is still feasible. Only for the four largest ASTERIX instances the
compilation could not be computed, due to reaching the memory limit of 4GB.
For COLORED GRIPPER, exponential compilation was only feasible in 6 out of
31 instances, and for both types of the GREEDY-PEGSOL domain compilation
was not possible for any instance, as even the simplest instances have 20 pegs
and therefore 220 different valuations of the action cost function. Note that
while the border is indicated with 107, the line indicates that these compila-
tions were not completed.

Finally, we compare the time it takes to produce the compiled task. For
both types of EVMDD compilation (quasi-reduced and fully-reduced), compile
time takes most often less than 0.1 seconds, only for some of the larger COL-
ORED GRIPPER domains the time increases to up to 0.5 seconds2. We therefore
do not visualize these results. Figure 5.6 depicts the time required for expo-
nential and MTMDD compilation. As we can see, for most instances the time
required is less than a second, only for some of the TRAVELING SALESMAN in-
stances it takes a few seconds to compile the task. Furthermore, we can say
that while some tasks are forgiving for the exponential compilation (namely
TRAVELING SALESMAN and OPENSTACKS) other tasks (GREEDY-PEGSOL and
COLORED GRIPPER) are infeasible.

To conclude the analysis of the different compilations, we briefly men-
tion another type of compilation, which we can use as a baseline for the dif-
ferent compilations. The min compilation transforms all actions with state-
dependent action costs to constant cost actions, by setting the cost of an ac-
tion to the minimum possible cost the function can take on for any state.
This is efficiently possible since the minimum cost value corresponds to the
input weight of the corresponding EVMDD. Obviously, this compilation does
not increase task size, but greatly underestimates action costs. Nevertheless,
if an optimal plan mostly consists of action applications which minimize ac-
tion cost, then this might still be an informative compilation. It will now
be interesting to see how the different compilations perform under different
heuristics.

5.3 Search Results

5.3.1 Establishing coverage bounds

Our initial experiment conducts uninformed A? search, where we set the h-
value to the cheapest minimal cost of any applicable action (“blind search”).
Note that this still performs A? search on a task with state-dependent action

2While ASTERIX and OPENSTACKS have much more actions, compilation time is usually
dominated by the time it takes to construct the decision diagram.

5.3. SEARCH RESULTS 109

costs (by evaluating the corresponding cost EVMDD during search). With
this baseline we were already able to solve 144 out of 256 instances (Table
5.1, first column), where over a half of the solved instances are due to the
GREEDY-PEGSOL domains. We therefore already have a lower bound on the
number of tasks we can solve. To establish some form of upper bound on
the coverage (number of solved instances), we also evaluate A? performance
with the additive heuristic instead of blind search. As the additive heuristic
is not admissible, the resulting plans are not optimal, but since it is easier to
find any plan than an optimal plan we can use this result as an upper bound.
We evaluated three different compilations: the baseline compilation min, the
exponential compilation EXP and the EVMDD compilation DD with quasi-
reduced EVMDDs (to guarantee invariance). We also evaluated flattened EV-
MDD compilation, but since this compilation does not have any advantage for
hadd it was strictly dominated by the non-flattened EVMDD compilation. Ta-
ble 5.1 shows the results for coverage, best results are highlighted in bold font.
As exponential compilation is not feasible for both GREEDY-PEGSOL domains
and many ASTERIX instances, this compilation does not perform well overall.
However, in OPENSTACKS and TRAVELING SALESMAN it performs exception-
ally well. For OPENSTACKS this is as expected, as exponential compilation has
even less overhead than EVMDD compilation. But even for TRAVELING SALES-
MAN the compilation solves all instances, despite generating over a million
actions in the hardest instances. The min compilation does not present much
benefit, given that GREEDY-PEGSOL is already nearly fully solved with blind
A?. Nevertheless, the number of solved OPENSTACKS instances is interesting,
given that all actions in this domain have state-dependent costs, and the min-
imum cost of each action is 0. Finally, EVMDD compilation performs overall
the best, which coincides with our theoretical results for the additive heuristic.

To increase the upper bound, we also conducted a greedy best-first search
(GBFS) with the additive heuristic. Greedy best-first search is similar to A?,
but states are expanded by only comparing their heuristic estimate (whereas
A? expands states with minimal f -value). Table 5.2 shows the coverage for
the different configurations. For the exponential compilation we do not get
any different results than before. For the min compilation, however, all of
the ASTERIX instances are solved. This can be explained by the fact that in
this compilation the climb action gets assigned a cost of 1, and the greedy
behaviour thus always prefers to climb the mountain immediately. Examining
the plan cost confirms this conjecture. In an instance with 10 Romans and a
mountain size of 75×75, the plan returned by GBFS with min compilation has
a cost of 514904, while the plan returned by DD compilation has a cost of 169
(which is also the cost of an optimal plan). Besides ASTERIX, the coverage is
similar to the A? results for the different compilations. Interestingly, coverage
of the COLORED GRIPPER domain does not increase, even if we only require
non-optimal plans. Finally, we mention that we also evaluated the maximum
heuristic and PDB heuristics with GBFS, but they were strictly dominated by

110 CHAPTER 5. EMPIRICAL EVALUATION

Coverage A?blind A?min
hadd

A?EXP
hadd

A?DD
hadd

ASTERIX (30) 10 9 5 10
GREEDY-PEGSOL (50) 48 48 0 50
GREEDY-PEGSOL2 (50) 48 48 0 48
COLORED GRIPPER (30) 8 8 4 9
OPENSTACKS (70) 9 32 46 46
TRAVELING SALESMAN (26) 21 21 26 26

Sum (256) 144 166 81 189

Table 5.1: Coverage for A? with blind and additive heuristic.

Coverage GBFSmin
hadd

GBFSEXP
hadd

GBFSDD
hadd

ASTERIX (30) 30 5 9
GREEDY-PEGSOL (50) 44 0 50
GREEDY-PEGSOL2 (50) 50 0 50
COLORED GRIPPER (30) 8 4 10
OPENSTACKS (70) 34 46 46
TRAVELING SALESMAN (26) 21 26 26

Sum (256) 187 81 191

Table 5.2: Coverage for GBFS with additive heuristic.

the additive heuristic.
While these experiments show that the compilation based approach for

the additive heuristic pays off, we note that this evaluation is mostly aimed at
getting a rough estimate of how many tasks we should expect to be able to
solve optimally. There are many different techniques for satisficing planning
(see for example the planner abstracts of the latest International Planning
Competition (Torralba and Pommerening 2018)), which would most likely
solve even more tasks.

5.3.2 Evaluating the maximum heuristic

We now discuss our results for the maximum heuristic. From our theoretical
results in Chapter 3 we know that this heuristic is only invariant under expo-
nential and under flattened EVMDD compilation. Nevertheless, we have seen
(Figure 5.5a) that the number of actions in the GREEDY-PEGSOL, TRAVELING

SALESMAN and COLORED GRIPPER domains is much higher than with EVMDD
compilation. This raises the question if the additional guidance provided by
the heuristic outweighs the increase in compilation size (which increases the

5.3. SEARCH RESULTS 111

time required to compute the heuristic). Guidance is often measured in terms
of number of node expansions, i.e. states expanded by the A? algorithm, as
more accurate heuristic estimates most often reduce the number of expanded
nodes. Figure 5.7a compares the number of expansions between the normal
and the flattened EVMDD compilation. Interestingly, the flattened EVMDD
compilation only marginally reduces the number of expanded nodes, suggest-
ing a marginal increase in heuristic guidance. We also evaluated the expan-
sions of the exponential compilation, which in theory should be equal to the
flattened EVMDD compilation, as both yield the same heuristic estimate. In-
deed, if the exponential compilation was possible, the number of expansions
is exactly the same. Having seen that flattened EVMDD compilation only mar-
ginally increases the guidance, we are now interested how this compilation
impacts the planning time. Figure 5.7b shows the total planning time for
both EVMDD compilations, i.e. the total time in seconds it requires the plan-
ner to find a plan, including precomputation time (such as compilation time).
Data points for which one configuration reached the time or memory limit are
omitted. As we can see, the total planning time is always higher for flattened
EVMDD compilation, for TRAVELING SALESMAN and GREEDY-PEGSOL even by
multiple orders of magnitude. This coincides with the increase in compilation
size shown in Figure 5.5a.

Before we investigate how this all affects coverage, we first compare the
min compilation with non-flattened EVMDD compilation. Figure 5.8a and
5.8b shows again the number of node expansions and the total search time
(again, omitting data points in which one configuration reached the time
or memory limit), this time comparing the min compilation with the quasi-
reduced EVMDD compilation. We can see that the approximation of the min
compilation hurts heuristic accuracy, but mostly in the GREEDY-PEGSOL do-
main. However, this does not pay off in terms of total planning time, which is
almost always less when we use the min compilation. Given these results, we
would expect that the min compilation performs best when applying the max-
imum heuristic. Table 5.3 indeed shows that out of all compilations, the min
compilation performs the best. Even worse, the other compilations solve less
tasks than blind search. Therefore, at least for these benchmarks our more
sophisticated compilations do not pay off when we consider the maximum
heuristic.

5.3.3 Evaluating PDB heuristics

We now evaluate the Canonical heuristic and the iterative Pattern Database
approach (hiPDB) by Haslum et al. (2007), for which we use the implementa-
tion in Fast Downward, as described by Sievers et al. (2012) (cf. the later part
of Section 4.1). Since this heuristic does not support conditional effects we
exclude the ASTERIX domain from our results.

For PDB heuristics, the theoretical results of Chapter 4 allow us to con-

112 CHAPTER 5. EMPIRICAL EVALUATION

Coverage blind hmax
min hmax

DD hmax
FDD

ASTERIX (30) 10 10 8 5
GREEDY-PEGSOL (50) 48 48 48 42
GREEDY-PEGSOL2 (50) 48 48 46 42
COLORED GRIPPER (30) 8 8 8 8
OPENSTACKS (70) 9 10 10 10
TRAVELING SALESMAN (26) 21 21 20 15

Sum (256) 144 145 140 122

Table 5.3: Coverage for A? with the maximum heuristic.

sider fully-reduced EVMDDs instead of quasi-reduced EVMDDs. Furthermore,
to guarantee invariance we have to adapt the generated patterns to include
semaphore and auxiliary variables. Therefore, we evaluate different config-
urations regarding hiPDB: first, we use hiPDB with the variable-compact EV-
MDD compilation (here still denoted as DD) without any adaptation of the
algorithm. As a result, the canonical heuristic will not be invariant. Then,
we adapt the hiPDB algorithm as described in Section 4.1: initially, there is
a pattern for each goal variable except for the semaphore and the auxiliary
variable. These are added to the initial patterns. Then, the test for additivity
is modified, such that semaphore and auxiliary variable are additive with all
other variables. Finally, when we sample states up to a specific depth and the
state is an intermediate state (i.e. semaphore variable is not zero) we apply
the chain of intermediate actions until a non-intermediate state is retrieved.
We already note that this affects tasks with many variables in the support of
the action cost function more, since we have to generate more actions until
a non-intermediate state is reached. For the parameters of hiPDB we use the
standard configuration of Fast Downward: the maximum size of the pattern
collections can go up to 20 million abstract states (with up to 2 million ab-
stract states per pattern), for each new candidate collection we sample 1000
states for which we try to improve the heuristic value in at least 10 states (oth-
erwise the candidate is discarded). We also do not enable any time limit, i.e.
as long as the previous mentioned limits are not reached we continue with
pattern generation in the precomputation phase.

Once again, Figure 5.9a depicts the number of expansions, now for the
original and the adapted iterative PDB heuristic. While the adapted heuristic
is most of the time more informative, this is not always the case (note the
two TRAVELING SALESMAN instances), although in these cases the planning
tasks are really easy. If we compare the total planning time (Figure 5.10a),
we see that if the support includes many variables (as it is the case in GREEDY-
PEGSOL), the total planning time rises. To see that this is indeed due to the
longer precomputation time we also include the pure search time, i.e. after the

5.3. SEARCH RESULTS 113

heuristic was already precomputed, depicted in Figure 5.10b. As we can see,
search time for both GREEDY-PEGSOL domains is often equal, sometimes even
faster with the adapted configuration. Unfortunately, the long precomputation
time results in many of the harder GREEDY-PEGSOL instances not being solved,
due to reaching the time limit.

To see how accurate these heuristic estimates are we also compare the
number of expanded nodes with the exponential compilation (where possi-
ble). While both heuristics are invariant if they include the same patterns
(lifted to auxiliary and semaphore variables), the difference during pattern
search in the sampling of states (based on average action cost) might result
in different estimates. Interestingly, comparing the expansions of the adapted
heuristic on EVMDD compilation with the original heuristic on the exponen-
tial compilation (Figure 5.9b), we see that for TRAVELING SALESMAN the ex-
ponential compilation is much more informative. Upon further investigation,
this result is due to the difference in the number of patterns: for TRAVELING

SALESMAN the exponential compilation results in 5-8 more patterns in the
larger tasks, compared to the adapted heuristic on the EVMDD compilation.
This might be due to the fact that the average action cost of the exponential
compilation is two times higher than that of EVMDD compilation. Therefore,
both configurations sample states at different depths. Additionally, if the heu-
ristic value of the initial state is not being improved in 10 sampled states,
then pattern generation stops early. This is also the reason for the outlier
in one of the OPENSTACKS instances: pattern generation in the exponential
compilation stopped immediately, as the initial pattern collection was already
good enough for almost all sampled states, while for the EVMDD compila-
tion at least 10 sampled states were found where the heuristic value can be
improved. Indeed, if we compare the total planning time between both con-
figurations (Figure 5.11), the adapted configuration often requires less total
time, since the pattern generation finishes much earlier, except for the harder
instances where the more informed heuristic outweighs the additional pre-
computation time.

We now evaluate the coverage of different hiPDB configurations. Table 5.4
depicts the results for different configurations: blind search, original hiPDB

with the min compilation, original hiPDB with the exponential compilation,
original hiPDB with the EVMDD compilation, and the adapted iPDB heuristic
with the EVMDD compilation. While overall the blind heuristic outperforms
the other approaches, this is due to the GREEDY-PEGSOL domain, where the
precomputation phase often takes up several hundreds of seconds (or even
over thousand seconds in the adapted approach), since we set no precom-
putation time limit. Interestingly, in TRAVELING SALESMAN, the exponential
compilation is able to solve one additional task. This is an important result,
as it indicates that the theoretical result of invariance of PDB heuristics can
be used in such tasks, but only if we are able to direct the search for pattern
collections in a similar way.

114 CHAPTER 5. EMPIRICAL EVALUATION

Coverage blind hiPDB
min hiPDB

EXP hiPDB
DD adapted hiPDB

DD

GREEDY-PEGSOL (50) 48 44 0 44 41
GREEDY-PEGSOL2 (50) 48 38 0 44 37
COLORED GRIPPER (30) 8 8 5 8 8
OPENSTACKS (70) 9 10 10 10 10
TRAVELING SALESMAN (26) 21 22 23 22 22

Sum (226) 134 122 38 128 112

Table 5.4: Coverage for different hiPDB configurations.

Finally, we note some other configurations we tested. We additionally eval-
uated hiPDB EVMDD compilation with no semaphore. Interestingly, the num-
ber of expansions did not differ to original hiPDB on the EVMDD compilation
with semaphore, suggesting that at some point most collections will include
the semaphore variable anyway. We also evaluated the non variable-compact
EVMDD compilation. The results match with the intuition that the additional
number of variables negatively impacts the heuristic behaviour and therefore
this configuration often already reaches the memory limit at the precomputa-
tion phase. Finally, we tried to increase the depth where states are sampled.
This resulted in much more accurate heuristic estimates for the OPENSTACKS

domain, where the original depth estimate (influenced by the average action
cost) was much lower than it is in reality. However, the increased depth also
increased the precomputation time, and in the end this configuration did not
pay off in terms of coverage.

5.4 Discussion

We conclude the empirical evaluation with a brief discussion of the previ-
ous results. First, as the benchmark set was introduced to compare symbolic
planning approaches some domains are not well-suited for heuristic forward
search. For example, for classical planning the GRIPPER domain is known to
be very hard for standard A? search: Helmert and Röger (2008) show that if
the heuristic is only off by a cost of 1, then about half of all reachable states
need to be considered. If the heuristic is off by 2, then A? corresponds to a
breadth-first search with duplicate elimination. On the other hand, symbolic
approaches perform very well in this domain (Torralba 2015), as well as in
OPENSTACKS.

For GREEDY-PEGSOL, the heuristics provide not much additional informa-
tion, the original hiPDB heuristic yields for all compilations exactly the same
amount of node expansions in this domain, and the adapted heuristic is only
marginally better (we do not depict this here, as nearly all data entries lie

5.4. DISCUSSION 115

on the diagonal line). If heuristic performance does not pay off anyway, then
heuristic invariance does not matter.

In contrast to this, in TRAVELING SALESMAN the exponential compilation
shows that a good heuristic helps to solve more tasks. While with EVMDD
compilation hiPDB does not solve more instances than blind search, the harder
instances are solved in significantly less time (instance 22 requires 635 sec-
onds of total planning time with blind search, while adapted hiPDB requires
only 267 seconds). This suggests the following: first, in tasks where state-
dependent action costs play an important role (and can’t merely be underesti-
mated by the minimum cost) applying EVMDD compilation can be beneficial.
Second, while PDB heuristics are invariant under EVMDD compilation, the
way the pattern collection is generated is not invariant under EVMDD compi-
lation. This warrants a further look in the adaptation of the hiPDB heuristic,
which we leave up for future work.

116 CHAPTER 5. EMPIRICAL EVALUATION

102 103 104 105 106 107
102

103

104

105

106

107

107

107

Flattened quasi-reduced EVMDD compilation

Fu
lly

-r
ed

uc
ed

EV
M

D
D

co
m

pi
la

ti
on

Number of actions in the compilation

ASTERIX
GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

(a) Comparison of compiled actions between flattened EVMDD and normal EVMDD
compilation.

102 103 104 105 106 107
102

103

104

105

106

107

107

107

Exponential compilation

Fu
lly

-r
ed

uc
ed

EV
M

D
D

co
m

pi
la

ti
on

Number of actions in the compilation

ASTERIX
GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

(b) Comparison of compiled actions between exponential and EVMDD compilation.

Figure 5.5

5.4. DISCUSSION 117

10−2 10−1 100 101 102
10−2

10−1

100

101

102

102

102

Exponential compilation

Fl
at

te
ne

d
qu

as
i-r

ed
uc

ed
EV

M
D

D
co

m
pi

la
ti

on

Compile time in seconds

ASTERIX
GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

Figure 5.6: Comparison of compile time between exponential and flattened
EVMDD compilation.

118 CHAPTER 5. EMPIRICAL EVALUATION

100 101 102 103 104 105 106 107 108
100

101

102

103

104

105

106

107

108

108

108

Quasi-reduced EVMDD compilation

Fl
at

te
ne

d
qu

as
i-r

ed
uc

ed
EV

M
D

D
co

m
pi

la
ti

on

Number of node expansions

ASTERIX
GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

(a) Comparison of node expansions with hmax between normal and flattened EVMDD
compilation.

10−1 100 101 102 103 104

10−1

100

101

102

103

104

104

104

Quasi-reduced EVMDD compilation

Fl
at

te
ne

d
qu

as
i-r

ed
uc

ed
EV

M
D

D
co

m
pi

la
ti

on

Total planning time in seconds

ASTERIX
GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

(b) Comparison of total planning time in seconds with hmax between normal and
flattened EVMDD compilation.

Figure 5.7

5.4. DISCUSSION 119

10−1 100 101 102 103 104 105 106 107 108
10−1

100

101

102

103

104

105

106

107

108

108

108

Quasi-reduced EVMDD compilation

m
in

co
m

pi
la

ti
on

Number of node expansions

ASTERIX
GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

(a) Comparison of node expansions with hmax between min compilation and EVMDD
compilation.

10−1 100 101 102 103 104

10−1

100

101

102

103

104

104

104

Quasi-reduced EVMDD compilation

m
in

co
m

pi
la

ti
on

Total planning time in seconds

ASTERIX
GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

(b) Comparison of total planning time in seconds with hmax between min compilation
and EVMDD compilation.

Figure 5.8

120 CHAPTER 5. EMPIRICAL EVALUATION

10−1 100 101 102 103 104 105 106 107 108
10−1

100

101

102

103

104

105

106

107

108

108

108

Adapted hiPDB

O
ri

gi
na

lh
iP

D
B

Number of node expansions with EVMDD compilation

GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

(a) Comparison of node expansions between the original and the adapted hiPDB heu-
ristic with EVMDD compilation.

10−1 100 101 102 103 104 105 106 107 108
10−1

100

101

102

103

104

105

106

107

108

108

108

Adapted hiPDB with EVMDD compilation

O
ri

gi
na

lh
iP

D
B

w
it

h
ex

po
ne

nt
ia

lc
om

pi
la

ti
on

Number of node expansions

GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

(b) Comparison of node expansions between the original hiPDB heuristic based on ex-
ponential compilation and the adapted hiPDB heuristic based on EVMDD compilation.

Figure 5.9

5.4. DISCUSSION 121

10−1 100 101 102 103 104

10−1

100

101

102

103

104

104

104

Adapted hiPDB

O
ri

gi
na

lh
iP

D
B

Total planning time with EVMDD compilation

GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

(a) Comparison of total planning time in seconds between the original and the
adapted hiPDB heuristic with EVMDD compilation.

10−1 100 101 102 103

10−1

100

101

102

103

103

103

Adapted hiPDB

O
ri

gi
na

lh
iP

D
B

Search time with EVMDD compilation

GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

(b) Comparison of search time in seconds between the original and the adapted hiPDB

heuristic with EVMDD compilation.

Figure 5.10

122 CHAPTER 5. EMPIRICAL EVALUATION

10−1 100 101 102 103 104

10−1

100

101

102

103

104

104

104

Adapted hiPDB with EVMDD compilation

O
ri

gi
na

lh
iP

D
B

w
it

h
ex

po
ne

nt
ia

lc
om

pi
la

ti
on

Total planning time in seconds

GREEDY-PEGSOL
GREEDY-PEGSOL2
COLORED GRIPPER
OPENSTACKS
TRAVELING SALESMAN

Figure 5.11: Comparison of total planning time in seconds between the orig-
inal hiPDB heuristic based on exponential compilation and the adapted hiPDB

heuristic based on EVMDD compilation.

CHAPTER 6
Further Reading and Future Work

We now discuss some possible future work and give further references related
to the different topics we discussed previously.

6.1 Delete Relaxation

One of the pitfalls of delete relaxation heuristics is their inability to reflect
the consumption of resources or the movement between locations. For exam-
ple, in the relaxation of the Logistics domain the truck is simultaneously at
multiple locations and packages can always be considered as not loaded in
the truck. Therefore, Katz et al. (2013) propose to only relax a part of the
problem and they dub their approach red-black planning. In red-black plan-
ning, variables may have two types of semantics: the red variables take the
relaxed semantics, i.e. they accumulate their values instead of switching be-
tween them. Black variables, on the other hand, take the usual semantics of
switching between values. This allows to reflect the consumption of a partic-
ular resource, while still relaxing the remaining parts of the problem. If the
black variables fulfill some requirements (namely the dependencies between
black variables are acyclic, and each black variable is invertible), then red-
black planning is tractable (Domshlak et al. 2015). This technique is most
commonly used in satisficing planners (Torralba and Pommerening 2018).

Since it is a classical planning technique we can apply it to the EVMDD
compiled task. The question is, once again, if red-black planning heuristics
are invariant under compilation. We conjecture that, similar to abstractions,
red-black planning is invariant if semaphore and auxiliary variables are pre-
served, i.e. painted black. Since red-black planning techniques (e.g. the Mer-
cury planner, Katz and Hoffmann 2014) automatically paint variables black
by analyzing the causal graph (Helmert 2006b), we would have to analyze if
this would include the semaphore and auxiliary variables. If this is not the
case, we could adapt the algorithm to automatically include these variables,

123

124 CHAPTER 6. FURTHER READING AND FUTURE WORK

similar to our adaptation of the hill-climbing algorithm for PDBs.

6.2 Cartesian Abstractions and Cost Partitioning

We did not include Cartesian abstraction heuristics in our empirical evalua-
tion, as for a competitive performance multiple abstraction heuristics have to
be combined. This is possible with cost partitioning (Katz and Domshlak 2007,
2010), where the original action cost is distributed over multiple copies of the
planning task. Then, an abstraction is generated for each copy, and the ab-
stract heuristic values may be admissibly combined. General cost partitioning
(Pommerening et al. 2015) generalizes cost partitioning by allowing negative
costs, which leads to even more accurate heuristic estimates. While optimal
cost partitioning can be computed in polynomial time (Katz and Domshlak
2007, 2010), it can be expensive to compute even a single optimal cost par-
titioning for explicit abstractions with reasonable size (Pommerening et al.
2013; Seipp et al. 2017a).

Saturated cost partitioning (Seipp and Helmert 2014, 2018) is an approxi-
mation of an optimal cost partitioning. Given an ordered sequence of heuris-
tics and an overall cost function, the saturated cost partitioning algorithm
iteratively computes the minimum cost required to preserve the heuristic and
uses the remaining cost as the new overall cost function. Seipp and Helmert
(2018) show how to interweave saturated cost partitioning with the CEGAR
algorithm, to iteratively compute abstraction heuristics based on the current
overall cost function. As a result, the different abstraction heuristics may be
summed up admissibly, often leading to much stronger heuristic estimates
(Seipp and Helmert 2018).

In Keller et al. (2016), we generalize cost partitioning even further, by
introducing general state-dependent cost partitioning (also called transition
cost partitioning in Pommerening 2017). This allows to distribute the action
cost differently for different states and does not only enable cost partition-
ing for tasks with state-dependent action costs, but an optimal general state-
dependent cost partitioning also dominates the state-independent version for
classical planning tasks. We present saturated state-dependent cost partition-
ing, which allows a more fine-grained distribution of the action costs among
the different abstractions. While the state-dependent version of saturated cost
partitioning is incomparable to its state-independent version (there exist ex-
amples which show that neither dominates the other) it sometimes surpasses
optimal state-independent cost partitioning. This work also makes use of EV-
MDDs to represent state-dependent cost functions, and shows how to effi-
ciently use this representation to distribute the action costs over the different
Cartesian abstractions.

In the work of Keller et al. (2016) we use saturated state-dependent cost
partitioning as a tool for classical planning tasks, but since it already incorpo-

6.3. CONDITIONAL COSTS AND CONDITIONAL EFFECTS 125

rates state-dependent action costs it can be immediately applied to tasks with
state-dependent action costs. One drawback of the approach is the increased
fractioning of the action costs and as a result the EVMDD representation re-
sults in an exponential blow-up in some domains. Possible future work is
to take a look into dynamic variable ordering approaches, to reduce the size
of the EVMDDs during construction of the different abstractions. Another
possible approach would be to take a look into the EVMDD compilation and
compare the behaviour between saturated state-independent cost partitioning
on the compiled task and saturated state-dependent cost partitioning on the
original task.

6.3 Conditional Costs and Conditional Effects

While this thesis mostly ignored conditional effects, in Mattmüller et al. 2018
we show that conditional effects and conditional (state-dependent) costs are
closely related: considering them separately can lead to less informed heuris-
tics. We therefore introduce a generalization of EVMDDs to functions de-
fined over monoids, which allows to represent conditional effects and state-
dependent action costs at the same time by combining them in a single EV-
MDD. This EVMDD can be used to compute relaxation heuristics and Bergdoll
(2018) shows that Cartesian abstraction heuristics (with non-deterministic
abstract transitions) and delete relaxation heuristics are invariant under a
compilation based on the combined EVMDD (i.e. which compiles costs and
effects away). As this includes projection heuristics, this brings up an interest-
ing question: can we compile conditional effects away while preserving PDB
heuristics, in the same way we did with the compilation of state-dependent
costs? If so, we could use this compilation to enable the canonical heuristic
(and therefore hiPDB) on tasks with conditional effects.

6.4 General Action Cost Functions

In this thesis we only considered action cost functions which resulted in posi-
tive costs for all states. This is in line with classical tasks having only actions
with positive cost, but we could also think of an action cost function which
has positive costs in all reachable states. This gives the modeler more room in
modeling their tasks, as they must not be concerned with costs for unreach-
able states. For example, if we know that in a 2D coordinate system only the
part where x > y is reachable, we can express costs as x − y, which results
in a cost of −1 for state (x

.
= 0) ∧ (y

.
= 1). In general, the techniques in this

thesis are also applicable in this case, but our theoretical results regarding in-
variance under EVMDD compilation change. For example, since in such a case
the EVMDD representing the action cost function has an incoming edge with
negative weight (since the minimum of the function is negative), the resulting

126 CHAPTER 6. FURTHER READING AND FUTURE WORK

EVMDD compilation generates an action with negative costs (the initial action
apre). Therefore, for delete relaxation we quickly end up with a heuristic value
of −∞ (due to infinite application of apre), even if the relaxed state only in-
cludes states for which we have positive action costs. This is not the case for
the heuristic estimate in the original task, therefore invariance under EVMDD
compilation is not guaranteed in this case. We conjecture that we can still pre-
serve invariance if we use flattened EVMDDs. Since these only induce costs
in concluding actions, and since the cost is only negative if the corresponding
EVMDD path corresponds to a state inducing negative costs, the relaxation
heuristic should only produce a value of −∞ if the relaxed state contains such
a state with negative action cost. In this case, the heuristic on the original task
would also yield an estimate of −∞.

Furthermore, it would also be interesting to examine decision diagrams
based on other types of expansion, for example Functional Decision Diagrams
(Kebschull et al. 1992) based on the Davio-expansion or Kronecker Functional
Decision Diagrams (KFDDs), which are based on both Shannon and Davio
expansion. This could result in a compilation which is exponentially more
compact for the type of functions that result in compact KFDDs. However,
while the additive nature of EVMDDs makes them suitable for compilation,
it is not obvious how to do this for decision diagrams with other function
evaluation mechanisms.

6.5 Probabilistic Planning

Finally, we mention that the results given in this thesis also open up the appli-
cation of classical planning methods to probabilistic planning. Many proba-
bilistic planning tasks are given as factored Markov Decision Processes (MDPs)
(Puterman 1994) or Stochastic Shortest Path problems (SSPs) (Bertsekas and
Tsitsiklis 1996), where the costs (or rewards in the case of MDPs) are state-
dependent. A common approach to approximate a solution for such proba-
bilistic tasks (which can be used as a heuristic to guide the probabilistic sea-
rch) is to solve a determinized version of the task (Yoon et al. 2007, 2008), i.e.
transform the problem to a deterministic planning problem. However, if the
problem includes state-dependent costs, then previously these also had to be
approximated. Our results allow the use of classical state-of-the-art planners
for such determinization approaches, without further approximation of action
costs. In Geißer et al. (2015) and Geißer et al. (2016) we used such an ap-
proach to improve the heuristic underlying the probabilistic planning system
PROST (Keller and Eyerich 2012), used to initialize the state-value function.

While our research focuses on the state-dependent costs of such problems,
Trevizan et al. (2017) developed occupation measure heuristics for stochastic
shortest path problems (SSPs). Occupation measures were the first domain-
independent heuristic that reasons about probabilities, and they can be seen

6.5. PROBABILISTIC PLANNING 127

as a generalization of operator-counting heuristics (Pommerening et al. 2014),
which is a cost-partitioning heuristic. Therefore, there currently co-exist cost-
partitioning heuristics that deal with probabilistic effects, as well as cost-
partitioning heuristics that deal with state-dependent action costs. Combining
both most likely leads to a powerful tool for finding solutions to probabilistic
planning tasks.

CHAPTER 7
Conclusion

We introduced classical planning with state-dependent action costs, which al-
lows to model naturally arising cost functions in planning tasks, instead of
passing the load of the management of such functions on the modeler. By rep-
resenting action cost functions as edge-valued multi-valued decision diagrams
we can exhibit structure present in the cost function, which allows us to use
the decision diagram to efficiently compute the minimum cost for Cartesian
states, which includes relaxed states, as well as abstract states in Cartesian
abstractions. The representation as decision diagrams also allowed us to in-
troduce several compilations of tasks with state-dependent action costs. Un-
like the exponential compilation, the resulting compilation is compact if the
underlying decision diagram is also compact.

We generalized delete relaxation heuristics and abstraction heuristics to
tasks with state-dependent action costs and our result for efficient minimiza-
tion over Cartesian states enables us to efficiently compute this generalized
version. We have also given multiple results about the invariance of such
heuristics under different compilations. This allows us to apply the additive
heuristic or the maximum heuristic (in case of flattened decision diagrams)
on the compiled task, without forfeiting heuristic accuracy. By adapting the
pattern collection underlying the canonical heuristic we also achieved invari-
ance for this heuristic under all types of the presented compilations. Fur-
thermore, we discussed how we can adapt the CEGAR algorithm, which al-
lows the generation of arbitrary Cartesian abstraction heuristics for tasks with
state-dependent action costs.

Our empirical evaluation shows that depending on the type of the problem
it may be sufficient to underapproximate the costs without relying on more so-
phisticated techniques. However, if the state-dependent nature of the problem
plays a major role, then the compilation with decision diagrams is useful and
reduces search effort.

129

List of Figures

2.1 Logistics planning task . 9
2.2 Cartesian and non-Cartesian sets of states 12
2.3 Transition system of the logistic task 17
2.4 BDD and MDD . 22
2.5 ADD and EVBDD representation of f = 2x0 + 2x1 + 2y. 23
2.6 EVMDD of the drive cost function 25
2.7 EVMDDs with different variable orderings 27
2.8 Example of the apply algorithm 33
2.9 Local minimization with Cartesian states 35
2.10 Local minimization with non-Cartesian states 37
2.11 Flattened EVMDD of the drive cost function 38
2.12 EVMDD compilation example . 43
2.13 Interaction between EVMDD compilation and Cartesian states . . 46
2.14 Variable-compact EVMDD compilation 48

3.1 Relaxed state . 55
3.2 Transition system of the relaxed logistics task. 56
3.3 Proof sketch of Lemma 10 . 65
3.4 EVMDD for cost function 2x+ 4y, annotated with hmax values. . 70
3.5 Flattened EVMDD for cost function 2x+4y, annotated with hmax

values. 72
3.6 Theoretical summary of Chapter 3. 76

4.1 Abstract transition system of the logistics task 79
4.2 Abstract transition systems of Example 19 80
4.3 Depiction of Example 20 . 84
4.4 Abstract transition systems based on patterns 88
4.5 Abstract transition system of the EVMDD compilation of Exam-

ple 19. 92

131

132 List of Figures

4.6 Example of an abstract transition system resulting in cost diver-
gence. 97

4.7 EVMDD of Example 23. 98
4.8 Theoretical summary of Chapter 4. 100

5.1 EVMDD corresponding to the cost of the climb action in ASTERIX. 102
5.2 EVMDD corresponding to the cost of the move action in COL-

ORED GRIPPER. 104
5.3 EVMDD corresponding to the cost of the visit action in TRAVEL-

ING SALESMAN. 105
5.4 Comparison of compiled actions in the Asterix domain between

quasi- and fully-reduced EVMDDs. 107
5.5 Comparison of compiled actions between exponential compila-

tion, normal EVMDD and flattened EVMDD compilation 116
5.6 Comparison of compile time between exponential and flattened

EVMDD compilation. 117
5.7 Comparison of hmax between normal and flattened EVMDD com-

pilation . 118
5.8 Comparison of hmax between min and EVMDD compilation . . . 119
5.9 Comparison of node expansions for original and adapted hiPDB . 120
5.10 Comparison of search and planning time between original and

adapted hiPDB . 121
5.11 Comparison of total planning time in seconds between the orig-

inal hiPDB heuristic based on exponential compilation and the
adapted hiPDB heuristic based on EVMDD compilation. 122

List of Tables

5.1 Coverage for A? with blind and additive heuristic. 110
5.2 Coverage for GBFS with additive heuristic. 110
5.3 Coverage for A? with the maximum heuristic. 112
5.4 Coverage for different hiPDB configurations. 114

133

List of Algorithms

1 APPLY algorithm for two EVMDDs. 31
2 Algorithm to generate sub-EVMDDs. 31

3 CEGAR algorithm to generate Cartesian abstractions. 96

135

Bibliography

Akers Jr., Sheldon B. (1978). “Binary Decision Diagrams”. In: IEEE Transac-
tions on Computers 27.6, pp. 509–516.

Aldinger, Johannes and Bernhard Nebel (2017). “Interval Based Relax-
ation Heuristics for Numeric Planning with Action Costs”. In: Proceed-
ings of the 40th Annual German Conference on Artificial Intelligence (KI
2017). Ed. by Gabriele Kern-Isberner, Johannes Fürnkranz, and Matthias
Thimm. Vol. 10505. Lecture Notes in Artificial Intelligence. Springer-
Verlag, pp. 15–28.

Bäckström, Christer and Bernhard Nebel (1995). “Complexity Results for
SAS+ Planning”. In: Computational Intelligence 11.4, pp. 625–655.

Badar, Junaid and Andrew Miner (2011). MEDDLY: Multi-terminal and Edge-
valued Decision Diagram LibrarY. Accessed: 2018-10-08. URL: http : / /
meddly.sourceforge.net/.

Bahar, R. Iris, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico
Macii, Abelardo Pardo, and Fabio Somenzi (1993). “Algebraic Decision
Diagrams and Their Applications”. In: Proceedings of the 1993 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD 1993). Ed. by
Michael R. Lightner and Jochen A. G. Jess, pp. 188–191.

— (1997). “Algebraic Decision Diagrams and Their Applications”. In: Formal
Methods in System Design 10.2–3, pp. 171–206.

Baier, Jorge A., Fahiem Bacchus, and Sheila A. McIlraith (2007). “A Heuristic
Search Approach to Planning with Temporally Extended Preferences”. In:
Proceedings of the 20th International Joint Conference on Artificial Intelli-
gence (IJCAI 2007). Ed. by Manuela M. Veloso, pp. 1808–1815.

Ball, Thomas, Andreas Podelski, and Sriram K. Rajamani (2001). “Boolean
and Cartesian Abstraction for Model Checking C Programs”. In: Proceed-

137

http://meddly.sourceforge.net/
http://meddly.sourceforge.net/

138 BIBLIOGRAPHY

ings of the 7th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2001), pp. 268–283.

Bast, Hannah, Daniel Delling, Andrew V. Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato
F. Werneck (2016). “Route Planning in Transportation Networks”. In: Lec-
ture Notes in Computer Science 9220, pp. 19–80.

Becker, Bernd and Rolf Drechsler (1995). “How many decomposition types do
we need?” In: 1995 European Design and Test Conference, ED&TC 1995,
Paris, France, March 6-9, 1995, pp. 438–443.

Becker, Bernd, Rolf Drechsler, and Ralph Werchner (1995). “On the Rela-
tion between BDDs and FDDs”. In: Information and Computation 123.2,
pp. 185–197.

Bergdoll, Rolf-David (2018). “EVMDD-based Action Compilations: Dealing
with Auxiliary Variables in Abstraction Heuristics”. MA thesis. University
of Freiburg.

Bergman, David, André Augusto Ciré, Willem-Jan van Hoeve, and John N.
Hooker (2016). “Discrete Optimization with Decision Diagrams”. In: IN-
FORMS Journal on Computing 28.1, pp. 47–66.

Bertsekas, Dimitri P. and John N. Tsitsiklis (1996). Neuro-Dynamic Program-
ming. Athena Scientific.

Bollig, Beate, Martin Löbbing, and Ingo Wegener (1995). “Simulated Anneal-
ing to improve variable orderings for BDDs”. In: Workshop Notes of the
International Workshop on Logic Synthesis (IWLS 1995).

Bollig, Beate and Ingo Wegener (1996). “Improving the Variable Ordering
of OBDDs Is NP-Complete”. In: IEEE Transactions on Computers 45.9,
pp. 993–1002.

Bonet, Blai and Héctor Geffner (1999). “Planning as Heuristic Search:
New Results”. In: Recent Advances in AI Planning. 5th European Confer-
ence on Planning (ECP 1999). Ed. by Susanne Biundo and Maria Fox.
Vol. 1809. Lecture Notes in Artificial Intelligence. Heidelberg: Springer-
Verlag, pp. 360–372.

Bonet, Blai, Gábor Loerincs, and Héctor Geffner (1997). “A Robust and Fast
Action Selection Mechanism for Planning”. In: Proceedings of the Four-
teenth National Conference on Artificial Intelligence (AAAI 1997). AAAI Pr-
ess, pp. 714–719.

Boole, George (1854). An investigation of the laws of thought: on which are
founded the mathematical theories of logic and probabilities. Dover Publica-
tions.

BIBLIOGRAPHY 139

Brace, Karl S., Richard Rudell, and Randal E. Bryant (1990). “Efficient Imple-
mentation of a BDD Package”. In: Proceedings of the 27th ACM/IEEE Design
Automation Conference (DAC 1990). Ed. by Richard C. Smith, pp. 40–45.

Bryant, Randal E. (1986). “Graph-Based Algorithms for Boolean Function Ma-
nipulation”. In: IEEE Transactions on Computers 35.8, pp. 677–691.

Bylander, Tom (1994). “The Computational Complexity of Propositional STR-
IPS Planning”. In: Artificial Intelligence 69.1–2, pp. 165–204.

Ceriani, Luca and Alfonso E. Gerevini (2015). “Planning with Always Prefer-
ences by Compilation into STRIPS with Action Costs”. In: Proceedings of
the Eighth Annual Symposium on Combinatorial Search (SoCS 2015). Ed.
by Levi Lelis and Roni Stern. AAAI Press, pp. 161–165.

Ciardo, Gianfranco and Radu Siminiceanu (2002). “Using Edge-Valued De-
cision Diagrams for Symbolic Generation of Shortest Paths”. In: Proceed-
ings of the Fourth International Conference on Formal Methods in Computer-
Aided Design (FMCAD 2002). Ed. by Mark Aagaard and John W. O’Leary.
Vol. 2517. Lecture Notes in Computer Science. Springer-Verlag, pp. 256–
273.

Clarke, Edmund M., Masahiro Fujita, Patrick C. McGeer, Kenneth L. McMil-
lain, Jerry Chih-Yuan Yang, and Xudong Zhao (1993a). “Multi-Terminal
Binary Decision Diagrams: An Efficient Data Structure for Matrix Repre-
sentation”. In: Workshop Notes of the International Workshop on Logic Syn-
thesis (IWLS 1993).

Clarke, Edmund M., Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith
(2000). “Counterexample-Guided Abstraction Refinement”. In: Proceed-
ings of the 12th International Conference on Computer Aided Verification
(CAV 2000). Ed. by E. Allen Emerson and A. Prasad Sistla, pp. 154–169.

Clarke, Edmund M., Orna Grumberg, and Doron A. Peled (1999). Model Che-
cking. The MIT Press.

Clarke, Edmund M., Kenneth L. McMillan, Xudong Zhao, Masahiro Fujita, and
Jerry Chih-Yuan Yang (1993b). “Spectral Transforms for Large Boolean
Functions with Applications to Technology Mapping”. In: Proceedings of the
30th Design Automation Conference (DAC 1993). Ed. by Alfred E. Dunlop,
pp. 54–60.

Codognet, Philippe and Daniel Diaz (1996). “A Simple and Efficient Boolean
Solver for Constraint Logic Programming”. In: Journal of Automated Rea-
soning 17.1, pp. 97–128.

Culberson, Joseph C. and Jonathan Schaeffer (1998). “Pattern Databases”. In:
Computational Intelligence 14.3, pp. 318–334.

140 BIBLIOGRAPHY

Cutland, Nigel J. (1980). Computability — An Introduction to Recursive Func-
tion Theory. Cambridge University Press.

Dijkstra, Edsger W. (1959). “A Note on Two Problems in Connexion with
Graphs”. In: Numerische Mathematik 1, pp. 269–271.

Domshlak, Carmel, Jörg Hoffmann, and Michael Katz (2015). “Red-black
planning: A new systematic approach to partial delete relaxation”. In: Ar-
tificial Intelligence 221, pp. 73–114.

Dräger, Klaus, Bernd Finkbeiner, and Andreas Podelski (2009). “Directed mo-
del checking with distance-preserving abstractions”. In: International Jour-
nal on Software Tools for Technology Transfer 11.1, pp. 27–37.

Drechsler, Rolf and Bernd Becker (1998). “Ordered Kronecker functional de-
cision diagrams-a data structure for representation and manipulation of
Boolean functions”. In: IEEE Trans. on CAD of Integrated Circuits and Sys-
tems 17.10, pp. 965–973.

Drechsler, Rolf, Bernd Becker, and Nicole Göckel (1995). “A Genetic Algorithm
for Variable Ordering of OBDDs”. In: Workshop Notes of the International
Workshop on Logic Synthesis (IWLS 1995), pp. 55–64.

Edelkamp, Stefan (2001). “Planning with Pattern Databases”. In: Proceedings
of the Sixth European Conference on Planning (ECP 2001). Ed. by Amedeo
Cesta and Daniel Borrajo. AAAI Press, pp. 84–90.

Edelkamp, Stefan and Malte Helmert (2001). “The Model Checking Integrated
Planning System (MIPS)”. In: AI Magazine 22.3, pp. 67–71.

Edelkamp, Stefan and Peter Kissmann (2009). “Optimal Symbolic Planning
with Action Costs and Preferences”. In: Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2009). Ed. by Craig
Boutilier. AAAI Press, pp. 1690–1695.

— (2011). “On the Complexity of BDDs for State Space Search: A Case Study
in Connect Four”. In: Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence (AAAI 2011). Ed. by Wolfram Burgard and Dan Roth.
AAAI Press, pp. 18–23.

Edelkamp, Stefan, Peter Kissmann, and Álvaro Torralba (2015). “BDDs Strike
Back (in AI Planning)”. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (AAAI 2015). AAAI Press, pp. 4320–4321.

Edelkamp, Stefan and Frank Reffel (1998). “OBDDs in Heuristic Search”. In:
Proceedings of the 22nd Annual German Conference on Artificial Intelligence
(KI 1998). Ed. by Otthein Herzog and Andreas Günter. Vol. 1504. Lecture
Notes in Computer Science. Springer-Verlag, pp. 81–92.

BIBLIOGRAPHY 141

Eyerich, Patrick, Robert Mattmüller, and Gabriele Röger (2009). “Using the
Context-Enhanced Additive Heuristic for Temporal and Numeric Plann-
ing”. In: Proceedings of the Nineteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2009). Ed. by Alfonso Gerevini,
Adele Howe, Amedeo Cesta, and Ioannis Refanidis. AAAI Press, pp. 130–
137.

Fast Downward website (2018). Fast Downward documentation - evaluators.
Accessed: 2018-10-08. URL: http : / / www . fast - downward . org / Doc /
Evaluator#Canonical_PDB.

Fink, Andreas and Stefan Voß (1999). “Applications of modern heuristic sea-
rch methods to pattern sequencing problems”. In: Computers & OR 26.1,
pp. 17–34.

Fox, Maria and Derek Long (2003). “PDDL2.1: An Extension to PDDL for Ex-
pressing Temporal Planning Domains”. In: Journal of Artificial Intelligence
Research 20, pp. 61–124.

Gazen, B. Cenk and Craig A. Knoblock (1997). “Combining the Expressivity
of UCPOP with the Efficiency of Graphplan”. In: Recent Advances in AI
Planning. 4th European Conference on Planning (ECP 1997). Ed. by Sam
Steel and Rachid Alami. Vol. 1348. Lecture Notes in Artificial Intelligence.
Springer-Verlag, pp. 221–233.

Geißer, Florian, Thomas Keller, and Robert Mattmüller (2014). “Past, Present,
and Future: An Optimal Online Algorithm for Single-Player GDL-II
Games.” In: Proceedings of the 21st European Conference on Artificial Intel-
ligence (ECAI 2014). Ed. by Torsten Schaub, Gerhard Friedrich, and Barry
O’Sullivan. IOS Press, pp. 357–362.

— (2015). “Delete Relaxations for Planning with State-Dependent Action
Costs”. In: Proceedings of the 24th International Joint Conference on Artifi-
cial Intelligence (IJCAI 2015). Ed. by Qiang Yang and Michael Wooldridge.
AAAI Press, pp. 1573–1579.

— (2016). “Abstractions for Planning with State-Dependent Action Costs”.
In: Proceedings of the Twenty-Sixth International Conference on Automated
Planning and Scheduling (ICAPS 2016). Ed. by Amanda Coles, Andrew
Coles, Stefan Edelkamp, Daniele Magazzeni, and Scott Sanner. AAAI Pr-
ess, pp. 140–148.

Geißer, Florian and Benedict Wright (2018). LEMon-DD: Library for Edge-
valued Monoid-based Decision Diagrams. Accessed: 2019-03-04. URL:
https://github.com/geisserf/lemon-dd.

http://www.fast-downward.org/Doc/Evaluator#Canonical_PDB
http://www.fast-downward.org/Doc/Evaluator#Canonical_PDB
https://github.com/geisserf/lemon-dd

142 BIBLIOGRAPHY

Gerevini, Alfonso E. and Derek Long (2005). Plan Constraints and Preferences
in PDDL3. Tech. rep. R. T. 2005-08-47. University of Brescia, Department
of Electronics for Automation.

Hansen, Eric A., Rong Zhou, and Zhengzhu Feng (2002). “Symbolic Heuri-
stic Search Using Decision Diagrams”. In: Proceedings of the 5th Interna-
tional Symposium on Abstraction, Reformulation and Approximation (SARA
2002). Ed. by Sven Koenig and Robert C. Holte. Vol. 2371. Lecture Notes
in Artificial Intelligence. Springer-Verlag, pp. 83–98.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). “A Formal Basis
for the Heuristic Determination of Minimum Cost Paths”. In: IEEE Transac-
tions on Systems Science and Cybernetics 4.2, pp. 100–107.

Haslum, Patrik, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig
(2007). “Domain-Independent Construction of Pattern Database Heuris-
tics for Cost-Optimal Planning”. In: Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence (AAAI 2007). AAAI Press, pp. 1007–
1012.

Helmert, Malte (2002). “Decidability and Undecidability Results for Planning
with Numerical State Variables”. In: Proceedings of the Sixth International
Conference on Artificial Intelligence Planning and Scheduling (AIPS 2002).
Ed. by Malik Ghallab, Joachim Hertzberg, and Paolo Traverso. AAAI Press,
pp. 303–312.

— (2003). “Complexity results for standard benchmark domains in plann-
ing”. In: Artificial Intelligence 143.2, pp. 219–262.

— (2006a). “New Complexity Results for Classical Planning Benchmarks”. In:
Proceedings of the Sixteenth International Conference on Automated Plann-
ing and Scheduling (ICAPS 2006). Ed. by Derek Long, Stephen F. Smith,
Daniel Borrajo, and Lee McCluskey. AAAI Press, pp. 52–61.

— (2006b). “The Fast Downward Planning System”. In: Journal of Artificial
Intelligence Research 26, pp. 191–246.

— (2009). “Concise Finite-Domain Representations for PDDL Planning
Tasks”. In: Artificial Intelligence 173, pp. 503–535.

Helmert, Malte, Patrik Haslum, Jörg Hoffmann, and Raz Nissim (2014).
“Merge-and-Shrink Abstraction: A Method for Generating Lower Bounds
in Factored State Spaces”. In: Journal of the ACM 61.3, 16:1–63.

Helmert, Malte and Hauke Lasinger (2010). “The Scanalyzer Domain: Green-
house Logistics as a Planning Problem”. In: Proceedings of the Twentieth
International Conference on Automated Planning and Scheduling (ICAPS
2010). Ed. by Ronen Brafman, Héctor Geffner, Jörg Hoffmann, and Henry
Kautz. AAAI Press, pp. 234–237.

BIBLIOGRAPHY 143

Helmert, Malte, Florian Pommerening, and Gabriele Röger (2017). Lecture on
Planning and Optimization. Accessed: 2018-10-08. URL: https://ai.dmi.
unibas.ch/_files/teaching/hs17/po/exercises/sheet04.pdf.

Helmert, Malte and Gabriele Röger (2008). “How Good is Almost Perfect?”
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI 2008). AAAI Press, pp. 944–949.

Helmert, Malte, Gabriele Röger, and Silvan Sievers (2015). “On the Expressive
Power of Non-Linear Merge-and-Shrink Representations”. In: Proceedings
of the Twenty-Fifth International Conference on Automated Planning and
Scheduling (ICAPS 2015). Ed. by Ronen Brafman, Carmel Domshlak, Patrik
Haslum, and Shlomo Zilberstein. AAAI Press, pp. 106–114.

Hoey, Jesse, Robert St-Aubin, Alan Hu, and Craig Boutilier (1999). “SPUDD:
Stochastic Planning using Decision Diagrams”. In: Proceedings of the 15th
Conference on Uncertainty in Artificial Intelligence (UAI 1999), pp. 279–
288.

Hoffmann, Jörg (2015). “Simulated Penetration Testing: From Dijkstra to Tur-
ing Test++”. In: Proceedings of the Twenty-Fifth International Conference
on Automated Planning and Scheduling (ICAPS 2015). Ed. by Ronen Braf-
man, Carmel Domshlak, Patrik Haslum, and Shlomo Zilberstein. AAAI Pr-
ess, pp. 364–372.

Hoffmann, Jörg and Bernhard Nebel (2001). “The FF Planning System: Fast
Plan Generation Through Heuristic Search”. In: Journal of Artificial Intelli-
gence Research 14, pp. 253–302.

Holte, Robert C. (2010). “Common Misconceptions Concerning Heuristic Se-
arch”. In: Proceedings of the Third Annual Symposium on Combinatorial Se-
arch (SoCS 2010). Ed. by Ariel Felner and Nathan Sturtevant. AAAI Press,
pp. 46–51.

Hooker, John N. (2013). “Decision Diagrams and Dynamic Programming”.
In: Proceedings of the 10th International Conference on Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems (CPAIOR 2013). Ed. by Carla Gomes and Meinolf Sellmann.
Springer-Verlag, pp. 94–110.

ICAPS competitions (2018). ICAPS competitions. Accessed: 2018-09-10. URL:
http://www.icaps-conference.org/index.php/Main/Competitions.

Ivankovic, Franc, Patrik Haslum, Sylvie Thiébaux, Vikas Shivashankar, and
Dana S. Nau (2014). “Optimal Planning with Global Numerical State Con-
straints”. In: Proceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling (ICAPS 2014). Ed. by Steve Chien,
Alan Fern, Wheeler Ruml, and Minh Do. AAAI Press, pp. 145–153.

https://ai.dmi.unibas.ch/_files/teaching/hs17/po/exercises/sheet04.pdf
https://ai.dmi.unibas.ch/_files/teaching/hs17/po/exercises/sheet04.pdf
http://www.icaps-conference.org/index.php/Main/Competitions

144 BIBLIOGRAPHY

Iverson, Kenneth E. (1962). “A programming language”. In: Proceedings of the
May 1-3, 1962, Spring Joint Computer Conference (AIEE-IRE 62). Vol. 21.
ACM New York, pp. 345–351.

Katz, Michael and Carmel Domshlak (2007). “Structural Patterns of Tractable
Sequentially-Optimal Planning”. In: Proceedings of the Seventeenth Interna-
tional Conference on Automated Planning and Scheduling (ICAPS 2007). Ed.
by Mark Boddy, Maria Fox, and Sylvie Thiébaux. AAAI Press, pp. 200–207.

— (2010). “Optimal admissible composition of abstraction heuristics”. In: Ar-
tificial Intelligence 174.12–13, pp. 767–798.

Katz, Michael and Jörg Hoffmann (2014). “Mercury Planner: Pushing the Lim-
its of Partial Delete Relaxation”. In: Eighth International Planning Compe-
tition (IPC-8): planner abstracts, pp. 43–47.

Katz, Michael, Jörg Hoffmann, and Carmel Domshlak (2013). “Red-Black Re-
laxed Plan Heuristics”. In: Proceedings of the Twenty-Seventh AAAI Confer-
ence on Artificial Intelligence (AAAI 2013). Ed. by Marie desJardins and
Michael L. Littman. AAAI Press, pp. 489–495.

Kebschull, Udo, Endric Schubert, and Wolfgang Rosenstiel (1992). “Multilevel
Logic Synthesis Based on Functional Decision Diagrams”. In: Proceedings
of the 29th ACM/IEEE Design Automation Conference (DAC 1992). Ed. by
Daniel G. Schweikert, pp. 43–47.

Keller, Thomas and Patrick Eyerich (2012). “PROST: Probabilistic Planning
Based on UCT”. In: Proceedings of the Twenty-Second International Confer-
ence on Automated Planning and Scheduling (ICAPS 2012). Ed. by Lee Mc-
Cluskey, Brian Williams, José Reinaldo Silva, and Blai Bonet. AAAI Press,
pp. 119–127.

Keller, Thomas and Florian Geißer (2015). “Better Be Lucky Than Good: Ex-
ceeding Expectations in MDP Evaluation”. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence (AAAI 2015). AAAI Press,
pp. 3540–3547.

Keller, Thomas, Florian Pommerening, Jendrik Seipp, Florian Geißer, and Ro-
bert Mattmüller (2016). “State-dependent Cost Partitionings for Cartesian
Abstractions in Classical Planning”. In: Proceedings of the 25th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2016). Ed. by Sub-
barao Kambhampati. AAAI Press, pp. 3161–3169.

Keyder, Emil and Héctor Geffner (2008). “Heuristics for Planning with Action
Costs Revisited”. In: Proceedings of the 18th European Conference on Artifi-
cial Intelligence (ECAI 2008), pp. 588–592.

BIBLIOGRAPHY 145

Korf, Richard E. (1997). “Finding Optimal Solutions to Rubik’s Cube Using
Pattern Databases”. In: Proceedings of the Fourteenth National Conference
on Artificial Intelligence (AAAI 1997). AAAI Press, pp. 700–705.

Korf, Richard E., Michael Reid, and Stefan Edelkamp (2001). “Time complex-
ity of iterative-deepening A∗”. In: Artificial Intelligence 129, pp. 199–218.

Lai, Yung-Te (1993). “Logic Verification and Synthesis using Function Graphs”.
PhD thesis. University of Southern California.

Lai, Yung-Te, Massoud Pedram, and Sarma B. K. Vrudhula (1996). “Formal
Verification Using Edge-Valued Binary Decision Diagrams”. In: IEEE Trans-
actions on Computers 45.2, pp. 247–255.

Lai, Yung-Te and Sarma Sastry (1992). “Edge-Valued Binary Decision Dia-
grams for Multi-Level Hierarchical Verification”. In: Proceedings of the 29th
ACM/IEEE Design Automation Conference (DAC 1992). Ed. by Daniel G.
Schweikert, pp. 608–613.

Lee, Chang-Yeong (1959). “Representation of Switching Circuits by Binary-
Decision Programs”. In: Bell System Technical Journal 38.4, pp. 985–999.

Malik, Sharad, Albert R. Wang, Robert K. Brayton, and Alberto Sangiovanni-
Vincentelli (1988). “Logic Verification using Binary Decision Diagrams in
a Logic Synthesis Environment”. In: Proceedings of the 1988 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD 1988), pp. 6–
9.

Masoumi, Arman, Megan Antoniazzi, and Mikhail Soutchanski (2015). “Mod-
eling Organic Chemistry and Planning Organic Synthesis”. In: Global Con-
ference on Artificial Intelligence, GCAI 2015, pp. 176–195.

Mattmüller, Robert, Florian Geißer, Benedict Wright, and Bernhard Nebel
(2017). “On the Relationship Between State-Dependent Action Costs and
Conditional Effects in Planning”. In: ICAPS 2017 Workshop on Heuristics
and Search for Domain-independent Planning (HSDIP), pp. 10–18.

— (2018). “On the Relationship Between State-Dependent Action Costs and
Conditional Effects in Planning”. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence (AAAI 2018). AAAI Press, pp. 6237–
6245.

McDermott, Drew (1996). “A Heuristic Estimator for Means-Ends Analysis in
Planning”. In: Proceedings of the Third International Conference on Artifi-
cial Intelligence Planning Systems (AIPS 1996). Ed. by Brian Drabble. AAAI
Press, pp. 142–149.

— (2000). “The 1998 AI Planning Systems Competition”. In: AI Magazine
21.2, pp. 35–55.

146 BIBLIOGRAPHY

McDermott, Drew, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins (1998). PDDL – The Plan-
ning Domain Definition Language – Version 1.2. Tech. rep. CVC TR-98-
003/DCS TR-1165. Yale University: Yale Center for Computational Vision
and Control.

Miller, D. Michael (1993). “Multiple-Valued Logic Design Tools”. In: 23rd
IEEE International Symposium on Multiple-Valued Logic (ISMVL 1993). IEEE
Computer Society, pp. 2–11.

Mirkis, Vitaly and Carmel Domshlak (2007). “Cost-Sharing Approximations
for h+”. In: Proceedings of the Seventeenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2007). Ed. by Mark Boddy, Maria
Fox, and Sylvie Thiébaux. AAAI Press, pp. 240–247.

Muise, Christian (2015). Planning.Domains - A collection of tools for work-
ing with planning domains. Accessed: 2018-09-11. URL: http : / / www .
planning.domains.

Muller, David E. (1954). “Application of Boolean algebra to Switching Circuit
Design and to Error Detection”. In: Trans. I.R.E. Prof. Group on Electronic
Computers 3.3, pp. 6–12.

Orkin, Jeff (2006). “Three states and a plan: the AI of F.E.A.R”. In: Proceedings
of the Game Developers Conference (GDC).

Panda, Shipra and Fabio Somenzi (1995). “Who are the variables in your
neighborhood”. In: Proceedings of the 1995 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD 1995). Ed. by Richard L. Rudell,
pp. 74–77.

Petrick, Ronald and Mary Ellen Foster (2013). “Planning for Social Interaction
in a Robot Bartender Domain”. In: Proceedings of the Twenty-Third Inter-
national Conference on Automated Planning and Scheduling (ICAPS 2013).
Ed. by Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Simone
Fratini. AAAI Press, pp. 389–397.

Pommerening, Florian (2017). “New Perspectives on Cost Partitioning for Op-
timal Classical Planning”. PhD thesis. University of Basel.

Pommerening, Florian, Malte Helmert, Gabriele Röger, and Jendrik Seipp
(2015). “From Non-Negative to General Operator Cost Partitioning”. In:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI 2015). AAAI Press, pp. 3335–3341.

Pommerening, Florian, Gabriele Röger, and Malte Helmert (2013). “Getting
the Most Out of Pattern Databases for Classical Planning”. In: Proceedings
of the 23rd International Joint Conference on Artificial Intelligence (IJCAI
2013). Ed. by Francesca Rossi. AAAI Press, pp. 2357–2364.

http://www.planning.domains
http://www.planning.domains

BIBLIOGRAPHY 147

Pommerening, Florian, Gabriele Röger, Malte Helmert, and Blai Bonet (2014).
“LP-based Heuristics for Cost-optimal Planning”. In: Proceedings of the
Twenty-Fourth International Conference on Automated Planning and Sche-
duling (ICAPS 2014). Ed. by Steve Chien, Alan Fern, Wheeler Ruml, and
Minh Do. AAAI Press, pp. 226–234.

Puterman, Martin L. (1994). Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, Inc.

Reed, Irving S. (1954). “A class of multiple-error-correcting codes and the
decoding scheme”. In: Trans. of the IRE Professional Group on Information
Theory (TIT) 4, pp. 38–49.

Rice, Michael and Sanjay Kulhari (2008). A survey of static variable ordering
heuristics for efficient BDD/MDD construction. Tech. rep. Available at http:
//alumni.cs.ucr.edu/~skulhari/StaticHeuristics.pdf. University of
California.

Röger, Gabriele, Florian Pommerening, and Malte Helmert (2014). “Optimal
Planning in the Presence of Conditional Effects: Extending LM-Cut with
Context Splitting”. In: Proceedings of the 21st European Conference on Arti-
ficial Intelligence (ECAI 2014). Ed. by Torsten Schaub, Gerhard Friedrich,
and Barry O’Sullivan. IOS Press, pp. 765–770.

Rudell, Richard (1993). “Dynamic Variable Ordering for Ordered Binary Deci-
sion Diagrams”. In: Proceedings of the 1993 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD 1993). Ed. by Michael R. Lightner
and Jochen A. G. Jess, pp. 42–47.

Russel, Stuart J. and Peter Norvig (2010). Artificial Intelligence - A Modern
Approach (3. internat. ed.). Pearson Education.

Sanner, Scott (2010). Relational Dynamic Influence Diagram Language (RDDL):
Language Description.

Sanner, Scott and Davic McAllester (2005). “Affine Algebraic Decision Dia-
grams (AADDs) and their Application to Structured Probabilistic Infer-
ence”. In: Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI 2005). Ed. by Leslie Pack Kaelbling and Alessandro Saf-
fiotti. Professional Book Center, pp. 1384–1390.

Scala, Enrico, Patrik Haslum, Daniele Magazzeni, and Sylvie Thiébaux (2017).
“Landmarks for Numeric Planning Problems”. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI 2017). Ed. by
Carles Sierra. AAAI Press, pp. 4384–4390.

Scherrer, Sascha, Florian Pommerening, and Martin Wehrle (2015). “Impro-
ved Pattern Selection for PDB Heuristics in Classical Planning (Extended
Abstract)”. In: Proceedings of the Eighth Annual Symposium on Combina-

http://alumni.cs.ucr.edu/~skulhari/StaticHeuristics.pdf
http://alumni.cs.ucr.edu/~skulhari/StaticHeuristics.pdf

148 BIBLIOGRAPHY

torial Search (SoCS 2015). Ed. by Levi Lelis and Roni Stern. AAAI Press,
pp. 216–217.

Seipp, Jendrik and Malte Helmert (2013). “Counterexample-guided Cartesian
Abstraction Refinement”. In: Proceedings of the Twenty-Third International
Conference on Automated Planning and Scheduling (ICAPS 2013). Ed. by
Daniel Borrajo, Subbarao Kambhampati, Angelo Oddi, and Simone Fratini.
AAAI Press, pp. 347–351.

— (2014). “Diverse and Additive Cartesian Abstraction Heuristics”. In: Pro-
ceedings of the Twenty-Fourth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2014). Ed. by Steve Chien, Alan Fern, Wheeler
Ruml, and Minh Do. AAAI Press, pp. 289–297.

— (2018). “Counterexample-Guided Cartesian Abstraction Refinement for
Classical Planning”. In: Journal of Artificial Intelligence Research 62,
pp. 535–577.

Seipp, Jendrik, Thomas Keller, and Malte Helmert (2017a). “Narrowing the
Gap Between Saturated and Optimal Cost Partitioning for Classical Plann-
ing”. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence (AAAI 2017). AAAI Press, pp. 3651–3657.

Seipp, Jendrik, Florian Pommerening, Silvan Sievers, and Malte Helmert
(2017b). Downward Lab. https://doi.org/10.5281/zenodo.790461.
DOI: 10.5281/zenodo.790461. URL: https://doi.org/10.5281/zenodo.
790461.

Sievers, Silvan, Manuela Ortlieb, and Malte Helmert (2012). “Efficient Im-
plementation of Pattern Database Heuristics for Classical Planning”. In:
Proceedings of the Fifth Annual Symposium on Combinatorial Search (SoCS
2012). Ed. by Daniel Borrajo, Ariel Felner, Richard Korf, Maxim Likhachev,
Carlos Linares López, Wheeler Ruml, and Nathan Sturtevant. AAAI Press,
pp. 105–111.

Silver, David (2005). “Cooperative Pathfinding”. In: Proceedings of the First Ar-
tificial Intelligence and Interactive Digital Entertainment Conference (AIIDE
2005), pp. 117–122.

Speck, David (2018). “Symbolic Planning with Edge-Valued Multi-Valued De-
cision Diagrams”. MA thesis. University of Freiburg.

Speck, David, Florian Geißer, and Robert Mattmüller (2018). “Symbolic Plan-
ning with Edge-Valued Multi-Valued Decision Diagrams”. In: Proceedings
of the Twenty-Eighth International Conference on Automated Planning and
Scheduling (ICAPS 2018). Ed. by Mathijs de Weerdt, Sven Koenig, Gabriele
Röger, and Matthijs Spaan. AAAI Press.

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461

BIBLIOGRAPHY 149

Srinivasan, Arvind, Timothy Kam, Sharad Malik, and Robert K. Brayton
(1990). “Algorithms for Discrete Function Manipulation”. In: Proceedings
of the 1990 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD 1990), pp. 92–95.

Sun, Dali, Florian Geißer, and Bernhard Nebel (2016). “Towards effective lo-
calization in dynamic environments”. In: 2016 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS 2016, pp. 4517–4523.

Torralba, Álvaro (2015). “Symbolic Search and Abstraction Heuristics for
Cost-Optimal Planning”. PhD thesis. Universidad Carlos III de Madrid.

Torralba, Álvaro and Florian Pommerening, eds. (2018). Ninth International
Planning Competition (IPC-9): planner abstracts.

Trevizan, Felipe W., Sylvie Thiébaux, and Patrik Haslum (2017). “Occupa-
tion Measure Heuristics for Probabilistic Planning”. In: Proceedings of the
Twenty-Seventh International Conference on Automated Planning and Sche-
duling (ICAPS 2017). Ed. by Laura Barbulescu, Jeremy Frank, Mausam,
and Stephen F. Smith. AAAI Press, pp. 306–315.

Wacker, Erik (2017). “Klassische Planung mit zustandsabhängigen Aktion-
skosten mit und ohne Kompilierung”. MA thesis. University of Freiburg.

Yoon, Sung Wook, Alan Fern, and Robert Givan (2007). “FF-Replan: A Baseline
for Probabilistic Planning”. In: Proceedings of the Seventeenth International
Conference on Automated Planning and Scheduling (ICAPS 2007). Ed. by
Mark Boddy, Maria Fox, and Sylvie Thiébaux. AAAI Press, pp. 352–360.

Yoon, Sung Wook, Alan Fern, Robert Givan, and Subbarao Kambhampati
(2008). “Probabilistic Planning via Determinization in Hindsight”. In: Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI
2008). AAAI Press, pp. 1010–1016.

Younes, Håkan L. S. and Michael L. Littman (2004). PPDDL1.0: An extension to
PDDL for expressing planning domains with probabilistic effects. Tech. rep.
CMU-CS-04-167. Carnegie Mellon University, School of Computer Science.

	Introduction
	Contributions
	Outline
	Relation to Published Work

	Planning with State-Dependent Costs
	Planning Tasks
	Modeling State-dependent Action Costs
	Representing State-dependent Action Costs
	Planning Task Compilations

	Delete Relaxation Heuristics
	Delete-relaxed Planning Tasks
	Approximative Delete Relaxation Heuristics
	Summary

	Abstraction Heuristics
	Projection Abstractions
	General Cartesian Abstractions
	Summary

	Empirical Evaluation
	Benchmark Set
	Compilation Results
	Search Results
	Discussion

	Further Reading and Future Work
	Delete Relaxation
	Cartesian Abstractions and Cost Partitioning
	Conditional Costs and Conditional Effects
	General Action Cost Functions
	Probabilistic Planning

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

